JPH1186641A - Cable - Google Patents

Cable

Info

Publication number
JPH1186641A
JPH1186641A JP24567497A JP24567497A JPH1186641A JP H1186641 A JPH1186641 A JP H1186641A JP 24567497 A JP24567497 A JP 24567497A JP 24567497 A JP24567497 A JP 24567497A JP H1186641 A JPH1186641 A JP H1186641A
Authority
JP
Japan
Prior art keywords
powder
resin
magnetic
cable
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24567497A
Other languages
Japanese (ja)
Inventor
Shunsuke Arakawa
Yoshio Bizen
Atsushi Sunakawa
嘉雄 備前
淳 砂川
俊介 荒川
Original Assignee
Hitachi Metals Ltd
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd, 日立金属株式会社 filed Critical Hitachi Metals Ltd
Priority to JP24567497A priority Critical patent/JPH1186641A/en
Publication of JPH1186641A publication Critical patent/JPH1186641A/en
Application status is Pending legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a cable having a structure superior in magnetic shielding effect by mixing a nano crystalline magnetic powder with resin, and covering the circumference of a conductor with this in a tubular form. SOLUTION: A powder of amorphous alloy is prepared by water atomization and successively heated at a crystallizing temperature or higher for fine crystallization. When the average particle size of a nano crystalline magnetic power exceeds 500 μm, a homogeneous amorphous is hardly provided in the powder preparation, and superior soft magnetic characteristic is hardly obtained in the following crystallization by heating. Thus, a powder of 500 μm or less is preferably used. The resulting nano crystalline alloy powder is mixed uniformly with a resin, and molded into a tube form around a conductor by extrusion molding. The nano crystalline magnetic powder substantially consists of a fine crystalline particle powder 100 nm or less and specifically, a fine crystalline material of bccFe base, such as Fe-Cu-Nb-Si-B or Fe-Zr-B.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、電気機器の電力供給あるいは電気的接続に用いられる配線用等として使用されるケーブルに関するものである。 The present invention relates to relates to a cable used as a wiring or the like for use in the electrical equipment power supply or electrical connections.

【0002】 [0002]

【従来の技術】近年電子機器が高度化し、かつ多数用いられるようになったために、漏れ磁界や電磁雑音等による機器の誤動作が問題となっている。 And In recent years electronic devices have advanced, and for now many used, equipment malfunction due to a leakage magnetic field and electromagnetic noise and the like has become a problem. 電気機器を接続するケーブルにおいてもその内部を流れる電流によって発生する漏れ磁界等により、周辺機器の誤動作を引き起こす原因となることがある。 Also due to the leakage magnetic field or the like generated by a current flowing through the interior in a cable connecting the electrical equipment, which may cause the malfunction of a peripheral device. これに対し、樹脂シートの間に軟磁性粉末を均一に分散させて作製したシート材をケーブルの外周に巻き付けることで、磁気シールド効果が得られることが特開平8−31237号で示されている。 In contrast, by winding the sheet material produced by uniformly dispersing soft magnetic powder during the resin sheet on the outer periphery of the cable, the magnetic shielding effect can be obtained is shown in JP-A-8-31237 .

【0003】 [0003]

【発明が解決しようとする課題】上述したケーブルの外周にシールド材を巻き付ける方法は、巻装後両端を閉じあわせるため、接合部が存在する。 How [0006] winding the shielding material on the outer periphery of the cable described above, in order to Awa closed MakiSogo ends, there are joints. 従ってケーブルに近接した電子機器に対する接合部からの漏洩磁界の影響が懸念される。 Thus the influence of the leakage magnetic field from the junction for the electronic device in proximity to the cable is concerned. また、本発明者の検討によれば、パーマロイあるいは純鉄の粉末では十分な磁気シールド効果が得られないという問題が生じた。 Further, according to the study of the present inventors, a sufficient magnetic shielding effect can not be obtained occurs in powder permalloy or pure iron. そこで磁気特性に優れるCo系のアモルファス合金の粉末を用いた。 So using the powder of Co-based amorphous alloy having excellent magnetic characteristics. その結果、 as a result,
上記素材に比べ磁気シールド効果は改善されたが、経時変化が大きく、長期の使用に問題があることが判明した。 Magnetic shielding effect compared with the material have been improved, aging is large, that long-term use there is a problem was found. 本発明の目的は上述した問題点を解決するために、 For purposes of the present invention is to solve the problems described above,
磁気シールド効果を十分に発揮できる新しい構成のケーブルを提供することである。 The magnetic shielding effect is to provide a new structure of the cable can be sufficiently exhibited.

