WO2022190851A1 - Electric wire for communication - Google Patents

Electric wire for communication Download PDF

Info

Publication number
WO2022190851A1
WO2022190851A1 PCT/JP2022/007150 JP2022007150W WO2022190851A1 WO 2022190851 A1 WO2022190851 A1 WO 2022190851A1 JP 2022007150 W JP2022007150 W JP 2022007150W WO 2022190851 A1 WO2022190851 A1 WO 2022190851A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheath layer
magnetic
magnetic sheath
layer
mass
Prior art date
Application number
PCT/JP2022/007150
Other languages
French (fr)
Japanese (ja)
Inventor
悠太 安好
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Publication of WO2022190851A1 publication Critical patent/WO2022190851A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/02Cables with twisted pairs or quads
    • H01B11/06Cables with twisted pairs or quads with means for reducing effects of electromagnetic or electrostatic disturbances, e.g. screens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/18Coaxial cables; Analogous cables having more than one inner conductor within a common outer conductor

Definitions

  • This disclosure relates to communication wires.
  • communication wires used in fields such as automobiles are provided with a shield layer on the outside of the core wire for the purpose of reducing the intrusion of noise from the outside and the emission of noise to the outside.
  • a shield layer is a sheath layer that covers the outer periphery of a core wire using a material in which a powdery magnetic material is dispersed in an organic polymer.
  • a communication wire provided with a sheath layer containing such a magnetic material is disclosed in Patent Documents 1 and 2, for example.
  • the magnetic sheath layer When a magnetic sheath layer in which magnetic material powder is dispersed in an organic polymer is arranged around the outer circumference of a communication wire, the magnetic sheath layer must contain a sufficient amount of magnetic material in order to obtain sufficiently high noise shielding performance. must be included. However, if the magnetic sheath layer contains a large amount of magnetic material, the mass of the magnetic sheath layer and the mass of the communication wire as a whole increase. When a communication wire is mounted on an automobile, it is preferable to keep the mass of the communication wire small.
  • the magnetic sheath layer thin. If the concentration of the magnetic material in the magnetic sheath layer is sufficiently high, a sufficiently high noise shielding property should be obtained even if the magnetic sheath layer is made thin. However, when the magnetic material is contained in the magnetic sheath layer at a high concentration, the extrusion moldability of the magnetic sheath layer deteriorates. more likely to occur. These defects can cause deterioration of the noise shielding performance of the magnetic sheath layer.
  • a communication wire includes a conductor, an insulating layer covering the outer circumference of the conductor, and a magnetic sheath layer covering the outside of the insulating layer, the magnetic sheath layer comprising an organic polymer, and a powdery magnetic material, the content of the magnetic material in the magnetic sheath layer is 350 parts by mass or more and 850 parts by mass or less with respect to 100 parts by mass of the organic polymer, and the magnetic sheath
  • the composition constituting the layer has a melt flow rate of 11.8 g/10 minutes or more measured at 230° C. with a load of 2.16 kg.
  • a communication wire according to the present disclosure is a communication wire in which defects are less likely to occur in the magnetic sheath layer even if the magnetic sheath layer containing the powdered magnetic material is formed thin.
  • FIG. 1 is a cross-sectional view showing the configuration of a communication wire according to one embodiment of the present disclosure.
  • a communication wire according to the present disclosure includes a conductor, an insulating layer covering the outer circumference of the conductor, and a magnetic sheath layer covering the outside of the insulating layer, the magnetic sheath layer comprising an organic polymer, and a powdery magnetic material, the content of the magnetic material in the magnetic sheath layer is 350 parts by mass or more and 850 parts by mass or less with respect to 100 parts by mass of the organic polymer, and the magnetic sheath
  • the composition constituting the layer has a melt flow rate of 11.8 g/10 minutes or more measured at 230° C. with a load of 2.16 kg.
  • the magnetic sheath layer contains a large amount of magnetic material, 350 parts by mass or more and 850 parts by mass or less, with respect to 100 parts by mass of the organic polymer.
  • the composition constituting the magnetic sheath layer has a high melt flow rate of 11.8 g/10 minutes or more, it exhibits high extrusion moldability. Therefore, when forming the magnetic sheath layer by extrusion molding, even if the thickness of the magnetic sheath layer is reduced, the magnetic sheath layer can be obtained with few defects such as holes.
  • a magnetic sheath layer that is small in thickness, contains a large amount of magnetic material, and has few defects, it is possible to achieve both noise shielding performance and lightness in a communication wire.
  • the composition constituting the magnetic sheath layer preferably has a melt flow rate of 23.9 g/10 minutes or less measured under a load of 2.16 kg at 230°C.
  • the magnetic sheath layer has high low-temperature shock resistance, and the electric wire for communication can be suitably used even in places where there is a possibility of being exposed to low temperatures, such as in automobiles.
  • the thickness of the magnetic sheath layer is preferably 0.12 mm or more and 0.16 mm or less. As a result, the electric wire for communication is excellent in both noise shielding performance and lightness.
  • the mass per unit length of the magnetic sheath layer is preferably 3 g/m or less. Then, it is possible to effectively reduce the weight of the communication wire.
  • the communication wire may be configured as a coaxial wire having a metal shield layer on the outer periphery of the insulating layer, and the magnetic sheath layer may be provided on the outer periphery of the metal shield layer.
  • a communication wire configured as a coaxial wire is susceptible to noise, but by providing the magnetic sheath layer, the influence of noise can be reduced.
  • By using the above composition for the magnetic sheath layer it is possible to achieve both sufficient noise shielding performance and thinning of the magnetic sheath layer by suppressing the generation of defects.
  • Providing the metal shield layer tends to increase the mass of the communication wire as a whole, but by forming the magnetic sheath layer thin, it is possible to suppress an increase in the mass of the communication wire as a whole.
  • melt flow rate refers to a value measured at 230° C. with a load of 2.16 kg. Unless otherwise specified, other properties are values measured at room temperature in the atmosphere.
  • Organic polymers also include polymers with a relatively low degree of polymerization, such as oligomers.
  • FIG. 1 shows a cross-sectional view of a communication wire 1 according to an embodiment of the present disclosure, cut perpendicularly to the axial direction.
  • the communication wire 1 is configured as a coaxial wire.
  • the communication wire 1 includes a core wire 4 having a conductor 2 and an insulating layer 3 covering the outer circumference of the conductor 2 .
  • a metal foil 5 and a braided layer 6 formed by braiding metal wires are provided as a metal shield layer 7 around the outer circumference of the core wire 4 .
  • a metal foil 5 is provided to cover the outer periphery of the core wire 4
  • a braided layer 6 is provided to cover the outer periphery of the metal foil 5 .
  • a magnetic sheath layer 8 containing a magnetic material is provided around the metal shield layer 7 .
  • an outer sheath layer 9 containing no magnetic material is provided around the outer periphery of the magnetic sheath layer 8 .
  • the communication wire 1 as described above which is configured as a coaxial wire having a metal shield layer 7 and a magnetic sheath layer 8 on the outer periphery of the core wire 4, is suitable for transmitting signals in a high frequency range of 1 GHz or higher.
  • the communication wire according to the present disclosure is not limited to having the above structure as long as the outer side of the core wire 4 is covered and the magnetic sheath layer 8 is provided.
  • An appropriate configuration may be adopted.
  • the magnetic sheath layer 8 may cover the outer circumference of the core wire 4 directly, or may cover the outer circumference of the core wire 4 with another layer interposed like the metal shield layer 7 described above. good too.
  • a single insulated wire is used as the core wire 4, but a plurality of insulated wires may be used.
  • the core wire 4 can be configured such that a pair of insulated wires are twisted together or run in parallel to transmit a differential signal. If the influence of noise is not so great, only one of the metal foil 5 and the braided layer 6 may be arranged as the metal shield layer 7, or the metal shield layer 7 may be omitted. good too.
  • the metal shield layer 7 a form other than the metal foil 5 and the braided layer 6, such as a horizontally wound wire, may be used.
  • the outer sheath layer 9 may also be omitted if the function such as protection of the magnetic sheath layer 8 is not so required.
  • each of the layers described above is formed in direct contact with the outer periphery of the inner constituent layer, but the communication wire may appropriately include constituent layers other than the layers described above. There may be.
  • each constituent member of the coaxial communication wire 1 illustrated above will be described in detail.
  • the core wire 4 is a signal wire responsible for transmission of electrical signals in the communication wire 1 and has a conductor 2 and an insulating layer 3 covering the outer periphery of the conductor 2 .
  • the materials forming the conductor 2 and the insulating layer 3 are not particularly limited.
  • the conductor 2 may be configured as a single wire, it is preferably configured as a stranded wire in which a plurality of strands (for example, seven wires) are twisted together from the viewpoint of enhancing flexibility when bending. In this case, after twisting the strands, compression molding may be performed to form a compressed stranded wire.
  • the conductor 2 is configured as a stranded wire, all of them may be made of the same wire, or two or more kinds of wire may be included.
  • the diameter of the conductor 2 is not particularly limited.
  • the conductor cross-sectional area can be exemplified in the range of 0.05 mm 2 or more and 1.0 mm 2 or less.
  • the insulating layer 3 insulates the conductor 2 in the core wire 4 and contains an organic polymer.
  • the type of organic polymer is not particularly limited, but examples include olefin polymers such as polyolefins and olefin copolymers, halogen polymers such as polyvinyl chloride, various engineering plastics, elastomers, and rubbers. .
  • the organic polymers may be used singly or in combination of two or more by mixing, laminating, or the like.
  • the organic polymer may be crosslinked or foamed.
  • the insulating layer 3 includes a non-polar organic polymer such as polyolefin such as polypropylene (PP).
  • polyolefin such as polypropylene (PP).
  • PP polypropylene
  • homopolyolefin such as homo PP may be used, or block polyolefin such as block PP may be used.
  • the insulating layer 3 may contain additives as appropriate in addition to the organic polymer.
  • additives include flame retardants such as metal hydroxides, copper damage inhibitors, hindered phenol-based and sulfur-based antioxidants, and metal oxides such as zinc oxide.
  • flame retardants such as metal hydroxides, copper damage inhibitors, hindered phenol-based and sulfur-based antioxidants, and metal oxides such as zinc oxide.
  • the insulating layer 3 does not contain an additive made of a magnetic material such as that contained in the magnetic sheath layer 8 .
  • the thickness of the insulating layer 3 is not particularly limited, a range of 0.1 mm or more and 1.0 mm or less can be exemplified.
  • the metal shield layer 7 is provided between the core wire 4 and the magnetic sheath layer 8, and has a two-layer structure in which the metal foil 5 and the braided layer 6 are laminated.
  • the metal foil 5 is configured as a thin film of a metal material.
  • the type of metal forming the metal foil 5 is not particularly limited, and examples thereof include copper, copper alloys, aluminum, aluminum alloys, and the like.
  • the metal foil 5 may be composed of a single kind of metal, or may be a laminate of layers of two or more kinds of metals.
  • the metal foil 5 may be formed of an independent metal thin film, or may be formed by bonding a metal layer to a base material such as a polymer film by vapor deposition, plating, adhesion, or the like. From the viewpoint of enhancing noise shielding properties, it is preferable to arrange the metal foil 5 in a tandem manner with respect to the core wire 4 .
  • the braided layer 6 is configured as a braided body in which a plurality of metal wires are woven together to form a hollow tubular shape.
  • the metal wires forming the braided layer 6 include metal materials such as copper, copper alloys, aluminum, and aluminum alloys, and metal materials whose surfaces are plated with tin or the like.
  • the metal shield layer 7 constitutes an outer conductor in the coaxial cable structure, and plays a role of shielding noise entering the core wire 4 and noise emitted from the core wire 4 .
  • the noise shielding effect is also exhibited by the magnetic sheath layer 8.
  • the influence of noise tends to become serious, and by providing the metal shield layer 7 together with the magnetic sheath layer 8, the influence of noise can be effectively reduced.
  • the noise shielding effect can be enhanced.
  • the order of lamination of the metal foil 5 and the braided layer 6 is not particularly limited, it is preferable to arrange the metal foil 5 inside and the braided layer 6 outside for reasons such as reducing signal loss.
  • the magnetic sheath layer 8 covers the outer circumference of the core wire 4 .
  • the magnetic sheath layer 8 covers the outer periphery of the core wire 4 with the metal shield layer 7 interposed therebetween.
  • the magnetic sheath layer 8 contains a powdery magnetic material and an organic polymer component.
  • the magnetic material powder is dispersed in a matrix composed of organic polymer components.
  • the magnetic material contained in the magnetic sheath layer 8 is preferably a ferromagnetic material, more preferably a metal or metal compound having soft magnetism.
  • the magnetic loss in the magnetic material contained in the magnetic sheath layer 8 absorbs and attenuates high-frequency electromagnetic waves that can cause noise.
  • the noise shielding effect is exhibited also by the metal foil 5 and the braided layer 6, but when the communication wire 1 is used for communication in a high frequency range such as 1 GHz or higher, the influence of noise is large. It is likely to become serious, and by providing the magnetic sheath layer 8 together with the metal foil 5 and the braided layer 6, the influence of noise can be effectively reduced.
  • Magnetic materials Iron pure iron or iron containing a small amount of carbon
  • Fe—Si alloy silicon steel
  • Fe—Si Magnetic stainless steel such as -Al alloy (sendust), Fe--Cr--Al--Si alloy, Fe--Si--Cr alloy, Fe--Ni system alloy (permalloy), ferrite and the like can be exemplified.
  • ferrite it is particularly preferable to use ferrite because of its excellent noise shielding properties and low cost.
  • a Ni--Zn-based ferrite can be particularly suitably used.
  • the magnetic materials may be used singly or in combination of two or more by mixing or the like.
  • the particle size of the particles of the magnetic material contained in the magnetic sheath layer 8 is not particularly limited, but the average particle size is preferably 0.1 ⁇ m or more and 100 ⁇ m or less.
  • the content of the magnetic material in the magnetic sheath layer 8 is 350 parts by mass or more and 850 parts by mass or less when the entire organic polymer component constituting the magnetic sheath layer 8 is 100 parts by mass.
  • the magnetic sheath layer 8 can sufficiently improve the noise shielding performance due to the absorption of electromagnetic waves by the magnetic material. It is more preferable that the content of the magnetic material is 400 parts by mass or more in order to enhance the noise shielding performance of the magnetic sheath layer 8 .
  • the content of the magnetic material in the magnetic sheath layer 8 is suppressed to 850 parts by mass or less with respect to 100 parts by mass of the organic polymer component, an increase in the mass of the magnetic sheath layer 8 can be suppressed.
  • the extrudability of the composition forming the magnetic sheath layer 8 can be enhanced.
  • the content of the magnetic material is more preferably 800 parts by mass or less.
  • the content in units of parts by mass of each constituent component of the magnetic sheath layer 8 is expressed as 100 parts by mass of the entire organic polymer component forming the magnetic sheath layer 8 .
  • the material forming the magnetic sheath layer 8 contains an organic polymer.
  • a specific type of the organic polymer is not particularly limited as long as the composition as a whole constituting the magnetic sheath layer 8 gives an MFR within a predetermined range, which will be described later.
  • Examples of organic polymers that can be used for the magnetic sheath layer 8 include olefin-based polymers such as polyolefins and olefin-based copolymers, halogen-based polymers such as polyvinyl chloride, various engineering plastics, as well as the insulating layer 3 of the core wire 4 . Elastomers, rubbers and the like can be mentioned.
  • the organic polymers may be used singly or in combination of two or more by mixing or the like.
  • the organic polymer may be crosslinked or foamed.
  • the magnetic sheath layer 8 preferably contains an elastomer, particularly an olefinic thermoplastic elastomer (TPO), among those listed above. Elastomers such as TPO increase the flexibility of the magnetic sheath layer 8 .
  • the content of the elastomer should be 20% by mass or more and 40% by mass or less of the total organic polymer components constituting the magnetic sheath layer 8 .
  • the magnetic sheath layer 8 preferably contains polyolefin such as polypropylene (PP) in addition to elastomer such as TPO.
  • polyolefin tends to exhibit low viscosity when melted, and enhances the extrusion moldability of the magnetic sheath layer 8 .
  • PP polypropylene
  • Block polyolefins are preferably used. From the viewpoint of increasing the MFR of the composition constituting the magnetic sheath layer 8 as a whole, the polyolefin preferably has an MFR of 30 g/10 minutes or more, more preferably 50 g/10 minutes or more.
  • the polyolefin content is preferably 20% by mass or more and 40% by mass or less in the organic polymer component. In addition, it is preferable that the total amount of the elastomer and the polyolefin is 50% by mass or more of the organic polymer component.
  • suitable examples of organic polymer components contained in the magnetic sheath layer 8 include ethylene-ethyl acrylate copolymer (EEA), ethylene-methyl acrylate copolymer (EMA), and ethylene-acetic acid.
  • EAA ethylene-ethyl acrylate copolymer
  • EMA ethylene-methyl acrylate copolymer
  • Ethylene-based copolymers such as vinyl copolymers (EVA), acid-modified polymers, and the like can be mentioned.
  • EVA vinyl copolymers
  • EVA acid-modified polymers
  • the magnetic sheath layer 8 may contain additives as appropriate. Examples of additives include flame retardants, copper damage inhibitors, antioxidants, metal oxides, and the like.
  • the composition forming the magnetic sheath layer 8 has an MFR of 11.8 g/10 minutes or more measured at 230° C. under a load of 2.16 kg.
  • the composition constituting the magnetic sheath layer 8 has a high MFR, so that it has high extrusion moldability, and the magnetic sheath layer 8 having a highly uniform structure can be formed by extrusion molding.
  • the material has a high viscosity when forming the magnetic sheath layer 8 by extrusion. If there is a possibility that the material will not stretch and break in the vicinity of the ejection port of the molding device, then a hole in which the material is partially missing may occur in the formed magnetic sheath layer 8 .
  • the composition constituting the magnetic sheath layer 8 has an MFR of 11.8 g/10 minutes or more, the extrusion molding can proceed smoothly, and the magnetic material has a dense structure and a smooth surface. A sheath layer 8 can be formed.
  • the magnetic sheath layer 8 contains a large amount of magnetic material of 350 parts by mass or more, defects such as holes occur in the magnetic sheath layer 8 even when the magnetic sheath layer 8 is formed thin. Hateful. Then, in the magnetic sheath layer 8, penetration and emission of electromagnetic waves through defects are less likely to occur, and in the communication wire 1, high noise shielding properties can be ensured.
  • the communication wire 1 by forming the magnetic sheath layer 8 thin while ensuring sufficient noise shielding performance, it is possible to suppress an increase in the mass of the magnetic sheath layer 8 and further the mass of the communication wire 1 as a whole. can.
  • the communication wire 1 is mounted on a moving object such as an automobile, it is very important to suppress an increase in mass.
  • the communication wire 1 according to the present embodiment includes the metal shield layer 7 made up of the metal foil 5 and the braided layer 6. These contribute to increase the mass of the communication wire 1, but the magnetic field By reducing the weight of the sheath layer 8, an increase in the mass of the communication wire 1 as a whole can be suppressed.
  • the MFR of the composition constituting the magnetic sheath layer 8 is 15 g/10 minutes or more, further 17 g/10 minutes or more. is more preferable.
  • the MFR of the magnetic sheath layer 8 can be adjusted by the type of organic polymer forming the magnetic sheath layer 8, the content of the magnetic material, and the like.
  • the upper limit of the MFR of the composition forming the magnetic sheath layer 8 is not particularly limited.
  • the low-temperature impact resistance of the magnetic sheath layer 8 can be enhanced by keeping the MFR low to some extent.
  • a material with a lower glass transition temperature has a higher low temperature impact resistance.
  • the MFR of the composition constituting the magnetic sheath layer 8 is, for example, 23.9 g/10 min or less, and further is preferably kept low to some extent, such as 20 g/10 minutes or less. Since the magnetic sheath layer 8 has a high low-temperature impact resistance, it is less likely to be damaged such as broken even when subjected to an impact in a low-temperature environment, and high noise shielding properties can be maintained. It should be noted that high low-temperature impact resistance is not essential for the communication wire 1 of the present disclosure, and may not be provided when use in a low-temperature environment is not assumed.
  • the composition constituting the magnetic sheath layer 8 has a high MFR of 11.8 g/10 min or more, thereby suppressing the formation of defects such as holes.
  • the magnetic sheath layer 8 can be formed thin.
  • the specific thickness of the magnetic sheath layer 8 is not particularly limited, but the effect of suppressing defect generation by increasing the MFR of the magnetic sheath layer 8 can be obtained, and the thickness can be effectively reduced by thinning. 0.16 mm or less is preferable from the viewpoint of achieving .
  • the thickness of the magnetic sheath layer 8 is set so that the mass of the magnetic sheath layer 8 per unit length of the communication wire 1 is 4 g/m or less, further 3 g/m or less, or 2 g/m or less. do it.
  • the lower limit of the thickness of the magnetic sheath layer 8 is not particularly defined from the viewpoint of mass reduction, it is preferable to set it at 0.12 mm or more from the viewpoint of ensuring high noise shielding properties. Further, it is preferable that the mass of the magnetic sheath layer 8 per unit length is 1.5 g/m or more.
  • the relationship between the thickness d (unit: mm) of the magnetic sheath layer 8 and the mass A (unit: g/m) of the magnetic sheath layer 8 per unit length can be determined by the following formula (1).
  • is the density of the composition forming the magnetic sheath layer 8 (unit: g/cm 3 )
  • R 0 is the inner diameter of the magnetic sheath layer 8 (unit: mm).
  • Layer 8 is more effective in noise shielding.
  • the specific magnetic material content and the thickness of the magnetic sheath layer 8 may be appropriately set within a range of 350 parts by mass or more and 850 parts by mass or less according to the required noise shielding property. Just do it.
  • ⁇ Thickness of 0.12 mm or more and less than 0.13 mm Content of more than 650 parts by mass and less than 850 parts by mass
  • ⁇ Thickness of 0.13 mm or more and less than 0.14 mm Content of more than 550 parts by mass and less than 650 parts by mass
  • ⁇ Thickness 0.14 mm or more and 0.16 mm or less content of 350 parts by mass or more and 550 parts by mass or less
  • the outer sheath layer 9 is a layer provided to cover the outer periphery of the magnetic sheath layer 8 and is exposed to the outer periphery of the communication wire 1 as a whole.
  • the outer sheath layer 9 contains no magnetic material except for inevitable impurities.
  • the outer sheath layer 9 plays a role of physically protecting the magnetic sheath layer 8 and the constituent members further inside from contact with external objects.
  • the outer sheath layer 9 preferably contains an organic polymer.
  • organic polymers include olefin polymers such as polyolefins and olefin copolymers, halogen polymers such as polyvinyl chloride, and various engineering plastics, similar to the organic polymers forming the insulating layer 3 and the magnetic sheath layer 8. , elastomers, rubbers, and the like. Among them, it is preferable to use an olefin-based polymer, particularly TPO, because of its excellent insulating properties and heat resistance.
  • the organic polymers may be used singly or in combination of two or more by mixing, laminating, or the like.
  • the organic polymer may be crosslinked or foamed.
  • the same organic polymer as at least a part of the organic polymers constituting the magnetic sheath layer 8 is also used in the outer sheath layer 9.
  • the outer sheath layer 9 may also contain the same type of elastomer as that contained in the magnetic sheath layer 8 .
  • the thickness of the outer sheath layer 9 is not particularly limited, it is preferably 0.1 mm or more from the viewpoint of enhancing the protective performance for the magnetic sheath layer 8. On the other hand, the thickness of the outer sheath layer 9 is preferably set to 0.5 mm or less from the viewpoint of facilitating enhancement of flexibility.
  • An insulating layer was formed by extrusion molding on the outer periphery of a conductor configured as a copper alloy stranded wire to form a core wire.
  • a constituent material of the insulating layer a mixture of each component indicated as "insulating layer" in Table 1 below was used.
  • the cross-sectional area of the conductor was 0.18 mm 2 and the thickness of the insulating layer was 0.54 mm.
  • a copper foil was arranged vertically as a metal foil on the outer circumference of the core wire. Furthermore, a braided layer was formed on the outer circumference of the copper foil. The braid layer was constructed as a single braid made of tin-plated annealed copper wire (TA wire).
  • TA wire tin-plated annealed copper wire
  • a magnetic sheath layer was formed on the outer circumference of the braided layer by extrusion molding.
  • a composition constituting the magnetic sheath layer a mixture of the organic polymer and the magnetic material powder shown in Table 2 below was used in each of the samples A1 to A11. As shown in Table 2, the thickness of the magnetic sheath layer was 0.3 mm or 0.15 mm.
  • an outer sheath layer was formed on the outer periphery of the magnetic sheath layer by extrusion molding to complete a communication wire.
  • the thickness of the outer sheath layer was 0.2 mm.
  • a mixture of each component indicated as "outer sheath layer" in Table 1 below was used for each sample.
  • the outer diameters of the obtained communication wires were 3.2 mm and 2.9 mm when the thickness of the magnetic sheath layer was 0.3 mm and 0.15 mm, respectively.
  • the following components were used for the components constituting the insulating layer, the magnetic sheath layer, and the outer sheath layer.
  • the organic polymers those used for the magnetic sheath layer are also shown together with the density and MFR (value at 230° C., load of 2.16 kg).
  • TPO1 TPO “Adflex Q200F” manufactured by Lyondell Basell, density: 0.88 g/cm 3 , MFR: 0.8 g/10 min
  • TPO2 TPO “Santoprene 203-40” manufactured by Exxon-Mobil
  • ⁇ PP1 Block PP “Novatec EC9GD” manufactured by Japan Polypropylene Corporation
  • ⁇ PP2 Homo PP “Novatec EA9FTD” manufactured by Japan Polypro Co., Ltd.
  • ⁇ PP3 Block PP “Novatec BC06C” manufactured by Japan Polypropylene Corporation, density: 0.91 g / cm 3 , MFR: 60 g / 10 minutes ⁇ Acid-modified SEBS: “Tuftec M1913” manufactured by Asahi Kasei Corporation ⁇ EEA: "NUC 6940" manufactured by ENEOS NUC, density: 0.95 g/cm 3 , MFR: 20 g/10 minutes (magnetic material) ⁇ Ni—Zn ferrite: “KNI-109” manufactured by JFE Chemical, density: 5.15 g/cm 3 (Other additives) ⁇ Copper damage inhibitor: “CDA-1” manufactured by ADEKA - Hindered phenol-based antioxidant: BASF "Irganox 1010” ⁇ Sulfur-based antioxidant: “Antage MB” (2-mercaptobenzimidazole) manufactured by Kawaguchi Chemical Co., Ltd. ⁇ Zinc oxide: “Zinc white 2” manufactured
  • Table 1 shows the component compositions of the materials used to fabricate the insulating layer and the outer sheath layer of all the samples in units of parts by mass.
  • Noise Shielding Performance was evaluated for the communication wires of Samples A1 to A11.
  • a radiated emission evaluation based on CISPR25 was performed. Specifically, in the anechoic chamber, a horn antenna was installed at a position laterally separated by 1.0 m from the central portion of the communication wire cut to 1500 mm. Then, an electrical signal with a frequency of 1.6 GHz was input to the communication wire, and the amount of noise radiation at this time was measured by a horn antenna. When the noise radiation amount was less than 10 dB ( ⁇ V/m) (Level 5), the noise shielding property was evaluated as very high (A+).
  • the noise shielding property was evaluated as high (A).
  • the noise radiation amount was 16 dB ( ⁇ V/m) or more and less than 22 dB ( ⁇ V/m) (Level 3)
  • the noise shielding property was evaluated as low (B).
  • the noise radiation amount was 22 dB ( ⁇ V/m) or more (Level 2)
  • the noise shielding property was evaluated as very low (B-).
  • each sample in the stage before forming the outer sheath layer was cut into a length of 1 m. Then, each member inside the magnetic sheath layer was removed, leaving only the magnetic sheath layer. The mass of the obtained magnetic sheath layer was measured.
  • the thickness of the magnetic sheath layer is 0.3 mm. None of these samples had holes formed in the magnetic sheath layer (A). The noise shielding property is improved as the content of the magnetic material increases from sample A1 to sample A4.
  • sample A5 the same material as sample A4 is used to form a thin magnetic sheath layer with a thickness of 0.15 mm.
  • sample A4 no holes were formed in the magnetic sheath layer (A), and very high noise shielding properties (A+) were obtained, whereas in sample A5, holes were formed in the magnetic sheath layer (B). , the noise shielding performance is very low (B-).
  • the MFR of the material as a whole is increased by decreasing the TPO content and increasing the PP content from sample A5 to sample A11.
  • Samples A7 to A11 with an MFR exceeding 11 g/10 minutes no longer form holes in the magnetic sheath layer (A), and very high noise shielding properties (A+) are obtained. From this, by increasing the MFR of the composition constituting the magnetic sheath layer, the extrusion moldability is improved, and even when the magnetic sheath layer is formed thin, holes are not formed in the magnetic sheath layer. It can be seen that a magnetic sheath layer exhibiting noise shielding performance can be obtained.
  • the mass of the magnetic sheath layer already increases from the region where the content of the magnetic material per 100 parts by mass of the organic polymer component is as low as 150 parts by mass.
  • the magnetic sheath layer was formed as thin as 0.15 mm. As a result, the mass of the magnetic sheath layer is suppressed to 4 g/m or less.
  • samples A7 to A11 all have very high noise shielding properties (A+). Focusing on low-temperature impact resistance, samples A7 to A9 have high low-temperature impact resistance. (A), the samples A10 and A11 having an MFR exceeding 30 g/10 min have low low-temperature resistance (B). From this, it can be said that it is preferable to prevent the MFR from becoming too high when low-temperature impact resistance is required, such as when a communication wire is used in a low-temperature environment.
  • Table 3 shows the composition constituting the magnetic sheath layer and the thickness of the magnetic sheath layer.
  • the organic polymer component constituting the magnetic sheath layer was the same as that of sample A8 of test [1], and the magnetic material content was varied between samples B1 to B8.
  • the thickness of the magnetic sheath layer is set so that the mass of the magnetic sheath layer per unit length is 3 g/m. Specifically, assuming that there is no volume change due to mixing of the components, the density of the magnetic sheath layer is calculated as shown in the table based on the density of each constituent component of the magnetic sheath layer. Second, the thickness of the magnetic sheath layer was set so that the mass was 3 g/m. No holes were formed in the surface of the magnetic sheath layer in any of the samples produced.
  • samples B4 and B8b were produced as samples B4a, B4b, and samples B8a, B8b.
  • the thickness of the magnetic sheath layer was 0.12 mm, 0.14 mm, and 0.16 mm for all compositions.
  • Table 3 shows the component compositions and thicknesses of the magnetic sheath layers of samples B1 to B8, and evaluation results of noise shielding properties.
  • samples B4 to B8 in which the content of the magnetic material in the composition constituting the magnetic sheath layer is 350 parts by mass or more and 850 parts by mass or less, have a mass per unit length of 3 g/m.
  • the thickness of the magnetic sheath layer which is defined as the thickness of the magnetic sheath layer, is in the range of 0.12 mm or more and 0.16 mm or less. Sufficiently high noise shielding properties were obtained for all of the samples B4 to B8 (A or A+).
  • samples B1 to B3 in which the thickness of the magnetic sheath layer exceeds 0.16 mm but the content of the magnetic material is less than 350 parts by mass, do not provide sufficient noise shielding properties (B or B -).
  • Table 4 shows the component composition and thickness of the magnetic sheath layers in samples B4, B4a, B4b and samples B8, B8a, B8b, and evaluation results of noise shielding properties.
  • the noise radiation amount is almost the same even if the thickness of the magnetic sheath layer is different. From this, it is confirmed that the noise shielding performance of the magnetic sheath layer does not substantially depend on the thickness of the magnetic sheath layer in the range of 0.12 to 0.16 mm, and is mainly determined by the concentration of the magnetic material. be done.
  • the magnetic material concentration of 850 parts by mass of sample B8 is the highest among those shown in Table 3 above, even with the magnetic sheath material containing the magnetic material at the maximum concentration, sample B8 , it can be seen that even a thin layer region with a thickness of 0.12 mm has a very high noise shielding property (A+), and a magnetic sheath layer without holes can be formed. That is, from the results of Table 4, the density of the magnetic material in the magnetic sheath material is set to be in the range of 350 parts by mass to 850 parts by mass with respect to 100 parts by mass of the organic polymer component, and the thickness is 0.12 mm to 0.16 mm. If the magnetic sheath layer is formed, high noise shielding properties can be obtained by satisfying both requirements of containing a sufficient concentration of magnetic material and forming a magnetic sheath layer without holes.
  • the content of the magnetic material is 350 parts by mass or more and 850 parts by mass or less with respect to 100 parts by mass of the organic polymer component, and the thickness of the magnetic sheath layer is 0.12 mm or more and 0.16 mm or less. Then, a sufficiently high noise shielding property can be secured.
  • the weight of the magnetic sheath layer can be reduced to a mass of 3 g/m or less.
  • Tables 5 and 6 below show the component composition and thickness of the magnetic sheath layer and the results of each evaluation for samples C1 to C17.
  • the MFR of the composition constituting the magnetic sheath layer is 11.8 g/10 min or more.
  • the MFR of the composition constituting the magnetic sheath layer is 23.9 g/10 minutes or less (Samples C1 to C6, C9 to C14), the low temperature impact resistance can be increased (A).

