WO2022190841A1 - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
WO2022190841A1
WO2022190841A1 PCT/JP2022/007020 JP2022007020W WO2022190841A1 WO 2022190841 A1 WO2022190841 A1 WO 2022190841A1 JP 2022007020 W JP2022007020 W JP 2022007020W WO 2022190841 A1 WO2022190841 A1 WO 2022190841A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
tread
tread portion
pneumatic tire
reinforcing layer
Prior art date
Application number
PCT/JP2022/007020
Other languages
French (fr)
Japanese (ja)
Inventor
康揮 森田
Original Assignee
住友ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ゴム工業株式会社 filed Critical 住友ゴム工業株式会社
Priority to CN202280004745.8A priority Critical patent/CN115768633A/en
Publication of WO2022190841A1 publication Critical patent/WO2022190841A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C5/00Inflatable pneumatic tyres or inner tubes
    • B60C5/12Inflatable pneumatic tyres or inner tubes without separate inflatable inserts, e.g. tubeless tyres with transverse section open to the rim
    • B60C5/14Inflatable pneumatic tyres or inner tubes without separate inflatable inserts, e.g. tubeless tyres with transverse section open to the rim with impervious liner or coating on the inner wall of the tyre
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel

Definitions

  • the present disclosure relates to pneumatic tires.
  • Patent Literature 1 proposes a tire in which a thermoplastic resin is used for a tire frame.
  • the inner cavity surface of the tire is made of a thermoplastic resin.
  • a tire may be deformed due to plasticization of the tire inner surface due to heat generated during running.
  • the tire's internal pressure will cause the outer diameter of the tire to grow and the tread portion to be locally and plastically deformed, thereby deteriorating the rolling resistance.
  • the present disclosure has been devised in view of the actual situation as described above.
  • the main issue is to suppress the deterioration of rolling resistance during running.
  • the present disclosure is a pneumatic tire having a tread portion, wherein at least a tire inner cavity surface is made of a thermoplastic resin, and the tread portion is radially inward of a center position of the thickness of the tread portion. includes a tread reinforcing layer, the outermost surface of the tread portion is provided with a plurality of grooves, and the negative rate is the ratio of the total opening area of the plurality of grooves to the virtual ground contact area in which all of the plurality of grooves are filled.
  • the pneumatic tire of the present disclosure can suppress deformation of the tire due to heat generation during running.
  • FIG. 1 is a meridional cross-sectional view of a pneumatic tire of one embodiment of the present disclosure
  • FIG. FIG. 2 is an enlarged sectional view of the tread portion of FIG. 1
  • 4 is an enlarged cross-sectional view of a tread portion of another embodiment of the present disclosure
  • FIG. 4 is an enlarged cross-sectional view of a tread portion of another embodiment of the present disclosure
  • FIG. 4 is a meridional cross-sectional view of a pneumatic tire according to another embodiment of the present disclosure
  • FIG. 1 is a meridional cross-sectional view of a pneumatic tire 1 (hereinafter sometimes simply referred to as tire 1) of the present embodiment.
  • FIG. 1 is a cross-sectional view of the tire 1 in a normal state, including the tire rotation axis.
  • the tire 1 of this embodiment is used, for example, as a pneumatic tire for passenger cars.
  • the present disclosure is not limited to such an aspect, and may be applied to pneumatic tires for motorcycles and pneumatic tires for carts.
  • Regular condition means that, in the case of tires that meet various standards, the tire is mounted on a regular rim, filled with regular internal pressure, and has no load.
  • the dimensions of each part of the tire are the values measured in the normal condition.
  • a “regular rim” is a rim defined for each tire in a standard system that includes the standard on which the tire is based.
  • JATMA is a "standard rim”
  • ETRTO it is "Measuring Rim”.
  • the "regular rim” is the rim that can be mounted on the rim and can maintain internal pressure, that is, the rim that does not cause air leakage between the rim and tire, and has the largest rim diameter. Small, then refers to the narrowest rim width.
  • Regular internal pressure is the air pressure specified for each tire by each standard in the standard system including the standard that the tire is based on. Maximum value described in VARIOUS COLD INFLATION PRESSURES", or “INFLATION PRESSURE” for ETRTO. In the case of tires for which various standards are not defined, the normal internal pressure is 250 kPa for passenger car tires, and 350 kPa for tires with a larger normal load than passenger car tires.
  • passenger car tires refer to tires that are mounted on automobiles that run on four wheels and have a normal load of 1000 kg or less.
  • the above-mentioned "regular load” is the maximum load capacity specified for each tire by the standard in the standard system including the standard on which the tire is based. , the maximum load capacity based on the load index (LI), the maximum value listed in the table “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES" for TRA, and "LOAD CAPACITY” for ETRTO.
  • the tire section width Lt (mm), the tire outer diameter Dt (mm), the tire section height Ht (mm), and the virtual volume excluding the tire rim calculated from the circumference ratio Based on V (mm 3 ) the value obtained by the following formula is treated as the normal load (kg).
  • Normal load (kg) 0.000011 x V + 175
  • V ⁇ (Dt 2 -Ht 2 )/4 ⁇ x ⁇ x Lt
  • the tire cross-sectional width Lt (mm), tire cross-sectional height Ht (mm), and tire outer diameter Dt (mm) can be measured directly from the actual tire or from a CT image.
  • the tire outer diameter Dt is the outer diameter of the tire in the normal state
  • the tire cross-sectional width Lt is the linear distance between the sidewalls including all the patterns and characters on the tire side surface in the normal state (total width of the tire). This is the width excluding patterns and characters on the tire side.
  • the tire section height Ht is the height of the tire in the tire section, and can be calculated by subtracting the rim diameter (mm) from the tire outer diameter Dt and dividing by two.
  • the tire 1 includes a tread portion 2, a pair of sidewall portions 3 and a pair of bead portions 4.
  • the sidewall portion 3 extends radially inward from the axial end of the tread portion 2 .
  • the bead portion 4 continues to the inner side of the sidewall portion 3 in the tire radial direction.
  • at least the tire inner cavity surface 5 is made of a thermoplastic resin.
  • thermoplastic resin refers to a polymer compound that becomes reversible to a relatively hard and strong state when the temperature rises and the material becomes fluid when cooled again, and is used for general tires. This refers to materials that can be molded without undergoing a vulcanization process, such as rubber materials. Therefore, the thermoplastic resin as used herein does not include general tire rubber components (vulcanized rubber), but is a recyclable resin material. Whether or not the tire is made of thermoplastic resin can be determined from the temperature dependence of the elastic modulus of the tire member.
  • thermoplastic resins include inelastic thermoplastic resins that do not have rubber-like elasticity in a cooled state, and thermoplastic elastomers that have rubber-like elasticity in a cooled state. Thermoplastic elastomers soften and flow as the temperature rises, become relatively hard and strong when cooled, and have rubber-like elasticity.
  • the term "cooled state" means a temperature state when the tire is used or stored in a normal manner.
  • thermoplastic resin both non-elastic thermoplastic resins and thermoplastic elastomers can be applied, and these may be used in combination.
  • a thermoplastic elastomer is applied as the thermoplastic resin.
  • thermoplastic elastomers examples include polyamide-based thermoplastic elastomers, polyester-based thermoplastic elastomers, polyurethane-based thermoplastic elastomers, polystyrene-based thermoplastic elastomers, and polyolefin-based thermoplastic elastomers, and these may be used alone or in combination. obtain.
  • FIG. 2 shows an enlarged sectional view of the tread portion 2.
  • the tread portion 2 includes a tread reinforcing layer 10 inside the center position of the thickness of the tread portion 2 in the tire radial direction.
  • This configuration means that the tread reinforcing layer 10 is arranged radially inward of the center position at least on the tire equatorial plane C.
  • 50% or more, more preferably 80% or more of the volume of the tread reinforcing layer 10 is arranged radially inward of the center position.
  • the entire tread reinforcing layer 10 is arranged radially inward of the center position.
  • the tread reinforcing layer 10 is a member having higher rigidity than the thermoplastic resin forming the tire inner cavity surface 5, and can suppress the growth of the tire outer diameter.
  • a plurality of grooves 11 are provided on the outermost surface of the tread portion 2 .
  • the plurality of grooves 11 include both a plurality of circumferential grooves extending in the tire circumferential direction and a plurality of width direction grooves extending in the tire axial direction.
  • the outermost surface means the surface of the tread portion 2 that can come into contact with the road surface during running of the tire.
  • the thickness of the tread portion 2 described above is the distance in the tire normal direction from the outermost surface of the tread portion 2 to the inner cavity surface of the tire in the radial cross section of the tire.
  • the thickness of the tread portion 2 shall be measured in a hypothetical state in which the grooves 11 are filled.
  • the negative ratio which is the ratio of the total opening area of the plurality of grooves 11 to the virtual ground contact area of the tread portion 2 in which all of the plurality of grooves 11 are filled, is 20% to 50%.
  • the virtual ground contact area refers to the entire circumference of the tire that touches the ground when the tire having the tread portion 2 in which all of the plurality of grooves 11 are filled is in the normal state and the tread portion 2 is pressed against a plane at a camber angle of 0°. It refers to the total contact area over the Similarly, the area of the groove can be calculated by determining the area of the groove on the ground contact surface of the entire circumference of the tire. These can be easily measured by applying ink or the like to the surface of the tire and transferring it.
  • the tire inner cavity surface 5 is always under pressure from the air filled in the tire. For this reason, in a tire having a tire inner cavity surface 5 made of a thermoplastic resin, the tire inner cavity surface is plasticized and deformed by heat generated during running, which leads to growth of the tire outer diameter and local and plastic deformation of the tread portion. deformation occurs. As a result, there is a concern that rolling resistance will deteriorate, among other things.
  • the tread reinforcing layer 10 is disposed further inside in the tire radial direction, so that the entire tread portion 2 can absorb the deformation while preventing the tire outer diameter from growing.
  • the negative rate of the tread portion 2 is 20% or more, so that the heat of the tread portion 2 can be easily released from the wall surfaces of the grooves 11 . Further, when the negative ratio is 50% or less, local deformation of the outermost surface of the tread portion 2 is suppressed, and heat generation thereof can be prevented.
  • the present disclosure due to such a mechanism, in a pneumatic tire in which at least the tire inner cavity surface 5 is made of a thermoplastic resin, deformation of the tire due to heat generation during running can be suppressed, and thus deterioration of rolling resistance can be suppressed. it is conceivable that.
  • the tread portion 2 is composed of a tread contacting element 8 and a lumen surface member 14.