【0004】 [0004]

【課題を解決するための手段】本発明者は上記問題点を検討し、パーマロイや純鉄よりも、磁性体としての磁気特性に優れ、Co系アモルファス合金よりも経時変化の少ないナノ結晶磁性体の粉末と樹脂を混合し、継ぎ目のないチューブ状に成形したものを導体に被覆することで、十分な磁気シールド効果が得られ経時変化も少ないことを見出し、本発明に到達した。 The present inventors SUMMARY OF THE INVENTION will review the above problems, than permalloy or pure iron, excellent magnetic properties as a magnetic material, small nanocrystals magnetic aging effect than Co-based amorphous alloy of the powder and the resin are mixed, by covering those formed into seamless tubular in conductors, it found that even small changes over time to obtain a sufficient magnetic shielding effect, have reached the present invention.

【0005】すなわち本発明は、導体とそれを被覆する樹脂を有するケーブルであって、前記樹脂内部にはナノ結晶磁性粉末が分散していることを特徴とするケーブルである。 [0005] The present invention relates to a cable having a resin for covering the conductor and it, the inside resin is a cable, characterized in that nanocrystalline magnetic powder is dispersed. また本発明において、磁性粉末は樹脂の重量の15倍以下であり、その粒径は500μm以下であることが好ましい。 In the present invention, the magnetic powder is less than 15 times the weight of the resin, it is preferred that the particle size is 500μm or less.

【0006】 [0006]

【発明の実施の形態】上述したように、本発明の重要な特徴はナノ結晶磁性粉末を樹脂と混合し、チューブ状に成形したものを導体に被覆したことにある。 DETAILED DESCRIPTION OF THE INVENTION As discussed above, an important feature of the present invention is a nano-crystal magnetic powder is mixed with resin is that the coated those formed into a tube shape conductor. 樹脂に混合する磁性粉末として、パーマロイあるいはアモルファス合金よりも磁気特性に優れるナノ結晶磁性材料を適用することは、磁気シールドとしてより漏洩磁束が少なくなるという点で有利である。 As the magnetic powder to be mixed with the resin, applying the nanocrystalline magnetic material excellent in magnetic properties than permalloy or amorphous alloy is advantageous in that from the leakage flux is reduced as a magnetic shield. また導体に被覆する樹脂をチューブ状に成形することは、前述したようなシート状のシールド材をケーブルに巻き、両端を接合するという工程が省略できるという点でも有効である。 The molding the resin for coating the conductor into a tube, the winding a sheet-like shielding material as described above in the cable, the step of bonding the both ends is effective in that it allows omitted.

【0007】本発明において樹脂と混合するナノ結晶磁性粉末の重量を樹脂の15倍としたのは、15倍以上では樹脂が少ないために成形性が悪くなるからである。 [0007] The weight of the nanocrystalline magnetic powder to be mixed with the resin in the present invention was 15 times the resin is because moldability is deteriorated due to the low resin is 15 times or more. また、本発明において適用される樹脂としては、ポリエチレン樹脂、ポリプロピレン樹脂、ポリウレタン樹脂、塩化ビニル樹脂などがある。 The resin to be applied in the present invention, polyethylene resins, polypropylene resins, polyurethane resins, and vinyl chloride resin.

【0008】本発明でいうナノ結晶磁性粉末というのは、実質的に100nm以下の微細結晶粒で構成される粉末である。 [0008] because nanocrystalline magnetic powder in the present invention is a powder consisting of substantially 100nm or less fine grains. 具体的には、Fe−Cu−Nb−Si−B Specifically, Fe-Cu-Nb-Si-B
系やFe−Zr−B系に代表されるbccFeの微細結晶からなる材料である。 It is a material consisting of fine crystals of bccFe represented by the system or Fe-Zr-B based.

