WO2022190855A1 - Switching power supply device, switch control device, vehicle-mounted device, and vehicle - Google Patents

Switching power supply device, switch control device, vehicle-mounted device, and vehicle Download PDF

Info

Publication number
WO2022190855A1
WO2022190855A1 PCT/JP2022/007206 JP2022007206W WO2022190855A1 WO 2022190855 A1 WO2022190855 A1 WO 2022190855A1 JP 2022007206 W JP2022007206 W JP 2022007206W WO 2022190855 A1 WO2022190855 A1 WO 2022190855A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
turned
power supply
switching power
supply device
Prior art date
Application number
PCT/JP2022/007206
Other languages
French (fr)
Japanese (ja)
Inventor
慎吾 橋口
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to JP2023505269A priority Critical patent/JPWO2022190855A1/ja
Publication of WO2022190855A1 publication Critical patent/WO2022190855A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • the invention disclosed in this specification relates to a switching power supply device that steps down an input voltage to an output voltage, a switch control device, an in-vehicle device, and a vehicle.
  • the DC-DC converter proposed in Patent Document 1 has a switched capacitor circuit, and improves efficiency by turning on a high-side switch included in the switched capacitor circuit with zero-volt switching.
  • the output voltage is 1/4 of the input voltage, and if the input voltage fluctuates, the output voltage also fluctuates and the output voltage cannot be stabilized.
  • a switching power supply device disclosed in this specification includes first to sixth switches, a capacitor, and a control unit configured to control on/off of each of the first to sixth switches.
  • the first switch is configured such that a first terminal of the first switch can be connected to an application terminal of an input voltage, and a second terminal of the first switch is connected to a first terminal of the second switch and a first terminal of the capacitor. configured to be connectable to
  • the second switch is configured such that the second end of the second switch is connectable to the first end of the third switch and the first end of the first inductor.
  • the third switch is configured such that a second terminal of the third switch can be connected to a low voltage application terminal lower than the input voltage.
  • the fourth switch is configured such that a first end of the fourth switch is connectable to a second end of the capacitor and a first end of the fifth switch, and a second end of the fourth switch is connected to the low voltage. It is configured to be connectable to the application end.
  • the fifth switch is configured such that the second end of the fifth switch is connectable to the first end of the sixth switch and the first end of the second inductor.
  • the sixth switch is configured such that a second end of the sixth switch can be connected to the low voltage application end.
  • the switch control device disclosed in this specification is part of a switching power supply device that includes first to sixth switches and a capacitor.
  • the first switch is configured such that a first terminal of the first switch can be connected to an application terminal of an input voltage, and a second terminal of the first switch is connected to a first terminal of the second switch and a first terminal of the capacitor. configured to be connectable to
  • the second switch is configured such that the second end of the second switch is connectable to the first end of the third switch and the first end of the first inductor.
  • the third switch is configured such that a second terminal of the third switch can be connected to a low voltage application terminal lower than the input voltage.
  • the fourth switch is configured such that a first end of the fourth switch is connectable to a second end of the capacitor and a first end of the fifth switch, and a second end of the fourth switch is connected to the low voltage. It is configured to be connectable to the application end.
  • the fifth switch is configured such that the second end of the fifth switch is connectable to the first end of the sixth switch and the first end of the second inductor.
  • the sixth switch is configured such that a second end of the sixth switch can be connected to the low voltage application end.
  • the switch control device is configured to control on/off of each of the first to sixth switches, turns on the fifth switch, turns on the first switch, turns off the second switch, a first period in which the fourth switch is turned off and the sixth switch is turned off; a period in which the second switch is turned on, the first switch is turned off, the third switch is turned off, and the fourth switch is turned off; and a second period during which the fifth switch is turned on and the fifth switch is turned off.
  • the in-vehicle equipment disclosed in this specification includes the switching power supply device configured as described above or the switch control device configured as described above.
  • the vehicle disclosed in this specification includes the vehicle-mounted device configured as described above and a battery that supplies power to the vehicle-mounted device.
  • FIG. 1 is a diagram showing the configuration of a switching power supply device according to one embodiment.
  • FIG. 2 is a time chart showing a first operation example of the switching power supply device according to one embodiment.
  • FIG. 3 is a diagram showing the current flowing through the switching power supply device according to one embodiment.
  • FIG. 4 is a diagram showing the current flowing through the switching power supply device according to one embodiment.
  • FIG. 5 is a diagram showing the current flowing through the switching power supply device according to one embodiment.
  • FIG. 6 is a diagram showing the current flowing through the switching power supply device according to one embodiment.
  • FIG. 7 is a diagram showing the current flowing through the switching power supply device according to one embodiment.
  • FIG. 8 is a diagram showing the current flowing through the switching power supply device according to one embodiment.
  • FIG. 1 is a diagram showing the configuration of a switching power supply device according to one embodiment.
  • FIG. 2 is a time chart showing a first operation example of the switching power supply device according to one embodiment.
  • FIG. 3 is a diagram showing
  • FIG. 9 is a time chart showing a second operation example of the switching power supply device according to one embodiment.
  • FIG. 10 is a time chart showing a third operation example of the switching power supply device according to one embodiment.
  • FIG. 11 is an external view showing one configuration example of a vehicle.
  • a MOS transistor is defined as a gate structure that includes a layer made of a conductor or a semiconductor such as polysilicon with a low resistance value, an insulating layer, and a P-type, N-type, or intrinsic semiconductor.
  • layer refers to a transistor consisting of at least three layers. In other words, the structure of the gate of a MOS transistor is not limited to a three-layer structure of metal, oxide, and semiconductor.
  • FIG. 1 is a diagram showing the configuration of a switching power supply device according to one embodiment.
  • a switching power supply device 1 (hereinafter referred to as “switching power supply device 1") according to one embodiment is a switching power supply device that steps down an input voltage VIN to an output voltage VOUT.
  • the switching power supply 1 includes a control unit CNT1, first to sixth switches SW1 to SW6, a capacitor C1, a first inductor L1, a second inductor L2, an output capacitor COUT, and an output feedback unit FB1.
  • the control unit CNT1 controls on/off of the first to sixth switches SW1 to SW6 based on the output of the output feedback unit FB1.
  • the control unit CNT1 is a switch control device that controls ON/OFF of the first to sixth switches SW1 to SW6.
  • the first switch SW1 is configured such that a first end can be connected to the application end of the input voltage VIN, and a second end is configured to be connectable to the first end of the capacitor C1 and the first end of the second switch SW2.
  • the first switch SW1 conducts/disconnects a current path between the application terminal of the input voltage VIN and the first connection node N1.
  • the first connection node N1 is a node to which the second end of the first switch SW1, the first end of the second switch SW2, and the first end of the capacitor C1 are connected.
  • a P-channel MOS transistor, an N-channel MOS transistor, or the like can be used as the first switch SW1.
  • the switching power supply device 1 may be provided with a bootstrap circuit or the like to generate a voltage higher than the input voltage VIN.
  • the second switch SW2 is configured such that the second end can be connected to the first end of the third switch SW3 and the first end of the first inductor L1.
  • the second switch SW2 conducts/disconnects the current path between the first connection node N1 and the third connection node N3.
  • the third connection node N3 is a node to which the second end of the second switch SW2, the first end of the third switch SW3, and the first end of the first inductor L1 are connected.
  • a P-channel MOS transistor, an N-channel MOS transistor, or the like can be used as the second switch SW2.
  • the switching power supply 1 may be provided with a bootstrap circuit or the like to generate a voltage higher than the input voltage VIN.
  • the third switch SW3 is configured so that the second end can be connected to the ground potential application end.
  • the third switch SW3 conducts/disconnects the current path between the third connection node N3 and the ground potential.
  • an N-channel MOS transistor or the like can be used as the third switch SW3.
  • a first end of the fourth switch SW4 is connectable to the second end of the capacitor C1 and the first end of the fifth switch SW5, and a second end is connectable to the ground potential application end.
  • the fourth switch SW4 conducts/disconnects the current path between the second connection node N2 and the ground potential.
  • the second connection node N2 is a node to which the second terminal of the capacitor C1, the first terminal of the fourth switch SW4, and the first terminal of the fifth switch SW5 are connected.
  • an N-channel MOS transistor or the like can be used as the fourth switch SW4.
  • the fifth switch SW5 is configured such that the second end can be connected to the first end of the sixth switch SW6 and the first end of the second inductor.
  • the fifth switch SW5 conducts/interrupts the current path between the second connection node N2 and the fourth connection node N4.
  • the fourth connection node N4 is a node to which the second end of the fifth switch, the first end of the sixth switch SW6, and the first end of the second inductor are connected.
  • an N-channel MOS transistor or the like can be used as the fifth switch SW5.
  • the sixth switch SW6 is configured so that the second end can be connected to the ground potential application end.
  • the sixth switch SW6 conducts/disconnects the current path between the fourth connection node N4 and the ground potential.
  • an N-channel MOS transistor or the like can be used as the sixth switch SW6.
  • the output capacitor COUT has a first end connectable to the second end of the first inductor L1, the second end of the second inductor L2, and the output terminal OUT, and the second end connectable to the ground potential application end. configured to An output voltage VOUT applied to the output terminal OUT is supplied to a load LD1 connected to the output terminal OUT.
  • the output feedback unit FB1 generates and outputs a feedback signal according to the output voltage VOUT.
  • the output feedback unit FB1 for example, a resistance voltage dividing circuit or the like that divides the output voltage VOUT by resistance to generate a feedback signal can be used. Further, for example, the output feedback unit FB1 may be configured to acquire the output voltage VOUT and output the output voltage VOUT itself as a feedback signal. In addition to the feedback signal corresponding to the output voltage VOUT, the output feedback unit FB1 also generates and outputs a feedback signal corresponding to the current flowing through the first inductor L1 and the current flowing through the second inductor L2. good too. Current mode control is enabled by the output feedback unit FB1 also generating a feedback signal according to the current flowing through the first inductor L1 and the current flowing through the second inductor L2.
  • the control unit CNT1 controls on/off of the first to sixth switches SW1 to SW6. More specifically, the control unit CNT1 controls ON/OFF of the first to sixth switches SW1 to SW6 based on the feedback signal output from the output feedback unit FB1.
  • FIG. 2 is a time chart showing a first operation example of the switching power supply device 1.
  • the direction from one end (third connection node N3 side) of the first inductor L1 to the other end (output terminal OUT side) is defined as the positive direction of the current IL1 flowing through the first inductor L1.
  • the direction from one end (fourth connection node N4 side) of the two-inductor L2 to the other end (output terminal OUT side) is the positive direction of the current IL2 flowing through the second inductor L2.
  • the control unit CNT1 sets the length of the first period P1 and the length of the second period P2 according to the feedback signal output from the output feedback unit FB1. Thereby, the relationship between the input voltage VIN and the output voltage VOUT in the switching power supply device 1 can be changed.
  • the control unit CNT1 complementarily controls the ON/OFF of the first switch SW1 and the fourth switch SW4 at a duty of 50% in each cycle PD.
  • Each cycle PD has the same fixed value.
  • the capacitor C1 and the input terminal are electrically connected, and the capacitor C1 and the ground potential are electrically connected. Since they are not directly connected, the voltage V1 at the first connection node N1 is 48V and the voltage V2 at the second connection node N2 is 24V.
  • the capacitor C1 is electrically connected to the ground potential. Since the capacitor C1 and the input terminal are not electrically connected, the voltage V1 at the first connection node N1 is 24V and the voltage V2 at the second connection node N2 is 0V.
  • the control unit CNT1 turns on the fifth switch SW5, turns on the first switch SW1, turns off the second switch SW2, and turns off the fourth switch SW4. off, and the sixth switch SW6 is turned off.
  • a current flows from the input terminal to the output capacitor COUT and the output terminal OUT via the first switch SW1, the capacitor C1, the fifth switch SW5, and the second inductor L2 (see FIG. 3).
  • the control unit CNT1 turns on the sixth switch SW6.
  • the current IL2 flowing through the second inductor L2 is zero. Since the third switch SW3 is turned on during the first ON period O1, the current IL2 flowing through the second inductor L2 becomes a negative current (see FIG. 4).
  • the third switch SW3 is turned off, the voltage V4 at the fourth connection node N4 rises.
  • the potential difference between both ends of the fifth switch SW5 when the fifth switch SW5 is turned ON at timing t3 is reduced. Since it can be made (ideally zero), the efficiency of the switching power supply device 1 can be improved.
  • the control unit CNT1 turns off the fifth switch SW5 and turns on the sixth switch SW6.
  • the control unit CNT1 keeps the sixth switch SW6 on until the current IL2 flowing through the second inductor L2 decreases to zero.
  • a current flows from the ground potential to the output capacitor COUT and the output terminal OUT via the sixth switch SW6 and the second inductor L2 (see FIG. 5). Therefore, the switching power supply 1 includes a second current detector (not shown) that detects the current IL2 flowing through the second inductor L2.
  • the second detection unit for example, a current detection unit that detects the current IL2 flowing through the second inductor L2 by detecting the current flowing through the sixth switch SW6 based on the potential difference between both ends of the sixth switch SW6 can be used. This is because the current flowing through the sixth switch SW6 can be regarded as the current IL2 flowing through the second inductor L2 when the fifth switch SW5 is off and the sixth switch SW6 is on.
  • the voltage V4 at the fourth connection node N4 is generated from the voltage V2 at the second connection node N2 by switching the fifth switch SW5 and the sixth switch SW6 described above.
  • the control unit CNT1 turns on the second switch SW2, turns off the first switch SW1, turns off the third switch SW3, and turns off the fourth switch SW4. turn on and turn off the fifth switch SW5.
  • a current flows from the ground potential to the output capacitor COUT and the output terminal OUT via the fourth switch SW4, the capacitor C1, the second switch SW2, and the first inductor L1 (see FIG. 6).
  • the control unit CNT1 turns off the second switch SW2 and turns on the third switch SW3.