  • the tread ground-contacting element 8 of this embodiment has, for example, a single-layer structure formed from a single composition. In other embodiments, the tread-contacting element 8 may be formed of multiple layers using different compositions, for example, the base tread portion and the undertread portion.
  • the tread contact element 8 and the inner cavity surface member 14 have a two-layer structure made of different compositions.
  • Tread-contacting element 8 is, for example, constructed of a different thermoplastic elastomer than lumen surface member 14 .
  • the tread contact element 8 may be constructed from a rubber composition.
  • the present disclosure is not limited to the embodiments described above, and the tread portion 2 may be a single-layer construction in which the tread-contacting element 8 and the lumen surface member 14 are formed of the same composition. In this case, it is desirable that the tread portion 2 be entirely made of a thermoplastic resin.
  • the air permeability coefficient of the inner cavity surface member 14 is higher than that of the inner cavity surface member 14 from the viewpoint of retaining air inside the tire. It is preferably lower than the air permeability coefficient of element 8 .
  • the air permeability coefficient is a material-specific value that represents the air permeability coefficient, and at a temperature of 30 ° C., in accordance with JIS K 7126-7, plastics - film and sheet - gas permeability test method - Part 1 : Measured by the differential pressure method.
  • a pair of side portions 13 are provided on the outer side of the tread portion 2 in the axial direction of the tire.
  • the side portion 13 has a single layer structure made of a single composition, and constitutes the sidewall portion 3 and the bead portion 4 .
  • the bead portion 4 includes a bead wire in order to improve fitting.
  • the side portion 13 is divided into a plurality of members, and a bead apex or a rubber chafer is formed like a normal pneumatic tire in order to achieve the performance required according to the application, such as steering stability and ride comfort. It is also possible to assign a role such as
  • the tread reinforcing layer 10 includes, for example, a plurality of cords 16 and a covering portion 17 that covers the cords 16.
  • the cord 16 for example, an organic fiber cord or steel cord is used.
  • the cord 16 of this embodiment is, for example, spirally wound at an angle of 5° or less with respect to the tire circumferential direction.
  • Such a cord 16 can reliably suppress the growth of the tire outer diameter.
  • the cords 16 are not limited to such a mode, and the cords 16 may be inclined at 30 to 60° with respect to the tire circumferential direction, like belt cords of general tires.
  • the tread reinforcing layer 10 is composed of a layer composed of a plurality of cords 16 inclined in a first direction with respect to the tire circumferential direction and a plurality of cords 16 inclined in a second direction opposite to the first direction.
  • a layer may be included.
  • the covering part 17 is composed of, for example, a topping rubber having adhesiveness. This effectively suppresses peeling of the tread reinforcing layer 10 .
  • the covering portion 17 may be made of a thermoplastic resin. In this case, it is more desirable that the covering portion 17 is made of a thermoplastic elastomer. This further improves the tire recycling performance.
  • FIG. 3 shows an enlarged cross-sectional view of the tread portion 2 of another embodiment.
  • the tread reinforcing layer 10 of this embodiment includes a thermoplastic resin, and more desirably is entirely composed of a thermoplastic resin. That is, this tread reinforcing layer 10 does not contain cords. This further improves recycling performance.
  • the thermoplastic resin of the tread reinforcing layer 10 has higher rigidity than the thermoplastic resin forming the inner cavity surface 5 of the tire. Further, it is more desirable to apply a thermoplastic elastomer to the thermoplastic resin of the tread reinforcing layer 10 .
  • FIG. 4 shows an enlarged cross-sectional view of the tread portion 2 of still another embodiment.
  • the tread reinforcing layer 10 of this embodiment is covered with a thermoplastic resin forming the inner cavity surface 5 of the tire. More specifically, a plurality of cords 16 forming the tread reinforcing layer 10 are embedded inside the thermoplastic resin forming the inner cavity surface 5 of the tire.
  • the thermoplastic resin forming the inner cavity surface 5 of the tire is used as the covering portion of the tread reinforcing layer 10, so that the manufacturing cost of the tire can be reduced.
  • the axial length L1 of the tread reinforcing layer 10 is 25% to 81% of the tire maximum width W1. 3 and 4, the length of the tread reinforcing layer 10 is similarly defined.
  • Such a tread reinforcing layer 10 can suppress an increase in tire outer diameter while suppressing an increase in tire manufacturing cost and tire weight.
  • the distance d2 from the outermost surface of the tread portion 2 to the tread reinforcing layer 10 is, for example, 65% to 95% of the thickness d1 of the tread portion 2, preferably 80% to 90%. As a result, the above-described effects are exhibited more reliably.
  • the distance d2 corresponds to the distance in the normal direction of the tire from the outermost surface of the tread portion 2 to the outer surface of the tread reinforcing layer 10 on the radially outer side of the tire.
  • the outer surface of the tread reinforcing layer 10 means the outer surface of the covering portion 17 of the tread reinforcing layer 10 in the embodiment shown in FIG. 2, and the outer surface of the cord 16 in the embodiment shown in FIG. .
  • the tensile elastic modulus Ad of the tread reinforcing layer 10 is greater than the tensile elastic modulus of the thermoplastic resin forming the inner cavity surface 5 of the tire. Specifically, the tensile elastic modulus Ad of the tread reinforcing layer 10 is desirably 100 MPa or more. As a result, deformation of the tread portion 2 is reliably suppressed, and deterioration of rolling resistance can be suppressed.
  • the tensile elastic modulus of the tread reinforcing layer 10 was determined by taking a test sample extending from the tread reinforcing layer 10 in a width of 10 mm and extending 40 mm or more in the tire circumferential direction, and using a tensile tester to apply tensile deformation to an area of 10 mm in width and 40 mm in length. and calculated from the slope of the stress at that time. At this time, the deformation speed of the sample is 200 mm/min, and the measurement temperature is room temperature. From the stress values at 0.05% and 0.25% deformation of the obtained stress-strain curve, the slope is calculated and obtained as the tensile elastic modulus. If the tread reinforcing layer is a composite of cords and thermoplastic resin, the composite state is used for calculation.
  • the tensile elastic modulus Ad (MPa) is added to the distance d2 from the outermost surface of the tread portion 2 to the tread reinforcing layer 10 with respect to the thickness d1 of the tread portion 2
  • Ad ⁇ d2/d1 (MPa) obtained by multiplying the ratio d2/d1 of is preferably 100 MPa or more, more preferably 200 MPa or more.
  • the negative rate of the tread portion 2 is desirably 25% to 40%, desirably 25% to 35%. Such a tread portion 2 can exhibit excellent heat dissipation while local deformation is suppressed.
  • the multiple grooves 11 of the present embodiment include multiple circumferential grooves extending in the tire circumferential direction and multiple width direction grooves (not shown) extending in the tire axial direction.
  • the circumferential groove negative rate which is the ratio of the total opening area of the plurality of circumferential grooves to the virtual ground contact area, is preferably 10% to 40%.
  • the width direction groove negative ratio which is the ratio of the total opening area of the plurality of width direction grooves to the virtual ground contact area, is preferably 10% to 40%.
  • the total volume of the plurality of grooves 11 is preferably 2.0% to 10.0% of the volume of the tread portion 2.
  • the volume of the tread portion 2 means the total volume of the tread portion 2 defined by the tire normal line passing through the end of the outermost surface of the tread portion 2 in the tire axial direction.
  • the tread contact element 8 is a part for contacting the road surface, and in this embodiment, it is made of general vulcanized rubber for tires. Also, a known tread rubber composition can be applied to the tread contact element 8 of the present embodiment. However, in order to improve recyclability, the tread contact element 8 may partially contain thermoplastic resin, and the entire tread contact element 8 may be made of thermoplastic resin. In this case, the tread contact element 8 is more preferably made entirely of thermoplastic elastomer.
  • FIG. 5 shows a meridional cross-sectional view of the tire 1 of another embodiment of the present disclosure.
  • the tire 1 of this embodiment includes, for example, a toroidal tire frame member 7 including a pair of bead portions 4, and a tread contact element 8 forming the outermost surface of the tread portion 2. .
  • the tire frame member 7 constitutes the bead portion 4 and the sidewall portion 3 .
  • the tire frame member 7 includes an undertread portion 2 d that is arranged radially inward of the tread contact element 8 .
  • the undertread portion 2d is a member that supports the tread contact element 8, and is continuous with the sidewall portions 3 on both sides.
  • the present disclosure is not limited to the embodiments shown in FIGS. Aspects shall also be included.
  • a tire having the structure shown in FIG. 1 and a negative rate of 55% was experimentally produced.
  • the tire of the comparative example is substantially the same as the tire of the example except for the above items.
  • Each test tire was tested for rolling resistance to evaluate the degree of tread deformation. Common specifications and test methods are as follows. Tire size: 195/65R15 Rim: 15 x 6.0J Tire pressure: 250kPa
  • Rolling resistance was measured when the test tires were run on a drum tester. The results are indicated by the reciprocal of the rolling resistance, and are indicated by an index with the comparative example being 100. It shows that rolling resistance is so small that a numerical value is large. The results of the tests are shown in Tables 1-5.
  • Disclosure 2 The pneumatic tire according to the present disclosure 1, wherein the axial length of the tread reinforcing layer is 25% to 81% of the tire maximum width.
  • the outermost surface of the tread portion is provided with a plurality of circumferential grooves extending in the tire circumferential direction, 8.
  • a circumferential groove negative rate which is a ratio of the total open area of the plurality of circumferential grooves to the virtual ground contact area, is 10% to 40%.
  • the outermost surface of the tread portion is provided with a plurality of width direction grooves extending in the tire axial direction,
  • a width direction groove negative rate which is a ratio of the total opening area of the plurality of width direction grooves to the virtual ground contact area, is 10% to 40%.
  • a width direction groove negative rate which is a ratio of the total opening area of the plurality of width direction grooves to the virtual ground contact area, is 10% to 40%.
  • Present Disclosure 10 The pneumatic tire according to any one of present disclosures 1 to 9, wherein the total volume of the plurality of grooves is 2.0% to 10.0% of the volume of the tread portion.
  • Present Disclosure 11 The pneumatic tire according to any one of present disclosures 1 to 10, wherein the tread portion contains a thermoplastic resin.
  • the pneumatic tire according to any one of present disclosures 1 to 12 wherein the thermoplastic resin includes a thermoplastic elastomer having rubber-like elasticity in a cooled state.
  • the tread portion includes a tread ground-contacting element that constitutes the outermost surface and a lumen surface member that constitutes the tire lumen surface, 14.
  • a value Ad ⁇ d2/d1 (MPa ) is 100 MPa or more, the pneumatic tire according to any one of present disclosures 1 to 14.

