WO2022190670A1 - Ultrasonic atomization separation device and humidity control system - Google Patents

Ultrasonic atomization separation device and humidity control system Download PDF

Info

Publication number
WO2022190670A1
WO2022190670A1 PCT/JP2022/002306 JP2022002306W WO2022190670A1 WO 2022190670 A1 WO2022190670 A1 WO 2022190670A1 JP 2022002306 W JP2022002306 W JP 2022002306W WO 2022190670 A1 WO2022190670 A1 WO 2022190670A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixed solution
separation device
ultrasonic
solution
atomization
Prior art date
Application number
PCT/JP2022/002306
Other languages
French (fr)
Japanese (ja)
Inventor
恭子 松浦
豪 鎌田
哲也 井出
奨 越智
洋香 濱田
勇佑 清水
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2022190670A1 publication Critical patent/WO2022190670A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification

Definitions

  • the present disclosure relates to an ultrasonic atomization separation device and a humidity control system.
  • the present disclosure claims priority to Japanese Patent Application No. 2021-040090 filed in Japan on March 12, 2021, the contents of which are incorporated herein.
  • ultrasonic waves are emitted from the mixed solution containing the separated components toward the surface of the mixed solution, and the liquid column extends vertically upward from the surface of the mixed solution due to the wave pressure of the ultrasonic waves. is formed. Also, the capillary wave is broken on the surface of the liquid column, and the separated components are discharged as fine droplets. Thereby, the separated component is separated from other components contained in the mixed solution.
  • a liquid containing two or more substances is ultrasonically vibrated to cause a liquid column to protrude from the liquid surface. Also, mist is generated around the liquid column. As a result, the specific liquid is separated at a high concentration (paragraphs 0033, 0034, 0038 and 0045).
  • the liquid column formed by the wave pressure of ultrasonic waves is formed by an acoustic flow that exists only in a narrow range.
  • a liquid column is formed by an acoustic stream generated in an area having a diameter of only about 1 mm to 2 mm in the center of the radiation surface of a transducer that emits ultrasonic waves. Therefore, in the ultrasonic atomization separation apparatus described above, high alignment accuracy is required in order to form a liquid column at the position of the ejection port of the nozzle that ejects minute droplets.
  • An object of the present disclosure is to provide an ultrasonic atomization separation device that can increase the atomization efficiency and allow for lower alignment accuracy.
  • An ultrasonic atomization separation device includes an atomization tank containing a mixed solution containing at least a first solution and a second solution, and having a bottom or side wall formed with a flow-down port through which the mixed solution flows down. and a vibrator that faces the flow-down port through the mixed solution and applies ultrasonic waves to the mixed solution, and at least a part of the second solution contained in the mixed solution is vibrated by applying the ultrasonic waves. is atomized and separated.
  • a humidity control system of another aspect of the present disclosure includes an ultrasonic atomization separation device of one aspect of the present disclosure, and the mixed solution transferred from the ultrasonic atomization separation device absorbs moisture in the air.
  • a first transfer section for transferring the mixed solution flowing down from the flow-down port to the moisture absorbing section; and transferring the mixed solution having absorbed moisture in the air from the moisture absorbing section to the atomization tank. and a second transfer section for carrying out.
  • an ultrasonic atomization separation device that can increase the atomization efficiency and allow for lower alignment accuracy.
  • FIG. 11 is a diagram schematically illustrating an ultrasonic atomization separation device of a first modification of the third embodiment;
  • FIG. 11 is a diagram schematically illustrating an ultrasonic atomization separation device of a second modification of the third embodiment;
  • FIG. 11 is a diagram schematically illustrating an ultrasonic atomization separation device of a second modification of the third embodiment;
  • FIG. 10 is an image showing a liquid column formed when the hole formed in the flow-down port has a circular shape with a diameter of 1.5 mm in the ultrasonic atomization separation device of the first modified example of the third embodiment;
  • FIG. The liquid column formed when the hole formed in the flow-down port in the ultrasonic atomization separation apparatus of the first modification of the third embodiment has an elliptical shape with a long axis length of 2 mm and a short axis length of 1 mm is an image showing.
  • FIG. 12 is a diagram schematically illustrating a humidity control system of a fifth embodiment
  • FIG. 11 is a diagram schematically illustrating a humidity control system of a sixth embodiment;
  • FIG. 1 is a diagram schematically illustrating an ultrasonic atomization separation device of a first embodiment.
  • the ultrasonic atomization separation device 1 of the first embodiment illustrated in FIG. Separate from other ingredients in it.
  • the separated components separated from the other components may be all of the separated components contained in the mixed solution 91 or may be part of the separated components contained in the mixed solution 91 .
  • the ultrasonic atomization separation device 1 When the ultrasonic atomization separation device 1 is incorporated in a humidity control system that absorbs moisture in the air, the ultrasonic atomization separation device 1 separates approximately the same amount of moisture as the moisture absorbed. To separate.
  • the ultrasonic atomization separation device 1 includes an atomization tank 11 and an ultrasonic wave generation mechanism 12 .
  • the atomization tank 11 accommodates the mixed solution 91 and causes the accommodated mixed solution 91 to flow down to form a liquid column 92 .
  • the ultrasonic wave generating mechanism 12 generates ultrasonic waves 93 and applies the generated ultrasonic waves 93 to the mixed solution 91 contained in the atomization tank 11 .
  • the ultrasonic wave 93 imparted to the mixed solution 91 propagates through the mixed solution 91 and reaches the liquid column 92 , atomizes the mixed solution 91 forming the liquid column 92 , and forms a mist 94 containing separated components from the liquid column 92 . is released.
  • the mist 94 is fine droplets. Accordingly, the ultrasonic atomization separation device 1 atomizes and separates the separated components contained in the mixed solution 91 from other components contained in the mixed solution 91 by applying the ultrasonic waves 93 to the mixed solution 91 .
  • the bottom 11b of the atomization tank 11 is provided with a flow-down port 11f.
  • 11 f of side walls of the atomization tank 11 may be equipped with 11 f of flow-down ports.
  • the flow-down port 11f causes the mixed solution 91 to flow down to form a liquid column 92.
  • the mixed solution 91 flows down by the weight of the mixed solution 91 itself. That is, the flowing down of the mixed solution 91 is free fall of the mixed solution 91 . Therefore, the liquid column 92 extends vertically.
  • the energy required to form the liquid column 92 can be reduced, and the atomization efficiency of the ultrasonic atomization separation device 1 can be increased. In addition, it is possible to allow lower alignment accuracy.
  • the liquid column 92 may be one vertically continuous liquid column, or may be a set of a plurality of liquid column pieces that are broken and separated from each other in the vertical direction.
  • a hole through which the mixed solution 91 passes is formed in the flow-down port 11f.
  • the hole has a circular planar shape.
  • the hole may have a planar shape other than a circular planar shape as long as the mixed solution 91 can flow down.
  • the hole may have an oval, square, or polygonal planar shape.
  • the hole has a diameter of 1 mm or more and 5 mm or less.
  • the hole may have a diameter smaller than 1 mm or larger than 5 mm as long as the mixed solution 91 can flow down.
  • a liquid supply port for supplying the mixed solution 91 from the outside may be formed in the atomization tank 11 .
  • the atomization tank 11 may have a lid that opens and closes the liquid supply port. When the mixed solution 91 is not supplied from the outside, the liquid supply port is closed by the lid.
  • the power supply 21 supplies power to the oscillation circuit 22 .
  • the oscillation circuit 22 operates using the supplied power.
  • the oscillation circuit 22 oscillates a drive signal and supplies the oscillated drive signal to the vibrator 23 .
  • the vibrator 23 generates an ultrasonic wave 93 according to the supplied drive signal.
  • the top plate 11t of the atomization tank 11 is formed with an insertion hole 11i.
  • the vibrator 23 is inserted into the insertion hole 11i. Thereby, the radiation surface 23 s of the vibrator 23 is immersed in the mixed solution 91 . Thereby, the vibrator 23 can apply the ultrasonic waves 93 to the mixed solution 91 .
  • a radiation surface 23 s of the transducer 23 radiates ultrasonic waves 93 .
  • a radiation surface 23s of the vibrator 23 faces downward in the vertical direction and is arranged above the flow port 11f in the vertical direction. Therefore, the radiation surface 23s of the vibrator 23 faces the downstream port 11f, faces the downstream port 11f through the mixed solution 91, and radiates the ultrasonic waves 93 toward the downstream port 11f.
  • the ultrasonic wave 93 can be efficiently propagated to the liquid column 92 .
  • the vibrator 23 has a flat plate shape. As long as the oscillator 23 can apply the ultrasonic wave 93 to the mixed solution 91, the oscillator 23 may have a shape other than the flat plate shape. For example, the vibrator 23 may have a lens-like shape.
  • the ultrasonic wave 93 desirably has a frequency of 1 MHz or more and 5 MHz or less.
  • the top plate 11t has a concave cross-sectional shape.
  • the top plate 11t includes a recessed portion 31 arranged in the central portion and a non-recessed portion 32 arranged in the outer peripheral portion.
  • the recessed portion 31 is arranged vertically below the non-recessed portion 32 . Therefore, the top plate 11t has a step between the recessed portion 31 and the non-recessed portion 32.
  • An insertion hole 11 i into which the vibrator 23 is inserted is formed in the recessed portion 31 .
  • the atomization tank 11 has a first space 41 formed vertically below the vibrator 23 and a second space 42 formed above the vibrator 23 in the vertical direction.
  • the second space 42 extends vertically upward from at least a portion of the first space 41 .
  • a radiation surface 23 s of the vibrator 23 is exposed to the first space 41 .
  • the mixed solution 91 is accumulated vertically above the radiation surface 23 s of the oscillator 23 . Therefore, the mixed solution 91 fills the entire first space 41 of the atomization tank 11 and at least partially fills the second space 42 of the atomization tank 11 . Thereby, the radiation surface 23 s of the vibrator 23 exposed to the first space 41 is immersed in the mixed solution 91 . As a result, it is possible to prevent the ultrasonic waves 93 from being radiated from the radiation surface 23s of the transducer 23 in a state where the radiation surface 23s of the transducer 23 is not immersed in the mixed solution 91, thereby preventing empty heating from occurring.
  • the structure for suppressing the occurrence of empty heating may be a structure different from the structure described above.
  • the mixed solution 91 contains at least a first solution and a second solution.
  • the first solution and the second solution are two different solutions.
  • the first solution is a solution containing a hygroscopic substance constituting another component
  • the second solution is a solution containing water constituting a separate component.
  • a hygroscopic substance is a substance that dissolves in water or a substance that is miscible with water.
  • the hygroscopic substance one hygroscopic substance may be used alone, or two or more hygroscopic substances may be used in combination.
  • Hygroscopic substances include one or both of organic and inorganic materials.
  • the organic material includes, for example, at least one selected from the group consisting of dihydric or higher alcohols, ketones, organic solvents having an amide group, sugars, and materials used as raw materials for moisturizing cosmetics. It contains at least one selected from the group consisting of the above alcohols, organic solvents having an amide group, sugars, and materials used as raw materials for moisturizing cosmetics and the like. Bivalent or higher alcohols, organic solvents having amide groups, sugars, and materials used as raw materials for moisturizing cosmetics have high hydrophilicity. Therefore, when the organic material contains at least one selected from the group consisting of these, the hygroscopic property of the hygroscopic substance can be increased.
  • Dihydric or higher alcohol includes, for example, at least one selected from the group consisting of glycerin, propanediol, butanediol, pentanediol, trimethylolpropane, butanetriol, ethylene glycol, diethylene glycol and triethylene glycol.
  • the organic solvent having an amide group includes, for example, at least one selected from the group consisting of formamide and acetamide.
  • Sugars include, for example, at least one selected from the group consisting of sucrose, pullulan, glucose, xylose, fructose, mannitol and sorbitol.
  • Materials used as raw materials for moisturizing cosmetics and the like include at least one selected from the group consisting of 2-methacryloyloxyethylphosphorylcholine (MPC), betaine, hyaluronic acid and collagen.
  • MPC 2-methacryloyloxyethylphosphorylcholine
  • betaine betaine
  • hyaluronic acid collagen
  • Inorganic materials are, for example, the group consisting of calcium chloride, lithium chloride, magnesium chloride, potassium chloride, sodium chloride, zinc chloride, aluminum chloride, lithium bromide, calcium bromide, potassium bromide, sodium hydroxide and sodium pyrrolidonecarboxylate. at least one selected from
  • the ultrasonic atomization/separation device 1 may have a mechanism for removing air bubbles adhering to the radiation surface 23 s of the vibrator 23 . As a result, the state in which the ultrasonic waves 93 cannot be propagated through the mixed solution 91 due to air bubbles adhering to the radiation surface 23s of the transducer 23 can be eliminated.
  • the mechanism is, for example, a thin tube having one end that contacts the radiation surface 23 s of the oscillator 23 and the other end that is placed outside the mixed solution 91 .
  • FIG. 2 is a diagram schematically illustrating an ultrasonic atomization separation apparatus according to a second embodiment.