【0009】本発明のケーブルは次のような方法で製造することができる。 [0009] Cables of the present invention can be produced by the following method. まず水アトマイズ法などにより、アモルファス合金の粉末を作製する。 Due first water atomization, to produce a powder of amorphous alloy. 次いで、結晶化温度以上で加熱処理し微結晶化させる。 Then, the finely crystallized by heating treatment at a crystallization temperature or higher. ナノ結晶磁性粉末の平均粒径が500μmを越えたものは、粉末製造時に均質なアモルファスとなり難く、その後の加熱処理で結晶化した時に優れた軟磁気特性を得にくくなる。 Those average grain size of the nanocrystalline magnetic powder exceeds 500μm is difficult becomes a homogeneous amorphous during powder production, it is difficult to obtain excellent soft magnetic properties when crystallization in the subsequent heat treatment. したがって、本発明では500μm以上の粉末を使用することが望ましい。 Therefore, it is desirable to use the above powder 500μm in the present invention. このようにして得られたナノ結晶合金の粉末と樹脂を均一に混合した後、押出成形により導体の周囲にチューブ状に成形する。 After mixing the powder and the resin of the nano-crystalline alloy obtained in this way uniformly and formed into a tube shape around the conductor by extrusion.

【0010】 [0010]

【実施例】 【Example】

(実施例1)水アトマイズ法により、平均粒径20μm (Example 1) by the water atomization method, average particle size 20μm
のCu 1 −Nb 3 −Si 13.5 −B 9 (at%)、残部Fe Of Cu 1 -Nb 3 -Si 13.5 -B 9 (at%), the balance Fe
からなるアモルファス合金粉末を作製し、これを550 To produce an amorphous alloy powder made of, this 550
℃で1時間熱処理し、100nm以下のbccFeの微細結晶でなるナノ結晶粉末を得た。 ℃ in heat-treated for 1 hour to obtain a nanocrystalline powder consisting of the following bccFe microcrystalline 100 nm. 次いで、ポリエチレン樹脂と樹脂の8.5倍の重量を有すナノ結晶粉末を混合した。 Then mixed with nanocrystalline powder having a 8.5 times the weight of the polyethylene resin and the resin. さらにこれを導体の周囲に押出成形によりチューブ状に成形し、図1に示すようなケーブルを得た。 Furthermore, this was molded into a tube by extrusion molding around the conductor to obtain a cable as shown in Figure 1. このケーブルに被覆材なしの状態で10mGの磁界を発生するように、周波数50Hzの電流を流し、被覆材ありの状態での漏洩磁束をガウスメーターにて測定した。 So as to generate a magnetic field 10mG state without dressing the cable, electric current of frequency 50 Hz, and the leakage flux in the state of there dressing measured by gauss meter.

【0011】また、比較品として平均粒径30μmのP [0011] In addition, P having an average particle size of 30μm as a comparative product
Cパーマロイも合金粉末を用いて、同様のケーブルを作製し、被覆なしの状態で同様の磁界を発生するように、 C permalloy be used alloy powder was produced in the same manner as the cable, so as to generate a similar magnetic field in a state of uncoated,
周波数50Hzで通電し、被覆材ありの状態での漏洩磁束を測定した。 Energized at a frequency 50 Hz, it was measured leakage flux in the form of Yes dressing. その結果、本発明品は3.1mGまで減少した。 As a result, the product of the present invention was reduced to 3.1mG. これに対し比較品は6.7mGであった。 In contrast to this comparative product was 6.7mG. この結果から明らかなように、本発明のナノ結晶合金粉末を用いたケーブルは、より漏洩磁束の少ないものとなった。 As is apparent from this result, cable using the nanocrystalline alloy powders of the present invention, was more with less leakage magnetic flux.

【0012】(実施例2)水アトマイズ法により平均粒径20μmのCu 1 −Zr 3.5 −Nb 3.5 −B 6 (at [0012] (Example 2) Cu 1 -Zr an average particle size of 20μm by the water atomizing method 3.5 -Nb 3.5 -B 6 (at
%)、残部Feからなるアモルファス合金粉末を作製し、これを600℃で1時間熱処理し、100nm以下のbccFeの微細結晶でなるナノ結晶粉末を得た。 %), To prepare an amorphous alloy powder and the balance Fe, which was heat treated for 1 hour at 600 ° C., to obtain a nanocrystalline powder consisting of the following bccFe microcrystalline 100 nm. 次いで、耐熱性樹脂と樹脂の6倍の重量を有す粉末を混合した。 Then mixed powders having a 6 times the weight of the heat-resistant resin and the resin. さらにこれを導体の周囲に押出成形によりチューブ状に成形し、直径2mmのケーブルを得た。 Furthermore, this was molded into a tube by extrusion molding around the conductor to obtain a cable having a diameter of 2 mm. このケーブルに被覆材なしの状態で10mGの磁界を発生するように、周波数50Hzの電流を流し、被覆材ありの状態での漏洩磁束をガウスメーターにて測定した。 So as to generate a magnetic field 10mG state without dressing the cable, electric current of frequency 50 Hz, and the leakage flux in the state of there dressing measured by gauss meter.