  • the control unit CNT1 keeps the third switch SW3 on until the current IL1 flowing through the first inductor L1 decreases to zero.
  • a current flows from the ground potential to the output capacitor COUT and the output terminal OUT via the third switch SW3 and the first inductor L1 (see FIG. 7). Therefore, the switching power supply device 1 includes a first current detection section (not shown) that detects the current IL1 flowing through the first inductor L1.
  • the first detection unit for example, a current detection unit that detects the current IL1 flowing through the first inductor L1 by detecting the current flowing through the third switch SW3 based on the potential difference across the third switch SW3 can be used. This is because when the second switch SW2 is off and the third switch SW3 is on, the current flowing through the third switch SW3 can be regarded as the current IL1 flowing through the first inductor L1.
  • the voltage V3 at the third connection node N3 is generated from the voltage V1 at the first connection node N1 by switching the second switch SW2 and the third switch SW3 described above.
  • the control unit CNT1 provides a second ON period O2 (a period from timing t5 to timing t6) for turning on the third switch SW3 before turning on the second switch SW2.
  • the current IL1 flowing through the first inductor L1 is zero.
  • the third switch SW3 is turned on, so the current IL2 flowing through the second inductor L2 becomes a negative current (see FIG. 8).
  • the third switch SW3 is turned off, so the voltage V3 at the third connection node N3 rises.
  • the potential difference across the second switch SW2 when the second switch SW2 is turned on can be reduced (ideally to zero), so that the efficiency of the switching power supply 1 can be improved.
  • the controller CNT1 always turns on the fourth switch SW4 when turning on the second switch SW2 so that both ends of the capacitor Cr are in a low impedance state when turning on the second switch SW2.
  • control unit CNT1 always turns on the first switch SW1 when turning on the fifth switch SW5 so that both ends of the capacitor Cr are in a low impedance state when turning on the fifth switch SW5. ing.
  • control unit CNT1 makes the length of the first period P1 and the length of the second period P2 equal in each cycle PD in order to keep the potential difference across the capacitor Cr substantially constant.
  • FIG. 9 is a time chart showing a second operation example of the switching power supply device 1.
  • FIG. 9 description of the same operations as in the first operation example will be omitted, and operations different from the first operation example will be described.
  • control unit CNT1 does not complementarily on/off control the first switch SW1 and the fourth switch SW4 at a duty of 50% in each period PD.
  • control unit CNT1 turns on the first switch SW1 and the fifth switch SW5 at the same time, and turns off the first switch SW1 and the fifth switch SW5 at the same time. Also, in the second operation example, the controller CNT1 turns on the fourth switch SW4 and the second switch SW2 at the same time, and turns off the fourth switch SW4 and the second switch SW2 at the same time.
  • both the fifth switch SW5 and the sixth switch SW6 are off, that is, when the fourth connection node N4 is in a high impedance state, the voltage V4 at the fourth connection node N4 tries to maintain the same value as the output voltage VOUT.
  • the body diode formed across the fifth switch SW5 draws electric charges from the fourth connection node N4, The voltage V4 at the fourth connection node N4 drops to 0V.
  • the body diode formed between both ends of the fifth switch SW5 has an anode on the side of the fourth connection node N4 and a cathode on the side of the second connection node N2.
  • the current IL2 flowing through the second inductor L2 becomes a negative current.
  • the second switch SW2 is turned off, electric charges are supplied from the fourth connection node N4 to the second connection node N2 through the body diode formed between both ends of the fifth switch SW5.
  • voltage V2 rises to 24V.
  • the voltage V1 at the first connection node N1 rises to 48V.
  • the potential difference across the first switch SW1 when the first switch SW1 is turned on can be reduced (ideally to zero). Therefore, in the second operation example, the efficiency of the switching power supply device 1 can be improved more than in the first operation example.
  • the fifth switch SW5 When using the fifth switch SW5 having no body diode formed between both ends thereof, or when using the fifth switch SW5 having a low current capability of the body diode formed between both ends of the switch SW5, the fifth switch SW5 is connected in parallel.
  • a diode may be provided.
  • FIG. 10 is a time chart showing a third operation example of the switching power supply device 1.
  • FIG. 10 the description of the same operations as in the second operation example will be omitted, and the operations different from the second operation example will be described.
  • the second connection node N2 is connected from the fourth connection node N4 via the body diode formed between both ends of the fifth switch SW5. is supplied with charge. Although the voltage V2 at the second connection node N2 rises, it does not reach 24V. As the voltage V2 at the second connection node N2 rises, the voltage V1 at the first connection node N1 rises, but does not reach 48V. When the first switch SW1 is turned on, the voltage V2 at the second connection node N2 rises to 24V and the voltage V2 at the first connection node N1 rises to 48V.
  • the efficiency of the switching power supply 1 can be improved more than the first operation example.
  • FIG. 11 is an external view showing a configuration example of a vehicle in which the in-vehicle device is mounted.
  • the vehicle X of this configuration example is equipped with onboard devices X11 to X17 and a battery (not shown) that supplies power to these onboard devices X11 to X17.
  • the control unit CNT1 When the switching power supply device 1 described above is installed in the vehicle X, it is required to suppress radiation noise in the AM band so as not to adversely affect the reception of AM radio broadcasts. Therefore, it is desirable that the control unit CNT1 generates a voltage of 1.8 MHz or more and 2.1 MHz or less at the first connection node N1. That is, it is desirable to set the reciprocal (switching frequency) of the fixed value of each cycle PD to 1.8 MHz or more and 2.1 MHz or less. This is because if the switching frequency is less than 1.8 MHz, radiation noise in the AM band increases, and if the switching frequency is greater than 2.1 MHz, the switching loss exceeds the allowable range.
  • the in-vehicle device X11 is an engine control unit that performs engine-related controls (injection control, electronic throttle control, idling control, oxygen sensor heater control, auto-cruise control, etc.).
  • the in-vehicle device X12 is a lamp control unit that controls lighting and extinguishing of HID [high intensity discharged lamp] and DRL [daytime running lamp].
  • the in-vehicle device X13 is a transmission control unit that performs controls related to the transmission.
  • the in-vehicle device X14 is a body control unit that performs controls related to the movement of the vehicle X (ABS [anti-lock brake system] control, EPS [electric power steering] control, electronic suspension control, etc.).
  • ABS anti-lock brake system
  • EPS electric power steering
  • electronic suspension control etc.
  • the in-vehicle device X15 is a security control unit that controls driving such as door locks and security alarms.
  • In-vehicle equipment X16 is electronic equipment that is built into vehicle X at the factory shipment stage as standard equipment or manufacturer options, such as wipers, electric door mirrors, power windows, electric sunroofs, electric seats, and air conditioners.
  • the in-vehicle device X17 is an electronic device that the user arbitrarily attaches to the vehicle X, such as an in-vehicle A/V [audio/visual] device, a car navigation system, and an ETC [Electronic Toll Collection System].
  • switching power supply device 1 can be incorporated in any of the in-vehicle devices X11 to X17.
  • the potential difference across the capacitor C1 is kept constant by aligning the length of the first period P1 and the length of the second period P2 in each cycle.
  • the length of the first period P1 and the length of the second period P2 are not made the same.
  • the configuration may be such that the ratio with the length of the two periods P2 is adjusted.
  • the timing when the fifth switch SW5 is turned on and the timing when the current IL2 flowing through the second inductor L2 becomes zero are the same timing (timing t3), but the fifth switch SW5 is turned on.
  • the timing may be before the timing at which the current IL2 flowing through the second inductor L2 becomes zero, or after the timing at which the current IL2 flowing through the second inductor L2 becomes zero.
  • the fifth switch SW5 will not be zero volt switching. Therefore, it is desirable that the fifth switch SW5 is turned on at the same time as the current IL2 flowing through the second inductor L2 becomes zero or after the current IL2 flowing through the second inductor L2 becomes zero.
  • both the third switch SW3 and the sixth switch SW6 are turned on during the period from the timing t5 to the timing t6, but after the sixth switch SW6 is turned off (after the timing t6).
  • the third switch SW3 may be turned on immediately.
  • a capacitor C1 is arranged between the second switch SW2 and the third switch SW3 and the fifth switch SW5 and the sixth switch SW6, and the switching operation of the second switch SW2 and the third switch SW3 and the switching operation of the fifth switch SW5 and the fifth switch SW5 are arranged. This is because it is independent of the switching operation of the 6-switch SW6.
  • providing a period in which both the third switch SW3 and the sixth switch SW6 are ON as in the above embodiment improves the temporal efficiency of switching control. It is desirable to provide a period during which both SW6 are on.
  • the switching power supply device (1) described above is configured to control ON/OFF of the first to sixth switches (SW1 to SW6), the capacitor (C1), and the first to sixth switches.
  • a control unit (CNT1) wherein the first switch is configured such that a first end of the first switch can be connected to an input voltage application end, and a second end of the first switch is connected to a second switch;
  • the second switch is configured to be connectable to a first end and a first end of the capacitor, wherein the second switch connects a second end of the second switch to a first end of the third switch and a first end of the first inductor.
  • the third switch is configured such that a second end of the third switch can be connected to a low voltage application end lower than the input voltage; one end of the capacitor is connectable to the second end of the capacitor and the first end of the fifth switch; the second end of the fourth switch is connectable to the low voltage application end;
  • the switch is configured such that the second end of the fifth switch is connectable to the first end of the sixth switch and the first end of the second inductor, and the sixth switch connects the second end of the sixth switch to the first end of the second inductor.
  • the controller is configured to be connectable to the low voltage application end, the controller turns on the fifth switch, turns on the first switch, turns off the second switch, turns off the fourth switch, a first period in which the sixth switch is turned off, the second switch is turned on, the first switch is turned off, the third switch is turned off, the fourth switch is turned on, and the fifth switch is turned on; and a second off period (first configuration).
  • the switching power supply device having the first configuration can change the relationship between the input voltage and the output voltage.
  • control unit is configured to provide a first ON period for turning on the sixth switch before turning on the fifth switch (second configuration ).
  • the potential difference between both ends of the fifth switch can be reduced (ideally zero) when the fifth switch is turned on, so efficiency can be improved.
  • control section is configured to provide a second ON period for turning on the third switch before turning on the second switch (second 3).
  • the potential difference between both ends of the second switch can be reduced (ideally zero) when the second switch is turned on, so efficiency can be improved.
  • the controller In the switching power supply device having any one of the first to third configurations, the controller always turns on the fourth switch when turning on the second switch, and turns on the fifth switch when turning on the fifth switch.
  • a configuration (fourth configuration) may be employed in which the first switch is always turned on.
  • the switching power supply device having the fourth configuration can put both ends of the capacitor Cr into a low impedance state when turning on the second switch. Further, the switching power supply device having the fourth configuration can bring both ends of the capacitor into a low impedance state when turning on the fifth switch.
  • control unit is configured to match the length of the first period and the length of the second period in each cycle (fifth configuration ).
  • the switching power supply device having the fifth configuration can keep the potential difference across the capacitor constant.
  • the control unit simultaneously turns on the first switch and the fifth switch, simultaneously turns off the first switch and the fifth switch, and A configuration (sixth configuration) may be employed in which the fourth switch and the second switch are turned on at the same time, and the fourth switch and the second switch are turned off at the same time.
  • the potential difference between both ends of the first switch can be reduced (ideally zero) when the first switch is turned on, so efficiency can be improved.
  • the switch control device (CNT1) described above includes first to sixth switches (SW1 to SW6) and a capacitor (C1).
  • the second end of the first switch is connectable to the first end of the second switch and the first end of the capacitor, and the second switch is configured to be connectable to the application end of the second switch is connectable to the first end of the third switch and the first end of the first inductor, the third switch being configured such that the second end of the third switch is lower than the input voltage;
  • a first end of the fourth switch is connectable to a second end of the capacitor and a first end of the fifth switch;
  • the second ends of four switches are connectable to the low voltage application end, and the fifth switch is configured such that the second ends of the fifth switches are connected to the first end of the sixth switch and the first end of the second inductor.
  • the switching power supply (1) comprises: configured to control on/off of each of the first to sixth switches, turning on the fifth switch, turning on the first switch, turning off the second switch, and turning off the fourth switch a first period during which the sixth switch is turned off, the second switch is turned on, the first switch is turned off, the third switch is turned off, the fourth switch is turned on, and the fifth period is turned off; and a second period during which the switch is turned off (seventh configuration).
  • the switch control device having the seventh configuration can change the relationship between the input voltage and the output voltage in the switching power supply device.
  • the vehicle-mounted devices (X11 to X17) described above have a configuration (eighth configuration) including the switching power supply device having any one of the first to sixth configurations or the switch control device having the seventh configuration.
  • the vehicle-mounted device having the eighth configuration can change the relationship between the input voltage and the output voltage in the switching power supply.
  • the vehicle described above has a configuration (ninth configuration) including the vehicle-mounted device of the eighth configuration and a battery that supplies power to the vehicle-mounted device.
  • the vehicle (X) having the ninth configuration can change the relationship between the input voltage and the output voltage in the switching power supply.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

This switching power supply device comprises first to sixth switches, a capacitor, and a control unit configured to control on/off of each of the first to sixth switches. The control unit is configured to provide: a first period for turning on the fifth switch, turning on the first switch, turning off the second switch, turning off the fourth switch, and turning off the sixth switch; and a second period for turning on the second switch, turning off the first switch, turning off the third switch, turning on the fourth switch, and turning off the fifth switch.