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Insulated Conductors (AREA)
  • Communication Cables (AREA)

Abstract

The present invention provides an electric wire for communication, the electric wire being not susceptible to the occurrence of a defect in a magnetic sheath layer that contains a powdered magnetic material even in cases where the magnetic sheath layer is formed thin. An electric wire 1 for communication, the electric wire 1 comprising a conductor 2, an insulating layer 3 that covers the outer circumference of the conductor 2, and a magnetic sheath layer 8 that covers the outside of the insulating layer 3, wherein: the magnetic sheath layer 8 contains an organic polymer and a powdered magnetic material; the content of the magnetic material in the magnetic sheath layer 8 is from 350 parts by mass to 850 parts by mass relative to 100 parts by mass of the organic polymer; and the composition that constitutes the magnetic sheath layer 8 has a melt flow rate of 11.8 g/10 minutes or more as measured at 230°C under a load of 2.16 kg.

Description

通信用電線Telecommunication wire
 本開示は、通信用電線に関する。 This disclosure relates to communication wires.
 自動車等の分野において用いられる通信用電線において、外部からのノイズの侵入や外部へのノイズの放出を低減することを目的として、コア線の外側にシールド層が設けられる場合がある。そのようなシールド層の例として、粉末状の磁性材料を有機ポリマー中に分散させた材料を用いて、コア線の外周を被覆する形態のシース層を挙げることができる。そのような磁性材料を含むシース層を備えた通信用電線は、例えば特許文献1,2に開示されている。 In some cases, communication wires used in fields such as automobiles are provided with a shield layer on the outside of the core wire for the purpose of reducing the intrusion of noise from the outside and the emission of noise to the outside. An example of such a shield layer is a sheath layer that covers the outer periphery of a core wire using a material in which a powdery magnetic material is dispersed in an organic polymer. A communication wire provided with a sheath layer containing such a magnetic material is disclosed in Patent Documents 1 and 2, for example.
特開2016-197509号公報JP 2016-197509 A 特開平3-88214号公報JP-A-3-88214
 通信用電線の外周に、磁性材料の粉末を有機ポリマー中に分散させた磁性シース層を配置する場合に、十分に高いノイズ遮蔽性能を得るためには、磁性シース層に十分な量の磁性材料を含有させる必要がある。しかし、磁性シース層に多量の磁性材料を含有させると、磁性シース層の質量、また通信用電線全体としての質量が大きくなってしまう。通信用電線を自動車に搭載する場合等においては、通信用電線の質量を小さく抑えることが好ましい。 When a magnetic sheath layer in which magnetic material powder is dispersed in an organic polymer is arranged around the outer circumference of a communication wire, the magnetic sheath layer must contain a sufficient amount of magnetic material in order to obtain sufficiently high noise shielding performance. must be included. However, if the magnetic sheath layer contains a large amount of magnetic material, the mass of the magnetic sheath layer and the mass of the communication wire as a whole increase. When a communication wire is mounted on an automobile, it is preferable to keep the mass of the communication wire small.
 磁性シース層の質量の増大を抑える観点から、磁性シース層を薄く形成することが考えられる。磁性シース層における磁性材料の濃度が十分に高ければ、磁性シース層を薄くしても、十分に高いノイズ遮蔽性を得られるはずである。しかし、磁性シース層に磁性材料を高濃度で含有させると、磁性シース層の押出成形性が悪くなり、押出成形によって磁性シース層を薄く形成した際に、磁性シース層に、穴などの欠陥が発生しやすくなる。それらの欠陥は、磁性シース層のノイズ遮蔽性能を低下させる原因となりうる。 From the viewpoint of suppressing an increase in the mass of the magnetic sheath layer, it is conceivable to form the magnetic sheath layer thin. If the concentration of the magnetic material in the magnetic sheath layer is sufficiently high, a sufficiently high noise shielding property should be obtained even if the magnetic sheath layer is made thin. However, when the magnetic material is contained in the magnetic sheath layer at a high concentration, the extrusion moldability of the magnetic sheath layer deteriorates. more likely to occur. These defects can cause deterioration of the noise shielding performance of the magnetic sheath layer.
 以上に鑑み、粉末状の磁性材料を含有する磁性シース層を薄く形成しても、磁性シース層に欠陥が発生しにくい通信用電線を提供することを課題とする。 In view of the above, it is an object of the present invention to provide a communication wire in which defects are less likely to occur in the magnetic sheath layer even if the magnetic sheath layer containing a powdery magnetic material is formed thin.
 本開示にかかる通信用電線は、導体と、前記導体の外周を被覆する絶縁層と、前記絶縁層の外側を被覆する磁性シース層と、を有し、前記磁性シース層は、有機ポリマーと、粉末状の磁性材料と、を含有しており、前記磁性シース層における前記磁性材料の含有量は、前記有機ポリマー100質量部に対して、350質量部以上850質量部以下であり、前記磁性シース層を構成する組成物は、230℃において荷重2.16kgで計測されるメルトフローレートが、11.8g/10分以上である。 A communication wire according to the present disclosure includes a conductor, an insulating layer covering the outer circumference of the conductor, and a magnetic sheath layer covering the outside of the insulating layer, the magnetic sheath layer comprising an organic polymer, and a powdery magnetic material, the content of the magnetic material in the magnetic sheath layer is 350 parts by mass or more and 850 parts by mass or less with respect to 100 parts by mass of the organic polymer, and the magnetic sheath The composition constituting the layer has a melt flow rate of 11.8 g/10 minutes or more measured at 230° C. with a load of 2.16 kg.
 本開示にかかる通信用電線は、粉末状の磁性材料を含有する磁性シース層を薄く形成しても、磁性シース層に欠陥が発生しにくい通信用電線となる。 A communication wire according to the present disclosure is a communication wire in which defects are less likely to occur in the magnetic sheath layer even if the magnetic sheath layer containing the powdered magnetic material is formed thin.
図1は、本開示の一実施形態にかかる通信用電線の構成を示す断面図である。FIG. 1 is a cross-sectional view showing the configuration of a communication wire according to one embodiment of the present disclosure.
[本開示の実施形態の説明]
 最初に、本開示の実施態様を説明する。
 本開示にかかる通信用電線は、導体と、前記導体の外周を被覆する絶縁層と、前記絶縁層の外側を被覆する磁性シース層と、を有し、前記磁性シース層は、有機ポリマーと、粉末状の磁性材料と、を含有しており、前記磁性シース層における前記磁性材料の含有量は、前記有機ポリマー100質量部に対して、350質量部以上850質量部以下であり、前記磁性シース層を構成する組成物は、230℃において荷重2.16kgで計測されるメルトフローレートが、11.8g/10分以上である。
[Description of Embodiments of the Present Disclosure]
First, embodiments of the present disclosure will be described.
A communication wire according to the present disclosure includes a conductor, an insulating layer covering the outer circumference of the conductor, and a magnetic sheath layer covering the outside of the insulating layer, the magnetic sheath layer comprising an organic polymer, and a powdery magnetic material, the content of the magnetic material in the magnetic sheath layer is 350 parts by mass or more and 850 parts by mass or less with respect to 100 parts by mass of the organic polymer, and the magnetic sheath The composition constituting the layer has a melt flow rate of 11.8 g/10 minutes or more measured at 230° C. with a load of 2.16 kg.
 上記通信用電線においては、磁性シース層が、有機ポリマー100質量部に対して、350質量部以上850質量部以下と、多量の磁性材料を含んでいる。しかし、磁性シース層を構成する組成物が、11.8g/10分以上と高いメルトフローレートを有していることにより、高い押出成形性を示すものとなる。そのため、押出成形によって磁性シース層を形成する際に、磁性シース層の厚みを小さくしても、穴などの欠陥の少ない磁性シース層を得ることができる。厚みが小さく、かつ多量の磁性材料を含みながら、欠陥が少ない磁性シース層を形成することで、通信用電線において、ノイズ遮蔽性能と軽量性を両立することができる。 In the above communication wire, the magnetic sheath layer contains a large amount of magnetic material, 350 parts by mass or more and 850 parts by mass or less, with respect to 100 parts by mass of the organic polymer. However, since the composition constituting the magnetic sheath layer has a high melt flow rate of 11.8 g/10 minutes or more, it exhibits high extrusion moldability. Therefore, when forming the magnetic sheath layer by extrusion molding, even if the thickness of the magnetic sheath layer is reduced, the magnetic sheath layer can be obtained with few defects such as holes. By forming a magnetic sheath layer that is small in thickness, contains a large amount of magnetic material, and has few defects, it is possible to achieve both noise shielding performance and lightness in a communication wire.
 ここで、前記磁性シース層を構成する組成物は、230℃において荷重2.16kgで計測されるメルトフローレートが、23.9g/10分以下であるとよい。すると、磁性シース層が、高い耐低温衝撃性を備えたものとなり、自動車内等、低温に曝される可能性のある箇所でも、通信用電線を好適に使用することができる。 Here, the composition constituting the magnetic sheath layer preferably has a melt flow rate of 23.9 g/10 minutes or less measured under a load of 2.16 kg at 230°C. As a result, the magnetic sheath layer has high low-temperature shock resistance, and the electric wire for communication can be suitably used even in places where there is a possibility of being exposed to low temperatures, such as in automobiles.
 前記磁性シース層の厚さは、0.12mm以上、0.16mm以下であるとよい。すると、通信用電線が、ノイズ遮蔽性能と軽量性の両立に優れたものとなる。 The thickness of the magnetic sheath layer is preferably 0.12 mm or more and 0.16 mm or less. As a result, the electric wire for communication is excellent in both noise shielding performance and lightness.
 前記磁性シース層の単位長さあたりの質量は、3g/m以下であるとよい。すると、通信用電線の軽量化を、特に効果的に達成することができる。 The mass per unit length of the magnetic sheath layer is preferably 3 g/m or less. Then, it is possible to effectively reduce the weight of the communication wire.
 前記通信用電線は、前記絶縁層の外周に金属シールド層を有する同軸電線として構成されており、前記磁性シース層は、前記金属シールド層の外周に設けられているとよい。同軸電線として構成された通信用電線は、ノイズの影響を受けやすいが、磁性シース層を設けることで、ノイズの影響を低減することができる。磁性シース層を構成する組成物として、上記のものを用いることで、十分なノイズ遮蔽性能と、欠陥生成の抑制による磁性シース層の薄層化を、両立することができる。金属シールド層を設けることで、通信用電線全体としての質量が大きくなりやすいが、磁性シース層を薄く形成することで、通信用電線全体としての質量の増大を抑えることができる。 The communication wire may be configured as a coaxial wire having a metal shield layer on the outer periphery of the insulating layer, and the magnetic sheath layer may be provided on the outer periphery of the metal shield layer. A communication wire configured as a coaxial wire is susceptible to noise, but by providing the magnetic sheath layer, the influence of noise can be reduced. By using the above composition for the magnetic sheath layer, it is possible to achieve both sufficient noise shielding performance and thinning of the magnetic sheath layer by suppressing the generation of defects. Providing the metal shield layer tends to increase the mass of the communication wire as a whole, but by forming the magnetic sheath layer thin, it is possible to suppress an increase in the mass of the communication wire as a whole.
[本開示の実施形態の詳細]
 以下、図面を用いて、本開示の一実施形態にかかる通信用電線について、詳細に説明する。以下、メルトフローレート(MFR)は、230℃において、荷重2.16kgで計測される値を指す。その他の特性については、特記しないかぎり、室温、大気中にて測定される値とする。有機ポリマーには、オリゴマー等、比較的低重合度の重合体も含むものとする。
[Details of the embodiment of the present disclosure]
A communication wire according to an embodiment of the present disclosure will be described in detail below with reference to the drawings. Hereinafter, melt flow rate (MFR) refers to a value measured at 230° C. with a load of 2.16 kg. Unless otherwise specified, other properties are values measured at room temperature in the atmosphere. Organic polymers also include polymers with a relatively low degree of polymerization, such as oligomers.
(通信用電線の全体構成)
 図1に、本開示の一実施形態にかかる通信用電線1について、軸線方向に垂直に切断した断面図を示す。通信用電線1は、同軸電線として構成されている。具体的には、通信用電線1は、導体2と、導体2の外周を被覆する絶縁層3とを有するコア線4を備えている。そして、コア線4の外周には、金属シールド層7として、金属箔5と、金属素線を編んだ編組体として構成された編組層6とが設けられている。金属箔5が、コア線4の外周を被覆して設けられ、さらに金属箔5の外周を被覆して、編組層6が設けられている。金属シールド層7の外周には、磁性材料を含有する磁性シース層8が設けられている。また、さらに磁性シース層8の外周に、磁性材料を含有しないアウターシース層9が設けられている。
(Overall configuration of communication wire)
FIG. 1 shows a cross-sectional view of a communication wire 1 according to an embodiment of the present disclosure, cut perpendicularly to the axial direction. The communication wire 1 is configured as a coaxial wire. Specifically, the communication wire 1 includes a core wire 4 having a conductor 2 and an insulating layer 3 covering the outer circumference of the conductor 2 . A metal foil 5 and a braided layer 6 formed by braiding metal wires are provided as a metal shield layer 7 around the outer circumference of the core wire 4 . A metal foil 5 is provided to cover the outer periphery of the core wire 4 , and a braided layer 6 is provided to cover the outer periphery of the metal foil 5 . A magnetic sheath layer 8 containing a magnetic material is provided around the metal shield layer 7 . Furthermore, an outer sheath layer 9 containing no magnetic material is provided around the outer periphery of the magnetic sheath layer 8 .
 コア線4の外周に、金属シールド層7と磁性シース層8を備えた同軸電線として構成された、上記のような通信用電線1は、1GHz以上の高周波域の信号を伝送するのに、好適に用いることができる。しかし、本開示にかかる通信用電線は、コア線4の外側を被覆して、磁性シース層8が設けられるものであれば、上記のような構造を有するものに限られず、通信周波数や用途に応じた構成を採用すればよい。磁性シース層8は、コア線4の外周を直接被覆するものであっても、上記金属シールド層7のように、他の層を介在させて、コア線4の外周を被覆するものであってもよい。 The communication wire 1 as described above, which is configured as a coaxial wire having a metal shield layer 7 and a magnetic sheath layer 8 on the outer periphery of the core wire 4, is suitable for transmitting signals in a high frequency range of 1 GHz or higher. can be used for However, the communication wire according to the present disclosure is not limited to having the above structure as long as the outer side of the core wire 4 is covered and the magnetic sheath layer 8 is provided. An appropriate configuration may be adopted. The magnetic sheath layer 8 may cover the outer circumference of the core wire 4 directly, or may cover the outer circumference of the core wire 4 with another layer interposed like the metal shield layer 7 described above. good too.
