WO2022190709A1 - Information processing device, information processing method, and information processing program - Google Patents

Information processing device, information processing method, and information processing program Download PDF

Info

Publication number
WO2022190709A1
WO2022190709A1 PCT/JP2022/003668 JP2022003668W WO2022190709A1 WO 2022190709 A1 WO2022190709 A1 WO 2022190709A1 JP 2022003668 W JP2022003668 W JP 2022003668W WO 2022190709 A1 WO2022190709 A1 WO 2022190709A1
Authority
WO
WIPO (PCT)
Prior art keywords
analysis
information processing
detail
level
unit
Prior art date
Application number
PCT/JP2022/003668
Other languages
French (fr)
Japanese (ja)
Inventor
雄貴 飯田
敏浩 奥田
健司 柳
栄一 倉石
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2022190709A1 publication Critical patent/WO2022190709A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/08Thermal analysis or thermal optimisation

Definitions

  • the present disclosure relates to an information processing device, an information processing method, and an information processing program.
  • the present disclosure provides an information processing device, an information processing method, and an information processing program capable of setting an appropriate analysis model from parameters to be analyzed.
  • An information processing device is an information processing device that divides an analysis region of an analysis object into a plurality of regions and executes analysis, wherein the plurality of divided regions indicate regions obtained by dividing the analysis region.
  • a selection unit for sequentially selecting each of the above, and a determination unit for determining the degree of detail indicating the fineness of the analysis of the divided area based on the parameters related to the analysis of the structure included in the divided area selected by the selection unit.
  • an analysis unit that executes the analysis of the divided region based on the level of detail determined by the determination unit.
  • the information processing device the information processing method, and the information processing program according to the present disclosure, it is possible to set an appropriate analysis model from the parameters to be analyzed without imposing a burden on the user, and achieve high accuracy and efficiency. analysis can be performed.
  • FIG. 1 is a hardware configuration diagram showing an example of an information processing apparatus according to an embodiment.
  • FIG. 2 is a functional configuration diagram showing an example of the information processing device according to the embodiment.
  • FIG. 3 is a diagram illustrating an example of detail level information regarding thermal analysis according to the embodiment.
  • FIG. 4 is a diagram illustrating an example of level of detail information regarding electromagnetic field analysis according to the embodiment.
  • FIG. 5 is a diagram showing an example of a display form of the degree of detail regarding thermal analysis according to the embodiment.
  • FIG. 6 is a diagram showing an example of a display form of the level of detail regarding electromagnetic field analysis according to the embodiment.
  • FIG. 7 is a flowchart illustrating an example of processing executed by the information processing apparatus according to the embodiment;
  • FIG. 8 is a diagram illustrating an example of detail level determination criteria according to the embodiment.
  • FIG. 9 is a diagram illustrating an example of modification of detail level information according to the embodiment.
  • the information processing apparatus divides the analysis area of the analysis object into a plurality of areas and executes analysis. Also, the information processing apparatus executes analysis including at least one of thermal analysis and electromagnetic field analysis. Details will be described later.
  • FIG. 1 is a block diagram showing an example of the hardware configuration of an information processing device 1 according to this embodiment.
  • the information processing device 1 includes a CPU (Central Processing Unit) 11, a ROM (Read Only Memory) 12, a RAM (Random Access Memory) 13, an auxiliary storage device 14, and an external I/F 15. and at least.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the CPU 11 By executing a program, the CPU 11 comprehensively controls the operation of the information processing device 1 and implements various functions of the information processing device 1 . Various functions of the information processing apparatus 1 will be described later.
  • the ROM 12 is a non-volatile memory, and stores various data (information written at the manufacturing stage of the information processing device 1) including a program for starting the information processing device 1.
  • a RAM 13 is a volatile memory having a work area for the CPU 11 .
  • the auxiliary storage device 14 stores various data such as programs executed by the CPU 11 .
  • the auxiliary storage device 14 is composed of, for example, an HDD (Hard Disc Drive).
  • the external I/F 15 is an interface for transmitting and receiving data.
  • FIG. 2 is a diagram showing an example of the functional configuration of the information processing device 1 according to this embodiment.
  • the information processing device 1 has an acquisition unit 21 , a designation unit 22 , a selection unit 23 , a generation unit 24 , a determination unit 25 , an analysis unit 26 and a display control unit 27 .
  • the example of FIG. 2 illustrates only the functions related to the present embodiment, the functions of the information processing apparatus 1 are not limited to these.
  • the acquisition unit 21 acquires model data representing the entire analysis target (hereinafter also referred to as overall model data).
  • the acquisition unit 21 acquires, for example, CAD (Computer Aided Design) data representing the entire analysis target as overall model data.
  • CAD Computer Aided Design
  • the acquisition unit 21, in accordance with the user's operation input, is an analysis target stored in a storage device such as a HDD (Hard Disc Drive) or an SSD (Solid State Drive) provided in the information processing apparatus 1.
  • a storage device such as a HDD (Hard Disc Drive) or an SSD (Solid State Drive) provided in the information processing apparatus 1.
  • CAD data or the like representing the entirety of the electronic control unit mounted on the vehicle is acquired as overall model data.
  • the overall model data is not limited to CAD data representing the entire electronic control unit mounted on the vehicle, as long as it represents the entire analysis target.
  • the acquisition unit 21 may acquire the overall model data from an external device such as a server device connected to the information processing device 1 via a communication network.
  • the designating unit 22 designates the number of divisions of the analysis area of the analysis object.
  • the designation unit 22 designates the number of divisions of the analysis region of the analysis object, for example, according to the user's operation input.
  • the specifying unit 22 may specify a preset numerical value as the number of regions to be divided.
  • the designating unit 22 may designate the number of regions to be automatically divided according to the size of the overall model data acquired by the acquiring unit 21, or the like.
  • the selection unit 23 sequentially selects each of a plurality of divided areas indicating areas obtained by dividing the analysis area. Specifically, the selection unit 23 divides the entire model data, which is the analysis object, based on the number of divisions of the analysis region of the analysis object specified by the specifying unit 22 . Also, the selection unit 23 selects a divided area from the divided areas of the entire model data.
  • the generation unit 24 generates parameters (input parameters) relating to the analysis of structures included in the divided regions. Specifically, the generation unit 24 generates input parameters related to analysis of heat generation of structures included in the divided regions. When the analysis of the structure included in the divided area is, for example, thermal analysis, the generation unit 24 uses values such as the power consumption of the structure, the guaranteed operating temperature of the structure, and the ambient temperature of the structure as input parameters. Generate.
  • the input parameters are the leakage current of the structure, the type of structure, the equivalent thermal conductivity to other structures arranged around the structure, Conditions such as wind speed generated by other cooling structures in the vicinity of the structure may also be included.
  • the guaranteed operating temperature of the structure is the temperature at which the operation of the heat source component is guaranteed when the structure is a heat source component, and is indicated by, for example, the junction temperature.
  • the ambient temperature of the structure indicates the temperature under which environment the structure is supposed to operate.
  • the type of structure indicates the type of parts of the structure to be analyzed (for example, heat source parts, fans, heat sinks, etc.). For example, if there is a component (fan, heat sink, etc.) that can cool the heat source component in the vicinity of the heat source component to be analyzed, the wind velocity generated by other cooling structures near the structure is the wind speed around the cooling component. Indicates wind speed.
  • the generation unit 24 generates the power consumption of the structure, the frequency of the signal emitted by the structure, etc. as input parameters.
  • the input parameters may be generated as the signal waveform of the input signal of the structure, the power consumption of the structure and the frequency of the signal emitted by the structure may be calculated from the signal waveform, and the input parameters may be generated again.
  • the input parameters are the wiring shape that indicates the line of the structure, the via condition that indicates the via of the structure in the multilayer board, and the ground of the structure that serves as the signal source.
  • a ground condition indicating the size of the structure, an equivalent thermal conductivity to other structures arranged around the structure, and the like may be included.
  • the wiring shape indicating the line of the structure includes whether the shape of the signal line of the structure is linear or bent, and the length, width, thickness, etc. of the line itself.
  • a via condition indicating a via of a structure in a multilayer board is a via for connecting a wiring in one layer to a wiring in another layer in the multilayer board. , land diameter, etc.
  • the determination unit 25 determines the level of detail indicating the fineness of the analysis of the divided area based on the parameters related to the analysis of the structure included in the divided area selected by the selection unit 23 .
  • the degree of detail indicating the detail of the analysis of the divided regions indicates the detail of the analysis consisting of the analysis scale and the analysis accuracy corresponding to each input parameter.
  • the fineness of the analysis is determined according to, for example, how much an event related to the heat generation of the structure included in the divided area influences. The greater the influence of the event on the heat generation of the structures included in the segmented region, the higher the level of detail.
  • the detail level corresponding to each input parameter will be described later.
  • the determination unit 25 determines the division area based on parameters related to analysis including at least one of thermal analysis and electromagnetic field analysis in the analysis related to the heat generation of the structure included in the division area selected by the selection unit 23. Determines the level of detail that indicates the fineness of the analysis. The degree of detail for each of the thermal analysis and the electromagnetic field analysis will be described below.
  • the determination unit 25 determines the power consumption of the structure and the operation guarantee of the structure generated by the generation unit 24 as input parameters. Based on the temperature and the ambient temperature of the structure, the degree of detail indicating the fineness of the analysis of the divided regions is determined.
  • the level of detail based on the power consumption of the structure is determined to be high because the larger the value of the structure's power consumption, the greater the impact on the structure's heat generation.
  • the degree of detail based on the guaranteed operating temperature of the structure is determined to be high because the lower the upper limit value of the guaranteed operating temperature, the greater the degree of influence on the design and the more accurate analysis is required.
  • the degree of detail based on the ambient temperature of the structure the smaller the value of the difference between the temperature around the structure and the guaranteed operating temperature of the structure, the greater the degree of impact on the design, and more accurate analysis is required. Therefore, the degree of detail is determined to be high.
  • the determination unit 25 determines the degree of detail for each combination of the power consumption of the structure, the guaranteed operating temperature of the structure, and the ambient temperature of the structure in the thermal analysis of the structure included in the divided area.
  • the power consumption of the structure, the guaranteed operating temperature of the structure, and the ambient temperature of the structure which are generated as input parameters by the generating unit 24 based on the associated detail level information (thermal analysis detail level information), Determine the associated verbosity.
  • FIG. 3 shows an example of detail level information of thermal analysis.
  • the determination unit 25 By referring to the detail level information of the thermal analysis indicated by 3, the detail level associated with the value of the input parameter can be determined as D1.
  • Information on the degree of detail of thermal analysis may be configured from a table, or may be configured as a function of the value of each input parameter.
  • the determination unit 25 determines the power consumption of the structure generated by the generation unit 24 as input parameters, Based on the frequency of the signal, the level of detail indicating the fineness of the analysis of the divided regions is determined.
  • the level of detail based on the power consumption of a structure is determined to be high because the larger the value of the structure's power consumption, the greater the impact on the structure's heat generation.
  • the degree of detail based on the frequency of the signal emitted by the structure is determined to be high because the higher the frequency value, the greater the influence of the high-frequency current on the heat generation of the structure.
  • the determining unit 25 performs a detailed analysis in which the level of detail is associated with each combination of the power consumption of the structure and the frequency of the signal emitted by the structure in the electromagnetic field analysis of the structure included in the divided region. Based on the level information (level of detail information of the electromagnetic field analysis), the level of detail associated with the power consumption of the structure and the frequency of the signal emitted by the structure, generated as input parameters by the generation unit 24, is determined. .
  • FIG. 4 shows an example of detailed level information of the electromagnetic field thermal analysis.
  • the determining unit 25 performs the electromagnetic field analysis shown in FIG.
  • the level of detail information it is possible to determine that the level of detail associated with the value of the input parameter is G1.
  • Information on the level of detail of the electromagnetic field analysis may be configured from a table, or may be configured as a function of each input parameter value.
  • the determination unit 25 determines the level of detail indicating the fineness of the analysis of the divided region based on the parameters related to the analysis of the structure included in the divided region selected by the selection unit 23, thereby saving the user time and effort. , the degree of detail is automatically determined, thereby reducing the burden on the user.
  • the analysis unit 26 analyzes the divided regions. In addition, the analysis unit 26 performs analysis including at least one of thermal analysis and electromagnetic field analysis of the divided regions, depending on the degree of detail.