Abstract

Provided is a pneumatic tire having at least a tire inner cavity surface composed of a thermoplastic resin, wherein deformation of the tire accompanying heat generation during traveling is suppressed. The pneumatic tire has a tread part 2. At least the tire inner cavity surface 5 is composed of a thermoplastic resin. The tread part 2 includes a tread reinforcing layer 10 on the inner side in the tire radial direction from the center position of the thickness of the tread part 2. A plurality of grooves 11 are provided in the outermost surface of the tread part 2. A negative ratio, which is the ratio of the total opening area of the plurality of grooves (11) to the virtual ground contact area if the plurality of grooves (11) were all filled, is 20-50%.

Description

空気入りタイヤpneumatic tire
 本開示は、空気入りタイヤに関する。 The present disclosure relates to pneumatic tires.
 一般に、空気入りタイヤは、主にゴム材料によって構成されるが、ゴム材料は、リサイクルが難しいという問題がある。近年、リサイクル性に優れた材料で構成された部材を含む空気入りタイヤが種々提案されている。例えば、下記特許文献1には、タイヤ骨格体に熱可塑性樹脂が用いられたタイヤが提案されている。 In general, pneumatic tires are mainly composed of rubber materials, but rubber materials have the problem of being difficult to recycle. BACKGROUND ART In recent years, various proposals have been made for pneumatic tires including members made of highly recyclable materials. For example, Patent Literature 1 below proposes a tire in which a thermoplastic resin is used for a tire frame.
特許6138695号公報Japanese Patent No. 6138695
 上記特許文献1のタイヤは、タイヤ内腔面が熱可塑性樹脂で構成されている。このようなタイヤは、走行時の発熱によってタイヤ内腔面が可塑化して変形することが懸念される。具体的には、タイヤ内腔面が可塑化すると、タイヤ内圧によるタイヤ外径の成長やトレッド部の局所的かつ塑性的な変形が生じ、転がり抵抗が悪化することが懸念される。 In the tire of Patent Document 1, the inner cavity surface of the tire is made of a thermoplastic resin. Such a tire may be deformed due to plasticization of the tire inner surface due to heat generated during running. Specifically, when the inner cavity surface of the tire is plasticized, there is concern that the tire's internal pressure will cause the outer diameter of the tire to grow and the tread portion to be locally and plastically deformed, thereby deteriorating the rolling resistance.
 本開示は、以上のような実状に鑑み案出なされたもので、少なくともタイヤ内腔面が熱可塑性樹脂で構成された空気入りタイヤにおいて、走行時の発熱に伴うタイヤの変形を抑制し、連続走行時の転がり抵抗の悪化を抑制することを主たる課題としている。 The present disclosure has been devised in view of the actual situation as described above. The main issue is to suppress the deterioration of rolling resistance during running.
 本開示は、トレッド部を有する空気入りタイヤであって、少なくともタイヤ内腔面が熱可塑性樹脂で構成されており、前記トレッド部は、前記トレッド部の厚さの中心位置よりもタイヤ半径方向内側にトレッド補強層を含み、前記トレッド部の最表面には、複数の溝が設けられ、前記複数の溝を全て埋めた仮想接地面積に対する、前記複数の溝の総開口面積の比率であるネガティブ率は、20%~50%である、空気入りタイヤである。 The present disclosure is a pneumatic tire having a tread portion, wherein at least a tire inner cavity surface is made of a thermoplastic resin, and the tread portion is radially inward of a center position of the thickness of the tread portion. includes a tread reinforcing layer, the outermost surface of the tread portion is provided with a plurality of grooves, and the negative rate is the ratio of the total opening area of the plurality of grooves to the virtual ground contact area in which all of the plurality of grooves are filled. is a pneumatic tire, between 20% and 50%.
 本開示の空気入りタイヤは、上記の構成を採用したことによって、走行時の発熱に伴うタイヤの変形を抑制することができる。 By adopting the above configuration, the pneumatic tire of the present disclosure can suppress deformation of the tire due to heat generation during running.
本開示の一実施形態の空気入りタイヤの子午線断面図である。1 is a meridional cross-sectional view of a pneumatic tire of one embodiment of the present disclosure; FIG. 図1のトレッド部の拡大断面図である。FIG. 2 is an enlarged sectional view of the tread portion of FIG. 1; 本開示の他の実施形態のトレッド部の拡大断面図である。4 is an enlarged cross-sectional view of a tread portion of another embodiment of the present disclosure; FIG. 本開示の他の実施形態のトレッド部の拡大断面図である。4 is an enlarged cross-sectional view of a tread portion of another embodiment of the present disclosure; FIG. 本開示の他の実施形態の空気入りタイヤの子午線断面図である。FIG. 4 is a meridional cross-sectional view of a pneumatic tire according to another embodiment of the present disclosure;
 2 トレッド部
 5 タイヤ内腔面
 10 トレッド補強層
 11 溝
2 Tread Part 5 Tire Inner Surface 10 Tread Reinforcing Layer 11 Groove
 以下、本開示の実施の一形態が図面に基づき説明される。図1は、本実施形態の空気入りタイヤ1(以下、単にタイヤ1という場合がある。)の子午線断面図である。図1は、タイヤ1の正規状態におけるタイヤ回転軸を含む横断面図である。図1に示されるように、本実施形態のタイヤ1は、例えば、乗用車の空気入りタイヤとして用いられる。但し、本開示は、このような態様に限定されるものではなく、自動二輪車用の空気入りタイヤや、カート用の空気入りタイヤに適用されても良い。 An embodiment of the present disclosure will be described below based on the drawings. FIG. 1 is a meridional cross-sectional view of a pneumatic tire 1 (hereinafter sometimes simply referred to as tire 1) of the present embodiment. FIG. 1 is a cross-sectional view of the tire 1 in a normal state, including the tire rotation axis. As shown in FIG. 1, the tire 1 of this embodiment is used, for example, as a pneumatic tire for passenger cars. However, the present disclosure is not limited to such an aspect, and may be applied to pneumatic tires for motorcycles and pneumatic tires for carts.
 「正規状態」とは、各種の規格が定められたタイヤの場合、タイヤが正規リムにリム組みされかつ正規内圧が充填され、しかも、無負荷の状態である。本明細書において、特に断りがない場合、タイヤ各部の寸法等は、前記正規状態で測定された値である。 "Regular condition" means that, in the case of tires that meet various standards, the tire is mounted on a regular rim, filled with regular internal pressure, and has no load. In this specification, unless otherwise specified, the dimensions of each part of the tire are the values measured in the normal condition.
 「正規リム」は、タイヤが基づいている規格を含む規格体系において、当該規格がタイヤ毎に定めているリムであり、例えばJATMAであれば "標準リム" 、TRAであれば "Design Rim" 、ETRTOであれば"Measuring Rim" である。規格に定められていないタイヤの場合には、「正規リム」は、リム組み可能であって、内圧が保持できるリム、即ちリム/タイヤ間からエア漏れを生じさせないリムの内、最もリム径が小さく、次いでリム幅が最も狭いものを指す。 A "regular rim" is a rim defined for each tire in a standard system that includes the standard on which the tire is based. For example, JATMA is a "standard rim", For ETRTO, it is "Measuring Rim". In the case of non-standard tires, the "regular rim" is the rim that can be mounted on the rim and can maintain internal pressure, that is, the rim that does not cause air leakage between the rim and tire, and has the largest rim diameter. Small, then refers to the narrowest rim width.
 「正規内圧」は、タイヤが基づいている規格を含む規格体系において、各規格がタイヤ毎に定めている空気圧であり、JATMAであれば "最高空気圧" 、TRAであれば表 "TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES" に記載の最大値、ETRTOであれば "INFLATION PRESSURE" である。各種の規格が定められていないタイヤの場合、正規内圧は、乗用車用タイヤであれば250kPa、乗用車よりも正規荷重が大きいタイヤは350kPaとする。 "Regular internal pressure" is the air pressure specified for each tire by each standard in the standard system including the standard that the tire is based on. Maximum value described in VARIOUS COLD INFLATION PRESSURES", or "INFLATION PRESSURE" for ETRTO. In the case of tires for which various standards are not defined, the normal internal pressure is 250 kPa for passenger car tires, and 350 kPa for tires with a larger normal load than passenger car tires.
 ここで、乗用車用タイヤとは4輪走行を行う自動車に装着されるタイヤであって、正規荷重が1000kg以下のものを指す。 Here, "passenger car tires" refer to tires that are mounted on automobiles that run on four wheels and have a normal load of 1000 kg or less.
 また、上記した「正規荷重」とはそのタイヤが基づいている規格を含む規格体系において、当該規格がタイヤ毎に定める最大負荷能力であり、例えば、JATMA規格(日本自動車タイヤ協会規格)であれば、ロードインデックス(LI)に基づく最大負荷能力、TRAであれば表 ”TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” に記載の最大値、ETRTOであれば ”LOAD CAPACITY”である。規格に定められていないタイヤの場合には、タイヤ断面幅Lt(mm)、タイヤ外径Dt(mm)、タイヤ断面高さHt(mm)及び円周率から求めたタイヤのリムを除く仮想体積V(mm)に基づき、以下の計算式により求めた値を正規荷重(kg)として取り扱う。
 正規荷重(kg) = 0.000011×V+175
 V = {(Dt-Ht)/4}×π×Lt
In addition, the above-mentioned "regular load" is the maximum load capacity specified for each tire by the standard in the standard system including the standard on which the tire is based. , the maximum load capacity based on the load index (LI), the maximum value listed in the table "TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES" for TRA, and "LOAD CAPACITY" for ETRTO. In the case of tires that are not specified in the standard, the tire section width Lt (mm), the tire outer diameter Dt (mm), the tire section height Ht (mm), and the virtual volume excluding the tire rim calculated from the circumference ratio Based on V (mm 3 ), the value obtained by the following formula is treated as the normal load (kg).
Normal load (kg) = 0.000011 x V + 175
V = {(Dt 2 -Ht 2 )/4} x π x Lt
 タイヤ断面幅Lt(mm)、タイヤ断面高さHt(mm)、タイヤ外径Dt(mm)は、実物のタイヤから直接測定するか、または、CT等の撮影画像から測定することができる。 The tire cross-sectional width Lt (mm), tire cross-sectional height Ht (mm), and tire outer diameter Dt (mm) can be measured directly from the actual tire or from a CT image.
 タイヤ外径Dtとは、タイヤの正規状態における外径であり、タイヤ断面幅Ltとは、正規状態におけるタイヤ側面の模様や文字など全てを含むサイドウォール間の直線距離(タイヤの総幅)からタイヤの側面の模様、文字などを除いた幅である。タイヤ断面高さHtはタイヤ断面におけるタイヤの高さであり、タイヤ外径Dtからリム径(mm)を差し引き、2で除することで算出することができる。 The tire outer diameter Dt is the outer diameter of the tire in the normal state, and the tire cross-sectional width Lt is the linear distance between the sidewalls including all the patterns and characters on the tire side surface in the normal state (total width of the tire). This is the width excluding patterns and characters on the tire side. The tire section height Ht is the height of the tire in the tire section, and can be calculated by subtracting the rim diameter (mm) from the tire outer diameter Dt and dividing by two.