 例えば、上記の形態では、コア線4として、単独の絶縁電線を用いているが、複数の絶縁電線を用いてもよい。具体的には、1対の絶縁電線を、相互に撚り合わせるか、並走させるかして、差動信号を伝送するように、コア線4を構成することができる。また、ノイズの影響がそれほど大きくない場合には、金属シールド層7として、金属箔5と編組層6のいずれか一方のみを配置するようにしてもよく、さらには金属シールド層7を省略してもよい。また、金属シールド層7として、横巻き線等、金属箔5や編組層6以外の形態のものを用いてもよい。アウターシース層9についても、磁性シース層8の保護等の機能に対する要請がそれほど大きくない場合には、省略してもよい。また、上記の形態では、説明した各層を、それぞれ内側の構成層の外周に直接接触させて形成しているが、通信用電線は、上記で説明した各層以外の構成層を、適宜含むものであってもよい。以下、上記で例示した同軸型の通信用電線1の各構成部材について、詳細に説明する。 For example, in the above embodiment, a single insulated wire is used as the core wire 4, but a plurality of insulated wires may be used. Specifically, the core wire 4 can be configured such that a pair of insulated wires are twisted together or run in parallel to transmit a differential signal. If the influence of noise is not so great, only one of the metal foil 5 and the braided layer 6 may be arranged as the metal shield layer 7, or the metal shield layer 7 may be omitted. good too. Further, as the metal shield layer 7, a form other than the metal foil 5 and the braided layer 6, such as a horizontally wound wire, may be used. The outer sheath layer 9 may also be omitted if the function such as protection of the magnetic sheath layer 8 is not so required. Further, in the above embodiment, each of the layers described above is formed in direct contact with the outer periphery of the inner constituent layer, but the communication wire may appropriately include constituent layers other than the layers described above. There may be. Hereinafter, each constituent member of the coaxial communication wire 1 illustrated above will be described in detail.
(コア線)
 コア線4は、通信用電線1において、電気信号の伝送を担う信号線であり、導体2と、導体2の外周を被覆する絶縁層3とを有している。導体2および絶縁層3を構成する材料は、特に限定されるものではない。
(core wire)
The core wire 4 is a signal wire responsible for transmission of electrical signals in the communication wire 1 and has a conductor 2 and an insulating layer 3 covering the outer periphery of the conductor 2 . The materials forming the conductor 2 and the insulating layer 3 are not particularly limited.
 導体2を構成する材料としては、種々の金属材料を用いることができるが、高い導電性を有する等の点から、銅合金を用いることが好ましい。導体2は、単線として構成されてもよいが、屈曲時の柔軟性を高める等の観点から、複数の素線(例えば7本)が撚り合わせられた撚線として構成されることが好ましい。この場合に、素線を撚り合わせた後に、圧縮成形を行い、圧縮撚線としてもよい。導体2が撚線として構成される場合に、全て同じ素線よりなっても、2種以上の素線を含んでいてもよい。導体2の径は、特に限定されるものではない。導体断面積として、0.05mm以上、また1.0mm以下の範囲を例示することができる。 Various metal materials can be used as the material for the conductor 2, but it is preferable to use a copper alloy because of its high conductivity. Although the conductor 2 may be configured as a single wire, it is preferably configured as a stranded wire in which a plurality of strands (for example, seven wires) are twisted together from the viewpoint of enhancing flexibility when bending. In this case, after twisting the strands, compression molding may be performed to form a compressed stranded wire. When the conductor 2 is configured as a stranded wire, all of them may be made of the same wire, or two or more kinds of wire may be included. The diameter of the conductor 2 is not particularly limited. The conductor cross-sectional area can be exemplified in the range of 0.05 mm 2 or more and 1.0 mm 2 or less.
 絶縁層3は、コア線4において、導体2を絶縁するものであり、有機ポリマーを含んでいる。有機ポリマーの種類は、特に限定されるものではないが、ポリオレフィンやオレフィン系共重合体等のオレフィン系ポリマー、ポリ塩化ビニル等のハロゲン系ポリマー、各種エンジニアリングプラスチック、エラストマー、ゴム等を挙げることができる。有機ポリマーは、1種のみを用いても、混合、積層等により、2種以上を合わせて用いてもよい。有機ポリマーは、架橋されていてもよく、また、発泡されていてもよい。 The insulating layer 3 insulates the conductor 2 in the core wire 4 and contains an organic polymer. The type of organic polymer is not particularly limited, but examples include olefin polymers such as polyolefins and olefin copolymers, halogen polymers such as polyvinyl chloride, various engineering plastics, elastomers, and rubbers. . The organic polymers may be used singly or in combination of two or more by mixing, laminating, or the like. The organic polymer may be crosslinked or foamed.
 通信特性を高める観点からは、絶縁層3を構成する有機ポリマーとして、上記で列挙したうち、低分子極性のものを用いることが好ましい。例えば、ポリプロピレン(PP)をはじめとするポリオレフィン等、無極性の有機ポリマーを含んで、絶縁層3を構成することが好ましい。ポリオレフィンとしては、ホモPP等のホモポリオレフィンを用いても、ブロックPP等のブロックポリオレフィンを用いてもよい。 From the viewpoint of improving communication characteristics, it is preferable to use low-molecular-weight polar organic polymers among those listed above as the organic polymer constituting the insulating layer 3 . For example, it is preferable that the insulating layer 3 includes a non-polar organic polymer such as polyolefin such as polypropylene (PP). As the polyolefin, homopolyolefin such as homo PP may be used, or block polyolefin such as block PP may be used.
 絶縁層3は、有機ポリマーに加え、適宜、添加剤を含有してもよい。添加剤としては、金属水酸化物等の難燃剤、銅害防止剤、ヒンダードフェノール系や硫黄系等の酸化防止剤、酸化亜鉛等の金属酸化物を例示することができる。ただし、絶縁層3は、磁性シース層8に含有されるような、磁性材料よりなる添加剤は、含有しない方がよい。絶縁層3の厚さは、特に限定されるものではないが、0.1mm以上、また1.0mm以下の範囲を例示することができる。 The insulating layer 3 may contain additives as appropriate in addition to the organic polymer. Examples of additives include flame retardants such as metal hydroxides, copper damage inhibitors, hindered phenol-based and sulfur-based antioxidants, and metal oxides such as zinc oxide. However, it is preferable that the insulating layer 3 does not contain an additive made of a magnetic material such as that contained in the magnetic sheath layer 8 . Although the thickness of the insulating layer 3 is not particularly limited, a range of 0.1 mm or more and 1.0 mm or less can be exemplified.
(金属シールド層)
 金属シールド層7は、コア線4と磁性シース層8との間に設けられており、金属箔5と編組層6とが積層された2層構造を有している。
(metal shield layer)
The metal shield layer 7 is provided between the core wire 4 and the magnetic sheath layer 8, and has a two-layer structure in which the metal foil 5 and the braided layer 6 are laminated.
 金属箔5は、金属材料の薄膜として構成されている。金属箔5を構成する金属の種類は、特に限定されるものではなく、銅、銅合金、アルミニウム、アルミニウム合金等を例示することができる。金属箔5は、単一の金属種より構成されても、2種以上の金属種の層が積層されてもよい。また、金属箔5は、独立した金属薄膜よりなる形態のほか、高分子フィルム等の基材に、蒸着、めっき、接着等によって金属層が結合されたものであってもよい。ノイズ遮蔽性を高める観点から、金属箔5は、コア線4に対して、縦添え状に配置することが好ましい。 The metal foil 5 is configured as a thin film of a metal material. The type of metal forming the metal foil 5 is not particularly limited, and examples thereof include copper, copper alloys, aluminum, aluminum alloys, and the like. The metal foil 5 may be composed of a single kind of metal, or may be a laminate of layers of two or more kinds of metals. The metal foil 5 may be formed of an independent metal thin film, or may be formed by bonding a metal layer to a base material such as a polymer film by vapor deposition, plating, adhesion, or the like. From the viewpoint of enhancing noise shielding properties, it is preferable to arrange the metal foil 5 in a tandem manner with respect to the core wire 4 .
 編組層6は、複数の金属素線が相互に編み込まれて、中空筒状に成形された編組体として構成されている。編組層6を構成する金属素線としては、銅、銅合金、アルミニウム、アルミニウム合金等の金属材料、あるいはそれら金属材料の表面に、スズ等によってめっきを施したものを例示することができる。 The braided layer 6 is configured as a braided body in which a plurality of metal wires are woven together to form a hollow tubular shape. Examples of the metal wires forming the braided layer 6 include metal materials such as copper, copper alloys, aluminum, and aluminum alloys, and metal materials whose surfaces are plated with tin or the like.
 金属シールド層7は、同軸電線構造において、外部導体を構成するものであり、コア線4に対して侵入するノイズ、またコア線4から放出されるノイズを遮蔽する役割を果たす。後に説明するように、通信用電線1において、ノイズ遮蔽効果は、磁性シース層8によっても発揮されるが、通信用電線1を、1GHz以上のような高周波域の通信に用いる場合には、ノイズの影響が深刻になりやすく、磁性シース層8とともに金属シールド層7を設けることで、ノイズの影響を効果的に低減することができる。金属シールド層7として、金属箔5と編組層6を併用することで、ノイズ遮蔽効果を高めることができる。金属箔5と編組層6の積層順は特に限定されるものではないが、信号の損失を少なくする等の理由で、金属箔5を内側、編組層6を外側に配置することが好ましい。 The metal shield layer 7 constitutes an outer conductor in the coaxial cable structure, and plays a role of shielding noise entering the core wire 4 and noise emitted from the core wire 4 . As will be described later, in the communication wire 1, the noise shielding effect is also exhibited by the magnetic sheath layer 8. The influence of noise tends to become serious, and by providing the metal shield layer 7 together with the magnetic sheath layer 8, the influence of noise can be effectively reduced. By using both the metal foil 5 and the braided layer 6 as the metal shield layer 7, the noise shielding effect can be enhanced. Although the order of lamination of the metal foil 5 and the braided layer 6 is not particularly limited, it is preferable to arrange the metal foil 5 inside and the braided layer 6 outside for reasons such as reducing signal loss.
(磁性シース層)
 磁性シース層8は、コア線4の外周を被覆するものである。本実施形態においては、磁性シース層8は、金属シールド層7を介して、コア線4の外周を被覆している。
(Magnetic sheath layer)
The magnetic sheath layer 8 covers the outer circumference of the core wire 4 . In this embodiment, the magnetic sheath layer 8 covers the outer periphery of the core wire 4 with the metal shield layer 7 interposed therebetween.
 磁性シース層8は、粉末状の磁性材料と、有機ポリマー成分とを含有している。磁性材料の粉末は、有機ポリマー成分より構成されるマトリクス中に分散された状態をとる。磁性シース層8に含有される磁性材料は、好ましくは強磁性材料であり、さらに好ましくは、軟磁性を有する金属または金属化合物である。磁性シース層8に、磁性材料、特に軟磁性材料が含有されることにより、通信用電線1において、優れたノイズ遮蔽効果を得ることができる。つまり、通信用電線1の外部からの電磁波が、通信用電線1に侵入し、ノイズとなってコア線4を伝送される信号に影響を与える現象、および、コア線4を伝送される信号に起因する電磁波が、通信用電線1の外部に放出される現象を、抑制することができる。磁性シース層8に含有される磁性材料における磁性損失により、ノイズの要因となりうる高周波の電磁波が吸収され、減衰されるからである。通信用電線1において、ノイズ遮蔽効果は、金属箔5および編組層6によっても発揮されるが、通信用電線1を、1GHz以上のような高周波域の通信に用いる場合には、ノイズの影響が深刻になりやすく、金属箔5および編組層6とともに磁性シース層8を設けることで、ノイズの影響を効果的に低減することができる。 The magnetic sheath layer 8 contains a powdery magnetic material and an organic polymer component. The magnetic material powder is dispersed in a matrix composed of organic polymer components. The magnetic material contained in the magnetic sheath layer 8 is preferably a ferromagnetic material, more preferably a metal or metal compound having soft magnetism. By containing a magnetic material, particularly a soft magnetic material, in the magnetic sheath layer 8, the communication wire 1 can obtain an excellent noise shielding effect. That is, electromagnetic waves from the outside of the communication wire 1 enter the communication wire 1 and become noise, affecting the signal transmitted through the core wire 4. It is possible to suppress the phenomenon that the resulting electromagnetic wave is emitted to the outside of the communication wire 1 . This is because magnetic loss in the magnetic material contained in the magnetic sheath layer 8 absorbs and attenuates high-frequency electromagnetic waves that can cause noise. In the communication wire 1, the noise shielding effect is exhibited also by the metal foil 5 and the braided layer 6, but when the communication wire 1 is used for communication in a high frequency range such as 1 GHz or higher, the influence of noise is large. It is likely to become serious, and by providing the magnetic sheath layer 8 together with the metal foil 5 and the braided layer 6, the influence of noise can be effectively reduced.
(1)磁性材料
 1GHz以上等の高周波領域で、高いノイズ遮蔽性を示す軟磁性材料として、鉄(純鉄または少量の炭素を含む鉄)、Fe-Si系合金(ケイ素鋼)、Fe-Si-Al合金(センダスト)、Fe-Cr-Al-Si合金、Fe-Si-Cr合金等の磁性ステンレス鋼、Fe-Ni系合金(パーマロイ)、フェライト等を例示することができる。これらの材料の中で、ノイズ遮蔽性と低価格性に優れることから、フェライトを用いることが特に好ましい。フェライトとしては、Ni-Zn系のものを、特に好適に用いることができる。磁性材料は、1種のみを用いても、混合等により、2種以上を合わせて用いてもよい。磁性シース層8に含有される磁性材料の粒子の粒径は、特に限定されないが、平均粒径で、0.1μm以上、また100μm以下であるとよい。
(1) Magnetic materials Iron (pure iron or iron containing a small amount of carbon), Fe—Si alloy (silicon steel), Fe—Si Magnetic stainless steel such as -Al alloy (sendust), Fe--Cr--Al--Si alloy, Fe--Si--Cr alloy, Fe--Ni system alloy (permalloy), ferrite and the like can be exemplified. Among these materials, it is particularly preferable to use ferrite because of its excellent noise shielding properties and low cost. As the ferrite, a Ni--Zn-based ferrite can be particularly suitably used. The magnetic materials may be used singly or in combination of two or more by mixing or the like. The particle size of the particles of the magnetic material contained in the magnetic sheath layer 8 is not particularly limited, but the average particle size is preferably 0.1 μm or more and 100 μm or less.
 磁性シース層8における磁性材料の含有量は、磁性シース層8を構成する有機ポリマー成分全体を100質量部として、350質量部以上、かつ850質量部以下となっている。有機ポリマー成分100質量部に対して磁性材料が350質量部以上含有されることで、磁性シース層8において、磁性材料が電磁波を吸収することによるノイズ遮蔽性能を、十分に高めることができる。磁性材料の含有量は、400質量部以上であると、磁性シース層8のノイズ遮蔽性能を高める点で、さらに好ましい。 The content of the magnetic material in the magnetic sheath layer 8 is 350 parts by mass or more and 850 parts by mass or less when the entire organic polymer component constituting the magnetic sheath layer 8 is 100 parts by mass. By containing 350 parts by mass or more of the magnetic material with respect to 100 parts by mass of the organic polymer component, the magnetic sheath layer 8 can sufficiently improve the noise shielding performance due to the absorption of electromagnetic waves by the magnetic material. It is more preferable that the content of the magnetic material is 400 parts by mass or more in order to enhance the noise shielding performance of the magnetic sheath layer 8 .
 一方、磁性シース層8における磁性材料の含有量が、有機ポリマー成分100質量部に対して850質量部以下に抑えられていることにより、磁性シース層8の質量の増大を抑えることができる。また、磁性シース層8を構成する組成物の押出成形性を高めることができる。それらの効果をさらに高める観点から、磁性材料の含有量は、800質量部以下であると、さらに好ましい。なお、以降においても、磁性シース層8の各構成成分について、質量部を単位とする含有量は、磁性シース層8を構成する有機ポリマー成分全体を100質量部として表記するものとする。 On the other hand, since the content of the magnetic material in the magnetic sheath layer 8 is suppressed to 850 parts by mass or less with respect to 100 parts by mass of the organic polymer component, an increase in the mass of the magnetic sheath layer 8 can be suppressed. In addition, the extrudability of the composition forming the magnetic sheath layer 8 can be enhanced. From the viewpoint of further enhancing those effects, the content of the magnetic material is more preferably 800 parts by mass or less. In the following also, the content in units of parts by mass of each constituent component of the magnetic sheath layer 8 is expressed as 100 parts by mass of the entire organic polymer component forming the magnetic sheath layer 8 .
(2)有機ポリマー成分
 磁性シース層8を構成する材料は、有機ポリマーを含んでいる。有機ポリマーの具体的な種類は、磁性シース層8を構成する組成物全体として、後述する所定の範囲のMFRを与えるものであれば、特に限定されない。磁性シース層8に用いることができる有機ポリマーとして、コア線4の絶縁層3と同様に、ポリオレフィンやオレフィン系共重合体等のオレフィン系ポリマー、ポリ塩化ビニル等のハロゲン系ポリマー、各種エンジニアリングプラスチック、エラストマー、ゴム等を挙げることができる。有機ポリマーは、1種のみを用いても、混合等により、2種以上を合わせて用いてもよい。有機ポリマーは、架橋されていてもよく、また、発泡されていてもよい。