Description

スイッチング電源装置、スイッチ制御装置、車載機器、及び車両Switching power supply device, switch control device, in-vehicle equipment, and vehicle
 本明細書中に開示されている発明は、入力電圧を出力電圧に降圧するスイッチング電源装置、スイッチ制御装置、車載機器、及び車両に関する。 The invention disclosed in this specification relates to a switching power supply device that steps down an input voltage to an output voltage, a switch control device, an in-vehicle device, and a vehicle.
 特許文献1で提案されているDC-DCコンバータは、スイッチドキャパシタ回路を有し、スイッチドキャパシタ回路に含まれるハイサイドスイッチをゼロボルトスイッチングでターンオンすることで効率を向上させている。 The DC-DC converter proposed in Patent Document 1 has a switched capacitor circuit, and improves efficiency by turning on a high-side switch included in the switched capacitor circuit with zero-volt switching.
特開2010-148288号公報JP 2010-148288 A
 しかしながら、特許文献1で提案されているDC-DCコンバータでは、出力電圧が入力電圧の1/4であり、入力電圧が変動した場合に出力電圧も変動してしまい出力電圧を安定化できない。 However, in the DC-DC converter proposed in Patent Document 1, the output voltage is 1/4 of the input voltage, and if the input voltage fluctuates, the output voltage also fluctuates and the output voltage cannot be stabilized.
 本明細書中に開示されているスイッチング電源装置は、第1~第6スイッチと、コンデンサと、前記第1~前記第6スイッチそれぞれのオン/オフを制御するよう構成される制御部と、を備える。前記第1スイッチは、前記第1スイッチの第1端が入力電圧の印加端に接続可能に構成され、前記第1スイッチの第2端が第2スイッチの第1端及び前記コンデンサの第1端に接続可能に構成される。前記第2スイッチは、前記第2スイッチの第2端が前記第3スイッチの第1端及び第1インダクタの第1端に接続可能に構成される。前記第3スイッチは、前記第3スイッチの第2端が前記入力電圧よりも低い低電圧の印加端に接続可能に構成される。前記第4スイッチは、前記第4スイッチの第1端が前記コンデンサの第2端及び前記第5スイッチの第1端に接続可能に構成され、前記第4スイッチの第2端が前記低電圧の印加端に接続可能に構成される。前記第5スイッチは、前記第5スイッチの第2端が前記第6スイッチの第1端及び第2インダクタの第1端に接続可能に構成される。前記第6スイッチは、前記第6スイッチの第2端が前記低電圧の印加端に接続可能に構成される。前記制御部は、前記第5スイッチをオンにし、前記第1スイッチをオンにし、前記第2スイッチをオフにし、前記第4スイッチをオフにし、前記第6スイッチをオフにする第1期間と、前記第2スイッチをオンにし、前記第1スイッチをオフにし、前記第3スイッチをオフにし、前記第4スイッチをオンにし、前記第5スイッチをオフにする第2期間と、を設けるように構成される。 A switching power supply device disclosed in this specification includes first to sixth switches, a capacitor, and a control unit configured to control on/off of each of the first to sixth switches. Prepare. The first switch is configured such that a first terminal of the first switch can be connected to an application terminal of an input voltage, and a second terminal of the first switch is connected to a first terminal of the second switch and a first terminal of the capacitor. configured to be connectable to The second switch is configured such that the second end of the second switch is connectable to the first end of the third switch and the first end of the first inductor. The third switch is configured such that a second terminal of the third switch can be connected to a low voltage application terminal lower than the input voltage. The fourth switch is configured such that a first end of the fourth switch is connectable to a second end of the capacitor and a first end of the fifth switch, and a second end of the fourth switch is connected to the low voltage. It is configured to be connectable to the application end. The fifth switch is configured such that the second end of the fifth switch is connectable to the first end of the sixth switch and the first end of the second inductor. The sixth switch is configured such that a second end of the sixth switch can be connected to the low voltage application end. a first period in which the control unit turns on the fifth switch, turns on the first switch, turns off the second switch, turns off the fourth switch, and turns off the sixth switch; and a second period during which the second switch is turned on, the first switch is turned off, the third switch is turned off, the fourth switch is turned on, and the fifth switch is turned off. be done.
 本明細書中に開示されているスイッチ制御装置は、第1~第6スイッチと、コンデンサと、を備えるスイッチング電源装置の一部である。前記第1スイッチは、前記第1スイッチの第1端が入力電圧の印加端に接続可能に構成され、前記第1スイッチの第2端が第2スイッチの第1端及び前記コンデンサの第1端に接続可能に構成される。前記第2スイッチは、前記第2スイッチの第2端が前記第3スイッチの第1端及び第1インダクタの第1端に接続可能に構成される。前記第3スイッチは、前記第3スイッチの第2端が前記入力電圧よりも低い低電圧の印加端に接続可能に構成される。前記第4スイッチは、前記第4スイッチの第1端が前記コンデンサの第2端及び前記第5スイッチの第1端に接続可能に構成され、前記第4スイッチの第2端が前記低電圧の印加端に接続可能に構成される。前記第5スイッチは、前記第5スイッチの第2端が前記第6スイッチの第1端及び第2インダクタの第1端に接続可能に構成される。前記第6スイッチは、前記第6スイッチの第2端が前記低電圧の印加端に接続可能に構成される。前記スイッチ制御装置は、前記第1~前記第6スイッチそれぞれのオン/オフを制御するよう構成され、前記第5スイッチをオンにし、前記第1スイッチをオンにし、前記第2スイッチをオフにし、前記第4スイッチをオフにし、前記第6スイッチをオフにする第1期間と、前記第2スイッチをオンにし、前記第1スイッチをオフにし、前記第3スイッチをオフにし、前記第4スイッチをオンにし、前記第5スイッチをオフにする第2期間と、を設けるように構成される。 The switch control device disclosed in this specification is part of a switching power supply device that includes first to sixth switches and a capacitor. The first switch is configured such that a first terminal of the first switch can be connected to an application terminal of an input voltage, and a second terminal of the first switch is connected to a first terminal of the second switch and a first terminal of the capacitor. configured to be connectable to The second switch is configured such that the second end of the second switch is connectable to the first end of the third switch and the first end of the first inductor. The third switch is configured such that a second terminal of the third switch can be connected to a low voltage application terminal lower than the input voltage. The fourth switch is configured such that a first end of the fourth switch is connectable to a second end of the capacitor and a first end of the fifth switch, and a second end of the fourth switch is connected to the low voltage. It is configured to be connectable to the application end. The fifth switch is configured such that the second end of the fifth switch is connectable to the first end of the sixth switch and the first end of the second inductor. The sixth switch is configured such that a second end of the sixth switch can be connected to the low voltage application end. The switch control device is configured to control on/off of each of the first to sixth switches, turns on the fifth switch, turns on the first switch, turns off the second switch, a first period in which the fourth switch is turned off and the sixth switch is turned off; a period in which the second switch is turned on, the first switch is turned off, the third switch is turned off, and the fourth switch is turned off; and a second period during which the fifth switch is turned on and the fifth switch is turned off.
 本明細書中に開示されている車載機器は、上記構成のスイッチング電源装置又は上記構成のスイッチ制御装置を備える。 The in-vehicle equipment disclosed in this specification includes the switching power supply device configured as described above or the switch control device configured as described above.
 本明細書中に開示されている車両は、上記構成の車載機器と、前記車載機器に電力を供給するバッテリと、を備える。 The vehicle disclosed in this specification includes the vehicle-mounted device configured as described above and a battery that supplies power to the vehicle-mounted device.
 本明細書中に開示されている発明によれば、スイッチング電源装置における入力電圧と出力電圧との関係を変更することができる。 According to the invention disclosed in this specification, it is possible to change the relationship between the input voltage and the output voltage in the switching power supply.
図1は、一実施形態に係るスイッチング電源装置の構成を示す図である。FIG. 1 is a diagram showing the configuration of a switching power supply device according to one embodiment. 図2は、一実施形態に係るスイッチング電源装置の第1動作例を示すタイムチャートである。FIG. 2 is a time chart showing a first operation example of the switching power supply device according to one embodiment. 図3は、一実施形態に係るスイッチング電源装置を流れる電流を示す図である。FIG. 3 is a diagram showing the current flowing through the switching power supply device according to one embodiment. 図4は、一実施形態に係るスイッチング電源装置を流れる電流を示す図である。FIG. 4 is a diagram showing the current flowing through the switching power supply device according to one embodiment. 図5は、一実施形態に係るスイッチング電源装置を流れる電流を示す図である。FIG. 5 is a diagram showing the current flowing through the switching power supply device according to one embodiment. 図6は、一実施形態に係るスイッチング電源装置を流れる電流を示す図である。FIG. 6 is a diagram showing the current flowing through the switching power supply device according to one embodiment. 図7は、一実施形態に係るスイッチング電源装置を流れる電流を示す図である。FIG. 7 is a diagram showing the current flowing through the switching power supply device according to one embodiment. 図8は、一実施形態に係るスイッチング電源装置を流れる電流を示す図である。FIG. 8 is a diagram showing the current flowing through the switching power supply device according to one embodiment. 図9は、一実施形態に係るスイッチング電源装置の第2動作例を示すタイムチャートである。FIG. 9 is a time chart showing a second operation example of the switching power supply device according to one embodiment. 図10は、一実施形態に係るスイッチング電源装置の第3動作例を示すタイムチャートである。FIG. 10 is a time chart showing a third operation example of the switching power supply device according to one embodiment. 図11は、車両の一構成例を示す外観図である。FIG. 11 is an external view showing one configuration example of a vehicle.
 本明細書において、MOSトランジスタとは、ゲートの構造が、「導電体または抵抗値が小さいポリシリコン等の半導体からなる層」、「絶縁層」、及び「P型、N型、又は真性の半導体層」の少なくとも3層からなるトランジスタをいう。つまり、MOSトランジスタのゲートの構造は、金属、酸化物、及び半導体の3層構造に限定されない。 In this specification, a MOS transistor is defined as a gate structure that includes a layer made of a conductor or a semiconductor such as polysilicon with a low resistance value, an insulating layer, and a P-type, N-type, or intrinsic semiconductor. layer” refers to a transistor consisting of at least three layers. In other words, the structure of the gate of a MOS transistor is not limited to a three-layer structure of metal, oxide, and semiconductor.
<一実施形態に係るスイッチング電源装置の構成>
 図1は、一実施形態に係るスイッチング電源装置の構成を示す図である。一実施形態に係るスイッチング電源装置1(以下、「スイッチング電源装置1」という)は、入力電圧VINを出力電圧VOUTに降圧するスイッチング電源装置である。スイッチング電源装置1は、制御部CNT1と、第1~第6スイッチSW1~SW6と、コンデンサC1と、第1インダクタL1と、第2インダクタL2と、出力コンデンサCOUTと、出力帰還部FB1と、を備える。
<Structure of switching power supply device according to one embodiment>
FIG. 1 is a diagram showing the configuration of a switching power supply device according to one embodiment. A switching power supply device 1 (hereinafter referred to as "switching power supply device 1") according to one embodiment is a switching power supply device that steps down an input voltage VIN to an output voltage VOUT. The switching power supply 1 includes a control unit CNT1, first to sixth switches SW1 to SW6, a capacitor C1, a first inductor L1, a second inductor L2, an output capacitor COUT, and an output feedback unit FB1. Prepare.
 制御部CNT1は、出力帰還部FB1の出力に基づき、第1~第6スイッチSW1~SW6のオン/オフを制御する。言い換えると、制御部CNT1は、第1~第6スイッチSW1~SW6のオン/オフを制御するスイッチ制御装置である。 The control unit CNT1 controls on/off of the first to sixth switches SW1 to SW6 based on the output of the output feedback unit FB1. In other words, the control unit CNT1 is a switch control device that controls ON/OFF of the first to sixth switches SW1 to SW6.
 第1スイッチSW1は、第1端が入力電圧VINの印加端に接続可能に構成され、第2端がコンデンサC1の第1端及び第2スイッチSW2の第1端に接続可能に構成される。第1スイッチSW1は、入力電圧VINの印加端と第1接続ノードN1との間の電流経路を導通/遮断する。第1接続ノードN1は、第1スイッチSW1の第2端と第2スイッチSW2の第1端とコンデンサC1の第1端とが接続されるノードである。第1スイッチSW1としては、例えばPチャネル型MOSトランジスタ、Nチャネル型MOSトランジスタ等を用いることができる。例えば第1スイッチSW1にNチャネル型MOSトランジスタを用いる場合、入力電圧VINより大きい電圧を生成するためにブートストラップ回路等をスイッチング電源装置1に設けるようにすればよい。 The first switch SW1 is configured such that a first end can be connected to the application end of the input voltage VIN, and a second end is configured to be connectable to the first end of the capacitor C1 and the first end of the second switch SW2. The first switch SW1 conducts/disconnects a current path between the application terminal of the input voltage VIN and the first connection node N1. The first connection node N1 is a node to which the second end of the first switch SW1, the first end of the second switch SW2, and the first end of the capacitor C1 are connected. For example, a P-channel MOS transistor, an N-channel MOS transistor, or the like can be used as the first switch SW1. For example, when an N-channel MOS transistor is used for the first switch SW1, the switching power supply device 1 may be provided with a bootstrap circuit or the like to generate a voltage higher than the input voltage VIN.
 第2スイッチSW2は、第2端が第3スイッチSW3の第1端及び第1インダクタL1の第1端に接続可能に構成される。第2スイッチSW2は、第1接続ノードN1と第3接続ノードN3との間の電流経路を導通/遮断する。第3接続ノードN3は、第2スイッチSW2の第2端と第3スイッチSW3の第1端と第1インダクタL1の第1端とが接続されるノードである。第2スイッチSW2としては、例えばPチャネル型MOSトランジスタ、Nチャネル型MOSトランジスタ等を用いることができる。例えば第2スイッチSW2にNチャネル型MOSトランジスタを用いる場合、入力電圧VINより大きい電圧を生成するためにブートストラップ回路等をスイッチング電源装置1に設けるようにすればよい。 The second switch SW2 is configured such that the second end can be connected to the first end of the third switch SW3 and the first end of the first inductor L1. The second switch SW2 conducts/disconnects the current path between the first connection node N1 and the third connection node N3. The third connection node N3 is a node to which the second end of the second switch SW2, the first end of the third switch SW3, and the first end of the first inductor L1 are connected. For example, a P-channel MOS transistor, an N-channel MOS transistor, or the like can be used as the second switch SW2. For example, if an N-channel MOS transistor is used for the second switch SW2, the switching power supply 1 may be provided with a bootstrap circuit or the like to generate a voltage higher than the input voltage VIN.
 第3スイッチSW3は、第2端がグランド電位の印加端に接続可能に構成される。第3スイッチSW3は、第3接続ノードN3とグランド電位との間の電流経路を導通/遮断する。第3スイッチSW3としては、例えばNチャネル型MOSトランジスタ等を用いることができる。 The third switch SW3 is configured so that the second end can be connected to the ground potential application end. The third switch SW3 conducts/disconnects the current path between the third connection node N3 and the ground potential. For example, an N-channel MOS transistor or the like can be used as the third switch SW3.