【0013】また、比較品として平均粒径20μmのF Further, F having an average particle size of 20μm as a comparative product
2 −Mn 2 −Cr 3 −Si 13 −B 9 (at%)、残部Co e 2 -Mn 2 -Cr 3 -Si 13 -B 9 (at%), the remainder Co
からなるアモルファス合金粉末を用いて、同様のケーブルを作製し、被覆なしの状態で同様の磁界を発生するように、周波数50Hzで通電し、被覆材ありの状態での漏洩磁束を測定した。 Using amorphous alloy powder consisting, to prepare a similar cable, so as to generate a similar magnetic field in a state of uncoated, energized at the frequency 50 Hz, it was measured leakage flux in the form of Yes dressing. その結果、本発明品は3.8mG As a result, the product of the present invention 3.8mG
まで減少した。 Until it has decreased. これに対し比較品は4.3mGであった。 In contrast to this comparative product was 4.3mG. さらに上記2種類のケーブルを100℃で500時間保持した後の漏洩磁束も測定した。 Leakage flux after further the two cables held for 500 hours at 100 ° C. was also measured. その結果、ナノ結晶粉末を用いたものは漏洩磁束の変化が1%未満であった。 As a result, those using nanocrystalline powder change in leakage flux was less than 1%. しかし、比較品の漏洩磁束は8.9mGと約50% However, the leakage magnetic flux of the comparison product 8.9mG about 50%
特性が劣化した。 Characteristic is deteriorated. この結果から明らかなように、本発明のナノ結晶合金粉末を用いたケーブルは、より漏洩磁束および経時変化が少ないものとなった。 As is apparent from this result, cable using the nanocrystalline alloy powders of the present invention has become a little more leakage flux and aging.

【0014】 [0014]

【発明の効果】本発明によれば、ナノ結晶磁性粉末を樹脂と混合し、導体周囲にチューブ状に被覆することで、 According to the present invention, by a nanocrystalline magnetic powder is mixed with a resin is coated on the tube shape around the conductor,
磁気シールド効果に優れる新しい構成のケーブルを提供することができる。 It is possible to provide a new construction of cable having excellent magnetic shielding effect.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明のケーブルの構成を示す断面模式図である。 1 is a cross-sectional view schematically showing a configuration of a cable of the present invention.

Claims (3)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 導体とそれを被覆する樹脂を有するケーブルであって、前記樹脂内部にはナノ結晶磁性粉末が分散していることを特徴とするケーブル。 1. A conductor and it a cable having a resin for coating, cables, characterized in that the inside resin are dispersed nanocrystalline magnetic powder.
  2. 【請求項2】 導体に被覆された樹脂はチューブ状の形態を有し、また樹脂に含まれるナノ結晶磁性粉末が、樹脂の重量の15倍以下含有されていることを特徴とする請求項1に記載のケーブル。 2. A method according to claim resin coated on the conductor has a tubular form and nanocrystalline magnetic powder contained in the resin, characterized in that it is contained more than 15 times the weight of the resin 1 cable according to.
  3. 【請求項3】 平均粒径が500μm以下のナノ結晶磁性粉末を有する請求項1または2に記載のケーブル。 3. A cable according to claim 1 or 2 average particle size having the following nanocrystalline magnetic powder 500 [mu] m.
JP24567497A 1997-09-10 1997-09-10 Cable Pending JPH1186641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24567497A JPH1186641A (en) 1997-09-10 1997-09-10 Cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24567497A JPH1186641A (en) 1997-09-10 1997-09-10 Cable

Publications (1)

Publication Number Publication Date
JPH1186641A true JPH1186641A (en) 1999-03-30

Family

ID=17137134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24567497A Pending JPH1186641A (en) 1997-09-10 1997-09-10 Cable

Country Status (1)