(2) Organic polymer component The material forming the magnetic sheath layer 8 contains an organic polymer. A specific type of the organic polymer is not particularly limited as long as the composition as a whole constituting the magnetic sheath layer 8 gives an MFR within a predetermined range, which will be described later. Examples of organic polymers that can be used for the magnetic sheath layer 8 include olefin-based polymers such as polyolefins and olefin-based copolymers, halogen-based polymers such as polyvinyl chloride, various engineering plastics, as well as the insulating layer 3 of the core wire 4 . Elastomers, rubbers and the like can be mentioned. The organic polymers may be used singly or in combination of two or more by mixing or the like. The organic polymer may be crosslinked or foamed.
 磁性シース層8は、上記で列挙したうち、エラストマー、特にオレフィン系熱可塑性エラストマー(TPO)を含有することが好ましい。TPOをはじめとするエラストマーは、磁性シース層8の柔軟性を高めるものとなる。エラストマーの含有量は、磁性シース層8を構成する有機ポリマー成分全体のうち、20質量%以上、また40質量%以下とするとよい。 The magnetic sheath layer 8 preferably contains an elastomer, particularly an olefinic thermoplastic elastomer (TPO), among those listed above. Elastomers such as TPO increase the flexibility of the magnetic sheath layer 8 . The content of the elastomer should be 20% by mass or more and 40% by mass or less of the total organic polymer components constituting the magnetic sheath layer 8 .
 さらに、磁性シース層8は、TPO等のエラストマーに加えて、ポリプロピレン(PP)等のポリオレフィンを含有することが好ましい。ポリオレフィンは、溶融した際に低い粘度を示しやすく、磁性シース層8の押出成形性を高めるものとなる。ポリオレフィンとしては、ホモPP等のホモポリオレフィンを用いても、ブロックPP等のブロックポリオレフィンを用いてもいずれでもよい。好ましくは、ブロックポリオレフィンを用いるとよい。磁性シース層8を構成する組成物全体としてのMFRを高める観点から、ポリオレフィンは、30g/10分以上、さらには50g/10分以上のMFRを有していることが好ましい。ポリオレフィンの含有量は、有機ポリマー成分のうち、20質量%以上、また40質量%以下とするとよい。また、エラストマーとポリオレフィンを合わせて、有機ポリマー成分の50質量%以上を占めているとよい。 Further, the magnetic sheath layer 8 preferably contains polyolefin such as polypropylene (PP) in addition to elastomer such as TPO. Polyolefin tends to exhibit low viscosity when melted, and enhances the extrusion moldability of the magnetic sheath layer 8 . As the polyolefin, either homopolyolefin such as homo PP or block polyolefin such as block PP may be used. Block polyolefins are preferably used. From the viewpoint of increasing the MFR of the composition constituting the magnetic sheath layer 8 as a whole, the polyolefin preferably has an MFR of 30 g/10 minutes or more, more preferably 50 g/10 minutes or more. The polyolefin content is preferably 20% by mass or more and 40% by mass or less in the organic polymer component. In addition, it is preferable that the total amount of the elastomer and the polyolefin is 50% by mass or more of the organic polymer component.
 エラストマーおよびポリオレフィン以外に、磁性シース層8に含有される有機ポリマー成分の好適な例として、エチレン-アクリル酸エチル共重合体(EEA)、エチレン-アクリル酸メチル共重合体(EMA)、エチレン-酢酸ビニル共重合体(EVA)等のエチレン系共重合体、酸変性ポリマー等を挙げることができる。それらエチレン系共重合体や酸変性ポリマーは、有機ポリマー成分と磁性材料粉末との間の接着性を高めるのに、効果を有する。また、磁性シース層8は、磁性材料と有機ポリマーに加え、適宜、添加剤を含有してもよい。添加剤としては、難燃剤、銅害防止剤、酸化防止剤、金属酸化物等を例示することができる。 Other than elastomers and polyolefins, suitable examples of organic polymer components contained in the magnetic sheath layer 8 include ethylene-ethyl acrylate copolymer (EEA), ethylene-methyl acrylate copolymer (EMA), and ethylene-acetic acid. Ethylene-based copolymers such as vinyl copolymers (EVA), acid-modified polymers, and the like can be mentioned. These ethylene-based copolymers and acid-modified polymers are effective in enhancing adhesion between the organic polymer component and the magnetic material powder. In addition to the magnetic material and the organic polymer, the magnetic sheath layer 8 may contain additives as appropriate. Examples of additives include flame retardants, copper damage inhibitors, antioxidants, metal oxides, and the like.
(3)磁性シース層の物性
 磁性シース層8を構成する組成物は、230℃において荷重2.16kgで計測されるMFRが、11.8g/10分以上となっている。磁性シース層8を構成する組成物は、高いMFRを有することで、高い押出成形性を備えるものとなり、押出成形によって、均一性の高い組織を有する磁性シース層8を形成することができる。
(3) Physical Properties of Magnetic Sheath Layer The composition forming the magnetic sheath layer 8 has an MFR of 11.8 g/10 minutes or more measured at 230° C. under a load of 2.16 kg. The composition constituting the magnetic sheath layer 8 has a high MFR, so that it has high extrusion moldability, and the magnetic sheath layer 8 having a highly uniform structure can be formed by extrusion molding.
 磁性シース層8を構成する組成物のMFRが低すぎると、押出成形によって磁性シース層8を形成する際に、材料が高い粘度を有することにより、磁性シース層8を薄く形成しようとすると、押出成形装置の吐出口の付近で材料が伸長せずに破断してしまう可能性がある、すると、形成される磁性シース層8に、部分的に材料が欠落した穴が発生する場合がある。しかし、磁性シース層8を構成する組成物が11.8g/10分以上のMFRを有している場合には、円滑に押出成形を進めることができ、緻密な組織と平滑な表面を有する磁性シース層8を形成することができる。その結果、磁性シース層8が、350質量部以上もの多量の磁性材料を含有しているにもかかわらず、磁性シース層8を薄く形成した場合でも、磁性シース層8に穴などの欠陥が生じにくい。すると、磁性シース層8において、欠陥を介した電磁波の侵入や放出が起こりにくくなり、通信用電線1において、高いノイズ遮蔽性を確保することができる。 If the MFR of the composition constituting the magnetic sheath layer 8 is too low, the material has a high viscosity when forming the magnetic sheath layer 8 by extrusion. If there is a possibility that the material will not stretch and break in the vicinity of the ejection port of the molding device, then a hole in which the material is partially missing may occur in the formed magnetic sheath layer 8 . However, when the composition constituting the magnetic sheath layer 8 has an MFR of 11.8 g/10 minutes or more, the extrusion molding can proceed smoothly, and the magnetic material has a dense structure and a smooth surface. A sheath layer 8 can be formed. As a result, although the magnetic sheath layer 8 contains a large amount of magnetic material of 350 parts by mass or more, defects such as holes occur in the magnetic sheath layer 8 even when the magnetic sheath layer 8 is formed thin. Hateful. Then, in the magnetic sheath layer 8, penetration and emission of electromagnetic waves through defects are less likely to occur, and in the communication wire 1, high noise shielding properties can be ensured.
 通信用電線1において、十分なノイズ遮蔽性能を確保しながら、磁性シース層8を薄く形成することで、磁性シース層8の質量、さらには通信用電線1全体としての質量の増大を抑えることができる。通信用電線1が、自動車等、移動体に搭載される場合には、質量の増大を抑えることの重要性が高い。特に、本実施形態にかかる通信用電線1は、金属箔5および編組層6よりなる金属シールド層7を含んでおり、それらの寄与によって、通信用電線1の質量が大きくなってしまうが、磁性シース層8の軽量化によって、通信用電線1全体としての質量の増大を抑えることができる。押出成形性の向上により、磁性シース層8の薄層化を効果的に達成する観点から、磁性シース層8を構成する組成物のMFRは、15g/10分以上、さらには17g/10分以上であると、より好ましい。磁性シース層8のMFRは、磁性シース層8を構成する有機ポリマーの種類、磁性材料の含有量等によって、調整することができる。 In the communication wire 1, by forming the magnetic sheath layer 8 thin while ensuring sufficient noise shielding performance, it is possible to suppress an increase in the mass of the magnetic sheath layer 8 and further the mass of the communication wire 1 as a whole. can. When the communication wire 1 is mounted on a moving object such as an automobile, it is very important to suppress an increase in mass. In particular, the communication wire 1 according to the present embodiment includes the metal shield layer 7 made up of the metal foil 5 and the braided layer 6. These contribute to increase the mass of the communication wire 1, but the magnetic field By reducing the weight of the sheath layer 8, an increase in the mass of the communication wire 1 as a whole can be suppressed. From the viewpoint of effectively achieving thinning of the magnetic sheath layer 8 by improving extrusion moldability, the MFR of the composition constituting the magnetic sheath layer 8 is 15 g/10 minutes or more, further 17 g/10 minutes or more. is more preferable. The MFR of the magnetic sheath layer 8 can be adjusted by the type of organic polymer forming the magnetic sheath layer 8, the content of the magnetic material, and the like.
 押出成形性の向上の観点からは、磁性シース層8を構成する組成物のMFRの上限は、特に限定されるものではない。しかし、MFRをある程度低く抑えておいた方が、磁性シース層8の耐低温衝撃性を高めることができる。有機ポリマーの分子鎖が長く、また分岐を有するほど、MFRが低くなる傾向があるが、分子鎖が長く、また分岐を有する有機ポリマーほど、低温状態で結晶を形成しにくく、ゴム成分が多くなり、ガラス転移温度が低下するからである。ガラス転移温度が低い材料の方が、耐低温衝撃性が高くなる。自動車内等、低温環境に曝される可能性のある箇所で通信用電線1を使用する場合には、磁性シース層8を構成する組成物のMFRを、例えば23.9g/10分以下、さらには20g/10分以下等、ある程度低く抑えておくことが好ましい。磁性シース層8が高い耐低温衝撃性を有することで、低温環境で衝撃を受けた場合にも、破断等の損傷を起こしにくくなり、高いノイズ遮蔽性を維持することができる。なお、高い耐低温衝撃性は、本開示の通信用電線1が必須に備えるべきものではなく、低温環境での使用が想定されない場合等には、備えなくてもよい。 From the viewpoint of improving extrusion moldability, the upper limit of the MFR of the composition forming the magnetic sheath layer 8 is not particularly limited. However, the low-temperature impact resistance of the magnetic sheath layer 8 can be enhanced by keeping the MFR low to some extent. The longer the molecular chain and the more branched the organic polymer, the lower the MFR. , the glass transition temperature is lowered. A material with a lower glass transition temperature has a higher low temperature impact resistance. When the communication wire 1 is used in a place where there is a possibility of being exposed to a low-temperature environment, such as in an automobile, the MFR of the composition constituting the magnetic sheath layer 8 is, for example, 23.9 g/10 min or less, and further is preferably kept low to some extent, such as 20 g/10 minutes or less. Since the magnetic sheath layer 8 has a high low-temperature impact resistance, it is less likely to be damaged such as broken even when subjected to an impact in a low-temperature environment, and high noise shielding properties can be maintained. It should be noted that high low-temperature impact resistance is not essential for the communication wire 1 of the present disclosure, and may not be provided when use in a low-temperature environment is not assumed.
(4)磁性シース層の厚さ
 上記のように、磁性シース層8を構成する組成物が、11.8g/10分以上の高いMFRを有することで、穴などの欠陥の形成を抑制しながら、磁性シース層8を薄く形成することができる。磁性シース層8の具体的な厚さは、特に限定されるものではないが、磁性シース層8のMFRを高くすることによる欠陥生成抑制の効果を享受し、薄層化による質量低減を効果的に達成する観点から、0.16mm以下とすることが好ましい。また、通信用電線1の単位長さあたりにおける磁性シース層8の質量が、4g/m以下、さらには3g/m以下、2g/m以下となるように、磁性シース層8の厚さを設定すればよい。磁性シース層8の厚さの下限は、質量低減の観点からは特に定められないが、高いノイズ遮蔽性を確保する等の観点から、0.12mm以上としておくとよい。また、単位長さあたりの磁性シース層8の質量が、1.5g/m以上となるようにしておくとよい。磁性シース層8の厚さd(単位:mm)と、単位長さあたりの磁性シース層8の質量A(単位:g/m)との関係は、以下の式(1)によって定めることができる。
Figure JPOXMLDOC01-appb-M000001
 ここで、ρは磁性シース層8を構成する組成物の密度(単位:g/cm)、Rは磁性シース層8の内径(単位:mm)である。
(4) Thickness of the magnetic sheath layer As described above, the composition constituting the magnetic sheath layer 8 has a high MFR of 11.8 g/10 min or more, thereby suppressing the formation of defects such as holes. , the magnetic sheath layer 8 can be formed thin. The specific thickness of the magnetic sheath layer 8 is not particularly limited, but the effect of suppressing defect generation by increasing the MFR of the magnetic sheath layer 8 can be obtained, and the thickness can be effectively reduced by thinning. 0.16 mm or less is preferable from the viewpoint of achieving . Further, the thickness of the magnetic sheath layer 8 is set so that the mass of the magnetic sheath layer 8 per unit length of the communication wire 1 is 4 g/m or less, further 3 g/m or less, or 2 g/m or less. do it. Although the lower limit of the thickness of the magnetic sheath layer 8 is not particularly defined from the viewpoint of mass reduction, it is preferable to set it at 0.12 mm or more from the viewpoint of ensuring high noise shielding properties. Further, it is preferable that the mass of the magnetic sheath layer 8 per unit length is 1.5 g/m or more. The relationship between the thickness d (unit: mm) of the magnetic sheath layer 8 and the mass A (unit: g/m) of the magnetic sheath layer 8 per unit length can be determined by the following formula (1). .
Figure JPOXMLDOC01-appb-M000001
Here, ρ is the density of the composition forming the magnetic sheath layer 8 (unit: g/cm 3 ), and R 0 is the inner diameter of the magnetic sheath layer 8 (unit: mm).
 磁性シース層8に含有される磁性材料の総量が同じであっても、磁性材料を低濃度で含む厚さの大きい磁性シース層8よりも、磁性材料を高濃度で含む厚さの小さい磁性シース層8の方が、ノイズ遮蔽に高い効果を示す。具体的な磁性材料の含有量と磁性シース層8の厚さは、磁性材料の含有量が350質量部以上850質量部以下となる範囲内で、求められるノイズ遮蔽性に応じて、適宜設定すればよい。目標とすべきノイズ遮蔽性としては、例えば、CISPR25(国際無線障害特別委員会による「車載受信機保護のための妨害波の推奨限度値および測定法」の規格)に準拠した放射エミッション評価において、1.6GHzの周波数でのノイズ放射量が、16dB(μV/m)未満、さらには10dB(μV/m)未満となる水準を例示することができる。 Even if the total amount of the magnetic material contained in the magnetic sheath layer 8 is the same, the magnetic sheath having a smaller thickness containing a high concentration of the magnetic material than the thick magnetic sheath layer 8 containing a low concentration of the magnetic material. Layer 8 is more effective in noise shielding. The specific magnetic material content and the thickness of the magnetic sheath layer 8 may be appropriately set within a range of 350 parts by mass or more and 850 parts by mass or less according to the required noise shielding property. Just do it. For noise shielding performance to be targeted, for example, in a radiated emission evaluation based on CISPR25 (the standard of "recommended limit values and measurement methods of interference waves for protection of vehicle-mounted receivers" by the International Special Committee on Radio Interference), A level at which the amount of noise emission at a frequency of 1.6 GHz is less than 16 dB (μV/m), and further less than 10 dB (μV/m) can be exemplified.
 磁性シース層8の厚さと、磁性材料の含有量の関係の具体例として、以下の関係を例示することができる。
・厚さ0.12mm以上、0.13mm未満:含有量650質量部超、850質量部以下
・厚さ0.13mm以上、0.14mm未満:含有量550質量部超、650質量部以下
・厚さ0.14mm以上、0.16mm以下:含有量350質量部以上、550質量部以下
As a specific example of the relationship between the thickness of the magnetic sheath layer 8 and the content of the magnetic material, the following relationship can be exemplified.