  • the display control unit 27 controls the display of the processing of the information processing device 1 on the display device.
  • a liquid crystal display (LCD), a cathode ray tube (CRT) display, an organic electroluminescence display (OELD), a plasma display, or the like can be used.
  • the display control unit 27 performs control to display the overall model data acquired by the acquisition unit 21 on the display device. Further, for example, the display control unit 27 performs control to display the level of detail indicating the fineness of analysis corresponding to the divided regions determined by the determination unit 25 on the display device. Note that the display control unit 27 may cause the display device to display only the divided regions determined by the determination unit 25 .
  • the display control unit 27 performs control to display the analysis result of the analysis executed by the analysis unit 26 on the display device.
  • Display is one form of output, and the display control unit 27 is an example of the output control unit.
  • the information processing apparatus 1 may transmit (output) analysis results such as thermal analysis and electromagnetic field analysis to a terminal device such as a notebook PC or a tablet PC instead of displaying the analysis results of the analysis on the display device. .
  • FIG. 5 is a diagram illustrating an example of the degree of detail regarding thermal analysis according to the embodiment.
  • FIG. 5 shows the degree of detail indicating the fineness of the analysis of the divided area 3 based on the parameters related to the thermal analysis of the structure included in the divided area 3 (31, 32, 33, 34) selected by the selection unit 23. represent.
  • thermal analysis not required indicates that thermal analysis is unnecessary in the selected area.
  • Detail levels indicated by the divided areas 32, 33, and 34 indicate values of the detail level of the thermal analysis in the table shown in FIG.
  • the level of detail indicating the fineness of the analysis is displayed by referring to a table indicating the value of the level of detail by combining the analysis accuracy and the scale of analysis.
  • the display form of the level of detail may be represented by a color map or the like depending on the value, and is not limited to these.
  • the user can grasp the appropriate analysis model, analysis accuracy, and analysis scale from the parameters to be analyzed, before executing the analysis of the overall model data. Also, by determining the level of detail, the user can grasp the validity of the analysis content before executing the analysis of the entire model data.
  • FIG. 6 is a diagram illustrating an example of the level of detail regarding electromagnetic field analysis according to the embodiment. As for the contents of the level of detail shown in FIG. 4, the description of the portions common to those in FIG. 5 described above will be omitted as appropriate.
  • FIG. 6 shows the analysis of the divided area 4 based on the parameters related to the electromagnetic field analysis in which the conditions related to the heat generation of the structure included in the divided area 4 (41, 42, 43, 44) selected by the selection unit 23 are set. It represents the degree of detail that indicates the fineness of the
  • FIG. 7 is a flowchart showing an example of processing executed by the information processing apparatus 1.
  • the acquisition unit 21 acquires the overall model data according to the user's operation input (step S51).
  • the display control unit 27 displays the overall data model acquired by the acquisition unit 21 on the display device (step S52).
  • the designating unit 22 designates the number of divisions of the analysis region of the analysis object according to the user's operation input (step S53).
  • the display control unit 27 displays the divided regions obtained by dividing the entire model data on the display device according to the number of divisions of the analysis region designated by the designation unit 22 (step S54). By displaying the divided regions on the display device, the user can confirm the analysis target before executing the analysis of the entire model data.
  • the selection unit 23 divides the entire model data, which is the analysis object, into regions corresponding to the number of divisions specified by the specification unit 22. A divided area is selected from the area obtained (step S55).
  • the generation unit 24 generates input parameters related to heat generation analysis of structures included in the divided regions (step S56).
  • the generation unit 24 When the analysis of the structure included in the divided area is a thermal analysis, the generation unit 24 generates values such as the power consumption of the structure, the guaranteed operating temperature of the structure, the ambient temperature of the structure, etc. as input parameters.
  • the generation unit 24 When the analysis of the structure included in the divided area is electromagnetic field analysis, the generation unit 24 generates the power consumption of the structure, the frequency of the signal emitted by the structure, etc. as input parameters.
  • the determination unit 25 determines the level of detail indicating the fineness of the analysis of the divided region based on the parameters (input parameters generated by the generation unit 24) related to the analysis of the structures included in the divided region selected by the selection unit 23. (Step S57).
  • the determination unit 25 determines the level of detail indicating the fineness of the analysis of the divided region based on the parameters related to the analysis including at least one of the thermal analysis and the electromagnetic field analysis included in the divided region selected by the selection unit 23. do.
  • the selection unit 23 determines whether there is an unselected divided area among the divided areas of the overall model data (step S58). If there is no unselected divided area (step S58: Yes), the selection unit 23 proceeds to step S59. If there is an unselected divided area (step S58: No), the selection unit 23 proceeds to step S55.
  • the display control unit 27 performs control to display the degree of detail indicating the fineness of analysis corresponding to the divided regions determined by the determination unit 25 on the display device (step S59).
  • the user can grasp the appropriate analysis model, analysis accuracy, and the time required for analysis from the parameters to be judged for analysis before executing the analysis of the entire model data. , the burden on the user can be reduced.
  • the user can grasp the validity of the analysis model before executing the analysis of the entire model data, so it can also be used to verify the validity of the analysis model. , the burden on the user can be reduced.
  • the analysis unit 26 analyzes the divided regions (step S60).
  • the analysis unit 26 executes analysis including at least one of thermal analysis and electromagnetic field analysis of the divided regions, depending on the degree of detail.
  • the display control unit 27 performs control to display the analysis result of the analysis performed by the analysis unit 26 on the display device (step S61).
  • the processing executed by the information processing device 1 is completed.
  • the information processing apparatus 1 divides the analysis area of the analysis object into a plurality of areas and sequentially selects the divided areas. Then, based on the parameters related to the analysis of the structure included in the selected divided area, the level of detail indicating the fineness of the analysis of the divided area is determined. Furthermore, analysis of the analysis area is performed based on the level of detail.
  • the user does not have to bother to check the analysis parameters when performing the analysis of the analysis target, and the appropriate analysis model is set, eliminating the need for user work and reducing the burden on the user. can do.
  • the determination unit 25 determines the degree of detail indicating the fineness of the analysis of the divided regions based on any one of the power consumption of the structure, the guaranteed operating temperature of the structure, and the ambient temperature of the structure as the parameters related to the thermal analysis. may be determined.
  • the determination unit 25 determines the leakage current of the structure generated by the generation unit 24 as input parameters, the type of the structure, and the structure. Based on the equivalent thermal conductivity to other structures placed around the body, the wind speed emitted by other cooling structures in the vicinity of the structure decide. The level of detail based on the leakage current of the structure is determined to be high because the larger the leakage current of the structure, the greater the effect on the heat generation of the structure.
  • the level of detail based on the type of structure determines whether only a portion of the structure's interior heats up, or whether the structure's entire interior heats up, and only a portion of the structure's interior heats up. In case, the degree of detail is determined to be high because the influence on heat generation is large. Furthermore, the level of detail based on the equivalent thermal conductivity to other structures arranged around the structure is calculated by calculating the equivalent thermal conductivity to other structures, and the smaller the calculated value, the better the heat generation distribution. Since the change in is large, the detail level is determined to be high.
  • the degree of detail based on the condition of the wind speed emitted by other cooling structures in the vicinity of the structure should be considered because, in principle, the higher the wind speed emitted by other cooling structures, the better the heat dissipation performance and the greater the temperature change. degree is set high.
  • the determining unit 25 determines the leakage current of the structure, the type of the structure, the equivalent thermal conductivity to other structures arranged around the structure, and the heat generated by other cooling structures in the vicinity of the structure.
  • the degree of detail indicating the detail of the analysis of the divided regions may be determined based on any one of the wind speed conditions.
  • the determination unit 25 determines the wiring shape indicating the line of the structure generated as the input parameter by the generation unit 24, Based on the via conditions indicating the vias of the structures in the multilayer board, the ground conditions indicating the size of the ground of the structure that serves as the signal source, and the equivalent thermal conductivity to other structures arranged around the structure, Determine the level of detail that indicates the fineness of the analysis of the segmented region.
  • the level of detail based on the wiring shape indicating the line of the structure indicates whether the shape of the signal line is linear or bent.
  • a high degree of detail is determined. It includes the length, width, thickness, etc. of the signal line shape itself. If the length of the line itself is short, the width of the line itself is narrow, or the thickness of the line itself is thin, the structure The degree of detail is determined to be high because the effect on heat generation is large.
  • a via condition indicating a via in a structure in a multilayer substrate is determined with a high degree of detail because the finer the via, the greater the effect on the heat generation of the structure.
  • the level of detail based on the ground condition which indicates the size of the ground of the structure that serves as the signal source, indicates how large the ground of the signal source is.
  • the degree of detail is determined to be high because it has a large effect on heat generation of the body.
  • the level of detail based on the equivalent thermal conductivity to other structures placed around the structure calculates the equivalent thermal conductivity to other structures, and the smaller the calculated value, the greater the change in heat generation distribution. is large, a high degree of detail is determined.
  • FIG. 8 is a diagram showing an example of modification of the level of detail determination criteria for analysis according to the present embodiment.
  • the degree of detail of the modification shown in FIG. 8 includes thermal analysis and electromagnetic field analysis among the analyzes of the structures included in the divided regions.
  • the determination unit 25 determines the level of detail based on the sum of the number of input parameters exceeding the threshold.
  • the generation unit 24 sets a predetermined threshold value for the input parameters for analyzing the structures included in the divided regions.
  • the determining unit 25 determines whether or not the set threshold value of each input parameter is exceeded, and counts the number of input parameters exceeding the threshold value.
  • the level of detail is determined according to the number of parameters exceeding the threshold (variable: X). If it is L or less, it is determined as “low detail level”, if X is between L+1 and M or less, it is determined as “medium level of detail”, and if X is M+1 or more, it is determined as "high detail level”. .
  • level of detail: unnecessary indicates that analysis is unnecessary in the selected segmented region
  • level of detail: small means that the accuracy required for analysis is low and the scale of analysis is small.
  • Level of detail: high indicates that the analysis accuracy is high and the scale of analysis is large.
  • Level of detail: medium indicates that it is between “level of detail: low” and “level of detail: high.”
  • the decision unit 25 decides the level of detail from the sum of the thresholds of the input parameters, thereby facilitating judgment of the validity of the analysis model and reducing the user's burden.
  • FIG. 9 is a diagram showing an example of modification of the level of detail regarding analysis according to the present embodiment.
  • FIG. 9 includes both parameters related to thermal analysis of heat generation of structures included in the divided regions 7 (71, 72, 73, 74) selected by the selection unit 23 and parameters related to electromagnetic field analysis. Based on the parameters, the degree of detail indicating the fineness of the analysis of the divided area 7 is represented.
  • the detail levels of the divided areas 7 in FIG. D2 and G2", and the divided area 74 is indicated as "Level of Detail: D3 and G3", indicating the value of the level of detail of the thermal analysis and the electromagnetic field analysis of the tables shown in FIGS.
  • the analysis unit 26 first executes an electromagnetic field analysis according to the level of detail of the divided regions determined above.
  • the generation unit 24 generates input parameters based on the results of the electromagnetic field analysis performed by the analysis unit 26 .
  • the determination unit 25 updates and determines the level of detail based on the input parameters generated by the generation unit 24 .
  • the analysis unit 26 performs thermal analysis according to the updated detail level of the divided regions.
  • the analysis unit 26 performs electromagnetic field analysis of the divided regions according to the level of detail shown in FIG.
  • An input parameter is generated by combining the input parameter related to the thermal analysis generated by the generation unit 24 and the result of the electromagnetic field analysis performed by the analysis unit 26 .
  • the determination unit 25 updates and determines the level of detail based on the input parameters generated by the generation unit 24 .
  • the analysis unit 26 performs thermal analysis according to the updated detail level of the divided regions.
  • a program executed by the information processing apparatus 1 of the present embodiment is pre-installed in a ROM or the like and provided.
  • the program executed by the information processing apparatus 1 of this embodiment is a file in an installable format or an executable format, and can be stored on a computer such as a CD-ROM, flexible disk (FD), CD-R, DVD (Digital Versatile Disk). may be recorded on a recording medium readable by .
  • the program executed by the information processing apparatus 1 of this embodiment may be stored on a computer connected to a network such as the Internet, and provided by being downloaded via the network. Also, the program executed by the information processing apparatus 1 of this embodiment may be configured to be provided or distributed via a network such as the Internet.

