WO2022190959A1 - 冷延鋼板及びその製造方法 - Google Patents

冷延鋼板及びその製造方法 Download PDF

Info

Publication number
WO2022190959A1
WO2022190959A1 PCT/JP2022/008569 JP2022008569W WO2022190959A1 WO 2022190959 A1 WO2022190959 A1 WO 2022190959A1 JP 2022008569 W JP2022008569 W JP 2022008569W WO 2022190959 A1 WO2022190959 A1 WO 2022190959A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
cold
rolled steel
hot
Prior art date
Application number
PCT/JP2022/008569
Other languages
English (en)
French (fr)
Inventor
拓也 西尾
亮介 中村
昌史 東
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to EP22766918.1A priority Critical patent/EP4269644A4/en
Priority to CN202280011290.2A priority patent/CN116802334A/zh
Priority to JP2023505325A priority patent/JPWO2022190959A1/ja
Priority to MX2023008445A priority patent/MX2023008445A/es
Priority to KR1020237025247A priority patent/KR20230125022A/ko
Publication of WO2022190959A1 publication Critical patent/WO2022190959A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a cold-rolled steel sheet and a method for manufacturing the same.
  • This application claims priority based on Japanese Patent Application No. 2021-038716 filed in Japan on March 10, 2021, the content of which is incorporated herein.
  • Patent Documents 1 and 2 steel sheets with tempered martensite as the main phase have been proposed (see, for example, Patent Documents 1 and 2).
  • the microstructure is a tempered martensite single phase structure, so that the bendability is excellent, and the structure is a structure in which carbides, which are hydrogen trap sites, are finely dispersed, so hydrogen embrittlement resistance It is disclosed to have excellent properties.
  • Patent Document 3 proposes a steel sheet that utilizes the TRIP effect of retained austenite as a technique for achieving both high strength and high formability.
  • the steel sheet of Patent Document 1 has a low tensile strength of less than 1310 MPa. Therefore, when aiming for higher strength, it is necessary to further improve workability, bendability, and resistance to hydrogen embrittlement, which are deteriorated accordingly.
  • the steel sheet of Patent Document 2 can achieve a high strength of 1310 MPa or more, it is cooled to near room temperature during cooling during quenching, so the volume fraction of retained austenite is small, and high uniform elongation cannot be obtained.
  • the steel sheet of Patent Document 3 has a ferrite phase, so it is difficult to obtain a high strength of 1310 MPa or more, and the strength difference in the structure causes poor bendability.
  • an object of the present invention is to provide a cold-rolled steel sheet having high strength and excellent uniform elongation, bendability, and resistance to hydrogen embrittlement, and a method for producing the same.
  • the present inventors investigated the effects of chemical composition, metallographic structure, and manufacturing conditions on strength, uniform elongation, bendability, and resistance to hydrogen embrittlement in cold-rolled steel sheets.
  • the metal structure inside the steel plate (for example, the position of 1/4 of the plate thickness from the surface) is made into a structure mainly composed of tempered martensite containing a predetermined amount or more of retained austenite, and the amount of solid solution Si and ferrite in the surface layer
  • the strength, uniform elongation, bendability, and hydrogen embrittlement resistance can be improved at the same time by controlling the existence state of
  • the control of the surface layer part includes grain refinement and carbide refinement due to the shear force during hot rolling, and Si-depleted layer due to internal oxidation by controlling the coiling temperature. It has been found that it is particularly important to suppress the formation of , and to suppress the distribution of Si during annealing by controlling the cold rolling and annealing conditions.
  • the cold-rolled steel sheet according to one aspect of the present invention has, in mass %, C: 0.140% or more and 0.400% or less, Si: 0.35% or more and 1.50% or less, Mn: 1 .30% or more and 3.50% or less, P: 0% or more and 0.100% or less, S: 0% or more and 0.010% or less, Al: 0% or more and 0.100% or less, N: 0 % or more and 0.0100% or less, Ti: 0% or more and 0.050% or less, Nb: 0% or more and 0.050% or less, V: 0% or more and 0.50% or less, Cu: 0% or more , 1.00% or less, Ni: 0% or more and 1.00% or less, Cr: 0% or more and 1.00% or less, Mo: 0% or more and 0.50% or less, B: 0% or more, 0 Ca: 0% to 0.
  • the balance has a chemical composition consisting of Fe and impurities, and the metal structure of t / 4 parts, which is 1/4 of the plate thickness t in the plate thickness direction from the surface, is a volume fraction , retained austenite: 2.5% or more and 10.0% or less, tempered martensite: 80.0% or more and 97.5% or less, ferrite and bainite: 0.0% or more and 15.0% or less in total, And martensite: 0.0% or more and 3.0% or less, and the amount of solid solution Si in the surface layer portion located 25 ⁇ m in the plate thickness direction from the surface is 0.30% by mass.
  • the volume fraction of ferrite in the metal structure is 0.0% or more and 20.0% or less, and the density of ferrite crystal grains having a grain size of 15 ⁇ m or more is 0/mm 2 or more and 3000/mm 2 or less.
  • the chemical composition is, in mass%, Ti: 0.001% or more and 0.050% or less, Nb: 0.001% or more and 0.050% Below, V: 0.01% or more and 0.50% or less, Cu: 0.01% or more and 1.00% or less, Ni: 0.01% or more and 1.00% or less, Cr: 0.01% 1.00% or less, Mo: 0.01% or more and 0.50% or less, B: 0.0001% or more and 0.0100% or less, Ca: 0.0001% or more and 0.010% or less, Mg: 0.0001% or more and 0.0100% or less, REM: 0.0005% or more and 0.050% or less, and Bi: 0.0005% or more and 0.050% or less, selected from the group consisting of You may contain 1 type(s) or 2 or more types.
  • the ratio of the amount of dissolved Si in the surface layer to the amount of dissolved Si in t/4 parts is 0.85 to 1.10.
  • the cold-rolled steel sheet according to any one of [1] to [3] above has a tensile strength of 1310 MPa or more, a uniform elongation of 5.0% or more, and a limit bending at 90 ° V bending.
  • R/t which is the value obtained by dividing the radius R by the plate thickness t, may be 5.0 or less.
  • the cold-rolled steel sheet according to [4] above may have a tensile strength of 1400 MPa or more.
  • a hot-dip galvanized layer may be formed on the surface of the cold-rolled steel sheet according to any one of [1] to [5] above. [7] In the cold-rolled steel sheet according to [6] above, the hot-dip galvanized layer may be an alloyed hot-dip galvanized layer.
  • a method for producing a cold-rolled steel sheet according to another aspect of the present invention in mass%, C: 0.140% or more and 0.400% or less, Si: 0.35% or more and 1.50% or less , Mn: 1.30% or more and 3.50% or less, P: 0% or more and 0.100% or less, S: 0% or more and 0.010% or less, Al: 0% or more and 0.100% or less , N: 0% or more and 0.0100% or less, Ti: 0% or more and 0.050% or less, Nb: 0% or more and 0.050% or less, V: 0% or more and 0.50% or less, Cu : 0% or more and 1.00% or less, Ni: 0% or more and 1.00% or less, Cr: 0% or more and 1.00% or less, Mo: 0% or more and 0.50% or less, B: 0% % or more and 0.0100% or less, Ca: 0% or more and 0.010% or less, Mg: 0% or more and 0.0100%
  • the average cooling rate in the temperature range of 700 to 600 ° C. and the temperature range of 450 to 350 ° C. is 5.0 ° C./ A post-annealing cooling step of cooling to 50° C.
  • the cold-rolled steel sheet is placed in the plating bath at a temperature of more than 425 ° C. and less than 600 ° C. It may be immersed to form a hot-dip galvanized layer on the surface.
  • an alloying treatment for alloying the hot-dip galvanized layer may be performed.
  • a cold-rolled steel sheet according to one embodiment of the present invention (cold-rolled steel sheet according to the present embodiment) and a method for manufacturing the same will be described.
  • the cold-rolled steel sheet according to the present embodiment has (a) a chemical composition described later, and (b) a metal structure of t/4 part, which is a position 1/4 of the plate thickness (t) in the plate thickness direction from the surface
  • the volume fraction of retained austenite 2.5% or more and 10.0% or less
  • ferrite and bainite 0.0% or more in total, 15 .0% or less
  • martensite 0.0% or more and 3.0% or less
  • the solid solution Si amount is , 0.30% or more and 1.50% or less in mass%
  • a ferrite crystal having a volume fraction of ferrite in the metal structure of 0.0% or more and 20.0% or less
  • the cold-rolled steel sheet according to the present embodiment is not only a cold-rolled steel sheet having no coating layer on the surface, but also a hot-dip galvanized steel sheet having a hot-dip galvanized layer on the surface, or a hot-dip galvanized steel sheet having an alloyed hot-dip galvanized surface.
  • these main conditions are common to hot-dip galvanized steel sheets and alloyed hot-dip galvanized steel sheets.
  • the surface serving as a reference indicating the position that defines the metal structure means the surface of the base steel sheet excluding the plating.
  • the C content should be 0.140% or more.
  • the C content is preferably over 0.140%, more preferably 0.160% or more, and still more preferably 0.180% or more.
  • the C content should be 0.400% or less.
  • the C content is preferably less than 0.400%, more preferably 0.350% or less, still more preferably 0.300% or less.
  • Si 0.35% or more and 1.50% or less Si is a useful element for increasing the strength of the steel sheet by solid-solution strengthening.
  • Si suppresses the formation of cementite, it is an element effective in promoting the concentration of C in austenite and forming retained austenite after annealing. If the Si content is less than 0.35%, it becomes difficult to obtain the above effects, and it becomes difficult to achieve the target of uniform elongation, and the hydrogen embrittlement resistance deteriorates. Therefore, the Si content should be 0.35% or more.
  • the Si content is preferably greater than 0.35%, more preferably 0.40% or more, and even more preferably 0.45% or more.
  • the Si content when the Si content exceeds 1.50%, the austenite transformation during heating in the annealing process is slowed down, and the transformation from ferrite to austenite may not occur sufficiently. In this case, an excessive amount of ferrite remains in the structure after annealing, making it impossible to achieve the target tensile strength and degrading bendability. Moreover, when the Si content exceeds 1.50%, the surface properties of the steel sheet deteriorate. Furthermore, the chemical conversion treatability and plating properties are significantly deteriorated. Therefore, the Si content should be 1.50% or less. The Si content is preferably less than 1.50%, more preferably 1.25% or less, even more preferably 1.00% or less, still more preferably 0.90% or less or 0.85% or less. In particular, by setting the Si content to 1.00% or less, the plating adhesion is improved.
  • Mn 1.30% or more and 3.50% or less Mn has the effect of improving the hardenability of steel and is an effective element for obtaining the desired metal structure described later. If the Mn content is less than 1.30%, it becomes difficult to obtain the desired metal structure. In this case, sufficient tensile strength cannot be obtained. Therefore, the Mn content should be 1.30% or more. The Mn content is preferably greater than 1.30%, more preferably 1.50% or more, and even more preferably 2.00% or more. On the other hand, if the Mn content exceeds 3.50%, the segregation of Mn not only weakens the effect of improving the hardenability, but also increases the material cost. Therefore, the Mn content should be 3.50% or less. The Mn content is preferably less than 3.50%, more preferably 3.25% or less, even more preferably 3.00% or less.
  • P 0% or more and 0.100% or less
  • the P content is an element contained in steel as an impurity, and segregates at grain boundaries to embrittle the steel.
  • the P content is preferably as small as possible, and may be 0%, but the P content should be 0.100% or less in consideration of the P removal time and cost.
  • the P content is preferably 0.020% or less, more preferably 0.015% or less. Considering the cost of refining, etc., the P content may be 0.005% or more.
  • S 0% or more and 0.010% or less
  • S is an element contained in steel as an impurity, and is an element that forms sulfide-based inclusions and deteriorates bendability.
  • the S content is preferably as small as possible, and although it may be 0%, the S content should be 0.010% or less in consideration of the S removal time and cost.
  • the S content is preferably 0.005% or less, more preferably 0.003% or less, still more preferably 0.001% or less.
  • the P content may be 0.0001% or more.
  • Al 0% or more and 0.100% or less
  • Al is an element that acts to deoxidize molten steel.
  • the Al content is preferably 0.005% or more, more preferably 0.010% or more, in order to ensure deoxidation.
  • Al, like Si has the effect of increasing the stability of austenite, and is an effective element for obtaining the above metal structure, so it may be contained.
  • the Al content may be, for example, 0.010% or more.
  • the Al content is too high, not only surface flaws due to alumina are likely to occur, but also the transformation point rises significantly and the volume fraction of ferrite increases.
  • the Al content is set to 0.100% or less.
  • the Al content is preferably 0.050% or less, more preferably 0.040% or less, still more preferably 0.030% or less. Since the cold-rolled steel sheet according to the present embodiment contains Si having a deoxidizing effect like Al, Al does not necessarily need to be contained, and the Al content may be 0%.
  • N 0% or more and 0.0100% or less
  • N is an element that can be contained in steel as an impurity, and is an element that forms coarse precipitates and deteriorates bendability. Therefore, the N content should be 0.0100% or less.
  • the N content is preferably 0.0060% or less, more preferably 0.0050% or less.
  • N content is preferably as small as possible and may be 0%. Considering the cost of refining, etc., the N content may be 0.0010% or more, or 0.0020% or more.
  • the cold-rolled steel sheet according to the present embodiment may contain the above elements, and the balance may be Fe and impurities, or one or two of the following optional elements that affect strength and bendability You may further contain the above. However, since the optional element does not necessarily have to be contained, the lower limit is 0%.
  • Ti, Nb, V, Cu is an element that has the effect of improving the strength of the steel sheet by precipitation hardening. Therefore, these elements may be contained.
  • the Ti content and the Nb content are each 0.001% or more, and the V content and the Cu content are each 0.01% or more. More preferable Ti content and Nb content are each 0.005% or more, and more preferable V content and Cu content are each 0.05% or more. It is not essential to obtain the above effects.