・Thickness of 0.12 mm or more and less than 0.13 mm: Content of more than 650 parts by mass and less than 850 parts by mass ・Thickness of 0.13 mm or more and less than 0.14 mm: Content of more than 550 parts by mass and less than 650 parts by mass ・Thickness 0.14 mm or more and 0.16 mm or less: content of 350 parts by mass or more and 550 parts by mass or less
(アウターシース層)
 アウターシース層9は、磁性シース層8の外周を被覆して設けられる層であり、通信用電線1全体としての外周に露出している。アウターシース層9は、不可避的不純物を除いて、磁性材料を含有していない。アウターシース層9は、磁性シース層8およびさらに内側の各構成部材を、外部の物体との接触等から、物理的に保護する役割を果たす。
(outer sheath layer)
The outer sheath layer 9 is a layer provided to cover the outer periphery of the magnetic sheath layer 8 and is exposed to the outer periphery of the communication wire 1 as a whole. The outer sheath layer 9 contains no magnetic material except for inevitable impurities. The outer sheath layer 9 plays a role of physically protecting the magnetic sheath layer 8 and the constituent members further inside from contact with external objects.
 アウターシース層9は、有機ポリマーを含んでいることが好ましい。具体的な有機ポリマーとしては、絶縁層3や磁性シース層8を構成する有機ポリマーと同様に、ポリオレフィンやオレフィン系共重合体等のオレフィン系ポリマー、ポリ塩化ビニル等のハロゲン系ポリマー、各種エンジニアリングプラスチック、エラストマー、ゴム等を挙げることができる。中でも、絶縁性および耐熱性に優れる等の点から、オレフィン系ポリマー、特にTPOを用いることが好ましい。有機ポリマーは、1種のみを用いても、混合、積層等により、2種以上を合わせて用いてもよい。有機ポリマーは、架橋されていてもよく、また、発泡されていてもよい。好ましくは、磁性シース層8とアウターシース層9の間の接着性を高める観点から、磁性シース層8を構成する有機ポリマーのうち、少なくとも一部と同種の有機ポリマーが、アウターシース層9にも含まれるとよい。特に、磁性シース層8に含まれるのと同種のエラストマーがアウターシース層9にも含まれるとよい。 The outer sheath layer 9 preferably contains an organic polymer. Specific examples of organic polymers include olefin polymers such as polyolefins and olefin copolymers, halogen polymers such as polyvinyl chloride, and various engineering plastics, similar to the organic polymers forming the insulating layer 3 and the magnetic sheath layer 8. , elastomers, rubbers, and the like. Among them, it is preferable to use an olefin-based polymer, particularly TPO, because of its excellent insulating properties and heat resistance. The organic polymers may be used singly or in combination of two or more by mixing, laminating, or the like. The organic polymer may be crosslinked or foamed. Preferably, from the viewpoint of enhancing the adhesiveness between the magnetic sheath layer 8 and the outer sheath layer 9, the same organic polymer as at least a part of the organic polymers constituting the magnetic sheath layer 8 is also used in the outer sheath layer 9. should be included. In particular, the outer sheath layer 9 may also contain the same type of elastomer as that contained in the magnetic sheath layer 8 .
 アウターシース層9の厚さは、特に限定されるものではないが、磁性シース層8に対する保護性能を高める等の観点から、0.1mm以上とするとよい。一方、柔軟性を高めやすくする等の観点から、アウターシース層9の厚さは、0.5mm以下としておくとよい。 Although the thickness of the outer sheath layer 9 is not particularly limited, it is preferably 0.1 mm or more from the viewpoint of enhancing the protective performance for the magnetic sheath layer 8. On the other hand, the thickness of the outer sheath layer 9 is preferably set to 0.5 mm or less from the viewpoint of facilitating enhancement of flexibility.
 以下に実施例を示す。なお、本発明はこれら実施例によって限定されるものではない。本実施例において、各特性の評価は、特記しないかぎり、室温、大気中において行っている。 An example is shown below. However, the present invention is not limited to these examples. In the present examples, unless otherwise specified, the evaluation of each property was performed at room temperature in the air.
[1]磁性シース層の構成と特性との関係
 まず、磁性シース層の構成と通信用電線の特性との関係性について検証した。
[1] Relationship Between Configuration and Characteristics of Magnetic Sheath Layer First, the relationship between the configuration of the magnetic sheath layer and the characteristics of the communication wire was verified.
[試料の作製]
 銅合金の撚線として構成された導体の外周に、押出成形によって絶縁層を形成して、コア線とした。絶縁層の構成材料としては、下の表1に、「絶縁層」として表示した各成分を混合したものを用いた。導体断面積は0.18mm、絶縁層の厚さは0.54mmとした。
[Preparation of sample]
An insulating layer was formed by extrusion molding on the outer periphery of a conductor configured as a copper alloy stranded wire to form a core wire. As a constituent material of the insulating layer, a mixture of each component indicated as "insulating layer" in Table 1 below was used. The cross-sectional area of the conductor was 0.18 mm 2 and the thickness of the insulating layer was 0.54 mm.
 コア線の外周に、金属箔として、銅箔を縦添え状に配置した。さらに、銅箔の外周に、編組層を形成した。編組層は、スズめっき軟銅線(TA線)よりなる一重編組として構成した。 A copper foil was arranged vertically as a metal foil on the outer circumference of the core wire. Furthermore, a braided layer was formed on the outer circumference of the copper foil. The braid layer was constructed as a single braid made of tin-plated annealed copper wire (TA wire).
 編組層の外周に、押出成形によって、磁性シース層を形成した。磁性シース層を構成する組成物としては、試料A1~A11のそれぞれにおいて、下の表2に示す有機ポリマーおよび磁性材料粉末を混合したものを用いた。磁性シース層の厚さは、表2に示すとおり、0.3mmまたは0.15mmとした。 A magnetic sheath layer was formed on the outer circumference of the braided layer by extrusion molding. As the composition constituting the magnetic sheath layer, a mixture of the organic polymer and the magnetic material powder shown in Table 2 below was used in each of the samples A1 to A11. As shown in Table 2, the thickness of the magnetic sheath layer was 0.3 mm or 0.15 mm.
 さらに、各試料について、磁性シース層の外周に、押出成形によってアウターシース層を形成することで、通信用電線を完成させた。アウターシース層の肉厚は0.2mmとした。アウターシース層の構成材料としては、いずれの試料についても、下の表1に、「アウターシース層」として表示した各成分を混合したものを用いた。得られた通信用電線の外径は、磁性シース層の厚さを0.3mm、0.15mmとした場合に、それぞれ3.2mm、2.9mmとなった。 Furthermore, for each sample, an outer sheath layer was formed on the outer periphery of the magnetic sheath layer by extrusion molding to complete a communication wire. The thickness of the outer sheath layer was 0.2 mm. As a constituent material of the outer sheath layer, a mixture of each component indicated as "outer sheath layer" in Table 1 below was used for each sample. The outer diameters of the obtained communication wires were 3.2 mm and 2.9 mm when the thickness of the magnetic sheath layer was 0.3 mm and 0.15 mm, respectively.
 絶縁層、磁性シース層、アウターシース層を構成する各成分としては、以下のものを用いた。有機ポリマーのうち、磁性シース層に用いたものについては、密度およびMFR(230℃、荷重2.16kgにおける値)も合わせて表示している。
(有機ポリマー)
・TPO1:ライオンデル・バセル社製 TPO 「Adflex Q200F」、密度:0.88g/cm、MFR:0.8g/10分
・TPO2:エクソン・モービル社製 TPO 「サントプレーン 203-40」
・PP1:日本ポリプロ社製 ブロックPP 「ノバテック EC9GD」
・PP2:日本ポリプロ社製 ホモPP 「ノバテック EA9FTD」
・PP3:日本ポリプロ社製 ブロックPP 「ノバテック BC06C」、密度:0.91g/cm、MFR:60g/10分
・酸変性SEBS:旭化成社製 「タフテック M1913」
・EEA:ENEOS NUC社製 「NUC 6940」、密度:0.95g/cm、MFR:20g/10分
(磁性材料)
・Ni-Znフェライト:JFEケミカル社製 「KNI-109」、密度:5.15g/cm
(その他の添加剤)
・銅害防止剤:ADEKA社製 「CDA-1」
・ヒンダードフェノール系酸化防止剤:BASF社製 「Irganox 1010」
・硫黄系酸化防止剤:川口化学社製 「アンテージMB」(2-メルカプトベンゾイミダゾール)
・酸化亜鉛:ハクスイテック社製 「亜鉛華2種」
・難燃剤:協和化学工業株式会社製 「キスマ5」(水酸化マグネシウム)
The following components were used for the components constituting the insulating layer, the magnetic sheath layer, and the outer sheath layer. Among the organic polymers, those used for the magnetic sheath layer are also shown together with the density and MFR (value at 230° C., load of 2.16 kg).
(organic polymer)
・TPO1: TPO “Adflex Q200F” manufactured by Lyondell Basell, density: 0.88 g/cm 3 , MFR: 0.8 g/10 min ・TPO2: TPO “Santoprene 203-40” manufactured by Exxon-Mobil
・ PP1: Block PP “Novatec EC9GD” manufactured by Japan Polypropylene Corporation
・ PP2: Homo PP “Novatec EA9FTD” manufactured by Japan Polypro Co., Ltd.
・ PP3: Block PP “Novatec BC06C” manufactured by Japan Polypropylene Corporation, density: 0.91 g / cm 3 , MFR: 60 g / 10 minutes ・ Acid-modified SEBS: “Tuftec M1913” manufactured by Asahi Kasei Corporation
・EEA: "NUC 6940" manufactured by ENEOS NUC, density: 0.95 g/cm 3 , MFR: 20 g/10 minutes (magnetic material)
・Ni—Zn ferrite: “KNI-109” manufactured by JFE Chemical, density: 5.15 g/cm 3
(Other additives)
・Copper damage inhibitor: “CDA-1” manufactured by ADEKA
- Hindered phenol-based antioxidant: BASF "Irganox 1010"
・ Sulfur-based antioxidant: “Antage MB” (2-mercaptobenzimidazole) manufactured by Kawaguchi Chemical Co., Ltd.
・Zinc oxide: “Zinc white 2” manufactured by Hakusui Tech Co., Ltd.
・Flame retardant: “Kisuma 5” (magnesium hydroxide) manufactured by Kyowa Chemical Industry Co., Ltd.
 表1に、全試料の絶縁層およびアウターシース層の作製に用いた材料について、成分組成を、質量部を単位として示す。
Figure JPOXMLDOC01-appb-T000002
Table 1 shows the component compositions of the materials used to fabricate the insulating layer and the outer sheath layer of all the samples in units of parts by mass.
Figure JPOXMLDOC01-appb-T000002
[評価方法]
(1)磁性シース層を構成する組成物のMFR
 試料A1~A11のそれぞれの磁性シース層を構成するのに用いた組成物のMFRを測定した。測定は、JIS K 7210に準拠した方法で、230℃、荷重2.16kgの条件で行った。
[Evaluation method]
(1) MFR of composition constituting magnetic sheath layer
The MFR of the composition used to form the magnetic sheath layer of each of Samples A1 to A11 was measured. The measurement was performed in accordance with JIS K 7210 under conditions of 230° C. and a load of 2.16 kg.
(2)磁性シース層における穴の有無
 磁性シース層を形成した後に、インラインで3kVの電圧を印加するスパーク試験を実施し、編組線との導通により試料表面の穴の有無を測定した。磁性シース層に穴が形成されていない場合(A)と、穴が形成されている場合(B)に分類した。
(2) Presence or Absence of Holes in Magnetic Sheath Layer After forming the magnetic sheath layer, a spark test was performed by applying a voltage of 3 kV in-line to measure the presence or absence of holes in the surface of the sample by conduction with the braided wire. The magnetic sheath layer was classified into cases where holes were not formed (A) and cases where holes were formed (B).
(3)ノイズ遮蔽性
 試料A1~A11にかかる通信用電線に対して、ノイズ遮蔽性を評価した。評価としては、CISPR25に準拠した放射エミッション評価を行った。具体的には、電波暗室内にて、1500mmに切り出した通信用電線の中央部から側方に1.0m離した位置に、ホーンアンテナを設置した。そして、通信用電線に、1.6GHzの周波数の電気信号を入力し、この際のノイズ放射量を、ホーンアンテナにより計測した。ノイズ放射量が10dB(μV/m)未満の場合(Level 5)をノイズ遮蔽性が非常に高い(A+)と評価した。ノイズ放射量が10dB(μV/m)以上、16dB(μV/m)未満の場合(Level 4)を、ノイズ遮蔽性が高い(A)と評価した。ノイズ放射量が16dB(μV/m)以上、22dB(μV/m)未満の場合(Level 3)を、ノイズ遮蔽性が低い(B)と評価した。ノイズ放射量が22dB(μV/m)以上の場合(Level 2)を、ノイズ遮蔽性が非常に低い(B-)と評価した。
(3) Noise Shielding Performance Noise shielding performance was evaluated for the communication wires of Samples A1 to A11. As an evaluation, a radiated emission evaluation based on CISPR25 was performed. Specifically, in the anechoic chamber, a horn antenna was installed at a position laterally separated by 1.0 m from the central portion of the communication wire cut to 1500 mm. Then, an electrical signal with a frequency of 1.6 GHz was input to the communication wire, and the amount of noise radiation at this time was measured by a horn antenna. When the noise radiation amount was less than 10 dB (μV/m) (Level 5), the noise shielding property was evaluated as very high (A+). When the noise radiation amount was 10 dB (μV/m) or more and less than 16 dB (μV/m) (Level 4), the noise shielding property was evaluated as high (A). When the noise radiation amount was 16 dB (μV/m) or more and less than 22 dB (μV/m) (Level 3), the noise shielding property was evaluated as low (B). When the noise radiation amount was 22 dB (μV/m) or more (Level 2), the noise shielding property was evaluated as very low (B-).
(4)磁性シース層の質量
 磁性シース層を形成した後、アウターシース層を形成する前の段階の各試料を、1mの長さに切り出した。そして、磁性シース層より内側の各部材を抜き取り、磁性シース層のみを残した。得られた磁性シース層の質量を計測した。
(4) Mass of Magnetic Sheath Layer After forming the magnetic sheath layer, each sample in the stage before forming the outer sheath layer was cut into a length of 1 m. Then, each member inside the magnetic sheath layer was removed, leaving only the magnetic sheath layer. The mass of the obtained magnetic sheath layer was measured.
(5)耐低温衝撃性
 作製した各試料の通信用電線を、-15℃の低温槽に4時間放置して冷却した後、100gのハンマーを高さ100mmから通信用電線に落下させて衝撃を印加する低温衝撃試験を行った。衝撃を印加した後、通信用電線を塩水につけた状態で3kVの電圧を印加し、塩水との導通の有無に基づき、磁性シース層とアウターシース層の破断の有無を評価した。磁性シース層に破断が生じなかったものを、耐低温衝撃性が高い(A)と評価し、磁性シース層に破断が生じたものを、耐低温衝撃性が低い(B)と評価した。
(5) Low-temperature impact resistance After cooling the communication wire of each sample by leaving it in a low-temperature bath at -15 ° C for 4 hours, a 100 g hammer was dropped from a height of 100 mm on the communication wire to give an impact. An applied low temperature impact test was performed. After the impact was applied, a voltage of 3 kV was applied to the communication wires while they were immersed in salt water. Those in which the magnetic sheath layer did not break were evaluated as having high low-temperature impact resistance (A), and those in which the magnetic sheath layer fractured were evaluated as having low low-temperature impact resistance (B).
[評価結果]
 表2に、磁性シース層の成分配合比および厚さを異ならせた試料A1~A11のそれぞれについて、磁性シース層の成分組成(単位:質量部)および厚さを上段に、各評価の結果を下段に示す。
[Evaluation results]
In Table 2, for each of Samples A1 to A11 having different composition ratios and thicknesses of the magnetic sheath layer, the composition (unit: parts by mass) and thickness of the magnetic sheath layer are shown in the upper row, and the results of each evaluation are shown. Shown below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 試料A1~A4では、磁性シース層の厚さが0.3mmとなっている。これらの試料においては、いずれでも、磁性シース層に穴は形成されていない(A)。そして、試料A1から試料A4へと磁性材料の含有量が多くなるに従って、ノイズ遮蔽性が向上している。 In samples A1 to A4, the thickness of the magnetic sheath layer is 0.3 mm. None of these samples had holes formed in the magnetic sheath layer (A). The noise shielding property is improved as the content of the magnetic material increases from sample A1 to sample A4.
 試料A5では、試料A4と同じ材料を用いて、磁性シース層を、厚さ0.15mmと薄く形成している。試料A4では磁性シース層に穴が形成されておらず(A)、非常に高いノイズ遮蔽性(A+)が得られたのに対し、試料A5では、磁性シース層に穴が形成され(B)、ノイズ遮蔽性能が非常に低くなっている(B-)。磁性シース層を薄く形成することで、押出成形時に磁性シース層に穴が形成され、穴を介した電磁波の透過により、ノイズ遮蔽性が低くなったものと考えられる。 In sample A5, the same material as sample A4 is used to form a thin magnetic sheath layer with a thickness of 0.15 mm. In sample A4, no holes were formed in the magnetic sheath layer (A), and very high noise shielding properties (A+) were obtained, whereas in sample A5, holes were formed in the magnetic sheath layer (B). , the noise shielding performance is very low (B-). By forming the magnetic sheath layer thin, holes are formed in the magnetic sheath layer during extrusion molding, and electromagnetic waves are transmitted through the holes, which is thought to reduce noise shielding.