Country Link
JP (1) JPH1186641A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6506972B1 (en) * 2002-01-22 2003-01-14 Nanoset, Llc Magnetically shielded conductor
EP1476882A2 (en) * 2002-01-22 2004-11-17 Nanoset, LLC Nanomagnetically shielded substrate
WO2005045853A1 (en) * 2003-11-07 2005-05-19 Abb Research Ltd. System for transmission of electric power
US7067022B2 (en) 2000-11-09 2006-06-27 Battelle Energy Alliance, Llc Method for protecting a surface
CN1302486C (en) * 2003-09-15 2007-02-28 北京大学 Conducting polymer carbon nanotube nano cable and preparation method thereof
WO2008100839A1 (en) * 2007-02-14 2008-08-21 Medtronic, Inc. Discontinuous conductive filler polymer-matrix composites for electromagnetic shielding
US8989840B2 (en) 2004-03-30 2015-03-24 Medtronic, Inc. Lead electrode for use in an MRI-safe implantable medical device
US9155877B2 (en) 2004-03-30 2015-10-13 Medtronic, Inc. Lead electrode for use in an MRI-safe implantable medical device
JP2015192034A (en) * 2014-03-28 2015-11-02 日立金属株式会社 Magnetic shield structure of power line for transmission and distribution, and power transmission and reception facility using the same
US9186499B2 (en) 2009-04-30 2015-11-17 Medtronic, Inc. Grounding of a shield within an implantable medical lead
US9259572B2 (en) 2007-04-25 2016-02-16 Medtronic, Inc. Lead or lead extension having a conductive body and conductive body contact
US9302101B2 (en) 2004-03-30 2016-04-05 Medtronic, Inc. MRI-safe implantable lead
US9463317B2 (en) 2012-04-19 2016-10-11 Medtronic, Inc. Paired medical lead bodies with braided conductive shields having different physical parameter values
KR20160118939A (en) 2015-04-02 2016-10-12 히타치 긴조쿠 가부시키가이샤 Magnetic shield wire and manufacturing method thereof, as well as magnetic shield braid sleeve and magnetic shield cable using the same
US9731119B2 (en) 2008-03-12 2017-08-15 Medtronic, Inc. System and method for implantable medical device lead shielding
US9993638B2 (en) 2013-12-14 2018-06-12 Medtronic, Inc. Devices, systems and methods to reduce coupling of a shield and a conductor within an implantable medical lead
US10084250B2 (en) 2005-02-01 2018-09-25 Medtronic, Inc. Extensible implantable medical lead
US10155111B2 (en) 2014-07-24 2018-12-18 Medtronic, Inc. Methods of shielding implantable medical leads and implantable medical lead extensions
US10279171B2 (en) 2014-07-23 2019-05-07 Medtronic, Inc. Methods of shielding implantable medical leads and implantable medical lead extensions