 第4スイッチSW4は、第1端がコンデンサC1の第2端及び第5スイッチSW5の第1端に接続可能に構成され、第2端がグランド電位の印加端に接続可能に構成される。第4スイッチSW4は、第2接続ノードN2とグランド電位との間の電流経路を導通/遮断する。第2接続ノードN2は、コンデンサC1の第2端と第4スイッチSW4の第1端と第5スイッチSW5の第1端とが接続されるノードである。第4スイッチSW4としては、例えばNチャネル型MOSトランジスタ等を用いることができる。 A first end of the fourth switch SW4 is connectable to the second end of the capacitor C1 and the first end of the fifth switch SW5, and a second end is connectable to the ground potential application end. The fourth switch SW4 conducts/disconnects the current path between the second connection node N2 and the ground potential. The second connection node N2 is a node to which the second terminal of the capacitor C1, the first terminal of the fourth switch SW4, and the first terminal of the fifth switch SW5 are connected. For example, an N-channel MOS transistor or the like can be used as the fourth switch SW4.
 第5スイッチSW5は、第2端が第6スイッチSW6の第1端及び第2インダクタの第1端に接続可能に構成される。第5スイッチSW5は、第2接続ノードN2と第4接続ノードN4との間の電流経路を導通/遮断する。第4接続ノードN4は、第5スイッチの第2端と第6スイッチSW6の第1端と第2インダクタの第1端とが接続されるノードである。第5スイッチSW5としては、例えばNチャネル型MOSトランジスタ等を用いることができる。 The fifth switch SW5 is configured such that the second end can be connected to the first end of the sixth switch SW6 and the first end of the second inductor. The fifth switch SW5 conducts/interrupts the current path between the second connection node N2 and the fourth connection node N4. The fourth connection node N4 is a node to which the second end of the fifth switch, the first end of the sixth switch SW6, and the first end of the second inductor are connected. For example, an N-channel MOS transistor or the like can be used as the fifth switch SW5.
 第6スイッチSW6は、第2端がグランド電位の印加端に接続可能に構成される。第6スイッチSW6は、第4接続ノードN4とグランド電位との間の電流経路を導通/遮断する。第6スイッチSW6としては、例えばNチャネル型MOSトランジスタ等を用いることができる。 The sixth switch SW6 is configured so that the second end can be connected to the ground potential application end. The sixth switch SW6 conducts/disconnects the current path between the fourth connection node N4 and the ground potential. For example, an N-channel MOS transistor or the like can be used as the sixth switch SW6.
 出力コンデンサCOUTは、第1端が第1インダクタL1の第2端と第2インダクタL2の第2端と出力端子OUTとに接続可能に構成され、第2端がグランド電位の印加端に接続可能に構成される。出力端子OUTに印加される出力電圧VOUTは、出力端子OUTに接続される負荷LD1に供給される。 The output capacitor COUT has a first end connectable to the second end of the first inductor L1, the second end of the second inductor L2, and the output terminal OUT, and the second end connectable to the ground potential application end. configured to An output voltage VOUT applied to the output terminal OUT is supplied to a load LD1 connected to the output terminal OUT.
 出力帰還部FB1は、出力電圧VOUTに応じた帰還信号を生成して出力する。出力帰還部FB1としては、例えば出力電圧VOUTを抵抗分圧して帰還信号を生成する抵抗分圧回路等を用いることができる。また例えば、出力帰還部FB1は、出力電圧VOUTを取得し、出力電圧VOUTそのものを帰還信号として出力する構成であってもよい。なお、出力帰還部FB1は、出力電圧VOUTに応じた帰還信号に加えて、第1インダクタL1を流れる電流及び第2インダクタL2を流れる電流に応じた帰還信号も生成して出力する構成であってもよい。出力帰還部FB1が第1インダクタL1を流れる電流及び第2インダクタL2を流れる電流に応じた帰還信号も生成することで、電流モード制御が可能になる。 The output feedback unit FB1 generates and outputs a feedback signal according to the output voltage VOUT. As the output feedback unit FB1, for example, a resistance voltage dividing circuit or the like that divides the output voltage VOUT by resistance to generate a feedback signal can be used. Further, for example, the output feedback unit FB1 may be configured to acquire the output voltage VOUT and output the output voltage VOUT itself as a feedback signal. In addition to the feedback signal corresponding to the output voltage VOUT, the output feedback unit FB1 also generates and outputs a feedback signal corresponding to the current flowing through the first inductor L1 and the current flowing through the second inductor L2. good too. Current mode control is enabled by the output feedback unit FB1 also generating a feedback signal according to the current flowing through the first inductor L1 and the current flowing through the second inductor L2.
 制御部CNT1は、第1~第6スイッチSW1~SW6それぞれのオン/オフを制御する。より詳細には、制御部CNT1は、出力帰還部FB1から出力される帰還信号に基づき、第1~第6スイッチSW1~SW6それぞれのオン/オフを制御する。 The control unit CNT1 controls on/off of the first to sixth switches SW1 to SW6. More specifically, the control unit CNT1 controls ON/OFF of the first to sixth switches SW1 to SW6 based on the feedback signal output from the output feedback unit FB1.
 以下、入力電圧VINを48Vにし、グランド電位を0Vにした場合を例に挙げて説明を行う。 A case where the input voltage VIN is set to 48V and the ground potential is set to 0V will be described below as an example.
<一実施形態に係るスイッチング電源装置の第1動作例>
 図2は、スイッチング電源装置1の第1動作例を示すタイムチャートである。なお、本明細書では、第1インダクタL1の一端(第3接続ノードN3側)から他端(出力端子OUT側)に向かう方向を、第1インダクタL1を流れる電流IL1の正の向きとし、第2インダクタL2の一端(第4接続ノードN4側)から他端(出力端子OUT側)に向かう方向を、第2インダクタL2を流れる電流IL2の正の向きとする。制御部CNT1は、出力帰還部FB1から出力される帰還信号に応じて第1期間P1の長さ及び第2期間P2の長さを設定する。これにより、スイッチング電源装置1における入力電圧VINと出力電圧VOUTとの関係を変更することができる。負荷LD1が軽負荷であるほど第1期間P1の長さ及び第2期間P2の長さはそれぞれ短くなる。
<First Operation Example of Switching Power Supply According to One Embodiment>
FIG. 2 is a time chart showing a first operation example of the switching power supply device 1. FIG. In this specification, the direction from one end (third connection node N3 side) of the first inductor L1 to the other end (output terminal OUT side) is defined as the positive direction of the current IL1 flowing through the first inductor L1. The direction from one end (fourth connection node N4 side) of the two-inductor L2 to the other end (output terminal OUT side) is the positive direction of the current IL2 flowing through the second inductor L2. The control unit CNT1 sets the length of the first period P1 and the length of the second period P2 according to the feedback signal output from the output feedback unit FB1. Thereby, the relationship between the input voltage VIN and the output voltage VOUT in the switching power supply device 1 can be changed. The lighter the load LD1, the shorter the length of the first period P1 and the length of the second period P2.
 制御部CNT1は、各周期PDにおいて第1スイッチSW1及び第4スイッチSW4をデューティ50%で相補的にオン/オフ制御する。なお、各周期PDは同一の固定値になっている。 The control unit CNT1 complementarily controls the ON/OFF of the first switch SW1 and the fourth switch SW4 at a duty of 50% in each cycle PD. Each cycle PD has the same fixed value.
 第1スイッチSW1がオンであり、第4スイッチSW4がオフである期間(タイミングt1からタイミングt5までの期間)では、コンデンサC1と入力端子とが電気的に接続されコンデンサC1とグランド電位とが電気的に接続されないので、第1接続ノードN1の電圧V1は48Vとなり、第2接続ノードN2の電圧V2は24Vとなる。 During the period in which the first switch SW1 is on and the fourth switch SW4 is off (period from timing t1 to timing t5), the capacitor C1 and the input terminal are electrically connected, and the capacitor C1 and the ground potential are electrically connected. Since they are not directly connected, the voltage V1 at the first connection node N1 is 48V and the voltage V2 at the second connection node N2 is 24V.
 これに対して、第1スイッチSW1がオフであり、第4スイッチSW4がオンである期間(タイミングt5から次の周期のタイミングt1までの期間)では、コンデンサC1とグランド電位とが電気的に接続されコンデンサC1と入力端子とが電気的に接続されないので、第1接続ノードN1の電圧V1は24Vとなり、第2接続ノードN2の電圧V2は0Vとなる。 On the other hand, during the period in which the first switch SW1 is off and the fourth switch SW4 is on (period from timing t5 to timing t1 of the next cycle), the capacitor C1 is electrically connected to the ground potential. Since the capacitor C1 and the input terminal are not electrically connected, the voltage V1 at the first connection node N1 is 24V and the voltage V2 at the second connection node N2 is 0V.
 第1期間P1(タイミングt3からタイミングt4までの期間)において、制御部CNT1は、第5スイッチSW5をオンにし、第1スイッチSW1をオンにし、第2スイッチSW2をオフにし、第4スイッチSW4をオフにし、第6スイッチSW6をオフにする。これにより、入力端子から第1スイッチSW1、コンデンサC1、第5スイッチSW5、及び第2インダクタL2を経由して出力コンデンサCOUT及び出力端子OUTに電流が流れる(図3参照)。 In the first period P1 (period from timing t3 to timing t4), the control unit CNT1 turns on the fifth switch SW5, turns on the first switch SW1, turns off the second switch SW2, and turns off the fourth switch SW4. off, and the sixth switch SW6 is turned off. As a result, a current flows from the input terminal to the output capacitor COUT and the output terminal OUT via the first switch SW1, the capacitor C1, the fifth switch SW5, and the second inductor L2 (see FIG. 3).
 第1オン期間O1(タイミングt1からタイミングt2までの期間)において、制御部CNT1は、第6スイッチSW6をオンにする。第1オン期間O1の開始時点(タイミングt1)では、第2インダクタL2を流れる電流IL2は零である。第1オン期間O1では、第3スイッチSW3がオンになるため、第2インダクタL2を流れる電流IL2が負電流になる(図4参照)。そして、タイミングt2において、第3スイッチSW3がターンオフすると、第4接続ノードN4の電圧V4が上昇する。 During the first ON period O1 (period from timing t1 to timing t2), the control unit CNT1 turns on the sixth switch SW6. At the start time (timing t1) of the first ON period O1, the current IL2 flowing through the second inductor L2 is zero. Since the third switch SW3 is turned on during the first ON period O1, the current IL2 flowing through the second inductor L2 becomes a negative current (see FIG. 4). At timing t2, when the third switch SW3 is turned off, the voltage V4 at the fourth connection node N4 rises.
 第5スイッチSW5のターンオンの前に、第6スイッチSW6をオンにする第1オン期間O1を設けることにより、タイミングt3において、第5スイッチSW5がターンオンするときの第5スイッチSW5の両端電位差を小さく(理想的には零に)できるので、スイッチング電源装置1の高効率化を図ることができる。 By providing the first ON period O1 in which the sixth switch SW6 is turned ON before the fifth switch SW5 is turned ON, the potential difference between both ends of the fifth switch SW5 when the fifth switch SW5 is turned ON at timing t3 is reduced. Since it can be made (ideally zero), the efficiency of the switching power supply device 1 can be improved.
 第1期間P1が終了すると、制御部CNT1は、第5スイッチSW5をターンオフし、第6スイッチSW6をターンオンする。制御部CNT1は、第2インダクタL2を流れる電流IL2が減少して零になるまで、第6スイッチSW6をオンにし続ける。これにより、グランド電位から第6スイッチSW6及び第2インダクタL2を経由して出力コンデンサCOUT及び出力端子OUTに電流が流れる(図5参照)。したがって、スイッチング電源装置1は、第2インダクタL2を流れる電流IL2を検出する第2電流検出部(不図示)を備える。第2検出部としては、例えば第6スイッチSW6の両端電位差により第6スイッチSW6を流れる電流を検出して間接的に第2インダクタL2を流れる電流IL2を検出する電流検出部を挙げることができる。第5スイッチSW5がオフであり、第6スイッチSW6がオンであるとき、第6スイッチSW6を流れる電流は第2インダクタL2を流れる電流IL2とみなすことができるからである。 When the first period P1 ends, the control unit CNT1 turns off the fifth switch SW5 and turns on the sixth switch SW6. The control unit CNT1 keeps the sixth switch SW6 on until the current IL2 flowing through the second inductor L2 decreases to zero. As a result, a current flows from the ground potential to the output capacitor COUT and the output terminal OUT via the sixth switch SW6 and the second inductor L2 (see FIG. 5). Therefore, the switching power supply 1 includes a second current detector (not shown) that detects the current IL2 flowing through the second inductor L2. As the second detection unit, for example, a current detection unit that detects the current IL2 flowing through the second inductor L2 by detecting the current flowing through the sixth switch SW6 based on the potential difference between both ends of the sixth switch SW6 can be used. This is because the current flowing through the sixth switch SW6 can be regarded as the current IL2 flowing through the second inductor L2 when the fifth switch SW5 is off and the sixth switch SW6 is on.
 第4接続ノードN4の電圧V4は、第2接続ノードN2の電圧V2から、上述した第5スイッチSW5及び第6スイッチSW6のスイッチングによって生成される。 The voltage V4 at the fourth connection node N4 is generated from the voltage V2 at the second connection node N2 by switching the fifth switch SW5 and the sixth switch SW6 described above.
 第2期間P2(タイミングt7からタイミングt8までの期間)において、制御部CNT1は、第2スイッチSW2をオンにし、第1スイッチSW1をオフにし、第3スイッチSW3をオフにし、第4スイッチSW4をオンにし、第5スイッチSW5をオフにする。これにより、グランド電位から第4スイッチSW4、コンデンサC1、第2スイッチSW2、及び第1インダクタL1経由して出力コンデンサCOUT及び出力端子OUTに電流が流れる(図6参照)。 In the second period P2 (period from timing t7 to timing t8), the control unit CNT1 turns on the second switch SW2, turns off the first switch SW1, turns off the third switch SW3, and turns off the fourth switch SW4. turn on and turn off the fifth switch SW5. As a result, a current flows from the ground potential to the output capacitor COUT and the output terminal OUT via the fourth switch SW4, the capacitor C1, the second switch SW2, and the first inductor L1 (see FIG. 6).
 第2期間P2が終了すると、制御部CNT1は、第2スイッチSW2をターンオフし、第3スイッチSW3をターンオンする。制御部CNT1は、第1インダクタL1を流れる電流IL1が減少して零になるまで、第3スイッチSW3をオンにし続ける。これにより、グランド電位から第3スイッチSW3及び第1インダクタL1を経由して出力コンデンサCOUT及び出力端子OUTに電流が流れる(図7参照)。したがって、スイッチング電源装置1は、第1インダクタL1を流れる電流IL1を検出する第1電流検出部(不図示)を備える。第1検出部としては、例えば第3スイッチSW3の両端電位差により第3スイッチSW3を流れる電流を検出して間接的に第1インダクタL1を流れる電流IL1を検出する電流検出部を挙げることができる。第2スイッチSW2がオフであり、第3スイッチSW3がオンであるとき、第3スイッチSW3を流れる電流は第1インダクタL1を流れる電流IL1とみなすことができるからである。 When the second period P2 ends, the control unit CNT1 turns off the second switch SW2 and turns on the third switch SW3. The control unit CNT1 keeps the third switch SW3 on until the current IL1 flowing through the first inductor L1 decreases to zero. As a result, a current flows from the ground potential to the output capacitor COUT and the output terminal OUT via the third switch SW3 and the first inductor L1 (see FIG. 7). Therefore, the switching power supply device 1 includes a first current detection section (not shown) that detects the current IL1 flowing through the first inductor L1. As the first detection unit, for example, a current detection unit that detects the current IL1 flowing through the first inductor L1 by detecting the current flowing through the third switch SW3 based on the potential difference across the third switch SW3 can be used. This is because when the second switch SW2 is off and the third switch SW3 is on, the current flowing through the third switch SW3 can be regarded as the current IL1 flowing through the first inductor L1.