  • the Ti content is 0.050% or less
  • the Nb content is 0.050% or less
  • the V content is 0.50% or less
  • the Cu content is 1.00% or less.
  • the Ti content is preferably less than 0.050%, more preferably 0.030% or less, still more preferably 0.020% or less.
  • the Nb content is preferably less than 0.050%, more preferably 0.030% or less, still more preferably 0.020% or less.
  • the V content is preferably 0.30% or less.
  • the Cu content is preferably 0.50% or less.
  • Ni, Cr, Mo and B is an element that improves hardenability and contributes to high strength of the steel sheet, and is an effective element for obtaining the above metal structure. Therefore, these elements may be contained.
  • the Ni content, Cr content and Mo content are each 0.01% or more and/or the B content is 0.0001% or more. More preferably, the Ni content, Cr content and Mo content are each 0.05% or more, and the B content is 0.0010% or more. It is not essential to obtain the above effects.
  • the Ni content and Cr content are set to 1.00% or less
  • the Mo content is set to 0.50% or less
  • the B content is set to 0.0100% or less.
  • the Ni content and Cr content are preferably 0.50% or less
  • the Mo content is preferably 0.20% or less
  • the B content is preferably 0.0030% or less.
  • Mg and REM are Ni is an element that has the effect of improving the strength and bendability of the steel sheet by adjusting the shape of inclusions.
  • Bi is an element that improves the strength and bendability by refining the solidified structure. Therefore, these elements may be contained.
  • the Ca content and the Mg content are each 0.00010% or more, and the REM content and the Bi content are each 0.0005% or more.
  • the Ca content and Mg content are each 0.00080% or more, and the REM content and Bi content are each 0.0007% or more. It is not essential to obtain the above effects. Therefore, there is no particular need to limit the lower limits of Ca content, Mg content, Bi content and REM content, and their lower limits are 0%. On the other hand, even if these elements are excessively contained, the effects of the above actions become saturated and uneconomical. Therefore, when they are contained, the Ca content is 0.010% or less, the Mg content is 0.0100% or less, the REM content is 0.050% or less, and the Bi content is 0.050% or less.
  • the Ca content is 0.008% or less or 0.002% or less
  • the Mg content is 0.0020% or less
  • the REM content is 0.010% or less or 0.002% or less
  • the Bi content is 0 .010% or less.
  • REM means rare earth elements and is a general term for a total of 17 elements of Sc, Y and lanthanoids, and the REM content is the total content of these elements.
  • the volume fraction of retained austenite is set to 2.5% or more.
  • the volume fraction of retained austenite is preferably greater than 2.5%, more preferably 3.5% or more, and even more preferably 4.5% or more.
  • the volume fraction of retained austenite becomes excessive, the grain size of retained austenite increases. Such large-grained retained austenite becomes coarse and hard martensite after deformation. In this case, starting points of cracks are likely to occur, and the bendability deteriorates. Therefore, the volume fraction of retained austenite is set to 10.0% or less.
  • the volume fraction of retained austenite is preferably less than 10.0%, more preferably 8.0% or less, still more preferably 7.0% or less.
  • Tempered martensite like martensite (so-called fresh martensite), is an aggregate of lath-like crystal grains. On the other hand, unlike martensite, it is a hard structure containing fine iron-based carbides inside due to tempering. Tempered martensite is obtained by tempering martensite generated by cooling after annealing by heat treatment or the like. Tempered martensite is a less brittle and ductile structure than martensite.
  • the volume fraction of tempered martensite is set to 80.0% or more in order to improve strength, bendability, and hydrogen embrittlement resistance.
  • the volume fraction of tempered martensite is preferably 85.0% or more. In order to make the volume fraction of retained austenite 2.5% or more, the volume fraction of tempered martensite is 97.5% or less.
  • Ferrite and bainite 0.0% or more and 15.0% or less in total
  • Ferrite is a soft phase obtained by performing two-phase region annealing or performing slow cooling after annealing. Ferrite improves the ductility of a steel sheet when mixed with a hard phase such as martensite, but in order to achieve a high strength of 1310 MPa or more, it is necessary to limit the volume fraction of ferrite.
  • bainite is a phase obtained by holding at 350° C. or higher and 450° C. or lower for a certain period of time after annealing.
  • the total volume fraction of ferrite and bainite is set to 15.0% or less. Preferably, it is 10.0% or less. Since ferrite and bainite do not have to be included, the respective lower limits are 0.0%. In addition, since ferrite is softer than bainite, when the total volume fraction of ferrite and bainite is 15.0% or less, the volume fraction of ferrite must be 10.0% in order to achieve a high strength of 1310 MPa or more. % is preferred.
  • Martensite fresh martensite
  • Martensite fresh martensite
  • the volume fraction of martensite is preferably 2.0% or less, more preferably 1.0% or less. Since martensite may not be contained, the lower limit of the volume fraction of martensite is 0.0%.
  • the metal structure at a position (t/4 part) of the plate thickness 1/4 in the plate thickness direction from the surface may contain pearlite as the remaining structure.
  • pearlite is a structure having cementite in the structure, and consumes C (carbon) in steel, which contributes to improvement in strength.
  • the volume ratio of pearlite is preferably 5.0% or less.
  • the volume fraction of pearlite is more preferably 3.0% or less, and still more preferably 1.0% or less.
  • the volume fraction in the t/4 part structure of the cold-rolled steel sheet according to the present embodiment is measured as follows. That is, the volume fractions of ferrite, bainite, martensite, tempered martensite, and pearlite were measured by taking a test piece from an arbitrary position in the rolling direction of the steel plate and at the center position in the width direction, and taking a longitudinal section parallel to the rolling direction. The surface (that is, the cross section parallel to the rolling direction and parallel to the thickness direction) is polished, and the metal structure that appears by nital etching at a position of 1/4 of the plate thickness t in the plate thickness direction from the surface.
  • the area where the lower structure does not appear and the brightness is low is taken as ferrite.
  • pearlite is defined as a layered structure of ferrite and cementite.
  • the region where the substructure does not appear and the brightness is high is assumed to be martensite or retained austenite.
  • the region where the substructure is exposed is assumed to be tempered martensite or bainite.
  • Bainite and tempered martensite can also be distinguished by careful observation of intragranular carbides.
  • the tempered martensite is composed of martensite laths and cementite generated inside the laths.
  • cementite constituting tempered martensite has a plurality of variants.
  • bainite is classified into upper bainite and lower bainite. Since the upper bainite is composed of lath-shaped bainitic ferrite and cementite generated at the lath interface, it can be easily distinguished from tempered martensite.
  • the lower bainite is composed of lath-like bainitic ferrite and cementite generated inside the lath.
  • the bainitic ferrite and cementite have one type of crystal orientation relationship unlike the tempered martensite, and the cementite constituting the lower bainite has the same variant. Therefore, lower bainite and tempered martensite can be distinguished based on the cementite variant.
  • martensite and retained austenite cannot be clearly distinguished by SEM observation. Therefore, the volume fraction of martensite is calculated by subtracting the volume fraction of retained austenite calculated by the method described later from the volume fraction of the structure determined to be martensite or retained austenite.
  • the volume fraction of retained austenite is obtained by taking a test piece from an arbitrary position in the rolling direction of the steel plate and the center position in the width direction, chemically polishing the rolled surface from the steel plate surface to a position of 1/4 of the plate thickness, It is quantified from the (200), (210) integral intensity of ferrite and the (200), (220), and (311) integral intensity of austenite by MoK ⁇ rays.
  • the volume fraction of ferrite is 0.0% or more and 20.0% or less, and the density of ferrite crystal grains having a grain size of 15 ⁇ m or more is 0/mm 2 or more and 3000/ mm 2 or less>
  • the volume fraction of ferrite is more than 20.0%, or the density of ferrite crystal grains with a grain size of 15 ⁇ m or more is more than 3000/mm 2 , the bendability decreases.
  • the density of ferrite crystal grains having a ferrite volume fraction of 20.0% or less and a grain size of 15 ⁇ m or more is 3000/mm 2 or less in the surface layer portion located 25 ⁇ m in the plate thickness direction from the surface. If so, bendability is improved. It is considered that this is because the soft phase and coarse soft phase are less and the structure becomes homogeneous and the bendability is improved. Therefore, in the metallographic structure of the surface layer, the volume fraction of ferrite is set to 20.0% or less, and the density of ferrite crystal grains having a grain size of 15 ⁇ m or more is set to 3000/mm 2 or less.
  • the volume fraction of ferrite is preferably 18.0% or less, more preferably 15.0% or less, and even more preferably 10.0% or less. Also, the volume fraction of ferrite may be 1.0% or more.
  • the density of ferrite crystal grains having a grain size of 15 ⁇ m or more is preferably 2500/mm 2 or less, more preferably 2000/mm 2 or less. Also, the density of ferrite crystal grains having a grain size of 15 ⁇ m or more may be 100/mm 2 or more.
  • the volume ratio of ferrite in the surface layer is obtained by taking a test piece from an arbitrary position in the rolling direction of the steel plate and the center position in the width direction, polishing the longitudinal section parallel to the rolling direction, and measuring the position 25 ⁇ m from the surface. (Specifically, in a range of 10 to 40 ⁇ m from the surface ⁇ a region of 50 ⁇ m in the rolling direction), the metal structure revealed by nital etching is obtained by observing it using an SEM. Further, the density of ferrite crystal grains having a grain size of 15 ⁇ m or more is calculated by dividing the number (pieces) of ferrite grains having a grain size of 15 ⁇ m or more in the cross section observed by the above SEM by the observed area (mm 2 ). do.
  • ⁇ Amount of solid solution Si in surface layer 0.30% by mass or more and 1.50% by mass or less> If the amount of dissolved Si in the surface layer portion is less than 0.30% by mass, the strength of the soft ferrite decreases, and the difference in strength from the hard phase increases, thereby deteriorating bending characteristics. Therefore, the amount of solid solution Si in the surface layer is set to 0.30% by mass or more. It is preferably 0.35% by mass or more, more preferably 0.40% by mass or more. In addition, if the amount of dissolved Si in the surface layer portion exceeds 1.50% by mass, the tempering of martensite by reheating after the post-annealing cooling process is delayed, and a hard structure is formed, resulting in deterioration of bending characteristics. . Therefore, the amount of dissolved Si in the surface layer is set to 1.50% by mass or less. It is preferably 1.20% by mass or less, more preferably 1.00% by mass or less, and still more preferably 0.90% by mass or less.
  • the ratio of the amount of dissolved Si in the surface layer to the amount of dissolved Si in t/4 parts is preferably 0.85 to 1.10.
  • tempering of martensite by reheating after the post-annealing cooling process is performed uniformly in the plate thickness direction. Since it is cracked and a uniform structure is obtained, good bending properties and resistance to hydrogen embrittlement can be obtained.
  • the solid solution Si amount ratio is preferably 0.87 to 1.05, more preferably 0.90 to 1.05.
  • the amount of dissolved Si in the surface layer portion and t/4 portion is measured by the following method.
  • the solid-solution Si amount is obtained by simultaneously measuring Si and O at the target position by EPMA and quantitatively analyzing them.
  • a test piece is taken from an arbitrary position in the rolling direction of the steel plate and the center position in the width direction, and the surface of the longitudinal section parallel to the rolling direction (that is, the section parallel to the rolling direction and parallel to the thickness direction) Si and O are obtained by line analysis in the rolling direction by EPMA at a position of 25 ⁇ m from the surface and a position of 1/4 of the plate thickness t in the plate thickness direction from the surface.
  • the area where O is detected is excluded because it is Si oxide. This measurement is performed at 10 or more points, and the average value is defined as the amount of dissolved Si.
  • the cold-rolled steel sheet according to the present embodiment preferably has a tensile strength (TS) of 1310 MPa or more as a strength that contributes to weight reduction of automobile bodies. From the viewpoint of impact absorption, the tensile strength of the steel sheet is more preferably 1350 MPa or more, still more preferably 1400 MPa or more, and even more preferably 1470 MPa or more.
  • TS tensile strength
  • the uniform elongation (uEl) is preferably 5.0% or more.
  • Uniform elongation (uEl) is more preferably 5.5% or more in order to improve formability.
  • the uniform elongation may be 30.0% or less, or 20.0% or less.
  • the value obtained by dividing the critical bending radius R in 90° V bending by the plate thickness t is , 5.0 or less.
  • (R/t) is more preferably 4.0 or less, still more preferably 3.0 or less, in order to improve bendability.
  • (R/t) may be 0.5 or more, or 1.0 or more.
  • Tensile strength (TS) and uniform elongation (uEl) are determined by taking a JIS No. 5 tensile test piece from a steel plate in the direction perpendicular to the rolling direction and performing a tensile test according to JIS Z 2241:2011.
  • TS Tensile strength
  • uEl uniform elongation
  • the cold-rolled steel sheet according to this embodiment may have a hot-dip galvanized layer on its surface. Corrosion resistance is improved by providing a plating layer on the surface. Steel sheets for automobiles may not be thinned to a certain thickness or less even if they are strengthened due to concerns about perforation due to corrosion. One of the purposes of increasing the strength of steel sheets is to reduce the weight by making them thinner. Therefore, even if a high-strength steel sheet is developed, its application is limited if the corrosion resistance is low. As a method for solving these problems, it is conceivable to apply a coating such as hot dip galvanizing to the steel sheet, which has high corrosion resistance.