 タイヤ1は、トレッド部2、一対のサイドウォール部3及び一対のビード部4を含む。サイドウォール部3は、トレッド部2のタイヤ軸方向の端部からタイヤ半径方向内側に延びている。ビード部4は、サイドウォール部3のタイヤ半径方向内側に連なっている。また、タイヤ1のトレッド部2において、少なくともタイヤ内腔面5が熱可塑性樹脂で構成されている。 The tire 1 includes a tread portion 2, a pair of sidewall portions 3 and a pair of bead portions 4. The sidewall portion 3 extends radially inward from the axial end of the tread portion 2 . The bead portion 4 continues to the inner side of the sidewall portion 3 in the tire radial direction. Moreover, in the tread portion 2 of the tire 1, at least the tire inner cavity surface 5 is made of a thermoplastic resin.
 本明細書において、「熱可塑性樹脂」とは、温度上昇により材料が流動性を持ち、再び冷却すると比較的硬く強度のある状態に可逆的になる高分子化合物であって、一般的なタイヤ用ゴム部材のような加硫工程を経ることなく成形できるものを指す。したがって、本明細書が意味する熱可塑性樹脂は、一般的なタイヤ用ゴム部材(加硫ゴム)を含むものではなく、リサイクル可能な樹脂材料である。熱可塑性樹脂を用いたタイヤであるか否かは、タイヤ部材の弾性率の温度依存性などから判別することができる。 As used herein, the term “thermoplastic resin” refers to a polymer compound that becomes reversible to a relatively hard and strong state when the temperature rises and the material becomes fluid when cooled again, and is used for general tires. This refers to materials that can be molded without undergoing a vulcanization process, such as rubber materials. Therefore, the thermoplastic resin as used herein does not include general tire rubber components (vulcanized rubber), but is a recyclable resin material. Whether or not the tire is made of thermoplastic resin can be determined from the temperature dependence of the elastic modulus of the tire member.
 また、本明細書において、熱可塑性樹脂は、冷却状態においてゴム状弾性を有しない非弾性熱可塑性樹脂と、冷却状態においてゴム状弾性を有する熱可塑性エラストマーとを含む。熱可塑性エラストマーは、温度上昇とともに材料が軟化、流動し、冷却すると比較的硬く強度のある状態になり、かつ、ゴム状弾性を有する。なお、前記冷却状態とは、タイヤを通常の態様で使用又は保管する場合の温度状態を意味する。本明細書において、特に断りの無い場合、熱可塑性樹脂として、非弾性熱可塑性樹脂及び熱可塑性エラストマーのいずれもが適用することができ、これらが併用されても良い。但し、より望ましい態様では、熱可塑性樹脂として熱可塑性エラストマーが適用される。 In addition, in this specification, thermoplastic resins include inelastic thermoplastic resins that do not have rubber-like elasticity in a cooled state, and thermoplastic elastomers that have rubber-like elasticity in a cooled state. Thermoplastic elastomers soften and flow as the temperature rises, become relatively hard and strong when cooled, and have rubber-like elasticity. The term "cooled state" means a temperature state when the tire is used or stored in a normal manner. In this specification, unless otherwise specified, as the thermoplastic resin, both non-elastic thermoplastic resins and thermoplastic elastomers can be applied, and these may be used in combination. However, in a more desirable aspect, a thermoplastic elastomer is applied as the thermoplastic resin.
 熱可塑性エラストマーとしては、ポリアミド系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、ポリスチレン系熱可塑性エラストマー、ポリオレフィン系熱可塑性エラストマーを挙げることができ、これらが単独で或いは組み合わせて採用され得る。 Examples of thermoplastic elastomers include polyamide-based thermoplastic elastomers, polyester-based thermoplastic elastomers, polyurethane-based thermoplastic elastomers, polystyrene-based thermoplastic elastomers, and polyolefin-based thermoplastic elastomers, and these may be used alone or in combination. obtain.
 図2には、トレッド部2の拡大断面図が示されている。図2に示されるように、トレッド部2は、トレッド部2の厚さの中心位置よりもタイヤ半径方向内側にトレッド補強層10を含む。この構成は、少なくともタイヤ赤道面C上において、トレッド補強層10が前記中心位置よりもタイヤ半径方向内側に配されていることを意味する。望ましい態様では、
トレッド補強層10の体積の50%以上、より望ましくは80%以上が、前記中心位置よりもタイヤ半径方向内側に配されている。さらに望ましい態様として、本実施形態では、トレッド補強層10の全体が前記中心位置よりもタイヤ半径方向内側に配されている。
FIG. 2 shows an enlarged sectional view of the tread portion 2. As shown in FIG. As shown in FIG. 2 , the tread portion 2 includes a tread reinforcing layer 10 inside the center position of the thickness of the tread portion 2 in the tire radial direction. This configuration means that the tread reinforcing layer 10 is arranged radially inward of the center position at least on the tire equatorial plane C. As shown in FIG. In a preferred embodiment,
50% or more, more preferably 80% or more of the volume of the tread reinforcing layer 10 is arranged radially inward of the center position. As a more desirable aspect, in this embodiment, the entire tread reinforcing layer 10 is arranged radially inward of the center position.
 トレッド補強層10は、タイヤ内腔面5を構成する熱可塑性樹脂よりも高剛性な部材であり、タイヤ外径の成長を抑制することができる。また、トレッド部2の最表面には、複数の溝11が設けられる。複数の溝11は、タイヤ周方向に延びる複数の周方向溝と、タイヤ軸方向に延びる複数の幅方向溝の両方を含む。なお、前記最表面は、トレッド部2の表面の内、タイヤ走行時において路面と接触し得る面を意味する。 The tread reinforcing layer 10 is a member having higher rigidity than the thermoplastic resin forming the tire inner cavity surface 5, and can suppress the growth of the tire outer diameter. A plurality of grooves 11 are provided on the outermost surface of the tread portion 2 . The plurality of grooves 11 include both a plurality of circumferential grooves extending in the tire circumferential direction and a plurality of width direction grooves extending in the tire axial direction. The outermost surface means the surface of the tread portion 2 that can come into contact with the road surface during running of the tire.
 なお、上記したトレッド部2の厚さとは、タイヤの半径方向断面において、トレッド部2の最表面からタイヤ内腔面までのタイヤ法線方向の距離である。トレッド部2の最表面に溝11が存在する場合、トレッド部2の厚さは、溝11を埋めた仮想の状態で測定されるものとする。 The thickness of the tread portion 2 described above is the distance in the tire normal direction from the outermost surface of the tread portion 2 to the inner cavity surface of the tire in the radial cross section of the tire. When the grooves 11 are present on the outermost surface of the tread portion 2, the thickness of the tread portion 2 shall be measured in a hypothetical state in which the grooves 11 are filled.
 本開示において、複数の溝11を全て埋めたトレッド部2の仮想接地面積に対する、複数の溝11の総開口面積の比率であるネガティブ率は、20%~50%である。前記仮想接地面積とは、複数の溝11が全て埋められたトレッド部2を有するタイヤを前記正規状態にして、前記トレッド部2を平面にキャンバー角0°で押し付けたときに接地するタイヤ全周に亘る接地面積の合計を指す。同様に、溝部の面積は、上記のタイヤ全周の接地面において、溝部の面積を求めることにより算出することができる。これらは簡易的にはタイヤ表面にインクなどを塗り、転写させることにより測定することが可能である。 In the present disclosure, the negative ratio, which is the ratio of the total opening area of the plurality of grooves 11 to the virtual ground contact area of the tread portion 2 in which all of the plurality of grooves 11 are filled, is 20% to 50%. The virtual ground contact area refers to the entire circumference of the tire that touches the ground when the tire having the tread portion 2 in which all of the plurality of grooves 11 are filled is in the normal state and the tread portion 2 is pressed against a plane at a camber angle of 0°. It refers to the total contact area over the Similarly, the area of the groove can be calculated by determining the area of the groove on the ground contact surface of the entire circumference of the tire. These can be easily measured by applying ink or the like to the surface of the tire and transferring it.
 本開示では、上記の構成を採用したことにより、走行時の発熱に伴うタイヤ1の変形を抑制し、連続走行時の転がり抵抗の悪化を抑制することができる。その理由としては、以下のメカニズムが推察される。 In the present disclosure, by adopting the above configuration, deformation of the tire 1 due to heat generation during running can be suppressed, and deterioration of rolling resistance during continuous running can be suppressed. The reason for this is presumed to be the following mechanism.
 タイヤ内腔面5は、タイヤに充填された空気によって常時圧力が作用している。このため、タイヤ内腔面5が熱可塑性樹脂で構成されたタイヤは、走行時の発熱によってタイヤ内腔面が可塑化して変形し、ひいてはタイヤ外径の成長やトレッド部の局所的かつ塑性的な変形が生じる。これにより、とりわけ転がり抵抗の悪化が懸念される。このような問題に対し、本開示では、トレッド補強層10をよりタイヤ半径方向内側に配することで、タイヤ外径の成長を防ぎつつ、トレッド部2の全体で変形を吸収することができる。 The tire inner cavity surface 5 is always under pressure from the air filled in the tire. For this reason, in a tire having a tire inner cavity surface 5 made of a thermoplastic resin, the tire inner cavity surface is plasticized and deformed by heat generated during running, which leads to growth of the tire outer diameter and local and plastic deformation of the tread portion. deformation occurs. As a result, there is a concern that rolling resistance will deteriorate, among other things. To address such a problem, according to the present disclosure, the tread reinforcing layer 10 is disposed further inside in the tire radial direction, so that the entire tread portion 2 can absorb the deformation while preventing the tire outer diameter from growing.
 また、本開示では、トレッド部2のネガティブ率が20%以上であることにより、溝11の壁面からトレッド部2の熱を逃がし易くしている。さらに、前記ネガティブ率が50%以下であることにより、トレッド部2の最表面の局所的な変形が抑制され、その発熱を防ぐことができる。本開示では、このようなメカニズムにより、少なくともタイヤ内腔面5が熱可塑性樹脂で構成された空気入りタイヤにおいて、走行時の発熱に伴うタイヤの変形を抑制でき、ひいては転がり抵抗の悪化を抑制できると考えられる。 In addition, in the present disclosure, the negative rate of the tread portion 2 is 20% or more, so that the heat of the tread portion 2 can be easily released from the wall surfaces of the grooves 11 . Further, when the negative ratio is 50% or less, local deformation of the outermost surface of the tread portion 2 is suppressed, and heat generation thereof can be prevented. In the present disclosure, due to such a mechanism, in a pneumatic tire in which at least the tire inner cavity surface 5 is made of a thermoplastic resin, deformation of the tire due to heat generation during running can be suppressed, and thus deterioration of rolling resistance can be suppressed. it is conceivable that.
 以下、本実施形態のさらに詳細な構成が説明される。なお、以下で説明される各構成は、本実施形態の具体的態様を示すものである。したがって、本開示は、以下で説明される構成を具えないものであっても、上述の効果を発揮し得るのは言うまでもない。また、上述の特徴を具えた本開示のタイヤに、以下で説明される各構成のいずれか1つが単独で適用されても、各構成に応じた性能の向上は期待できる。さらに、以下で説明される各構成のいくつかが複合して適用された場合、各構成に応じた複合的な性能の向上が期待できる。 A more detailed configuration of the present embodiment will be described below. Each configuration described below represents a specific aspect of the present embodiment. Therefore, it goes without saying that the present disclosure can exhibit the above effects even if it does not have the configuration described below. Further, even if any one of the configurations described below is applied alone to the tire of the present disclosure having the features described above, an improvement in performance according to each configuration can be expected. Furthermore, when some of the respective configurations described below are applied in combination, it is possible to expect a combined improvement in performance according to each configuration.