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7067022B2 (en) 2000-11-09 2006-06-27 Battelle Energy Alliance, Llc Method for protecting a surface
US6506972B1 (en) * 2002-01-22 2003-01-14 Nanoset, Llc Magnetically shielded conductor
EP1476882A2 (en) * 2002-01-22 2004-11-17 Nanoset, LLC Nanomagnetically shielded substrate
EP1476882A4 (en) * 2002-01-22 2007-01-17 Nanoset Llc Nanomagnetically shielded substrate
CN1302486C (en) * 2003-09-15 2007-02-28 北京大学 Conducting polymer carbon nanotube nano cable and preparation method thereof
WO2005045853A1 (en) * 2003-11-07 2005-05-19 Abb Research Ltd. System for transmission of electric power
US8989840B2 (en) 2004-03-30 2015-03-24 Medtronic, Inc. Lead electrode for use in an MRI-safe implantable medical device
US9155877B2 (en) 2004-03-30 2015-10-13 Medtronic, Inc. Lead electrode for use in an MRI-safe implantable medical device
US9302101B2 (en) 2004-03-30 2016-04-05 Medtronic, Inc. MRI-safe implantable lead
US10084250B2 (en) 2005-02-01 2018-09-25 Medtronic, Inc. Extensible implantable medical lead
WO2008100839A1 (en) * 2007-02-14 2008-08-21 Medtronic, Inc. Discontinuous conductive filler polymer-matrix composites for electromagnetic shielding
US9044593B2 (en) 2007-02-14 2015-06-02 Medtronic, Inc. Discontinuous conductive filler polymer-matrix composites for electromagnetic shielding
US10398893B2 (en) 2007-02-14 2019-09-03 Medtronic, Inc. Discontinuous conductive filler polymer-matrix composites for electromagnetic shielding
US9259572B2 (en) 2007-04-25 2016-02-16 Medtronic, Inc. Lead or lead extension having a conductive body and conductive body contact
US9731119B2 (en) 2008-03-12 2017-08-15 Medtronic, Inc. System and method for implantable medical device lead shielding
US9629998B2 (en) 2009-04-30 2017-04-25 Medtronics, Inc. Establishing continuity between a shield within an implantable medical lead and a shield within an implantable lead extension
US9272136B2 (en) 2009-04-30 2016-03-01 Medtronic, Inc. Grounding of a shield within an implantable medical lead
US9186499B2 (en) 2009-04-30 2015-11-17 Medtronic, Inc. Grounding of a shield within an implantable medical lead
US9452284B2 (en) 2009-04-30 2016-09-27 Medtronic, Inc. Termination of a shield within an implantable medical lead
US10086194B2 (en) 2009-04-30 2018-10-02 Medtronic, Inc. Termination of a shield within an implantable medical lead
US9205253B2 (en) 2009-04-30 2015-12-08 Medtronic, Inc. Shielding an implantable medical lead
US9216286B2 (en) 2009-04-30 2015-12-22 Medtronic, Inc. Shielded implantable medical lead with guarded termination
US9220893B2 (en) 2009-04-30 2015-12-29 Medtronic, Inc. Shielded implantable medical lead with reduced torsional stiffness
US9463317B2 (en) 2012-04-19 2016-10-11 Medtronic, Inc. Paired medical lead bodies with braided conductive shields having different physical parameter values
US9993638B2 (en) 2013-12-14 2018-06-12 Medtronic, Inc. Devices, systems and methods to reduce coupling of a shield and a conductor within an implantable medical lead
JP2015192034A (en) * 2014-03-28 2015-11-02 日立金属株式会社 Magnetic shield structure of power line for transmission and distribution, and power transmission and reception facility using the same
US10279171B2 (en) 2014-07-23 2019-05-07 Medtronic, Inc. Methods of shielding implantable medical leads and implantable medical lead extensions
US10155111B2 (en) 2014-07-24 2018-12-18 Medtronic, Inc. Methods of shielding implantable medical leads and implantable medical lead extensions
KR20160118939A (en) 2015-04-02 2016-10-12 히타치 긴조쿠 가부시키가이샤 Magnetic shield wire and manufacturing method thereof, as well as magnetic shield braid sleeve and magnetic shield cable using the same

Similar Documents

Publication Publication Date Title
Gnanaprakash et al. Effect of initial pH and temperature of iron salt solutions on formation of magnetite nanoparticles
DE4117878C2 (en) Planar magnetic element
KR910002350B1 (en) Fe-base soft magnetic alloy powder and magnetic core thereof and method of producing same
US7162302B2 (en) Magnetically shielded assembly
EP1267406A2 (en) Electromagnetic wave suppressor sheet
US7091412B2 (en) Magnetically shielded assembly
Aliev et al. Layer‐By‐Layer Assembly of Core‐Shell Magnetite Nanoparticles: Effect of Silica Coating on Interparticle Interactions and Magnetic Properties
JP2004031291A (en) Signal transmitting cable with connector
JP3340758B2 (en) High-frequency induction heating composition
CN1232375C (en) Method for making Fe-based amorphous metal powders and method for making soft magnetic core using the same
DE10348810B4 (en) A method of producing metal powders having nanoscale grains and excellent high frequency characteristic, and a method of manufacturing a high frequency soft magnetic core using such powders
US6713671B1 (en) Magnetically shielded assembly
KR100578164B1 (en) 3-limb amorphous metal cores for three-phase transformers
KR100247444B1 (en) Composite magnetic article for electromagnetic interference suppressor
US6416830B2 (en) Composite magnetic tube and method of producing the same, and electromagnetic interference suppressing tube
US6971391B1 (en) Protective assembly
US5340413A (en) Fe-NI based soft magnetic alloys having nanocrystalline structure
KR920002171B1 (en) Process for depositing an insulating coating
Lacroix et al. Iron nanoparticle growth in organic superstructures
KR910002375B1 (en) Magnetic core component and manufacture thereof
Chen et al. Magnetic properties of microemulsion synthesized cobalt fine particles
Lima et al. Ni–Zn nanoferrite for radar-absorbing material
US4601753A (en) Powdered iron core magnetic devices
CN1146926C (en) Soft magnetic alloy powder for electromagnetic and magnetic shield, and shielding members containing the same
US5815060A (en) Inductance element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060210

A521 Written amendment

Effective date: 20060407

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20070615

Free format text: JAPANESE INTERMEDIATE CODE: A02