 磁性シース層の厚さを0.15mmとする場合において、試料A5から試料A11へと、TPOの含有量を減らし、代わりにPPの含有量を増やすことで、材料全体としてのMFRが高くなっている。MFRが11g/10分を超えている試料A7~A11では、磁性シース層に穴が形成されなくなり(A)、非常に高いノイズ遮蔽性(A+)が得られている。このことから、磁性シース層を構成する組成物のMFRを高くすることで、押出成形性が向上し、磁性シース層を薄く形成する場合でも、磁性シース層に穴が形成されなくなり、それによって高いノイズ遮蔽性能を発揮する磁性シース層を得られることが分かる。 When the thickness of the magnetic sheath layer is 0.15 mm, the MFR of the material as a whole is increased by decreasing the TPO content and increasing the PP content from sample A5 to sample A11. there is Samples A7 to A11 with an MFR exceeding 11 g/10 minutes no longer form holes in the magnetic sheath layer (A), and very high noise shielding properties (A+) are obtained. From this, by increasing the MFR of the composition constituting the magnetic sheath layer, the extrusion moldability is improved, and even when the magnetic sheath layer is formed thin, holes are not formed in the magnetic sheath layer. It can be seen that a magnetic sheath layer exhibiting noise shielding performance can be obtained.
 また、磁性シース層の厚さが0.3mmである試料A1~A4においては、有機ポリマー成分100質量部あたりの磁性材料の含有量が150質量部と少ない領域からすでに、磁性シース層の質量が4g/mを超えているのに対し、試料A5~A11では、磁性材料の含有量が750質量部とさらに高濃度になっているにもかかわらず、磁性シース層を0.15mmと薄く形成していることで、磁性シース層の質量が、4g/m以下に抑えられている。このように、磁性シース層を構成する組成物として、MFRの高い材料を用いることで、穴などの欠陥がなく、かつ厚さの小さい磁性シース層を形成し、通信用電線において、高いノイズ遮蔽性と軽量性を両立することができる。 In addition, in the samples A1 to A4 in which the thickness of the magnetic sheath layer is 0.3 mm, the mass of the magnetic sheath layer already increases from the region where the content of the magnetic material per 100 parts by mass of the organic polymer component is as low as 150 parts by mass. In contrast, in samples A5 to A11, although the magnetic material content was as high as 750 parts by mass, the magnetic sheath layer was formed as thin as 0.15 mm. As a result, the mass of the magnetic sheath layer is suppressed to 4 g/m or less. In this way, by using a material with a high MFR as the composition that constitutes the magnetic sheath layer, it is possible to form a magnetic sheath layer that is free from defects such as holes and has a small thickness, and that provides excellent noise shielding in communication wires. It is possible to achieve both flexibility and lightness.
 上記のように、試料A7~A11では、いずれも、非常に高いノイズ遮蔽性(A+)が得られているが、耐低温衝撃性に着目すると、試料A7~A9では高い耐低温衝撃性が得られているものの(A)、MFRが30g/10分を超えている試料A10,A11では、耐低温特性が低くなっている(B)。このことから、通信用電線を低温になる環境で使用する場合等、耐低温衝撃性が求められる場合には、MFRが高くなりすぎないようにすることが好ましいと言える。 As described above, samples A7 to A11 all have very high noise shielding properties (A+). Focusing on low-temperature impact resistance, samples A7 to A9 have high low-temperature impact resistance. (A), the samples A10 and A11 having an MFR exceeding 30 g/10 min have low low-temperature resistance (B). From this, it can be said that it is preferable to prevent the MFR from becoming too high when low-temperature impact resistance is required, such as when a communication wire is used in a low-temperature environment.
[2]磁性シース層の厚さおよび磁性材料の含有量とノイズ遮蔽性との関係
 次に、磁性シース層の厚さおよび磁性材料の含有量と、ノイズ遮蔽性との関係性について検証した。
[2] Relationship between the thickness of the magnetic sheath layer, the content of the magnetic material, and the noise shielding property Next, the relationship between the thickness of the magnetic sheath layer, the content of the magnetic material, and the noise shielding property was verified.
[試料の作製]
 上記試験[1]と同様に、試料B1~B8にかかる通信用電線を作製した。磁性シース層を構成する組成物および磁性シース層の厚さは、表3のとおりとした。磁性シース層を構成する有機ポリマー成分は、試験[1]の試料A8のものと同じであり、試料B1~B8の間で、磁性材料の含有量を変化させている。磁性シース層の厚さは、単位長さあたりの磁性シース層の質量が3g/mとなるように設定している。具体的には、成分の混合による体積変化がないとして、磁性シース層の各構成成分の密度にもとづいて、表中に掲載したとおり、磁性シース層の密度を計算し、その密度値をもとに、質量が3g/mとなるように、磁性シース層の厚さの設定を行った。作製されたいずれの試料においても、磁性シース層の表面に穴は形成されていなかった。
[Preparation of sample]
In the same manner as in test [1] above, communication wires for samples B1 to B8 were produced. Table 3 shows the composition constituting the magnetic sheath layer and the thickness of the magnetic sheath layer. The organic polymer component constituting the magnetic sheath layer was the same as that of sample A8 of test [1], and the magnetic material content was varied between samples B1 to B8. The thickness of the magnetic sheath layer is set so that the mass of the magnetic sheath layer per unit length is 3 g/m. Specifically, assuming that there is no volume change due to mixing of the components, the density of the magnetic sheath layer is calculated as shown in the table based on the density of each constituent component of the magnetic sheath layer. Second, the thickness of the magnetic sheath layer was set so that the mass was 3 g/m. No holes were formed in the surface of the magnetic sheath layer in any of the samples produced.
 さらに、試料B4および試料B8と同じ組成物を用いて、厚さの異なる磁性シース層を形成した通信用電線を作製し、試料B4a,B4b、および試料B8a,B8bとした。磁性シース層の厚さは、いずれの組成物を用いる場合についても、0.12mm,0.14mm,0.16mmの3とおりとした。 Furthermore, using the same composition as samples B4 and B8, communication wires formed with magnetic sheath layers having different thicknesses were produced as samples B4a, B4b, and samples B8a, B8b. The thickness of the magnetic sheath layer was 0.12 mm, 0.14 mm, and 0.16 mm for all compositions.
[評価方法]
 上記試験[1]と同様の方法で、放射エミッション評価により、各試料の通信用電線のノイズ遮蔽性を評価した。そして、ノイズ放射量と、上記試験[1]と同じ基準での評価分類を記録した。
[Evaluation method]
The noise shielding properties of the communication wires of each sample were evaluated by radiated emission evaluation in the same manner as in test [1] above. Then, the noise radiation amount and the evaluation classification based on the same criteria as in test [1] were recorded.
[評価結果]
 下の表3に、試料B1~B8における磁性シース層の成分組成および厚さと、ノイズ遮蔽性の評価結果を示す。
[Evaluation results]
Table 3 below shows the component compositions and thicknesses of the magnetic sheath layers of samples B1 to B8, and evaluation results of noise shielding properties.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表3によると、磁性シース層を構成する組成物における磁性材料の含有量が、350質量部以上850質量部以下となっている試料B4~B8で、単位長さあたりの質量が3g/mとなる厚さとして定められた磁性シース層の厚さが、0.12mm以上0.16mm以下の範囲となっている。そして、それら試料B4~B8のいずれにおいても、十分に高いノイズ遮蔽性が得られている(AまたはA+)。一方で、磁性シース層の厚さが0.16mmを超えているが磁性材料の含有量が350質量部未満である試料B1~B3では、十分なノイズ遮蔽性が得られていない(BまたはB-)。 According to Table 3, samples B4 to B8, in which the content of the magnetic material in the composition constituting the magnetic sheath layer is 350 parts by mass or more and 850 parts by mass or less, have a mass per unit length of 3 g/m. The thickness of the magnetic sheath layer, which is defined as the thickness of the magnetic sheath layer, is in the range of 0.12 mm or more and 0.16 mm or less. Sufficiently high noise shielding properties were obtained for all of the samples B4 to B8 (A or A+). On the other hand, samples B1 to B3, in which the thickness of the magnetic sheath layer exceeds 0.16 mm but the content of the magnetic material is less than 350 parts by mass, do not provide sufficient noise shielding properties (B or B -).
 さらに、下の表4に、試料B4,B4a,B4bおよび試料B8,B8a,B8bにおける磁性シース層の成分組成および厚さと、ノイズ遮蔽性の評価結果を示す。 Furthermore, Table 4 below shows the component composition and thickness of the magnetic sheath layers in samples B4, B4a, B4b and samples B8, B8a, B8b, and evaluation results of noise shielding properties.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表4によると、磁性シース層の組成が同じであれば、磁性シース層の厚さが異なっていても、ノイズ放射量がほぼ同じになっている。このことから、磁性シース層の厚さが0.12~0.16mmの領域では、磁性シース層によるノイズ遮蔽性は、厚みにはほぼ依存せず、磁性材料の濃度によって主に定まることが確認される。また、試料B8の850質量部との磁性材料の濃度は、上の表3に示したものの中で最大であるが、その最大濃度の磁性材料を含有する磁性シース材であっても、試料B8のように、厚さ0.12mmの薄層の領域に至るまで、非常に高いノイズ遮蔽性(A+)を有しており、穴のない磁性シース層が形成できていることが分かる。つまり、表4の結果から、磁性シース材料における磁性材料の密度を、有機ポリマー成分100質量部に対して350質量部以上850質量部以下の範囲内とし、厚さ0.12mm以上0.16mm以下の磁性シース層を形成すれば、十分な濃度の磁性材料の含有と、穴のない磁性シース層の形成の両方の要件を満たすことにより、高いノイズ遮蔽性が得られる。 According to Table 4, if the composition of the magnetic sheath layer is the same, the noise radiation amount is almost the same even if the thickness of the magnetic sheath layer is different. From this, it is confirmed that the noise shielding performance of the magnetic sheath layer does not substantially depend on the thickness of the magnetic sheath layer in the range of 0.12 to 0.16 mm, and is mainly determined by the concentration of the magnetic material. be done. In addition, although the magnetic material concentration of 850 parts by mass of sample B8 is the highest among those shown in Table 3 above, even with the magnetic sheath material containing the magnetic material at the maximum concentration, sample B8 , it can be seen that even a thin layer region with a thickness of 0.12 mm has a very high noise shielding property (A+), and a magnetic sheath layer without holes can be formed. That is, from the results of Table 4, the density of the magnetic material in the magnetic sheath material is set to be in the range of 350 parts by mass to 850 parts by mass with respect to 100 parts by mass of the organic polymer component, and the thickness is 0.12 mm to 0.16 mm. If the magnetic sheath layer is formed, high noise shielding properties can be obtained by satisfying both requirements of containing a sufficient concentration of magnetic material and forming a magnetic sheath layer without holes.
 以上より、磁性シース層において、磁性材料の含有量を、有機ポリマー成分100質量部に対して350質量部以上850質量部以下とし、磁性シース層の厚さを0.12mm以上0.16mm以下とすれば、十分に高いノイズ遮蔽性を確保することができる。また、それらの範囲の中で、磁性材料の含有量および磁性シース層の厚さを選択することで、質量3g/m以下のように、磁性シース層を軽量化することができる。 As described above, in the magnetic sheath layer, the content of the magnetic material is 350 parts by mass or more and 850 parts by mass or less with respect to 100 parts by mass of the organic polymer component, and the thickness of the magnetic sheath layer is 0.12 mm or more and 0.16 mm or less. Then, a sufficiently high noise shielding property can be secured. By selecting the content of the magnetic material and the thickness of the magnetic sheath layer within these ranges, the weight of the magnetic sheath layer can be reduced to a mass of 3 g/m or less.
[3]磁性シース層の厚さとMFRの関係
 最後に、磁性シース層の厚さと、磁性シース層を構成する組成物のMFRとの関係について検証した。
[3] Relationship between thickness of magnetic sheath layer and MFR Finally, the relationship between the thickness of the magnetic sheath layer and the MFR of the composition forming the magnetic sheath layer was verified.
[試料の作製]
 上記試験[1]と同様に、試料C1~C17にかかる通信用電線を作製した。この際、磁性シース層の構成材料の成分組成は、下の表5,6に示すとおりとした。また、磁性シース層の厚さは、表5,6に示すとおり、0.16mmまたは0.12mmとした。
[Preparation of sample]
In the same manner as in Test [1] above, communication wires of Samples C1 to C17 were produced. At this time, the component compositions of the constituent materials of the magnetic sheath layer were as shown in Tables 5 and 6 below. As shown in Tables 5 and 6, the thickness of the magnetic sheath layer was 0.16 mm or 0.12 mm.
[評価方法]
 上記試験[1]と同様にして、磁性シース層を構成する組成物のMFR、また磁性シース層における穴の有無、および耐低温衝撃性を評価した。
[Evaluation method]
The MFR of the composition constituting the magnetic sheath layer, the presence or absence of holes in the magnetic sheath layer, and the low-temperature impact resistance were evaluated in the same manner as in test [1] above.
[評価結果]
 下の表5,6に、試料C1~C17について、磁性シース層の成分組成および厚さと、各評価の結果を示す。
[Evaluation results]
Tables 5 and 6 below show the component composition and thickness of the magnetic sheath layer and the results of each evaluation for samples C1 to C17.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表5,6によると、磁性シース層の厚さが0.16mmである場合も、0.12mmである場合も、磁性シース層を構成する組成物のMFRが11.8g/10分以上であれば(試料C5~C8,C12~C17)、磁性シース層に穴が形成されていない(A)。この結果から、磁性シース層を構成する組成物として、11.8g/10分以上のMFRを有するものを用いれば、有機ポリマー成分100質量部に対して850質量部もの多量の磁性材料を含有させた場合でも、0.12mmまで薄く形成した磁性シース層において、穴の形成を回避できることが分かる。さらに、磁性シース層を構成する組成物のMFRが23.9g/10分以下であれば(試料C1~C6,C9~C14)、耐低温衝撃性も高くすることができる(A)。 According to Tables 5 and 6, regardless of whether the thickness of the magnetic sheath layer is 0.16 mm or 0.12 mm, the MFR of the composition constituting the magnetic sheath layer is 11.8 g/10 min or more. For example (Samples C5 to C8, C12 to C17), holes were not formed in the magnetic sheath layer (A). From this result, it can be seen that if a composition having an MFR of 11.8 g/10 min or more is used as the composition constituting the magnetic sheath layer, a large amount of magnetic material of 850 parts by mass is added to 100 parts by mass of the organic polymer component. It can be seen that the formation of holes can be avoided in the magnetic sheath layer formed as thin as 0.12 mm even in the case of 0.12 mm. Furthermore, if the MFR of the composition constituting the magnetic sheath layer is 23.9 g/10 minutes or less (Samples C1 to C6, C9 to C14), the low temperature impact resistance can be increased (A).
 以上、本開示の実施の形態について詳細に説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。 Although the embodiments of the present disclosure have been described in detail above, the present invention is by no means limited to the above embodiments, and various modifications are possible without departing from the gist of the present invention.
1    通信用電線
2    導体
3    絶縁層
4    コア線
5    金属箔
6    編組層
7    金属シールド層
8    磁性シース層
9    アウターシース層
1 Communication Wire 2 Conductor 3 Insulation Layer 4 Core Wire 5 Metal Foil 6 Braided Layer 7 Metal Shield Layer 8 Magnetic Sheath Layer 9 Outer Sheath Layer