  • the cold-rolled steel sheet according to the present embodiment can be hot-dip galvanized because the steel sheet components are controlled as described above.
  • the hot dip galvanized layer may be an alloyed hot dip galvanized layer.
  • the hot-dip galvanized layer and the alloyed hot-dip galvanized layer may be a plating layer formed by a normal method.
  • the cold-rolled steel sheet according to the present embodiment can be manufactured by a manufacturing method including the following configurations (I) to (VII).
  • the rolling temperature FT at the final stage is 960 ° C. or less, the rolling reduction at the final stage is 10% or more, and the friction coefficient at the final stage
  • a post-annealing cooling step of cooling to 250° C. or less (VI) A tempering step of holding the cold-rolled steel sheet after the post-annealing cooling step at 200 ° C. or higher and 350 ° C. or lower for 1 second or longer, (VII) The temperature of the hot-rolled steel sheet after the hot-rolling process reaches 500° C. or less within 10 hours after the completion of the hot-rolling process.
  • the heated cast slab is hot rolled into a hot rolled steel sheet.
  • the slab may be subjected to hot rolling as it is without cooling to near room temperature.
  • the slab heating conditions in hot rolling are not limited, but heating to 1100° C. or higher is preferable. By setting the heating temperature to 1100° C. or higher, insufficient homogenization of the material can be avoided.
  • the rolling temperature (FT) in the final stage of hot rolling (final pass) is 960 ° C. or less, the rolling reduction in the final stage is 10% or more, and the final stage
  • the coefficient of friction ⁇ at the time of rolling should be 0.15 or more.
  • the hot rolling process especially the surface layer portion is subjected to shear deformation, and in the subsequent coiling process, carbides are finely precipitated on the surface layer portion.
  • the subsequent cold rolling and annealing under predetermined conditions, the distribution of the Si concentration in the surface layer is suppressed, and the amount of dissolved Si and the state of presence of ferrite in the surface layer become favorable.
  • the rolling temperature is high, the effect of shear deformation is reduced, the surface structure cannot be formed, and the bendability and hydrogen embrittlement resistance are not sufficiently improved. Therefore, the final stage rolling temperature (FT) is set to 960° C. or lower.
  • the final rolling temperature is preferably 940° C. or lower.
  • the lower limit of the rolling temperature of the final stage is not limited, but since the rolling load increases as the rolling temperature decreases, the rolling temperature of the final stage may be 870° C. or higher.
  • the coefficient of friction ⁇ of the rolls in contact with the steel sheet in the final stage of finishing during hot rolling is set to 0.15 or more. More preferably, the coefficient of friction ⁇ is 0.20 or more.
  • the upper limit of the coefficient of friction ⁇ is not limited, the rolling load increases as the coefficient of friction ⁇ increases, so the coefficient of friction ⁇ may be 0.40 or less.
  • the rolling reduction at the final stage is set to 10% or more.
  • the rolling reduction in the final stage is preferably 12% or more.
  • the rolling reduction at the final stage need not be limited from the viewpoint of structure control of the surface layer portion, but is preferably 15% or less from the viewpoint of manufacturability such as shape control.
  • the winding temperature is 560° C. or higher and 650° C. or lower. If the coiling temperature exceeds 650° C., the structure of the hot-rolled steel sheet becomes a coarse ferrite/pearlite structure, and a structure in which fine and uniform carbides are dispersed is not obtained. In addition, internal oxidation forms a Si-depleted layer in the surface layer, and the amount of dissolved Si in the surface layer portion decreases. As a result, bendability deteriorates.
  • the winding temperature is preferably 630°C or lower, more preferably 620°C or lower, and even more preferably 600°C or lower.
  • the coiling temperature is lower than 560° C.
  • transformation may start before coiling and the structure of the steel sheet may become uneven.
  • the density of ferrite crystal grains having a grain size of 15 ⁇ m or more does not become 3000/mm 2 or less in the surface layer portion.
  • the temperature of the steel sheet is made to reach 500° C. or less within 10 hours after the completion of the hot rolling step.
  • the formation of a surface Si-deficient layer due to internal oxidation in the hot-rolled steel sheet is suppressed (that is, a certain amount of solid solution Si is secured in the surface layer), As a result, good bendability is obtained after annealing.
  • the time from the completion of the hot rolling process until the temperature of the steel sheet reaches 500° C. or lower is controlled by adjusting the cooling in the coiling process and the cooling after coiling.
  • the temperature of the steel sheet after the completion of the hot rolling process is The time required for the temperature to reach 500° C. or below shall be within 10 hours. It is preferable that the time for the temperature of the steel sheet to reach 500° C.
  • the temperature of the steel sheet reaches 450° C. or lower within 10 hours from the completion of the hot rolling process, and the temperature of the steel sheet reaches 450° C. or lower within 8 hours from the completion of the hot rolling process. is more preferable.
  • the hot-rolled steel sheet is descaled by pickling or the like, and then cold-rolled under conditions of a rolling reduction (cumulative rolling reduction) of 60% or less to obtain a cold-rolled steel sheet.
  • a rolling reduction cumulative rolling reduction
  • the rolling reduction in cold rolling is set to 60% or less.
  • the rolling reduction is preferably 55% or less, more preferably 50% or less.
  • the lower limit of the rolling reduction is not limited, the rolling reduction is preferably 30% or more from the viewpoint of manufacturability.
  • the cold-rolled steel sheet is subjected to treatment such as degreasing according to a known method as necessary, and then heated to 820°C so that the average heating rate up to 750°C is 3.0°C/sec or more. It is heated to the above soaking temperature and held at the soaking temperature.
  • the average heating rate up to 750° C. is slow, Si will be distributed between ferrite and austenite, and the amount of dissolved Si in the surface layer will decrease, resulting in deterioration of bendability. Therefore, the average heating rate should be 3.0° C./second or more.
  • the average heating rate is preferably 50.0° C./sec or less.
  • the average heating rate is more preferably 30.0° C./second or less, even more preferably 10.0° C./second or less.
  • the soaking temperature (annealing temperature) in the annealing step is 820° C. or higher. If the soaking temperature is low, single-phase austenite annealing cannot be performed, and the volume fraction of ferrite increases, resulting in deterioration of bendability.
  • the soaking temperature is preferably 830° C. or higher or 835° C. or higher.
  • the soaking temperature is more preferably 880° C. or lower, more preferably 870° C. or lower.
  • the soaking time is not limited, but preferably 30 to 450 seconds. By setting the soaking time to 30 seconds or more, austenitization can be sufficiently advanced. Therefore, the soaking time is preferably 30 seconds or longer. On the other hand, from the viewpoint of productivity, the soaking time is preferably 450 seconds or less.
  • the average cooling rate in the ferrite transformation temperature range from 700 ° C. to 600 ° C. and the average cooling rate in the bainite transformation temperature range from 450 ° C. to 350 ° C. is cooled to a temperature of 50° C. or more and 250° C. or less (cooling stop temperature) so that the temperature becomes 5.0° C./sec or more. If the cooling rate in the above temperature range is slow, the volume ratio of ferrite and bainite at a position of 1/4 of the plate thickness from the surface increases, and the volume ratio of tempered martensite decreases.
  • the average cooling rate from 700° C. to 600° C. and from 450° C. to 350° C. should be 5.0° C./second or more.
  • the average cooling rate in each of the above temperature ranges is preferably 10.0° C./second or more, more preferably 20.0° C./second or more.
  • the upper limit of the average cooling rate in the above temperature range is not limited, but if the cooling rate increases, uniform cooling in the width direction becomes difficult and the shape of the steel sheet deteriorates. is preferred.
  • the cooling stop temperature is 50°C or higher and 250°C or lower.
  • the cooling stop temperature is set to 250° C. or lower.
  • the cooling stop temperature should be 50° C. or higher.
  • the cooling stop temperature is preferably 75°C or higher, more preferably 100°C or higher.
  • the temperature of the cold-rolled steel sheet is more than 425 ° C. and less than 600 ° C.
  • a hot-dip galvanizing layer may be formed on the surface by immersing it in a hot-dip galvanizing bath (hot-dip galvanizing step).
  • the coating layer is alloyed and melted by performing an alloying treatment following the hot-dip galvanizing process described above. It may be a galvanized layer (alloying step).
  • the cold-rolled steel sheet after the post-annealing cooling step is cooled to a temperature of 50°C or higher and 250°C or lower, whereby untransformed austenite transforms into martensite.
  • the cold-rolled steel sheet is tempered at a temperature of 200° C. or higher and 350° C. or lower for 1 second or more (tempering step) to obtain a structure mainly composed of tempered martensite at t/4 part.
  • the cold-rolled steel sheet after the hot-dip galvanizing process or the cold-rolled steel sheet after the hot-dip galvanizing process and the alloying process is subjected to a temperature of 50 ° C or higher and 250 ° C or lower.
  • tempering is performed at a temperature of 200° C. or more and 350° C. or less for 1 second or longer. If the tempering temperature exceeds 350°C, the strength of the steel sheet will decrease. Therefore, the tempering temperature should be 350° C. or lower.
  • the tempering temperature is preferably 325°C or lower, more preferably 300°C or lower.
  • the tempering temperature is preferably 275 ° C. or lower, and the tensile strength is 1470 MPa or higher. In this case, the tempering temperature is preferably 250° C. or less.
  • the tempering temperature should be 200° C. or higher. From the viewpoint of bendability and hydrogen embrittlement resistance, the tempering temperature is preferably 220°C or higher, more preferably 250°C or higher.
  • tempering time may be 1 second or longer, but is preferably 5 seconds or longer, more preferably 10 seconds or longer, for stable tempering. On the other hand, the tempering time is preferably 750 seconds or less, more preferably 500 seconds or less, in order to avoid a decrease in strength of the steel sheet.
  • tempering means cooling to the above tempering temperature in the post-annealing cooling step and then maintaining that temperature, or cooling to below the tempering temperature in the post-annealing cooling step and then raising to the above tempering temperature. It means to heat and keep at that temperature.
  • holding means not only maintaining at a constant temperature, but also a temperature change of 1.0 ° C./sec or less within the above tempering temperature range (that is, 200 ° C. or higher and 350 ° C. or lower). be.
  • a slab having the chemical composition shown in Table 1 was cast.
  • the cast slab was heated to 1100° C. or higher, hot rolled to 2.8 mm, coiled and then cooled to room temperature.
  • the hot rolling conditions and coiling temperature were as shown in Tables 2A and 2B.
  • the time from the completion of hot rolling to 500° C. or lower and the time to reach 450° C. or lower were as shown in Tables 2A and 2B.
  • scale was removed by pickling, cold rolling to 1.4 mm, and then annealing was performed for 120 seconds at soaking temperatures shown in Tables 2A and 2B.
  • the average heating rate up to 750° C. during annealing heating was as shown in Tables 2A and 2B.
  • tempering is performed by heating to the tempering temperature shown in Table 2A and Table 2B and holding at that temperature, and after cooling when the cooling stop temperature is the same as the tempering temperature. Tempering was performed by holding at that temperature. For some examples, hot dip galvanizing and alloying were performed during post-anneal cooling.
  • CR is a cold-rolled steel sheet that is not galvanized
  • GI is a hot-dip galvanized steel sheet
  • GA is an alloyed hot-dip galvanized steel sheet.
  • the hot-dip galvanized steel sheet was hot-dip galvanized at a temperature of more than 425°C and less than 600°C at about 35 to 65 g/m 2 .
  • the alloyed hot-dip galvanized steel sheet was hot-dip galvanized at a temperature above 425°C and below 600°C at a temperature of 35 to 65 g/m 2 and then further alloyed at a temperature above 425°C and below 600°C.
  • the metal structure of t / 4 parts, the amount of solid solution Si in the surface layer, the ferrite volume fraction in the surface layer, the density of ferrite crystal grains having a grain size of 15 ⁇ m or more in the surface layer, t / 4 The ratio of the amount of dissolved Si in the surface layer portion to the amount of dissolved Si in the portion was determined by the method described above. Tables 3 and 4 show the results.
  • TS tensile strength
  • uEl uniform elongation
  • R/t bendability
  • hydrogen embrittlement resistance was evaluated in the following manner. Table 5 shows the results.
  • Tensile strength (TS) and uniform elongation (uEl) were measured by taking a JIS No. 5 tensile test piece perpendicular to the rolling direction from the obtained cold-rolled steel sheet and performing a tensile test according to JIS Z 2241:2011. sought by doing. Table 5 shows the results.
  • a 90° V bending die is used to change the radius R at a pitch of 0.5 mm to obtain the minimum bending radius R that does not cause cracking. It was obtained by dividing by the plate thickness (1.4 mm).
  • a cold-rolled steel sheet with high strength and excellent uniform elongation, bendability, and resistance to hydrogen embrittlement, and a method for producing the same can be obtained. Since such a steel sheet has sufficient formability that can be applied to processing such as press forming, the present invention can greatly contribute to the development of industry by contributing to solving global environmental problems by reducing the weight of automobile bodies. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