  • the difference between the ultrasonic atomization separation device 2 of the second embodiment illustrated in FIG. 2 and the ultrasonic atomization separation device 1 of the first embodiment illustrated in FIG. 1 will be described. As for the points that are not explained, the same configuration as that employed in the ultrasonic atomization separation device 1 is also employed in the ultrasonic atomization separation device 2 .
  • the ultrasonic atomization separation device 2 includes a vibrator holding member 13 .
  • the vibrator holding member 13 is inserted into and removed from the insertion hole 11i formed in the top plate 11t, and is attached to and detached from the atomization tank 11. Thereby, the vibrator holding member 13 and the vibrator 23 can be easily replaced when the ultrasonic atomization/separation device 2 is maintained.
  • the vibrator holding member 13 has a housing 51 .
  • the housing 51 is arranged in the atomization tank 11 when the vibrator holding member 13 is inserted into the insertion hole 11i formed in the top plate 11t.
  • a vibrator 23 is fixed to the bottom 51 b of the housing 51 . As a result, the radiation surface 23s of the vibrator 23 is exposed vertically downward.
  • the vibrator holding member 13 When the vibrator holding member 13 is inserted into the insertion hole 11i formed in the top plate 11t, the atomization tank 11 and the vibrator holding member 13 are in a sealed state. As a result, it is possible to prevent water from entering the atomization tank 11 and the vibrator holding member 13 from the outside of the atomization tank 11 . In this state, the vibrator holding member 13 is fixed at a fixed position. Thereby, the relative position of the vibrator 23 with respect to the flow-down port 11f can be maintained constant. Also, the distance from the flow-down port 11f to the vibrator 23 can be kept constant. Thereby, the arrangement that can increase the atomization efficiency of the ultrasonic atomization separation device 2 can be maintained.
  • FIG. 3 is a diagram schematically illustrating an ultrasonic atomization separation device according to a third embodiment.
  • the difference between the ultrasonic atomization separation device 3 of the third embodiment illustrated in FIG. 3 and the ultrasonic atomization separation device 2 of the second embodiment illustrated in FIG. 2 will be described. As for the points that are not explained, the same configuration as that employed in the ultrasonic atomization separation device 2 is also employed in the ultrasonic atomization separation device 3 .
  • the ultrasonic wave generating mechanism 12 is provided with a sensor 24, as shown in FIG.
  • the sensor 24 is arranged inside the atomization tank 11 and above the radiation surface 23 s of the vibrator 23 in the vertical direction.
  • the sensor 24 detects the liquid level of the mixed solution 91 .
  • the oscillation circuit 22 stops oscillating the drive signal when the sensor 24 detects that the liquid level of the mixed solution 91 has become lower than the position where the sensor 24 is installed. Thereby, the vibrator 23 stops emitting the ultrasonic wave 93 when the sensor 24 detects that the liquid level of the mixed solution 91 has become lower than the position. As a result, it is possible to prevent the ultrasonic waves 93 from being radiated from the radiation surface 23s of the transducer 23 in a state where the radiation surface 23s of the transducer 23 is not immersed in the mixed solution 91, thereby preventing empty heating from occurring.
  • the ultrasonic atomization separation device 3 may be equipped with an electromagnetic valve that opens and closes the flow port 11f.
  • the solenoid valve closes the flow-down port 11f.
  • FIG. 4 is a diagram schematically illustrating the ultrasonic atomization separation device of the first modification of the third embodiment.
  • a hole formed in the flow-down port 11f is formed at the tip of the nozzle 55. As shown in FIG. Thereby, the ultrasonic wave 93 can be focused toward the hole. Thereby, the atomization efficiency of 3 A of ultrasonic atomization separation apparatuses can be made high.
  • FIG. 5 is a diagram schematically illustrating an ultrasonic atomization separation device of a second modification of the third embodiment.
  • the bottom 11b has a conical shape. Moreover, the conical-shaped tip part is provided with 11 f of flow-down ports. Therefore, the bottom 11b has an inclined portion 56 that slopes downward in the vertical direction as it approaches the outlet 11f. This makes it easier for the mixed solution 91 to pass through the holes formed in the flow-down port 11f. As a result, the atomization efficiency of the ultrasonic atomization separation device 3B can be increased.
  • FIG. 6 is an image showing a liquid column formed when the hole formed in the flow-down port has a circular shape with a diameter of 1.5 mm in the ultrasonic atomization separation device of the first modification of the third embodiment.
  • FIG. 7 shows an ultrasonic atomization separation apparatus according to the first modification of the third embodiment in which the hole formed in the flow-down port has an elliptical shape with a major axis length of 2 mm and a minor axis length of 1 mm.
  • 10 is an image showing a liquid column.
  • the flow velocity and amplitude of the mixed solution 91 flowing down from the flow port 11f are changed by changing the shape of the hole formed in the flow port 11f. can be changed.
  • the position at which the liquid column 92 breaks can be changed. For example, when the hole has a circular shape with a diameter of 1.5 mm, as shown in FIG. 6, the liquid column 92 breaks at a position P1 which is about 5 mm away from the flow port 11f in the vertical direction.
  • the hole has an elliptical shape with a major axis length of 2 mm and a minor axis length of 1 mm, as shown in FIG. of jet drops occur.
  • the degree of freedom of the parameters of the liquid column 92 is high, and it is possible to select the parameters of the liquid column 92 that can increase the atomization efficiency of the ultrasonic atomization separation device 3A. can.
  • This point also applies to the ultrasonic atomization/separation devices 1, 2, 3, and 3B described above and the ultrasonic atomization/separation devices 4 and 6, which will be described later.
  • FIG. 8 is a diagram schematically illustrating an ultrasonic atomization separation apparatus of a fourth embodiment.
  • the ultrasonic atomization separation device 4 includes a liquid separation tank 14 .
  • the liquid separation tank 14 separates and recovers the separated components and other components contained in the mixed solution 91 .
  • the liquid separation tank 14 includes a first solution recovery tank 61 and a second solution recovery tank 62.
  • the first solution recovery tank 61 includes a mixed solution receiving portion 71 arranged vertically below the flow-down port 11f. Thereby, the first solution recovery tank 61 receives the mixed solution 91 flowing down from the flow-down port 11f and recovers the received mixed solution 91 . Also, the first solution recovery tank 61 stores the recovered mixed solution 91 .
  • the second solution recovery tank 62 is arranged along the liquid column 92 so as to be shifted horizontally from below the flow-down port 11f in the vertical direction.
  • the mist 94 emitted from the liquid column 92 moves vertically downward along the liquid column 92 .
  • the second solution recovery tank 62 receives the mist 94 emitted from the liquid column 92 and recovers the received mist 94 .
  • the second solution recovery tank 62 accommodates separated components generated by collecting the recovered mist 94 . Thereby, the separated component can be extracted from the mixed solution 91 .
  • the ultrasonic atomization separation device 4 does not require a mechanism for conveying the mist 94 when extracting the separated components.
  • FIG. 9 is a diagram schematically illustrating a humidity control system of a fifth embodiment.
  • a humidity control system 101 of the fifth embodiment illustrated in FIG. 9 includes the ultrasonic atomization separation device 4 of the fourth embodiment, a humidity control mechanism 111 and a circulation mechanism 112.
  • the circulation mechanism 112 transfers the mixed solution 91 collected in the first solution collection tank 61 from the flow-down port 11 f to the humidity control mechanism 111 .
  • the humidity control mechanism 111 sucks air, causes the transferred mixed solution 91 to absorb moisture in the sucked air, and discharges the dehumidified air.
  • the circulation mechanism 112 further transfers the mixed solution 91 that has absorbed moisture in the air to the atomization tank 11 .
  • the ultrasonic atomization separation device 4 separates the moisture of the separated components from the mixed solution 91 transported to the atomization tank 11 that has absorbed moisture in the air, and converts the mixed solution 91 from which the moisture has been separated into the first solution.
  • the water is collected in the collection tank 61 and the separated water is collected in the second solution collection tank 62 . Thereby, the ultrasonic atomization separation device 4 regenerates the hygroscopic ability of the mixed solution 91 .
  • the humidity conditioning mechanism 111 includes an air inlet 121 , a blower 122 , a liquid supply section 123 , a moisture absorption section 124 , a liquid storage tank 125 and an air outlet 126 .
  • the air intake port 121 sucks air existing in the external space of the humidity control mechanism 111 and guides the sucked air to the moisture absorption part 124 .
  • the blower 122 is inserted into the air intake port 121.
  • the blower 122 generates a flow of air that flows from the external space of the humidity control mechanism 111 to the external space of the humidity control mechanism 111 through the air inlet 121 , the moisture absorbing portion 124 and the air outlet 126 in sequence.
  • the liquid supply part 123 is arranged inside the liquid storage tank 125 and arranged vertically above the moisture absorption part 124 .
  • a large number of supply holes are formed in the liquid supply unit 123 to allow the transported mixed solution 91 to flow downward in the vertical direction. Therefore, the liquid supply unit 123 causes the transported mixed solution 91 to flow downward in the vertical direction.
  • the liquid supply unit 123 supplies the transported mixed solution 91 to the hygroscopic unit 124 and causes the mixed solution 91 to pass through the hygroscopic unit 124 .
  • the hygroscopic part 124 is brought into contact with the mixed solution 91 supplied by allowing the guided air to pass through. Thereby, the moisture absorbing part 124 absorbs at least part of the moisture in the air into the mixed solution 91 to generate dehumidified air.
  • the method of bringing air into contact with the mixed solution 91 in the hygroscopic part 124 may be changed.
  • the system is a stationary system in which the mixed solution 91 is left still in the air flow, a spray system in which the mist-like mixed solution 91 is sprayed in the air flow, and a bubbling system in which air bubbles are generated in the mixed solution 91.
  • the mixed solution 91 may be made to flow down into a medium such as a column or a honeycomb structure in an air flow to permeate into the medium.
  • the liquid storage tank 125 stores the mixed solution 91 that has passed through the moisture absorption part 124 and absorbed moisture in the air.
  • the air outlet 126 guides the dehumidified air to the external space of the humidity control mechanism 111 and discharges the guided air.
  • the circulation mechanism 112 includes a first liquid introduction section 131 , a second liquid introduction section 132 and a pump 133 .
  • the first liquid introduction part 131 is a tube, a pipe, or the like. One end of the first liquid introduction part 131 is connected to the first solution recovery tank 61 . The other end of the first liquid introduction portion 131 is connected to the liquid supply portion 123 . Thereby, the first liquid introduction section 131 guides the mixed solution 91 from the first solution recovery tank 61 to the liquid supply section 123 .
  • the second liquid introduction part 132 is a tube, a pipe, or the like. One end of the second liquid introduction part 132 is connected to the liquid storage tank 125 . The other end of the second liquid introduction part 132 is connected to the atomization tank 11 . Thereby, the second liquid introduction part 132 guides the mixed solution 91 from the liquid storage tank 125 to the atomization tank 11 .
  • the pump 133 is inserted into the first liquid introducing portion 131 .
  • the pump 133 generates a flow of the mixed solution 91 that flows from the first solution recovery tank 61 to the liquid supply section 123 via the first liquid introducing section 131 .
  • the first solution recovery tank 61, the first liquid introduction part 131, and the liquid supply part 123 constitute a first transfer part that transfers the mixed solution 91 that has flowed down from the flow-down port 11f to the moisture absorption part 124.
  • the liquid storage tank 125 and the second liquid introduction section 132 constitute a second transfer section that transfers the mixed solution 91 that has absorbed moisture in the air from the moisture absorption section 124 to the atomization tank 11 .
  • the humidity control system 101 it is not necessary to change the phase of the separated component water from liquid to gas in order to regenerate the humidity control ability of the mixed solution 91 and generate the hygroscopic liquid. Therefore, the water content of the separated components can be efficiently separated. Therefore, it is possible to provide the humidity control system 101 with high energy efficiency.
  • FIG. 10 is a diagram schematically illustrating a humidity control system of a sixth embodiment.
  • the ultrasonic atomization separation device 6 includes a plurality of ultrasonic wave generating mechanisms 12 . Also, a plurality of flow-down ports 11f corresponding to the plurality of ultrasonic wave generating mechanisms 12 are formed in the bottom 11b.
  • Each ultrasonic wave generating mechanism 12 generates ultrasonic waves 93 and applies the generated ultrasonic waves 93 to the mixed solution 91 contained in the atomization tank 11 .
  • the ultrasonic wave 93 imparted to the mixed solution 91 propagates through the mixed solution 91 and reaches the liquid column 92 flowing down from the flow-down port 11f corresponding to each ultrasonic wave generating mechanism 12, and the mixed solution constituting the liquid column 92 91 is atomized to release a mist 94 containing separated components from a liquid column 92 .
  • the liquid separation tank 14 includes a plurality of second solution recovery tanks 62 corresponding to the plurality of ultrasonic wave generating mechanisms 12 respectively.
  • the second solution recovery tank 62 corresponding to each ultrasonic generating mechanism 12 receives the mist 94 released from the liquid column 92 flowing down from the flow-down port 11f corresponding to each ultrasonic generating mechanism 12, and collects the received mist 94. do.
  • the present disclosure is not limited to the above embodiments, but has substantially the same configuration, the same effect, or the same purpose as the configuration shown in the above embodiment. can be replaced with