Abstract

An information processing device according to the present invention divides an analysis region for an analysis object, and performs analysis, said information processing device comprising: a selection unit that successively selects each of a plurality of divided regions, indicating the regions obtained by dividing the analysis region; a determination unit that determines a degree of detail indicating the granularity of the analysis of the divided region, on the basis of a parameter relating to the analysis of a structure included in the divided region selected by the selection unit; and an analysis unit that performs the analysis of the divided region on the basis of the degree of detail determined by the determination unit.

Description

情報処理装置、情報処理方法、情報処理プログラムInformation processing device, information processing method, information processing program
 本開示は、情報処理装置、情報処理方法、情報処理プログラムに関する。 The present disclosure relates to an information processing device, an information processing method, and an information processing program.
 近年、車両に搭載される電子制御装置の統合化による機能集約が進んできており、電子制御装置で取り扱うデータが増加し、電子制御装置自体も高密度で実装されている。これにより、電子制御装置の処理量が増加し、電子制御装置の熱対策の重要性が高まっており、電子制御装置の発熱現象の解析が求められる。 In recent years, the integration of electronic control units installed in vehicles has led to the integration of functions. As a result, the processing amount of the electronic control device is increasing, and the importance of heat countermeasures for the electronic control device is increasing, and the analysis of the heat generation phenomenon of the electronic control device is required.
 そこで、非定常解析の場合、解析対象の解析領域を、状態量の時間変動量をもとに複数の微小要素に分割することで、短時間で効率的に実行する解析技術が知られている(例えば、特許文献1参照)。 Therefore, in the case of unsteady analysis, there is known an analysis technology that can be executed efficiently in a short time by dividing the analysis area to be analyzed into multiple small elements based on the amount of time variation of the state quantity. (See Patent Document 1, for example).
特開2002-157286号公報JP-A-2002-157286
 他方で、定常解析の場合は、状態量の時間変動量による要素分割はできないため、物理パラメータから解析対象のモデルを判断する必要がある。しかしながら、解析モデルの判断するパラメータは煩雑であるため、適切に解析モデルを設定できないと、解析精度や解析時間に影響が出ることがあり、ユーザの負担となっていた。 On the other hand, in the case of steady-state analysis, it is not possible to divide the elements based on the amount of time variation of the state quantity, so it is necessary to determine the model to be analyzed from the physical parameters. However, since the parameters determined by the analysis model are complicated, if the analysis model cannot be set appropriately, the analysis accuracy and analysis time may be affected, which has been a burden on the user.
 本開示は、解析の判断対象となるパラメータから適切な解析モデルを設定することができる、情報処理装置、情報処理方法、情報処理プログラムを提供する。 The present disclosure provides an information processing device, an information processing method, and an information processing program capable of setting an appropriate analysis model from parameters to be analyzed.
 本開示に係る情報処理装置は、解析対象物の解析領域を複数の領域に分割し、解析を実行する情報処理装置であって、前記解析領域を分割して得られる領域を示す複数の分割領域の各々を順次に選択する選択部と、前記選択部が選択した前記分割領域に含まれる構造体の解析に関するパラメータに基づいて、前記分割領域の解析の細かさを示す詳細度を決定する決定部と、前記決定部が決定した前記詳細度に基づいて、前記分割領域の前記解析を実行する解析部と、を備える。 An information processing device according to the present disclosure is an information processing device that divides an analysis region of an analysis object into a plurality of regions and executes analysis, wherein the plurality of divided regions indicate regions obtained by dividing the analysis region. a selection unit for sequentially selecting each of the above, and a determination unit for determining the degree of detail indicating the fineness of the analysis of the divided area based on the parameters related to the analysis of the structure included in the divided area selected by the selection unit. and an analysis unit that executes the analysis of the divided region based on the level of detail determined by the determination unit.
 本開示に係る情報処理装置、情報処理方法、情報処理プログラムによれば、ユーザに負担をかけることなく、解析の判断対象となるパラメータから適切な解析モデルを設定することができ、高精度かつ効率的な解析ができる。 According to the information processing device, the information processing method, and the information processing program according to the present disclosure, it is possible to set an appropriate analysis model from the parameters to be analyzed without imposing a burden on the user, and achieve high accuracy and efficiency. analysis can be performed.
図1は、実施形態に係る情報処理装置の一例を示すハードウェア構成図である。FIG. 1 is a hardware configuration diagram showing an example of an information processing apparatus according to an embodiment. 図2は、実施形態に係る情報処理装置の一例を示す機能構成図である。FIG. 2 is a functional configuration diagram showing an example of the information processing device according to the embodiment. 図3は、実施形態に係る熱解析に関する詳細度情報の一例を示す図である。FIG. 3 is a diagram illustrating an example of detail level information regarding thermal analysis according to the embodiment. 図4は、実施形態に係る電磁界解析に関する詳細度情報の一例を示す図である。FIG. 4 is a diagram illustrating an example of level of detail information regarding electromagnetic field analysis according to the embodiment. 図5は、実施形態に係る熱解析に関する詳細度の表示形態の一例を示す図である。FIG. 5 is a diagram showing an example of a display form of the degree of detail regarding thermal analysis according to the embodiment. 図6は、実施形態に係る電磁界解析に関する詳細度の表示形態の一例を示す図である。FIG. 6 is a diagram showing an example of a display form of the level of detail regarding electromagnetic field analysis according to the embodiment. 図7は、実施形態に係る情報処理装置が実行する処理の一例を示すフローチャートである。FIG. 7 is a flowchart illustrating an example of processing executed by the information processing apparatus according to the embodiment; 図8は、実施形態に係る詳細度判定基準の一例を示す図である。FIG. 8 is a diagram illustrating an example of detail level determination criteria according to the embodiment. 図9は、実施形態に係る詳細度情報の変形の一例を示す図である。FIG. 9 is a diagram illustrating an example of modification of detail level information according to the embodiment.
 以下、図面を参照しながら、本開示に係る情報処理装置、情報処理方法、情報処理プログラムの実施形態について説明する。 Hereinafter, embodiments of an information processing device, an information processing method, and an information processing program according to the present disclosure will be described with reference to the drawings.
 本実施の形態に係る情報処理装置は、解析対象物の解析領域を複数の領域に分割し、解析を実行する。また、情報処理装置は、熱解析、電磁界解析のうち少なくとも1つが含まれる解析を実行する。詳細な内容は後述する。 The information processing apparatus according to the present embodiment divides the analysis area of the analysis object into a plurality of areas and executes analysis. Also, the information processing apparatus executes analysis including at least one of thermal analysis and electromagnetic field analysis. Details will be described later.
(情報処理装置のハードウェア構成)
 本実施の形態に係る情報処理装置1のハードウェア構成について説明する。図1は、本実施の形態に係る情報処理装置1のハードウェア構成の一例を示すブロック図である。
(Hardware configuration of information processing device)
A hardware configuration of the information processing apparatus 1 according to this embodiment will be described. FIG. 1 is a block diagram showing an example of the hardware configuration of an information processing device 1 according to this embodiment.
 図1に示すように、情報処理装置1は、CPU(Central Processing Unit)11と、ROM(Read Only Memory)12と、RAM(Random Access Memory)13と、補助記憶装置14と、外部I/F15と、を少なくとも備える。 As shown in FIG. 1, the information processing device 1 includes a CPU (Central Processing Unit) 11, a ROM (Read Only Memory) 12, a RAM (Random Access Memory) 13, an auxiliary storage device 14, and an external I/F 15. and at least.
 CPU11は、プログラムを実行することにより、情報処理装置1の動作を統括的に制御し、情報処理装置1が有する各種の機能を実現する。情報処理装置1が有する各種の機能については後述する。 By executing a program, the CPU 11 comprehensively controls the operation of the information processing device 1 and implements various functions of the information processing device 1 . Various functions of the information processing apparatus 1 will be described later.
 ROM12は不揮発性のメモリであり、情報処理装置1を起動させるためのプログラムを含む各種データ(情報処理装置1の製造段階で書き込まれる情報)を記憶する。RAM13は、CPU11の作業領域を有する揮発性のメモリである。 The ROM 12 is a non-volatile memory, and stores various data (information written at the manufacturing stage of the information processing device 1) including a program for starting the information processing device 1. A RAM 13 is a volatile memory having a work area for the CPU 11 .
 補助記憶装置14は、CPU11が実行するプログラム等の各種データを記憶する。補助記憶装置14は、例えばHDD(Hard Disc Drive)などで構成される。外部I/F15は、データを送受信するためのインターフェースである。 The auxiliary storage device 14 stores various data such as programs executed by the CPU 11 . The auxiliary storage device 14 is composed of, for example, an HDD (Hard Disc Drive). The external I/F 15 is an interface for transmitting and receiving data.
(情報処理装置の機能構成図)
 図2は、本実施の形態に係る情報処理装置1の機能構成の一例を示す図である。図2に示すように、情報処理装置1は、取得部21、指定部22、選択部23、生成部24、決定部25、解析部26、表示制御部27を有する。なお、図2の例では、本実施形態に関する機能のみを例示しているが、情報処理装置1が有する機能はこれらに限られるものではない。
(Functional configuration diagram of information processing device)
FIG. 2 is a diagram showing an example of the functional configuration of the information processing device 1 according to this embodiment. As shown in FIG. 2 , the information processing device 1 has an acquisition unit 21 , a designation unit 22 , a selection unit 23 , a generation unit 24 , a determination unit 25 , an analysis unit 26 and a display control unit 27 . Note that although the example of FIG. 2 illustrates only the functions related to the present embodiment, the functions of the information processing apparatus 1 are not limited to these.
 取得部21は、解析対象全体を表すモデルデータ(以下、全体モデルデータとも言う)を取得する。取得部21は、例えば、解析対象全体を表すCAD(Computer Aided Design)データを全体モデルデータとして取得する。 The acquisition unit 21 acquires model data representing the entire analysis target (hereinafter also referred to as overall model data). The acquisition unit 21 acquires, for example, CAD (Computer Aided Design) data representing the entire analysis target as overall model data.
 具体的には、取得部21は、ユーザの操作入力に従い、情報処理装置1が備える、HDD(Hard Disc Drive)やSSD(Solid State Drive)等の記憶装置に記憶された、解析の対象となる車両に搭載される電子制御装置の全体を表すCADデータ等を全体モデルデータとして取得する。 Specifically, the acquisition unit 21, in accordance with the user's operation input, is an analysis target stored in a storage device such as a HDD (Hard Disc Drive) or an SSD (Solid State Drive) provided in the information processing apparatus 1. CAD data or the like representing the entirety of the electronic control unit mounted on the vehicle is acquired as overall model data.
 なお、全体モデルデータは、解析対象全体を表現するデータであればよく、車両に搭載される電子制御装置の全体を表すCADデータに限定されるものではない。また、取得部21は、情報処理装置1と通信ネットワークで接続されたサーバ装置等の外部装置から全体モデルデータを取得しても良い。 It should be noted that the overall model data is not limited to CAD data representing the entire electronic control unit mounted on the vehicle, as long as it represents the entire analysis target. Alternatively, the acquisition unit 21 may acquire the overall model data from an external device such as a server device connected to the information processing device 1 via a communication network.
 指定部22は、解析対象物の解析領域を分割する数を指定する。指定部22は、例えば、ユーザの操作入力に従い、解析対象物の解析領域を分割する数を指定する。なお、指定部22は、あらかじめ設定されている数値を分割する領域の数として指定しても良い。また、指定部22は、取得部21が取得した全体モデルデータの大きさ等に応じて自動的に分割する領域の数を指定しても良い。 The designating unit 22 designates the number of divisions of the analysis area of the analysis object. The designation unit 22 designates the number of divisions of the analysis region of the analysis object, for example, according to the user's operation input. Note that the specifying unit 22 may specify a preset numerical value as the number of regions to be divided. Further, the designating unit 22 may designate the number of regions to be automatically divided according to the size of the overall model data acquired by the acquiring unit 21, or the like.
 選択部23は、解析領域を分割して得られる領域を示す複数の分割領域の各々を順次に選択する。具体的には、選択部23は、指定部22が指定した解析対象物の解析領域を分割する数に基づいて、解析対象物である全体モデルデータを分割する。また、選択部23は、全体モデルデータの分割された領域から、分割領域を選択する。 The selection unit 23 sequentially selects each of a plurality of divided areas indicating areas obtained by dividing the analysis area. Specifically, the selection unit 23 divides the entire model data, which is the analysis object, based on the number of divisions of the analysis region of the analysis object specified by the specifying unit 22 . Also, the selection unit 23 selects a divided area from the divided areas of the entire model data.
 生成部24は、分割領域に含まれる構造体の解析に関するパラメータ(入力パラメータ)を生成する。具体的には、生成部24は、分割領域に含まれる構造体の発熱の解析に関する入力パラメータを生成する。また、分割領域に含まれる構造体の解析が、例えば、熱解析の場合、生成部24は、構造体の消費電力、構造体の動作保証温度、構造体の周囲温度等の値を入力パラメータとして生成する。 The generation unit 24 generates parameters (input parameters) relating to the analysis of structures included in the divided regions. Specifically, the generation unit 24 generates input parameters related to analysis of heat generation of structures included in the divided regions. When the analysis of the structure included in the divided area is, for example, thermal analysis, the generation unit 24 uses values such as the power consumption of the structure, the guaranteed operating temperature of the structure, and the ambient temperature of the structure as input parameters. Generate.