この冷延鋼板は、所定の化学組成を有し、表面から板厚方向に板厚tの1/4の位置であるt/4部の金属組織が、体積率で、残留オーステナイト:2.5%以上、10.0%以下、焼戻しマルテンサイト:80.0%以上、97.5%以下、フェライトおよびベイナイト:合計で0.0%以上、15.0%以下、及びマルテンサイト:0.0%以上、3.0%以下、を含み、前記表面から前記板厚方向に25μmの位置である表層部において、固溶Si量が、質量%で、0.30%以上、1.50%以下であり、金属組織におけるフェライトの体積率が0.0%以上、20.0%以下であり、粒径が15μm以上であるフェライト結晶粒の密度が、0個/mm以上、3000個/mm以下である。

Description

冷延鋼板及びその製造方法
 本発明は、冷延鋼板及びその製造方法に関する。
 本願は、2021年03月10日に、日本に出願された特願2021-038716号に基づき優先権を主張し、その内容をここに援用する。
 産業技術分野が高度に分業化した今日、各技術分野において用いられる材料には、特殊かつ高度な性能が要求されている。特に、自動車用鋼板に関しては、地球環境への配慮から、車体を軽量化して燃費を向上させるために、板厚が薄く、成形性に優れる高張力冷延鋼板の需要が著しく高まっている。自動車用鋼板の中でも特に車体骨格部品に使用される冷延鋼板については、高い強度が要求されるようになり、さらに適用拡大に向けた高い成形性が要求されている。自動車用鋼板として必要とされる特性を例示すると、引張強さ(TS)が1310MPa以上、均一伸びが5.0%以上である。または、加工方法や、適用される部品によっては、90°V曲げでの板厚tで規格化した限界曲げ半径R(R/t)が5.0以下であること、さらに、耐水素脆化特性に優れることも求められる。
 均一伸びなどの延性を確保するためにはフェライトを含む組織とすることが有効であるものの、フェライトを含む組織で1310MPa以上の強度を得るためには、第二相を硬くする必要がある。しかしながら、硬質な第二相は曲げ性を劣化させる。
 一方で、高強度鋼板の曲げ性、耐水素脆化特性を向上させる技術として、焼戻しマルテンサイトを主相とする鋼板が提案されている(例えば、特許文献1及び特許文献2、参照)。特許文献1及び特許文献2では、ミクロ組織を焼戻しマルテンサイト単相の組織とすることで曲げ性に優れる上、水素のトラップサイトである炭化物が微細に分散した組織であるため、耐水素脆化特性に優れると開示されている。
 また、特許文献3には、高強度化と高い成形性とを両立させる技術として、残留オーステナイトによるTRIP効果を利用した鋼板が提案されている。
日本国特開2009-30091号公報 日本国特開2010-215958号公報 日本国特開2006-104532号公報
 しかしながら、特許文献1の鋼板は、引張強さが1310MPa未満と低い。そのため、より高強度化を目指す場合には、それに伴って劣化する加工性、曲げ性、耐水素脆化特性をより向上させる必要がある。
 また、特許文献2の鋼板は、1310MPa以上の高強度を達成できるものの、焼き入れ時の冷却において室温付近まで冷却されるので、残留オーステナイトの体積率が少なく、高い均一伸びが得られないという課題がある。
 また、特許文献3の鋼板ではフェライト相を有するために1310MPa以上の高強度が得難く、組織内の強度差があるために曲げ性に劣る。
 すなわち、従来提案されている鋼板は、近年の高度化した要求に対しては、高強度でかつ、均一伸び、曲げ性、及び耐水素脆化特性が、十分であるとは言えなかった。
 そのため、本発明は、高強度かつ、均一伸び、曲げ性、耐水素脆化特性に優れる冷延鋼板及びその製造方法を提供することを課題とする。
 本発明者らは、冷延鋼板において、強度、均一伸び、曲げ性、耐水素脆化特性に及ぼす、化学組成、金属組織、製造条件の影響について検討を行った。
 その結果、鋼板内部(例えば表面から板厚の1/4の位置)の金属組織を、残留オーステナイトを所定量以上含む焼戻しマルテンサイト主体の組織とした上で、表層部の固溶Si量及びフェライトの存在状態を制御することで、強度、均一伸び、曲げ性、耐水素脆化特性を同時に高めることができることを見出した。
 また、本発明者らが検討を行った結果、表層部の制御には、熱間圧延時のせん断力による粒径微細化及び炭化物の微細化、巻取温度の制御による内部酸化によるSi欠乏層の生成の抑制、並びに、冷間圧延及び焼鈍条件の制御による、焼鈍時のSiの分配の抑制が特に重要であることを見出した。
 本発明は、上記の知見に基づいてなされた。本発明の要旨は以下の通りである。
[1]本発明の一態様に係る冷延鋼板は、質量%で、C:0.140%以上、0.400%以下、Si:0.35%以上、1.50%以下、Mn:1.30%以上、3.50%以下、P:0%以上、0.100%以下、S:0%以上、0.010%以下、Al:0%以上、0.100%以下、N:0%以上、0.0100%以下、Ti:0%以上、0.050%以下、Nb:0%以上、0.050%以下、V:0%以上、0.50%以下、Cu:0%以上、1.00%以下、Ni:0%以上、1.00%以下、Cr:0%以上、1.00%以下、Mo:0%以上、0.50%以下、B:0%以上、0.0100%以下、Ca:0%以上、0.010%以下、Mg:0%以上、0.0100%以下、REM:0%以上、0.050%以下、およびBi:0%以上、0.050%以下、を含有し、残部がFeおよび不純物からなる化学組成を有し、表面から板厚方向に板厚tの1/4の位置であるt/4部の金属組織が、体積率で、残留オーステナイト:2.5%以上、10.0%以下、焼戻しマルテンサイト:80.0%以上、97.5%以下、フェライトおよびベイナイト:合計で0.0%以上、15.0%以下、及びマルテンサイト:0.0%以上、3.0%以下、を含み、前記表面から前記板厚方向に25μmの位置である表層部において、固溶Si量が、質量%で、0.30%以上、1.50%以下であり、金属組織におけるフェライトの体積率が0.0%以上、20.0%以下であり、粒径が15μm以上であるフェライト結晶粒の密度が、0個/mm以上、3000個/mm以下である。
[2]上記[1]に記載の冷延鋼板は、前記化学組成が、質量%で、Ti:0.001%以上、0.050%以下、Nb:0.001%以上、0.050%以下、V:0.01%以上、0.50%以下、Cu:0.01%以上、1.00%以下、Ni:0.01%以上、1.00%以下、Cr:0.01%以上、1.00%以下、Mo:0.01%以上、0.50%以下、B:0.0001%以上、0.0100%以下、Ca:0.0001%以上、0.010%以下、Mg:0.0001%以上、0.0100%以下、REM:0.0005%以上、0.050%以下、およびBi:0.0005%以上、0.050%以下、からなる群から選択される1種または2種以上を含有してもよい。
[3]上記[1]または[2]に記載の冷延鋼板は、前記t/4部の固溶Si量に対する、前記表層部の固溶Si量の比が、0.85~1.10であってもよい。
[4]上記[1]~[3]のいずれかに記載の冷延鋼板は、引張強さが1310MPa以上であり、均一伸びが5.0%以上であり、90°V曲げでの限界曲げ半径Rを板厚tで除した値であるR/tが5.0以下であってもよい。
[5]上記[4]に記載の冷延鋼板は、前記引張強さが1400MPa以上であってもよい。
[6]上記[1]~[5]のいずれかに記載の冷延鋼板前記表面に溶融亜鉛めっき層が形成されていてもよい。
[7]上記[6]に記載の冷延鋼板は、前記溶融亜鉛めっき層が、合金化溶融亜鉛めっき層であってもよい。
[8]本発明の別の態様に係る冷延鋼板の製造方法は、質量%で、C:0.140%以上、0.400%以下、Si:0.35%以上、1.50%以下、Mn:1.30%以上、3.50%以下、P:0%以上、0.100%以下、S:0%以上、0.010%以下、Al:0%以上、0.100%以下、N:0%以上、0.0100%以下、Ti:0%以上、0.050%以下、Nb:0%以上、0.050%以下、V:0%以上、0.50%以下、Cu:0%以上、1.00%以下、Ni:0%以上、1.00%以下、Cr:0%以上、1.00%以下、Mo:0%以上、0.50%以下、B:0%以上、0.0100%以下、Ca:0%以上、0.010%以下、Mg:0%以上、0.0100%以下、REM:0%以上、0.050%以下、およびBi:0%以上、0.050%以下、を含有し、残部がFeおよび不純物からなる化学組成を有する鋳造スラブを、必要に応じて加熱した後、最終段における圧延温度FTが960℃以下、前記最終段における圧下率が10%以上、かつ前記最終段における摩擦係数μが0.15以上となる条件で熱間圧延を行って熱延鋼板を得る熱間圧延工程と、前記熱延鋼板を、560℃以上、650℃以下の巻取温度まで冷却し、前記巻取温度で巻き取る巻取工程と、前記巻取工程後の前記熱延鋼板に、累積圧下率が60%以下となる条件で冷間圧延を行って冷延鋼板とする冷間圧延工程と、前記冷延鋼板を、750℃までの平均加熱速度が3.0℃/秒以上となるように、820℃以上の均熱温度まで加熱し、前記均熱温度で保持する焼鈍工程と、前記焼鈍工程後の前記冷延鋼板を、700~600℃の温度域及び450~350℃の温度域の平均冷却速度がいずれも5.0℃/秒以上となるように50℃以上、250℃以下まで冷却する焼鈍後冷却工程と、前記焼鈍後冷却工程後の前記冷延鋼板を、200℃以上、350℃以下に1秒以上保持する焼戻し工程と、を備え、前記熱間圧延工程後の前記熱延鋼板の温度を、前記熱間圧延工程の完了から10時間以内に、500℃以下まで到達させる。
[9]上記[8]に記載の冷延鋼板の製造方法は、前記鋳造スラブの前記化学組成が、質量%で、Ti:0.001%以上、0.050%以下、Nb:0.001%以上、0.050%以下、V:0.01%以上、0.50%以下、Cu:0.01%以上、1.00%以下、Ni:0.01%以上、1.00%以下、Cr:0.01%以上、1.00%以下、Mo:0.01%以上、0.50%以下、B:0.0001%以上、0.0100%以下、Ca:0.0001%以上、0.010%以下、Mg:0.0001%以上、0.0100%以下、REM:0.0005%以上、0.050%以下、およびBi:0.0005%以上、0.050%以下、からなる群から選択される1種または2種以上を含有してもよい。
[10]上記[8]または[9]に記載の冷延鋼板の製造方法では、前記焼鈍後冷却工程において、前記冷延鋼板の温度が、425℃超、600℃未満の状態でめっき浴に浸漬して、表面に溶融亜鉛めっき層を形成してもよい。
[11]上記[10]に記載の冷延鋼板の製造方法では、前記焼鈍後冷却工程において、前記溶融亜鉛めっき層を合金化する合金化処理を行ってもよい。
 本発明の上記態様によれば、高強度かつ、均一伸び、曲げ性、耐水素脆化特性に優れる冷延鋼板及びその製造方法を提供することができる。
 本発明の一実施形態に係る冷延鋼板(本実施形態に係る冷延鋼板)及びその製造方法について説明する。
 本実施形態に係る冷延鋼板は、(a)後述する化学組成を有し、(b)表面から板厚方向に板厚(t)の1/4の位置であるt/4部の金属組織が、体積率で、残留オーステナイト:2.5%以上、10.0%以下、焼戻しマルテンサイト:80.0%以上、97.5%以下、フェライトおよびベイナイト:合計で0.0%以上、15.0%以下、及び、マルテンサイト:0.0%以上、3.0%以下、を含み、(c)前記表面から前記板厚方向に25μmの位置である表層部において、固溶Si量が、質量%で、0.30%以上、1.50%以下であり、金属組織におけるフェライトの体積率が0.0%以上、20.0%以下であり、粒径が15μm以上であるフェライト結晶粒の密度が、0個/mm以上、3000個/mm以下である。
 本実施形態に係る冷延鋼板は、表面にめっき層を有しない冷延鋼板だけでなく、表面に溶融亜鉛めっき層を備える溶融亜鉛めっき鋼板、または表面に合金化溶融亜鉛めっきを備える合金化溶融亜鉛めっき鋼板を含み、これらの主要条件は溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板にも共通である。
 ただし、めっき鋼板の場合、金属組織を規定する位置を示す基準となる表面は、めっきを除く母材鋼板の表面を意味する。
 以下それぞれについて説明する。
<化学組成>
 本実施形態に係る冷延鋼板が有する化学組成について説明する。以下、化学組成における各元素の含有量を示す「%」は、断りがない限り、すべて質量%を意味する。
 C:0.140%以上、0.400%以下
 C含有量が0.140%未満では上記の金属組織を得ることが困難となり、所望の引張強さが達成できなくなる。また、曲げ性が低下する。したがって、C含有量は0.140%以上とする。C含有量は、好ましくは0.140%超であり、より好ましくは0.160%以上であり、さらに好ましくは0.180%以上である。
 一方、C含有量が0.400%超では溶接性が劣化するとともに、曲げ性が劣化する。また、耐水素脆化特性も劣化する。したがって、C含有量は0.400%以下とする。C含有量は、好ましくは0.400%未満、より好ましくは0.350%以下、さらに好ましくは、0.300%以下である。
 Si:0.35%以上、1.50%以下