 第3接続ノードN3の電圧V3は、第1接続ノードN1の電圧V1から、上述した第2スイッチSW2及び第3スイッチSW3のスイッチングによって生成される。 The voltage V3 at the third connection node N3 is generated from the voltage V1 at the first connection node N1 by switching the second switch SW2 and the third switch SW3 described above.
 そして、制御部CNT1は、第2スイッチSW2のターンオンの前に、第3スイッチSW3をオンにする第2オン期間O2(タイミングt5からタイミングt6までの期間)を設ける。第2オン期間O2の開始時点(タイミングt5)では、第1インダクタL1を流れる電流IL1は零である。第2オン期間O2では、第3スイッチSW3がオンになるため、第2インダクタL2を流れる電流IL2が負電流になる(図8参照)。そして、第2オン期間O2が終了すると、第3スイッチSW3がオフになるため、第3接続ノードN3の電圧V3が上昇する。これにより、第2スイッチSW2がターンオンするときの第2スイッチSW2の両端電位差を小さく(理想的には零に)できるので、スイッチング電源装置1の高効率化を図ることができる。 Then, the control unit CNT1 provides a second ON period O2 (a period from timing t5 to timing t6) for turning on the third switch SW3 before turning on the second switch SW2. At the start of the second ON period O2 (timing t5), the current IL1 flowing through the first inductor L1 is zero. During the second ON period O2, the third switch SW3 is turned on, so the current IL2 flowing through the second inductor L2 becomes a negative current (see FIG. 8). Then, when the second ON period O2 ends, the third switch SW3 is turned off, so the voltage V3 at the third connection node N3 rises. As a result, the potential difference across the second switch SW2 when the second switch SW2 is turned on can be reduced (ideally to zero), so that the efficiency of the switching power supply 1 can be improved.
 また、制御部CNT1は、第2スイッチSW2をオンにするときはコンデンサCrの両端がそれぞれ低インピーダンス状態になるように、第2スイッチSW2をオンにするときは常に第4スイッチSW4をオンにしている。 The controller CNT1 always turns on the fourth switch SW4 when turning on the second switch SW2 so that both ends of the capacitor Cr are in a low impedance state when turning on the second switch SW2. there is
 同様に、制御部CNT1は、第5スイッチSW5をオンにするときはコンデンサCrの両端がそれぞれ低インピーダンス状態になるように、第5スイッチSW5をオンにするときは常に第1スイッチSW1をオンにしている。 Similarly, the control unit CNT1 always turns on the first switch SW1 when turning on the fifth switch SW5 so that both ends of the capacitor Cr are in a low impedance state when turning on the fifth switch SW5. ing.
 さらに、制御部CNT1は、コンデンサCrの両端電位差を略一定に保つために、各周期PDにおいて第1期間P1の長さと第2期間P2の長さを揃えている。 Further, the control unit CNT1 makes the length of the first period P1 and the length of the second period P2 equal in each cycle PD in order to keep the potential difference across the capacitor Cr substantially constant.
<一実施形態に係るスイッチング電源装置の第2動作例>
 図9は、スイッチング電源装置1の第2動作例を示すタイムチャートである。以下、第2動作例において第1動作例と同様の動作については説明を省略し、第1動作例と異なる動作について説明する。
<Second Operation Example of Switching Power Supply According to One Embodiment>
FIG. 9 is a time chart showing a second operation example of the switching power supply device 1. FIG. Hereinafter, in the second operation example, description of the same operations as in the first operation example will be omitted, and operations different from the first operation example will be described.
 第2動作例において、制御部CNT1は、各周期PDにおいて第1スイッチSW1及び第4スイッチSW4をデューティ50%で相補的にオン/オフ制御していない。 In the second operation example, the control unit CNT1 does not complementarily on/off control the first switch SW1 and the fourth switch SW4 at a duty of 50% in each period PD.
 第2動作例において、制御部CNT1は、第1スイッチSW1及び第5スイッチSW5を同時にターンオンし、第1スイッチSW1及び第5スイッチSW5を同時にターンオフする。また、第2動作例において、制御部CNT1は、第4スイッチSW4及び第2スイッチSW2を同時にターンオンし、第4スイッチSW4及び第2スイッチSW2を同時にターンオフする。 In the second operation example, the control unit CNT1 turns on the first switch SW1 and the fifth switch SW5 at the same time, and turns off the first switch SW1 and the fifth switch SW5 at the same time. Also, in the second operation example, the controller CNT1 turns on the fourth switch SW4 and the second switch SW2 at the same time, and turns off the fourth switch SW4 and the second switch SW2 at the same time.
 第5スイッチSW5及び第6スイッチSW6がともにオフであるとき、すなわち第4接続ノードN4がハイインピーダンス状態であるとき、第4接続ノードN4の電圧V4は出力電圧VOUTと同じ値を保とうとする。しかしながら、第4接続ノードN4がハイインピーダンス状態である期間において第2スイッチSW2がオンになると、第5スイッチSW5の両端間に形成されるボディダイオードによって第4接続ノードN4から電荷が引き抜かれて、第4接続ノードN4の電圧V4は0Vまで低下する。なお、第5スイッチSW5の両端間に形成されるボディダイオードは、第4接続ノードN4側がアノードであり、第2接続ノードN2側がカソードである。第4接続ノードN4の電圧V4が出力電圧VOUTより低くなるため、第2インダクタL2を流れる電流IL2が負電流になる。そして、第2スイッチSW2がターンオフすると、第4接続ノードN4から第5スイッチSW5の両端間に形成されるボディダイオードを経由して第2接続ノードN2に電荷が供給されて、第2接続ノードN2の電圧V2が24Vまで上昇する。第2接続ノードN2の電圧V2の上昇に伴い、第1接続ノードN1の電圧V1が48Vまで上昇する。これにより、第1スイッチSW1がターンオンするときの第1スイッチSW1の両端電位差を小さく(理想的には零に)できる。したがって、第2動作例は、第1動作例よりもスイッチング電源装置1の高効率化を図ることができる。 When both the fifth switch SW5 and the sixth switch SW6 are off, that is, when the fourth connection node N4 is in a high impedance state, the voltage V4 at the fourth connection node N4 tries to maintain the same value as the output voltage VOUT. However, when the second switch SW2 is turned on while the fourth connection node N4 is in the high-impedance state, the body diode formed across the fifth switch SW5 draws electric charges from the fourth connection node N4, The voltage V4 at the fourth connection node N4 drops to 0V. The body diode formed between both ends of the fifth switch SW5 has an anode on the side of the fourth connection node N4 and a cathode on the side of the second connection node N2. Since the voltage V4 at the fourth connection node N4 becomes lower than the output voltage VOUT, the current IL2 flowing through the second inductor L2 becomes a negative current. When the second switch SW2 is turned off, electric charges are supplied from the fourth connection node N4 to the second connection node N2 through the body diode formed between both ends of the fifth switch SW5. voltage V2 rises to 24V. As the voltage V2 at the second connection node N2 rises, the voltage V1 at the first connection node N1 rises to 48V. As a result, the potential difference across the first switch SW1 when the first switch SW1 is turned on can be reduced (ideally to zero). Therefore, in the second operation example, the efficiency of the switching power supply device 1 can be improved more than in the first operation example.
 なお、両端間にボディダイオードが形成されない第5スイッチSW5を用いる場合、又は、両端間に形成されるボディダイオードの電流能力が低い第5スイッチSW5を用いる場合、第5スイッチSW5に並列接続されるダイオードを設けてもよい。 When using the fifth switch SW5 having no body diode formed between both ends thereof, or when using the fifth switch SW5 having a low current capability of the body diode formed between both ends of the switch SW5, the fifth switch SW5 is connected in parallel. A diode may be provided.
<一実施形態に係るスイッチング電源装置の第3動作例>
 図10は、スイッチング電源装置1の第3動作例を示すタイムチャートである。以下、第3動作例において第2動作例と同様の動作については説明を省略し、第2動作例と異なる動作について説明する。
<Third Operation Example of Switching Power Supply According to One Embodiment>
FIG. 10 is a time chart showing a third operation example of the switching power supply device 1. FIG. Hereinafter, in the third operation example, the description of the same operations as in the second operation example will be omitted, and the operations different from the second operation example will be described.
 第3動作例では、第2動作例と同様に、第2スイッチSW2がターンオフすると、第4接続ノードN4から第5スイッチSW5の両端間に形成されるボディダイオードを経由して第2接続ノードN2に電荷が供給される。そして、第2接続ノードN2の電圧V2は上昇するが、24Vには達しない。第2接続ノードN2の電圧V2の上昇に伴い、第1接続ノードN1の電圧V1は上昇するが、48Vには達しない。第1スイッチSW1がターンオンすると、第2接続ノードN2の電圧V2は24Vまで上昇し、第1接続ノードN1の電圧V2は48Vまで上昇する。 In the third operation example, as in the second operation example, when the second switch SW2 is turned off, the second connection node N2 is connected from the fourth connection node N4 via the body diode formed between both ends of the fifth switch SW5. is supplied with charge. Although the voltage V2 at the second connection node N2 rises, it does not reach 24V. As the voltage V2 at the second connection node N2 rises, the voltage V1 at the first connection node N1 rises, but does not reach 48V. When the first switch SW1 is turned on, the voltage V2 at the second connection node N2 rises to 24V and the voltage V2 at the first connection node N1 rises to 48V.
 第3動作例は、第2動作例には及ばないが、第1動作例よりもスイッチング電源装置1の高効率化を図ることができる。 Although the third operation example is not as good as the second operation example, the efficiency of the switching power supply 1 can be improved more than the first operation example.
<用途>
 次に、先に説明したスイッチング電源装置1の用途例について説明する。図11は、車載機器を搭載した車両の一構成例を示す外観図である。本構成例の車両Xは、車載機器X11~X17と、これらの車載機器X11~X17に電力を供給するバッテリ(不図示)と、を搭載している。
<Application>
Next, application examples of the switching power supply device 1 described above will be described. FIG. 11 is an external view showing a configuration example of a vehicle in which the in-vehicle device is mounted. The vehicle X of this configuration example is equipped with onboard devices X11 to X17 and a battery (not shown) that supplies power to these onboard devices X11 to X17.
 先に説明したスイッチング電源装置1が車両Xに搭載される場合、AMラジオ放送の受信に悪影響が出ないようにAM帯域の輻射ノイズを抑えることが求められる。したがって、制御部CNT1が、第1接続ノードN1に、1.8MHz以上2.1MHz以下の電圧を発生させることが望ましい。すなわち、上述した各周期PDの固定値の逆数(スイッチング周波数)を1.8MHz以上2.1MHz以下にすることが望ましい。スイッチング周波数が1.8MHz未満になると、AM帯域の輻射ノイズが増加し、スイッチング周波数が2.1MHzより大きくなると、スイッチング損失が許容範囲を超えるからである。 When the switching power supply device 1 described above is installed in the vehicle X, it is required to suppress radiation noise in the AM band so as not to adversely affect the reception of AM radio broadcasts. Therefore, it is desirable that the control unit CNT1 generates a voltage of 1.8 MHz or more and 2.1 MHz or less at the first connection node N1. That is, it is desirable to set the reciprocal (switching frequency) of the fixed value of each cycle PD to 1.8 MHz or more and 2.1 MHz or less. This is because if the switching frequency is less than 1.8 MHz, radiation noise in the AM band increases, and if the switching frequency is greater than 2.1 MHz, the switching loss exceeds the allowable range.
 車載機器X11は、エンジンに関連する制御(インジェクション制御、電子スロットル制御、アイドリング制御、酸素センサヒータ制御、及び、オートクルーズ制御など)を行うエンジンコントロールユニットである。 The in-vehicle device X11 is an engine control unit that performs engine-related controls (injection control, electronic throttle control, idling control, oxygen sensor heater control, auto-cruise control, etc.).
 車載機器X12は、HID[high intensity  discharged  lamp]やDRL[daytime  running lamp]などの点消灯制御を行うランプコントロールユニットである。 The in-vehicle device X12 is a lamp control unit that controls lighting and extinguishing of HID [high intensity discharged lamp] and DRL [daytime running lamp].
 車載機器X13は、トランスミッションに関連する制御を行うトランスミッションコントロールユニットである。 The in-vehicle device X13 is a transmission control unit that performs controls related to the transmission.
 車載機器X14は、車両Xの運動に関連する制御(ABS[anti-lock  brake system]制御、EPS[electric power  Steering]制御、電子サスペンション制御など)を行うボディコントロールユニットである。 The in-vehicle device X14 is a body control unit that performs controls related to the movement of the vehicle X (ABS [anti-lock brake system] control, EPS [electric power steering] control, electronic suspension control, etc.).
 車載機器X15は、ドアロックや防犯アラームなどの駆動制御を行うセキュリティコントロールユニットである。 The in-vehicle device X15 is a security control unit that controls driving such as door locks and security alarms.
 車載機器X16は、ワイパー、電動ドアミラー、パワーウィンドウ、電動サンルーフ、電動シート、及び、エアコンなど、標準装備品やメーカーオプション品として、工場出荷段階で車両Xに組み込まれている電子機器である。 In-vehicle equipment X16 is electronic equipment that is built into vehicle X at the factory shipment stage as standard equipment or manufacturer options, such as wipers, electric door mirrors, power windows, electric sunroofs, electric seats, and air conditioners.
 車載機器X17は、車載A/V[audio/visual]機器、カーナビゲーションシステム、及び、ETC[Electronic Toll Collection System]など、ユーザの任意で車両Xに装着される電子機器である。 The in-vehicle device X17 is an electronic device that the user arbitrarily attaches to the vehicle X, such as an in-vehicle A/V [audio/visual] device, a car navigation system, and an ETC [Electronic Toll Collection System].
 なお、先に説明したスイッチング電源装置1は、車載機器X11~X17のいずれにも組み込むことが可能である。 It should be noted that the switching power supply device 1 described above can be incorporated in any of the in-vehicle devices X11 to X17.
<留意点>
 なお、本発明の構成は、上記実施形態のほか、発明の主旨を逸脱しない範囲で種々の変更を加えることが可能である。上記実施形態は、全ての点で例示であって、制限的なものではないと考えられるべきであり、本発明の技術的範囲は、上記実施形態の説明ではなく、特許請求の範囲によって示されるものであり、特許請求の範囲と均等の意味及び範囲内に属する全ての変更が含まれると理解されるべきである。
<Points to note>
In addition to the above-described embodiment, the configuration of the present invention can be modified in various ways without departing from the gist of the invention. The above embodiments should be considered illustrative in all respects and not restrictive, and the technical scope of the present invention is indicated by the scope of claims rather than the description of the above embodiments. It should be understood that all modifications that fall within the meaning and range of equivalents of the claims are included.