 分割領域に含まれる構造体の解析が、熱解析の場合、入力パラメータは、構造体のリーク電流、構造体の種類、構造体の周囲に配置される他の構造体への等価熱伝導率、構造体の近傍にある他の冷却構造体が発する風速の条件等が含まれても良い。 If the analysis of the structure included in the divided area is a thermal analysis, the input parameters are the leakage current of the structure, the type of structure, the equivalent thermal conductivity to other structures arranged around the structure, Conditions such as wind speed generated by other cooling structures in the vicinity of the structure may also be included.
 ここで、構造体の動作保証温度とは、構造体が熱源部品である場合、熱源部品の動作が保証されている温度であり、例えば、ジャンクション温度によって示される。構造体の周囲温度とは、構造体がどのような環境下で動作を想定されているかの温度を示している。 Here, the guaranteed operating temperature of the structure is the temperature at which the operation of the heat source component is guaranteed when the structure is a heat source component, and is indicated by, for example, the junction temperature. The ambient temperature of the structure indicates the temperature under which environment the structure is supposed to operate.
 構造体の種類とは、解析対象である構造体の部品の種類(一例として、熱源部品、ファン、ヒートシンク等)を示している。構造体の近傍にある他の冷却構造体が発する風速とは、例えば、解析対象である熱源部品の近傍に熱源部品を冷却できる部品(ファンやヒートシンク等)があった場合に、冷却部品周辺の風速を示している。 The type of structure indicates the type of parts of the structure to be analyzed (for example, heat source parts, fans, heat sinks, etc.). For example, if there is a component (fan, heat sink, etc.) that can cool the heat source component in the vicinity of the heat source component to be analyzed, the wind velocity generated by other cooling structures near the structure is the wind speed around the cooling component. Indicates wind speed.
 さらに、分割領域に含まれる構造体の解析が、例えば、電磁界解析の場合、生成部24は、構造体の消費電力、構造体が発する信号の周波数等を入力パラメータとして生成する。また、入力パラメータを構造体の入力信号の信号波形として生成し、信号波形から構造体の消費電力、構造体が発する信号の周波数を算出し、再度入力パラメータとして生成しても良い。 Furthermore, if the analysis of the structure included in the divided region is, for example, an electromagnetic field analysis, the generation unit 24 generates the power consumption of the structure, the frequency of the signal emitted by the structure, etc. as input parameters. Alternatively, the input parameters may be generated as the signal waveform of the input signal of the structure, the power consumption of the structure and the frequency of the signal emitted by the structure may be calculated from the signal waveform, and the input parameters may be generated again.
 分割領域に含まれる構造体の解析が、電磁界解析の場合、入力パラメータは、構造体の線路を示す配線形状、多層基板における構造体のビアを示すビア条件、信号源となる構造体のグランドの大きさを示すグランド条件、構造体の周囲に配置される他の構造体への等価熱伝導率等が含まれても良い。 When the analysis of the structure included in the divided area is electromagnetic field analysis, the input parameters are the wiring shape that indicates the line of the structure, the via condition that indicates the via of the structure in the multilayer board, and the ground of the structure that serves as the signal source. A ground condition indicating the size of the structure, an equivalent thermal conductivity to other structures arranged around the structure, and the like may be included.
 ここで、構造体の線路を示す配線形状とは、構造体の信号線路形状が直線形状、曲げ形状なのか、また、線路自体の長さや幅、厚み等を示すものが含まれる。多層基板における構造体のビアを示すビア条件とは、多層基板において、ある層の配線から他の層の配線につなげるためのビアであり、また、ビア条件とは、ビアの長さ、ビア径、ランド径等が含まれる。 Here, the wiring shape indicating the line of the structure includes whether the shape of the signal line of the structure is linear or bent, and the length, width, thickness, etc. of the line itself. A via condition indicating a via of a structure in a multilayer board is a via for connecting a wiring in one layer to a wiring in another layer in the multilayer board. , land diameter, etc.
 決定部25は、選択部23が選択した分割領域に含まれる構造体の解析に関するパラメータに基づいて、分割領域の解析の細かさを示す詳細度を決定する。 The determination unit 25 determines the level of detail indicating the fineness of the analysis of the divided area based on the parameters related to the analysis of the structure included in the divided area selected by the selection unit 23 .
 ここで、分割領域の解析の細かさを示す詳細度とは、それぞれの入力パラメータに対応する、解析規模と、解析精度からなる解析の細かさを示している。解析の細かさは、例えば、分割領域に含まれる構造体の発熱に関する事象がどの程度影響しているかに応じて決定される。分割領域に含まれる構造体の発熱に関する事象の影響が大きいほど、詳細度は高くなる。それぞれの入力パラメータに対応する詳細度については、後述する。 Here, the degree of detail indicating the detail of the analysis of the divided regions indicates the detail of the analysis consisting of the analysis scale and the analysis accuracy corresponding to each input parameter. The fineness of the analysis is determined according to, for example, how much an event related to the heat generation of the structure included in the divided area influences. The greater the influence of the event on the heat generation of the structures included in the segmented region, the higher the level of detail. The detail level corresponding to each input parameter will be described later.
 また、決定部25は、選択部23が選択した分割領域に含まれる構造体の発熱に関する解析で、熱解析、電磁界解析のうちの少なくとも1つが含まれる解析に関するパラメータに基づいて、分割領域の解析の細かさを示す詳細度を決定する。以下、熱解析、電磁界解析のそれぞれの詳細度について説明する。 In addition, the determination unit 25 determines the division area based on parameters related to analysis including at least one of thermal analysis and electromagnetic field analysis in the analysis related to the heat generation of the structure included in the division area selected by the selection unit 23. Determines the level of detail that indicates the fineness of the analysis. The degree of detail for each of the thermal analysis and the electromagnetic field analysis will be described below.
(熱解析の詳細度例)
 決定部25は、選択部23が選択した分割領域に含まれる構造体の発熱に関する解析が熱解析の場合は、生成部24が入力パラメータとして生成した、構造体の消費電力、構造体の動作保証温度、構造体の周囲温度に基づいて、分割領域の解析の細かさを示す詳細度を決定する。
(Example of detail level of thermal analysis)
When the analysis on the heat generation of the structure included in the divided region selected by the selection unit 23 is thermal analysis, the determination unit 25 determines the power consumption of the structure and the operation guarantee of the structure generated by the generation unit 24 as input parameters. Based on the temperature and the ambient temperature of the structure, the degree of detail indicating the fineness of the analysis of the divided regions is determined.
 熱解析の場合、構造体の消費電力に基づく詳細度は、構造体の消費電力の値が大きいほど、構造体の発熱に関する影響が大きいため、詳細度は高く決定される。構造体の動作保証温度に基づく詳細度は、動作保証温度の上限値が低いほど、設計への影響度が大きく、より精度よく解析することが求められるため、詳細度は高く決定される。構造体の周囲温度に基づく詳細度は、構造体周囲の温度と、構造体の動作保証温度との差分の値が小さいほど、設計への影響度が大きく、より精度よく解析することが求められるため、詳細度は高く決定される。 In the case of thermal analysis, the level of detail based on the power consumption of the structure is determined to be high because the larger the value of the structure's power consumption, the greater the impact on the structure's heat generation. The degree of detail based on the guaranteed operating temperature of the structure is determined to be high because the lower the upper limit value of the guaranteed operating temperature, the greater the degree of influence on the design and the more accurate analysis is required. Regarding the degree of detail based on the ambient temperature of the structure, the smaller the value of the difference between the temperature around the structure and the guaranteed operating temperature of the structure, the greater the degree of impact on the design, and more accurate analysis is required. Therefore, the degree of detail is determined to be high.
 本実施形態に係る決定部25は、分割領域に含まれる構造体の熱解析の、構造体の消費電力と、構造体の動作保証温度と、構造体の周囲温度との組み合わせ毎に詳細度を対応付けた詳細度情報(熱解析の詳細度情報)に基づいて、生成部24が入力パラメータとして生成した、構造体の消費電力と、構造体の動作保証温度と、構造体の周囲温度と、対応付けられた詳細度を決定する。図3に熱解析の詳細度情報の例を示す。 The determination unit 25 according to the present embodiment determines the degree of detail for each combination of the power consumption of the structure, the guaranteed operating temperature of the structure, and the ambient temperature of the structure in the thermal analysis of the structure included in the divided area. The power consumption of the structure, the guaranteed operating temperature of the structure, and the ambient temperature of the structure, which are generated as input parameters by the generating unit 24 based on the associated detail level information (thermal analysis detail level information), Determine the associated verbosity. FIG. 3 shows an example of detail level information of thermal analysis.
 図3において、例えば、解析を実行する分割領域の入力パラメータである構造体の消費電力の値はA1、動作保証温度の値はB1、周囲温度の値はC1である場合、決定部25は図3で示す熱解析の詳細度情報を参照し、入力パラメータの値に紐づく詳細度はD1と決定することができる。熱解析の詳細度の情報はテーブルから構成されても良いし、それぞれの入力パラメータの値を関数として構成されても良い。 In FIG. 3, for example, when the value of the power consumption of the structure, which is the input parameter of the divided area to be analyzed, is A1, the value of the guaranteed operating temperature is B1, and the value of the ambient temperature is C1, the determination unit 25 By referring to the detail level information of the thermal analysis indicated by 3, the detail level associated with the value of the input parameter can be determined as D1. Information on the degree of detail of thermal analysis may be configured from a table, or may be configured as a function of the value of each input parameter.
(電磁界解析の詳細度例)
 決定部25は、選択部23が選択した分割領域に含まれる構造体の発熱に関する解析が電磁界解析の場合は、生成部24が入力パラメータとして生成した、構造体の消費電力、構造体が発する信号の周波数に基づいて、分割領域の解析の細かさを示す詳細度を決定する。
(Example of detail level of electromagnetic field analysis)
When the analysis on the heat generation of the structure included in the divided region selected by the selection unit 23 is electromagnetic field analysis, the determination unit 25 determines the power consumption of the structure generated by the generation unit 24 as input parameters, Based on the frequency of the signal, the level of detail indicating the fineness of the analysis of the divided regions is determined.
 電磁界解析の場合、構造体の消費電力に基づく詳細度は、構造体の消費電力の値が大きいほど、構造体の発熱に関する影響が大きいため、詳細度は高く決定される。構造体が発する信号の周波数に基づく詳細度は、周波数の値が高いほど、高周波電流による構造体の発熱に関する影響が大きいため、詳細度は高く決定される。 In the case of electromagnetic field analysis, the level of detail based on the power consumption of a structure is determined to be high because the larger the value of the structure's power consumption, the greater the impact on the structure's heat generation. The degree of detail based on the frequency of the signal emitted by the structure is determined to be high because the higher the frequency value, the greater the influence of the high-frequency current on the heat generation of the structure.
 本実施の形態に係る決定部25は、分割領域に含まれる構造体の電磁界解析の、構造体の消費電力と、構造体が発する信号の周波数との組み合わせ毎に詳細度を対応付けた詳細度情報(電磁界解析の詳細度情報)に基づいて、生成部24が入力パラメータとして生成した、構造体の消費電力と、構造体が発する信号の周波数と、対応付けられた詳細度を決定する。図4に電磁界熱解析の詳細度情報の例を示す。 The determining unit 25 according to the present embodiment performs a detailed analysis in which the level of detail is associated with each combination of the power consumption of the structure and the frequency of the signal emitted by the structure in the electromagnetic field analysis of the structure included in the divided region. Based on the level information (level of detail information of the electromagnetic field analysis), the level of detail associated with the power consumption of the structure and the frequency of the signal emitted by the structure, generated as input parameters by the generation unit 24, is determined. . FIG. 4 shows an example of detailed level information of the electromagnetic field thermal analysis.
 図4において、例えば、解析を実行する分割領域の入力パラメータである構造体の消費電力の値はE1、信号の周波数の値はF1である場合、決定部25は図4で示す電磁界解析の詳細度情報を参照し、入力パラメータの値に紐づく詳細度はG1と決定することができる。電磁界解析の詳細度の情報はテーブルから構成されても良いし、それぞれの入力パラメータの値を関数として構成されても良い。 In FIG. 4, for example, when the value of the power consumption of the structure, which is the input parameter of the divided area to be analyzed, is E1, and the value of the frequency of the signal is F1, the determining unit 25 performs the electromagnetic field analysis shown in FIG. By referring to the level of detail information, it is possible to determine that the level of detail associated with the value of the input parameter is G1. Information on the level of detail of the electromagnetic field analysis may be configured from a table, or may be configured as a function of each input parameter value.
 決定部25は、選択部23が選択した分割領域に含まれる構造体の解析に関するパラメータに基づいて、分割領域の解析の細かさを示す詳細度を決定することで、ユーザの手間をかけることなく、詳細度が自動的に決定されるため、ユーザの負担が軽減される。 The determination unit 25 determines the level of detail indicating the fineness of the analysis of the divided region based on the parameters related to the analysis of the structure included in the divided region selected by the selection unit 23, thereby saving the user time and effort. , the degree of detail is automatically determined, thereby reducing the burden on the user.
 解析部26は、分割領域の解析を実行する。また、解析部26は、詳細度に応じて、分割領域の熱解析、電磁界解析のうちの少なくとも1つが含まれる解析を実行する。 The analysis unit 26 analyzes the divided regions. In addition, the analysis unit 26 performs analysis including at least one of thermal analysis and electromagnetic field analysis of the divided regions, depending on the degree of detail.
 表示制御部27は、情報処理装置1の処理に関する表示を表示装置に表示する制御を行う。表示装置としては、液晶ディスプレイ(Liquid Crystal Display:LCD)、Cathode Ray Tube(CRT)ディスプレイ、有機ELディスプレイ(Organic Electro Luminescence Display:OELD)またはプラズマディスプレイ等が使用可能である。 The display control unit 27 controls the display of the processing of the information processing device 1 on the display device. As the display device, a liquid crystal display (LCD), a cathode ray tube (CRT) display, an organic electroluminescence display (OELD), a plasma display, or the like can be used.