 図1に示されるように、トレッド部2はトレッド接地要素8及び内腔表面部材14により構成されている。本実施形態のトレッド接地要素8は、例えば、単一の組成物から形成された単層構造とされる。他の実施形態において、トレッド接地要素8は、例えば、ベーストレッド部やアンダートレッド部などの異なる組成物を用いた複数の層構造で形成されても良い。 As shown in FIG. 1, the tread portion 2 is composed of a tread contacting element 8 and a lumen surface member 14. As shown in FIG. The tread ground-contacting element 8 of this embodiment has, for example, a single-layer structure formed from a single composition. In other embodiments, the tread-contacting element 8 may be formed of multiple layers using different compositions, for example, the base tread portion and the undertread portion.
 本実施形態では、トレッド接地要素8と内腔表面部材14とが別の組成物で構成された二層構造とされている。トレッド接地要素8は、例えば、内腔表面部材14とは異なる熱可塑性エラストマーで構成されている。別の態様では、トレッド接地要素8は、ゴム組成物で構成されても良い。また、本開示は上述の態様に限定されるものではなく、トレッド部2は、トレッド接地要素8と内腔表面部材14とが同一の組成物で形成された単層の構造でも良い。この場合、トレッド部2は、全体が熱可塑性樹脂により構成されるのが望ましい。 In this embodiment, the tread contact element 8 and the inner cavity surface member 14 have a two-layer structure made of different compositions. Tread-contacting element 8 is, for example, constructed of a different thermoplastic elastomer than lumen surface member 14 . Alternatively, the tread contact element 8 may be constructed from a rubber composition. Also, the present disclosure is not limited to the embodiments described above, and the tread portion 2 may be a single-layer construction in which the tread-contacting element 8 and the lumen surface member 14 are formed of the same composition. In this case, it is desirable that the tread portion 2 be entirely made of a thermoplastic resin.
 本実施形態のように、トレッド接地要素8と内腔表面部材14とが異なる組成物で構成される場合、タイヤ内部に空気を保持させる観点から、内腔表面部材14の空気透過係数がトレッド接地要素8の空気透過係数よりも低いことが好ましい。なお、前記空気透過係数は、空気透過係量をあらわす材料固有の値であり、温度30℃でJIS  K  7126-7に準拠して、プラスチック-フィルムおよびシート-ガス透過度試験方法-第1部:差圧法により測定したものである。 As in this embodiment, when the tread contact element 8 and the inner cavity surface member 14 are composed of different compositions, the air permeability coefficient of the inner cavity surface member 14 is higher than that of the inner cavity surface member 14 from the viewpoint of retaining air inside the tire. It is preferably lower than the air permeability coefficient of element 8 . The air permeability coefficient is a material-specific value that represents the air permeability coefficient, and at a temperature of 30 ° C., in accordance with JIS K 7126-7, plastics - film and sheet - gas permeability test method - Part 1 : Measured by the differential pressure method.
 また、トレッド部2のタイヤ軸方向外側には1対のサイド部13が備えられている。図1に示される実施形態では、サイド部13は単一の組成物による単層構造であり、サイドウォール部3及びビード部4を構成している。また、ビード部4には勘合性を高めるため、ビードワイヤーが含まれている。別の実施形態において、操縦安定性や乗り心地など、用途に応じて求められる性能達成させる為、サイド部13を複数の部材に分け、通常の空気入りタイヤの様にビードエイペックスやラバーチェーファーなどの役割を持たせても良い。 A pair of side portions 13 are provided on the outer side of the tread portion 2 in the axial direction of the tire. In the embodiment shown in FIG. 1, the side portion 13 has a single layer structure made of a single composition, and constitutes the sidewall portion 3 and the bead portion 4 . In addition, the bead portion 4 includes a bead wire in order to improve fitting. In another embodiment, the side portion 13 is divided into a plurality of members, and a bead apex or a rubber chafer is formed like a normal pneumatic tire in order to achieve the performance required according to the application, such as steering stability and ride comfort. It is also possible to assign a role such as
 図2に示されるように、トレッド補強層10は、例えば、複数のコード16と、コード16を被覆する被覆部17とを含む。 As shown in FIG. 2, the tread reinforcing layer 10 includes, for example, a plurality of cords 16 and a covering portion 17 that covers the cords 16.
 コード16には、例えば、有機繊維コード又はスチールコードが用いられる。本実施形態のコード16は、例えば、タイヤ周方向に対して5°以下の角度で螺旋状に巻回されている。このようなコード16は、タイヤ外径の成長を確実に抑制することができる。但し、このような態様に限定されるものではなく、コード16は、例えば、一般的なタイヤのベルトコードのように、タイヤ周方向に対して30~60°に傾斜するものでも良い。また、トレッド補強層10は、タイヤ周方向に対して第1方向に傾斜した複数のコード16からなる層と、前記第1方向とは逆向きの第2方向に傾斜した複数のコード16からなる層とを含むものでも良い。 For the cord 16, for example, an organic fiber cord or steel cord is used. The cord 16 of this embodiment is, for example, spirally wound at an angle of 5° or less with respect to the tire circumferential direction. Such a cord 16 can reliably suppress the growth of the tire outer diameter. However, the cords 16 are not limited to such a mode, and the cords 16 may be inclined at 30 to 60° with respect to the tire circumferential direction, like belt cords of general tires. The tread reinforcing layer 10 is composed of a layer composed of a plurality of cords 16 inclined in a first direction with respect to the tire circumferential direction and a plurality of cords 16 inclined in a second direction opposite to the first direction. A layer may be included.
 被覆部17は、例えば、粘着性を有したトッピングゴムで構成される。これにより、トレッド補強層10の剥離が効果的に抑制される。但し、このような態様に限定されるものではなく、被覆部17は、熱可塑性樹脂で構成されるものでも良い。この場合、被覆部17は、熱可塑性エラストマーで構成されるのがより望ましい。これにより、タイヤのリサイクル性能がさらに向上する。 The covering part 17 is composed of, for example, a topping rubber having adhesiveness. This effectively suppresses peeling of the tread reinforcing layer 10 . However, it is not limited to such an aspect, and the covering portion 17 may be made of a thermoplastic resin. In this case, it is more desirable that the covering portion 17 is made of a thermoplastic elastomer. This further improves the tire recycling performance.
 図3には、他の実施形態のトレッド部2の拡大断面図が示されている。図3に示されるように、この実施形態のトレッド補強層10は、熱可塑性樹脂を含み、より望ましくは全体が熱可塑性樹脂で構成されている。すなわち、このトレッド補強層10は、コードを含んでいない。これにより、リサイクル性能がさらに向上する。なお、トレッド補強層10の熱可塑性樹脂は、タイヤ内腔面5を構成する熱可塑性樹脂よりも高剛性であるのは言うまでもない。また、トレッド補強層10の熱可塑性樹脂には、熱可塑性エラストマーが適用されるのがより望ましい。 FIG. 3 shows an enlarged cross-sectional view of the tread portion 2 of another embodiment. As shown in FIG. 3, the tread reinforcing layer 10 of this embodiment includes a thermoplastic resin, and more desirably is entirely composed of a thermoplastic resin. That is, this tread reinforcing layer 10 does not contain cords. This further improves recycling performance. Needless to say, the thermoplastic resin of the tread reinforcing layer 10 has higher rigidity than the thermoplastic resin forming the inner cavity surface 5 of the tire. Further, it is more desirable to apply a thermoplastic elastomer to the thermoplastic resin of the tread reinforcing layer 10 .
 図4には、さらに他の実施形態のトレッド部2の拡大断面図が示されている。図4に示されるように、この実施形態のトレッド補強層10は、タイヤ内腔面5を構成する熱可塑性樹脂に覆われている。より具体的には、トレッド補強層10を構成する複数のコード16が、タイヤ内腔面5を構成する熱可塑性樹脂の内部に埋設されている。このような実施態様は、トレッド補強層10の被覆部として、タイヤ内腔面5を構成する熱可塑性樹脂が利用されるため、タイヤの製造コストを低減させ得る。 FIG. 4 shows an enlarged cross-sectional view of the tread portion 2 of still another embodiment. As shown in FIG. 4, the tread reinforcing layer 10 of this embodiment is covered with a thermoplastic resin forming the inner cavity surface 5 of the tire. More specifically, a plurality of cords 16 forming the tread reinforcing layer 10 are embedded inside the thermoplastic resin forming the inner cavity surface 5 of the tire. In such an embodiment, the thermoplastic resin forming the inner cavity surface 5 of the tire is used as the covering portion of the tread reinforcing layer 10, so that the manufacturing cost of the tire can be reduced.
 図2に示されるように、トレッド補強層10のタイヤ軸方向の長さL1は、タイヤ最大幅W1の25%~81%である。なお、図3及び図4に示される実施態様でも、トレッド補強層10の長さは同様に規定される。このようなトレッド補強層10は、タイヤの製造コストやタイヤ重量の増加を抑制しつつ、タイヤ外径の成長を抑制できる。 As shown in FIG. 2, the axial length L1 of the tread reinforcing layer 10 is 25% to 81% of the tire maximum width W1. 3 and 4, the length of the tread reinforcing layer 10 is similarly defined. Such a tread reinforcing layer 10 can suppress an increase in tire outer diameter while suppressing an increase in tire manufacturing cost and tire weight.
 トレッド部2の最表面からトレッド補強層10までの距離d2は、例えば、トレッド部2の厚さd1の65~95%であり、望ましくは80%~90%である。これにより、上述の効果がさらに確実に発揮される。前記距離d2は、トレッド部2の最表面からトレッド補強層10のタイヤ半径方向外側の外面までのタイヤ法線方向の距離に相当する。また、トレッド補強層10の外面とは、図2に示される実施形態では、トレッド補強層10の被覆部17の外面を意味し、図4に示される実施形態では、コード16の外面を意味する。 The distance d2 from the outermost surface of the tread portion 2 to the tread reinforcing layer 10 is, for example, 65% to 95% of the thickness d1 of the tread portion 2, preferably 80% to 90%. As a result, the above-described effects are exhibited more reliably. The distance d2 corresponds to the distance in the normal direction of the tire from the outermost surface of the tread portion 2 to the outer surface of the tread reinforcing layer 10 on the radially outer side of the tire. The outer surface of the tread reinforcing layer 10 means the outer surface of the covering portion 17 of the tread reinforcing layer 10 in the embodiment shown in FIG. 2, and the outer surface of the cord 16 in the embodiment shown in FIG. .