 Siは固溶強化により鋼板の強度を増大させるのに有用な元素である。また、Siはセメンタイトの生成を抑制するので、オーステナイト中へのCの濃化を促進させて、焼鈍後に残留オーステナイトを生成させるのに有効な元素である。Si含有量が0.35%未満では上記作用による効果を得ることが困難となり、均一伸びの目標達成が困難となる上、耐水素脆化特性が劣化する。したがって、Si含有量は0.35%以上とする。Si含有量は、好ましくは0.35%超、より好ましくは0.40%以上、さらに好ましくは0.45%以上である。
 一方、Si含有量が1.50%超であると、焼鈍工程における加熱時のオーステナイト変態が遅くなり、十分にフェライトからオーステナイトへの変態が起こらない場合がある。この場合、焼鈍後に組織にフェライトが過剰に残存し、目標とする引張強さが達成できなくなる上、曲げ性が劣化する。また、Si含有量が1.50%超であると、鋼板の表面性状が劣化する。さらに、化成処理性およびめっき性が著しく劣化する。したがって、Si含有量は1.50%以下とする。Si含有量は、好ましくは1.50%未満、より好ましくは1.25%以下、さらに好ましくは1.00%以下、一層好ましくは0.90%以下または0.85%以下である。特に、Si含有量を1.00%以下とすることで、めっき密着性が向上する。
 Mn:1.30%以上、3.50%以下
 Mnは、鋼の焼入性を向上させる作用を有し、後述する所望の金属組織を得るのに有効な元素である。Mn含有量が1.30%未満では所望の金属組織を得ることが困難となる。この場合、十分な引張強さが得られなくなる。したがって、Mn含有量は1.30%以上とする。Mn含有量は、好ましくは1.30%超、より好ましくは1.50%以上、さらに好ましくは2.00%以上である。
 一方、Mn含有量が3.50%超では、Mnの偏析により焼入性向上の効果が薄れるばかりか、素材コストの上昇を招く。したがって、Mn含有量は3.50%以下とする。Mn含有量は、好ましくは3.50%未満、より好ましくは3.25%以下、さらに好ましくは3.00%以下である。
 P:0%以上、0.100%以下
 Pは、不純物として鋼中に含有される元素であり、粒界に偏析して鋼を脆化させる元素である。このため、P含有量は少ないほど好ましく、0%でもよいが、Pの除去時間、コストも考慮してP含有量は0.100%以下とする。P含有量は、好ましくは0.020%以下、より好ましくは0.015%以下である。精錬等のコストを考慮し、P含有量を0.005%以上としてもよい。
 S:0%以上、0.010%以下
 Sは、不純物として鋼中に含有される元素であり、硫化物系介在物を形成して曲げ性を劣化させる元素である。このため、S含有量は少ないほど好ましく、0%でもよいが、Sの除去時間、コストも考慮してS含有量は0.010%以下とする。S含有量は、好ましくは0.005%以下、より好ましくは0.003%以下、さらに好ましくは0.001%以下である。精錬等のコストを考慮し、P含有量を0.0001%以上としてもよい。
 Al:0%以上、0.100%以下
 Alは、溶鋼を脱酸する作用を有する元素である。脱酸目的でAlを含有させる場合は、確実に脱酸するためにAl含有量は0.005%以上が好ましく、0.010%以上がより好ましい。また、Alは、Siと同様にオーステナイトの安定性を高める作用を有し、上記の金属組織を得るのに有効な元素であるので、含有させても良い。含有させる場合、Al含有量は、例えば0.010%以上であってもよい。
 一方、Al含有量が高すぎると、アルミナに起因する表面疵が発生しやすくなるばかりか、変態点が大きく上昇し、フェライトの体積率が多くなる。この場合、上記の金属組織を得ることが困難となり、十分な引張強さが得られなくなる。したがって、Al含有量は0.100%以下とする。Al含有量は、好ましくは0.050%以下、より好ましくは0.040%以下、さらに好ましくは0.030%以下である。本実施形態に係る冷延鋼板においては、Alと同様に脱酸作用を有するSiを含有させるため、Alは必ずしも含有させる必要はなく、Al含有量は0%でもよい。
 N:0%以上、0.0100%以下
 Nは、不純物として鋼中に含有され得る元素であり、粗大な析出物を生成して曲げ性を劣化させる元素である。したがって、N含有量は0.0100%以下とする。N含有量は、好ましくは0.0060%以下であり、より好ましくは0.0050%以下である。N含有量は少ないほど好ましく0%でもよい。精錬等のコストを考慮し、N含有量を0.0010%以上、または0.0020%以上としてもよい。
 本実施形態に係る冷延鋼板は、上記の元素を含有し、残部がFe及び不純物であってもよいし、以下に列記する強度や曲げ性に影響する元素を任意元素として1種または2種以上をさらに含有してもよい。しかしながら、任意元素は必ずしも含有させる必要はないので、いずれもその下限は0%である。
 Ti:0%以上、0.050%以下
 Nb:0%以上、0.050%以下
 V:0%以上、0.50%以下
 Cu:0%以上、1.00%以下
 Ti、Nb、V、Cuは、析出硬化により鋼板の強度を向上させる作用を有する元素である。したがって、これらの元素を含有させてもよい。上記の効果を十分に得るためには、Ti含有量、Nb含有量は、それぞれ0.001%以上、V含有量、Cu含有量は、それぞれ0.01%以上とするのが好ましい。より好ましいTi含有量、Nb含有量はそれぞれ0.005%以上であり、より好ましいV含有量、Cu含有量は、それぞれ0.05%以上である。上記の効果を得ることは必須でない。このため、Ti含有量、Nb含有量、V含有量、Cu含有量の下限を特に制限する必要はなく、それらの下限は0%である。
 一方、これらの元素を過剰に含有させると、再結晶温度が上昇し、冷延鋼板の金属組織が不均一化し、曲げ性が損なわれる。したがって、含有させる場合、Ti含有量は0.050%以下、Nb含有量は0.050%以下、V含有量は0.50%以下、Cu含有量は1.00%以下とする。Ti含有量は、好ましくは0.050%未満、より好ましくは0.030%以下、さらに好ましくは0.020%以下である。Nb含有量は、好ましくは0.050%未満、より好ましくは0.030%以下、さらに好ましくは0.020%以下である。V含有量は、好ましくは0.30%以下である。Cu含有量は、好ましくは0.50%以下である。
 Ni:0%以上、1.00%以下
 Cr:0%以上、1.00%以下
 Mo:0%以上、0.50%以下
 B:0%以上、0.0100%以下
 Ni、Cr、MoおよびBは、焼入性を向上させ、鋼板の高強度化に寄与する元素であり、上記の金属組織を得るのに有効な元素である。したがって、これらの元素を含有させてもよい。上記の効果を十分に得るためには、Ni含有量、Cr含有量、Mo含有量を、それぞれ0.01%以上、及び/またはB含有量を0.0001%以上とすることが好ましい。より好ましくは、Ni含有量、Cr含有量、Mo含有量はそれぞれ0.05%以上であり、B含有量は0.0010%以上である。上記の効果を得ることは必須でない。このため、Ni含有量、Cr含有量、Mo含有量、B含有量の下限を特に制限する必要はなく、それらの下限は0%である。
 一方、これらの元素を過剰に含有させても上記作用による効果が飽和する上、不経済となる。したがって、含有させる場合、Ni含有量、Cr含有量は1.00%以下、Mo含有量は0.50%以下、B含有量は0.0100%以下とする。Ni含有量、Cr含有量は好ましくは0.50%以下であり、Mo含有量は好ましくは0.20%以下であり、B含有量は好ましくは0.0030%以下である。
 Ca:0%以上、0.010%以下
 Mg:0%以上、0.0100%以下
 REM:0%以上、0.050%以下
 Bi:0%以上、0.050%以下
 Ca、MgおよびREMは、介在物の形状を調整することにより、鋼板の強度や曲げ性を改善する作用を有する元素である。Biは、凝固組織を微細化することにより、強度や曲げ性を改善する作用を有する元素である。したがって、これらの元素を含有させてもよい。上記の効果を十分に得るためには、Ca含有量およびMg含有量は、それぞれ0.00010%以上、REM含有量およびBi含有量は、それぞれ0.0005%以上とするのが好ましい。より好ましくは、Ca含有量およびMg含有量は、それぞれ0.00080%以上、REM含有量およびBi含有量は、それぞれ0.0007%以上である。上記の効果を得ることは必須でない。このため、Ca含有量、Mg含有量、Bi含有量およびREM含有量の下限を特に制限する必要はなく、それらの下限は0%である。
 一方、これらの元素を過剰に含有させても上記作用による効果が飽和して不経済となる。したがって、含有させる場合、Ca含有量は0.010%以下、Mg含有量は0.0100%以下、REM含有量は0.050%以下、Bi含有量は0.050%以下とする。好ましくは、Ca含有量は0.008%以下または0.002%以下、Mg含有量は0.0020%以下、REM含有量は0.010%以下または0.002%以下、Bi含有量は0.010%以下である。REMとは希土類元素を意味し、Sc、Yおよびランタノイドの合計17元素の総称であり、REM含有量はこれらの元素の合計含有量である。
<表面から板厚方向に板厚tの1/4の位置(t/4部)の金属組織>
 本実施形態に係る冷延鋼板の金属組織の説明において、組織分率は体積率で表す。従って、特に断りがなければ「%」は「体積%」を表す。
[残留オーステナイト:2.5%以上、10.0%以下]
 残留オーステナイトは、TRIP効果により鋼板の延性を向上させ均一伸びの向上に寄与する。そのため、残留オーステナイトの体積率は、2.5%以上とする。残留オーステナイトの体積率は、好ましくは2.5%超であり、より好ましくは3.5%以上であり、さらに好ましくは4.5%以上である。
 一方、残留オーステナイトの体積率が過剰になると、残留オーステナイトの粒径が大きくなる。このような粒径の大きな残留オーステナイトは、変形後に粗大かつ硬質なマルテンサイトとなる。この場合、割れの起点が発生しやすくなり、曲げ性が劣化する。このため、残留オーステナイトの体積率は、10.0%以下とする。残留オーステナイトの体積率は、好ましくは10.0%未満であり、より好ましくは8.0%以下であり、さらに好ましくは7.0%以下である。
[焼戻しマルテンサイト:80.0%以上、97.5%以下]
 焼戻しマルテンサイトは、マルテンサイト(いわゆるフレッシュマルテンサイト)と同様に、ラス状の結晶粒の集合である。一方で、マルテンサイトとは異なり、焼戻しにより内部に微細な鉄系炭化物を含む硬質な組織である。焼戻しマルテンサイトは、焼鈍後の冷却等により生成したマルテンサイトを熱処理等により焼戻すことで得られる。
 焼戻しマルテンサイトは、マルテンサイトに比して、脆くなく、延性を有する組織である。本実施形態に係る冷延鋼板では、強度、曲げ性及び耐水素脆化特性を向上させるため、焼戻しマルテンサイトの体積率を80.0%以上とする。焼戻しマルテンサイトの体積率は、好ましくは85.0%以上である。残留オーステナイトの体積率を2.5%以上とするため、焼戻しマルテンサイトの体積率は97.5%以下である。
[フェライトおよびベイナイト:合計で0.0%以上、15.0%以下]
 フェライトは、二相域焼鈍を行う、もしくは焼鈍後に緩冷却を行うことで得られる軟質な相である。フェライトは、マルテンサイトのような硬質相と混在する場合には鋼板の延性を向上させるが、1310MPa以上の高強度を達成するためには、フェライトの体積率を制限する必要がある。
 また、ベイナイトは焼鈍後に350℃以上、450℃以下に一定時間保持することで得られる相である。ベイナイトは、マルテンサイトに対して軟質であるので延性を向上させる効果があるが、1310MPa以上の高強度を達成するためには、上記のフェライト同様に体積率を制限する必要がある。
 したがって、フェライトおよびベイナイトの体積率は、合計で15.0%以下とする。好ましくは10.0%以下である。フェライト及びベイナイトは含まれなくてもよいので、それぞれの下限は0.0%である。
 また、フェライトはベイナイトに対して軟質であるので、フェライト及びベイナイトの合計体積率が15.0%以下の場合に、1310MPa以上の高強度を達成するためには、フェライトの体積率は10.0%未満であることが好ましい。
[マルテンサイト:0.0%以上、3.0%以下]
 マルテンサイト(フレッシュマルテンサイト)は、焼戻し工程後の最終冷却時にオーステナイトから変態することで生成し得る、ラス状の結晶粒の集合である。マルテンサイトは硬質で脆く、変形時の割れ起点となり易いので、マルテンサイトの体積率が多いと、曲げ性が劣化する。このため、マルテンサイトの体積率は3.0%以下とする。マルテンサイトの体積率は、2.0%以下が好ましく、1.0%以下がさらに好ましい。マルテンサイトは含まれなくてもよいのでマルテンサイトの体積率の下限は0.0%である。
 表面から板厚方向に板厚tの1/4の位置(t/4部)における金属組織では、上記の他に、残部組織として、パーライトを含んでもよい。しかしながら、パーライトは、組織内にセメンタイトを有する組織であり、強度の向上に寄与する鋼中のC(炭素)を消費する。パーライト体積率が5.0%以下であると、鋼板の強度が高められる。そのため、パーライトの体積率は、5.0%以下とすることが好ましい。パーライトの体積率は、より好ましくは3.0%以下であり、さらに好ましくは1.0%以下である。