Abstract

Provided is an ultrasonic atomization separation device in which atomization efficiency can be increased and reduction in positioning accuracy can be allowed. This ultrasonic atomization separation device comprises: an atomizing tank that stores a mixed solution including at least a first solution and second solution and that has a downflow port which is formed on the bottom or side wall thereof through which the mixed solution flows down; and an oscillator that faces the downflow port through the mixed solution and applies ultrasonic waves to the mixed solution. The device atomizes and separates at least a part of the second solution contained in the mixed solution by applying the ultrasonic waves.

Description

超音波霧化分離装置及び調湿システムUltrasonic atomization separator and humidity control system
 本開示は、超音波霧化分離装置及び調湿システムに関する。本開示は、2021年3月12日に日本に出願された特願2021-040090号に優先権を主張し、その内容をここに援用する。 The present disclosure relates to an ultrasonic atomization separation device and a humidity control system. The present disclosure claims priority to Japanese Patent Application No. 2021-040090 filed in Japan on March 12, 2021, the contents of which are incorporated herein.
 超音波霧化分離装置においては、分離成分を含む混合溶液の中から混合溶液の表面に向けて超音波が放射されて、超音波の波圧により混合溶液の表面から鉛直方向上方に伸びる液柱が形成される。また、液柱の表面においてキャピラリー波が破断して、分離成分が微小な液滴となって放出される。これにより、分離成分が混合溶液に含まれる他成分から分離される。 In the ultrasonic atomization separation device, ultrasonic waves are emitted from the mixed solution containing the separated components toward the surface of the mixed solution, and the liquid column extends vertically upward from the surface of the mixed solution due to the wave pressure of the ultrasonic waves. is formed. Also, the capillary wave is broken on the surface of the liquid column, and the separated components are discharged as fine droplets. Thereby, the separated component is separated from other components contained in the mixed solution.
 例えば、特許文献1に記載された液体の分離装置においては、2種以上の物質を含む液体が超音波振動させられて液面から液柱が突出させられる。また、液柱の周囲にミストが発生させられる。これにより、特定の液体が高濃度に分離される(段落0033,0034,0038及び0045)。 For example, in the liquid separation device described in Patent Document 1, a liquid containing two or more substances is ultrasonically vibrated to cause a liquid column to protrude from the liquid surface. Also, mist is generated around the liquid column. As a result, the specific liquid is separated at a high concentration (paragraphs 0033, 0034, 0038 and 0045).
特許5470514号公報Japanese Patent No. 5470514
 超音波の波圧により液柱を形成するためには、大きなエネルギーが必要である。このため、上述した超音波霧化分離装置は、低い霧化効率しか有しない。 A large amount of energy is required to form a liquid column by the wave pressure of ultrasonic waves. For this reason, the ultrasonic atomization separator described above has only low atomization efficiency.
 また、超音波の波圧により形成される液柱は、狭い範囲にしか存在しない音響流により形成される。例えば、液柱は、超音波を放射する振動子の放射面の中央の1mmから2mm程度の直径しか有しない領域において発生する音響流により形成される。このため、上述した超音波霧化分離装置においては、微小な液滴を吐出するノズルの吐出口の位置に液柱を形成するために高い位置合わせの精度が必要である。 In addition, the liquid column formed by the wave pressure of ultrasonic waves is formed by an acoustic flow that exists only in a narrow range. For example, a liquid column is formed by an acoustic stream generated in an area having a diameter of only about 1 mm to 2 mm in the center of the radiation surface of a transducer that emits ultrasonic waves. Therefore, in the ultrasonic atomization separation apparatus described above, high alignment accuracy is required in order to form a liquid column at the position of the ejection port of the nozzle that ejects minute droplets.
 本開示は、これらの問題に鑑みてなされた。本開示は、霧化効率を高くすることができ、位置合わせの精度が低くなることを許容することができる超音波霧化分離装置を提供することを目的とする。 This disclosure has been made in view of these problems. SUMMARY OF THE INVENTION An object of the present disclosure is to provide an ultrasonic atomization separation device that can increase the atomization efficiency and allow for lower alignment accuracy.
 本開示の一形態の超音波霧化分離装置は、少なくとも第1溶液及び第2溶液を含む混合溶液を収容し、底又は側壁に前記混合溶液が流下する流下口が形成された霧化槽と、前記混合溶液を介して前記流下口と対向し前記混合溶液に超音波を付与する振動子と、を備え、前記超音波の付与により、前記混合溶液に含まれる前記第2溶液の少なくとも一部を霧化分離させる。 An ultrasonic atomization separation device according to one aspect of the present disclosure includes an atomization tank containing a mixed solution containing at least a first solution and a second solution, and having a bottom or side wall formed with a flow-down port through which the mixed solution flows down. and a vibrator that faces the flow-down port through the mixed solution and applies ultrasonic waves to the mixed solution, and at least a part of the second solution contained in the mixed solution is vibrated by applying the ultrasonic waves. is atomized and separated.
 また、本開示の他の一形態の調湿システムは、本開示の一形態の超音波霧化分離装置と、前記超音波霧化分離装置から移送された前記混合溶液に空気中の水分を吸湿させる吸湿部と、前記流下口から流下した前記混合溶液を、前記吸湿部に移送する第1移送部と、空気中の水分を吸湿した前記混合溶液を、前記吸湿部から前記霧化槽に移送する第2移送部と、を備える。 Further, a humidity control system of another aspect of the present disclosure includes an ultrasonic atomization separation device of one aspect of the present disclosure, and the mixed solution transferred from the ultrasonic atomization separation device absorbs moisture in the air. a first transfer section for transferring the mixed solution flowing down from the flow-down port to the moisture absorbing section; and transferring the mixed solution having absorbed moisture in the air from the moisture absorbing section to the atomization tank. and a second transfer section for carrying out.
 本開示によれば、霧化効率を高くすることができ、位置合わせの精度が低くなることを許容することができる超音波霧化分離装置を提供することができる。 According to the present disclosure, it is possible to provide an ultrasonic atomization separation device that can increase the atomization efficiency and allow for lower alignment accuracy.
第1実施形態の超音波霧化分離装置を模式的に図示する図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which illustrates typically the ultrasonic atomization separation apparatus of 1st Embodiment. 第2実施形態の超音波霧化分離装置を模式的に図示する図である。It is a figure which illustrates typically the ultrasonic atomization separation apparatus of 2nd Embodiment. 第3実施形態の超音波霧化分離装置を模式的に図示する図である。It is a figure which illustrates the ultrasonic atomization separation apparatus of 3rd Embodiment typically. 第3実施形態の第1変形例の超音波霧化分離装置を模式的に図示する図である。FIG. 11 is a diagram schematically illustrating an ultrasonic atomization separation device of a first modification of the third embodiment; 第3実施形態の第2変形例の超音波霧化分離装置を模式的に図示する図である。FIG. 11 is a diagram schematically illustrating an ultrasonic atomization separation device of a second modification of the third embodiment; 第3実施形態の第1変形例の超音波霧化分離装置において流下口に形成された孔が1.5mmの径を有する円形状を有する場合に形成される液柱を示す画像である。FIG. 10 is an image showing a liquid column formed when the hole formed in the flow-down port has a circular shape with a diameter of 1.5 mm in the ultrasonic atomization separation device of the first modified example of the third embodiment; FIG. 第3実施形態の第1変形例の超音波霧化分離装置において流下口に形成された孔が2mmの長軸長及び1mmの短軸長を有する楕円形状を有する場合に形成される液柱を示す画像である。The liquid column formed when the hole formed in the flow-down port in the ultrasonic atomization separation apparatus of the first modification of the third embodiment has an elliptical shape with a long axis length of 2 mm and a short axis length of 1 mm is an image showing. 第4実施形態の超音波霧化分離装置を模式的に図示する図である。It is a figure which illustrates the ultrasonic atomization separation apparatus of 4th Embodiment typically. 第5実施形態の調湿システムを模式的に図示する図である。FIG. 12 is a diagram schematically illustrating a humidity control system of a fifth embodiment; FIG. 第6実施形態の調湿システムを模式的に図示する図である。FIG. 11 is a diagram schematically illustrating a humidity control system of a sixth embodiment;
 以下、本開示の実施形態について、図面を参照しつつ説明する。なお、図面については、同一又は同等の要素には同一の符号を付し、重複する説明は省略する。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the drawings, the same or equivalent elements are denoted by the same reference numerals, and overlapping descriptions are omitted.
 1 第1実施形態
 1.1 超音波霧化分離装置の概略
 図1は、第1実施形態の超音波霧化分離装置を模式的に図示する図である。
1. First Embodiment 1.1 Outline of Ultrasonic Atomization Separation Device FIG. 1 is a diagram schematically illustrating an ultrasonic atomization separation device of a first embodiment.
 図1に図示される第1実施形態の超音波霧化分離装置1は、混合溶液91に含まれる分離成分の少なくとも一部を霧状に霧化して分離成分の少なくとも一部を混合溶液91に含まれる他成分から分離する。他成分から分離される分離成分は、混合溶液91に含まれる分離成分の全部である場合もあるし、混合溶液91に含まれる分離成分の一部である場合もある。空気中の水分を吸湿する調湿システムに超音波霧化分離装置1が組み込まれた場合は、超音波霧化分離装置1は、吸湿された水分の量と概ね同じ量の水分を分離成分として分離する。 The ultrasonic atomization separation device 1 of the first embodiment illustrated in FIG. Separate from other ingredients in it. The separated components separated from the other components may be all of the separated components contained in the mixed solution 91 or may be part of the separated components contained in the mixed solution 91 . When the ultrasonic atomization separation device 1 is incorporated in a humidity control system that absorbs moisture in the air, the ultrasonic atomization separation device 1 separates approximately the same amount of moisture as the moisture absorbed. To separate.
 図1に図示されるように、超音波霧化分離装置1は、霧化槽11及び超音波発生機構12を備える。 As illustrated in FIG. 1 , the ultrasonic atomization separation device 1 includes an atomization tank 11 and an ultrasonic wave generation mechanism 12 .
 霧化槽11は、混合溶液91を収容し、収容した混合溶液91を流下させて液柱92を形成する。 The atomization tank 11 accommodates the mixed solution 91 and causes the accommodated mixed solution 91 to flow down to form a liquid column 92 .
 超音波発生機構12は、超音波93を発生し、発生した超音波93を霧化槽11に収容された混合溶液91に付与する。混合溶液91に付与された超音波93は、混合溶液91の中を伝搬して液柱92に至り、液柱92を構成する混合溶液91を霧化して液柱92から分離成分を含むミスト94を放出させる。ミスト94は、微小な液滴である。これらにより、超音波霧化分離装置1は、混合溶液91への超音波93の付与により、混合溶液91に含まれる分離成分を混合溶液91に含まれる他成分から霧化分離させる。 The ultrasonic wave generating mechanism 12 generates ultrasonic waves 93 and applies the generated ultrasonic waves 93 to the mixed solution 91 contained in the atomization tank 11 . The ultrasonic wave 93 imparted to the mixed solution 91 propagates through the mixed solution 91 and reaches the liquid column 92 , atomizes the mixed solution 91 forming the liquid column 92 , and forms a mist 94 containing separated components from the liquid column 92 . is released. The mist 94 is fine droplets. Accordingly, the ultrasonic atomization separation device 1 atomizes and separates the separated components contained in the mixed solution 91 from other components contained in the mixed solution 91 by applying the ultrasonic waves 93 to the mixed solution 91 .
 1.2 霧化槽
 図1に図示されるように、霧化槽11の底11bは、流下口11fを備える。流下口11fが、霧化槽11の側壁11sに備えられてもよい。
1.2 Atomization Tank As illustrated in FIG. 1, the bottom 11b of the atomization tank 11 is provided with a flow-down port 11f. 11 f of side walls of the atomization tank 11 may be equipped with 11 f of flow-down ports.
 流下口11fは、混合溶液91を流下させて液柱92を形成する。 The flow-down port 11f causes the mixed solution 91 to flow down to form a liquid column 92.
 混合溶液91の流下は、混合溶液91の自重により行われる。すなわち、混合溶液91の流下は、混合溶液91の自由落下である。このため、液柱92は、鉛直方向に延びる。 The mixed solution 91 flows down by the weight of the mixed solution 91 itself. That is, the flowing down of the mixed solution 91 is free fall of the mixed solution 91 . Therefore, the liquid column 92 extends vertically.
 このような液柱92の形成によれば、液柱92を形成するために必要なエネルギーを小さくすることができ、超音波霧化分離装置1の霧化効率を高くすることができる。また、位置合わせの精度が低くなることを許容することができる。 By forming the liquid column 92 in this manner, the energy required to form the liquid column 92 can be reduced, and the atomization efficiency of the ultrasonic atomization separation device 1 can be increased. In addition, it is possible to allow lower alignment accuracy.