 例えば、表示制御部27は、取得部21が取得した全体モデルデータを表示装置に表示する制御を行う。また、例えば、表示制御部27は、決定部25が決定した分割領域に対応する解析の細かさを示す詳細度を表示装置に表示する制御を行う。なお、表示制御部27は、決定部25が決定した分割領域のみを表示装置に表示させても良い。 For example, the display control unit 27 performs control to display the overall model data acquired by the acquisition unit 21 on the display device. Further, for example, the display control unit 27 performs control to display the level of detail indicating the fineness of analysis corresponding to the divided regions determined by the determination unit 25 on the display device. Note that the display control unit 27 may cause the display device to display only the divided regions determined by the determination unit 25 .
 また、例えば、表示制御部27は、解析部26が実行した解析の解析結果を表示装置に表示する制御を行う。なお、表示は出力の一形態であり、表示制御部27は出力制御部の一例である。情報処理装置1は、解析の解析結果を表示装置に表示する代わりに、例えば、ノートPCやタブレットPC等の端末装置に熱解析や電磁界解析等の解析結果を送信(出力)しても良い。 Also, for example, the display control unit 27 performs control to display the analysis result of the analysis executed by the analysis unit 26 on the display device. Display is one form of output, and the display control unit 27 is an example of the output control unit. The information processing apparatus 1 may transmit (output) analysis results such as thermal analysis and electromagnetic field analysis to a terminal device such as a notebook PC or a tablet PC instead of displaying the analysis results of the analysis on the display device. .
(熱解析に関する詳細度の表示例)
 図5は、実施形態に係る熱解析に関する詳細度の一例を示す図である。図5には、選択部23が選択した分割領域3(31,32,33,34)に含まれる構造体の熱解析に関するパラメータに基づいて、分割領域3の解析の細かさを示す詳細度を表している。
(Display example of detail level related to thermal analysis)
FIG. 5 is a diagram illustrating an example of the degree of detail regarding thermal analysis according to the embodiment. FIG. 5 shows the degree of detail indicating the fineness of the analysis of the divided area 3 based on the parameters related to the thermal analysis of the structure included in the divided area 3 (31, 32, 33, 34) selected by the selection unit 23. represent.
 図5の分割領域3の詳細度は、それぞれ分割領域31は「熱解析不要」、分割領域32は「詳細度:D1」、分割領域33は「詳細度:D2」、分割領域34は「詳細度:D3」と示されている。 The detail levels of the divided areas 3 in FIG. degree: D3".
 ここで、分割領域31が示す「熱解析不要」とは、選択された領域において、熱解析は不要であるということを示している。また、分割領域32,33,34で示す詳細度は、図3で示すテーブルの熱解析の詳細度の値を表示している。 Here, "thermal analysis not required" indicated by the divided area 31 indicates that thermal analysis is unnecessary in the selected area. Detail levels indicated by the divided areas 32, 33, and 34 indicate values of the detail level of the thermal analysis in the table shown in FIG.
 本実施例では、解析の細かさを示す詳細度を解析精度と解析規模を組み合わせて、詳細度の値を示すテーブルを参照し表示している。また、詳細度の表示形態は値に応じて、カラーマップ等で表現しても良いし、これらに限られるものではない。 In this embodiment, the level of detail indicating the fineness of the analysis is displayed by referring to a table indicating the value of the level of detail by combining the analysis accuracy and the scale of analysis. Further, the display form of the level of detail may be represented by a color map or the like depending on the value, and is not limited to these.
 詳細度を決定することで、ユーザが全体モデルデータの解析を実行する前に、解析の判断対象となるパラメータから適切な解析モデル、解析精度及び解析規模を把握することができる。また、詳細度を決定することで、ユーザが全体モデルデータの解析を実行する前に、解析内容の妥当性を把握することができる。 By determining the level of detail, the user can grasp the appropriate analysis model, analysis accuracy, and analysis scale from the parameters to be analyzed, before executing the analysis of the overall model data. Also, by determining the level of detail, the user can grasp the validity of the analysis content before executing the analysis of the entire model data.
(電磁界解析に関する詳細度の表示例)
 図6は、実施形態に係る電磁界解析に関する詳細度の一例を示す図である。図4に記載の詳細度の内容は、上述の図5と共通する部分については説明を適宜に省略する。
(Display example of level of detail related to electromagnetic field analysis)
FIG. 6 is a diagram illustrating an example of the level of detail regarding electromagnetic field analysis according to the embodiment. As for the contents of the level of detail shown in FIG. 4, the description of the portions common to those in FIG. 5 described above will be omitted as appropriate.
 図6には、選択部23が選択した分割領域4(41,42,43,44)に含まれる構造体の発熱に関する条件が設定された電磁界解析に関するパラメータに基づいて、分割領域4の解析の細かさを示す詳細度を表している。 FIG. 6 shows the analysis of the divided area 4 based on the parameters related to the electromagnetic field analysis in which the conditions related to the heat generation of the structure included in the divided area 4 (41, 42, 43, 44) selected by the selection unit 23 are set. It represents the degree of detail that indicates the fineness of the
 図6の分割領域4の詳細度は、それぞれ分割領域41は「電磁界解析不要」、分割領域42は「詳細度:G1」、分割領域43は「詳細度:G2」、分割領域44は「詳細度:G3」と示され、図4で示すテーブルの電磁界解析の詳細度の値を表示している。 The detail levels of the divided areas 4 in FIG. Level of Detail: G3", which indicates the value of the level of detail of the electromagnetic field analysis in the table shown in FIG.
(情報処理装置1の処理)
 次に、情報処理装置1が実行する処理について説明する。図7は情報処理装置1が実行する処理の一例を示すフローチャートである。
(Processing of information processing device 1)
Next, processing executed by the information processing device 1 will be described. FIG. 7 is a flowchart showing an example of processing executed by the information processing apparatus 1. FIG.
 まず、取得部21は、ユーザの操作入力に従い、全体モデルデータを取得する(ステップS51)。 First, the acquisition unit 21 acquires the overall model data according to the user's operation input (step S51).
 表示制御部27は、取得部21が取得した全体データモデルを表示装置に表示する(ステップS52)。 The display control unit 27 displays the overall data model acquired by the acquisition unit 21 on the display device (step S52).
 次に、指定部22は、ユーザの操作入力に従い、解析対象物の解析領域を分割する数を指定する(ステップS53)。 Next, the designating unit 22 designates the number of divisions of the analysis region of the analysis object according to the user's operation input (step S53).
 表示制御部27は、指定部22が指定した解析領域の分割数に応じて、全体モデルデータを分割した分割領域を表示装置に表示する(ステップS54)。分割した分割領域を表示装置に表示することで、ユーザが全体モデルデータの解析を実行する前に解析対象を確認することができる。 The display control unit 27 displays the divided regions obtained by dividing the entire model data on the display device according to the number of divisions of the analysis region designated by the designation unit 22 (step S54). By displaying the divided regions on the display device, the user can confirm the analysis target before executing the analysis of the entire model data.
 選択部23は、指定部22が指定した解析対象物の解析領域を分割する数に基づいて、指定部22が解析対象物である全体モデルデータを指定した分割する数に対応する領域に分割された領域から、分割領域を選択する(ステップS55)。 Based on the number of divisions of the analysis region of the analysis object specified by the specification unit 22, the selection unit 23 divides the entire model data, which is the analysis object, into regions corresponding to the number of divisions specified by the specification unit 22. A divided area is selected from the area obtained (step S55).
 生成部24は、分割領域に含まれる構造体の発熱の解析に関する入力パラメータを生成する(ステップS56)。 The generation unit 24 generates input parameters related to heat generation analysis of structures included in the divided regions (step S56).
 分割領域に含まれる構造体の解析が、熱解析の場合、生成部24は、構造体の消費電力、構造体の動作保証温度、構造体の周囲温度等の値を入力パラメータとして生成する。 When the analysis of the structure included in the divided area is a thermal analysis, the generation unit 24 generates values such as the power consumption of the structure, the guaranteed operating temperature of the structure, the ambient temperature of the structure, etc. as input parameters.
 分割領域に含まれる構造体の解析が、電磁界解析の場合、生成部24は、構造体の消費電力、構造体が発する信号の周波数等を入力パラメータとして生成する。 When the analysis of the structure included in the divided area is electromagnetic field analysis, the generation unit 24 generates the power consumption of the structure, the frequency of the signal emitted by the structure, etc. as input parameters.
 決定部25は、選択部23が選択した分割領域に含まれる構造体の解析に関するパラメータ(生成部24が生成した入力パラメータ)に基づいて、分割領域の解析の細かさを示す詳細度を決定する(ステップS57)。 The determination unit 25 determines the level of detail indicating the fineness of the analysis of the divided region based on the parameters (input parameters generated by the generation unit 24) related to the analysis of the structures included in the divided region selected by the selection unit 23. (Step S57).
 決定部25は、選択部23が選択した分割領域に含まれる熱解析、電磁界解析のうちの少なくとも1つが含まれる解析に関するパラメータに基づいて、分割領域の解析の細かさを示す詳細度を決定する。 The determination unit 25 determines the level of detail indicating the fineness of the analysis of the divided region based on the parameters related to the analysis including at least one of the thermal analysis and the electromagnetic field analysis included in the divided region selected by the selection unit 23. do.
 選択部23は、全体モデルデータが分割された領域で未選択の分割領域がないかを判断する(ステップS58)。選択部23は、未選択の分割領域がない(ステップS58:Yes)場合、ステップS59へ進む。選択部23は、未選択の分割領域がある(ステップS58:No)場合、ステップS55へ進む。 The selection unit 23 determines whether there is an unselected divided area among the divided areas of the overall model data (step S58). If there is no unselected divided area (step S58: Yes), the selection unit 23 proceeds to step S59. If there is an unselected divided area (step S58: No), the selection unit 23 proceeds to step S55.
 表示制御部27は、決定部25が決定した分割領域に対応する解析の細かさを示す詳細度を表示装置に表示する制御を行う(ステップS59)。詳細度を表示装置に表示することで、ユーザが全体モデルデータの解析を実行する前に、解析の判断対象となるパラメータから適切な解析モデル、解析精度及び解析に要する時間を把握することができ、ユーザの負担を軽減することができる。 The display control unit 27 performs control to display the degree of detail indicating the fineness of analysis corresponding to the divided regions determined by the determination unit 25 on the display device (step S59). By displaying the level of detail on the display device, the user can grasp the appropriate analysis model, analysis accuracy, and the time required for analysis from the parameters to be judged for analysis before executing the analysis of the entire model data. , the burden on the user can be reduced.
 また、詳細度を表示装置に表示することで、ユーザが全体モデルデータの解析を実行する前に、解析モデルの妥当性を把握することができるので、解析モデルの妥当性検証にも活用ができ、ユーザの負担を軽減することができる。 In addition, by displaying the level of detail on the display device, the user can grasp the validity of the analysis model before executing the analysis of the entire model data, so it can also be used to verify the validity of the analysis model. , the burden on the user can be reduced.
 解析部26は、分割領域の解析を実行する(ステップS60)。解析部26は、詳細度に応じて、分割領域の熱解析、電磁界解析のうちの少なくとも1つが含まれる解析を実行する。 The analysis unit 26 analyzes the divided regions (step S60). The analysis unit 26 executes analysis including at least one of thermal analysis and electromagnetic field analysis of the divided regions, depending on the degree of detail.
 表示制御部27は、解析部26が実行した解析の解析結果を表示装置に表示する制御を行う(ステップS61)。解析結果を表示装置に表示すると、情報処理装置1が実行する処理が完了する。 The display control unit 27 performs control to display the analysis result of the analysis performed by the analysis unit 26 on the display device (step S61). When the analysis result is displayed on the display device, the processing executed by the information processing device 1 is completed.
 このように、実施形態に係る情報処理装置1は、解析対象物の解析領域を複数の領域に分割し、分割領域を順次選択する。そして、選択した分割領域に含まれる構造体の解析に関するパラメータに基づいて、分割領域の解析の細かさを示す詳細度を決定する。さらに、詳細度に基づいて、解析領域の解析を実行する。 In this way, the information processing apparatus 1 according to the embodiment divides the analysis area of the analysis object into a plurality of areas and sequentially selects the divided areas. Then, based on the parameters related to the analysis of the structure included in the selected divided area, the level of detail indicating the fineness of the analysis of the divided area is determined. Furthermore, analysis of the analysis area is performed based on the level of detail.
 これにより、解析対象の解析を行う際に、ユーザは解析パラメータを確認する手間をかけることなく設定され、適切な解析モデルの設定が行われるため、ユーザの作業が不要となり、ユーザの負担を軽減することができる。 As a result, the user does not have to bother to check the analysis parameters when performing the analysis of the analysis target, and the appropriate analysis model is set, eliminating the need for user work and reducing the burden on the user. can do.
(熱解析の詳細度の変形例)
 例えば、決定部25は、熱解析に関するパラメータは構造体の消費電力、構造体の動作保証温度、構造体の周囲温度の何れか1つに基づいて、分割領域の解析の細かさを示す詳細度を決定しても良い。
(Modified example of detail level of thermal analysis)
For example, the determination unit 25 determines the degree of detail indicating the fineness of the analysis of the divided regions based on any one of the power consumption of the structure, the guaranteed operating temperature of the structure, and the ambient temperature of the structure as the parameters related to the thermal analysis. may be determined.
 例えば、決定部25は、選択部23が選択した分割領域に含まれる構造体の発熱に関する熱解析の場合は、生成部24が入力パラメータとして生成した構造体のリーク電流、構造体の種類、構造体の周囲に配置される他の構造体への等価熱伝導率、構造体の近傍にある他の冷却構造体が発する風速の条件に基づいて、分割領域の解析の細かさを示す詳細度を決定する。構造体のリーク電流に基づく詳細度は、構造体のリーク電流が大きいほど、構造体の発熱に関する影響が大きいため、詳細度は高く決定される。 For example, in the case of thermal analysis relating to heat generation of a structure included in the divided region selected by the selection unit 23, the determination unit 25 determines the leakage current of the structure generated by the generation unit 24 as input parameters, the type of the structure, and the structure. Based on the equivalent thermal conductivity to other structures placed around the body, the wind speed emitted by other cooling structures in the vicinity of the structure decide. The level of detail based on the leakage current of the structure is determined to be high because the larger the leakage current of the structure, the greater the effect on the heat generation of the structure.