 本実施形態に係る冷延鋼板のt/4部の組織における体積率は、次のようにして測定する。
 すなわち、フェライト、ベイナイト、マルテンサイト、焼戻しマルテンサイト、パーライトの体積率は、鋼板の圧延方向に対し任意の位置、かつ幅方向に対し中央の位置から試験片を採取し、圧延方向に平行な縦断面(つまり圧延方向に平行かつ厚さ方向に平行な断面)を研磨し、表面から板厚方向に板厚tの1/4の位置において、ナイタールエッチングにより現出した金属組織を、SEMを用いて観察する。SEM観察では3000倍の倍率で、表面から板厚方向に板厚tの1/4の位置が中央にくるように、板厚方向に30μm、圧延方向に50μmの視野を5視野観察し、観察された画像から、各組織の面積率を測定し、その平均値を算出する。圧延方向に対して垂直方向(鋼板幅方向)には組織変化がなく、圧延方向に平行な縦断面の面積率は体積率と等しいので、組織観察で得られた面積率を、それぞれの体積率とする。
 各組織の面積率の測定に際し、下部組織が現出せず、かつ、輝度の低い領域をフェライトとする。また、フェライトおよびセメンタイトの層状組織である領域をパーライトとする。また、下部組織が現出せず、かつ、輝度の高い領域をマルテンサイトまたは残留オーステナイトとする。また、下部組織が現出した領域を、焼戻しマルテンサイトまたはベイナイトとする。
 ベイナイトと焼戻しマルテンサイトとは、さらに粒内の炭化物を注意深く観察することにより区別することができる。
 具体的には、焼戻しマルテンサイトは、マルテンサイトラスと、ラス内部に生成したセメンタイトとから構成される。このとき、マルテンサイトラス及びセメンタイトの結晶方位関係は2種類以上存在するので、焼戻しマルテンサイトを構成するセメンタイトは複数のバリアントを持つ。一方で、ベイナイトは、上部ベイナイトと下部ベイナイトとに分類される。上部ベイナイトは、ラス状のベイニティックフェライトと、ラス界面に生成したセメンタイトから構成されるため、焼戻しマルテンサイトとは容易に区別できる。下部ベイナイトは、ラス状のベイニティックフェライトと、ラス内部に生成したセメンタイトから構成される。このとき、ベイニティックフェライト及びセメンタイトの結晶方位関係は、焼戻しマルテンサイトとは異なり1種類であり、下部ベイナイトを構成するセメンタイトは同一のバリアントを持つ。従って、下部ベイナイトと焼戻しマルテンサイトとは、セメンタイトのバリアントに基づいて区別できる。
 一方、マルテンサイトと残留オーステナイトとは、SEM観察では明確には区別できない。そのため、マルテンサイトの体積率は、マルテンサイトまたは残留オーステナイトであると判断された組織の体積率から、後述する方法で算出した残留オーステナイトの体積率を減じることで算出する。
 残留オーステナイトの体積率は、鋼板の圧延方向に対し任意の位置かつ幅方向に対し中央の位置から試験片を採取し、鋼板表面から板厚の1/4の位置まで圧延面を化学研磨し、MoKα線によるフェライトの(200)、(210)面積分強度とオーステナイトの(200)、(220)、および(311)面積分強度から定量化する。
<表層部の金属組織:フェライトの体積率が0.0%以上、20.0%以下、かつ、粒径が15μm以上であるフェライト結晶粒の密度が、0個/mm以上、3000個/mm以下>
 表面から板厚方向に25μmの位置である表層部において、フェライトの体積率が20.0%超、または、粒径が15μm以上であるフェライト結晶粒の密度が3000個/mm超であると、曲げ性が低下する。一方、表面から板厚方向に25μmの位置である表層部において、フェライトの体積率が20.0%以下、かつ、粒径が15μm以上であるフェライト結晶粒の密度が、3000個/mm以下であれば、曲げ性が向上する。これは、軟質相が少なく、かつ粗大な軟質相も少ないことにより均質な組織になり、曲げ性が改善されるためと考えられる。
 そのため、表層部の金属組織において、フェライトの体積率を20.0%以下、かつ、粒径が15μm以上であるフェライト結晶粒の密度を、3000個/mm以下とする。
 表層部の金属組織において、フェライトの体積率は、好ましくは18.0%以下、より好ましくは15.0%以下、さらに好ましくは10.0%以下である。また、フェライトの体積率を1.0%以上としてもよい。表層部の金属組織において、粒径が15μm以上であるフェライト結晶粒の密度は、好ましくは2500個/mm以下であり、より好ましくは2000個/mm以下である。また、粒径が15μm以上であるフェライト結晶粒の密度を100個/mm以上としてもよい。
 表層部のフェライトの体積率は、鋼板の圧延方向に対し任意の位置、かつ幅方向に対し中央の位置から試験片を採取し、圧延方向に平行な縦断面を研磨し、表面から25μmの位置(具体的には表面から10~40μmの範囲×圧延方向に50μmの領域)において、ナイタールエッチングにより現出した金属組織を、SEMを用いて観察することで得られる。
 また、粒径が15μm以上であるフェライト結晶粒の密度は、上記SEMによって観察された断面の、粒径15μm以上のフェライト結晶粒の個数(個)を観察面積(mm)で割ることで算出する。
<表層部の固溶Si量:0.30質量%以上、1.50質量%以下>
 表層部において、固溶Si量が0.30質量%未満であると、軟質なフェライトの強度が低下し、硬質相との強度差が増加することで、曲げ特性が劣化する。そのため、表層部の固溶Si量を、0.30質量%以上とする。好ましくは0.35質量%以上、より好ましくは0.40質量%以上である。
 また、表層部において、固溶Si量が、1.50質量%超であると、焼鈍後冷却工程後の再加熱によるマルテンサイトの焼戻しが遅れ、硬質組織となることで、曲げ特性が劣化する。そのため、表層部の固溶Si量を、1.50質量%以下とする。好ましくは1.20質量%以下、より好ましくは1.00質量%以下、さらに好ましくは0.90質量%以下である。
 また、本実施形態に係る冷延鋼板では、t/4部の固溶Si量に対する、表層部の固溶Si量の比が、0.85~1.10であることが好ましい。
 t/4部の固溶Si量と表層部の固溶Si量との比が上記範囲にあることで、板厚方向で、焼鈍後冷却工程後の再加熱によるマルテンサイトの焼戻しが均一に行われ、均一な組織が得られるので、良好な曲げ特性、耐水素脆化特性が得られる。上記固溶Si量の比は、0.87~1.05が好ましく、0.90~1.05がより好ましい。
 表層部およびt/4部の固溶Si量は、以下の方法で測定する。
 固溶Si量は、EPMAにより対象の位置のSi、Oを同時に測定し定量分析することにより求める。鋼板の圧延方向に対し任意の位置、かつ幅方向に対し中央の位置から試験片を採取し、圧延方向に平行な縦断面(つまり圧延方向に平行かつ厚さ方向に平行な断面)の、表面から25μmの位置、および表面から板厚方向に板厚tの1/4の位置において、EPMAにより圧延方向にSi、Oを線分析して求める。ただし、SiとOが同時に検出される場合は、Si酸化物であるので、Oが検出された領域は除外する。この測定を10箇所以上において行い、その平均値を固溶Si量とする。
<機械的特性>
[引張強さ:1310MPa以上]
[均一伸び:5.0%以上]
[90°V曲げでの限界曲げ半径Rを板厚tで除した値(R/t):5.0以下]
 本実施形態に係る冷延鋼板では、自動車の車体軽量化に寄与する強度として、引張強さ(TS)を1310MPa以上とすることが好ましい。衝撃吸収性の観点からすると、鋼板の引張強さは、より好ましくは1350MPa以上であり、さらに好ましくは1400MPa以上であり、一層好ましくは1470MPa以上である。引張強さの上限を限定する必要はないが、引張強さが高くなると、成形性が低下する場合があるので、引張強さを1900MPa以下としてもよい。
 また、成形性の観点より、均一伸び(uEl)は5.0%以上とすることが好ましい。成形性をより良くするために、均一伸び(uEl)は、より好ましくは5.5%以上である。均一伸びの上限を限定する必要はないが、均一伸びは、30.0%以下としてもよく、20.0%以下としてもよい。
 また、曲げ性の観点では、90°V曲げでの限界曲げ半径Rを板厚tで除した値(すなわち、板厚tで除して規格化した限界曲げ半径R)(R/t)は、5.0以下とすることが好ましい。(R/t)は、曲げ性をより良くするために、より好ましくは4.0以下であり、さらに好ましくは3.0以下である。(R/t)は、0.5以上としてもよく、1.0以上としてもよい。
 引張強さ(TS)および均一伸び(uEl)は、鋼板から、圧延方向に垂直方向にJIS5号引張試験片を採取し、JIS Z 2241:2011に沿って引張試験を行うことにより求める。
 また、板厚によって規格化した限界曲げ半径(R/t)については、90°V曲げ金型を用いて、0.5mmピッチで半径Rを変化させて、割れが起こらない最小曲げ半径(限界曲げ半径)Rを求め、板厚tで割ることにより求める。
 本実施形態に係る冷延鋼板では、表面に溶融亜鉛めっき層を備えてもよい。表面にめっき層を備えることで、耐食性が向上する。自動車用鋼板は、腐食による穴あきの懸念があると、高強度化してもある一定板厚以下に薄手化できない場合がある。鋼板の高強度化の目的の一つは、薄手化による軽量化であることから、高強度鋼板を開発しても、耐食性が低いと適用部位が限られる。これら課題を解決する手法として、耐食性の高い溶融亜鉛めっき等のめっきを鋼板に施すことが考えられる。本実施形態に係る冷延鋼板は、鋼板成分を上述のように制御しているので、溶融亜鉛めっきが可能である。
 溶融亜鉛めっき層は、合金化溶融亜鉛めっき層であってもよい。
 溶融亜鉛めっき層、合金化溶融亜鉛めっき層は通常の方法で形成されためっき層でよい。
<製造条件>
 具体的には、本実施形態に係る冷延鋼板は、以下の(I)~(VII)の構成を含む製造方法によって製造可能である。
(I)上述した化学組成を有する鋳造スラブを、必要に応じて加熱した後、最終段における圧延温度FTが960℃以下、前記最終段における圧下率が10%以上、かつ前記最終段における摩擦係数μが0.15以上となる条件で熱間圧延を行って熱延鋼板を得る熱間圧延工程と、
(II)前記熱延鋼板を、560℃以上、650℃以下の巻取温度まで冷却し、前記巻取温度で巻き取る巻取工程と、
(III)前記巻取工程後の前記熱延鋼板に、累積圧下率が60%以下となる条件で冷間圧延を行って冷延鋼板とする冷間圧延工程と、
(IV)前記冷延鋼板を、750℃までの平均加熱速度が3.0℃/秒以上となるように、820℃以上の均熱温度まで加熱し、前記均熱温度で保持する焼鈍工程と、
(V)前記焼鈍工程後の前記冷延鋼板を、700~600℃の温度域及び450~350℃の温度域の平均冷却速度がいずれも5.0℃/秒以上となるように50℃以上、250℃以下まで冷却する焼鈍後冷却工程と、
(VI)前記焼鈍後冷却工程後の前記冷延鋼板を、200℃以上、350℃以下に1秒以上保持する焼戻し工程とを備え、
(VII)前記熱間圧延工程後の前記熱延鋼板の温度を、前記熱間圧延工程の完了から10時間以内に、500℃以下まで到達させる。
 以下、それぞれについて説明する。
[熱間圧延工程]
 熱間圧延工程では、加熱された鋳造スラブを熱間圧延して熱延鋼板とする。鋳造スラブの温度が高い場合には、一旦室温付近まで冷却せず、そのまま熱間圧延に供してもよい。熱間圧延におけるスラブ加熱条件は限定されないが、1100℃以上に加熱することが好ましい。加熱温度を1100℃以上とすることで、材料の均質化が不十分となることを避けられる。
 表層部の金属組織、固溶Si量を制御するため、熱間圧延時の仕上げ最終段(最終パス)における圧延温度(FT)は960℃以下、最終段における圧下率は10%以上、最終段の圧延時の摩擦係数μは0.15以上とする。熱間圧延工程で、特に表層部をせん断変形させることによって、その後の巻取工程において、表層部に炭化物が微細に析出するようになる。この場合、その後の冷間圧延、焼鈍を所定の条件で行うことで、表層のSi濃度の分布が抑制され、表層部の固溶Si量及びフェライトの存在状態が好ましいものとなる。
 圧延温度が高いとせん断変形の効果が減少し、表層組織が作りこめず、曲げ性、耐水素脆化特性が十分に向上しない。よって最終段の圧延温度(FT)は960℃以下とする。最終段の圧延温度は940℃以下が好ましい。最終段の圧延温度の下限は限定されないが、圧延温度低下により圧延荷重が増加するため、最終段の圧延温度を870℃以上としてもよい。
 また、最終段の圧下率が低い、また最終段圧延時の摩擦係数が低いと表層部がせん断変形を十分に受けず、表層部の組織が作りこめないので、曲げ性及び耐水素脆化特性が十分に向上しない。よって熱間圧延時の仕上げ最終段での鋼板と接するロールの摩擦係数μを0.15以上とする。より好ましくは、摩擦係数μは0.20以上である。摩擦係数μの上限は限定されないが、摩擦係数μの増加により圧延荷重が増加するため、摩擦係数μを0.40以下としてもよい。