Claims (5)

  1.  導体と、
     前記導体の外周を被覆する絶縁層と、
     前記絶縁層の外側を被覆する磁性シース層と、を有し、
     前記磁性シース層は、有機ポリマーと、粉末状の磁性材料と、を含有しており、
     前記磁性シース層における前記磁性材料の含有量は、前記有機ポリマー100質量部に対して、350質量部以上850質量部以下であり、
     前記磁性シース層を構成する組成物は、230℃において荷重2.16kgで計測されるメルトフローレートが、11.8g/10分以上である通信用電線。
    a conductor;
    an insulating layer covering the outer periphery of the conductor;
    a magnetic sheath layer covering the outside of the insulating layer,
    The magnetic sheath layer contains an organic polymer and a powdered magnetic material,
    The content of the magnetic material in the magnetic sheath layer is 350 parts by mass or more and 850 parts by mass or less with respect to 100 parts by mass of the organic polymer,
    A communication wire, wherein the composition constituting the magnetic sheath layer has a melt flow rate of 11.8 g/10 minutes or more measured at 230° C. under a load of 2.16 kg.
  2.  前記磁性シース層を構成する組成物は、230℃において荷重2.16kgで計測されるメルトフローレートが、23.9g/10分以下である、請求項1に記載の通信用電線。 The communication wire according to claim 1, wherein the composition constituting the magnetic sheath layer has a melt flow rate of 23.9 g/10 minutes or less measured at 230°C under a load of 2.16 kg.
  3.  前記磁性シース層の厚さは、0.12mm以上、0.16mm以下である、請求項1または請求項2に記載の通信用電線。 The electric wire for communication according to claim 1 or 2, wherein the magnetic sheath layer has a thickness of 0.12 mm or more and 0.16 mm or less.
  4.  前記磁性シース層の単位長さあたりの質量は、3g/m以下である、請求項1から請求項3のいずれか1項に記載の通信用電線。 The electric wire for communication according to any one of claims 1 to 3, wherein the mass per unit length of the magnetic sheath layer is 3 g/m or less.
  5.  前記通信用電線は、前記絶縁層の外周に金属シールド層を有する同軸電線として構成されており、
     前記磁性シース層は、前記金属シールド層の外周に設けられている、請求項1から請求項4のいずれか1項に記載の通信用電線。
    The communication wire is configured as a coaxial wire having a metal shield layer on the outer periphery of the insulating layer,
    The electric wire for communication according to any one of claims 1 to 4, wherein the magnetic sheath layer is provided on the outer circumference of the metal shield layer.
PCT/JP2022/007150 2021-03-08 2022-02-22 Electric wire for communication WO2022190851A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021036083A JP2022136460A (en) 2021-03-08 2021-03-08 Electric wire for communication
JP2021-036083 2021-03-08