 構造体の種類に基づく詳細度は、構造体の内部の一部分のみが発熱するのか、または構造体の内部の全体が発熱する構造であるかを判断し、構造体の内部の一部分のみが発熱する場合は、発熱に関する影響が大きいため、詳細度は高く決定される。さらに、構造体の周囲に配置される他の構造体への等価熱伝導率に基づく詳細度は、他の構造体への等価熱伝導率を算出し、算出された値が小さいほど、発熱分布の変化が大きいため、詳細度は高く決定される。構造体の近傍にある他の冷却構造体が発する風速の条件に基づく詳細度は、他の冷却構造体が発する風速が大きいほど、原則として放熱性能が向上し、温度変化が大きくなるため、詳細度は高く設定される。 The level of detail based on the type of structure determines whether only a portion of the structure's interior heats up, or whether the structure's entire interior heats up, and only a portion of the structure's interior heats up. In case, the degree of detail is determined to be high because the influence on heat generation is large. Furthermore, the level of detail based on the equivalent thermal conductivity to other structures arranged around the structure is calculated by calculating the equivalent thermal conductivity to other structures, and the smaller the calculated value, the better the heat generation distribution. Since the change in is large, the detail level is determined to be high. The degree of detail based on the condition of the wind speed emitted by other cooling structures in the vicinity of the structure should be considered because, in principle, the higher the wind speed emitted by other cooling structures, the better the heat dissipation performance and the greater the temperature change. degree is set high.
 なお、決定部25は、構造体のリーク電流、構造体の種類、構造体の周囲に配置される他の構造体への等価熱伝導率、構造体の近傍にある他の冷却構造体が発する風速の条件の何れか1つに基づいて、分割領域の解析の細かさを示す詳細度を決定しても良い。入力するパラメータを選択できることで、より解析する構造体に対応する解析モデルを設定することができ、解析モデルの精度向上に寄与する。 Note that the determining unit 25 determines the leakage current of the structure, the type of the structure, the equivalent thermal conductivity to other structures arranged around the structure, and the heat generated by other cooling structures in the vicinity of the structure. The degree of detail indicating the detail of the analysis of the divided regions may be determined based on any one of the wind speed conditions. By being able to select the parameters to be input, it is possible to set an analysis model that corresponds to the structure to be analyzed more effectively, which contributes to improving the accuracy of the analysis model.
(電磁界解析の詳細度の変形例)
 例えば、決定部25は、選択部23が選択した分割領域に含まれる構造体の発熱に関する解析で電磁界解析の場合は、生成部24が入力パラメータとして生成した構造体の線路を示す配線形状、多層基板における構造体のビアを示すビア条件、信号源となる構造体のグランドの大きさを示すグランド条件、構造体の周囲に配置される他の構造体への等価熱伝導率に基づいて、分割領域の解析の細かさを示す詳細度を決定する。入力するパラメータを選択できることで、より解析する構造体に対応する解析モデルを設定することができ、解析モデルの精度向上に寄与する。
(Modified example of detail level of electromagnetic field analysis)
For example, in the case of electromagnetic field analysis in the analysis related to the heat generation of the structure included in the divided area selected by the selection unit 23, the determination unit 25 determines the wiring shape indicating the line of the structure generated as the input parameter by the generation unit 24, Based on the via conditions indicating the vias of the structures in the multilayer board, the ground conditions indicating the size of the ground of the structure that serves as the signal source, and the equivalent thermal conductivity to other structures arranged around the structure, Determine the level of detail that indicates the fineness of the analysis of the segmented region. By being able to select the parameters to be input, it is possible to set an analysis model that corresponds to the structure to be analyzed more effectively, which contributes to improving the accuracy of the analysis model.
 また、構造体の線路を示す配線形状に基づく詳細度は、信号線路形状が直線形状か、または曲げ形状であるかを示し、曲げ形状である場合は、構造体の発熱に関する影響が大きいため、詳細度は高く決定される。信号線路形状の線路自体の長さや幅、厚み等を示すものが含まれ、線路自体の長さが短い場合や、線路自体の幅が狭い場合、線路自体の厚みが薄い場合は、構造体の発熱に関する影響が大きいため、詳細度は高く決定される。多層基板における構造体のビアを示すビア条件とは、ビアが微細な構造であるほど、構造体の発熱に関する影響が大きいため、詳細度は高く決定される。 Further, the level of detail based on the wiring shape indicating the line of the structure indicates whether the shape of the signal line is linear or bent. A high degree of detail is determined. It includes the length, width, thickness, etc. of the signal line shape itself. If the length of the line itself is short, the width of the line itself is narrow, or the thickness of the line itself is thin, the structure The degree of detail is determined to be high because the effect on heat generation is large. A via condition indicating a via in a structure in a multilayer substrate is determined with a high degree of detail because the finer the via, the greater the effect on the heat generation of the structure.
 さらに、信号源となる構造体のグランドの大きさを示すグランド条件に基づく詳細度は、信号源のグランドがどの程度のサイズであるかを示し、サイズの値が小さいほどグランドが弱くなり、構造体の発熱に関する影響が大きいため、詳細度は高く決定される。構造体の周囲に配置される他の構造体への等価熱伝導率に基づく詳細度は、他の構造体への等価熱伝導率を算出し、算出された値が小さいほど、発熱分布の変化が大きいため、詳細度は高く決定される。 Furthermore, the level of detail based on the ground condition, which indicates the size of the ground of the structure that serves as the signal source, indicates how large the ground of the signal source is. The degree of detail is determined to be high because it has a large effect on heat generation of the body. The level of detail based on the equivalent thermal conductivity to other structures placed around the structure calculates the equivalent thermal conductivity to other structures, and the smaller the calculated value, the greater the change in heat generation distribution. is large, a high degree of detail is determined.
(詳細度判定基準の変形例)
 図8は、本実施の形態に係る解析に関する詳細度判定基準の変形の一例を示す図である。図8に示す変形例の詳細度は、分割領域に含まれる構造体の解析のうち、熱解析、電磁界解析を含む。図8に示すように、決定部25は、閾値を超えた入力パラメータの数の総和によって、詳細度を決定する。
(Modified example of level of detail criteria)
FIG. 8 is a diagram showing an example of modification of the level of detail determination criteria for analysis according to the present embodiment. The degree of detail of the modification shown in FIG. 8 includes thermal analysis and electromagnetic field analysis among the analyzes of the structures included in the divided regions. As shown in FIG. 8, the determination unit 25 determines the level of detail based on the sum of the number of input parameters exceeding the threshold.
 例えば、生成部24は、分割領域に含まれる構造体の解析の入力パラメータにあらかじめ定めた閾値を設定する。決定部25は、設定された各々の入力パラメータの閾値が超えているかどうか判断し、閾値を超えている入力パラメータの数を集計する。図8では、閾値を超えたパラメータの数(変数:X)に応じて、詳細度の大きさを決定し、Xが0の場合は、「詳細度:不要」と決定され、Xが1以上L以下の場合は、「詳細度:小」であり、XがL+1以上M以下の場合は、「詳細度:中」、XがM+1以上の場合は、「詳細度:高」と決定される。 For example, the generation unit 24 sets a predetermined threshold value for the input parameters for analyzing the structures included in the divided regions. The determining unit 25 determines whether or not the set threshold value of each input parameter is exceeded, and counts the number of input parameters exceeding the threshold value. In FIG. 8, the level of detail is determined according to the number of parameters exceeding the threshold (variable: X). If it is L or less, it is determined as "low detail level", if X is between L+1 and M or less, it is determined as "medium level of detail", and if X is M+1 or more, it is determined as "high detail level". .
 ここで、「詳細度:不要」とは、選択された分割領域において、解析は不要であることを示し、「詳細度:小」の場合は、解析に要求される精度が低く、解析規模が小さいことを示し、「詳細度:高」の場合は、解析精度は高く、解析規模が大きいことを示している。「詳細度:中」の場合は、「詳細度:小」と「詳細度:高」の間であることを示す。決定部25は入力パラメータの閾値の総和から詳細度を決定することで、解析モデルの妥当性の判断が容易となり、ユーザの負担を軽減することができる。 Here, "level of detail: unnecessary" indicates that analysis is unnecessary in the selected segmented region, and "level of detail: small" means that the accuracy required for analysis is low and the scale of analysis is small. "Level of detail: high" indicates that the analysis accuracy is high and the scale of analysis is large. "Level of detail: medium" indicates that it is between "level of detail: low" and "level of detail: high." The decision unit 25 decides the level of detail from the sum of the thresholds of the input parameters, thereby facilitating judgment of the validity of the analysis model and reducing the user's burden.
(解析フローの変形例1)
 図9は、本実施の形態に係る解析に関する詳細度の変形の一例を示す図である。例えば、図9には、選択部23が選択した分割領域7(71,72,73,74)に含まれる構造体の発熱の熱解析に関するパラメータと、電磁界解析に関するパラメータと、両方が含まれるパラメータに基づいて、分割領域7の解析の細かさを示す詳細度を表している。
(Modification 1 of analysis flow)
FIG. 9 is a diagram showing an example of modification of the level of detail regarding analysis according to the present embodiment. For example, FIG. 9 includes both parameters related to thermal analysis of heat generation of structures included in the divided regions 7 (71, 72, 73, 74) selected by the selection unit 23 and parameters related to electromagnetic field analysis. Based on the parameters, the degree of detail indicating the fineness of the analysis of the divided area 7 is represented.
 例えば、図9の分割領域7の詳細度は、それぞれ分割領域71は「熱解析不要かつ電磁界解析不要」、分割領域72は「詳細度:D1かつG1」、分割領域73は「詳細度:D2かつG2」、分割領域74は「詳細度:D3かつG3」と示され、図3及び図4で示すテーブルの熱解析及び電磁界解析の詳細度の値を表示している。 For example, the detail levels of the divided areas 7 in FIG. D2 and G2", and the divided area 74 is indicated as "Level of Detail: D3 and G3", indicating the value of the level of detail of the thermal analysis and the electromagnetic field analysis of the tables shown in FIGS.
 例えば、解析部26は、上記で決定した分割領域の詳細度に応じて、まず電磁界解析を実行する。生成部24は解析部26で電磁界解析を実行された結果に基づいて入力パラメータを生成する。決定部25は生成部24で生成された入力パラメータに基づいて、詳細度を更新し決定する。解析部26は更新された分割領域の詳細度に応じて熱解析を実行する。 For example, the analysis unit 26 first executes an electromagnetic field analysis according to the level of detail of the divided regions determined above. The generation unit 24 generates input parameters based on the results of the electromagnetic field analysis performed by the analysis unit 26 . The determination unit 25 updates and determines the level of detail based on the input parameters generated by the generation unit 24 . The analysis unit 26 performs thermal analysis according to the updated detail level of the divided regions.
(解析フローの変形例2)
 例えば、解析部26は、図6で示す詳細度に応じて、分割領域の電磁界解析を実行する。生成部24が生成した熱解析に関する入力パラメータと、解析部26で電磁界解析を実行された結果とを合わせて入力パラメータを生成する。決定部25は生成部24で生成された入力パラメータに基づいて、詳細度を更新し決定する。解析部26は更新された分割領域の詳細度に応じて熱解析を実行する。
(Modified example 2 of analysis flow)
For example, the analysis unit 26 performs electromagnetic field analysis of the divided regions according to the level of detail shown in FIG. An input parameter is generated by combining the input parameter related to the thermal analysis generated by the generation unit 24 and the result of the electromagnetic field analysis performed by the analysis unit 26 . The determination unit 25 updates and determines the level of detail based on the input parameters generated by the generation unit 24 . The analysis unit 26 performs thermal analysis according to the updated detail level of the divided regions.
 本実施形態の情報処理装置1で実行されるプログラムは、ROM等にあらかじめ組み込まれて提供される。 A program executed by the information processing apparatus 1 of the present embodiment is pre-installed in a ROM or the like and provided.
 本実施形態の情報処理装置1で実行されるプログラムは、インストール可能な形式または実行可能な形式のファイルでCD-ROM、フレキシブルディスク(FD)、CD-R、DVD(Digital Versatile Disk)等のコンピュータで読み取り可能な記録媒体に記録して提供するように構成しても良い。 The program executed by the information processing apparatus 1 of this embodiment is a file in an installable format or an executable format, and can be stored on a computer such as a CD-ROM, flexible disk (FD), CD-R, DVD (Digital Versatile Disk). may be recorded on a recording medium readable by .
 さらに、本実施形態の情報処理装置1で実行されるプログラムを、インターネット等のネットワークに接続されたコンピュータ上に格納し、ネットワーク経由でダウンロードさせることにより提供するように構成しても良い。また、本実施形態の情報処理装置1で実行されるプログラムをインターネット等のネットワーク経由で提供または配布するように構成しても良い。 Furthermore, the program executed by the information processing apparatus 1 of this embodiment may be stored on a computer connected to a network such as the Internet, and provided by being downloaded via the network. Also, the program executed by the information processing apparatus 1 of this embodiment may be configured to be provided or distributed via a network such as the Internet.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれると同様に、請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although several embodiments of the invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and modifications can be made without departing from the scope of the invention. These embodiments and their modifications are included in the scope and spirit of the invention, as well as the scope of the invention described in the claims and equivalents thereof.
 1  情報処理装置
 11 CPU
 12 ROM
 13 RAM
 14 補助記憶装置
 15 外部I/F
 21 取得部
 22 指定部
 23 選択部
 24 生成部
 25 決定部
 26 解析部
 27 表示制御部
1 information processing device 11 CPU
12 ROMs
13 RAM
14 auxiliary storage device 15 external I/F
21 acquisition unit 22 designation unit 23 selection unit 24 generation unit 25 determination unit 26 analysis unit 27 display control unit

