WO2022190992A1 - Laser radiation device, laser radiation method, and manufacturing method for organic el display - Google Patents

Laser radiation device, laser radiation method, and manufacturing method for organic el display Download PDF

Info

Publication number
WO2022190992A1
WO2022190992A1 PCT/JP2022/008873 JP2022008873W WO2022190992A1 WO 2022190992 A1 WO2022190992 A1 WO 2022190992A1 JP 2022008873 W JP2022008873 W JP 2022008873W WO 2022190992 A1 WO2022190992 A1 WO 2022190992A1
Authority
WO
WIPO (PCT)
Prior art keywords
work
holding unit
workpiece
laser
irradiated
Prior art date
Application number
PCT/JP2022/008873
Other languages
French (fr)
Japanese (ja)
Inventor
保 小田嶋
裕也 高塚
輝昭 下地
Original Assignee
Jswアクティナシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jswアクティナシステム株式会社 filed Critical Jswアクティナシステム株式会社
Priority to CN202280019838.8A priority Critical patent/CN117015453A/en
Publication of WO2022190992A1 publication Critical patent/WO2022190992A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/57Working by transmitting the laser beam through or within the workpiece the laser beam entering a face of the workpiece from which it is transmitted through the workpiece material to work on a different workpiece face, e.g. for effecting removal, fusion splicing, modifying or reforming
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources

Definitions

  • the present invention relates to a laser irradiation device, a laser irradiation method, and an organic EL display manufacturing method.
  • Patent Document 1 discloses a laser peeling device.
  • the substrate is irradiated with linear laser light. Then, the substrate is irradiated with laser light while the substrate is being transported. Thereby, the substrate and the release layer can be separated.
  • the laser irradiation device it is desirable to perform an efficient and stable process.
  • pulsed laser light when pulsed laser light is used as the laser light, it is preferable to stably drive the pulsed laser light source at a constant repetition frequency.
  • the repetition frequency and output power may become unstable. Therefore, it is preferable to continuously irradiate without stopping the operation of the pulsed laser light source.
  • the pulsed laser beam is continuously output, useless shots of the pulsed laser beam will occur. For example, the pulsed laser beam is wasted from the end of irradiation of one workpiece until the start of irradiation of the next workpiece.
  • a laser irradiation device includes a laser oscillator that generates a laser beam, and a first holding unit and a second holding unit that respectively hold a first workpiece and a second workpiece to be irradiated with the laser beam.
  • a holding unit, a first transport mechanism and a second transport mechanism for horizontally transporting the first holding unit and the second holding unit, respectively, the first holding unit and the second holding unit A first elevating mechanism and a second elevating mechanism for elevating each unit in a vertical direction orthogonal to the horizontal direction are provided.
  • the laser irradiation method includes: (a) conveying the first work horizontally while holding the first work by a first holding unit; irradiating a work with a laser beam; (b) moving down the first work irradiated with the laser beam, and then horizontally conveying the first work; and (c) a second holding (d) irradiating the second work with a laser beam by conveying the second work horizontally while the unit holds the second work; and a step of horizontally conveying the second work after lowering the second work.
  • a method for manufacturing an organic EL display comprises: (A) forming a release layer on a substrate; (B) forming an element on the release layer; and (D) laminating a film on the release layer, wherein (C) separating the substrate and the release layer is a step of irradiating the workpiece with a laser beam from above while the workpiece including the substrate and the peeling layer is being transported, and (Ca) a state in which the first holding unit holds the first workpiece.
  • the laser irradiation apparatus includes a frame portion and a middle rail portion provided inside the frame portion, and includes a tray on which a substrate to be processed is placed and a groove corresponding to the middle rail portion. a holding unit that is inserted into an opening between the frame portion and the middle frame portion and that adsorbs the processing substrate while the tray and the processing substrate are separated from each other; and an irradiation optical system for irradiating a laser beam onto the processing substrate being transferred by the transfer mechanism.
  • an efficient and stable process can be performed.
  • FIG. 1 is a plan view schematically showing a laser irradiation device according to an embodiment
  • FIG. 1 is a top view schematically showing a laser irradiation device according to an embodiment
  • FIG. It is a perspective view which shows the structure of a laser irradiation apparatus typically.
  • It is a perspective view for demonstrating operation
  • It is a perspective view for demonstrating operation
  • It is a perspective view for demonstrating operation
  • FIG. 4 is a cross-sectional view showing the configuration of a work
  • FIG. 4 is a cross-sectional view showing a state in which a workpiece is sucked in the holding unit
  • 3 is a cross-sectional view schematically showing an organic EL display device manufactured by the manufacturing process of the laser irradiation device 1
  • FIG. 3A to 3C are process cross-sectional views for explaining the manufacturing process of the laser irradiation device 1.
  • a laser irradiation apparatus is, for example, a laser peeling apparatus such as a laser lift-off (LLO) apparatus.
  • the laser irradiation device performs a laser lift-off process on the work by irradiating the work having the peeling layer with laser light.
  • the processing substrate and the separation layer can be separated by laser irradiation.
  • FIG. 1 is a side view schematically showing the configuration of a laser irradiation device 1.
  • FIG. 2 is a top view schematically showing the configuration of the laser irradiation device 1.
  • FIG. 3 is a YZ cross-sectional view schematically showing the configuration of the laser irradiation device 1. As shown in FIG.
  • the diagrams shown below show an XYZ three-dimensional orthogonal coordinate system as appropriate for simplification of explanation.
  • the Y direction is the vertical up-down direction
  • the X direction is the conveying direction of the works 100 and 200 .
  • the Z direction is the direction along the linear irradiation area 15 . That is, the Z direction is the longitudinal direction of the linear irradiation area 15, and the X direction is the lateral direction orthogonal to the longitudinal direction.
  • the laser irradiation device 1 irradiates the work 100 with the laser light L2 while conveying the work 100 in the X direction. As a result, almost the entire workpiece 100 can be irradiated with the laser beam L2.
  • the laser irradiation device 1 includes a chamber 10, a light source 21, and an irradiation optical system 20. As shown in FIGS. 2 and 3, the laser irradiation device 1 has two drive mechanisms 30 and 40 inside the chamber 10 .
  • the drive mechanism 30 drives the workpiece 100 and the drive mechanism 40 drives the workpiece 200 .
  • the drive mechanism 30 moves the workpiece 100 in the X direction and the Y direction.
  • the drive mechanism 40 moves the work 200 in the X direction and the Y direction.
  • the driving mechanism 30 and the driving mechanism 40 are fixed on, for example, a mount (not shown in FIGS. 1 to 3).
  • the holding unit 35 holds the workpiece 100 .
  • the drive mechanism 30 movably supports the holding unit 35 .
  • the drive mechanism 30 moves the holding unit 35 to move the workpiece 100 .
  • the holding unit 45 holds the workpiece 200 .
  • the drive mechanism 40 movably supports the holding unit 45 .
  • the workpiece 200 is moved by the driving mechanism 40 moving the holding unit 45 .
  • the workpieces 100 and 200 are larger than the holding units 35 and 45 when viewed from above. That is, the workpiece 100 protrudes from the holding unit 35 in the X direction and the Z direction. The workpiece 100 protrudes from the holding unit 35 in the X direction and the Z direction.
  • the light source 21 is a laser oscillator that generates laser light L1.
  • the light source 21 is a pulse laser light source.
  • an excimer laser with a wavelength of 308 nm or a solid-state laser with a wavelength of 343 nm can be used.
  • the light source 21 generates laser light L1 at a constant repetition frequency.
  • a laser beam L1 from the light source 21 is incident on the irradiation optical system 20 .
  • the irradiation optical system 20 has an optical system that guides the laser beam L1 to the workpiece 100 .
  • the workpiece 100 is irradiated with the laser beam L2 emitted from the irradiation optical system 20 .
  • the irradiation optical system 20 has a cylindrical lens (not shown) for forming the linear irradiation area 15 .
  • the workpiece is irradiated with a line-shaped laser beam L2 (line beam) having a focal point extending in the Z direction.
  • the irradiation optical system 20 is provided with a shutter 22 .
  • the shutter 22 is detachably arranged in the optical path of the laser beam L1. That is, the shutter 22 is removed from the optical path while the workpiece 100 or workpiece 200 is irradiated with the laser beam L2. Further, the shutter 22 is inserted into the optical path while the workpiece 100 or the workpiece 200 is not irradiated with the laser beam L2.
  • the irradiation optical system 20 is arranged on the +Y side of the chamber 10 .
  • a transparent window 6 is provided on the upper wall of the chamber 10 .
  • Laser light L2 is introduced into chamber 10 through window 6 .
  • the workpiece 100 at the irradiation height H1 is irradiated with the laser beam L2.
  • the internal space of the chamber 10 may be filled with an inert gas such as nitrogen gas.
  • a door valve 5 is attached to the side wall of the chamber 10 on the -X side. By opening the door valve 5, the internal space and the external space of the chamber 10 are connected, and the workpieces 100 and 200 can be transferred.
  • the ⁇ X side end in the chamber 10 serves as the loading position and unloading position for the works 100 and 200 .
  • a transfer robot 4 is arranged outside the chamber 10 . With the door valve 5 open, the transfer robot 4 transfers the works 100 and 200 into the chamber 10 . With the door valve 5 open, the transfer robot 4 takes out the workpieces 100 and 200 in the chamber 10 from the laser irradiation device 1 . The transfer robot 4 carries the unprocessed works 100 and 200 into the chamber 10 . Further, the transfer robot 4 unloads the workpieces 100 and 200 after laser irradiation from the chamber 10 . When loading and unloading are completed, the door valve 5 is closed.
  • the transfer robot 4 places the works 100 and 200 on the holding units 35 and 45 . Then, the laser irradiation device 1 irradiates the works 100 and 200 with the laser light L2. After the irradiation process is completed, the transfer robot 4 takes out the workpieces 100 and 200 from the holding units 35 and 45 and transfers them to the external space of the chamber 10 .
  • the holding units 35 and 45 serve as stages for holding the workpieces 100 and 200 by suction.
  • the distance between the hands of the transfer robot 4 is wider than the width of the holding units 35 and 45 in the Z direction. Therefore, the transfer robot 4 contacts both ends of the workpieces 100 and 200 in the Z direction. As a result, the transfer robot 4 can carry in and out the workpieces 100 and 200 without interfering with the holding units 35 and 45 .
  • a static eliminator 8 is provided around the unloading position.
  • the works 100 and 200 are carried out to the external space of the chamber 10 by passing under the static eliminator 8 .
  • the static eliminator 8 is a static eliminator that irradiates the workpieces 100 and 200 with X-rays or the like from above.
  • the neutralizer 8 neutralizes the workpieces 100 and 200 released from the holding units 35 and 45 by static electricity. This makes it possible to prevent peeling electric resistance and the like.
  • the static eliminator 8 is not limited to the X-ray static eliminator, and may be a corona discharge static eliminator (ionizer) or the like.
  • the work 100 and the work 200 are located at different positions in the Y direction.
  • the work 100 is transported at a position higher than the work 200 . 1 and 3, the work 100 is at the irradiation height H1, and the work 200 is at the transfer height H2.
  • the workpiece 100 loaded into the chamber 10 is transported at the irradiation height H1.
  • the workpiece 100 is conveyed in the +X direction and is irradiated with the laser beam L2.
  • the workpiece 200 irradiated with the laser beam L2 is lowered to the conveying height H2.
  • the workpiece 200 is transported in the -X direction.
  • the processed workpiece 200 moves to the carry-out position in front of the door valve 5 .
  • the positions of the work 100 and the work 200 match in the Z direction.
  • a workpiece 100 is arranged above the workpiece 200 . That is, the works 100 and 200 are driven such that the processed work 200 passes under the unprocessed work 100 .
  • the work 200 passes under the work 100 while the work 100 is being irradiated with the laser beam L2. This can prevent the processed workpiece 200 from being irradiated with the laser beam L2 while being conveyed in the -X direction.
  • the laser irradiation device 1 can accommodate two works 100 and 200 at the same time. Then, the laser irradiation device 1 continuously applies the laser irradiation process to the two works 100 and 200 .
  • transportation is performed such that the processed work is unloaded and a new work is loaded.
  • the waiting time for loading and unloading can be shortened, so that the tact time can be shortened.
  • the workpieces 100 and 200 can be continuously irradiated with laser light, useless pulsed laser light can be reduced. Therefore, it is possible to efficiently irradiate the pulsed laser light.
  • the workpiece 100 is transported at the irradiation height H1. Stable processes can be carried out efficiently.
  • the driving mechanisms 30, 40 for driving the works 100, 200 will be described below.
  • the drive mechanism 30 movably supports the holding unit 35 .
  • the drive mechanism 30 supports the holding unit 35 on the ⁇ Z side of the holding unit 35 .
  • a holding unit 45 is movably supported by the driving mechanism 40 .
  • the drive mechanism 40 supports the holding unit 45 on the +Z side of the holding unit 45 .
  • the drive mechanism 30 includes an X-axis mechanism 31, a Y-axis mechanism 32, and a guide 33.
  • the guide 33 is arranged on the -Z side of the works 100 and 200 .
  • the guide 33 is arranged along the X direction.
  • the X-axis mechanism 31 is movably attached to the guide 33 .
  • the X-axis mechanism 31 linearly moves along the guide 33 in the X direction.
  • the X-axis mechanism 31 serves as a transport mechanism that transports the workpiece 100 and the holding unit 35 in the X direction.
  • the Y-axis mechanism 32 is attached to the X-axis mechanism 31 so as to be able to move up and down.
  • a holding unit 35 is fixed to the Y-axis mechanism 32 .
  • the Y-axis mechanism 32 serves as an elevating mechanism for elevating the workpiece 100 and the holding unit 35 .
  • Each of the X-axis mechanism 31 and the Y-axis mechanism 32 has a motor, a slide
  • the drive mechanism 40 includes an X-axis mechanism 41, a Y-axis mechanism 42, and a guide 43.
  • the guide 43 is arranged on the +Z side of the works 100 and 200 .
  • the guide 43 is arranged along the X direction.
  • the X-axis mechanism 41 is movably attached to the guide 43 .
  • the X-axis mechanism 41 linearly moves in the X direction along the guide 43 .
  • the X-axis mechanism 41 serves as a transport mechanism that transports the workpiece 200 and the holding unit 45 in the X direction.
  • the Y-axis mechanism 42 is attached to the X-axis mechanism 41 so as to be able to move up and down.
  • a holding unit 45 is fixed to the Y-axis mechanism 42 .
  • the Y-axis mechanism 42 serves as an elevating mechanism for elevating the workpiece 200 and the holding unit 45 .
  • Each of the X-axis mechanism 41 and the Y-axis mechanism 42 has a motor, a
  • the work 100 and the work 200 are at the same position in the Z direction.
  • the holding unit 35 and the holding unit 45 hold the workpieces 100 and 200 at the same Z position.
  • the works 100 and 200 overlap during transportation.
  • the laser beam L2 is applied to the workpieces 100 and 200 at the same irradiation position.
  • the driving mechanism 30 is arranged on the -Z side of the workpieces 100 and 200, and the driving mechanism 40 is arranged on the +Z side of the workpiece 200.
  • the drive mechanism 30 supports the holding unit 35 on the ⁇ Z side of the work 100 .
  • the drive mechanism 40 supports a holding unit 45 on the +Z side of the workpiece 200 .
  • Workpieces 100 and 200 are arranged between the drive mechanism 30 and the drive mechanism 40 in the Z direction. More specifically, the guide 33 is arranged on the -Z side of the transfer position of the works 100 and 200, and the guide 43 is arranged on the +Z side of the transfer position of the works 100 and 200.
  • the laser irradiation device 1 has a three-dimensional structure capable of transporting the works 100 and 200 at different heights.
  • the footprint of the laser irradiation device 1 can be reduced. That is, in the Z direction, the drive mechanism 30 is arranged on one end side of the works 100 and 200, and the drive mechanism 40 is arranged on the other end side. Therefore, the size in the Z direction can be reduced. Therefore, the footprint can be reduced.
  • FIG. 4 is a perspective view showing the configuration of the main part of the laser irradiation device 1. As shown in FIG. Specifically, FIG. 4 shows the main components within the chamber 10 . 5 to 9 show the configuration of main parts in each process.
  • the drive mechanism 30 and the drive mechanism 40 are installed on the pedestal 25 .
  • guides 33 and 43 are fixed on the base 25 .
  • the X-axis mechanisms 31 and 41 move along the guides 33 and 43 in the X direction.
  • the moving end of the X-axis mechanism 31 and the X-axis mechanism 41 are the same.
  • each of the X-axis mechanisms 31 and 41 is provided with an elevating rail or the like along the Y direction. Then, the Y-axis mechanisms 32 and 42 move up and down along the lift rails, respectively. The moving ends of the Y-axis mechanism 32 and the Y-axis mechanism 42 are the same in the vertical direction. Furthermore, the Y-axis mechanisms 32, 42 support holding units 35, 45, respectively.
  • the holding units 35 and 45 may have chuck tables that vacuum-suck the workpieces 100 and 200, respectively. The holding units 35 and 45 release the suction when the works 100 and 200 are carried out.
  • FIG. 5 shows a state in which the workpiece 100 is transferred onto the holding unit 45.
  • the workpiece 100 is at the carry-in position (load position).
  • the carry-in position corresponds to the moving end of the X-axis mechanism 31 on the -X side.
  • the workpiece 100 has an irradiation height H1 (see FIG. 1, etc.).
  • the X-axis mechanism 41 is at the moving end on the +X side.
  • the workpiece 200 has a conveying height H2.
  • FIG. 6 shows a state in which the workpiece 100 is irradiated with the laser beam L2.
  • the X-axis mechanism 31 moves in the +X direction from the state shown in FIG. 5, the state shown in FIG. 6 is obtained.
  • the X-axis mechanism 41 has finished moving in the -X direction. That is, the X-axis mechanism 41 has moved to the moving end in the -X direction.
  • a workpiece 200 is transported at a transport height H2.
  • the workpiece 200 is at the carry-out position (unload position). It should be noted that the carry-in position and the carry-out position are the same X position.
  • the X-axis mechanism 41 is moving at a faster transport speed than the X-axis mechanism 31 here.
  • FIG. 7 shows a state in which the laser irradiation to the workpiece 100 is completed. Therefore, the workpiece 100 is conveyed to the +X side from the irradiation position of the laser beam L2.
  • the X-axis mechanism 31 moves further in the +X direction from the state shown in FIG. 6, the state shown in FIG. 7 is reached.
  • the X-axis mechanism 31 has moved to the moving end on the +X side. 5 to 7, the workpiece 100 is moving at the irradiation height H1.
  • the Y-axis mechanism 42 is raised and the workpiece 200 is at the irradiation height H1.
  • FIG. 8 shows a state in which the work 100 is lowered to the conveying height H2. That is, when the Y-axis mechanism 32 is lowered from the state shown in FIG. 7, the state shown in FIG. 8 is obtained. 6 to 8, the workpiece 200 is carried into and out of the holding unit 45. As shown in FIG. That is, the transfer robot 4 transfers the processed work 200 from the holding unit 45 and also transfers the new work 200 before processing onto the holding unit 45 .
  • the position of the holding unit 45 and the position of the holding unit 35 are interchanged between the state shown in FIG. 5 and the state shown in FIG.
  • FIG. 9 shows a state in which the workpiece 200 is irradiated with the laser beam L2.
  • the X-axis mechanism 41 moves in the +X direction from the state shown in FIG. 8, the state shown in FIG. 9 is obtained.
  • the X-axis mechanism 31 has finished moving in the -X direction. That is, the X-axis mechanism 31 has moved to the moving end in the -X direction.
  • the workpiece 100 is transported at the transport height H2.
  • the workpiece 100 is at the carry-out position (unload position).
  • the X-axis mechanism 31 is moving at a faster transport speed than the X-axis mechanism 41 .
  • the positions of the holding unit 35 and the holding unit 45 are reversed from the state shown in FIG.
  • FIG. 10 shows a state in which the laser irradiation to the workpiece 200 has been completed. Therefore, the workpiece 200 is conveyed to the +X side from the irradiation position of the laser beam L2.
  • the X-axis mechanism 41 moves further in the +X direction from the state shown in FIG. 9, the state shown in FIG. 10 is reached.
  • the X-axis mechanism 41 has moved to the moving end on the +X side. Therefore, the workpiece 200 has moved to a position where the laser beam L2 is not irradiated. 8 to 10, the workpiece 200 is moving at the irradiation height H1.
  • the Y-axis mechanism 32 is raised and the workpiece 100 is at the irradiation height H1.
  • the position of the holding unit 35 and the position of the holding unit 45 are reversed from the state shown in FIG.
  • the Y-axis mechanism 42 descends, it returns to the state shown in FIG. From the state shown in FIG. 9 to the state shown in FIG. 5, the workpiece 100 is carried in and out of the holding unit 35 .
  • the processed workpiece 100 is transferred from the holding unit 35 and the new untreated workpiece 100 is transferred onto the holding unit 35 .
  • the workpieces 100 and 200 are at the irradiation height H1 during transportation in the +X direction.
  • the workpieces 100 and 200 are at the transportation height H2.
  • the transport height when transporting in the -X direction can be made lower than the irradiation height. Therefore, it is possible to prevent the irradiation of the laser beam during the transportation in the -X direction.
  • the conveying height of the workpieces 100 and 200 may be any height that can pass under the workpieces at the irradiation height. Therefore, the conveying height when conveying the work in the -X direction does not have to be constant. Alternatively, the work 100 and the work 200 may have different transport heights.
  • the transport speed in the +X direction for laser light irradiation is limited by the laser irradiation process.
  • the transport speed in the -X direction is faster than the transport speed in the +X direction.
  • the tact time can be shortened.
  • the other workpiece at the conveying height H2 passes directly below the irradiation area 15 . It is possible to prevent the laser beam L2 from irradiating the workpiece at the transport height H2.
  • FIG. 11 is a diagram showing an example of a timing chart of the laser irradiation device 1.
  • FIG. 11 shows, from top to bottom, the opening/closing operation of the door valve 5, the transfer operation of the transfer robot 4, the on/off operation of the static eliminator 8, the opening/closing operation of the shutter 22, the operation of the driving mechanism 30, and the operation of the driving mechanism 40.
  • the tact time is 100 seconds. That is, new workpieces are accommodated in the chamber every 100 seconds.
  • the operations of the transfer robot 4 are shown in three stages: load for transferring the workpiece into the chamber, unload for transferring the workpiece out of the chamber, and standby.
  • the operations of the drive mechanism 30 are shown as X move for transporting the workpiece 100 in the X direction, Y move for raising and lowering the workpiece 100, and standby.
  • the operation of the drive mechanism 40 is represented by three movements, an X move for transporting the workpiece 200 in the X direction, a Y move for raising and lowering the workpiece 200, and a standby.
  • the transfer robot 4 unloads/loads the workpiece 100 by timing t2.
  • the door valve 5 is closed.
  • the drive mechanism 30 is in a standby state at the carry-in position.
  • the drive mechanism 40 is moving in the X direction. That is, in order to irradiate the work 200 with laser light, the work 200 is conveyed in the +X direction.
  • the driving mechanism 30 starts conveying the workpiece 100 in the +X direction.
  • the laser irradiation to the workpiece 200 ends at the timing of t3.
  • the drive mechanism 40 reaches the moving end on the +X side at the timing of t4, so that the drive mechanism 40 lowers the workpiece 200.
  • the laser irradiation to the workpiece 100 starts at the timing of t4. Since the descent of the work 200 is completed at the timing of t5, the drive mechanism 40 conveys the work 200 in the -X direction. Since the drive mechanism 40 reaches the moving end on the -X side at the timing of t6, the drive mechanism 40 raises the workpiece 200. As shown in FIG. At the timing of t7, the workpiece 200 is completely lifted, and the driving mechanism 40 enters the standby state.
  • the door valve 5 opens at timing t8, unloading/loading of the workpiece 200 is performed until timing t9.
  • the static eliminator 8 eliminates static electricity from the workpiece 200 being carried out.
  • the drive mechanism 40 starts conveying in the +X direction. Also, the laser irradiation to the workpiece 100 ends at the timing of t10.
  • the drive mechanism 30 conveys the workpiece 100 in the X direction from t3 to t11. As a result, the entire surface of the workpiece 100 is irradiated with the laser beam L2. At the timing of t11, the drive mechanism 30 reaches the moving end in the +X direction, so that the drive mechanism 30 lowers the workpiece 100. As shown in FIG. Also, the laser irradiation to the workpiece 200 starts at the timing of t11. Since the descent of the work 100 is completed at the timing of t12, the drive mechanism 30 conveys the work 100 in the -X direction. Since the drive mechanism 30 reaches the moving end in the -X direction at the timing of t13, the drive mechanism 30 lifts the workpiece 100. As shown in FIG. The lifting of the workpiece 100 is completed at the timing of t14.
  • the door valve 5 opens.
  • the timing of t15 corresponds to the timing of t1. Therefore, since the operation after t15 is a repetition of the operation after t1, description thereof is omitted.
  • the neutralizer 8 neutralizes the workpiece 100 at the carry-in position with X-rays.
  • the shutter 22 is closed from timing t3 to timing t4. From the timing t10 to the timing t11, the shutter 22 is closed from the end of the laser irradiation to the one work for which the shutter 22 is closed to the start of the laser irradiation to the other work. As a result, continuous transportation becomes possible, and the pulsed laser beam can be used efficiently.
  • the closing time of the shutter 22 is 4 seconds with respect to the tact time of 100 seconds. That is, the irradiation time of the laser beam for one workpiece is 96 seconds. Therefore, waste of pulsed laser light can be suppressed.
  • FIG. 12 is an exploded perspective view showing the configuration of the workpiece 100.
  • FIG. FIG. 13 is a side sectional view schematically showing the configuration of part of the workpiece 100.
  • the configuration of the workpiece 200 is the same as that of the workpiece 100, and thus the description thereof is omitted.
  • Workpiece 100 is subjected to a laser lift-off process.
  • the workpiece 100 includes a panel substrate 110, a tray 120, and a mask 130.
  • the panel substrate 110 becomes a display panel through a laser lift process or the like.
  • the panel substrate 110 has a processing substrate 111 and a peripheral substrate 112 .
  • the panel substrate 110 has a size of 65 inches, for example.
  • the processing substrate 111 has, in order from the top, a glass substrate 111a, a polyimide film 111b, and a PET film 111c.
  • the glass substrate 111a is carrier glass that holds the polyimide film 111b and the PET film 111c.
  • the polyimide film 111b becomes a peeling layer that is peeled off by laser irradiation. Elements for forming display pixels are formed between the PET film 111c and the polyimide film 111b.
  • the polyimide film 111b and the PET film 111c can be separated from the glass substrate 111a.
  • a peripheral substrate 112 is attached to the peripheral region of the processing substrate 111 .
  • the peripheral board 112 has a PCB (Printed Circuit Board) 112a and an FPC (Flexible Printed Circuit) 112b.
  • the PCB 112a is attached to the processing board 111 via the PFPC 112b.
  • a drive circuit or the like may be mounted on the PCB 112a.
  • the panel substrate 110 is placed on the tray 120 .
  • the tray 120 is made of metal such as aluminum.
  • the tray 120 has a frame portion 121 and a middle rail portion 123 .
  • the frame portion 121 is formed in a rectangular frame shape and corresponds to the peripheral portion of the panel substrate 110 .
  • the frame portion 121 holds the peripheral portion of the processing substrate 111 and the peripheral substrate 112 .
  • Frame portion 121 may have a recess or the like for disposing panel substrate 110 .
  • a middle beam portion 123 is provided inside the frame portion 121 in the XZ plane.
  • the middle rail portion 123 is provided in a grid pattern. That is, the middle crosspiece 123 is a beam extending in the X direction and the Z direction.
  • the middle rail portion 123 is formed across from one end of the frame portion 121 to the other end.
  • An opening 124 is formed in a region surrounded by the middle rail portion 123 and the frame portion 121 . Here, a plurality of openings 124 are formed.
  • a mask 130 is provided to cover the peripheral substrate 112 .
  • a mask 130 is positioned over the peripheral substrate 112 .
  • the mask 130 may be fixed to the tray 120 with bolts or the like.
  • the mask 130 is formed in a frame shape and has a rectangular opening 130a.
  • the processing substrate 111 is irradiated with the laser light L2 through the opening 130a.
  • the mask 130 is provided to prevent the peripheral substrate 112 from being irradiated with the laser light L2. Furthermore, it is possible to prevent the peripheral substrate 112 from being irradiated with scattered ultraviolet rays or the like.
  • a panel substrate 110 is held on the tray 120 .
  • a mask 130 is attached on the tray 120 .
  • the panel substrate 110, the tray 120, and the mask 130 are integrated to form the workpiece 100.
  • FIG. A workpiece 100 having a panel substrate 110 , a tray 120 and a mask 130 is carried into the laser irradiation apparatus 1 .
  • the panel substrate 110 is carried into the laser irradiation apparatus 1 together with the tray 120 and the mask 130 .
  • FIG. 14 is a sectional view showing the configuration of the holding unit 35 and the workpiece 100. As shown in FIG. Specifically, FIG. 14 shows a state in which the workpiece 100 is held by the holding unit 35. As shown in FIG.
  • the holding unit 35 is a chuck table for vacuum chucking.
  • the holding unit 35 is a porous body.
  • the holding unit 35 may be provided with a suction port on the upper surface 35a.
  • the holding unit 35 is connected to evacuation means such as a vacuum pump. By sucking gas from the holding unit 35 , the workpiece 100 is attracted to the upper surface 35 a of the holding unit 35 .
  • a groove 35b is formed on the upper surface 35a of the holding unit 35 so as not to interfere with the middle rail portion 123.
  • the grooves 35b are formed in a lattice shape so as to correspond to the middle beam portion 123.
  • the width of the groove 35b is wider than the width of the middle rail portion 123.
  • the middle rail portion 123 is fitted in the groove 35b.
  • the holding unit 35 is inserted into the opening 124 between the frame portion 121 and the middle beam portion 123 .
  • the upper surface 35a of the holding unit 35 contacts the PET film 111c of the substrate 111 to be processed. That is, the holding unit 35 lifts the panel substrate 110 from the tray 120 . A gap is formed between the processing substrate 111 and the tray 120 .
  • the holding unit 35 holds the work 100 in a state where the lower surface of the processing substrate 111 does not contact the tray 120 .
  • the holding unit 35 sucks the processing substrate 111 while the tray 120 and the processing substrate 111 are separated from each other.
  • the flatness of the processing substrate 111 depends on the flatness of the upper surface 35 a of the holding unit 35 . The flatness of the processing substrate 111 can be increased.
  • the processing substrate 111 in order to stably perform laser irradiation, it is preferable to increase the flatness of the processing substrate 111 being transported.
  • the processing substrate 111 since the processing substrate 111 has a multi-layer structure, it may warp due to film stress or the like.
  • the holding unit 35 since the holding unit 35 is vacuum-sucked, warping of the processing substrate 111 can be suppressed.
  • the processing substrate 111 is vacuum-sucked at a portion other than the middle beam portion 123 .
  • warping can be suppressed, the flatness of the processing substrate 111 can be increased.
  • the height of the processing substrate 111 can be matched with the focal plane of the laser light L2 by the irradiation optical system 20. Thereby, even when it is difficult to increase the depth of focus of the irradiation optical system 20, a stable laser irradiation process can be realized. Therefore, a stable process can be performed efficiently.
  • the laser irradiation device 1 described above is suitable for a laser lift-off device for an organic EL (ElectroLuminescence) display. That is, the laser irradiation method by the laser irradiation device 1 is used as a laser lift-off process in the manufacturing process of the organic EL display.
  • FIG. 15 is a cross-sectional view showing an example of an organic EL display.
  • the organic EL display 300 shown in FIG. 15 is an active matrix display device in which a TFT is arranged in each pixel PX.
  • the organic EL display 300 includes a film 301 , a release layer 302 , a TFT (Thin Film Transistor) layer 311 , an organic layer 312 , a color filter layer 313 and a protective layer 314 .
  • FIG. 15 shows a top emission type organic EL display in which the protective layer 314 side is the viewing side. Note that the following description shows one configuration example of the organic EL display, and the present embodiment is not limited to the configuration described below. For example, the present embodiment may be used for a bottom emission type organic EL display.
  • the film 301 is a flexible plastic film that can be bent by applying stress.
  • a release layer 302 and a TFT layer 311 are provided on the film 301 .
  • the TFT layer 311 has a TFT 311a arranged in each pixel PX. Further, the TFT layer 311 has wiring (not shown) and the like connected to the TFT 311a.
  • the TFT 311a, wiring, and the like constitute a pixel circuit.
  • the organic layer 312 is provided on the TFT layer 311 .
  • the organic layer 312 has an organic EL light emitting element 312a arranged for each pixel PX.
  • the organic EL light-emitting element 312a has, for example, a laminated structure in which an anode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and a cathode are laminated.
  • the anode is a metal electrode and the cathode is a transparent conductive film such as ITO (Indium Tin Oxide).
  • the organic layer 312 is provided with partition walls 312b for separating the organic EL light emitting elements 312a between the pixels PX.
  • a color filter layer 313 is provided on the organic layer 312 .
  • the color filter layer 313 is provided with color filters 313a for color display. That is, each pixel PX is provided with a resin layer colored R (red), G (green), or B (blue) as a color filter 313a.
  • the white light emitted from the organic layer 312 is converted into RGB color light when passing through the color filter 313a. Note that in the case of a three-color system in which the organic layer 312 is provided with organic EL light-emitting elements that emit each color of RGB, the color filter layer 313 may be omitted.
  • a protective layer 314 is provided on the color filter layer 313 .
  • the protective layer 314 is made of a resin material and provided to prevent deterioration of the organic EL light emitting element of the organic layer 312 .
  • the current flowing through the organic EL light emitting element 312a of the organic layer 312 changes depending on the display signal supplied to the pixel circuit. Therefore, by supplying a display signal corresponding to a display image to each pixel PX, the amount of light emitted from each pixel PX can be controlled. Thereby, a desired image can be displayed.
  • a processing substrate 331 is prepared (process A).
  • a glass substrate that transmits laser light is used as the processing substrate 331 .
  • the processing substrate 331 corresponds to the processing substrate 111 in FIG. 12 and the like.
  • a release layer 302 is formed on the processing substrate 331 (step B).
  • Polyimide for example, can be used for the release layer 302 .
  • the release layer 302 corresponds to the polyimide film 111b.
  • a circuit element 332 is formed on the release layer 302 (process C).
  • the circuit element 332 includes the TFT layer 311, the organic layer 312, and the color filter layer 313 shown in FIG.
  • the circuit element 332 can be formed using a photolithography technique or a film formation technique.
  • a protective layer 314 for protecting the circuit element 332 is formed on the circuit element 332 (process D).
  • the protective layer 314 corresponds to the PET film 111c.
  • the processing substrate 331 is turned over so that the processing substrate 331 faces upward (process E), and is carried into the laser irradiation apparatus 1 .
  • the release layer 302 is irradiated with a laser beam L2 from the processing substrate 331 side (process F).
  • a line beam can be used as the laser beam L2.
  • the processing substrate 331 and the separation layer 302 are separated (step G).
  • a film 318 is laminated to the release layer 302 (step H).
  • film 318 is a flexible plastic film, a film that can be bent by applying stress.
  • the laser irradiation apparatus 1 described above is applicable not only to a peeling apparatus that performs a laser lift-off process, but also to an excimer laser annealing apparatus and the like.