 また、最終段の圧下率は10%以上とする。最終段の圧下率は、12%以上が好ましい。また、最終段の圧下率は、表層部の組織制御の観点では限定する必要はないが、形状制御等の製造性の観点から15%以下とすることが好ましい。
[巻取工程]
 巻き取り温度まで上述のように冷却した後は、巻き取りを行う。巻き取り温度は、560℃以上、650℃以下とする。巻き取り温度が650℃を超えると、熱延鋼板の組織が粗大なフェライト・パーライト組織となり、炭化物が微細均一に分散した組織とならない。また、内部酸化により表層にSi欠乏層が形成され、表層部の固溶Si量が低下する。その結果、曲げ性が劣化する。巻き取り温度は630℃以下が好ましく、620℃以下がより好ましく、600℃以下がさらに好ましい。
 一方、巻き取り温度が560℃未満であると、巻き取り前に変態が開始して、鋼板の組織が不均一になる可能性がある。この場合、表層部において、粒径が15μm以上であるフェライト結晶粒の密度が、3000個/mm以下にならない。巻き取り温度を560℃以上として、変態開始の前に巻き取ることで、鋼板全体の組織を均一化することができる。また、熱延鋼板の強度を低下させ、冷間圧延時の負荷を小さくすることもできる。そのため、巻き取り温度は560℃以上である。熱延鋼板の強度が高い場合は、冷間圧延前にBAF等の軟化熱処理を施してもよい。
 本実施形態に係る冷延鋼板の製造方法では、前記熱間圧延工程の完了から10時間以内に、鋼板の温度を500℃以下まで到達させる。10時間以内に、鋼板温度を500℃以下にすることで、上記の熱延鋼板における内部酸化による表層Si欠乏層の形成が抑制され(つまり表層部で一定の固溶Si量が確保され)、結果として焼鈍後に良好な曲げ性が得られる。
 前記熱間圧延工程の完了から鋼板の温度が、500℃以下になるまでの時間は、巻取工程の冷却や、巻き取った後の冷却を調整することで制御する。500℃付近では変態による発熱が生じるので、560℃以上で巻き取った場合、放冷では10時間以内に500℃以下に到達することは容易ではなく、強制冷却(例えば水冷)を行うことが好ましい。巻き取り後の熱延鋼板(コイル状)に対して、冷却を行うと、強度が上昇して後工程である冷間圧延の負荷が上昇したり、コストが上昇したりするので、一般には、巻き取り後の熱延鋼板に強制冷却を行うことは行われないが、本実施形態に係る冷延鋼板を得るためには、上述したように、熱間圧延工程の完了から鋼板の温度が、500℃以下になるまでの時間を10時間以内とする。
 熱間圧延工程の完了から鋼板の温度を500℃以下まで到達させる時間は、5時間以下であることが好ましい。
 また、熱間圧延工程の完了から10時間以内に、鋼板の温度を450℃以下まで到達させることが好ましく、熱間圧延工程の完了から8時間以内に、鋼板の温度を450℃以下まで到達させることがより好ましい。
[冷間圧延工程]
 冷間圧延工程では、熱間圧延された熱延鋼板を、酸洗等により脱スケールした後に、圧下率(累積圧下率)60%以下の条件で冷間圧延して冷延鋼板とする。冷間圧延における圧下率が高いと焼鈍時の再結晶が促進され、粗大なフェライトが生成して、表層部の組織が均一に作りこめなくなり、曲げ性、耐水素脆化特性が劣化する。よって、冷間圧延における圧下率は60%以下とする。圧下率は55%以下が好ましく、50%以下がより好ましい。
 圧下率の下限は限定されないが、製造性の観点で、圧下率は30%以上が好ましい。
[焼鈍工程]
 冷間圧延工程後の冷延鋼板は、必要に応じて公知の方法に従って脱脂等の処理が施された後、750℃までの平均加熱速度が3.0℃/秒以上となるように820℃以上の均熱温度まで加熱され、均熱温度で保持される。
 焼鈍工程において、750℃までの平均加熱速度が遅いとフェライトとオーステナイトとの間でSiが分配され、表層の固溶Si量が低下するために、曲げ性が劣化する。よって平均加熱速度は3.0℃/秒以上とする。
 一方で上記温度範囲の平均加熱速度を50.0℃/秒以下とすることで、オーステナイトが細粒化することによるフェライト変態の過度な促進を抑制でき、強度、曲げ性の向上に有利である。よって、平均加熱速度は50.0℃/秒以下とすることが好ましい。平均加熱速度は30.0℃/秒以下がより好ましく、10.0℃/秒以下がさらに好ましい。
 焼鈍工程における均熱温度(焼鈍温度)は820℃以上とする。均熱温度が低いとオーステナイト単相焼鈍とならず、フェライトの体積率が多くなり曲げ性が劣化する。均熱温度は、830℃以上または835℃以上が好ましい。均熱温度が高い方が曲げ性を確保し易いが、均熱温度が高過ぎると製造コストが高くなるので、均熱温度は900℃以下が好ましい。均熱温度は880℃以下がより好ましく、870℃以下がさらに好ましい。
 均熱時間は、限定されないが、30~450秒であることが好ましい。均熱時間を30秒以上とすることで、オーステナイト化を十分に進行させることができる。そのため、均熱時間は30秒以上が好ましい。一方、生産性の観点から、均熱時間は450秒以下が好ましい。
[焼鈍後冷却工程]
 焼鈍後の冷延鋼板を、上記のような金属組織を得るため、700℃から600℃のフェライト変態温度域の平均冷却速度および450℃から350℃のベイナイト変態温度域の平均冷却速度が、いずれも5.0℃/秒以上となるように、50℃以上250℃以下の温度(冷却停止温度)まで冷却する。上記温度域における冷却速度が遅いと、表面から板厚の1/4の位置でのフェライト、ベイナイトの体積率が高くなり、焼戻しマルテンサイトの体積率が低下する。その結果、引張強さが低下するとともに、曲げ性、耐水素脆化特性が劣化する。よって、700℃から600℃および450℃から350℃の平均冷却速度はいずれも5.0℃/秒以上とする。上記温度範囲の平均冷却速度はそれぞれ、10.0℃/秒以上が好ましく、20.0℃/秒以上がさらに好ましい。上記温度範囲の平均冷却速度の上限は限定されないが、冷却速度が速くなると幅方向に均一な冷却が難しく、鋼板の形状が悪くなる原因になるので、平均冷却速度は、それぞれ100℃/秒以下が好ましい。
 冷却停止温度は50℃以上、250℃以下とする。冷却停止温度が高いと続く焼き戻し工程後の冷却で(焼き戻されていない)マルテンサイトが増加し、曲げ性、耐水素脆化特性が劣化する。よって、冷却停止温度は250℃以下とする。一方で、冷却停止温度が低いと残留オーステナイト分率が低下し、均一伸びが低下する。よって、冷却停止温度は、50℃以上とする。冷却停止温度は、75℃以上が好ましく、100℃以上がより好ましい。
 表面に溶融亜鉛めっき層を備える冷延鋼板(溶融亜鉛めっき鋼板)を製造する場合には、焼鈍後冷却工程において、さらに冷延鋼板の温度が425℃超、600℃未満の状態で、同等の温度の溶融めっき浴に浸漬させて表面に溶融亜鉛めっき層を形成してもよい(溶融亜鉛めっき工程)。また、表面に合金化溶融亜鉛めっきを備える冷延鋼板(合金化溶融亜鉛めっき鋼板)を製造する場合には、上述した溶融亜鉛めっき工程に引き続き、合金化処理を施してめっき層を合金化溶融亜鉛めっき層としてもよい(合金化工程)。
[焼戻し工程]
 焼鈍後冷却工程後の冷延鋼板は、50℃以上250℃以下の温度まで冷却されることで未変態のオーステナイトがマルテンサイトに変態する。その後、冷延鋼板は、200℃以上350℃以下の温度で1秒以上焼き戻されることにより(焼戻し工程)、t/4部にて焼戻しマルテンサイト主体の組織が得られる。
 溶融亜鉛めっき工程及びまたは合金化工程が行われた場合には、溶融亜鉛めっき工程後の冷延鋼板または、溶融亜鉛めっき工程及び合金化工程後の冷延鋼板を50℃以上250℃以下の温度まで冷却した後、200℃以上350℃以下の温度で1秒以上焼戻しを行う。焼戻し温度が350℃超であると鋼板強度が低下する。よって焼戻し温度は350℃以下とする。焼戻し温度は、325℃以下が好ましく、300℃以下がより好ましい。引張強さをさらに高めたい場合は、焼戻し温度を低くすることが好ましく、例えば引張強さを1400MPa以上とする場合には、焼戻し温度は275℃以下とすることが好ましく、引張強さを1470MPa以上とする場合には、焼戻し温度は250℃以下とすることが好ましい。
 一方で焼戻し温度が200℃未満であると焼戻しが不十分となり、曲げ性、耐水素脆化特性が劣化する。よって、焼戻し温度は200℃以上とする。曲げ性、耐水素脆化特性の観点では、焼戻し温度は、220℃以上が好ましく、250℃以上がより好ましい。
 焼戻し時間は1秒以上あればよいが、安定した焼戻し処理を行うために5秒以上が好ましく、10秒以上がさらに好ましい。一方で、鋼板の強度の低下を避けるため、焼戻し時間は750秒以下が好ましく、500秒以下がさらに好ましい。
 本実施形態において、焼戻しとは、上記焼鈍後冷却工程において上記の焼戻し温度まで冷却した後その温度で保持するか、上記焼鈍後冷却工程において焼戻し温度未満にまで冷却した後に上記の焼戻し温度まで昇温し、その温度で保持することを意味する。また、保持とは、一定温度で維持することだけでなく、上記の焼戻し温度域(つまり200℃以上350℃以下)であれば、1.0℃/秒以下の温度変化があっても許容される。
 本発明を、実施例を参照しながらより具体的に説明する。
 表1に示される化学組成を有するスラブを鋳造した。鋳造後のスラブを1100℃以上に加熱し、2.8mmまで熱間圧延し、巻き取り後室温まで冷却した。熱間圧延条件、巻き取り温度は表2A、表2Bに記載する通りであった。また、熱間圧延完了から500℃以下に達するまでの時間および450℃以下に達するまでの時間は、表2A、表2Bに記載する通りであった。
 その後、酸洗によりスケールを除去し、1.4mmまで冷間圧延した後、表2A、表2Bに示す均熱温度で120秒焼鈍を行った。焼鈍加熱時の、750℃までの平均加熱速度は表2A、表2Bの通りとした。
 焼鈍後、700℃から600℃の温度域および450℃から350℃の温度域の平均冷却速度がいずれも20℃/秒以上となるように、50℃以上250℃以下の冷却停止温度まで冷却した後に、表2A、表2Bに示す焼戻し温度で、1~500秒焼戻す熱処理を施した。冷却停止温度が焼戻し温度よりも低い場合には表2A、表2Bに示す焼戻し温度まで加熱してその温度で保持することで焼戻しを行い、冷却停止温度が焼戻し温度と同じ場合には冷却した後その温度で保持することで焼戻しを行った。
 一部の例については、焼鈍後冷却中に溶融亜鉛めっき及び合金化を行った。表5に示す「CR」は亜鉛めっきを行っていない冷延鋼板、「GI」が溶融亜鉛めっき鋼板、「GA」が合金化溶融亜鉛めっき鋼板である。溶融亜鉛めっき鋼板については、425℃超600℃未満の温度で35~65g/m程度の溶融亜鉛めっきを施した。合金化溶融亜鉛めっき鋼板については、425℃超600℃未満の温度で35~65g/m程度の溶融亜鉛めっきを施した後に、さらに425℃超600℃未満の温度で合金化させた。
 得られた冷延鋼板から、t/4部の金属組織、表層部の固溶Si量、表層部のフェライト体積率、表層部の粒径が15μm以上であるフェライト結晶粒の密度、t/4部の固溶Si量に対する表層部の固溶Si量の比を、上述した方法で求めた。
 結果を表3、表4に示す。
 また、以下に示す要領で、引張強さ(TS)、および均一伸び(uEl)、曲げ性(R/t)、耐水素脆化特性を評価した。結果を表5に示す。
 引張強さ(TS)、および均一伸び(uEl)は、得られた冷延鋼板から、圧延方向に対し垂直方向にJIS5号引張試験片を採取し、JIS Z 2241:2011に沿って引張試験を行うことにより求めた。
 結果を表5に示す。
 曲げ性の指標である限界曲げ半径(R/t)については、90°V曲げ金型を用いて、0.5mmピッチで半径Rを変化させて、割れが起こらない最小曲げ半径Rを求め、板厚(1.4mm)で割ることにより求めた。
 耐水素脆化特性評価として、下記の試験を行った。
 すなわち、端面を機械研削した試験片を押曲げ法でU字に曲げて、半径5RのU曲げ試験片を作製し、非曲げ部が平行になるようにボルトで締め付けて弾性変形させた後、pH1の塩酸に浸漬して、鋼板中に水素を侵入させる遅れ破壊促進試験を行った。浸漬時間が100時間となっても割れが生じないものを良好(OK)な耐遅れ破壊特性を有する鋼板と評価し、割れが生じたものを不良(NG)と評価した。めっきの影響を除去するために、めっき材については試験前にインヒビターを含有する塩酸にてめっき層を除去した後に、耐水素脆化特性を評価した。
 表1~5から分かるように、本発明鋼はいずれもTSが1310MPa以上、uElが5.0%以上、限界曲げ半径(R/t)が5.0以下であり、耐水素脆化特性も良好であった。
 これに対し、化学組成、製造方法のいずれかが本発明の範囲外であり、金属組織、集合組織が本発明範囲外となった試験番号(比較例)では、引張強さ、均一伸び、限界曲げ半径、耐水素脆化特性のいずれかが目標を達成しなかった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 本発明によれば、高強度かつ、均一伸び、曲げ性、耐水素脆化特性に優れる冷延鋼板及びその製造方法が得られる。このような鋼板は、プレス成形などの加工に適用できる十分な成形性を有するため、本発明は自動車の車体軽量化を通じて地球環境問題の解決に寄与できるなど産業の発展に寄与するところ大である。