Claims (10)

  1.  解析対象物の解析領域を分割し、解析を実行する情報処理装置であって、
     前記解析領域を分割して得られる領域を示す複数の分割領域の各々を順次に選択する選択部と、
     前記選択部が選択した前記分割領域に含まれる構造体の解析に関するパラメータに基づいて、前記分割領域の解析の細かさを示す詳細度を決定する決定部と、
     前記決定部が決定した前記詳細度に基づいて、前記分割領域の前記解析を実行する解析部と、
    を備える情報処理装置。
    An information processing device that divides an analysis region of an analysis object and executes analysis,
    a selection unit that sequentially selects each of a plurality of divided regions indicating regions obtained by dividing the analysis region;
    a determination unit that determines a level of detail indicating the fineness of analysis of the divided area based on parameters related to analysis of structures included in the divided area selected by the selection unit;
    an analysis unit that performs the analysis of the divided regions based on the level of detail determined by the determination unit;
    Information processing device.
  2.  前記解析部は熱解析、電磁界解析のうちの少なくとも1つが含まれる解析を実行する、
     請求項1に記載の情報処理装置。
    the analysis unit performs analysis including at least one of thermal analysis and electromagnetic field analysis;
    The information processing device according to claim 1 .
  3.  前記熱解析に関する前記パラメータは、前記構造体の消費電力、前記構造体の動作保証温度、前記構造体の周囲温度のうちの少なくとも1つが含まれる、請求項2に記載の情報処理装置。 3. The information processing apparatus according to claim 2, wherein said parameters relating to said thermal analysis include at least one of power consumption of said structure, guaranteed operating temperature of said structure, and ambient temperature of said structure.
  4.  前記熱解析に関するパラメータは、さらに、前記構造体のリーク電流、前記構造体の種類、前記構造体の周囲に配置される他の構造体への等価熱伝導率、前記構造体の近傍にある他の冷却構造体が発する風速の条件が含まれる、請求項2または3に記載の情報処理装置。 The parameters related to the thermal analysis further include the leakage current of the structure, the type of the structure, the equivalent thermal conductivity to other structures arranged around the structure, and other structures in the vicinity of the structure. 4. The information processing apparatus according to claim 2, wherein the condition of the wind speed emitted by the cooling structure is included.
  5.  前記電磁界解析に関する前記パラメータは、前記構造体の消費電力、前記構造体が発する信号の周波数が含まれる、請求項2に記載の情報処理装置。 The information processing apparatus according to claim 2, wherein the parameters related to the electromagnetic field analysis include the power consumption of the structure and the frequency of the signal emitted by the structure.
  6.  前記電磁界解析に関する前記パラメータは、さらに、前記構造体の線路を示す配線形状、多層基板における構造体のビアを示すビア条件、信号源となる構造体のグランドの大きさを示すグランド条件、前記構造体の周囲に配置される他の構造体への等価熱伝導率の条件が含まれる、請求項2または5に記載の情報処理装置。 The parameters related to the electromagnetic field analysis further include a wiring shape indicating a line of the structure, a via condition indicating a via in the structure in the multilayer substrate, a ground condition indicating the size of the ground of the structure serving as a signal source, 6. The information processing apparatus according to claim 2, wherein a condition of equivalent thermal conductivity to other structures arranged around the structure is included.
  7.  前記解析部が実行した前記解析の解析結果を出力する出力制御部をさらに備える、請求項1から6のうち何れか1項に記載の情報処理装置。 The information processing apparatus according to any one of claims 1 to 6, further comprising an output control unit that outputs analysis results of the analysis performed by the analysis unit.
  8.  前記出力制御部は、前記決定部が決定した前記詳細度を表示装置に表示される制御を行う、請求項7に記載の情報処理装置。 The information processing apparatus according to claim 7, wherein the output control unit controls display of the level of detail determined by the determination unit on a display device.
  9.  解析対象物の解析領域を分割し、解析を実行する情報処理方法であって、
     前記解析領域を分割して得られる領域を示す複数の分割領域の各々を順次に選択する選択ステップと、
     前記選択ステップが選択した前記分割領域に含まれる構造体の解析に関するパラメータに基づいて、前記分割領域の解析の細かさを示す詳細度を決定する決定ステップと、
     前記決定ステップが決定した前記詳細度に基づいて、前記分割領域の前記解析を実行する解析ステップと、
     を含む情報処理方法。
    An information processing method for dividing an analysis area of an analysis object and executing analysis,
    a selection step of sequentially selecting each of a plurality of divided regions indicating regions obtained by dividing the analysis region;
    a determining step of determining a level of detail indicating the fineness of analysis of the divided area based on parameters relating to the analysis of structures included in the divided area selected in the selecting step;
    an analysis step of performing the analysis of the divided regions based on the level of detail determined by the determination step;
    Information processing method including.
  10.  解析対象物の解析領域を分割し、解析を実行する情報処理装置のコンピュータに、
     前記解析領域を分割して得られる領域を示す複数の分割領域の各々を順次に選択する選択ステップと、
     前記選択ステップが選択した前記分割領域に含まれる構造体の解析に関するパラメータに基づいて、前記分割領域の解析の細かさを示す詳細度を決定する決定ステップと、
     前記決定ステップが決定した前記詳細度に基づいて、前記分割領域の前記解析を実行する解析ステップと、
     を実行させる情報処理プログラム。
    In the computer of the information processing device that divides the analysis area of the analysis object and executes the analysis,
    a selection step of sequentially selecting each of a plurality of divided regions indicating regions obtained by dividing the analysis region;
    a determining step of determining a level of detail indicating the fineness of analysis of the divided area based on parameters relating to the analysis of structures included in the divided area selected in the selecting step;
    an analysis step of performing the analysis of the divided regions based on the level of detail determined by the determination step;
    Information processing program that runs
PCT/JP2022/003668 2021-03-10 2022-01-31 Information processing device, information processing method, and information processing program WO2022190709A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021038751A JP2022138711A (en) 2021-03-10 2021-03-10 Information processing apparatus, information processing method, and information processing program
JP2021-038751 2021-03-10