Abstract

A laser radiation device (1) according to the present embodiment comprises: a light source (21) that generates laser light (L1); a holding unit (35) that holds a workpiece (100) to be irradiated by laser light; a holding unit (45) that holds a workpiece (200) to be irradiated by laser light; an X-axis mechanism (31) that conveys the holding unit (35) in the horizontal direction; an X-axis mechanism (41) that conveys the holding unit (45) in the horizontal direction; a Y-axis mechanism (32) that raises and lowers the workpiece (100); and a Y-axis mechanism (42) that raises and lowers the workpiece (200).

Description

レーザ照射装置、レーザ照射方法、及び有機ELディスプレイの製造方法Laser irradiation device, laser irradiation method, and organic EL display manufacturing method
 本発明はレーザ照射装置、レーザ照射方法、及び有機ELディスプレイの製造方法に関する。 The present invention relates to a laser irradiation device, a laser irradiation method, and an organic EL display manufacturing method.
 特許文献1には、レーザ剥離装置が開示されている。このレーザ剥離装置では、ライン状のレーザ光を基板に照射している。そして、基板の搬送中に、基板にレーザ光を照射している。これにより、基板と剥離層とを分離することができる。 Patent Document 1 discloses a laser peeling device. In this laser peeling apparatus, the substrate is irradiated with linear laser light. Then, the substrate is irradiated with laser light while the substrate is being transported. Thereby, the substrate and the release layer can be separated.
国際公開第2018/25495号WO2018/25495
 このようなレーザ照射装置では、効率的に安定したプロセスを行うことが望まれる。例えば、レーザ光としてパルスレーザ光を用いる場合、パルスレーザ光源を一定の繰り返し周波数で安定して駆動することが好ましい。しかしながら、パルスレーザ光源を一旦オフすると、繰り返し周波数や出力パワーが不安定になってしまうおそれがある。よって、パルスレーザ光源の動作を停止しないで、連続的に照射することが好ましい。しかしながら、連続してパルスレーザ光を出力し続けると、パルスレーザ光の無駄なショットが生じてしまう。例えば、一つワークの照射が終了してから次のワークの照射が始まるまでの間、パルスレーザ光が無駄になってしまう。 With such a laser irradiation device, it is desirable to perform an efficient and stable process. For example, when pulsed laser light is used as the laser light, it is preferable to stably drive the pulsed laser light source at a constant repetition frequency. However, once the pulse laser light source is turned off, the repetition frequency and output power may become unstable. Therefore, it is preferable to continuously irradiate without stopping the operation of the pulsed laser light source. However, if the pulsed laser beam is continuously output, useless shots of the pulsed laser beam will occur. For example, the pulsed laser beam is wasted from the end of irradiation of one workpiece until the start of irradiation of the next workpiece.
 その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。 Other issues and novel features will become apparent from the description and accompanying drawings of this specification.
 一実施の形態によれば、レーザ照射装置は、レーザ光を発生させるレーザ発振器と、前記レーザ光が照射される第1のワーク及び第2のワークをそれぞれ保持する第1の保持ユニット及び第2の保持ユニットと、前記第1の保持ユニット及び前記第2の保持ユニットをそれぞれ水平方向に搬送する第1の搬送機構及び第2の搬送機構と、前記第1の保持ユニット及び前記第2の保持ユニットをそれぞれ前記水平方向と直交する垂直方向に昇降させる第1の昇降機構及び第2の昇降機構と、を備えている。 According to one embodiment, a laser irradiation device includes a laser oscillator that generates a laser beam, and a first holding unit and a second holding unit that respectively hold a first workpiece and a second workpiece to be irradiated with the laser beam. a holding unit, a first transport mechanism and a second transport mechanism for horizontally transporting the first holding unit and the second holding unit, respectively, the first holding unit and the second holding unit A first elevating mechanism and a second elevating mechanism for elevating each unit in a vertical direction orthogonal to the horizontal direction are provided.
 一実施の形態によれば、レーザ照射方法は、(a)第1の保持ユニットが第1のワークを保持した状態で、前記第1のワークを水平方向に搬送することで、前記第1のワークにレーザ光を照射するステップと、(b)前記レーザ光が照射された第1のワークを下降した後、前記第1のワークを水平方向に搬送するステップと、(c)第2の保持ユニットが第2のワークを保持した状態で、前記第2のワークを水平方向に搬送することで、前記第2のワークにレーザ光を照射するステップと、(d)前記レーザ光が照射された第2のワークを下降した後、前記第2のワークを水平方向に搬送するステップと、を備えている。 According to one embodiment, the laser irradiation method includes: (a) conveying the first work horizontally while holding the first work by a first holding unit; irradiating a work with a laser beam; (b) moving down the first work irradiated with the laser beam, and then horizontally conveying the first work; and (c) a second holding (d) irradiating the second work with a laser beam by conveying the second work horizontally while the unit holds the second work; and a step of horizontally conveying the second work after lowering the second work.
 一実施の形態によれば、有機ELディスプレイの製造方法は、(A)基板上に剥離層を形成する工程と、(B)前記剥離層上に素子を形成する工程と、(C)前記基板と前記剥離層とを分離する工程と、(D)前記剥離層にフィルムを積層する工程と、を備えた有機ELディスプレイの製造方法であって、(C)前記基板と前記剥離層とを分離する工程は、前記基板と前記剥離層とを含むワークを搬送中に、前記ワークに上方からレーザ光を照射する工程であり、(Ca)第1の保持ユニットが第1のワークを保持した状態で、前記第1のワークを水平方向に搬送することで、前記第1のワークにレーザ光を照射するステップと、(Cb)前記レーザ光が照射された第1のワークを下降した後、前記第1のワークを水平方向に搬送するステップと、(Cc)第2の保持ユニットが第2のワークを保持した状態で、前記第2のワークを水平方向に搬送することで、前記第2のワークにレーザ光を照射するステップと、(Cd)前記レーザ光が照射された第2のワークを下降した後、前記第2のワークを水平方向に搬送するステップと、を備えている。 According to one embodiment, a method for manufacturing an organic EL display comprises: (A) forming a release layer on a substrate; (B) forming an element on the release layer; and (D) laminating a film on the release layer, wherein (C) separating the substrate and the release layer is a step of irradiating the workpiece with a laser beam from above while the workpiece including the substrate and the peeling layer is being transported, and (Ca) a state in which the first holding unit holds the first workpiece. a step of irradiating the first work with a laser beam by conveying the first work in a horizontal direction; (Cc) conveying the second work horizontally while holding the second work by the second holding unit; (Cd) After the second work irradiated with the laser light is lowered, the second work is conveyed in the horizontal direction.
 一実施の形態によれば、レーザ照射装置は、額縁部と額縁部の内側に設けられた中桟部とを備え、処理基板が載置されるトレイと、前記中桟部に対応する溝を有し、前記額縁部と前記中桟部との間の開口部に挿入されて、前記トレイと前記処理基板とが離間した状態で前記処理基板を吸着する保持ユニットと、前記保持ユニット搬送する搬送機構と、前記搬送機構で搬送中の前記処理基板にレーザ光を照射する照射光学系と、を備えている。 According to one embodiment, the laser irradiation apparatus includes a frame portion and a middle rail portion provided inside the frame portion, and includes a tray on which a substrate to be processed is placed and a groove corresponding to the middle rail portion. a holding unit that is inserted into an opening between the frame portion and the middle frame portion and that adsorbs the processing substrate while the tray and the processing substrate are separated from each other; and an irradiation optical system for irradiating a laser beam onto the processing substrate being transferred by the transfer mechanism.
 前記一実施の形態によれば、効率的に安定したプロセスを行うことができる。 According to the embodiment, an efficient and stable process can be performed.
実施の形態にかかるレーザ照射装置を模式的に示す側面図である。It is a side view which shows typically the laser irradiation apparatus concerning embodiment. 実施の形態にかかるレーザ照射装置を模式的に示す平面図である。1 is a plan view schematically showing a laser irradiation device according to an embodiment; FIG. 実施の形態にかかるレーザ照射装置を模式的に示す上面図である。1 is a top view schematically showing a laser irradiation device according to an embodiment; FIG. レーザ照射装置の構成を模式的に示す斜視図である。It is a perspective view which shows the structure of a laser irradiation apparatus typically. レーザ照射装置の動作を説明するための斜視図である。It is a perspective view for demonstrating operation|movement of a laser irradiation apparatus. レーザ照射装置の動作を説明するための斜視図である。It is a perspective view for demonstrating operation|movement of a laser irradiation apparatus. レーザ照射装置の動作を説明するための斜視図である。It is a perspective view for demonstrating operation|movement of a laser irradiation apparatus. レーザ照射装置の動作を説明するための斜視図である。It is a perspective view for demonstrating operation|movement of a laser irradiation apparatus. レーザ照射装置の動作を説明するための斜視図である。It is a perspective view for demonstrating operation|movement of a laser irradiation apparatus. レーザ照射装置の動作を説明するための斜視図である。It is a perspective view for demonstrating operation|movement of a laser irradiation apparatus. レーザ照射装置の動作を示すタイミングチャートである。It is a timing chart which shows operation|movement of a laser irradiation apparatus. ワークの構成を示す分解図である。2 is an exploded view showing the configuration of a work; FIG. ワークの構成を示す断面図である。4 is a cross-sectional view showing the configuration of a work; FIG. 保持ユニットにおいてワークが吸着された状態を示す断面図である。FIG. 4 is a cross-sectional view showing a state in which a workpiece is sucked in the holding unit; レーザ照射装置1の製造プロセスで製造された有機ELディスプレイ装置を模式的に示す断面図である。3 is a cross-sectional view schematically showing an organic EL display device manufactured by the manufacturing process of the laser irradiation device 1; FIG. レーザ照射装置1の製造プロセスを説明する工程断面図である。3A to 3C are process cross-sectional views for explaining the manufacturing process of the laser irradiation device 1. FIG.
 本実施の形態にかかるレーザ照射装置は、例えば、レーザリフトオフ(LLO: Laser Lift Off)装置等のレーザ剥離装置である。レーザ照射装置は、剥離層を有するワークにレーザ光を照射することで、ワークに対してレーザリフトオフプロセスを行う。つまり、レーザ照射により処理基板と剥離層とを分離することができる。以下、図面を参照して本実施の形態にかかる、レーザ照射装置、方法、及び製造方法について説明する。 A laser irradiation apparatus according to the present embodiment is, for example, a laser peeling apparatus such as a laser lift-off (LLO) apparatus. The laser irradiation device performs a laser lift-off process on the work by irradiating the work having the peeling layer with laser light. In other words, the processing substrate and the separation layer can be separated by laser irradiation. A laser irradiation apparatus, method, and manufacturing method according to the present embodiment will be described below with reference to the drawings.
実施の形態1.
 図1~図3を用いて、本実施の形態にかかるレーザ照射装置の構成について説明する。図1は、レーザ照射装置1の構成を模式的に示す側面図ある。図2は、レーザ照射装置1の構成を模式的に示す上面図である。図3は、レーザ照射装置1の構成を模式的に示すYZ断面図である。
Embodiment 1.
A configuration of a laser irradiation apparatus according to the present embodiment will be described with reference to FIGS. 1 to 3. FIG. FIG. 1 is a side view schematically showing the configuration of a laser irradiation device 1. FIG. FIG. 2 is a top view schematically showing the configuration of the laser irradiation device 1. As shown in FIG. FIG. 3 is a YZ cross-sectional view schematically showing the configuration of the laser irradiation device 1. As shown in FIG.
 なお、以下に示す図では、説明の簡略化のため、適宜、XYZ3次元直交座標系を示している。Y方向は鉛直上下方向であり、X方向は、ワーク100、200の搬送方向である。Z方向はライン状の照射領域15に沿った方向である。つまり、Z方向はライン状の照射領域15の長手方向であり、X方向は長手方向と直交する短手方向とする。レーザ照射装置1は、X方向にワーク100を搬送しながら、レーザ光L2をワーク100に照射している。これにより、ワーク100のほぼ全体にレーザ光L2を照射することができる。 It should be noted that the diagrams shown below show an XYZ three-dimensional orthogonal coordinate system as appropriate for simplification of explanation. The Y direction is the vertical up-down direction, and the X direction is the conveying direction of the works 100 and 200 . The Z direction is the direction along the linear irradiation area 15 . That is, the Z direction is the longitudinal direction of the linear irradiation area 15, and the X direction is the lateral direction orthogonal to the longitudinal direction. The laser irradiation device 1 irradiates the work 100 with the laser light L2 while conveying the work 100 in the X direction. As a result, almost the entire workpiece 100 can be irradiated with the laser beam L2.
 図1に示すように、レーザ照射装置1は、チャンバ10と、光源21と、照射光学系20とを備えている。図2,図3に示すように、レーザ照射装置1は、チャンバ10内に、2つの駆動機構30、40を備えている。駆動機構30は、ワーク100を駆動し、駆動機構40はワーク200を駆動する。駆動機構30は、ワーク100をX方向、及びY方向に移動する。駆動機構40は、ワーク200をX方向、及びY方向に移動する。なお、駆動機構30、及び駆動機構40は、例えば架台(図1~図3では不図示)の上に固定されている。 As shown in FIG. 1, the laser irradiation device 1 includes a chamber 10, a light source 21, and an irradiation optical system 20. As shown in FIGS. 2 and 3, the laser irradiation device 1 has two drive mechanisms 30 and 40 inside the chamber 10 . The drive mechanism 30 drives the workpiece 100 and the drive mechanism 40 drives the workpiece 200 . The drive mechanism 30 moves the workpiece 100 in the X direction and the Y direction. The drive mechanism 40 moves the work 200 in the X direction and the Y direction. The driving mechanism 30 and the driving mechanism 40 are fixed on, for example, a mount (not shown in FIGS. 1 to 3).
 保持ユニット35は、ワーク100を保持する。駆動機構30は、保持ユニット35を移動可能に支持している。駆動機構30が保持ユニット35を移動させることで、ワーク100が移動する。保持ユニット45は、ワーク200を保持する。駆動機構40は、保持ユニット45を移動可能に支持している。駆動機構40が保持ユニット45を移動させることで、ワーク200が移動する。上面視において、ワーク100,200は、保持ユニット35,45よりも大きくなっている。つまり、X方向、及びZ方向において、ワーク100は、保持ユニット35からはみ出している。つX方向、及びZ方向において、ワーク100は、保持ユニット35からはみ出している。 The holding unit 35 holds the workpiece 100 . The drive mechanism 30 movably supports the holding unit 35 . The drive mechanism 30 moves the holding unit 35 to move the workpiece 100 . The holding unit 45 holds the workpiece 200 . The drive mechanism 40 movably supports the holding unit 45 . The workpiece 200 is moved by the driving mechanism 40 moving the holding unit 45 . The workpieces 100 and 200 are larger than the holding units 35 and 45 when viewed from above. That is, the workpiece 100 protrudes from the holding unit 35 in the X direction and the Z direction. The workpiece 100 protrudes from the holding unit 35 in the X direction and the Z direction.
 光源21は、レーザ光L1を発生するレーザ発振器である。光源21は、パルスレーザ光源である。光源21としては、波長308nmのエキシマレーザや、波長343nmの固体レーザを用いることができる。ここでは、一定の繰り返し周波数で光源21がレーザ光L1を発生している。 The light source 21 is a laser oscillator that generates laser light L1. The light source 21 is a pulse laser light source. As the light source 21, an excimer laser with a wavelength of 308 nm or a solid-state laser with a wavelength of 343 nm can be used. Here, the light source 21 generates laser light L1 at a constant repetition frequency.
 光源21からのレーザ光L1は、照射光学系20に入射する。照射光学系20は、はレーザ光L1をワーク100に導く光学系を有している。照射光学系20から出射してレーザ光L2がワーク100に照射される。例えば、照射光学系20は、ライン状の照射領域15を形成するためのシリンドリカルレンズ(不図示)を有している。ワークにはライン状、具体的には焦点がZ方向に伸びるレーザ光L2(ラインビーム)が照射される。 A laser beam L1 from the light source 21 is incident on the irradiation optical system 20 . The irradiation optical system 20 has an optical system that guides the laser beam L1 to the workpiece 100 . The workpiece 100 is irradiated with the laser beam L2 emitted from the irradiation optical system 20 . For example, the irradiation optical system 20 has a cylindrical lens (not shown) for forming the linear irradiation area 15 . The workpiece is irradiated with a line-shaped laser beam L2 (line beam) having a focal point extending in the Z direction.
 さらに、照射光学系20には、シャッタ22が設けられている。シャッタ22は、レーザ光L1の光路中に挿脱可能に配置されている。つまり、レーザ光L2をワーク100、又はワーク200に照射する間、シャッタ22が光路から取り除かれる。また、レーザ光L2をワーク100、又はワーク200に照射しない間、シャッタ22が光路中に挿入される。 Furthermore, the irradiation optical system 20 is provided with a shutter 22 . The shutter 22 is detachably arranged in the optical path of the laser beam L1. That is, the shutter 22 is removed from the optical path while the workpiece 100 or workpiece 200 is irradiated with the laser beam L2. Further, the shutter 22 is inserted into the optical path while the workpiece 100 or the workpiece 200 is not irradiated with the laser beam L2.
 照射光学系20は、チャンバ10の+Y側に配置されている。チャンバ10の上壁には透明なウィンド6が設けられている。レーザ光L2はウィンド6を介してチャンバ10内に導入される。そして、照射高さH1にあるワーク100にレーザ光L2が照射される。チャンバ10の内部空間は窒素ガスなどの不活性ガスで満たされていてもよい。 The irradiation optical system 20 is arranged on the +Y side of the chamber 10 . A transparent window 6 is provided on the upper wall of the chamber 10 . Laser light L2 is introduced into chamber 10 through window 6 . Then, the workpiece 100 at the irradiation height H1 is irradiated with the laser beam L2. The internal space of the chamber 10 may be filled with an inert gas such as nitrogen gas.
 図1に示すように、チャンバ10の-X側の側壁にはドアバルブ5が取り付けされている。ドアバルブ5が開くことで、チャンバ10の内部空間と外部空間とが繋がり、ワーク100,200が移載可能となる。チャンバ10内の-X側の端部がワーク100、200の搬入位置、及び搬出位置となっている。 As shown in FIG. 1, a door valve 5 is attached to the side wall of the chamber 10 on the -X side. By opening the door valve 5, the internal space and the external space of the chamber 10 are connected, and the workpieces 100 and 200 can be transferred. The −X side end in the chamber 10 serves as the loading position and unloading position for the works 100 and 200 .