 液柱92は、鉛直方向に連続するひとつの液柱であってもよいし、破断されて鉛直方向に互いに分断された複数の液柱片の集合であってもよい。 The liquid column 92 may be one vertically continuous liquid column, or may be a set of a plurality of liquid column pieces that are broken and separated from each other in the vertical direction.
 流下口11fには、混合溶液91を通過させる孔が形成される。当該孔は、円形状の平面形状を有する。混合溶液91を流下させることができる限り、当該孔が、円形状の平面形状以外の平面形状を有してもよい。例えば、当該孔が、楕円形状、四角形状又は多角形状の平面形状を有してもよい。当該孔は、1mm以上5mm以下の径を有する。混合溶液91を流下させることができる限り、当該孔が、1mmより小さい又は5mmより大きい径を有してもよい。 A hole through which the mixed solution 91 passes is formed in the flow-down port 11f. The hole has a circular planar shape. The hole may have a planar shape other than a circular planar shape as long as the mixed solution 91 can flow down. For example, the hole may have an oval, square, or polygonal planar shape. The hole has a diameter of 1 mm or more and 5 mm or less. The hole may have a diameter smaller than 1 mm or larger than 5 mm as long as the mixed solution 91 can flow down.
 霧化槽11に、混合溶液91を外部から供給するための液供給口が形成されてもよい。霧化槽11が液供給口を開閉する蓋を備えてもよい、混合溶液91が外部から供給されない場合には、液供給口は蓋により閉じられる。 A liquid supply port for supplying the mixed solution 91 from the outside may be formed in the atomization tank 11 . The atomization tank 11 may have a lid that opens and closes the liquid supply port. When the mixed solution 91 is not supplied from the outside, the liquid supply port is closed by the lid.
 1.3 超音波発生機構
 図1に図示されるように、超音波発生機構12は、電源21、発振回路22及び振動子23を備える。
1.3 Ultrasonic Generating Mechanism As shown in FIG.
 電源21は、発振回路22に電力を供給する。 The power supply 21 supplies power to the oscillation circuit 22 .
 発振回路22は、供給された電力を使用して動作する。発振回路22は、駆動信号を発振し、発振した駆動信号を振動子23に供給する。 The oscillation circuit 22 operates using the supplied power. The oscillation circuit 22 oscillates a drive signal and supplies the oscillated drive signal to the vibrator 23 .
 振動子23は、供給された駆動信号に応じた超音波93を発生する。 The vibrator 23 generates an ultrasonic wave 93 according to the supplied drive signal.
 霧化槽11の天板11tには、挿入孔11iが形成される。振動子23は、挿入孔11iに挿入される。これにより、振動子23の放射面23sは、混合溶液91に浸される。これにより、振動子23は、混合溶液91に超音波93を付与することができる。 The top plate 11t of the atomization tank 11 is formed with an insertion hole 11i. The vibrator 23 is inserted into the insertion hole 11i. Thereby, the radiation surface 23 s of the vibrator 23 is immersed in the mixed solution 91 . Thereby, the vibrator 23 can apply the ultrasonic waves 93 to the mixed solution 91 .
 振動子23の放射面23sは、超音波93を放射する。振動子23の放射面23sは、鉛直方向下方に向けられ、流下口11fの鉛直方向上方に配置される。このため、振動子23の放射面23sは、流下口11fに向けられ、混合溶液91を介して流下口11fと対向し、流下口11fに向けて超音波93を放射する。これにより、振動子23の放射面23sと流下口11fとの間に超音波93の伝搬を阻害する障害物がなくなる。これにより、超音波93を液柱92まで効率よく伝搬させることができる。 A radiation surface 23 s of the transducer 23 radiates ultrasonic waves 93 . A radiation surface 23s of the vibrator 23 faces downward in the vertical direction and is arranged above the flow port 11f in the vertical direction. Therefore, the radiation surface 23s of the vibrator 23 faces the downstream port 11f, faces the downstream port 11f through the mixed solution 91, and radiates the ultrasonic waves 93 toward the downstream port 11f. As a result, there is no obstacle between the radiation surface 23s of the vibrator 23 and the flow-down port 11f that hinders the propagation of the ultrasonic waves 93. As shown in FIG. Thereby, the ultrasonic wave 93 can be efficiently propagated to the liquid column 92 .
 振動子23は、平板状の形状を有する。振動子23が混合溶液91に超音波93を付与することができる限り、振動子23が、平板状の形状以外の形状を有してもよい。例えば、振動子23が、レンズ状の形状を有してもよい。 The vibrator 23 has a flat plate shape. As long as the oscillator 23 can apply the ultrasonic wave 93 to the mixed solution 91, the oscillator 23 may have a shape other than the flat plate shape. For example, the vibrator 23 may have a lens-like shape.
 超音波93は、望ましくは、1MHz以上5MHz以下の周波数を有する。 The ultrasonic wave 93 desirably has a frequency of 1 MHz or more and 5 MHz or less.
 1.4 空焚きの発生の抑制
 図1に図示されるように、天板11tは、凹状の断面形状を有する。このため、天板11tは、中心部に配置されるくぼみ部分31及び外周部に配置される非くぼみ部分32を備える。くぼみ部分31は、非くぼみ部分32より鉛直方向下方に配置される。このため、天板11tは、くぼみ部分31と非くぼみ部分32との間に段差を有する。振動子23が挿入される挿入孔11iは、くぼみ部分31に形成される。これにより、霧化槽11は、振動子23より鉛直方向下方に形成される第1空間41及び振動子23より鉛直方向上方に形成される第2空間42を有する。第2空間42は、第1空間41の少なくとも一部から鉛直方向上方に延びる。振動子23の放射面23sは、第1空間41に露出する。
1.4 Suppression of Occurrence of Dry Heating As shown in FIG. 1, the top plate 11t has a concave cross-sectional shape. For this reason, the top plate 11t includes a recessed portion 31 arranged in the central portion and a non-recessed portion 32 arranged in the outer peripheral portion. The recessed portion 31 is arranged vertically below the non-recessed portion 32 . Therefore, the top plate 11t has a step between the recessed portion 31 and the non-recessed portion 32. As shown in FIG. An insertion hole 11 i into which the vibrator 23 is inserted is formed in the recessed portion 31 . Thereby, the atomization tank 11 has a first space 41 formed vertically below the vibrator 23 and a second space 42 formed above the vibrator 23 in the vertical direction. The second space 42 extends vertically upward from at least a portion of the first space 41 . A radiation surface 23 s of the vibrator 23 is exposed to the first space 41 .
 混合溶液91は、振動子23の放射面23sより鉛直方向上方まで貯められる。このため、混合溶液91は、霧化槽11の第1空間41の全体を満たし、霧化槽11の第2空間42の少なくとも一部を満たす。これにより、第1空間41に露出する振動子23の放射面23sが混合溶液91に浸される。これにより、振動子23の放射面23sが混合溶液91に浸されない状態で振動子23の放射面23sから超音波93が放射されて空焚きが発生することを抑制することができる。 The mixed solution 91 is accumulated vertically above the radiation surface 23 s of the oscillator 23 . Therefore, the mixed solution 91 fills the entire first space 41 of the atomization tank 11 and at least partially fills the second space 42 of the atomization tank 11 . Thereby, the radiation surface 23 s of the vibrator 23 exposed to the first space 41 is immersed in the mixed solution 91 . As a result, it is possible to prevent the ultrasonic waves 93 from being radiated from the radiation surface 23s of the transducer 23 in a state where the radiation surface 23s of the transducer 23 is not immersed in the mixed solution 91, thereby preventing empty heating from occurring.
 空焚きが発生することを抑制するための構造が、上述した構造と異なる構造であってもよい。 The structure for suppressing the occurrence of empty heating may be a structure different from the structure described above.
 1.5 混合溶液
 混合溶液91は、少なくとも第1溶液及び第2溶液を含む。
1.5 Mixed Solution The mixed solution 91 contains at least a first solution and a second solution.
 第1溶液及び第2溶液は、互いに異なる2種の溶液である。例えば、第1溶液は、他成分を構成する吸湿性物質を含む溶液であり、第2溶液は、分離成分を構成する水を含む溶液である。 The first solution and the second solution are two different solutions. For example, the first solution is a solution containing a hygroscopic substance constituting another component, and the second solution is a solution containing water constituting a separate component.
 吸湿性物質は、水に溶解する物質又は水と混和する物質である。吸湿性物質としては、1種の吸湿性物質が単独で使用されてもよいし、2種以上の吸湿性物質が混合されて使用されてもよい。吸湿性物質は、有機材料及び無機材料の片方又は両方を含む。 A hygroscopic substance is a substance that dissolves in water or a substance that is miscible with water. As the hygroscopic substance, one hygroscopic substance may be used alone, or two or more hygroscopic substances may be used in combination. Hygroscopic substances include one or both of organic and inorganic materials.
 有機材料は、例えば、2価以上のアルコール、ケトン、アミド基を有する有機溶媒、糖類及び保湿化粧品等の原料として用いられる材料からなる群より選択される少なくとも1種を含み、望ましくは、2価以上のアルコール、アミド基を有する有機溶媒、糖類及び保湿化粧品等の原料として用いられる材料からなる群より選択される少なくとも1種を含む。2価以上のアルコール、アミド基を有する有機溶媒、糖類及び保湿化粧品等の原料として用いられる材料は、高い親水性を有する。このため、有機材料がこれらからなる群より選択される少なくとも1種を含む場合は、吸湿性物質の吸湿性を高くすることができる。 The organic material includes, for example, at least one selected from the group consisting of dihydric or higher alcohols, ketones, organic solvents having an amide group, sugars, and materials used as raw materials for moisturizing cosmetics. It contains at least one selected from the group consisting of the above alcohols, organic solvents having an amide group, sugars, and materials used as raw materials for moisturizing cosmetics and the like. Bivalent or higher alcohols, organic solvents having amide groups, sugars, and materials used as raw materials for moisturizing cosmetics have high hydrophilicity. Therefore, when the organic material contains at least one selected from the group consisting of these, the hygroscopic property of the hygroscopic substance can be increased.
 2価以上のアルコールは、例えば、グリセリン、プロパンジオール、ブタンジオール、ペンタンジオール、トリメチロールプロパン、ブタントリオール、エチレングリコール、ジエチレングリコール及びトリエチレングリコールからなる群より選択される少なくとも1種を含む。 Dihydric or higher alcohol includes, for example, at least one selected from the group consisting of glycerin, propanediol, butanediol, pentanediol, trimethylolpropane, butanetriol, ethylene glycol, diethylene glycol and triethylene glycol.
 アミド基を有する有機溶媒は、例えば、ホルムアミド及びアセトアミドからなる群より選択される少なくとも1種を含む。 The organic solvent having an amide group includes, for example, at least one selected from the group consisting of formamide and acetamide.
 糖類は、例えば、スクロース、プルラン、グルコース、キシロース、フラクトース、マンニトール及びソルビトールからなる群より選択される少なくとも1種を含む。 Sugars include, for example, at least one selected from the group consisting of sucrose, pullulan, glucose, xylose, fructose, mannitol and sorbitol.
 保湿化粧品等の原料として用いられる材料は、2-メタクリロイルオキシエチルホスホリルコリン(MPC)、ベタイン、ヒアルロン酸及びコラーゲンからなる群より選択される少なくとも1種を含む。 Materials used as raw materials for moisturizing cosmetics and the like include at least one selected from the group consisting of 2-methacryloyloxyethylphosphorylcholine (MPC), betaine, hyaluronic acid and collagen.
 無機材料は、例えば、塩化カルシウム、塩化リチウム、塩化マグネシウム、塩化カリウム、塩化ナトリウム、塩化亜鉛、塩化アルミニウム、臭化リチウム、臭化カルシウム、臭化カリウム、水酸化ナトリウム及びピロリドンカルボン酸ナトリウムからなる群より選択される少なくとも1種を含む。 Inorganic materials are, for example, the group consisting of calcium chloride, lithium chloride, magnesium chloride, potassium chloride, sodium chloride, zinc chloride, aluminum chloride, lithium bromide, calcium bromide, potassium bromide, sodium hydroxide and sodium pyrrolidonecarboxylate. at least one selected from
 1.6 気泡の除去
 超音波霧化分離装置1が振動子23の放射面23sに付着した気泡を除去する機構を備えてもよい。これにより、振動子23の放射面23sに気泡が付着して超音波93を混合溶液91中を伝搬させることができない状態を解消することができる。
1.6 Removal of Air Bubbles The ultrasonic atomization/separation device 1 may have a mechanism for removing air bubbles adhering to the radiation surface 23 s of the vibrator 23 . As a result, the state in which the ultrasonic waves 93 cannot be propagated through the mixed solution 91 due to air bubbles adhering to the radiation surface 23s of the transducer 23 can be eliminated.
 当該機構は、例えば、振動子23の放射面23sに当てられる一端及び混合溶液91の外部に配置される他端を有する細い管である。 The mechanism is, for example, a thin tube having one end that contacts the radiation surface 23 s of the oscillator 23 and the other end that is placed outside the mixed solution 91 .
 2 第2実施形態
 図2は、第2実施形態の超音波霧化分離装置を模式的に図示する図である。
2. Second Embodiment FIG. 2 is a diagram schematically illustrating an ultrasonic atomization separation apparatus according to a second embodiment.
 以下では、図2に図示される第2実施形態の超音波霧化分離装置2が図1に図示される第1実施形態の超音波霧化分離装置1と相違する点が説明される。説明されない点については、超音波霧化分離装置1において採用される構成と同様の構成が超音波霧化分離装置2においても採用される。 Below, the difference between the ultrasonic atomization separation device 2 of the second embodiment illustrated in FIG. 2 and the ultrasonic atomization separation device 1 of the first embodiment illustrated in FIG. 1 will be described. As for the points that are not explained, the same configuration as that employed in the ultrasonic atomization separation device 1 is also employed in the ultrasonic atomization separation device 2 .