 例えば、上記実施形態では、各周期において第1期間P1の長さと第2期間P2の長さを揃えることで、コンデンサC1の両端電位差を一定に保っている。しかしながら、例えば、第1期間P1の長さと第2期間P2の長さを揃えず、コンデンサC1の両端電位差を検出し、コンデンサC1の両端電位差の検出結果に応じて第1期間P1の長さと第2期間P2の長さとの比率を調整する構成にしてもよい。 For example, in the above embodiment, the potential difference across the capacitor C1 is kept constant by aligning the length of the first period P1 and the length of the second period P2 in each cycle. However, for example, the length of the first period P1 and the length of the second period P2 are not made the same. The configuration may be such that the ratio with the length of the two periods P2 is adjusted.
 また、上記実施形態では、第5スイッチSW5がターンオンするタイミングと、第2インダクタL2を流れる電流IL2が零になるタイミングとが同一のタイミング(タイミングt3)であるが、第5スイッチSW5がターンオンするタイミングは、第2インダクタL2を流れる電流IL2が零になるタイミングより前であってもよく、第2インダクタL2を流れる電流IL2が零になるタイミングより後であってもよい。ただし、第2インダクタL2を流れる電流IL2が零になるより前に第5スイッチSW5がターンオンする場合、第5スイッチSW5はゼロボルトスイッチングにならない。したがって、第2インダクタL2を流れる電流IL2が零になると同時に、又は、第2インダクタL2を流れる電流IL2が零になった後に、第5スイッチSW5がターンオンすることが望ましい。 Further, in the above embodiment, the timing when the fifth switch SW5 is turned on and the timing when the current IL2 flowing through the second inductor L2 becomes zero are the same timing (timing t3), but the fifth switch SW5 is turned on. The timing may be before the timing at which the current IL2 flowing through the second inductor L2 becomes zero, or after the timing at which the current IL2 flowing through the second inductor L2 becomes zero. However, if the fifth switch SW5 turns on before the current IL2 flowing through the second inductor L2 becomes zero, the fifth switch SW5 will not be zero volt switching. Therefore, it is desirable that the fifth switch SW5 is turned on at the same time as the current IL2 flowing through the second inductor L2 becomes zero or after the current IL2 flowing through the second inductor L2 becomes zero.
 また、上記実施形態では、タイミングt5からタイミングt6までの期間において、第3スイッチSW3と第6スイッチSW6とがともにオンになっているが、第6スイッチSW6がターンオフした後(タイミングt6の後)に第3スイッチSW3がターンオンするようにしてもよい。第2スイッチSW2及び第3スイッチSW3と第5スイッチSW5及び第6スイッチSW6との間にコンデンサC1が配置されており、第2スイッチSW2及び第3スイッチSW3のスイッチング動作と第5スイッチSW5及び第6スイッチSW6のスイッチング動作とは独立しているからである。ただし、上記実施形態のように第3スイッチSW3と第6スイッチSW6とがともにオンである期間を設けた方が、スイッチング制御の時間的な効率が高くなるので、第3スイッチSW3と第6スイッチSW6とがともにオンである期間を設けることが望ましい。 In the above embodiment, both the third switch SW3 and the sixth switch SW6 are turned on during the period from the timing t5 to the timing t6, but after the sixth switch SW6 is turned off (after the timing t6). The third switch SW3 may be turned on immediately. A capacitor C1 is arranged between the second switch SW2 and the third switch SW3 and the fifth switch SW5 and the sixth switch SW6, and the switching operation of the second switch SW2 and the third switch SW3 and the switching operation of the fifth switch SW5 and the fifth switch SW5 are arranged. This is because it is independent of the switching operation of the 6-switch SW6. However, providing a period in which both the third switch SW3 and the sixth switch SW6 are ON as in the above embodiment improves the temporal efficiency of switching control. It is desirable to provide a period during which both SW6 are on.
 以上説明したスイッチング電源装置(1)は、第1~第6スイッチ(SW1~SW6)と、コンデンサ(C1)と、前記第1~前記第6スイッチそれぞれのオン/オフを制御するよう構成される制御部(CNT1)と、を備え、前記第1スイッチは、前記第1スイッチの第1端が入力電圧の印加端に接続可能に構成され、前記第1スイッチの第2端が第2スイッチの第1端及び前記コンデンサの第1端に接続可能に構成され、前記第2スイッチは、前記第2スイッチの第2端が前記第3スイッチの第1端及び第1インダクタの第1端に接続可能に構成され、前記第3スイッチは、前記第3スイッチの第2端が前記入力電圧よりも低い低電圧の印加端に接続可能に構成され、前記第4スイッチは、前記第4スイッチの第1端が前記コンデンサの第2端及び前記第5スイッチの第1端に接続可能に構成され、前記第4スイッチの第2端が前記低電圧の印加端に接続可能に構成され、前記第5スイッチは、前記第5スイッチの第2端が前記第6スイッチの第1端及び第2インダクタの第1端に接続可能に構成され、前記第6スイッチは、前記第6スイッチの第2端が前記低電圧の印加端に接続可能に構成され、前記制御部は、前記第5スイッチをオンにし、前記第1スイッチをオンにし、前記第2スイッチをオフにし、前記第4スイッチをオフにし、前記第6スイッチをオフにする第1期間と、前記第2スイッチをオンにし、前記第1スイッチをオフにし、前記第3スイッチをオフにし、前記第4スイッチをオンにし、前記第5スイッチをオフにする第2期間と、を設けるように構成される構成(第1の構成)である。 The switching power supply device (1) described above is configured to control ON/OFF of the first to sixth switches (SW1 to SW6), the capacitor (C1), and the first to sixth switches. a control unit (CNT1), wherein the first switch is configured such that a first end of the first switch can be connected to an input voltage application end, and a second end of the first switch is connected to a second switch; The second switch is configured to be connectable to a first end and a first end of the capacitor, wherein the second switch connects a second end of the second switch to a first end of the third switch and a first end of the first inductor. the third switch is configured such that a second end of the third switch can be connected to a low voltage application end lower than the input voltage; one end of the capacitor is connectable to the second end of the capacitor and the first end of the fifth switch; the second end of the fourth switch is connectable to the low voltage application end; The switch is configured such that the second end of the fifth switch is connectable to the first end of the sixth switch and the first end of the second inductor, and the sixth switch connects the second end of the sixth switch to the first end of the second inductor. The controller is configured to be connectable to the low voltage application end, the controller turns on the fifth switch, turns on the first switch, turns off the second switch, turns off the fourth switch, a first period in which the sixth switch is turned off, the second switch is turned on, the first switch is turned off, the third switch is turned off, the fourth switch is turned on, and the fifth switch is turned on; and a second off period (first configuration).
 上記第1の構成のスイッチング電源装置は、入力電圧と出力電圧との関係を変更することができる。 The switching power supply device having the first configuration can change the relationship between the input voltage and the output voltage.
 上記第1の構成のスイッチング電源装置において、前記制御部は、前記第5スイッチのターンオンの前に前記第6スイッチをオンにする第1オン期間を設けるように構成される構成(第2の構成)としてもよい。 In the switching power supply device having the first configuration, the control unit is configured to provide a first ON period for turning on the sixth switch before turning on the fifth switch (second configuration ).
 上記第2の構成のスイッチング電源装置は、第5スイッチがターンオンするときの第5スイッチの両端電位差を小さく(理想的には零に)できるので、高効率化を図ることができる。 In the switching power supply device having the second configuration, the potential difference between both ends of the fifth switch can be reduced (ideally zero) when the fifth switch is turned on, so efficiency can be improved.
 上記第1又は第2の構成のスイッチング電源装置において、前記制御部は、前記第2スイッチのターンオンの前に前記第3スイッチをオンにする第2オン期間を設けるように構成される構成(第3の構成)としてもよい。 In the switching power supply device having the first or second configuration, the control section is configured to provide a second ON period for turning on the third switch before turning on the second switch (second 3).
 上記第3の構成のスイッチング電源装置は、第2スイッチがターンオンするときの第2スイッチの両端電位差を小さく(理想的には零に)できるので、高効率化を図ることができる。 In the switching power supply device having the third configuration, the potential difference between both ends of the second switch can be reduced (ideally zero) when the second switch is turned on, so efficiency can be improved.
 上記第1~第3いずれかの構成のスイッチング電源装置において、前記制御部は、前記第2スイッチをオンにするときは常に前記第4スイッチをオンにし、前記第5スイッチをオンにするときは常に前記第1スイッチをオンにするように構成される構成(第4の構成)としてもよい。 In the switching power supply device having any one of the first to third configurations, the controller always turns on the fourth switch when turning on the second switch, and turns on the fifth switch when turning on the fifth switch. A configuration (fourth configuration) may be employed in which the first switch is always turned on.
 上記第4の構成のスイッチング電源装置は、第2スイッチをオンにするときにコンデンサCrの両端をそれぞれ低インピーダンス状態にできる。また、上記第4の構成のスイッチング電源装置は、第5スイッチをオンにするときにコンデンサの両端をそれぞれ低インピーダンス状態にできる。 The switching power supply device having the fourth configuration can put both ends of the capacitor Cr into a low impedance state when turning on the second switch. Further, the switching power supply device having the fourth configuration can bring both ends of the capacitor into a low impedance state when turning on the fifth switch.
 上記第1~第4いずれかの構成のスイッチング電源装置において、前記制御部は、各周期において前記1期間の長さと前記第2期間の長さを揃えるように構成される構成(第5の構成)としてもよい。 In the switching power supply device having any one of the first to fourth configurations, the control unit is configured to match the length of the first period and the length of the second period in each cycle (fifth configuration ).
 上記第5の構成のスイッチング電源装置は、コンデンサの両端電位差を一定に保つことができる。 The switching power supply device having the fifth configuration can keep the potential difference across the capacitor constant.
 上記第1~第5いずれかの構成のスイッチング電源装置において、前記制御部は、前記第1スイッチ及び前記第5スイッチを同時にターンオンし、前記第1スイッチ及び前記第5スイッチを同時にターンオフし、前記第4スイッチ及び前記第2スイッチを同時にターンオンし、前記第4スイッチ及び前記第2スイッチを同時にターンオフするように構成される構成(第6の構成)としてもよい。 In the switching power supply device having any one of the first to fifth configurations, the control unit simultaneously turns on the first switch and the fifth switch, simultaneously turns off the first switch and the fifth switch, and A configuration (sixth configuration) may be employed in which the fourth switch and the second switch are turned on at the same time, and the fourth switch and the second switch are turned off at the same time.
 上記第6の構成のスイッチング電源装置は、第1スイッチがターンオンするときの第1スイッチの両端電位差を小さく(理想的には零に)できるので、高効率化を図ることができる。 In the switching power supply device having the sixth configuration, the potential difference between both ends of the first switch can be reduced (ideally zero) when the first switch is turned on, so efficiency can be improved.
 以上説明したスイッチ制御装置(CNT1)は、第1~第6スイッチ(SW1~SW6)と、コンデンサ(C1)と、を備え、前記第1スイッチは、前記第1スイッチの第1端が入力電圧の印加端に接続可能に構成され、前記第1スイッチの第2端が第2スイッチの第1端及び前記コンデンサの第1端に接続可能に構成され、前記第2スイッチは、前記第2スイッチの第2端が前記第3スイッチの第1端及び第1インダクタの第1端に接続可能に構成され、前記第3スイッチは、前記第3スイッチの第2端が前記入力電圧よりも低い低電圧の印加端に接続可能に構成され、前記第4スイッチは、前記第4スイッチの第1端が前記コンデンサの第2端及び前記第5スイッチの第1端に接続可能に構成され、前記第4スイッチの第2端が前記低電圧の印加端に接続可能に構成され、前記第5スイッチは、前記第5スイッチの第2端が前記第6スイッチの第1端及び第2インダクタの第1端に接続可能に構成され、前記第6スイッチは、前記第6スイッチの第2端が前記低電圧の印加端に接続可能に構成される、スイッチング電源装置(1)の一部であって、前記第1~前記第6スイッチそれぞれのオン/オフを制御するよう構成され、前記第5スイッチをオンにし、前記第1スイッチをオンにし、前記第2スイッチをオフにし、前記第4スイッチをオフにし、前記第6スイッチをオフにする第1期間と、前記第2スイッチをオンにし、前記第1スイッチをオフにし、前記第3スイッチをオフにし、前記第4スイッチをオンにし、前記第5スイッチをオフにする第2期間と、を設けるように構成される構成(第7の構成)である。 The switch control device (CNT1) described above includes first to sixth switches (SW1 to SW6) and a capacitor (C1). the second end of the first switch is connectable to the first end of the second switch and the first end of the capacitor, and the second switch is configured to be connectable to the application end of the second switch is connectable to the first end of the third switch and the first end of the first inductor, the third switch being configured such that the second end of the third switch is lower than the input voltage; a first end of the fourth switch is connectable to a second end of the capacitor and a first end of the fifth switch; The second ends of four switches are connectable to the low voltage application end, and the fifth switch is configured such that the second ends of the fifth switches are connected to the first end of the sixth switch and the first end of the second inductor. a second end of the sixth switch is connectable to the low voltage application end, wherein the switching power supply (1) comprises: configured to control on/off of each of the first to sixth switches, turning on the fifth switch, turning on the first switch, turning off the second switch, and turning off the fourth switch a first period during which the sixth switch is turned off, the second switch is turned on, the first switch is turned off, the third switch is turned off, the fourth switch is turned on, and the fifth period is turned off; and a second period during which the switch is turned off (seventh configuration).
 上記第7の構成のスイッチ制御装置は、スイッチング電源装置における入力電圧と出力電圧との関係を変更することができる。 The switch control device having the seventh configuration can change the relationship between the input voltage and the output voltage in the switching power supply device.
 以上説明した車載機器(X11~X17)は、上記第1~第6いずれかの構成のスイッチング電源装置又は上記第7の構成のスイッチ制御装置を備える構成(第8の構成)である。 The vehicle-mounted devices (X11 to X17) described above have a configuration (eighth configuration) including the switching power supply device having any one of the first to sixth configurations or the switch control device having the seventh configuration.
 上記第8の構成の車載機器は、スイッチング電源装置における入力電圧と出力電圧との関係を変更することができる。 The vehicle-mounted device having the eighth configuration can change the relationship between the input voltage and the output voltage in the switching power supply.
 以上説明した車両は、上記第8の構成の車載機器と、前記車載機器に電力を供給するバッテリと、を備える構成(第9の構成)である。 The vehicle described above has a configuration (ninth configuration) including the vehicle-mounted device of the eighth configuration and a battery that supplies power to the vehicle-mounted device.
 上記第9の構成の車両(X)は、スイッチング電源装置における入力電圧と出力電圧との関係を変更することができる。 The vehicle (X) having the ninth configuration can change the relationship between the input voltage and the output voltage in the switching power supply.
   1 一実施形態に係るスイッチング電源装置
   C1 コンデンサ
   COUT 出力コンデンサ
   CNT1 制御部
   FB1 出力帰還部
   L1 第1インダクタ
   L2 第2インダクタ
   LD1 負荷
   SW1~SW6 第1~第6スイッチ
   X 車両
   X11~X17 車載機器
1 switching power supply device according to one embodiment C1 capacitor COUT output capacitor CNT1 control unit FB1 output feedback unit L1 first inductor L2 second inductor LD1 load SW1 to SW6 first to sixth switches X vehicle X11 to X17 onboard equipment