Publications (1)

Publication Number Publication Date
WO2022190851A1 true WO2022190851A1 (en) 2022-09-15

Family

ID=83227686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007150 WO2022190851A1 (en) 2021-03-08 2022-02-22 Electric wire for communication

Country Status (2)

Country Link
JP (1) JP2022136460A (en)
WO (1) WO2022190851A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1186641A (en) * 1997-09-10 1999-03-30 Hitachi Metals Ltd Cable
JP2004158328A (en) * 2002-11-07 2004-06-03 Hitachi Cable Ltd Noise suppression cable
JP2005228694A (en) * 2004-02-16 2005-08-25 Hitachi Cable Ltd Radiated electromagnetic wave suppressing cable and its manufacturing method
JP2015153736A (en) * 2014-02-19 2015-08-24 日立金属株式会社 noise suppression cable
JP2016024953A (en) * 2014-07-18 2016-02-08 日立金属株式会社 Noise shielding tape and noise shielded cable
JP2016201272A (en) * 2015-04-10 2016-12-01 日立金属株式会社 Noise shield cable

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1186641A (en) * 1997-09-10 1999-03-30 Hitachi Metals Ltd Cable
JP2004158328A (en) * 2002-11-07 2004-06-03 Hitachi Cable Ltd Noise suppression cable
JP2005228694A (en) * 2004-02-16 2005-08-25 Hitachi Cable Ltd Radiated electromagnetic wave suppressing cable and its manufacturing method
JP2015153736A (en) * 2014-02-19 2015-08-24 日立金属株式会社 noise suppression cable
JP2016024953A (en) * 2014-07-18 2016-02-08 日立金属株式会社 Noise shielding tape and noise shielded cable
JP2016201272A (en) * 2015-04-10 2016-12-01 日立金属株式会社 Noise shield cable

Also Published As

Publication number Publication date
JP2022136460A (en) 2022-09-21

Similar Documents

Publication Publication Date Title
JP2023040047A (en) Electric wire for communication
US11912850B2 (en) Resin composition for insulating layer, insulated electric wire, and cable
JP7388527B2 (en) Communication wire
US20230141502A1 (en) Vehicle cable
CN202454299U (en) High-voltage shielding cable for electric automobile
JP7122829B2 (en) Cable and cable manufacturing method
WO2022190851A1 (en) Electric wire for communication
WO2020183925A1 (en) Communication shielding electric wire
JP2010282776A (en) On-vehicle antenna coaxial cable
WO2023127622A1 (en) Communication electric cable
JP7211575B2 (en) Telecommunication wire
JP2022108557A (en) Communication wire
WO2022191019A1 (en) Electric wire for communication
WO2022113900A1 (en) Insulated wire and cable for information transmission
WO2023228500A1 (en) Insulated wire and cable for information transmission
WO2022209960A1 (en) Shield foil and communications electric wire
JP2023140603A (en) Communication wire
JP2017224560A (en) Wire and cable
JP2022083355A (en) Insulated electric wire and cable for information transmission
JP2023069558A (en) Thick wire
JP2012119197A (en) Insulation wire for transmission cable and transmission cable
JPH11353942A (en) Power cable

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22766813

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22766813

Country of ref document: EP

Kind code of ref document: A1