Publications (1)

Publication Number Publication Date
WO2022190709A1 true WO2022190709A1 (en) 2022-09-15

Family

ID=83226664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003668 WO2022190709A1 (en) 2021-03-10 2022-01-31 Information processing device, information processing method, and information processing program

Country Status (2)

Country Link
JP (1) JP2022138711A (en)
WO (1) WO2022190709A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002222230A (en) * 2000-11-27 2002-08-09 Matsushita Electric Ind Co Ltd Unnecessary radiation optimizing method and unnecessary radiation analyzing method
JP2006012047A (en) * 2004-06-29 2006-01-12 Sharp Corp Characteristic analysis device and substrate layout design/verification device constituted by including the same
JP2008191710A (en) * 2007-01-31 2008-08-21 Canon Inc Analysis apparatus and control method thereof
JP2012064036A (en) * 2010-09-16 2012-03-29 Fujitsu Ltd Thermal analysis model generating device, thermal analysis model generating program, thermal analysis model generating method, and thermal analysis device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002222230A (en) * 2000-11-27 2002-08-09 Matsushita Electric Ind Co Ltd Unnecessary radiation optimizing method and unnecessary radiation analyzing method
JP2006012047A (en) * 2004-06-29 2006-01-12 Sharp Corp Characteristic analysis device and substrate layout design/verification device constituted by including the same
JP2008191710A (en) * 2007-01-31 2008-08-21 Canon Inc Analysis apparatus and control method thereof
JP2012064036A (en) * 2010-09-16 2012-03-29 Fujitsu Ltd Thermal analysis model generating device, thermal analysis model generating program, thermal analysis model generating method, and thermal analysis device

Also Published As

Publication number Publication date
JP2022138711A (en) 2022-09-26

Similar Documents

Publication Publication Date Title
US7330770B2 (en) Fan selection method and fan selection device
US20150148981A1 (en) System and method for multi-correlative learning thermal management of a system on a chip in a portable computing device
US7467077B2 (en) Mesh model creating method, simulation apparatus and computer-readable storage medium
US20200225720A1 (en) Information Handling System Having Regional Cooling
JP2008250630A (en) Decoupling cell arrangement method and decoupling cell arrangement device
US20080306633A1 (en) Optimized power and airflow multistage cooling system
JPWO2020095362A1 (en) Design support device, design support method and machine learning device
JP2006350503A (en) Analysis mesh model generation device, analysis mesh model generation method and analysis mesh model generation program
WO2022190709A1 (en) Information processing device, information processing method, and information processing program
US20100076742A1 (en) Simulation model for transistors
US8504324B2 (en) System and method for analyzing reliability of electronic device
TWI589112B (en) Fan controlling method of electronic device
JPH11296561A (en) Method and device for generating worst case model parameter
JP7395705B2 (en) Estimation device, estimation method and program
US9792706B2 (en) Graph processing system, graph processing method, and non-transitory computer readable medium
US20140188425A1 (en) System and method for selecting fans for server cabinet
US20200272772A1 (en) Indicator calculation device, indicator calculation method, and non-transitory recording medium
JP2019204274A (en) Heat generation density calculation program, heat generation density calculation method, and information processing apparatus
US10955884B2 (en) Method and apparatus for managing power in a thermal couple aware system
US20220237570A1 (en) Method and System for Determining Computer Fan Usage and Maintenance
CN107967201B (en) Heat dissipation configuration management method and system for server and electronic equipment
JP2010039969A (en) Method and program for determining crosstalk noise
JP2014238666A (en) Prediction expression generation method, prediction expression generation device and prediction expression generation program
US20230289233A1 (en) Default operating modes
JP4653764B2 (en) Semiconductor device design method, design support system, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22766676

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22766676

Country of ref document: EP

Kind code of ref document: A1