 トレッド補強層10の引張弾性率Adは、タイヤ内腔面5を構成する熱可塑性樹脂の引張弾性率よりも大きい。具体的には、トレッド補強層10の引張弾性率Adは、100MPa以上であるのが望ましい。これにより、トレッド部2の変形が確実に抑制され、転がり抵抗の悪化を抑制することができる。なお、トレッド補強層10の引張弾性率は、トレッド補強層10から幅10mmでタイヤ周方向40mm以上延びるテストサンプルを採取し、引張試験機でテストサンプルの幅10mm、長さ40mmの領域に引張変形させ、その際の応力の傾きから算出される。この際、サンプルの変形速度は200mm/min、測定温度は室温である。得られた応力歪み曲線の0.05%および0.25%変形時の応力値から、傾きを算出し、引張弾性率として求める。なお、トレッド補強層がコードと熱可塑性樹脂との複合体などである場合にはそれらの複合状態で算出するものとする。 The tensile elastic modulus Ad of the tread reinforcing layer 10 is greater than the tensile elastic modulus of the thermoplastic resin forming the inner cavity surface 5 of the tire. Specifically, the tensile elastic modulus Ad of the tread reinforcing layer 10 is desirably 100 MPa or more. As a result, deformation of the tread portion 2 is reliably suppressed, and deterioration of rolling resistance can be suppressed. The tensile elastic modulus of the tread reinforcing layer 10 was determined by taking a test sample extending from the tread reinforcing layer 10 in a width of 10 mm and extending 40 mm or more in the tire circumferential direction, and using a tensile tester to apply tensile deformation to an area of 10 mm in width and 40 mm in length. and calculated from the slope of the stress at that time. At this time, the deformation speed of the sample is 200 mm/min, and the measurement temperature is room temperature. From the stress values at 0.05% and 0.25% deformation of the obtained stress-strain curve, the slope is calculated and obtained as the tensile elastic modulus. If the tread reinforcing layer is a composite of cords and thermoplastic resin, the composite state is used for calculation.
 トレッド部2の最表面からトレッド補強層10までの距離d2が小さい程、トレッド部2の補強のために要求されるトレッド補強層10の引張弾性率Adは大きくなる。このような観点から、トレッド部2を十分に補強するために、前記引張弾性率Ad(MPa)に、トレッド部2の厚さd1に対するトレッド部2の最表面からトレッド補強層10までの距離d2の比率d2/d1を乗じた値Ad×d2/d1(MPa)は、望ましくは100MPa以上であり、より望ましくは200MPa以上である。 The smaller the distance d2 from the outermost surface of the tread portion 2 to the tread reinforcing layer 10, the greater the tensile modulus Ad of the tread reinforcing layer 10 required for reinforcing the tread portion 2. From this point of view, in order to sufficiently reinforce the tread portion 2, the tensile elastic modulus Ad (MPa) is added to the distance d2 from the outermost surface of the tread portion 2 to the tread reinforcing layer 10 with respect to the thickness d1 of the tread portion 2 A value Ad×d2/d1 (MPa) obtained by multiplying the ratio d2/d1 of is preferably 100 MPa or more, more preferably 200 MPa or more.
 トレッド部2のネガティブ率は、望ましくは25%~40%であり、望ましくは25%~35%である。このようなトレッド部2は、局所的な変形が抑制されつつ、優れた放熱性を発揮することができる。 The negative rate of the tread portion 2 is desirably 25% to 40%, desirably 25% to 35%. Such a tread portion 2 can exhibit excellent heat dissipation while local deformation is suppressed.
 本実施形態の複数の溝11は、タイヤ周方向に延びる複数の周方向溝と、タイヤ軸方向に延びる複数の幅方向溝(図示省略)とを含む。仮想接地面積に対する、複数の周方向溝の総開口面積の比率である周方向溝ネガティブ率は、10%~40%であるのが望ましい。また、仮想接地面積に対する、複数の幅方向溝の総開口面積の比率である幅方向溝ネガティブ率は、10%~40%であるのが望ましい。これにより、トレッド部2のタイヤ周方向の剛性とタイヤ軸方向の剛性とがバランス良く確保される。 The multiple grooves 11 of the present embodiment include multiple circumferential grooves extending in the tire circumferential direction and multiple width direction grooves (not shown) extending in the tire axial direction. The circumferential groove negative rate, which is the ratio of the total opening area of the plurality of circumferential grooves to the virtual ground contact area, is preferably 10% to 40%. Further, the width direction groove negative ratio, which is the ratio of the total opening area of the plurality of width direction grooves to the virtual ground contact area, is preferably 10% to 40%. As a result, the rigidity of the tread portion 2 in the tire circumferential direction and the rigidity in the tire axial direction are ensured in a well-balanced manner.
 複数の溝11の総容積は、トレッド部2の体積の2.0%~10.0%であるのが望ましい。これにより、ウェット性能と操縦安定性とがバランス良く向上する。なお、トレッド部2の体積は、トレッド部2の最表面のタイヤ軸方向の端を通るタイヤ法線で区画されたトレッド部2の総体積を意味する。 The total volume of the plurality of grooves 11 is preferably 2.0% to 10.0% of the volume of the tread portion 2. As a result, wet performance and steering stability are improved in a well-balanced manner. The volume of the tread portion 2 means the total volume of the tread portion 2 defined by the tire normal line passing through the end of the outermost surface of the tread portion 2 in the tire axial direction.
 トレッド接地要素8は、路面と接地するための部位であり、本実施形態では一般的なタイヤ用加硫ゴムで構成されている。また、本実施形態のトレッド接地要素8には、公知のトレッドゴムの組成を適用することができる。但し、リサイクル性を高めるために、トレッド接地要素8は、熱可塑性樹脂を一部に含むことができ、トレッド接地要素8の全体が熱可塑性樹脂で構成されることも可能である。この場合、トレッド接地要素8は、全体が熱可塑性エラストマーで構成されるのがより望ましい。 The tread contact element 8 is a part for contacting the road surface, and in this embodiment, it is made of general vulcanized rubber for tires. Also, a known tread rubber composition can be applied to the tread contact element 8 of the present embodiment. However, in order to improve recyclability, the tread contact element 8 may partially contain thermoplastic resin, and the entire tread contact element 8 may be made of thermoplastic resin. In this case, the tread contact element 8 is more preferably made entirely of thermoplastic elastomer.
 図5には、本開示の別の実施形態のタイヤ1の子午線断面図が示されている。図5に示されるように、この実施形態のタイヤ1は、例えば、一対のビード部4を含むトロイド状のタイヤ骨格部材7と、トレッド部2の最表面を構成するトレッド接地要素8とを含む。少なくとも具える。タイヤ骨格部材7は、ビード部4及びサイドウォール部3を構成している。また、タイヤ骨格部材7は、トレッド接地要素8のタイヤ半径方向内側に配されるアンダートレッド部2dを含む。アンダートレッド部2dは、トレッド接地要素8を支持する部材であり、両側のサイドウォール部3と連なっている。このように、本開示は、図1~図4で示される態様に限定されるものではなく、トレッド部2のタイヤ内腔面5が熱可塑性樹脂で構成されていれば、図5で示される態様も含むものとする。 FIG. 5 shows a meridional cross-sectional view of the tire 1 of another embodiment of the present disclosure. As shown in FIG. 5, the tire 1 of this embodiment includes, for example, a toroidal tire frame member 7 including a pair of bead portions 4, and a tread contact element 8 forming the outermost surface of the tread portion 2. . At least equip. The tire frame member 7 constitutes the bead portion 4 and the sidewall portion 3 . In addition, the tire frame member 7 includes an undertread portion 2 d that is arranged radially inward of the tread contact element 8 . The undertread portion 2d is a member that supports the tread contact element 8, and is continuous with the sidewall portions 3 on both sides. As such, the present disclosure is not limited to the embodiments shown in FIGS. Aspects shall also be included.
 以上、本開示の一実施形態の空気入りタイヤが詳細に説明されたが、本開示は、上記の具体的な実施形態に限定されることなく、種々の態様に変更して実施され得る。 Although the pneumatic tire according to one embodiment of the present disclosure has been described in detail above, the present disclosure is not limited to the specific embodiments described above, and can be implemented with various modifications.
 図1に示す構造を有する乗用車用の空気入りタイヤが、表1~5の仕様に基づいて試作された。比較例のタイヤとして、図1の構造を有し、かつ、ネガティブ率が55%であるタイヤが試作された。比較例のタイヤは、上記の事項を除き、実施例のタイヤと実質的に同じである。各テストタイヤについて、トレッド部の変形度合いを評価するために、転がり抵抗がテストされた。共通仕様やテスト方法は、以下の通りである。
 タイヤサイズ:195/65R15
 リム:15×6.0J
 タイヤ内圧:250kPa
A pneumatic tire for a passenger car having the structure shown in FIG. As a comparative tire, a tire having the structure shown in FIG. 1 and a negative rate of 55% was experimentally produced. The tire of the comparative example is substantially the same as the tire of the example except for the above items. Each test tire was tested for rolling resistance to evaluate the degree of tread deformation. Common specifications and test methods are as follows.
Tire size: 195/65R15
Rim: 15 x 6.0J
Tire pressure: 250kPa
 <転がり抵抗>
 ドラム試験機上でテストタイヤを走行させたときの転がり抵抗が測定された。結果は、転がり抵抗の逆数で示され、比較例を100とする指数で示されている。数値が大きい程、転がり抵抗が小さいことを示す。
 テストの結果は表1~5に示される。
<Rolling resistance>
Rolling resistance was measured when the test tires were run on a drum tester. The results are indicated by the reciprocal of the rolling resistance, and are indicated by an index with the comparative example being 100. It shows that rolling resistance is so small that a numerical value is large.
The results of the tests are shown in Tables 1-5.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1~5に示されるように、実施例のタイヤは、転がり抵抗が低く、走行時の発熱に伴うタイヤの変形を抑制していることが確認できた。 As shown in Tables 1 to 5, it was confirmed that the tires of Examples had low rolling resistance and suppressed tire deformation due to heat generation during running.
[付記]
 本開示は以下の態様を含む。
[Appendix]
The present disclosure includes the following aspects.
[本開示1]
 トレッド部を有する空気入りタイヤであって、
 少なくともタイヤ内腔面が熱可塑性樹脂で構成されており、
 前記トレッド部は、前記トレッド部の厚さの中心位置よりもタイヤ半径方向内側にトレッド補強層を含み、
 前記トレッド部の最表面には、複数の溝が設けられ、
 前記複数の溝を全て埋めた仮想接地面積に対する、前記複数の溝の総開口面積の比率であるネガティブ率は、20%~50%である、
 空気入りタイヤ。
[本開示2]
 前記トレッド補強層のタイヤ軸方向の長さは、タイヤ最大幅の25%~81%である、本開示1に記載の空気入りタイヤ。
[本開示3]
 前記トレッド補強層は、熱可塑性樹脂を含む、本開示1又は2に記載の空気入りタイヤ。
[本開示4]
 前記トレッド補強層の引張弾性率は、100MPa以上である、本開示1ないし3のいずれかに記載の空気入りタイヤ。
[本開示5]
 前記トレッド補強層は、前記タイヤ内腔面を構成する前記熱可塑性樹脂に覆われている、本開示1ないし4のいずれかに記載の空気入りタイヤ。
[本開示6]
 前記トレッド補強層は、有機繊維又は金属からなる複数のコードを含む、本開示1ないし5のいずれかに記載の空気入りタイヤ。
[本開示7]
 前記トレッド部の最表面から前記トレッド補強層までの距離は、前記トレッド部の厚さの80%~90%である、本開示1ないし6のいずれかに記載の空気入りタイヤ。
[本開示8]
 前記トレッド部の最表面には、タイヤ周方向に延びる複数の周方向溝が設けられ、
 前記仮想接地面積に対する、前記複数の周方向溝の総開口面積の比率である周方向溝ネガティブ率は、10%~40%である、本開示1ないし7のいずれかに記載の空気入りタイヤ。
[本開示9]
 前記トレッド部の最表面には、タイヤ軸方向に延びる複数の幅方向溝が設けられ、
 前記仮想接地面積に対する、前記複数の幅方向溝の総開口面積の比率である幅方向溝ネガティブ率は、10%~40%である、本開示1ないし8のいずれかに記載の空気入りタイヤ。
[本開示10]
 前記複数の溝の総容積は、前記トレッド部の体積の2.0%~10.0%である、本開示1ないし9のいずれかに記載の空気入りタイヤ。
[本開示11]
 前記トレッド部は、熱可塑性樹脂を含む、本開示1ないし10のいずれかに記載の空気入りタイヤ。
[本開示12]
 前記ネガティブ率は、25%~35%である、本開示1ないし11のいずれかに記載の空気入りタイヤ。
[本開示13]
 前記熱可塑性樹脂は、冷却状態においてゴム状弾性を有する熱可塑性エラストマーを含む、本開示1ないし12のいずれかに記載の空気入りタイヤ。
[本開示14]
 前記トレッド部は、前記最表面を構成するトレッド接地要素と、前記タイヤ内腔面を構成する内腔表面部材とを含み、
 前記内腔表面部材の空気透過係数は、前記トレッド接地要素の空気透過係数よりも低い、 本開示1ないし13のいずれかに記載の空気入りタイヤ。
[本開示15]
 前記トレッド補強層の引張弾性率Ad(MPa)に、前記トレッド部の厚さd1に対する前記最表面から前記トレッド補強層までの距離d2の比率d2/d1を乗じた値Ad×d2/d1(MPa)は、100MPa以上である、本開示1ないし14のいずれかに記載の空気入りタイヤ。
 