 図2に図示されるように、超音波霧化分離装置2は、振動子保持部材13を備える。 As illustrated in FIG. 2 , the ultrasonic atomization separation device 2 includes a vibrator holding member 13 .
 振動子保持部材13は、天板11tに形成された挿入孔11iに挿抜され、霧化槽11内に着脱される。これにより、超音波霧化分離装置2がメンテナンスされる際に振動子保持部材13及び振動子23を容易に交換することができる。 The vibrator holding member 13 is inserted into and removed from the insertion hole 11i formed in the top plate 11t, and is attached to and detached from the atomization tank 11. Thereby, the vibrator holding member 13 and the vibrator 23 can be easily replaced when the ultrasonic atomization/separation device 2 is maintained.
 振動子保持部材13は、筐体51を備える。筐体51は、振動子保持部材13が天板11tに形成された挿入孔11iに挿入された場合に霧化槽11内に配置される。 The vibrator holding member 13 has a housing 51 . The housing 51 is arranged in the atomization tank 11 when the vibrator holding member 13 is inserted into the insertion hole 11i formed in the top plate 11t.
 筐体51の底51bには、振動子23が固定される。これにより、振動子23の放射面23sが鉛直方向下方に露出する。 A vibrator 23 is fixed to the bottom 51 b of the housing 51 . As a result, the radiation surface 23s of the vibrator 23 is exposed vertically downward.
 天板11tに形成された挿入孔11iに振動子保持部材13が挿入された状態においては、霧化槽11及び振動子保持部材13は、密閉状態となる。これにより、霧化槽11の外部から霧化槽11及び振動子保持部材13に水が侵入することを抑制することができる。当該状態においては、振動子保持部材13は、一定の位置に固定される。これにより、流下口11fに対する振動子23の相対位置を一定に維持することができる。また、流下口11fから振動子23までの距離を一定に維持することができる。これにより、超音波霧化分離装置2の霧化効率を高くすることができる配置を維持することができる。 When the vibrator holding member 13 is inserted into the insertion hole 11i formed in the top plate 11t, the atomization tank 11 and the vibrator holding member 13 are in a sealed state. As a result, it is possible to prevent water from entering the atomization tank 11 and the vibrator holding member 13 from the outside of the atomization tank 11 . In this state, the vibrator holding member 13 is fixed at a fixed position. Thereby, the relative position of the vibrator 23 with respect to the flow-down port 11f can be maintained constant. Also, the distance from the flow-down port 11f to the vibrator 23 can be kept constant. Thereby, the arrangement that can increase the atomization efficiency of the ultrasonic atomization separation device 2 can be maintained.
 3 第3実施形態
 図3は、第3実施形態の超音波霧化分離装置を模式的に図示する図である。
3 Third Embodiment FIG. 3 is a diagram schematically illustrating an ultrasonic atomization separation device according to a third embodiment.
 以下では、図3に図示される第3実施形態の超音波霧化分離装置3が図2に図示される第2実施形態の超音波霧化分離装置2と相違する点が説明される。説明されない点については、超音波霧化分離装置2において採用される構成と同様の構成が超音波霧化分離装置3においても採用される。 Below, the difference between the ultrasonic atomization separation device 3 of the third embodiment illustrated in FIG. 3 and the ultrasonic atomization separation device 2 of the second embodiment illustrated in FIG. 2 will be described. As for the points that are not explained, the same configuration as that employed in the ultrasonic atomization separation device 2 is also employed in the ultrasonic atomization separation device 3 .
 超音波霧化分離装置3においては、図3に図示されるように、超音波発生機構12が、センサ24を備える。 In the ultrasonic atomization separation device 3, the ultrasonic wave generating mechanism 12 is provided with a sensor 24, as shown in FIG.
 センサ24は、霧化槽11内に配置され、振動子23の放射面23sより鉛直方向上方に配置される。センサ24は、混合溶液91の液位を検知する。 The sensor 24 is arranged inside the atomization tank 11 and above the radiation surface 23 s of the vibrator 23 in the vertical direction. The sensor 24 detects the liquid level of the mixed solution 91 .
 発振回路22は、混合溶液91の液位がセンサ24が設置された位置より低くなったことがセンサ24により検知された場合に、駆動信号を発振することを停止する。これにより、振動子23は、混合溶液91の液位が当該位置より低くなったことがセンサ24により検知された場合に、超音波93を放射することを停止する。これにより、振動子23の放射面23sが混合溶液91に浸されない状態で振動子23の放射面23sから超音波93が放射されて空焚きが発生することを抑制することができる。 The oscillation circuit 22 stops oscillating the drive signal when the sensor 24 detects that the liquid level of the mixed solution 91 has become lower than the position where the sensor 24 is installed. Thereby, the vibrator 23 stops emitting the ultrasonic wave 93 when the sensor 24 detects that the liquid level of the mixed solution 91 has become lower than the position. As a result, it is possible to prevent the ultrasonic waves 93 from being radiated from the radiation surface 23s of the transducer 23 in a state where the radiation surface 23s of the transducer 23 is not immersed in the mixed solution 91, thereby preventing empty heating from occurring.
 超音波霧化分離装置3が流下口11fを開閉する電磁弁を備えてもよい。この場合は、混合溶液91の液位がセンサ24が設置された位置より低くなったことがセンサ24により検知された場合に、電磁弁が流下口11fを閉じる。これにより、混合溶液91の液位が低くなっているにもかかわらず混合溶液91の流下が継続されることを抑制することができる。これにより、空焚きが発生することを抑制することができる。 The ultrasonic atomization separation device 3 may be equipped with an electromagnetic valve that opens and closes the flow port 11f. In this case, when the sensor 24 detects that the liquid level of the mixed solution 91 has become lower than the position where the sensor 24 is installed, the solenoid valve closes the flow-down port 11f. As a result, it is possible to prevent the mixed solution 91 from continuing to flow down even though the liquid level of the mixed solution 91 is low. Thereby, it can suppress that empty heating occurs.
 図4は、第3実施形態の第1変形例の超音波霧化分離装置を模式的に図示する図である。 FIG. 4 is a diagram schematically illustrating the ultrasonic atomization separation device of the first modification of the third embodiment.
 図4に図示される第3実施形態の第1変形例の超音波霧化分離装置3Aにおいては、流下口11fがノズル55を備える。また、流下口11fに形成される孔がノズル55の先端に形成される。これにより、超音波93を当該孔に向かって収束させることができる。これにより、超音波霧化分離装置3Aの霧化効率を高くすることができる。 In the ultrasonic atomization separation device 3A of the first modified example of the third embodiment illustrated in FIG. Also, a hole formed in the flow-down port 11f is formed at the tip of the nozzle 55. As shown in FIG. Thereby, the ultrasonic wave 93 can be focused toward the hole. Thereby, the atomization efficiency of 3 A of ultrasonic atomization separation apparatuses can be made high.
 図5は、第3実施形態の第2変形例の超音波霧化分離装置を模式的に図示する図である。 FIG. 5 is a diagram schematically illustrating an ultrasonic atomization separation device of a second modification of the third embodiment.
 図5に図示される第3実施形態の第2変形例の超音波霧化分離装置3Bにおいては、底11bが円錐状の形状を有する。また、円錐状の形状の先端部は、流下口11fを備える。このため、底11bは、流下口11fに近づくにつれて鉛直方向下方に下がることにより流下口11fに向かって傾斜する傾斜部56を備える。これにより、混合溶液91が流下口11fに形成された孔を通過することを容易にすることができる。これにより、超音波霧化分離装置3Bの霧化効率を高くすることができる。 In the ultrasonic atomization separation device 3B of the second modification of the third embodiment illustrated in FIG. 5, the bottom 11b has a conical shape. Moreover, the conical-shaped tip part is provided with 11 f of flow-down ports. Therefore, the bottom 11b has an inclined portion 56 that slopes downward in the vertical direction as it approaches the outlet 11f. This makes it easier for the mixed solution 91 to pass through the holes formed in the flow-down port 11f. As a result, the atomization efficiency of the ultrasonic atomization separation device 3B can be increased.
 図6は、第3実施形態の第1変形例の超音波霧化分離装置において流下口に形成された孔が1.5mmの径を有する円形状を有する場合に形成される液柱を示す画像である。図7は、第3実施形態の第1変形例の超音波霧化分離装置において流下口に形成された孔が2mmの長軸長及び1mmの短軸長を有する楕円形状を有する場合に形成される液柱を示す画像である。 FIG. 6 is an image showing a liquid column formed when the hole formed in the flow-down port has a circular shape with a diameter of 1.5 mm in the ultrasonic atomization separation device of the first modification of the third embodiment. is. FIG. 7 shows an ultrasonic atomization separation apparatus according to the first modification of the third embodiment in which the hole formed in the flow-down port has an elliptical shape with a major axis length of 2 mm and a minor axis length of 1 mm. 10 is an image showing a liquid column.
 第3実施形態の第1変形例の超音波霧化分離装置3Aにおいては、流下口11fに形成された孔の形状を変化させることにより、流下口11fから流下する混合溶液91の流速及び振幅を変化させることができる。これにより、当該孔の形状を変化させることにより、液柱92が破断する位置を変化させることができる。例えば、当該孔が1.5mmの径を有する円形状を有する場合は、図6に示されるように、流下口11fから鉛直方向下方に約5mm離れた位置P1において液柱92が破断する。また、当該孔が2mmの長軸長及び1mmの短軸長を有する楕円形状を有する場合は、図7に示されるように、流下口11fの直下の位置P2において液柱92が破断し、多くのジェットドロップが発生する。 In the ultrasonic atomization separation device 3A of the first modification of the third embodiment, the flow velocity and amplitude of the mixed solution 91 flowing down from the flow port 11f are changed by changing the shape of the hole formed in the flow port 11f. can be changed. Thus, by changing the shape of the hole, the position at which the liquid column 92 breaks can be changed. For example, when the hole has a circular shape with a diameter of 1.5 mm, as shown in FIG. 6, the liquid column 92 breaks at a position P1 which is about 5 mm away from the flow port 11f in the vertical direction. Further, when the hole has an elliptical shape with a major axis length of 2 mm and a minor axis length of 1 mm, as shown in FIG. of jet drops occur.
 したがって、超音波霧化分離装置3Aにおいては、液柱92のパラメータの自由度が高く、超音波霧化分離装置3Aの霧化効率を高くすることができる液柱92のパラメータを選択することができる。この点は、上述した超音波霧化分離装置1,2,3及び3B並びに後述する超音波霧化分離装置4及び6においても同様である。 Therefore, in the ultrasonic atomization separation device 3A, the degree of freedom of the parameters of the liquid column 92 is high, and it is possible to select the parameters of the liquid column 92 that can increase the atomization efficiency of the ultrasonic atomization separation device 3A. can. This point also applies to the ultrasonic atomization/ separation devices 1, 2, 3, and 3B described above and the ultrasonic atomization/separation devices 4 and 6, which will be described later.
 4 第4実施形態
 図8は、第4実施形態の超音波霧化分離装置を模式的に図示する図である。
4. Fourth Embodiment FIG. 8 is a diagram schematically illustrating an ultrasonic atomization separation apparatus of a fourth embodiment.
 以下では、図8に図示される第4実施形態の超音波霧化分離装置4が図3に図示される第3実施形態の超音波霧化分離装置3と相違する点が説明される。説明されない点については、超音波霧化分離装置3において採用される構成と同様の構成が超音波霧化分離装置4においても採用される。 Below, the difference between the ultrasonic atomization separation device 4 of the fourth embodiment illustrated in FIG. 8 and the ultrasonic atomization separation device 3 of the third embodiment illustrated in FIG. 3 will be described. The same configuration as that employed in the ultrasonic atomization separation device 3 is employed in the ultrasonic atomization separation device 4 as well, except for points that are not explained.
 図8に図示されるように、超音波霧化分離装置4は、液体分離槽14を備える。 As illustrated in FIG. 8 , the ultrasonic atomization separation device 4 includes a liquid separation tank 14 .
 液体分離槽14は、混合溶液91に含まれる分離成分及び他成分を互いに分離して回収する。 The liquid separation tank 14 separates and recovers the separated components and other components contained in the mixed solution 91 .
 図8に図示されるように、液体分離槽14は、第1溶液回収槽61及び第2溶液回収槽62を備える。 As shown in FIG. 8, the liquid separation tank 14 includes a first solution recovery tank 61 and a second solution recovery tank 62.
 第1溶液回収槽61は、流下口11fの鉛直方向下方に配置される混合溶液受け部71を備える。これにより、第1溶液回収槽61は、流下口11fから流下した混合溶液91を受け、受けた混合溶液91を回収する。また、第1溶液回収槽61は、回収した混合溶液91を収容する。 The first solution recovery tank 61 includes a mixed solution receiving portion 71 arranged vertically below the flow-down port 11f. Thereby, the first solution recovery tank 61 receives the mixed solution 91 flowing down from the flow-down port 11f and recovers the received mixed solution 91 . Also, the first solution recovery tank 61 stores the recovered mixed solution 91 .
 第2溶液回収槽62は、流下口11fの鉛直方向下方から水平方向にずらして配置され、液柱92に沿って配置される。液柱92から放出されたミスト94は、液柱92に沿って鉛直方向下方に移動する。これらにより、第2溶液回収槽62は、液柱92から放出されたミスト94を受け、受けたミスト94を回収する。また、第2溶液回収槽62は、回収したミスト94が集合することにより生成される分離成分を収容する。これにより、混合溶液91から分離成分を抽出することができる。 The second solution recovery tank 62 is arranged along the liquid column 92 so as to be shifted horizontally from below the flow-down port 11f in the vertical direction. The mist 94 emitted from the liquid column 92 moves vertically downward along the liquid column 92 . As a result, the second solution recovery tank 62 receives the mist 94 emitted from the liquid column 92 and recovers the received mist 94 . In addition, the second solution recovery tank 62 accommodates separated components generated by collecting the recovered mist 94 . Thereby, the separated component can be extracted from the mixed solution 91 .