 例えば、チャンバ10の外部には、移載ロボット4が配置されている。ドアバルブ5が開いた状態で、移載ロボット4がワーク100,200をチャンバ10内に移載する。ドアバルブ5が開いた状態で、移載ロボット4がチャンバ10内のワーク100,200をレーザ照射装置1から取り出す。移載ロボット4は処理前のワーク100,200をチャンバ10内に搬入する。さらに、移載ロボット4はレーザ照射後のワーク100,200をチャンバ10内から搬出する。搬入、及び搬出が完了とドアバルブ5が閉じる。 For example, a transfer robot 4 is arranged outside the chamber 10 . With the door valve 5 open, the transfer robot 4 transfers the works 100 and 200 into the chamber 10 . With the door valve 5 open, the transfer robot 4 takes out the workpieces 100 and 200 in the chamber 10 from the laser irradiation device 1 . The transfer robot 4 carries the unprocessed works 100 and 200 into the chamber 10 . Further, the transfer robot 4 unloads the workpieces 100 and 200 after laser irradiation from the chamber 10 . When loading and unloading are completed, the door valve 5 is closed.
 具体的には、移載ロボット4がワーク100、200を保持ユニット35、45の上に載置する。そして、レーザ照射装置1がワーク100、200に対してレーザ光L2を照射する。照射プロセスが終了すると、移載ロボット4は、保持ユニット35、45の上からワーク100、200を取り出して、チャンバ10の外部空間に移載する。なお、保持ユニット35,45は、ワーク100,200を吸着保持するステージとなる。 Specifically, the transfer robot 4 places the works 100 and 200 on the holding units 35 and 45 . Then, the laser irradiation device 1 irradiates the works 100 and 200 with the laser light L2. After the irradiation process is completed, the transfer robot 4 takes out the workpieces 100 and 200 from the holding units 35 and 45 and transfers them to the external space of the chamber 10 . The holding units 35 and 45 serve as stages for holding the workpieces 100 and 200 by suction.
 Z方向において、移載ロボット4のハンドの間隔は、保持ユニット35,45の幅よりも広くなっている。したがって、移載ロボット4は、Z方向におけるワーク100,200の両端部と接触する。これにより、移載ロボット4が保持ユニット35,45と干渉せずに、ワーク100,200を搬入及び搬出するこができる。 The distance between the hands of the transfer robot 4 is wider than the width of the holding units 35 and 45 in the Z direction. Therefore, the transfer robot 4 contacts both ends of the workpieces 100 and 200 in the Z direction. As a result, the transfer robot 4 can carry in and out the workpieces 100 and 200 without interfering with the holding units 35 and 45 .
 また、チャンバ10内において、搬出位置の周辺には、除電器8が設けられている。例えば、除電器8の下を通過して、ワーク100,200がチャンバ10の外部空間に搬出される。除電器8は、ワーク100、200に上からX線などを照射する静電気除去装置である。除電器8は、保持ユニット35,45から吸着解除されたワーク100,200を除電する。これにより、剥離耐電等を防ぐことができる。なお、除電器8は、X線による静電気除去装置に限らずコロナ放電による静電気除去装置(イオナイザ)等であってもよい。 Also, in the chamber 10, a static eliminator 8 is provided around the unloading position. For example, the works 100 and 200 are carried out to the external space of the chamber 10 by passing under the static eliminator 8 . The static eliminator 8 is a static eliminator that irradiates the workpieces 100 and 200 with X-rays or the like from above. The neutralizer 8 neutralizes the workpieces 100 and 200 released from the holding units 35 and 45 by static electricity. This makes it possible to prevent peeling electric resistance and the like. The static eliminator 8 is not limited to the X-ray static eliminator, and may be a corona discharge static eliminator (ionizer) or the like.
 Y方向において、ワーク100とワーク200とは異なる位置になっている。つまり、ワーク100はワーク200よりも高い位置で搬送される。図1、図3では、ワーク100が照射高さH1にあり、ワーク200が搬送高さH2にある。チャンバ10内に搬入されたワーク100は照射高さH1で搬送される。照射高さH1において、ワーク100が+X方向に搬送されることで、レーザ光L2が照射される。レーザ光L2が照射されたワーク200は搬送高さH2まで下降している。搬送高さH2において、ワーク200が-X方向に搬送される。これにより、処理済みのワーク200がドアバルブ5の手前の搬出位置まで移動する。 The work 100 and the work 200 are located at different positions in the Y direction. In other words, the work 100 is transported at a position higher than the work 200 . 1 and 3, the work 100 is at the irradiation height H1, and the work 200 is at the transfer height H2. The workpiece 100 loaded into the chamber 10 is transported at the irradiation height H1. At the irradiation height H1, the workpiece 100 is conveyed in the +X direction and is irradiated with the laser beam L2. The workpiece 200 irradiated with the laser beam L2 is lowered to the conveying height H2. At the transport height H2, the workpiece 200 is transported in the -X direction. As a result, the processed workpiece 200 moves to the carry-out position in front of the door valve 5 .
 Z方向において、ワーク100とワーク200の位置は一致している。そして、ワーク100がワーク200の上側に配置されている。つまり、処理済みのワーク200が処理前のワーク100の下側を通過するように、ワーク100,200が駆動されている。具体的には、ワーク100に対してレーザ光L2を照射している間に、ワーク200がワーク100の下側を通過する。これにより、処理済みのワーク200が-X方向に搬送中にレーザ光L2が照射されるのを防ぐことができる。 The positions of the work 100 and the work 200 match in the Z direction. A workpiece 100 is arranged above the workpiece 200 . That is, the works 100 and 200 are driven such that the processed work 200 passes under the unprocessed work 100 . Specifically, the work 200 passes under the work 100 while the work 100 is being irradiated with the laser beam L2. This can prevent the processed workpiece 200 from being irradiated with the laser beam L2 while being conveyed in the -X direction.
 レーザ照射装置1は、2つのワーク100、200を同時に収容することができる。そして、レーザ照射装置1が2つのワーク100、200に対して、連続してレーザ照射プロセスを施す。一方のワークの処理中に、処理済みのワークを搬出するとともに、新たなワークを搬入するように搬送が行われる。これにより、搬入、搬出による待ち時間を短縮することできるため、タクトタイムを短縮することができる。さらに、ワーク100,200に対してレーザ光を連続して照射することができるため、無駄なパルスレーザ光を少なくすることができる。よって、パルスレーザ光の効率的に照射することができる。照射プロセス中は、ワーク100が照射高さH1で搬送されている。安定したプロセスを効率よく行うことができる。 The laser irradiation device 1 can accommodate two works 100 and 200 at the same time. Then, the laser irradiation device 1 continuously applies the laser irradiation process to the two works 100 and 200 . During the processing of one of the works, transportation is performed such that the processed work is unloaded and a new work is loaded. As a result, the waiting time for loading and unloading can be shortened, so that the tact time can be shortened. Furthermore, since the workpieces 100 and 200 can be continuously irradiated with laser light, useless pulsed laser light can be reduced. Therefore, it is possible to efficiently irradiate the pulsed laser light. During the irradiation process, the workpiece 100 is transported at the irradiation height H1. Stable processes can be carried out efficiently.
 以下、ワーク100、200を駆動するための駆動機構30、40について説明する。駆動機構30は保持ユニット35を移動可能に支持している。駆動機構30は、保持ユニット35の-Z側で保持ユニット35を支持している。駆動機構40は保持ユニット45を移動可能に支持されている。駆動機構40は、保持ユニット45の+Z側で、保持ユニット45を支持している。 The driving mechanisms 30, 40 for driving the works 100, 200 will be described below. The drive mechanism 30 movably supports the holding unit 35 . The drive mechanism 30 supports the holding unit 35 on the −Z side of the holding unit 35 . A holding unit 45 is movably supported by the driving mechanism 40 . The drive mechanism 40 supports the holding unit 45 on the +Z side of the holding unit 45 .
 駆動機構30は、X軸機構31とY軸機構32とガイド33とを備えている。ガイド33は、ワーク100,200よりも-Z側に配置されている。ガイド33はX方向に沿って配置されている。X軸機構31はガイド33に対して移動可能に取付けられている。X軸機構31は、ガイド33に沿ってX方向に直線移動する。X軸機構31は、ワーク100、保持ユニット35をX方向に搬送する搬送機構となる。Y軸機構32は、X軸機構31に対して昇降可能に取り付けられている。Y軸機構32には、保持ユニット35が固定されている。Y軸機構32は、ワーク100,保持ユニット35を昇降させる昇降機構となる。X軸機構31、Y軸機構32はそれぞれモータやスライド機構などを備えている。 The drive mechanism 30 includes an X-axis mechanism 31, a Y-axis mechanism 32, and a guide 33. The guide 33 is arranged on the -Z side of the works 100 and 200 . The guide 33 is arranged along the X direction. The X-axis mechanism 31 is movably attached to the guide 33 . The X-axis mechanism 31 linearly moves along the guide 33 in the X direction. The X-axis mechanism 31 serves as a transport mechanism that transports the workpiece 100 and the holding unit 35 in the X direction. The Y-axis mechanism 32 is attached to the X-axis mechanism 31 so as to be able to move up and down. A holding unit 35 is fixed to the Y-axis mechanism 32 . The Y-axis mechanism 32 serves as an elevating mechanism for elevating the workpiece 100 and the holding unit 35 . Each of the X-axis mechanism 31 and the Y-axis mechanism 32 has a motor, a slide mechanism, and the like.
 駆動機構40は、X軸機構41とY軸機構42とガイド43とを備えている。ガイド43は、ワーク100,200よりも+Z側に配置されている。ガイド43はX方向に沿って配置されている。X軸機構41はガイド43に対して移動可能に取付けられている。X軸機構41は、ガイド43に沿ってX方向に直線移動する。X軸機構41はワーク200、保持ユニット45をX方向に搬送する搬送機構となる。Y軸機構42は、X軸機構41に対して昇降可能に取り付けられている。Y軸機構42には、保持ユニット45が固定されている。Y軸機構42は、ワーク200,保持ユニット45を昇降させる昇降機構となる。X軸機構41、Y軸機構42はそれぞれモータやスライド機構などを備えている。 The drive mechanism 40 includes an X-axis mechanism 41, a Y-axis mechanism 42, and a guide 43. The guide 43 is arranged on the +Z side of the works 100 and 200 . The guide 43 is arranged along the X direction. The X-axis mechanism 41 is movably attached to the guide 43 . The X-axis mechanism 41 linearly moves in the X direction along the guide 43 . The X-axis mechanism 41 serves as a transport mechanism that transports the workpiece 200 and the holding unit 45 in the X direction. The Y-axis mechanism 42 is attached to the X-axis mechanism 41 so as to be able to move up and down. A holding unit 45 is fixed to the Y-axis mechanism 42 . The Y-axis mechanism 42 serves as an elevating mechanism for elevating the workpiece 200 and the holding unit 45 . Each of the X-axis mechanism 41 and the Y-axis mechanism 42 has a motor, a slide mechanism, and the like.
 Z方向において、ワーク100とワーク200とは同じ位置にある。保持ユニット35と保持ユニット45とが同じZ位置でワーク100、200を保持している。上面視で、搬送中において、ワーク100、200が重複する状態となる。レーザ光L2はワーク100,200に対して同じ照射位置で照射される。 The work 100 and the work 200 are at the same position in the Z direction. The holding unit 35 and the holding unit 45 hold the workpieces 100 and 200 at the same Z position. When viewed from above, the works 100 and 200 overlap during transportation. The laser beam L2 is applied to the workpieces 100 and 200 at the same irradiation position.
 そして、駆動機構30がワーク100、200の-Z側に配置され、駆動機構40がワーク200の+Z側に配置されている。つまり、駆動機構30は、ワーク100よりも-Z側において、保持ユニット35を支持している。駆動機構40は、ワーク200よりも+Z側において、保持ユニット45を支持している。Z方向において、駆動機構30と駆動機構40との間に、ワーク100,200が配置されている。より具体的には、ガイド33は、ワーク100、200の搬送位置よりも-Z側に配置され、ガイド43は、ワーク100、200の搬送位置よりも+Z側に配置されている。 The driving mechanism 30 is arranged on the -Z side of the workpieces 100 and 200, and the driving mechanism 40 is arranged on the +Z side of the workpiece 200. In other words, the drive mechanism 30 supports the holding unit 35 on the −Z side of the work 100 . The drive mechanism 40 supports a holding unit 45 on the +Z side of the workpiece 200 . Workpieces 100 and 200 are arranged between the drive mechanism 30 and the drive mechanism 40 in the Z direction. More specifically, the guide 33 is arranged on the -Z side of the transfer position of the works 100 and 200, and the guide 43 is arranged on the +Z side of the transfer position of the works 100 and 200.
 本実施の形態では、レーザ照射装置1が、異なる高さでワーク100,200を搬送可能な立体構造を有している。レーザ照射装置1のフットプリントを低減することができる。つまり、Z方向において、ワーク100、200の一端側に駆動機構30が配置され、他端側に駆動機構40が配置されている。よって、Z方向におけるサイズを小さくすることができる。よって、フットプリントを低減することができる。 In this embodiment, the laser irradiation device 1 has a three-dimensional structure capable of transporting the works 100 and 200 at different heights. The footprint of the laser irradiation device 1 can be reduced. That is, in the Z direction, the drive mechanism 30 is arranged on one end side of the works 100 and 200, and the drive mechanism 40 is arranged on the other end side. Therefore, the size in the Z direction can be reduced. Therefore, the footprint can be reduced.
 以下、図4~図10用いてレーザ照射装置1の動作について説明する。図4は、レーザ照射装置1の主要部の構成を示す斜視図である。具体的には、図4は、チャンバ10内における主要構成を示している。図5~図9は、各工程における主要部の構成を示している。 The operation of the laser irradiation device 1 will be described below with reference to FIGS. 4 to 10. FIG. FIG. 4 is a perspective view showing the configuration of the main part of the laser irradiation device 1. As shown in FIG. Specifically, FIG. 4 shows the main components within the chamber 10 . 5 to 9 show the configuration of main parts in each process.
 図4では、駆動機構30と駆動機構40とが架台25の上に設置されている。具体的には、架台25の上に、ガイド33,43が固定されている。上記の通り、X軸機構31、41がガイド33、43に沿ってX方向に移動する。なお、X軸機構31とX軸機構41の移動端は同じとなっている。 In FIG. 4 , the drive mechanism 30 and the drive mechanism 40 are installed on the pedestal 25 . Specifically, guides 33 and 43 are fixed on the base 25 . As described above, the X-axis mechanisms 31 and 41 move along the guides 33 and 43 in the X direction. The moving end of the X-axis mechanism 31 and the X-axis mechanism 41 are the same.
 また、X軸機構31,41にはそれぞれY方向に沿った昇降レール等が設けられている。そして、Y軸機構32、42がそれぞれ昇降レールに沿って昇降する。鉛直上下方向において、Y軸機構32とY軸機構42の移動端は同じとなっている。さらに、Y軸機構32、42は、それぞれ保持ユニット35,45を支持している。保持ユニット35,45は、それぞれのワーク100、200を真空吸着するチャックテーブルを有していてもよい。ワーク100,200の搬出時に保持ユニット35,45は、吸着を解除する。 In addition, each of the X-axis mechanisms 31 and 41 is provided with an elevating rail or the like along the Y direction. Then, the Y- axis mechanisms 32 and 42 move up and down along the lift rails, respectively. The moving ends of the Y-axis mechanism 32 and the Y-axis mechanism 42 are the same in the vertical direction. Furthermore, the Y- axis mechanisms 32, 42 support holding units 35, 45, respectively. The holding units 35 and 45 may have chuck tables that vacuum-suck the workpieces 100 and 200, respectively. The holding units 35 and 45 release the suction when the works 100 and 200 are carried out.
 図5は、ワーク100を保持ユニット45上に移載した状態を示している。ワーク100が搬入位置(ロード位置)にある。搬入位置は-X側におけるX軸機構31の移動端に対応している。また、ワーク100は照射高さH1(図1等参照)となっている。また、X軸機構41が+X側の移動端になっている。ワーク200は搬送高さH2となっている。 FIG. 5 shows a state in which the workpiece 100 is transferred onto the holding unit 45. FIG. The workpiece 100 is at the carry-in position (load position). The carry-in position corresponds to the moving end of the X-axis mechanism 31 on the -X side. Further, the workpiece 100 has an irradiation height H1 (see FIG. 1, etc.). Also, the X-axis mechanism 41 is at the moving end on the +X side. The workpiece 200 has a conveying height H2.
 図6は、ワーク100にレーザ光L2が照射されている状態を示している。図5に示す状態から、X軸機構31が+X方向に移動すると図6に示す状態になる。また、図6では、X軸機構41が-X方向への移動を終了している。つまり、X軸機構41が-X方向の移動端まで移動している。ワーク200が搬送高さH2で搬送されている。図6では、ワーク200が搬出位置(アンロード位置)にいる。なお、搬入位置と搬出位置は同じX位置となっている。なお、ここでは、X軸機構41は、X軸機構31よりも速い搬送速度で移動している。 FIG. 6 shows a state in which the workpiece 100 is irradiated with the laser beam L2. When the X-axis mechanism 31 moves in the +X direction from the state shown in FIG. 5, the state shown in FIG. 6 is obtained. Also, in FIG. 6, the X-axis mechanism 41 has finished moving in the -X direction. That is, the X-axis mechanism 41 has moved to the moving end in the -X direction. A workpiece 200 is transported at a transport height H2. In FIG. 6, the workpiece 200 is at the carry-out position (unload position). It should be noted that the carry-in position and the carry-out position are the same X position. Note that the X-axis mechanism 41 is moving at a faster transport speed than the X-axis mechanism 31 here.
 図7は、ワーク100に対するレーザ照射が完了した状態を示している。したがって、レーザ光L2の照射位置よりもワーク100が+X側に搬送されている。図6に示す状態からX軸機構31がさらに+X方向に移動すると、図7に示す状態になる。図7では、X軸機構31が+X側の移動端まで移動している。図5~図7において、ワーク100が照射高さH1で移動している。図7では、Y軸機構42が上昇して、ワーク200が照射高さH1になっている。 FIG. 7 shows a state in which the laser irradiation to the workpiece 100 is completed. Therefore, the workpiece 100 is conveyed to the +X side from the irradiation position of the laser beam L2. When the X-axis mechanism 31 moves further in the +X direction from the state shown in FIG. 6, the state shown in FIG. 7 is reached. In FIG. 7, the X-axis mechanism 31 has moved to the moving end on the +X side. 5 to 7, the workpiece 100 is moving at the irradiation height H1. In FIG. 7, the Y-axis mechanism 42 is raised and the workpiece 200 is at the irradiation height H1.