Claims (11)

  1.  質量%で、
     C:0.140%以上、0.400%以下、
     Si:0.35%以上、1.50%以下、
     Mn:1.30%以上、3.50%以下、
     P:0%以上、0.100%以下、
     S:0%以上、0.010%以下、
     Al:0%以上、0.100%以下、
     N:0%以上、0.0100%以下、
     Ti:0%以上、0.050%以下、
     Nb:0%以上、0.050%以下、
     V:0%以上、0.50%以下、
     Cu:0%以上、1.00%以下、
     Ni:0%以上、1.00%以下、
     Cr:0%以上、1.00%以下、
     Mo:0%以上、0.50%以下、
     B:0%以上、0.0100%以下、
     Ca:0%以上、0.010%以下、
     Mg:0%以上、0.0100%以下、
     REM:0%以上、0.050%以下、および
     Bi:0%以上、0.050%以下、
    を含有し、残部がFeおよび不純物からなる化学組成を有し、
     表面から板厚方向に板厚tの1/4の位置であるt/4部の金属組織が、体積率で、
      残留オーステナイト:2.5%以上、10.0%以下、
      焼戻しマルテンサイト:80.0%以上、97.5%以下、
      フェライトおよびベイナイト:合計で0.0%以上、15.0%以下、及び
      マルテンサイト:0.0%以上、3.0%以下、
      を含み、
     前記表面から前記板厚方向に25μmの位置である表層部において、
      固溶Si量が、質量%で、0.30%以上、1.50%以下であり、
      金属組織におけるフェライトの体積率が0.0%以上、20.0%以下であり、
      粒径が15μm以上であるフェライト結晶粒の密度が、0個/mm以上、3000個/mm以下である、
    冷延鋼板。
  2.  前記化学組成が、質量%で、
      Ti:0.001%以上、0.050%以下、
      Nb:0.001%以上、0.050%以下、
      V:0.01%以上、0.50%以下、
      Cu:0.01%以上、1.00%以下、
      Ni:0.01%以上、1.00%以下、
      Cr:0.01%以上、1.00%以下、
      Mo:0.01%以上、0.50%以下、
      B:0.0001%以上、0.0100%以下、
      Ca:0.0001%以上、0.010%以下、
      Mg:0.0001%以上、0.0100%以下、
      REM:0.0005%以上、0.050%以下、および
      Bi:0.0005%以上、0.050%以下、
    からなる群から選択される1種または2種以上を含有する、
    請求項1に記載の冷延鋼板。
  3.  前記t/4部の固溶Si量に対する、前記表層部の固溶Si量の比が、0.85~1.10である、
    請求項1または2に記載の冷延鋼板。
  4.  引張強さが1310MPa以上であり、
     均一伸びが5.0%以上であり、
     90°V曲げでの限界曲げ半径Rを板厚tで除した値であるR/tが5.0以下である、
    請求項1~3のいずれか一項に記載の冷延鋼板。
  5.  前記引張強さが1400MPa以上である、
    請求項4に記載の冷延鋼板。
  6.  前記表面に溶融亜鉛めっき層が形成されている、
    請求項1~5のいずれか一項に記載の冷延鋼板。
  7.  前記溶融亜鉛めっき層が、合金化溶融亜鉛めっき層である、
    請求項6に記載の冷延鋼板。
  8.  質量%で、C:0.140%以上、0.400%以下、Si:0.35%以上、1.50%以下、Mn:1.30%以上、3.50%以下、P:0%以上、0.100%以下、S:0%以上、0.010%以下、Al:0%以上、0.100%以下、N:0%以上、0.0100%以下、Ti:0%以上、0.050%以下、Nb:0%以上、0.050%以下、V:0%以上、0.50%以下、Cu:0%以上、1.00%以下、Ni:0%以上、1.00%以下、Cr:0%以上、1.00%以下、Mo:0%以上、0.50%以下、B:0%以上、0.0100%以下、Ca:0%以上、0.010%以下、Mg:0%以上、0.0100%以下、REM:0%以上、0.050%以下、およびBi:0%以上、0.050%以下、を含有し、残部がFeおよび不純物からなる化学組成を有する鋳造スラブを、必要に応じて加熱した後、最終段における圧延温度FTが960℃以下、前記最終段における圧下率が10%以上、かつ前記最終段における摩擦係数μが0.15以上となる条件で熱間圧延を行って熱延鋼板を得る熱間圧延工程と、
     前記熱延鋼板を、560℃以上、650℃以下の巻取温度まで冷却し、前記巻取温度で巻き取る巻取工程と、
     前記巻取工程後の前記熱延鋼板に、累積圧下率が60%以下となる条件で冷間圧延を行って冷延鋼板とする冷間圧延工程と、
     前記冷延鋼板を、750℃までの平均加熱速度が3.0℃/秒以上となるように、820℃以上の均熱温度まで加熱し、前記均熱温度で保持する焼鈍工程と、
     前記焼鈍工程後の前記冷延鋼板を、700~600℃の温度域及び450~350℃の温度域の平均冷却速度がいずれも5.0℃/秒以上となるように50℃以上、250℃以下まで冷却する焼鈍後冷却工程と、
     前記焼鈍後冷却工程後の前記冷延鋼板を、200℃以上、350℃以下に1秒以上保持する焼戻し工程と、
    を備え、
     前記熱間圧延工程後の前記熱延鋼板の温度を、前記熱間圧延工程の完了から10時間以内に、500℃以下まで到達させる、
    冷延鋼板の製造方法。
  9.  前記鋳造スラブの前記化学組成が、質量%で、
      Ti:0.001%以上、0.050%以下、
      Nb:0.001%以上、0.050%以下、
      V:0.01%以上、0.50%以下、
      Cu:0.01%以上、1.00%以下、
      Ni:0.01%以上、1.00%以下、
      Cr:0.01%以上、1.00%以下、
      Mo:0.01%以上、0.50%以下、
      B:0.0001%以上、0.0100%以下、
      Ca:0.0001%以上、0.010%以下、
      Mg:0.0001%以上、0.0100%以下、
      REM:0.0005%以上、0.050%以下、および
      Bi:0.0005%以上、0.050%以下、
    からなる群から選択される1種または2種以上を含有する、
    請求項8に記載の冷延鋼板の製造方法。
  10.  前記焼鈍後冷却工程において、前記冷延鋼板の温度が、425℃超、600℃未満の状態でめっき浴に浸漬して、表面に溶融亜鉛めっき層を形成する、
    請求項8または9に記載の冷延鋼板の製造方法。
  11.  前記焼鈍後冷却工程において、前記溶融亜鉛めっき層を合金化する合金化処理を行う、請求項10に記載の冷延鋼板の製造方法。
PCT/JP2022/008569 2021-03-10 2022-03-01 冷延鋼板及びその製造方法 WO2022190959A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP22766918.1A EP4269644A4 (en) 2021-03-10 2022-03-01 COLD ROLLED STEEL SHEET AND METHOD FOR PRODUCING THE SAME
CN202280011290.2A CN116802334A (zh) 2021-03-10 2022-03-01 冷轧钢板及其制造方法
JP2023505325A JPWO2022190959A1 (ja) 2021-03-10 2022-03-01
MX2023008445A MX2023008445A (es) 2021-03-10 2022-03-01 Lamina de acero laminada en frio y metodo para fabricar la misma.
KR1020237025247A KR20230125022A (ko) 2021-03-10 2022-03-01 냉연 강판 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-038716 2021-03-10
JP2021038716 2021-03-10

Publications (1)

Publication Number Publication Date
WO2022190959A1 true WO2022190959A1 (ja) 2022-09-15

Family

ID=83226624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/008569 WO2022190959A1 (ja) 2021-03-10 2022-03-01 冷延鋼板及びその製造方法

Country Status (6)

Country Link
EP (1) EP4269644A4 (ja)
JP (1) JPWO2022190959A1 (ja)
KR (1) KR20230125022A (ja)
CN (1) CN116802334A (ja)
MX (1) MX2023008445A (ja)
WO (1) WO2022190959A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10130782A (ja) * 1996-11-01 1998-05-19 Nippon Steel Corp 超高強度冷延鋼板およびその製造方法
JP2006104532A (ja) 2004-10-06 2006-04-20 Nippon Steel Corp 伸びと穴拡げ性に優れた高強度薄鋼板およびその製造方法
JP2009030091A (ja) 2007-07-25 2009-02-12 Jfe Steel Kk 製造安定性に優れた高強度冷延鋼板およびその製造方法
JP2009108364A (ja) * 2007-10-30 2009-05-21 Jfe Steel Corp 深絞り性に優れた高強度鋼板およびその製造方法
JP2010215958A (ja) 2009-03-16 2010-09-30 Jfe Steel Corp 曲げ加工性および耐遅れ破壊特性に優れる高強度冷延鋼板およびその製造方法
WO2015005191A1 (ja) * 2013-07-12 2015-01-15 株式会社神戸製鋼所 めっき性、加工性、および耐遅れ破壊特性に優れた高強度めっき鋼板、並びにその製造方法
WO2019181950A1 (ja) * 2018-03-19 2019-09-26 日本製鉄株式会社 高強度冷延鋼板およびその製造方法
WO2020039697A1 (ja) * 2018-08-22 2020-02-27 Jfeスチール株式会社 高強度鋼板及びその製造方法
JP2021038716A (ja) 2019-09-04 2021-03-11 株式会社ニシザワ・ラボラトリー アスピレータ
WO2021070951A1 (ja) * 2019-10-10 2021-04-15 日本製鉄株式会社 冷延鋼板およびその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11795531B2 (en) * 2018-03-30 2023-10-24 Jfe Steel Corporation High-strength galvanized steel sheet, high strength member, and method for manufacturing the same
EP4012055A4 (en) * 2019-08-06 2022-08-31 JFE Steel Corporation THIN HIGH STRENGTH STEEL SHEET AND METHOD OF MAKING IT

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10130782A (ja) * 1996-11-01 1998-05-19 Nippon Steel Corp 超高強度冷延鋼板およびその製造方法
JP2006104532A (ja) 2004-10-06 2006-04-20 Nippon Steel Corp 伸びと穴拡げ性に優れた高強度薄鋼板およびその製造方法
JP2009030091A (ja) 2007-07-25 2009-02-12 Jfe Steel Kk 製造安定性に優れた高強度冷延鋼板およびその製造方法
JP2009108364A (ja) * 2007-10-30 2009-05-21 Jfe Steel Corp 深絞り性に優れた高強度鋼板およびその製造方法
JP2010215958A (ja) 2009-03-16 2010-09-30 Jfe Steel Corp 曲げ加工性および耐遅れ破壊特性に優れる高強度冷延鋼板およびその製造方法
WO2015005191A1 (ja) * 2013-07-12 2015-01-15 株式会社神戸製鋼所 めっき性、加工性、および耐遅れ破壊特性に優れた高強度めっき鋼板、並びにその製造方法
WO2019181950A1 (ja) * 2018-03-19 2019-09-26 日本製鉄株式会社 高強度冷延鋼板およびその製造方法
WO2020039697A1 (ja) * 2018-08-22 2020-02-27 Jfeスチール株式会社 高強度鋼板及びその製造方法
JP2021038716A (ja) 2019-09-04 2021-03-11 株式会社ニシザワ・ラボラトリー アスピレータ
WO2021070951A1 (ja) * 2019-10-10 2021-04-15 日本製鉄株式会社 冷延鋼板およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4269644A4

Also Published As

Publication number Publication date
JPWO2022190959A1 (ja) 2022-09-15
CN116802334A (zh) 2023-09-22
MX2023008445A (es) 2023-07-27
EP4269644A1 (en) 2023-11-01
EP4269644A4 (en) 2024-03-13
KR20230125022A (ko) 2023-08-28

Similar Documents

Publication Publication Date Title
US11473164B2 (en) High-strength cold-rolled steel sheet and manufacturing method therefor
US8657969B2 (en) High-strength galvanized steel sheet with excellent formability and method for manufacturing the same
KR101618477B1 (ko) 고강도 강판 및 그 제조 방법
JP5709151B2 (ja) 成形性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5365216B2 (ja) 高強度鋼板とその製造方法
JP5971434B2 (ja) 伸びフランジ性、伸びフランジ性の面内安定性および曲げ性に優れた高強度溶融亜鉛めっき鋼板ならびにその製造方法
JP7216932B2 (ja) 冷延鋼板およびその製造方法
EP2757169A1 (en) High-strength steel sheet having excellent workability and method for producing same
US20120279617A1 (en) High strength galvanized steel sheet having excellent fatigue resistance and stretch flangeability and method for manufacturing the same
CN108779536B (zh) 钢板、镀覆钢板和它们的制造方法
JP6384623B2 (ja) 高強度鋼板およびその製造方法
CN114585758A (zh) 高强度钢板和碰撞吸收构件以及高强度钢板的制造方法
WO2022190959A1 (ja) 冷延鋼板及びその製造方法
WO2023153096A1 (ja) 冷延鋼板
WO2022190958A1 (ja) 冷延鋼板及びその製造方法
WO2023153097A1 (ja) 冷延鋼板およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22766918

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/008445

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2023505325

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237025247

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280011290.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2022766918

Country of ref document: EP

Effective date: 20230724

NENP Non-entry into the national phase

Ref country code: DE