 超音波霧化分離装置4においては、分離成分を抽出する際にミスト94を搬送する機構は不要である。 The ultrasonic atomization separation device 4 does not require a mechanism for conveying the mist 94 when extracting the separated components.
 5 第5実施形態
 5.1 調湿システムの概略
 図9は、第5実施形態の調湿システムを模式的に図示する図である。
5 Fifth Embodiment 5.1 Outline of Humidity Control System FIG. 9 is a diagram schematically illustrating a humidity control system of a fifth embodiment.
 図9に図示される第5実施形態の調湿システム101は、第4実施形態の超音波霧化分離装置4、調湿機構111及び循環機構112を備える。 A humidity control system 101 of the fifth embodiment illustrated in FIG. 9 includes the ultrasonic atomization separation device 4 of the fourth embodiment, a humidity control mechanism 111 and a circulation mechanism 112.
 循環機構112は、流下口11fから流下して第1溶液回収槽61に回収された混合溶液91を調湿機構111に移送する。 The circulation mechanism 112 transfers the mixed solution 91 collected in the first solution collection tank 61 from the flow-down port 11 f to the humidity control mechanism 111 .
 調湿機構111は、空気を吸入し、吸入した空気中の水分を移送されてきた混合溶液91に吸湿させ、除湿された空気を排出する。 The humidity control mechanism 111 sucks air, causes the transferred mixed solution 91 to absorb moisture in the sucked air, and discharges the dehumidified air.
 循環機構112は、さらに、空気中の水分を吸湿した混合溶液91を霧化槽11に移送する。 The circulation mechanism 112 further transfers the mixed solution 91 that has absorbed moisture in the air to the atomization tank 11 .
 超音波霧化分離装置4は、霧化槽11に移送されてきた、空気中の水分を吸湿した混合溶液91から分離成分の水分を分離し、水分が分離された混合溶液91を第1溶液回収槽61に回収し、分離した水分を第2溶液回収槽62に回収する。これにより、超音波霧化分離装置4は、混合溶液91の吸湿能力を再生する。 The ultrasonic atomization separation device 4 separates the moisture of the separated components from the mixed solution 91 transported to the atomization tank 11 that has absorbed moisture in the air, and converts the mixed solution 91 from which the moisture has been separated into the first solution. The water is collected in the collection tank 61 and the separated water is collected in the second solution collection tank 62 . Thereby, the ultrasonic atomization separation device 4 regenerates the hygroscopic ability of the mixed solution 91 .
 5.2 調湿機構
 調湿機構111は、空気吸入口121、ブロア122、液体供給部123、吸湿部124、液体貯留槽125及び空気排出口126を備える。
5.2 Humidity Conditioning Mechanism The humidity conditioning mechanism 111 includes an air inlet 121 , a blower 122 , a liquid supply section 123 , a moisture absorption section 124 , a liquid storage tank 125 and an air outlet 126 .
 空気吸入口121は、調湿機構111の外部空間に存在する空気を吸入し、吸入した空気を吸湿部124に導く。 The air intake port 121 sucks air existing in the external space of the humidity control mechanism 111 and guides the sucked air to the moisture absorption part 124 .
 ブロア122は、空気吸入口121に挿入される。ブロア122は、調湿機構111の外部空間から空気吸入口121、吸湿部124及び空気排出口126を順次に経由して調湿機構111の外部空間まで流れる空気の流れを生成する。 The blower 122 is inserted into the air intake port 121. The blower 122 generates a flow of air that flows from the external space of the humidity control mechanism 111 to the external space of the humidity control mechanism 111 through the air inlet 121 , the moisture absorbing portion 124 and the air outlet 126 in sequence.
 液体供給部123は、液体貯留槽125の内部に配置され、吸湿部124の鉛直方向上方に配置される。また、液体供給部123には、移送されてきた混合溶液91を鉛直方向下方に流下させるための多数の供給孔が形成されている。このため、液体供給部123は、移送されてきた混合溶液91を鉛直方向下方に流下させる。これにより、液体供給部123は、移送されてきた混合溶液91を吸湿部124に供給して混合溶液91に吸湿部124を通過させる。 The liquid supply part 123 is arranged inside the liquid storage tank 125 and arranged vertically above the moisture absorption part 124 . In addition, a large number of supply holes are formed in the liquid supply unit 123 to allow the transported mixed solution 91 to flow downward in the vertical direction. Therefore, the liquid supply unit 123 causes the transported mixed solution 91 to flow downward in the vertical direction. As a result, the liquid supply unit 123 supplies the transported mixed solution 91 to the hygroscopic unit 124 and causes the mixed solution 91 to pass through the hygroscopic unit 124 .
 吸湿部124は、導かれてきた空気を通過させて供給された混合溶液91に接触させる。これにより、吸湿部124は、空気中の水分の少なくとも一部を混合溶液91に吸湿させて除湿された空気を生成する。 The hygroscopic part 124 is brought into contact with the mixed solution 91 supplied by allowing the guided air to pass through. Thereby, the moisture absorbing part 124 absorbs at least part of the moisture in the air into the mixed solution 91 to generate dehumidified air.
 吸湿部124において空気を混合溶液91に接触させる方式が変更されてもよい。例えば、当該方式が、空気の流れ中に混合溶液91を静置する静置方式、空気の流れに霧状の混合溶液91を吹き付けるスプレー方式、空気の気泡を混合溶液91中に生成するバブリング方式、空気の流れ中で混合溶液91をカラム、ハニカム構造体等の媒体に流下させて媒体に浸み込ませる方式等に変更されてもよい。 The method of bringing air into contact with the mixed solution 91 in the hygroscopic part 124 may be changed. For example, the system is a stationary system in which the mixed solution 91 is left still in the air flow, a spray system in which the mist-like mixed solution 91 is sprayed in the air flow, and a bubbling system in which air bubbles are generated in the mixed solution 91. Alternatively, the mixed solution 91 may be made to flow down into a medium such as a column or a honeycomb structure in an air flow to permeate into the medium.
 液体貯留槽125は、吸湿部124を通過して空気中の水分を吸湿した混合溶液91を貯留する。 The liquid storage tank 125 stores the mixed solution 91 that has passed through the moisture absorption part 124 and absorbed moisture in the air.
 空気排出口126は、除湿された空気を調湿機構111の外部空間に導き、導いた空気を排出する。 The air outlet 126 guides the dehumidified air to the external space of the humidity control mechanism 111 and discharges the guided air.
 5.3 循環機構
 循環機構112は、第1導液部131、第2導液部132及びポンプ133を備える。
5.3 Circulation Mechanism The circulation mechanism 112 includes a first liquid introduction section 131 , a second liquid introduction section 132 and a pump 133 .
 第1導液部131は、管、パイプ等である。第1導液部131の一端は、第1溶液回収槽61に接続される。第1導液部131の他端は、液体供給部123に接続される。これにより、第1導液部131は、混合溶液91を第1溶液回収槽61から液体供給部123に導く。 The first liquid introduction part 131 is a tube, a pipe, or the like. One end of the first liquid introduction part 131 is connected to the first solution recovery tank 61 . The other end of the first liquid introduction portion 131 is connected to the liquid supply portion 123 . Thereby, the first liquid introduction section 131 guides the mixed solution 91 from the first solution recovery tank 61 to the liquid supply section 123 .
 第2導液部132は、管、パイプ等である。第2導液部132の一端は、液体貯留槽125に接続される。第2導液部132の他端は、霧化槽11に接続される。これにより、第2導液部132は、混合溶液91を液体貯留槽125から霧化槽11に導く。 The second liquid introduction part 132 is a tube, a pipe, or the like. One end of the second liquid introduction part 132 is connected to the liquid storage tank 125 . The other end of the second liquid introduction part 132 is connected to the atomization tank 11 . Thereby, the second liquid introduction part 132 guides the mixed solution 91 from the liquid storage tank 125 to the atomization tank 11 .
 ポンプ133は、第1導液部131に挿入される。ポンプ133は、第1溶液回収槽61から第1導液部131を経由して液体供給部123まで流れる混合溶液91の流れを生成する。 The pump 133 is inserted into the first liquid introducing portion 131 . The pump 133 generates a flow of the mixed solution 91 that flows from the first solution recovery tank 61 to the liquid supply section 123 via the first liquid introducing section 131 .
 第1溶液回収槽61、第1導液部131及び液体供給部123は、流下口11fから流下した混合溶液91を吸湿部124に移送する第1の移送部を構成する。 The first solution recovery tank 61, the first liquid introduction part 131, and the liquid supply part 123 constitute a first transfer part that transfers the mixed solution 91 that has flowed down from the flow-down port 11f to the moisture absorption part 124.
 液体貯留槽125及び第2導液部132は、空気中の水分を吸湿した混合溶液91を吸湿部124から霧化槽11に移送する第2移送部を構成する。 The liquid storage tank 125 and the second liquid introduction section 132 constitute a second transfer section that transfers the mixed solution 91 that has absorbed moisture in the air from the moisture absorption section 124 to the atomization tank 11 .
 調湿システム101においては、混合溶液91の調湿能力を再生して吸湿性液体を生成するために分離成分の水分を液体から気体に相変化させる必要がない。このため、分離成分の水分を効率よく分離することができる。このため、高いエネルギー効率を有する調湿システム101を提供することができる。 In the humidity control system 101, it is not necessary to change the phase of the separated component water from liquid to gas in order to regenerate the humidity control ability of the mixed solution 91 and generate the hygroscopic liquid. Therefore, the water content of the separated components can be efficiently separated. Therefore, it is possible to provide the humidity control system 101 with high energy efficiency.
 6 第6実施形態
 図10は、第6実施形態の調湿システムを模式的に図示する図である。
6 Sixth Embodiment FIG. 10 is a diagram schematically illustrating a humidity control system of a sixth embodiment.
 以下では、図10に図示される第6実施形態の調湿システム201が図9に図示される第5実施形態の調湿システム101と相違する点が説明される。説明されない点については、調湿システム101において採用される構成と同様の構成が調湿システム201においても採用される。 Below, differences between the humidity control system 201 of the sixth embodiment illustrated in FIG. 10 and the humidity control system 101 of the fifth embodiment illustrated in FIG. 9 will be described. A configuration similar to that employed in the humidity control system 101 is employed in the humidity control system 201 as well, unless otherwise explained.
 図10に図示されるように、調湿システム201においては、超音波霧化分離装置6が、複数の超音波発生機構12を備える。また、底11bには、複数の超音波発生機構12にそれぞれ対応する複数の流下口11fが形成される。 As illustrated in FIG. 10 , in the humidity control system 201 , the ultrasonic atomization separation device 6 includes a plurality of ultrasonic wave generating mechanisms 12 . Also, a plurality of flow-down ports 11f corresponding to the plurality of ultrasonic wave generating mechanisms 12 are formed in the bottom 11b.
 各超音波発生機構12は、超音波93を発生し、発生した超音波93を霧化槽11に収容された混合溶液91に付与する。混合溶液91に付与された超音波93は、混合溶液91の中を伝搬して各超音波発生機構12に対応する流下口11fから流下した液柱92に至り、液柱92を構成する混合溶液91を霧化して液柱92から分離成分を含むミスト94を放出させる。 Each ultrasonic wave generating mechanism 12 generates ultrasonic waves 93 and applies the generated ultrasonic waves 93 to the mixed solution 91 contained in the atomization tank 11 . The ultrasonic wave 93 imparted to the mixed solution 91 propagates through the mixed solution 91 and reaches the liquid column 92 flowing down from the flow-down port 11f corresponding to each ultrasonic wave generating mechanism 12, and the mixed solution constituting the liquid column 92 91 is atomized to release a mist 94 containing separated components from a liquid column 92 .
 また、調湿システム201においては、液体分離槽14が、複数の超音波発生機構12にそれぞれ対応する複数の第2溶液回収槽62を備える。 Also, in the humidity control system 201 , the liquid separation tank 14 includes a plurality of second solution recovery tanks 62 corresponding to the plurality of ultrasonic wave generating mechanisms 12 respectively.
 各超音波発生機構12に対応する第2溶液回収槽62は、各超音波発生機構12に対応する流下口11fから流下した液柱92から放出されたミスト94を受け、受けたミスト94を回収する。 The second solution recovery tank 62 corresponding to each ultrasonic generating mechanism 12 receives the mist 94 released from the liquid column 92 flowing down from the flow-down port 11f corresponding to each ultrasonic generating mechanism 12, and collects the received mist 94. do.
 本開示は、上記実施の形態に限定されるものではなく、上記実施の形態で示した構成と実質的に同一の構成、同一の作用効果を奏する構成又は同一の目的を達成することができる構成で置き換えてもよい。 The present disclosure is not limited to the above embodiments, but has substantially the same configuration, the same effect, or the same purpose as the configuration shown in the above embodiment. can be replaced with