 図8は、ワーク100が搬送高さH2まで下降した状態を示している。つまり、図7に示す状態からY軸機構32が下降すると、図8に示す状態となる。また、図6~図8の間で、保持ユニット45に対するワーク200の搬入及び搬出が行われている。つまり、移載ロボット4が処理済みのワーク200を保持ユニット45から移載するとともに、処理前の新しいワーク200を保持ユニット45の上に移載する。図5に示す状態と図8に示す状態とでは、保持ユニット45の位置と保持ユニット35の位置が入れ替わっている。 FIG. 8 shows a state in which the work 100 is lowered to the conveying height H2. That is, when the Y-axis mechanism 32 is lowered from the state shown in FIG. 7, the state shown in FIG. 8 is obtained. 6 to 8, the workpiece 200 is carried into and out of the holding unit 45. As shown in FIG. That is, the transfer robot 4 transfers the processed work 200 from the holding unit 45 and also transfers the new work 200 before processing onto the holding unit 45 . The position of the holding unit 45 and the position of the holding unit 35 are interchanged between the state shown in FIG. 5 and the state shown in FIG.
 図9は、ワーク200にレーザ光L2が照射されている状態を示している。図8に示す状態から、X軸機構41が+X方向に移動すると図9に示す状態になる。また、図9では、X軸機構31が-X方向への移動を終了している。つまり、X軸機構31が-X方向における移動端まで移動している。また、ワーク100が搬送高さH2で搬送されている。図9では、ワーク100が搬出位置(アンロード位置)にいる。ここでは、X軸機構31は、X軸機構41よりも速い搬送速度で移動している。図9に示す状態では、図6に示す状態と保持ユニット35の位置と保持ユニット45の位置が入れ替わっている。 FIG. 9 shows a state in which the workpiece 200 is irradiated with the laser beam L2. When the X-axis mechanism 41 moves in the +X direction from the state shown in FIG. 8, the state shown in FIG. 9 is obtained. Also, in FIG. 9, the X-axis mechanism 31 has finished moving in the -X direction. That is, the X-axis mechanism 31 has moved to the moving end in the -X direction. Also, the workpiece 100 is transported at the transport height H2. In FIG. 9, the workpiece 100 is at the carry-out position (unload position). Here, the X-axis mechanism 31 is moving at a faster transport speed than the X-axis mechanism 41 . In the state shown in FIG. 9, the positions of the holding unit 35 and the holding unit 45 are reversed from the state shown in FIG.
 図10は、ワーク200に対するレーザ照射が完了した状態を示している。したがって、レーザ光L2の照射位置よりもワーク200が+X側に搬送されている。図9に示す状態からX軸機構41がさらに+X方向に移動すると、図10に示す状態になる。図10では、X軸機構41が+X側の移動端まで移動している。よって、レーザ光L2が照射されない位置までワーク200が移動している。図8~図10において、ワーク200が照射高さH1で移動している。図10では、Y軸機構32が上昇して、ワーク100が照射高さH1になっている。図10に示す状態では、図7に示す状態と保持ユニット35の位置と保持ユニット45の位置が入れ替わっている。 FIG. 10 shows a state in which the laser irradiation to the workpiece 200 has been completed. Therefore, the workpiece 200 is conveyed to the +X side from the irradiation position of the laser beam L2. When the X-axis mechanism 41 moves further in the +X direction from the state shown in FIG. 9, the state shown in FIG. 10 is reached. In FIG. 10, the X-axis mechanism 41 has moved to the moving end on the +X side. Therefore, the workpiece 200 has moved to a position where the laser beam L2 is not irradiated. 8 to 10, the workpiece 200 is moving at the irradiation height H1. In FIG. 10, the Y-axis mechanism 32 is raised and the workpiece 100 is at the irradiation height H1. In the state shown in FIG. 10, the position of the holding unit 35 and the position of the holding unit 45 are reversed from the state shown in FIG.
 そして、Y軸機構42が下降すると、図5に示す状態に戻る。図9の状態から図5の状態に戻るまでの間で、保持ユニット35に対するワーク100の搬入及び搬出が行われている。つまり、処理済みのワーク100が保持ユニット35から移載されるとともに、処理前の新しいワーク100が保持ユニット35の上に移載されている。そして、上記の処理を繰り返すことで、複数のワークに対してレーザ照射を連続的に行うことができる。 Then, when the Y-axis mechanism 42 descends, it returns to the state shown in FIG. From the state shown in FIG. 9 to the state shown in FIG. 5, the workpiece 100 is carried in and out of the holding unit 35 . In other words, the processed workpiece 100 is transferred from the holding unit 35 and the new untreated workpiece 100 is transferred onto the holding unit 35 . By repeating the above process, laser irradiation can be continuously performed on a plurality of works.
 このように、+X方向への搬送時において、ワーク100、200は照射高さH1となっている。-X方向への搬送時において、ワーク100,200は搬送高さH2となっている。-X方向への搬送するときの搬送高さを照射高さよりも低くすることができる。よって、-X方向への搬送時にレーザ光が照射されるのを防ぐことができる。ワーク100,200の搬送高さは、照射高さにあるワークの下を通過できる高さであればよい。したがって、ワークを-X方向に搬送するときの搬送高さは一定でなくてもよい。あるいは、ワーク100とワーク200とで搬送高さが異なっていてもよい。 Thus, the workpieces 100 and 200 are at the irradiation height H1 during transportation in the +X direction. During transportation in the -X direction, the workpieces 100 and 200 are at the transportation height H2. The transport height when transporting in the -X direction can be made lower than the irradiation height. Therefore, it is possible to prevent the irradiation of the laser beam during the transportation in the -X direction. The conveying height of the workpieces 100 and 200 may be any height that can pass under the workpieces at the irradiation height. Therefore, the conveying height when conveying the work in the -X direction does not have to be constant. Alternatively, the work 100 and the work 200 may have different transport heights.
 また、レーザ光を照射するための+X方向への搬送速度はレーザ照射プロセスにより制限されている。これに対して、処理済みのワークを搬出位置に戻すための-X方向への搬送速度には制限がない。-X方向への搬送速度は、+X方向への搬送速度よりも速くなっている。これにより、タクトタイムを短縮することができる。つまり、処理済みのワークを速やかロード/アンロード位置まで移動することができるため、搬入及び搬出の時間を確保することができる。さらに、照射高さH1にある一方のワークに対してレーザ光L2を照射している間に、搬送高さH2にある他方のワークが照射領域15の直下を通過する。搬送高さH2にあるワークにレーザ光L2が照射されるのを防ぐことができる。 Also, the transport speed in the +X direction for laser light irradiation is limited by the laser irradiation process. On the other hand, there is no limit to the conveying speed in the -X direction for returning the processed work to the unloading position. The transport speed in the -X direction is faster than the transport speed in the +X direction. Thereby, the tact time can be shortened. In other words, since the processed work can be quickly moved to the loading/unloading position, the loading and unloading time can be secured. Furthermore, while one workpiece at the irradiation height H1 is being irradiated with the laser beam L2, the other workpiece at the conveying height H2 passes directly below the irradiation area 15 . It is possible to prevent the laser beam L2 from irradiating the workpiece at the transport height H2.
 図11は、レーザ照射装置1のタイミングチャートの一例を示す図である。図11では、上から順に、ドアバルブ5の開閉動作、移載ロボット4の移載動作、除電器8のオンオフ動作、シャッタ22の開閉動作、駆動機構30の動作,駆動機構40の動作が示されている。ここでは、タクトタイムが100秒である例が示されている。つまり、100秒ごとに新しいワークがチャンバ内に収容される。 FIG. 11 is a diagram showing an example of a timing chart of the laser irradiation device 1. FIG. 11 shows, from top to bottom, the opening/closing operation of the door valve 5, the transfer operation of the transfer robot 4, the on/off operation of the static eliminator 8, the opening/closing operation of the shutter 22, the operation of the driving mechanism 30, and the operation of the driving mechanism 40. ing. Here, an example in which the tact time is 100 seconds is shown. That is, new workpieces are accommodated in the chamber every 100 seconds.
 移載ロボット4の動作は、ワークをチャンバ内に移載するロード、ワークをチャンバ外に移載するアンロード、スタンバイの3つで示されている。駆動機構30の動作は、ワーク100をX方向に搬送するXムーブ、ワーク100を昇降するYムーブ、スタンバイの3つで示されている。駆動機構40の動作も同様に、ワーク200をX方向に搬送するXムーブ、ワーク200を昇降するYムーブ、スタンバイの3つで示されている。 The operations of the transfer robot 4 are shown in three stages: load for transferring the workpiece into the chamber, unload for transferring the workpiece out of the chamber, and standby. The operations of the drive mechanism 30 are shown as X move for transporting the workpiece 100 in the X direction, Y move for raising and lowering the workpiece 100, and standby. Similarly, the operation of the drive mechanism 40 is represented by three movements, an X move for transporting the workpiece 200 in the X direction, a Y move for raising and lowering the workpiece 200, and a standby.
 まず、t1のタイミングでドアバルブ5が開くと、t2のタイミングまでに移載ロボット4がワーク100のアンロード/ロードを行う。ワーク100のアンロード/ロードが終わるとドアバルブ5が閉じる。ワーク100の移載動作の間、駆動機構30は、搬入位置でスタンバイ状態となっている。駆動機構40は、X方向に移動している。つまり、ワーク200にレーザ光を照射するため、+X方向にワーク200を搬送している。 First, when the door valve 5 opens at timing t1, the transfer robot 4 unloads/loads the workpiece 100 by timing t2. When the work 100 is unloaded/loaded, the door valve 5 is closed. During the transfer operation of the workpiece 100, the drive mechanism 30 is in a standby state at the carry-in position. The drive mechanism 40 is moving in the X direction. That is, in order to irradiate the work 200 with laser light, the work 200 is conveyed in the +X direction.
 そして、t3のタイミングで駆動機構30がワーク100を+X方向への搬送を開始する。また、t3のタイミングでワーク200へのレーザ照射が終了する。その後、t4のタイミングで駆動機構40が+X側の移動端に到着するため、駆動機構40がワーク200を下降させる。また、t4のタイミングでワーク100へのレーザ照射が開始する。t5のタイミングでワーク200の下降が完了するため、駆動機構40が-X方向にワーク200を搬送する。t6のタイミングで駆動機構40が-X側の移動端に到着するため、駆動機構40がワーク200を上昇させる。t7のタイミングでワーク200の上昇が完了して、駆動機構40がスタンバイ状態となる。 Then, at the timing of t3, the driving mechanism 30 starts conveying the workpiece 100 in the +X direction. Also, the laser irradiation to the workpiece 200 ends at the timing of t3. After that, the drive mechanism 40 reaches the moving end on the +X side at the timing of t4, so that the drive mechanism 40 lowers the workpiece 200. As shown in FIG. Also, the laser irradiation to the workpiece 100 starts at the timing of t4. Since the descent of the work 200 is completed at the timing of t5, the drive mechanism 40 conveys the work 200 in the -X direction. Since the drive mechanism 40 reaches the moving end on the -X side at the timing of t6, the drive mechanism 40 raises the workpiece 200. As shown in FIG. At the timing of t7, the workpiece 200 is completely lifted, and the driving mechanism 40 enters the standby state.
 そして、t8のタイミングでドアバルブ5が開くと、t9のタイミングまでの間にワーク200のアンロード/ロードが行われる。なお、タイミングt7~t8までの間、除電器8が搬出されるワーク200を除電する。t10のタイミングで駆動機構40の+X方向の搬送が開始する。また、t10のタイミングでワーク100へのレーザ照射が終了する。 Then, when the door valve 5 opens at timing t8, unloading/loading of the workpiece 200 is performed until timing t9. During the period from timing t7 to t8, the static eliminator 8 eliminates static electricity from the workpiece 200 being carried out. At the timing of t10, the drive mechanism 40 starts conveying in the +X direction. Also, the laser irradiation to the workpiece 100 ends at the timing of t10.
 t3からt11のタイミングまで駆動機構30がX方向にワーク100を搬送する。これにより、ワーク100の全面にレーザ光L2が照射される。そして、t11のタイミングで駆動機構30が+X方向の移動端に到着するため、駆動機構30がワーク100を下降させる。また、t11のタイミングでワーク200へのレーザ照射が開始する。t12のタイミングでワーク100の下降が完了するため、駆動機構30が-X方向にワーク100を搬送する。t13のタイミングで駆動機構30が-X方向に移動端に到着するため、駆動機構30がワーク100を上昇させる。t14のタイミングでワーク100の上昇が完了する。 The drive mechanism 30 conveys the workpiece 100 in the X direction from t3 to t11. As a result, the entire surface of the workpiece 100 is irradiated with the laser beam L2. At the timing of t11, the drive mechanism 30 reaches the moving end in the +X direction, so that the drive mechanism 30 lowers the workpiece 100. As shown in FIG. Also, the laser irradiation to the workpiece 200 starts at the timing of t11. Since the descent of the work 100 is completed at the timing of t12, the drive mechanism 30 conveys the work 100 in the -X direction. Since the drive mechanism 30 reaches the moving end in the -X direction at the timing of t13, the drive mechanism 30 lifts the workpiece 100. As shown in FIG. The lifting of the workpiece 100 is completed at the timing of t14.
 そして、t15のタイミングでドアバルブ5が開く。t15のタイミングはt1のタイミングに対応している。よって、t15以降の動作は、t1以降の動作の繰り返しとなるため説明を省略する。なお、タイミングt14~t15までの間、除電器8が、搬入位置にあるワーク100をX線で除電する。 Then, at the timing of t15, the door valve 5 opens. The timing of t15 corresponds to the timing of t1. Therefore, since the operation after t15 is a repetition of the operation after t1, description thereof is omitted. During the period from t14 to t15, the neutralizer 8 neutralizes the workpiece 100 at the carry-in position with X-rays.
 また、t3のタイミングからt4のタイミングまでの間、シャッタ22が閉じている。t10のタイミングからt11のタイミングまでの間、シャッタ22が閉じている一方のワークへのレーザ照射が終了して他方のワークへのレーザ照射が始まるまでの間、シャッタ22が閉じている。これにより、連続搬送が可能となり、効率的にパルスレーザ光を利用することができる。ここで、タクトタイム100秒に対して、シャッタ22が閉じる時間が4秒となっている。つまり、1つのワークに対するレーザ光の照射時間が96秒となっている。したがって、パルスレーザ光の無駄を抑制することができる。 Also, the shutter 22 is closed from timing t3 to timing t4. From the timing t10 to the timing t11, the shutter 22 is closed from the end of the laser irradiation to the one work for which the shutter 22 is closed to the start of the laser irradiation to the other work. As a result, continuous transportation becomes possible, and the pulsed laser beam can be used efficiently. Here, the closing time of the shutter 22 is 4 seconds with respect to the tact time of 100 seconds. That is, the irradiation time of the laser beam for one workpiece is 96 seconds. Therefore, waste of pulsed laser light can be suppressed.
(ワーク100)
 以下、図12、図13を用いてワーク100の一例について説明する。図12は、ワーク100の構成を示す分解斜視図である。図13は、ワーク100の一部の構成を模式的に示す側面断面図である。なお、ワーク200の構成は、ワーク100の構成と同様となっているため説明を省略する。ワーク100は、レーザリフトオフプロセスの対象となる。
(Work 100)
An example of the workpiece 100 will be described below with reference to FIGS. 12 and 13. FIG. FIG. 12 is an exploded perspective view showing the configuration of the workpiece 100. FIG. FIG. 13 is a side sectional view schematically showing the configuration of part of the workpiece 100. As shown in FIG. Note that the configuration of the workpiece 200 is the same as that of the workpiece 100, and thus the description thereof is omitted. Workpiece 100 is subjected to a laser lift-off process.
 ワーク100は、パネル基板110と、トレイ120と、マスク130とを備えている。パネル基板110は、レーザリフトプロセスなどを経ることで表示パネルとなる。パネル基板110は、処理基板111と周辺基板112とを備えている。パネル基板110は例えば65インチサイズとなる。図13に示すように、処理基板111は、上から順に、ガラス基板111a、ポリイミド膜111b、及びPETフィルム111cを有している。 The workpiece 100 includes a panel substrate 110, a tray 120, and a mask 130. The panel substrate 110 becomes a display panel through a laser lift process or the like. The panel substrate 110 has a processing substrate 111 and a peripheral substrate 112 . The panel substrate 110 has a size of 65 inches, for example. As shown in FIG. 13, the processing substrate 111 has, in order from the top, a glass substrate 111a, a polyimide film 111b, and a PET film 111c.
 ガラス基板111aは、ポリイミド膜111b、及びPETフィルム111cを保持するキャリアガラスである。ポリイミド膜111bは、レーザ照射により剥離する剥離層となる。PETフィルム111cとポリイミド膜111bとの間には、表示画素を形成するための素子などが形成されている。レーザ光がガラス基板111aを介してポリイミド膜111bに照射されることで、ポリイミド膜111b及びPETフィルム111cをガラス基板111aから分離することが可能となる。 The glass substrate 111a is carrier glass that holds the polyimide film 111b and the PET film 111c. The polyimide film 111b becomes a peeling layer that is peeled off by laser irradiation. Elements for forming display pixels are formed between the PET film 111c and the polyimide film 111b. By irradiating the polyimide film 111b with the laser light through the glass substrate 111a, the polyimide film 111b and the PET film 111c can be separated from the glass substrate 111a.
 処理基板111の周辺領域には、周辺基板112が取り付けられている。周辺基板112は、PCB(Printed Circuit Board)112a及びFPC(Flexible Printed Circuit)112bなどを有している。PCB112aは、PFPC112bを介して、処理基板111に取り付けられている。PCB112aには、駆動回路などが実装されていてもよい。 A peripheral substrate 112 is attached to the peripheral region of the processing substrate 111 . The peripheral board 112 has a PCB (Printed Circuit Board) 112a and an FPC (Flexible Printed Circuit) 112b. The PCB 112a is attached to the processing board 111 via the PFPC 112b. A drive circuit or the like may be mounted on the PCB 112a.
 パネル基板110は、トレイ120の上に載置されている。トレイ120は、アルミニウムなどの金属により形成されている。トレイ120は額縁部121と、中桟部123とを備えている。額縁部121は矩形枠状に形成されており、パネル基板110の周縁部に対応している。額縁部121は処理基板111の周縁部、及び周辺基板112を保持している。額縁部121は、パネル基板110を配置するための窪みなどを有していてもよい。 The panel substrate 110 is placed on the tray 120 . The tray 120 is made of metal such as aluminum. The tray 120 has a frame portion 121 and a middle rail portion 123 . The frame portion 121 is formed in a rectangular frame shape and corresponds to the peripheral portion of the panel substrate 110 . The frame portion 121 holds the peripheral portion of the processing substrate 111 and the peripheral substrate 112 . Frame portion 121 may have a recess or the like for disposing panel substrate 110 .
 XZ平面において、額縁部121の内側に中桟部123が設けられている。中桟部123は格子状に設けられている。つまり、中桟部123はX方向及びZ方向に延びた梁である。中桟部123は、額縁部121の一端から他端まで渡って形成されている。中桟部123と額縁部121とで囲まれた領域が開口部124となっている。ここでは、複数の開口部124が形成されている。 A middle beam portion 123 is provided inside the frame portion 121 in the XZ plane. The middle rail portion 123 is provided in a grid pattern. That is, the middle crosspiece 123 is a beam extending in the X direction and the Z direction. The middle rail portion 123 is formed across from one end of the frame portion 121 to the other end. An opening 124 is formed in a region surrounded by the middle rail portion 123 and the frame portion 121 . Here, a plurality of openings 124 are formed.