Claims (9)

  1.  第1~第6スイッチと、コンデンサと、前記第1~前記第6スイッチそれぞれのオン/オフを制御するよう構成される制御部と、を備え、
     前記第1スイッチは、前記第1スイッチの第1端が入力電圧の印加端に接続可能に構成され、前記第1スイッチの第2端が第2スイッチの第1端及び前記コンデンサの第1端に接続可能に構成され、
     前記第2スイッチは、前記第2スイッチの第2端が前記第3スイッチの第1端及び第1インダクタの第1端に接続可能に構成され、
     前記第3スイッチは、前記第3スイッチの第2端が前記入力電圧よりも低い低電圧の印加端に接続可能に構成され、
     前記第4スイッチは、前記第4スイッチの第1端が前記コンデンサの第2端及び前記第5スイッチの第1端に接続可能に構成され、前記第4スイッチの第2端が前記低電圧の印加端に接続可能に構成され、
     前記第5スイッチは、前記第5スイッチの第2端が前記第6スイッチの第1端及び第2インダクタの第1端に接続可能に構成され、
     前記第6スイッチは、前記第6スイッチの第2端が前記低電圧の印加端に接続可能に構成され、
     前記制御部は、
     前記第5スイッチをオンにし、前記第1スイッチをオンにし、前記第2スイッチをオフにし、前記第4スイッチをオフにし、前記第6スイッチをオフにする第1期間と、
     前記第2スイッチをオンにし、前記第1スイッチをオフにし、前記第3スイッチをオフにし、前記第4スイッチをオンにし、前記第5スイッチをオフにする第2期間と、
    を設けるように構成される、スイッチング電源装置。
    first to sixth switches, a capacitor, and a controller configured to control on/off of each of the first to sixth switches;
    The first switch is configured such that a first terminal of the first switch can be connected to an application terminal of an input voltage, and a second terminal of the first switch is connected to a first terminal of the second switch and a first terminal of the capacitor. configured to connect to
    the second switch is configured such that a second end of the second switch can be connected to a first end of the third switch and a first end of the first inductor;
    The third switch is configured such that a second terminal of the third switch can be connected to a low voltage application terminal lower than the input voltage,
    The fourth switch is configured such that a first end of the fourth switch is connectable to a second end of the capacitor and a first end of the fifth switch, and a second end of the fourth switch is connected to the low voltage. configured to be connectable to the applying end,
    the fifth switch is configured such that a second end of the fifth switch can be connected to a first end of the sixth switch and a first end of a second inductor;
    The sixth switch is configured such that a second terminal of the sixth switch can be connected to the low voltage application terminal,
    The control unit
    a first period during which the fifth switch is turned on, the first switch is turned on, the second switch is turned off, the fourth switch is turned off, and the sixth switch is turned off;
    a second period during which the second switch is turned on, the first switch is turned off, the third switch is turned off, the fourth switch is turned on, and the fifth switch is turned off;
    A switching power supply configured to provide a
  2.  前記制御部は、
     前記第5スイッチのターンオンの前に前記第6スイッチをオンにする第1オン期間を設けるように構成される、請求項1に記載のスイッチング電源装置。
    The control unit
    2. The switching power supply device according to claim 1, configured to provide a first ON period during which said sixth switch is turned ON before said fifth switch is turned ON.
  3.  前記制御部は、
     前記第2スイッチのターンオンの前に前記第3スイッチをオンにする第2オン期間を設けるように構成される、請求項1又は請求項2に記載のスイッチング電源装置。
    The control unit
    3. The switching power supply device according to claim 1, wherein a second ON period for turning on said third switch is provided before said second switch is turned on.
  4.  前記制御部は、
     前記第2スイッチをオンにするときは常に前記第4スイッチをオンにし、前記第5スイッチをオンにするときは常に前記第1スイッチをオンにするように構成される、請求項1~3のいずれか一項に記載のスイッチング電源装置。
    The control unit
    4. The device according to any one of claims 1 to 3, wherein the fourth switch is always turned on when the second switch is turned on, and the first switch is always turned on when the fifth switch is turned on. The switching power supply device according to any one of claims 1 to 3.
  5.  前記制御部は、
     各周期において前記1期間の長さと前記第2期間の長さを揃えるように構成される、請求項1~4のいずれか一項に記載のスイッチング電源装置。
    The control unit
    5. The switching power supply device according to claim 1, wherein the length of said one period and the length of said second period are made equal in each period.
  6.  前記制御部は、
     前記第1スイッチ及び前記第5スイッチを同時にターンオンし、前記第1スイッチ及び前記第5スイッチを同時にターンオフし、
     前記第4スイッチ及び前記第2スイッチを同時にターンオンし、前記第4スイッチ及び前記第2スイッチを同時にターンオフするように構成される、請求項1~5のいずれか一項に記載のスイッチング電源装置。
    The control unit
    simultaneously turning on the first switch and the fifth switch and simultaneously turning off the first switch and the fifth switch;
    6. The switching power supply device according to claim 1, wherein said fourth switch and said second switch are turned on simultaneously, and said fourth switch and said second switch are turned off simultaneously.
  7.  第1~第6スイッチと、コンデンサと、を備え、
     前記第1スイッチは、前記第1スイッチの第1端が入力電圧の印加端に接続可能に構成され、前記第1スイッチの第2端が第2スイッチの第1端及び前記コンデンサの第1端に接続可能に構成され、
     前記第2スイッチは、前記第2スイッチの第2端が前記第3スイッチの第1端及び第1インダクタの第1端に接続可能に構成され、
     前記第3スイッチは、前記第3スイッチの第2端が前記入力電圧よりも低い低電圧の印加端に接続可能に構成され、
     前記第4スイッチは、前記第4スイッチの第1端が前記コンデンサの第2端及び前記第5スイッチの第1端に接続可能に構成され、前記第4スイッチの第2端が前記低電圧の印加端に接続可能に構成され、
     前記第5スイッチは、前記第5スイッチの第2端が前記第6スイッチの第1端及び第2インダクタの第1端に接続可能に構成され、
     前記第6スイッチは、前記第6スイッチの第2端が前記低電圧の印加端に接続可能に構成される、スイッチング電源装置の一部であって、
     前記第1~前記第6スイッチそれぞれのオン/オフを制御するよう構成され、
     前記第5スイッチをオンにし、前記第1スイッチをオンにし、前記第2スイッチをオフにし、前記第4スイッチをオフにし、前記第6スイッチをオフにする第1期間と、
     前記第2スイッチをオンにし、前記第1スイッチをオフにし、前記第3スイッチをオフにし、前記第4スイッチをオンにし、前記第5スイッチをオフにする第2期間と、
    を設けるように構成される、スイッチ制御装置。
    comprising first to sixth switches and a capacitor,
    The first switch is configured such that a first terminal of the first switch can be connected to an application terminal of an input voltage, and a second terminal of the first switch is connected to a first terminal of the second switch and a first terminal of the capacitor. configured to connect to
    the second switch is configured such that a second end of the second switch can be connected to a first end of the third switch and a first end of the first inductor;
    The third switch is configured such that a second terminal of the third switch can be connected to a low voltage application terminal lower than the input voltage,
    The fourth switch is configured such that a first end of the fourth switch is connectable to a second end of the capacitor and a first end of the fifth switch, and a second end of the fourth switch is connected to the low voltage. configured to be connectable to the applying end,
    the fifth switch is configured such that a second end of the fifth switch can be connected to a first end of the sixth switch and a first end of a second inductor;
    The sixth switch is a part of a switching power supply device configured such that a second end of the sixth switch can be connected to the low voltage application end,
    configured to control on/off of each of the first to sixth switches;
    a first period during which the fifth switch is turned on, the first switch is turned on, the second switch is turned off, the fourth switch is turned off, and the sixth switch is turned off;
    a second period during which the second switch is turned on, the first switch is turned off, the third switch is turned off, the fourth switch is turned on, and the fifth switch is turned off;
    A switch control device configured to provide a
  8.  請求項1~6のいずれか一項に記載のスイッチング電源装置又は請求項7に記載のスイッチ制御装置を備える、車載機器。 An in-vehicle device comprising the switching power supply device according to any one of claims 1 to 6 or the switch control device according to claim 7.
  9.  請求項8に記載の車載機器と、
     前記車載機器に電力を供給するバッテリと、
     を備える、車両。
    An in-vehicle device according to claim 8;
    a battery that supplies power to the in-vehicle device;
    a vehicle.
PCT/JP2022/007206 2021-03-09 2022-02-22 Switching power supply device, switch control device, vehicle-mounted device, and vehicle WO2022190855A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023505269A JPWO2022190855A1 (en) 2021-03-09 2022-02-22