Claims (12)

  1.  少なくとも第1溶液及び第2溶液を含む混合溶液を収容し、底又は側壁に前記混合溶液が流下する流下口が形成された霧化槽と、
     前記混合溶液を介して前記流下口と対向し前記混合溶液に超音波を付与する振動子と、を備え、
     前記超音波の付与により、前記混合溶液に含まれる前記第2溶液の少なくとも一部を霧化分離させる超音波霧化分離装置。
    an atomization tank containing a mixed solution containing at least a first solution and a second solution, and having a bottom or side wall formed with a flow-down port through which the mixed solution flows;
    a vibrator that faces the flow-down port through the mixed solution and applies ultrasonic waves to the mixed solution;
    An ultrasonic atomization separation device that atomizes and separates at least part of the second solution contained in the mixed solution by applying the ultrasonic waves.
  2.  前記混合溶液の流下は、前記混合溶液の自由落下である、請求項1に記載の超音波霧化分離装置。 The ultrasonic atomization separation device according to claim 1, wherein the flowing down of the mixed solution is free fall of the mixed solution.
  3.  前記霧化槽は、前記振動子が上方に配される第1空間と、前記第1空間の少なくとも一部から上方に延びる第2空間とを有する、請求項1又は2に記載の超音波霧化分離装置。 The ultrasonic fog according to claim 1 or 2, wherein the atomization tank has a first space above which the transducer is arranged, and a second space extending upward from at least a part of the first space. gas separator.
  4.  前記振動子が下方に露出するように設けられた筐体を有し、前記霧化槽内に着脱される振動子保持部材をさらに備える、請求項1~3のいずれか一項に記載の超音波霧化分離装置。 The ultrasonic transducer according to any one of claims 1 to 3, further comprising a vibrator holding member that has a housing provided so that the vibrator is exposed downward, and is detachable in the atomization tank. Sonic atomization separator.
  5.  前記流下口にノズルが設けられている、請求項1~4のいずれか一項に記載の超音波霧化分離装置。 The ultrasonic atomization separation device according to any one of claims 1 to 4, wherein the flow-down port is provided with a nozzle.
  6.  前記霧化槽の前記底が、前記流下口に向かって傾斜する傾斜部を有する、請求項1~5のいずれか一項に記載の超音波霧化分離装置。 The ultrasonic atomization separation device according to any one of claims 1 to 5, wherein the bottom of the atomization tank has an inclined portion inclined toward the flow-down port.
  7.  前記霧化槽の前記底が円錐状の形状を有し、前記円錐状の形状の先端部に前記流下口が設けられている、請求項1~6のいずれか一項に記載の超音波霧化分離装置。 The ultrasonic fog according to any one of claims 1 to 6, wherein the bottom of the atomization tank has a conical shape, and the flow-down port is provided at the tip of the conical shape. gas separator.
  8.  前記混合溶液の液位を検知するセンサをさらに備える、請求項1~7のいずれか一項に記載の超音波霧化分離装置。 The ultrasonic atomization separation device according to any one of claims 1 to 7, further comprising a sensor that detects the liquid level of the mixed solution.
  9.  前記流下口の下方に、前記流下口から流下した前記混合溶液を収容する第1溶液回収槽をさらに備える、請求項1~8のいずれか一項に記載の、超音波霧化分離装置。 The ultrasonic atomization separation device according to any one of claims 1 to 8, further comprising a first solution recovery tank below the flow-down port for storing the mixed solution that has flowed down from the flow-down port.
  10.  前記霧化された前記第2溶液を収容する第2溶液回収槽をさらに備える、請求項9に記載の超音波霧化分離装置。 The ultrasonic atomization separation device according to claim 9, further comprising a second solution recovery tank that stores the atomized second solution.
  11.  前記第1溶液は吸湿性物質を含み、
     前記第2溶液は、水である、請求項1~10のいずれか一項に記載の超音波霧化分離装置。
    the first solution comprises a hygroscopic substance;
    The ultrasonic atomization separation device according to any one of claims 1 to 10, wherein the second solution is water.
  12.  請求項11に記載の超音波霧化分離装置と、
     前記超音波霧化分離装置から移送された前記混合溶液に空気中の水分を吸湿させる吸湿部と、
     前記流下口から流下した前記混合溶液を、前記吸湿部に移送する第1移送部と、
     空気中の水分を吸湿した前記混合溶液を、前記吸湿部から前記霧化槽に移送する第2移送部と、
     を備える、調湿システム。
    The ultrasonic atomization separation device according to claim 11;
    a moisture absorption part for absorbing moisture in the air into the mixed solution transferred from the ultrasonic atomization separation device;
    a first transfer section that transfers the mixed solution that has flowed down from the flow-down port to the moisture absorption section;
    a second transfer section that transfers the mixed solution that has absorbed moisture in the air from the moisture absorption section to the atomization tank;
    Humidity control system.
PCT/JP2022/002306 2021-03-12 2022-01-24 Ultrasonic atomization separation device and humidity control system WO2022190670A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021040090 2021-03-12
JP2021-040090 2021-03-12