 マスク130は、周辺基板112を覆うように設けられている。マスク130は、周辺基板112の上に配置される。マスク130は、ボルトなどでトレイ120に固定されていてもよい。マスク130は、額縁状に形成されており、矩形状の開口部130aを有している。開口部130aを介して、レーザ光L2が処理基板111に照射される。マスク130は、周辺基板112にレーザ光L2が照射されるのを防ぐために設けられている。さらに、散乱紫外線などが周辺基板112に照射されるのを防ぐことができる。 A mask 130 is provided to cover the peripheral substrate 112 . A mask 130 is positioned over the peripheral substrate 112 . The mask 130 may be fixed to the tray 120 with bolts or the like. The mask 130 is formed in a frame shape and has a rectangular opening 130a. The processing substrate 111 is irradiated with the laser light L2 through the opening 130a. The mask 130 is provided to prevent the peripheral substrate 112 from being irradiated with the laser light L2. Furthermore, it is possible to prevent the peripheral substrate 112 from being irradiated with scattered ultraviolet rays or the like.
 トレイ120の上にパネル基板110が保持されている。そして、トレイ120の上に、マスク130が取り付けられている。パネル基板110、トレイ120,及びマスク130が一体となってワーク100を構成する。パネル基板110、トレイ120,及びマスク130を有するワーク100がレーザ照射装置1に搬入される。パネル基板110がトレイ120及びマスク130ともに、レーザ照射装置1内に搬入される。 A panel substrate 110 is held on the tray 120 . A mask 130 is attached on the tray 120 . The panel substrate 110, the tray 120, and the mask 130 are integrated to form the workpiece 100. FIG. A workpiece 100 having a panel substrate 110 , a tray 120 and a mask 130 is carried into the laser irradiation apparatus 1 . The panel substrate 110 is carried into the laser irradiation apparatus 1 together with the tray 120 and the mask 130 .
 図14を用いて、ワーク100と保持ユニット35の構成について説明する。図14は、保持ユニット35とワーク100の構成を示す断面図である。具体的には、図14は、ワーク100が保持ユニット35に保持されている状態を示している。 The configuration of the workpiece 100 and the holding unit 35 will be described with reference to FIG. FIG. 14 is a sectional view showing the configuration of the holding unit 35 and the workpiece 100. As shown in FIG. Specifically, FIG. 14 shows a state in which the workpiece 100 is held by the holding unit 35. As shown in FIG.
 保持ユニット35は、バキュームチャックを行うためのチャックテーブルとなっている。例えば、保持ユニット35は多孔質体となっている。あるいは、保持ユニット35は上面35aに吸引口が設けられていてもよい。保持ユニット35は、真空ポンプなどの排気手段に接続されている。そして、保持ユニット35から気体を吸引することで、保持ユニット35の上面35aにワーク100が吸着される。 The holding unit 35 is a chuck table for vacuum chucking. For example, the holding unit 35 is a porous body. Alternatively, the holding unit 35 may be provided with a suction port on the upper surface 35a. The holding unit 35 is connected to evacuation means such as a vacuum pump. By sucking gas from the holding unit 35 , the workpiece 100 is attracted to the upper surface 35 a of the holding unit 35 .
 保持ユニット35の上面35aには、中桟部123と干渉しないように溝35bが形成されている。つまり、溝35bは中桟部123と対応するように格子状に形成されている。溝35bの幅は、中桟部123の幅よりも広くなっている。したがって、溝35b内に中桟部123が嵌め込まれる。保持ユニット35は、額縁部121と中桟部123との間の開口部124に挿入される。 A groove 35b is formed on the upper surface 35a of the holding unit 35 so as not to interfere with the middle rail portion 123. In other words, the grooves 35b are formed in a lattice shape so as to correspond to the middle beam portion 123. As shown in FIG. The width of the groove 35b is wider than the width of the middle rail portion 123. As shown in FIG. Therefore, the middle rail portion 123 is fitted in the groove 35b. The holding unit 35 is inserted into the opening 124 between the frame portion 121 and the middle beam portion 123 .
 保持ユニット35の上面35aが処理基板111のPETフィルム111cと当接する。つまり、保持ユニット35はパネル基板110をトレイ120から持ち上げる。処理基板111とトレイ120との間には隙間が形成される。処理基板111の下面がトレイ120と接触しない状態で、保持ユニット35がワーク100を保持する。トレイ120と処理基板111とが離間した状態で、保持ユニット35が処理基板111を吸着する。処理基板111の平面度は、保持ユニット35の上面35aの平坦度に依存する。処理基板111の平面度を高くすることができる。 The upper surface 35a of the holding unit 35 contacts the PET film 111c of the substrate 111 to be processed. That is, the holding unit 35 lifts the panel substrate 110 from the tray 120 . A gap is formed between the processing substrate 111 and the tray 120 . The holding unit 35 holds the work 100 in a state where the lower surface of the processing substrate 111 does not contact the tray 120 . The holding unit 35 sucks the processing substrate 111 while the tray 120 and the processing substrate 111 are separated from each other. The flatness of the processing substrate 111 depends on the flatness of the upper surface 35 a of the holding unit 35 . The flatness of the processing substrate 111 can be increased.
 ここで、安定してレーザ照射を行うためには、搬送中の処理基板111の平面度を高くすることが好ましい。一方、処理基板111は多層構造となっているため、膜応力等による反りが発生することがある。本実施の形態では、保持ユニット35が真空吸着しているため、処理基板111の反りを抑制することができる。つまり、中桟部123を除いた部分で処理基板111が真空吸着されている。これにより、反りを抑制することができるため、処理基板111の平面度を高くすることができる。 Here, in order to stably perform laser irradiation, it is preferable to increase the flatness of the processing substrate 111 being transported. On the other hand, since the processing substrate 111 has a multi-layer structure, it may warp due to film stress or the like. In the present embodiment, since the holding unit 35 is vacuum-sucked, warping of the processing substrate 111 can be suppressed. In other words, the processing substrate 111 is vacuum-sucked at a portion other than the middle beam portion 123 . As a result, since warping can be suppressed, the flatness of the processing substrate 111 can be increased.
 照射光学系20によるレーザ光L2の焦点面に処理基板111の高さを一致させることができる。これにより、照射光学系20の焦点深度を大きくすることが困難な場合でも、安定したレーザ照射プロセスが実現可能である。よって、安定したプロセスを効率良く行うことができる。 The height of the processing substrate 111 can be matched with the focal plane of the laser light L2 by the irradiation optical system 20. Thereby, even when it is difficult to increase the depth of focus of the irradiation optical system 20, a stable laser irradiation process can be realized. Therefore, a stable process can be performed efficiently.
(有機ELディスプレイ)
 上記のレーザ照射装置1は、有機EL(ElectroLuminescence)ディスプレイのレーザリフトオフ装置に好適である。つまり、レーザ照射装置1によるレーザ照射方法が有機ELディスプレイの製造工程におけるレーザリフトオフプロセスとして利用される。
(Organic EL display)
The laser irradiation device 1 described above is suitable for a laser lift-off device for an organic EL (ElectroLuminescence) display. That is, the laser irradiation method by the laser irradiation device 1 is used as a laser lift-off process in the manufacturing process of the organic EL display.
 以下、本実施の形態にかかるレーザ照射装置1を用いて製造された有機ELディスプレイディスプレイに適用した構成について説明する。図15を用いて有機EL(Electroluminescence)ディスプレイの構造について説明する。図15は、有機ELディスプレイの一例を示す断面図である。図15に示す有機ELディスプレイ300は、各画素PXにTFTが配置されたアクティブマトリクス型の表示装置である。 A configuration applied to an organic EL display manufactured using the laser irradiation apparatus 1 according to the present embodiment will be described below. The structure of an organic EL (Electroluminescence) display will be described with reference to FIG. FIG. 15 is a cross-sectional view showing an example of an organic EL display. The organic EL display 300 shown in FIG. 15 is an active matrix display device in which a TFT is arranged in each pixel PX.
 有機ELディスプレイ300は、フィルム301、剥離層302、TFT(Thin Film Transistor)層311、有機層312、カラーフィルタ層313、及び保護層314を備えている。図15では、保護層314側が視認側となるトップエミッション方式の有機ELディスプレイを示している。なお、以下の説明は、有機ELディスプレイの一構成例を示すものであり、本実施の形態は、以下に説明される構成に限られるものではない。例えば、本実施の形態では、ボトムエミッション方式の有機ELディスプレイに用いられてもよい。 The organic EL display 300 includes a film 301 , a release layer 302 , a TFT (Thin Film Transistor) layer 311 , an organic layer 312 , a color filter layer 313 and a protective layer 314 . FIG. 15 shows a top emission type organic EL display in which the protective layer 314 side is the viewing side. Note that the following description shows one configuration example of the organic EL display, and the present embodiment is not limited to the configuration described below. For example, the present embodiment may be used for a bottom emission type organic EL display.
 フィルム301は、フレキシブルなプラスチックフィルムであり、応力を加えることにより曲げることができるフィルムである。フィルム301の上には、剥離層302、TFT層311が設けられている。TFT層311は、各画素PXに配置されたTFT311aを有している。さらに、TFT層311は、TFT311aに接続される配線(不図示)等を有している。TFT311a、及び配線等が画素回路を構成する。 The film 301 is a flexible plastic film that can be bent by applying stress. A release layer 302 and a TFT layer 311 are provided on the film 301 . The TFT layer 311 has a TFT 311a arranged in each pixel PX. Further, the TFT layer 311 has wiring (not shown) and the like connected to the TFT 311a. The TFT 311a, wiring, and the like constitute a pixel circuit.
 TFT層311の上には、有機層312が設けられている。有機層312は、画素PXごとに配置された有機EL発光素子312aを有している。有機EL発光素子312aは、例えば、陽極、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層、及び陰極が積層された積層構造を有している。トップエミッション方式の場合、陽極は金属電極であり、陰極はITO(Indium Tin Oxide)等の透明導電膜である。さらに、有機層312には、画素PX間において、有機EL発光素子312aを分離するための隔壁312bが設けられている。 An organic layer 312 is provided on the TFT layer 311 . The organic layer 312 has an organic EL light emitting element 312a arranged for each pixel PX. The organic EL light-emitting element 312a has, for example, a laminated structure in which an anode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and a cathode are laminated. In the case of the top emission method, the anode is a metal electrode and the cathode is a transparent conductive film such as ITO (Indium Tin Oxide). Further, the organic layer 312 is provided with partition walls 312b for separating the organic EL light emitting elements 312a between the pixels PX.
 有機層312の上には、カラーフィルタ層313が設けられている。カラーフィルタ層313は、カラー表示を行うためのカラーフィルタ313aが設けられている。すなわち、各画素PXには、R(赤色)、G(緑色)、又はB(青色)に着色された樹脂層がカラーフィルタ313aとして設けられている。有機層312から放出された白色光は、カラーフィルタ313aを通過すると、RGBの色の光に変換される。なお、有機層312に、RGBの各色を発光する有機EL発光素子が設けられている3色方式の場合、カラーフィルタ層313を省略してもよい。 A color filter layer 313 is provided on the organic layer 312 . The color filter layer 313 is provided with color filters 313a for color display. That is, each pixel PX is provided with a resin layer colored R (red), G (green), or B (blue) as a color filter 313a. The white light emitted from the organic layer 312 is converted into RGB color light when passing through the color filter 313a. Note that in the case of a three-color system in which the organic layer 312 is provided with organic EL light-emitting elements that emit each color of RGB, the color filter layer 313 may be omitted.
 カラーフィルタ層313の上には、保護層314が設けられている。保護層314は、樹脂材料で構成されており、有機層312の有機EL発光素子の劣化を防ぐために設けられている。 A protective layer 314 is provided on the color filter layer 313 . The protective layer 314 is made of a resin material and provided to prevent deterioration of the organic EL light emitting element of the organic layer 312 .
 有機層312の有機EL発光素子312aに流れる電流は、画素回路に供給される表示信号によって変化する。よって、表示画像に応じた表示信号を各画素PXに供給することで、各画素PXでの発光量を制御することができる。これにより、所望の画像を表示することができる。 The current flowing through the organic EL light emitting element 312a of the organic layer 312 changes depending on the display signal supplied to the pixel circuit. Therefore, by supplying a display signal corresponding to a display image to each pixel PX, the amount of light emitted from each pixel PX can be controlled. Thereby, a desired image can be displayed.
<有機ELディスプレイの製造工程>
 次に、図16を用いて上記で説明した有機ELディスプレイの製造工程について説明する。有機ELディスプレイを製造する際は、まず処理基板331を準備する(工程A)。例えば、処理基板331にはレーザ光を透過するガラス基板を用いる。処理基板331は、図12等の処理基板111に対応する。
<Manufacturing process of organic EL display>
Next, a manufacturing process of the above-described organic EL display will be described with reference to FIG. When manufacturing an organic EL display, first, a processing substrate 331 is prepared (process A). For example, a glass substrate that transmits laser light is used as the processing substrate 331 . The processing substrate 331 corresponds to the processing substrate 111 in FIG. 12 and the like.
 次に、処理基板331の上に剥離層302を形成する(工程B)。剥離層302には、例えばポリイミドを用いることができる。剥離層302は、ポリイミド膜111bに対応する。その後、剥離層302の上に回路素子332を形成する(工程C)。ここで、回路素子332は、図15に示すTFT層311、有機層312、カラーフィルタ層313を含む。回路素子332は、フォトリソグラフィ技術や成膜技術を用いて形成することができる。その後、回路素子332の上に、回路素子332を保護するための保護層314を形成する(工程D)。保護層314は、PETフィルム111cに対応する。 Next, a release layer 302 is formed on the processing substrate 331 (step B). Polyimide, for example, can be used for the release layer 302 . The release layer 302 corresponds to the polyimide film 111b. After that, a circuit element 332 is formed on the release layer 302 (process C). Here, the circuit element 332 includes the TFT layer 311, the organic layer 312, and the color filter layer 313 shown in FIG. The circuit element 332 can be formed using a photolithography technique or a film formation technique. After that, a protective layer 314 for protecting the circuit element 332 is formed on the circuit element 332 (process D). The protective layer 314 corresponds to the PET film 111c.
 次に、処理基板331が上になるように処理基板331を反転させ(工程E)、レーザ照射装置1に搬入する。処理基板331側から剥離層302にレーザ光L2を照射する(工程F)。レーザ光L2にはラインビームを用いることができる。図16に示す場合は、処理基板331がX方向に搬送されているので、処理基板331の右側から左側に向かってレーザ光L2が照射される。その後、処理基板331と剥離層302とを分離する(工程G)。最後にフィルム318を剥離層302に積層する(工程H)。例えば、フィルム318はフレキシブルなプラスチックフィルムであり、応力を加えることにより曲げることができるフィルムである。このような製造工程を用いることで、折り曲げ可能な有機ELディスプレイ300を作製することができる。 Next, the processing substrate 331 is turned over so that the processing substrate 331 faces upward (process E), and is carried into the laser irradiation apparatus 1 . The release layer 302 is irradiated with a laser beam L2 from the processing substrate 331 side (process F). A line beam can be used as the laser beam L2. In the case shown in FIG. 16, since the processing substrate 331 is transported in the X direction, the processing substrate 331 is irradiated with the laser beam L2 from the right side to the left side. After that, the processing substrate 331 and the separation layer 302 are separated (step G). Finally, a film 318 is laminated to the release layer 302 (step H). For example, film 318 is a flexible plastic film, a film that can be bent by applying stress. By using such a manufacturing process, the foldable organic EL display 300 can be manufactured.
 なお、上記のレーザ照射装置1は、レーザリフトオフプロセスを行う剥離装置に限らず、エキシマレーザアニール装置などにも適用可能である。 Note that the laser irradiation apparatus 1 described above is applicable not only to a peeling apparatus that performs a laser lift-off process, but also to an excimer laser annealing apparatus and the like.
 なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。 It should be noted that the present invention is not limited to the above embodiments, and can be modified as appropriate without departing from the scope of the invention.
 この出願は、2021年3月9日に出願された日本出願特願2021-36889を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2021-36889 filed on March 9, 2021, and the entire disclosure thereof is incorporated herein.
 1 レーザ照射装置
 4 移載ロボット
 5 ドアバルブ
 6 ウィンド
 8 除電器
 10 チャンバ
 20 照射光学系
 21 光源
 25 架台
 30 駆動機構
 31 X軸機構
 32 Y軸機構
 33 ガイド
 35 保持ユニット
 40 駆動機構
 41 X軸機構
 42 Y軸機構
 43 ガイド
 45 保持ユニット
 100 ワーク
 110 パネル基板
 111 処理基板
 112 周辺基板
 120 トレイ
 130 マスク
 200 ワーク
 300 有機ELディスプレイ
 310 基板
 311 TFT層
 311a TFT
 312 有機層
 312a 有機EL発光素子
 312b 隔壁
 313 カラーフィルタ層
 313a カラーフィルタ(CF)
 314 保護層
 PX 画素
 H1 照射高さ
 H2 搬送高さ
Reference Signs List 1 laser irradiation device 4 transfer robot 5 door valve 6 window 8 static eliminator 10 chamber 20 irradiation optical system 21 light source 25 base 30 drive mechanism 31 X-axis mechanism 32 Y-axis mechanism 33 guide 35 holding unit 40 drive mechanism 41 X-axis mechanism 42 Y Axis mechanism 43 Guide 45 Holding unit 100 Work 110 Panel substrate 111 Processing substrate 112 Peripheral substrate 120 Tray 130 Mask 200 Work 300 Organic EL display 310 Substrate 311 TFT layer 311a TFT
312 organic layer 312a organic EL light emitting element 312b partition wall 313 color filter layer 313a color filter (CF)
314 protective layer PX pixel H1 irradiation height H2 transport height