[Present Disclosure 1]
A pneumatic tire having a tread portion,
At least the inner cavity surface of the tire is made of a thermoplastic resin,
The tread portion includes a tread reinforcing layer radially inward of the central position of the thickness of the tread portion,
A plurality of grooves are provided on the outermost surface of the tread portion,
The negative rate, which is the ratio of the total open area of the plurality of grooves to the virtual ground contact area in which all the grooves are filled, is 20% to 50%.
pneumatic tires.
[Disclosure 2]
The pneumatic tire according to the present disclosure 1, wherein the axial length of the tread reinforcing layer is 25% to 81% of the tire maximum width.
[Disclosure 3]
The pneumatic tire according to the present disclosure 1 or 2, wherein the tread reinforcing layer contains a thermoplastic resin.
[Disclosure 4]
4. The pneumatic tire according to any one of present disclosures 1 to 3, wherein the tread reinforcing layer has a tensile modulus of 100 MPa or more.
[Disclosure 5]
5. The pneumatic tire according to any one of the present disclosures 1 to 4, wherein the tread reinforcing layer is covered with the thermoplastic resin forming the inner cavity surface of the tire.
[Disclosure 6]
6. The pneumatic tire according to any one of present disclosures 1 to 5, wherein the tread reinforcing layer includes a plurality of cords made of organic fibers or metals.
[Present Disclosure 7]
7. The pneumatic tire according to any one of present disclosures 1 to 6, wherein the distance from the outermost surface of the tread portion to the tread reinforcing layer is 80% to 90% of the thickness of the tread portion.
[Disclosure 8]
The outermost surface of the tread portion is provided with a plurality of circumferential grooves extending in the tire circumferential direction,
8. The pneumatic tire according to any one of present disclosures 1 to 7, wherein a circumferential groove negative rate, which is a ratio of the total open area of the plurality of circumferential grooves to the virtual ground contact area, is 10% to 40%.
[Disclosure 9]
The outermost surface of the tread portion is provided with a plurality of width direction grooves extending in the tire axial direction,
The pneumatic tire according to any one of present disclosures 1 to 8, wherein a width direction groove negative rate, which is a ratio of the total opening area of the plurality of width direction grooves to the virtual ground contact area, is 10% to 40%.
[Present Disclosure 10]
The pneumatic tire according to any one of present disclosures 1 to 9, wherein the total volume of the plurality of grooves is 2.0% to 10.0% of the volume of the tread portion.
[Present Disclosure 11]
The pneumatic tire according to any one of present disclosures 1 to 10, wherein the tread portion contains a thermoplastic resin.
[Present Disclosure 12]
The pneumatic tire according to any one of present disclosures 1 to 11, wherein the negative rate is 25% to 35%.
[Disclosure 13]
13. The pneumatic tire according to any one of present disclosures 1 to 12, wherein the thermoplastic resin includes a thermoplastic elastomer having rubber-like elasticity in a cooled state.
[Present Disclosure 14]
The tread portion includes a tread ground-contacting element that constitutes the outermost surface and a lumen surface member that constitutes the tire lumen surface,
14. The pneumatic tire according to any one of the present disclosures 1-13, wherein the air permeability coefficient of the lumen surface member is lower than the air permeability coefficient of the tread-contacting element.
[Disclosure 15]
A value Ad×d2/d1 (MPa ) is 100 MPa or more, the pneumatic tire according to any one of present disclosures 1 to 14.