Publications (1)

Publication Number Publication Date
WO2022190670A1 true WO2022190670A1 (en) 2022-09-15

Family

ID=83226675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002306 WO2022190670A1 (en) 2021-03-12 2022-01-24 Ultrasonic atomization separation device and humidity control system

Country Status (1)

Country Link
WO (1) WO2022190670A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10216401A (en) * 1997-02-04 1998-08-18 Daiichi Kinzoku Kk Separation of liquid mixture and device therefor
WO2019221153A1 (en) * 2018-05-15 2019-11-21 シャープ株式会社 Atomizer and humidity controller
JP2020054962A (en) * 2018-10-02 2020-04-09 ナノミストテクノロジーズ株式会社 Ultrasonic separator
WO2020145388A1 (en) * 2019-01-11 2020-07-16 シャープ株式会社 Humidity conditioner and atomization/regeneration apparatus
WO2020209317A1 (en) * 2019-04-10 2020-10-15 シャープ株式会社 Humidity adjustment device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10216401A (en) * 1997-02-04 1998-08-18 Daiichi Kinzoku Kk Separation of liquid mixture and device therefor
WO2019221153A1 (en) * 2018-05-15 2019-11-21 シャープ株式会社 Atomizer and humidity controller
JP2020054962A (en) * 2018-10-02 2020-04-09 ナノミストテクノロジーズ株式会社 Ultrasonic separator
WO2020145388A1 (en) * 2019-01-11 2020-07-16 シャープ株式会社 Humidity conditioner and atomization/regeneration apparatus
WO2020209317A1 (en) * 2019-04-10 2020-10-15 シャープ株式会社 Humidity adjustment device

Similar Documents

Publication Publication Date Title
JP3549884B2 (en) Spraying equipment
JP6932237B2 (en) Atomizer and humidity control device
JP4349484B2 (en) Nozzle for extreme ultraviolet radiation source
JP5494902B2 (en) Ultrasonic separator for solution
JP2008149316A (en) Method of atomizing solution and ultrasonic atomizer used for the method
JP5084007B2 (en) Particle separation method and separation apparatus
JP5100358B2 (en) Filter cleaning device and filter cleaning method
JPH0852400A (en) Spray apparatus
JP2014193466A (en) Reactor for solution
WO2022190670A1 (en) Ultrasonic atomization separation device and humidity control system
JP4289968B2 (en) Portable ultrasonic atomizer
WO2019202940A1 (en) Ultrasonic atomizing separation device and humidity controller
JP2007118005A (en) Ultrasonic solution separator
JP7169443B2 (en) Ultrasonic atomizer and humidity controller
JP2009202066A (en) Ultrasonic alcohol separation device
JP5678916B2 (en) Ultrasonic atomizer
RU2342979C1 (en) Scrubber with flexible impulse-4-type cap
JP5493074B2 (en) Ultrasonic atomization separator
JP2005066554A (en) Ultrasonic separation method for solution and ultrasonic separation apparatus used in this method
JP2022188321A (en) Ultrasonic atomization separation unit and humidity control device
WO2020059284A1 (en) Humidity control system
JP2022190809A (en) Ultrasonic atomization separator
WO2022059428A1 (en) Humidity adjustment device
JP2001276506A (en) Method for suppressing bubble generation in gas absorption tower and device therefor
JP2004351304A (en) Dust removing apparatus, organic fuel gasification system, and methanol synthesizing system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22766637

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22766637

Country of ref document: EP

Kind code of ref document: A1