Claims (23)

  1.  レーザ光を発生させるレーザ発振器と、
     前記レーザ光が照射される第1のワーク及び第2のワークをそれぞれ保持する第1の保持ユニット及び第2の保持ユニットと、
     前記第1の保持ユニット及び前記第2の保持ユニットをそれぞれ水平方向に搬送する第1の搬送機構及び第2の搬送機構と、
     前記第1の保持ユニット及び前記第2の保持ユニットをそれぞれ前記水平方向と直交する垂直方向に昇降させる第1の昇降機構及び第2の昇降機構と、
    を備えるレーザ照射装置。
    a laser oscillator that generates laser light;
    a first holding unit and a second holding unit respectively holding a first work and a second work to be irradiated with the laser light;
    a first transport mechanism and a second transport mechanism for horizontally transporting the first holding unit and the second holding unit, respectively;
    a first lifting mechanism and a second lifting mechanism for lifting and lowering the first holding unit and the second holding unit, respectively, in a vertical direction orthogonal to the horizontal direction;
    A laser irradiation device comprising:
  2.  前記第1のワークに前記レーザ光が照射されている時、前記第2のワークは前記第1のワークの下方に位置している請求項1に記載のレーザ照射装置。 The laser irradiation device according to claim 1, wherein the second work is positioned below the first work when the first work is irradiated with the laser light.
  3.  前記レーザ光をライン状にして、搬送中の前記第1のワーク及び第2のワークに上方から照射する照射光学系をさらに備え、
     上面視において、前記第1の搬送機構及び第2の搬送機構がライン状の前記レーザ光と交差する方向に前記第1のワーク及び第2のワークをそれぞれ搬送している請求項1,又は2に記載のレーザ照射装置。
    further comprising an irradiation optical system for irradiating the first work and the second work being conveyed from above by making the laser light into a line,
    3. When viewed from above, the first transport mechanism and the second transport mechanism respectively transport the first workpiece and the second workpiece in a direction intersecting with the line-shaped laser beam. The laser irradiation device according to .
  4.  上面視において、
     前記第1の搬送機構が搬送方向と直交する方向における一端側で前記第1の保持ユニットを支持し、
     前記第2の搬送機構が搬送方向と直交する方向における他端側で前記第2の保持ユニットを支持している請求項1~3のいずれか1項に記載のレーザ照射装置。
    In top view,
    The first transport mechanism supports the first holding unit on one end side in a direction perpendicular to the transport direction,
    The laser irradiation device according to any one of claims 1 to 3, wherein the second transport mechanism supports the second holding unit on the other end side in the direction orthogonal to the transport direction.
  5.  第1の高さにある前記第1のワークが第1の方向に搬送されることで、前記第1のワークに前記レーザ光が照射され、
     前記第1のワークに前記レーザ光が照射されている間において、第1の高さよりも低い第2の高さにある第2のワークが前記第1の方向と逆向きの第2の方向に搬送される請求項1~4のいずれか1項に記載のレーザ照射装置。
    The first work at a first height is transported in a first direction so that the first work is irradiated with the laser beam,
    While the first work is being irradiated with the laser beam, the second work at a second height lower than the first height moves in a second direction opposite to the first direction. The laser irradiation device according to any one of claims 1 to 4, which is transported.
  6.  前記第2のワークが前記第2の方向に搬送された後、前記第2の保持ユニットの前記第2のワークが入れ替えられる請求項5に記載のレーザ照射装置。 The laser irradiation device according to claim 5, wherein the second work in the second holding unit is replaced after the second work is transported in the second direction.
  7.  前記第1の保持ユニットが前記第1のワークを真空吸着し、
     前記第2の保持ユニットが前記第2のワークを真空吸着する請求項1~4のいずれか1項に記載のレーザ照射装置。
    the first holding unit vacuum-adsorbs the first workpiece;
    The laser irradiation device according to any one of claims 1 to 4, wherein the second holding unit vacuum-sucks the second work.
  8.  前記第1の及び第2のワークのそれぞれが
     前記レーザ光が照射される処理基板と、
     前記処理基板の周辺に配置された周辺基板と、
     前記処理基板及び前記周辺基板が載置されるトレイと、を備え、
     前記第1の保持ユニットの上に前記第1のワークが載置された状態で前記トレイに設けられた開口部内に前記第1の保持ユニットが配置され、
     前記第1の保持ユニットが前記トレイから前記処理基板を離した状態で、前記第1のワークを真空吸着し、
     前記第2の保持ユニットの上に前記第2のワークが載置された状態で前記トレイに設けられた開口部内に前記第2の保持ユニットが配置され、
     前記第1の保持ユニットが、前記トレイから前記処理基板が離間した状態で、前記第1のワークを真空吸着する請求項7に記載のレーザ照射装置。
    each of the first and second workpieces is a processing substrate irradiated with the laser light;
    a peripheral substrate arranged around the processing substrate;
    a tray on which the processing substrate and the peripheral substrate are placed;
    The first holding unit is arranged in an opening provided in the tray with the first work placed on the first holding unit,
    vacuum-adsorbing the first work in a state where the first holding unit separates the processing substrate from the tray;
    The second holding unit is arranged in an opening provided in the tray with the second work placed on the second holding unit,
    8. The laser irradiation apparatus according to claim 7, wherein the first holding unit vacuum-adsorbs the first work while the processing substrate is separated from the tray.
  9.  (a)第1の保持ユニットが第1のワークを保持した状態で、前記第1のワークを水平方向に搬送することで、前記第1のワークにレーザ光を照射するステップと、
     (b)前記レーザ光が照射された第1のワークを下降した後、前記第1のワークを水平方向に搬送するステップと、
     (c)第2の保持ユニットが第2のワークを保持した状態で、前記第2のワークを水平方向に搬送することで、前記第2のワークにレーザ光を照射するステップと、
     (d)前記レーザ光が照射された第2のワークを下降した後、前記第2のワークを水平方向に搬送するステップと、を備えたレーザ照射方法。
    (a) irradiating the first work with a laser beam by conveying the first work horizontally while the first holding unit holds the first work;
    (b) after descending the first work irradiated with the laser beam, conveying the first work horizontally;
    (c) irradiating the second work with a laser beam by conveying the second work horizontally while the second holding unit holds the second work;
    (d) A laser irradiation method comprising the step of horizontally conveying the second work irradiated with the laser beam after the second work is lowered.
  10.  (a)のステップで前記第1のワークにレーザ光が照射されている時、前記第2のワークが前記第1のワークの下方に位置している請求項9に記載のレーザ照射方法。 The laser irradiation method according to claim 9, wherein the second work is positioned below the first work when the first work is irradiated with the laser light in step (a).
  11.  ライン状の前記レーザ光が、搬送中の前記第1のワーク及び第2のワークに上方から照射され
     (a)及び(c)のステップでは、上面視において、ライン状の前記レーザ光と交差する方向に前記第1のワーク及び第2のワークをそれぞれ搬送している請求項9,又は10に記載のレーザ照射方法。
    The line-shaped laser light is irradiated from above onto the first work and the second work being conveyed, and in steps (a) and (c), the line-shaped laser light intersects in a top view. 11. The laser irradiation method according to claim 9 or 10, wherein the first work and the second work are conveyed in directions.
  12.  上面視において、
     搬送方向と直交する方向における一端側で前記第1の保持ユニットが支持されており、
     搬送方向と直交する方向における他端側で前記第2の保持ユニットが支持されている請求項9~11のいずれか1項に記載のレーザ照射方法。
    In top view,
    The first holding unit is supported on one end side in a direction orthogonal to the conveying direction,
    The laser irradiation method according to any one of claims 9 to 11, wherein the second holding unit is supported on the other end side in the direction perpendicular to the conveying direction.
  13.  (a)のステップでは、第1の高さにある前記第1のワークが第1の方向に搬送されることで、前記第1のワークに前記レーザ光が照射され、
     (a)のステップで前記第1のワークに前記レーザ光が照射されている間において、(d)のステップでは前記第1の高さよりも低い第2の高さにある第2のワークが前記第1の方向と逆向きの第2の方向に搬送される請求項9~12のいずれか1項に記載のレーザ照射方法。
    In the step (a), the first work at a first height is transported in a first direction so that the first work is irradiated with the laser beam;
    While the first workpiece is being irradiated with the laser beam in step (a), in step (d), the second workpiece at a second height lower than the first height is The laser irradiation method according to any one of claims 9 to 12, wherein the substrate is conveyed in a second direction opposite to the first direction.
  14.  (d)のステップで前記第2のワークが前記第2の方向に搬送された後、前記第2の保持ユニットの前記第2のワークが入れ替えられる請求項13に記載のレーザ照射方法。 14. The laser irradiation method according to claim 13, wherein the second work in the second holding unit is replaced after the second work is transported in the second direction in step (d).
  15.  前記第1の保持ユニットが前記第1のワークを真空吸着し、
     前記第2の保持ユニットが前記第2のワークを真空吸着する請求項9~14のいずれか1項に記載のレーザ照射方法。
    the first holding unit vacuum-adsorbs the first workpiece;
    The laser irradiation method according to any one of claims 9 to 14, wherein the second holding unit vacuum-sucks the second workpiece.
  16.  (A)基板上に剥離層を形成する工程と、
     (B)前記剥離層上に素子を形成する工程と、
     (C)前記基板と前記剥離層とを分離する工程と、
     (D)前記剥離層にフィルムを積層する工程と、を備えた有機ELディスプレイの製造方法であって、
     (C)前記基板と前記剥離層とを分離する工程は、前記基板と前記剥離層とを含むワークを搬送中に、前記ワークに上方からレーザ光を照射する工程であり、
     (Ca)第1の保持ユニットが第1のワークを保持した状態で、前記第1のワークを水平方向に搬送することで、前記第1のワークにレーザ光を照射するステップと、
     (Cb)前記レーザ光が照射された第1のワークを下降した後、前記第1のワークを水平方向に搬送するステップと、
     (Cc)第2の保持ユニットが第2のワークを保持した状態で、前記第2のワークを水平方向に搬送することで、前記第2のワークにレーザ光を照射するステップと、
     (Cd)前記レーザ光が照射された第2のワークを下降した後、前記第2のワークを水平方向に搬送するステップと、を備えた有機ELディスプレイの製造方法。
    (A) forming a release layer on the substrate;
    (B) forming an element on the release layer;
    (C) separating the substrate and the release layer;
    (D) A method for manufacturing an organic EL display comprising the step of laminating a film on the release layer,
    (C) the step of separating the substrate and the release layer is a step of irradiating the work including the substrate and the release layer with a laser beam from above while the work is being transported;
    (Ca) irradiating the first work with a laser beam by conveying the first work horizontally while the first holding unit holds the first work;
    (Cb) after descending the first work irradiated with the laser beam, conveying the first work horizontally;
    (Cc) irradiating the second work with a laser beam by conveying the second work horizontally while the second holding unit holds the second work;
    (Cd) A method of manufacturing an organic EL display, comprising the step of horizontally conveying the second work irradiated with the laser beam after the second work is lowered.
  17.  (Ca)のステップで前記第1のワークにレーザ光が照射されている時、前記第2のワークが前記第1のワークの下方に位置している請求項16に記載の有機ELディスプレイの製造方法。 17. The manufacturing of an organic EL display according to claim 16, wherein the second work is positioned below the first work when the first work is irradiated with the laser beam in step (Ca). Method.
  18.  ライン状の前記レーザ光が、搬送中の前記第1のワーク及び第2のワークに上方から照射され
     (Ca)及び(Cc)のステップでは、上面視において、ライン状の前記レーザ光と交差する方向に前記第1のワーク及び第2のワークをそれぞれ搬送している請求項16、又は17に記載の有機ELディスプレイの製造方法。
    In steps (Ca) and (Cc), the line-shaped laser light is irradiated from above onto the first work and the second work being conveyed, and intersects with the line-shaped laser light in a top view. 18. The method of manufacturing an organic EL display according to claim 16, wherein the first work and the second work are conveyed in directions.
  19.  上面視において、
     搬送方向と直交する方向における一端側で前記第1の保持ユニットが支持されており、
     搬送方向と直交する方向における他端側で前記第2の保持ユニットが支持されている請求項16~18のいずれか1項に記載の有機ELディスプレイの製造方法。
    In top view,
    The first holding unit is supported on one end side in a direction orthogonal to the conveying direction,
    19. The method of manufacturing an organic EL display according to any one of claims 16 to 18, wherein the second holding unit is supported on the other end side in the direction orthogonal to the conveying direction.
  20.  (Ca)のステップでは、第1の高さにある前記第1のワークが第1の方向に搬送されることで、前記第1のワークに前記レーザ光が照射され、
     (Ca)のステップで前記第1のワークに前記レーザ光が照射されている間において、(Cd)のステップでは前記第1の高さよりも低い第2の高さにある第2のワークが前記第1の方向と逆向きの第2の方向に搬送される請求項16~19のいずれか1項に有機ELディスプレイの製造方法。
    In the step (Ca), the first work at a first height is transported in a first direction so that the first work is irradiated with the laser beam;
    While the first workpiece is being irradiated with the laser beam in step (Ca), in step (Cd), the second workpiece at a second height lower than the first height is 20. The method of manufacturing an organic EL display according to any one of claims 16 to 19, wherein the substrate is transported in a second direction opposite to the first direction.
  21.  (Cd)のステップで前記第2のワークが前記第2の方向に搬送された後、前記第2の保持ユニットの前記第2のワークが入れ替えられる請求項20に記載の有機ELディスプレイの製造方法。 21. The method of manufacturing an organic EL display according to claim 20, wherein in step (Cd), after the second work is conveyed in the second direction, the second work in the second holding unit is replaced. .
  22.  前記第1の保持ユニットが前記第1のワークを真空吸着し、
     前記第2の保持ユニットが前記第2のワークを真空吸着する請求項16~21のいずれか1項に記載の有機ELディスプレイの製造方法。
    the first holding unit vacuum-adsorbs the first workpiece;
    22. The method of manufacturing an organic EL display according to claim 16, wherein the second holding unit vacuum-sucks the second workpiece.
  23.  額縁部と額縁部の内側に設けられた中桟部とを備え、処理基板が載置されるトレイと、
     前記中桟部に対応する溝を有し、前記額縁部と前記中桟部との間の開口部に挿入されて、前記トレイと前記処理基板とが離間した状態で前記処理基板を吸着する保持ユニットと、
     前記保持ユニットを搬送する搬送機構と、
     前記搬送機構で搬送中の前記処理基板にレーザ光を照射する照射光学系と、を備えたレーザ照射装置。
    a tray on which a substrate to be processed is placed, comprising a frame portion and a middle crosspiece portion provided inside the frame portion;
    A holding device which has a groove corresponding to the middle rail portion, is inserted into an opening between the frame portion and the middle rail portion, and adsorbs the processing substrate in a state in which the tray and the processing substrate are separated from each other. a unit;
    a transport mechanism that transports the holding unit;
    and an irradiation optical system for irradiating a laser beam onto the processing substrate being transported by the transport mechanism.
PCT/JP2022/008873 2021-03-09 2022-03-02 Laser radiation device, laser radiation method, and manufacturing method for organic el display WO2022190992A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280019838.8A CN117015453A (en) 2021-03-09 2022-03-02 Laser irradiation apparatus, laser irradiation method, and method for manufacturing organic EL display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021036889A JP2022137390A (en) 2021-03-09 2021-03-09 Laser irradiation device, laser irradiation method, and organic EL display manufacturing method
JP2021-036889 2021-03-09