Claims (15)

  1.  トレッド部を有する空気入りタイヤであって、
     少なくともタイヤ内腔面が熱可塑性樹脂で構成されており、
     前記トレッド部は、前記トレッド部の厚さの中心位置よりもタイヤ半径方向内側にトレッド補強層を含み、
     前記トレッド部の最表面には、複数の溝が設けられ、
     前記複数の溝を全て埋めた仮想接地面積に対する、前記複数の溝の総開口面積の比率であるネガティブ率は、20%~50%である、
     空気入りタイヤ。
    A pneumatic tire having a tread portion,
    At least the inner cavity surface of the tire is made of a thermoplastic resin,
    The tread portion includes a tread reinforcing layer radially inward of the central position of the thickness of the tread portion,
    A plurality of grooves are provided on the outermost surface of the tread portion,
    The negative rate, which is the ratio of the total open area of the plurality of grooves to the virtual ground contact area in which all the grooves are filled, is 20% to 50%.
    pneumatic tires.
  2.  前記トレッド補強層のタイヤ軸方向の長さは、タイヤ最大幅の25%~81%である、請求項1に記載の空気入りタイヤ。 The pneumatic tire according to claim 1, wherein the axial length of the tread reinforcing layer is 25% to 81% of the maximum width of the tire.
  3.  前記トレッド補強層は、熱可塑性樹脂を含む、請求項1又は2に記載の空気入りタイヤ。 The pneumatic tire according to claim 1 or 2, wherein the tread reinforcing layer contains a thermoplastic resin.
  4.  前記トレッド補強層の引張弾性率は、100MPa以上である、請求項1ないし3のいずれか1項に記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 1 to 3, wherein the tread reinforcing layer has a tensile modulus of 100 MPa or more.
  5.  前記トレッド補強層は、前記タイヤ内腔面を構成する前記熱可塑性樹脂に覆われている、請求項1ないし4のいずれか1項に記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 1 to 4, wherein the tread reinforcing layer is covered with the thermoplastic resin forming the inner cavity surface of the tire.
  6.  前記トレッド補強層は、有機繊維又は金属からなる複数のコードを含む、請求項1ないし5のいずれか1項に記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 1 to 5, wherein the tread reinforcing layer includes a plurality of cords made of organic fibers or metal.
  7.  前記トレッド部の最表面から前記トレッド補強層までの距離は、前記トレッド部の厚さの80%~90%である、請求項1ないし6のいずれか1項に記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 1 to 6, wherein the distance from the outermost surface of the tread portion to the tread reinforcing layer is 80% to 90% of the thickness of the tread portion.
  8.  前記トレッド部の最表面には、タイヤ周方向に延びる複数の周方向溝が設けられ、
     前記仮想接地面積に対する、前記複数の周方向溝の総開口面積の比率である周方向溝ネガティブ率は、10%~40%である、請求項1ないし7のいずれか1項に記載の空気入りタイヤ。
    The outermost surface of the tread portion is provided with a plurality of circumferential grooves extending in the tire circumferential direction,
    The pneumatic according to any one of claims 1 to 7, wherein a circumferential groove negative rate, which is a ratio of the total opening area of the plurality of circumferential grooves to the virtual ground contact area, is 10% to 40%. tire.
  9.  前記トレッド部の最表面には、タイヤ軸方向に延びる複数の幅方向溝が設けられ、
     前記仮想接地面積に対する、前記複数の幅方向溝の総開口面積の比率である幅方向溝ネガティブ率は、10%~40%である、請求項1ないし8のいずれか1項に記載の空気入りタイヤ。
    The outermost surface of the tread portion is provided with a plurality of width direction grooves extending in the tire axial direction,
    The pneumatic according to any one of claims 1 to 8, wherein a width direction groove negative rate, which is a ratio of the total opening area of the plurality of width direction grooves to the virtual ground contact area, is 10% to 40%. tire.
  10.  前記複数の溝の総容積は、前記トレッド部の体積の2.0%~10.0%である、請求項1ないし9のいずれか1項に記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 1 to 9, wherein the total volume of said plurality of grooves is 2.0% to 10.0% of the volume of said tread portion.
  11.  前記トレッド部は、熱可塑性樹脂を含む、請求項1ないし10のいずれか1項に記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 1 to 10, wherein the tread portion contains a thermoplastic resin.
  12.  前記ネガティブ率は、25%~35%である、請求項1ないし11のいずれか1項に記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 1 to 11, wherein the negative rate is 25% to 35%.
  13.  前記熱可塑性樹脂は、冷却状態においてゴム状弾性を有する熱可塑性エラストマーを含む、請求項1ないし12のいずれか1項に記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 1 to 12, wherein the thermoplastic resin includes a thermoplastic elastomer having rubber-like elasticity in a cooled state.
  14.  前記トレッド部は、前記最表面を構成するトレッド接地要素と、前記タイヤ内腔面を構成する内腔表面部材とを含み、
     前記内腔表面部材の空気透過係数は、前記トレッド接地要素の空気透過係数よりも低い、 請求項1ないし13のいずれか1項に記載の空気入りタイヤ。
    The tread portion includes a tread ground-contacting element that constitutes the outermost surface and a lumen surface member that constitutes the tire lumen surface,
    14. A pneumatic tire according to any preceding claim, wherein the lumen surface member has an air permeability coefficient lower than the air permeability coefficient of the tread-contacting element.
  15.  前記トレッド補強層の引張弾性率Ad(MPa)に、前記トレッド部の厚さd1に対する前記最表面から前記トレッド補強層までの距離d2の比率d2/d1を乗じた値Ad×d2/d1(MPa)は、100MPa以上である、請求項1ないし14のいずれか1項に記載の空気入りタイヤ。
     
    A value Ad×d2/d1 (MPa ) is 100 MPa or more.
PCT/JP2022/007020 2021-03-09 2022-02-21 Pneumatic tire WO2022190841A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280004745.8A CN115768633A (en) 2021-03-09 2022-02-21 Pneumatic tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-037658 2021-03-09
JP2021037658A JP2022137926A (en) 2021-03-09 2021-03-09 pneumatic tire

Publications (1)

Publication Number Publication Date
WO2022190841A1 true WO2022190841A1 (en) 2022-09-15

Family

ID=83227769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007020 WO2022190841A1 (en) 2021-03-09 2022-02-21 Pneumatic tire

Country Status (3)

Country Link
JP (1) JP2022137926A (en)
CN (1) CN115768633A (en)
WO (1) WO2022190841A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007022424A (en) * 2005-07-20 2007-02-01 Bridgestone Corp Pneumatic tire for heavy load
JP2012091685A (en) * 2010-10-27 2012-05-17 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2015036262A (en) * 2013-08-12 2015-02-23 横浜ゴム株式会社 Pneumatic tire for automobile
JP2015217890A (en) * 2014-05-20 2015-12-07 横浜ゴム株式会社 Pneumatic tire
JP2016193687A (en) * 2015-04-01 2016-11-17 株式会社ブリヂストン tire

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007022424A (en) * 2005-07-20 2007-02-01 Bridgestone Corp Pneumatic tire for heavy load
JP2012091685A (en) * 2010-10-27 2012-05-17 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2015036262A (en) * 2013-08-12 2015-02-23 横浜ゴム株式会社 Pneumatic tire for automobile
JP2015217890A (en) * 2014-05-20 2015-12-07 横浜ゴム株式会社 Pneumatic tire
JP2016193687A (en) * 2015-04-01 2016-11-17 株式会社ブリヂストン tire

Also Published As

Publication number Publication date
JP2022137926A (en) 2022-09-22
CN115768633A (en) 2023-03-07

Similar Documents

Publication Publication Date Title
JP5357945B2 (en) Run-flat tire and its mounting method
EP2532537B1 (en) Motorcycle tire for uneven terrain
US20180257439A1 (en) Pneumatic Tire
JP4728304B2 (en) Pneumatic tire
JP4462936B2 (en) Pneumatic tire
WO2017110635A1 (en) Pneumatic tire
JP4506477B2 (en) Installation method of pneumatic tire
US10596860B2 (en) Pneumatic tire
JP4377934B2 (en) Pneumatic tire
JP4748522B2 (en) Pneumatic tire
US20220274445A1 (en) Pneumatic tire
AU2016273892B2 (en) Pneumatic tire
EP3354487B1 (en) Pneumatic tire
US11207929B2 (en) Pneumatic tire
US20230241922A1 (en) Pneumatic tire
WO2022190841A1 (en) Pneumatic tire
JP2006272992A (en) Pneumatic tire and its manufacturing method
JP4592391B2 (en) Pneumatic tire
JP3733056B2 (en) Pneumatic radial tire
EP3202599A1 (en) Pneumatic tire
JP5331501B2 (en) Tires for motorcycles
JP4523823B2 (en) Pneumatic tire
US20230339267A1 (en) Pneumatic tire
JP7306215B2 (en) pneumatic tire
JP7279617B2 (en) pneumatic tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22766804

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22766804

Country of ref document: EP

Kind code of ref document: A1