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-037308 2021-03-09
JP2021037308 2021-03-09

Publications (1)

Publication Number Publication Date
WO2022190855A1 true WO2022190855A1 (en) 2022-09-15

Family

ID=83227805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007206 WO2022190855A1 (en) 2021-03-09 2022-02-22 Switching power supply device, switch control device, vehicle-mounted device, and vehicle

Country Status (2)

Country Link
JP (1) JPWO2022190855A1 (en)
WO (1) WO2022190855A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000308337A (en) * 1999-04-19 2000-11-02 Amada Eng Center Co Ltd Two-phase dc-dc converter preventing reverse recovery current of feedback diode
JP2002044941A (en) * 2000-07-27 2002-02-08 Fdk Corp Dc-dc converter
JP2002262551A (en) * 2000-02-07 2002-09-13 Fiderikkusu:Kk Voltage step-down dc-dc converter
JP2006223088A (en) * 2005-01-14 2006-08-24 Oita Univ Multiple phase switching converter and control method thereof
JP2013510548A (en) * 2009-11-09 2013-03-21 エスエムエー ソーラー テクノロジー アーゲー Buck converter and inverter including it
JP2017521041A (en) * 2014-06-30 2017-07-27 ▲陽▼光▲電▼源股▲分▼有限公司Sungrow Power Supply Co., Ltd. DC-DC converter with high transformation ratio
CN111682753A (en) * 2020-06-09 2020-09-18 杭州艾诺半导体有限公司 Hybrid power converter and control method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000308337A (en) * 1999-04-19 2000-11-02 Amada Eng Center Co Ltd Two-phase dc-dc converter preventing reverse recovery current of feedback diode
JP2002262551A (en) * 2000-02-07 2002-09-13 Fiderikkusu:Kk Voltage step-down dc-dc converter
JP2002044941A (en) * 2000-07-27 2002-02-08 Fdk Corp Dc-dc converter
JP2006223088A (en) * 2005-01-14 2006-08-24 Oita Univ Multiple phase switching converter and control method thereof
JP2013510548A (en) * 2009-11-09 2013-03-21 エスエムエー ソーラー テクノロジー アーゲー Buck converter and inverter including it
JP2017521041A (en) * 2014-06-30 2017-07-27 ▲陽▼光▲電▼源股▲分▼有限公司Sungrow Power Supply Co., Ltd. DC-DC converter with high transformation ratio
CN111682753A (en) * 2020-06-09 2020-09-18 杭州艾诺半导体有限公司 Hybrid power converter and control method thereof

Also Published As

Publication number Publication date
JPWO2022190855A1 (en) 2022-09-15

Similar Documents

Publication Publication Date Title
US11848611B2 (en) Switching power supply device
JP7037637B2 (en) Switching control circuit
JP6594199B2 (en) Switching regulator
US10673332B2 (en) Switching regulator
JP7015940B2 (en) Linear power circuit
JP7165562B2 (en) linear power supply circuit
JP7145745B2 (en) switch device
WO2022190855A1 (en) Switching power supply device, switch control device, vehicle-mounted device, and vehicle
JP2020072399A (en) Differential amplifier
WO2022190856A1 (en) Switching power supply device, switch control device, in-vehicle device, and vehicle
JP7445521B2 (en) switching power supply
WO2023248891A1 (en) Switch control device, switching power supply device, in-vehicle equipment, and vehicle
WO2021246302A1 (en) Switching power supply device, switch control device, vehicle-mounted apparatus, and vehicle
JP6030335B2 (en) Power supply device, in-vehicle equipment, vehicle
US20230370063A1 (en) Switch circuit, switched capacitor converter, and vehicle
WO2024004653A1 (en) Switching regulator, on-vehicle device, and vehicle
WO2023218988A1 (en) Bootstrap circuit, power supply device, and vehicle
US20230179097A1 (en) Switching Power Device
US20230369971A1 (en) Control circuit, switched capacitor converter, and vehicle
WO2023100509A1 (en) Switching power supply device, switch control device, on-board equipment, and vehicle
WO2023157611A1 (en) Driving control device, in-vehicle power supply system, and vehicle
WO2020251045A1 (en) Switching power supply device
WO2024075407A1 (en) Switch device, electronic equipment, and vehicle
JP2019080131A (en) Switching arrangement
CN118339753A (en) Switching power supply device, switching control device, in-vehicle apparatus, and vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22766817

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023505269

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22766817

Country of ref document: EP

Kind code of ref document: A1