Publications (1)

Publication Number Publication Date
WO2022190992A1 true WO2022190992A1 (en) 2022-09-15

Family

ID=83227154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/008873 WO2022190992A1 (en) 2021-03-09 2022-03-02 Laser radiation device, laser radiation method, and manufacturing method for organic el display

Country Status (4)

Country Link
JP (1) JP2022137390A (en)
CN (1) CN117015453A (en)
TW (1) TW202239511A (en)
WO (1) WO2022190992A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004213186A (en) * 2002-12-27 2004-07-29 Semiconductor Energy Lab Co Ltd Apparatus development method
JP2009535222A (en) * 2006-05-02 2009-10-01 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド Method and apparatus for laser processing
JP2012000648A (en) * 2010-06-17 2012-01-05 Laserx:Kk Nozzle for use both in laser cutting and laser welding, laser beam machine using the same, and method of plate butt welding using the same
WO2019082355A1 (en) * 2017-10-26 2019-05-02 堺ディスプレイプロダクト株式会社 Manufacturing method and manufacturing device of flexible oled device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004213186A (en) * 2002-12-27 2004-07-29 Semiconductor Energy Lab Co Ltd Apparatus development method
JP2009535222A (en) * 2006-05-02 2009-10-01 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド Method and apparatus for laser processing
JP2012000648A (en) * 2010-06-17 2012-01-05 Laserx:Kk Nozzle for use both in laser cutting and laser welding, laser beam machine using the same, and method of plate butt welding using the same
WO2019082355A1 (en) * 2017-10-26 2019-05-02 堺ディスプレイプロダクト株式会社 Manufacturing method and manufacturing device of flexible oled device

Also Published As

Publication number Publication date
TW202239511A (en) 2022-10-16
JP2022137390A (en) 2022-09-22
CN117015453A (en) 2023-11-07

Similar Documents

Publication Publication Date Title
KR101764534B1 (en) Exposure device, substrate processing apparatus, exposure method for substrate and substrate processing method
TWI719055B (en) Transport mechanism of processing device
TWI633391B (en) Substrate processing apparatus, method for substrate processing method
JP2007329300A (en) Ultraviolet ray irradiation apparatus and cutter including the same
JP6754266B2 (en) Laser irradiation device, laser irradiation method, and manufacturing method of semiconductor device
JP4594786B2 (en) Cutting equipment
JP6968243B2 (en) Laser irradiation device, laser irradiation method, and manufacturing method of semiconductor device
US20210343686A1 (en) Method and apparatus for manufacturing flexible light-emitting device
JP3070006B2 (en) How to transport thin work
KR20190129871A (en) Laser irradiation apparatus, laser irradiation method, and manufacturing method of semiconductor device
WO2019138659A1 (en) Laser processing device, laser processing method, and method for manufacturing semiconductor device
JP2016183991A (en) Exposure apparatus and substrate processing apparatus
CN110303607B (en) Cutting device
US20220006010A1 (en) Method and apparatus for manufacturing flexible light emitting device
WO2022190992A1 (en) Laser radiation device, laser radiation method, and manufacturing method for organic el display
JP2017188548A (en) Processing apparatus
WO2019215829A1 (en) Method and apparatus for manufacturing flexible light-emitting device
KR102654792B1 (en) Uv irradiation apparatus and uv irradiation method
KR102226221B1 (en) Cutting apparatus
JPH05323251A (en) Substrate conveying mechanism for proximity exposing device
JP7095166B2 (en) Laser irradiation device, laser irradiation method, and manufacturing method of semiconductor device
KR20230094921A (en) Die bonding apparatus
TWI655685B (en) Cutting device
CN115394712A (en) Laser lift-off device and laser lift-off method
WO2023090034A1 (en) Laser cutting device, laser cutting method, and method for manufacturing display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22766951

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280019838.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22766951

Country of ref document: EP

Kind code of ref document: A1