WO2020145388A1 - Humidity conditioner and atomization/regeneration apparatus - Google Patents

Humidity conditioner and atomization/regeneration apparatus Download PDF

Info

Publication number
WO2020145388A1
WO2020145388A1 PCT/JP2020/000674 JP2020000674W WO2020145388A1 WO 2020145388 A1 WO2020145388 A1 WO 2020145388A1 JP 2020000674 W JP2020000674 W JP 2020000674W WO 2020145388 A1 WO2020145388 A1 WO 2020145388A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
photocatalyst
frequency
atomization
ultrasonic wave
Prior art date
Application number
PCT/JP2020/000674
Other languages
French (fr)
Japanese (ja)
Inventor
洋香 濱田
井出 哲也
奨 越智
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2020145388A1 publication Critical patent/WO2020145388A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/12Air-humidification, e.g. cooling by humidification by forming water dispersions in the air

Definitions

  • the present invention relates to a humidity control device and an atomizing/reproducing device.
  • the present application claims priority based on Japanese Patent Application No. 2019-003850 filed in Japan on January 11, 2019, the contents of which are incorporated herein by reference.
  • atomization liquid is atomized using ultrasonic waves.
  • line type transducers are arranged side by side, and a low frequency line type ultrasonic transducer for generating a water column and a high frequency line type ultrasonic transducer for generating cavitation are provided. There is. With this configuration, it is possible to increase the atomization amount by using both low frequency (200 kHz) and high frequency (1.6 MHz).
  • One aspect of the present invention is made in view of the problems of the above-described conventional technology, and an object of the present invention is to provide a humidity control device and an atomization/regeneration device capable of improving atomization efficiency. ..
  • the humidity control apparatus regenerates the hygroscopic liquid by atomizing and separating a part of the water contained in the hygroscopic liquid and a hygroscopic means for absorbing the water contained in the gas into the hygroscopic liquid.
  • a liquid storage tank for storing the hygroscopic liquid, and a liquid surface of the hygroscopic liquid for performing the atomization separation by generating ultrasonic waves.
  • an ultrasonic wave generating mechanism that forms a liquid column, and the ultrasonic wave generating mechanism has a high frequency generating section that generates a high frequency and a low frequency generating section that generates a low frequency.
  • the high-frequency generation unit and the low-frequency generation unit, the ultrasonic wave generation surface of each other with respect to the liquid surface of the hygroscopic liquid stored in the liquid storage tank The configuration may be such that one end portion side of each ultrasonic wave generation surface facing each other is inclined and is lower than the other end portion side.
  • the high-frequency generation unit and the low-frequency generation unit are arranged in a stacked state with their ultrasonic wave generation surfaces facing the liquid surface of the hygroscopic liquid. It may be configured to have.
  • the low frequency extending in a direction perpendicular to the ultrasonic wave generation surface of the low frequency generation unit.
  • the propagation region and the high frequency propagation region extending in a direction perpendicular to the ultrasonic wave generation surface of the high frequency generation unit may partially overlap with each other.
  • a photocatalyst filling section filled with a photocatalyst may be arranged in the low frequency propagation region.
  • the photocatalyst filling portion includes the photocatalyst formed of a plurality of granules, and a photocatalyst holding member that holds the photocatalyst and has a plurality of communication holes, and
  • the photocatalyst in the photocatalyst holding member and the hygroscopic liquid in the liquid storage tank may be in contact with each other through a plurality of communication holes.
  • the diameter of the communication hole may be smaller than the particle diameter of the granulated body.
  • the photocatalyst holding member may be made of a material having an impedance close to that of the hygroscopic liquid.
  • the humidity control apparatus may be configured to include a classifying unit that classifies droplets having a relatively large particle diameter and droplets having a relatively small particle diameter among the atomized droplets. Good.
  • a cyclone type or a demister type may be used as the classification means.
  • a liquid storage tank that stores a hygroscopic liquid for atomization and a liquid storage tank that is provided in the liquid storage tank and atomizes the hygroscopic liquid to generate atomized droplets.
  • An ultrasonic wave generation mechanism that forms a liquid column on the liquid surface of the hygroscopic liquid by generating ultrasonic waves for the ultrasonic wave generation mechanism, and the ultrasonic wave generation mechanism generates a high frequency wave and a low frequency wave.
  • a low-frequency generator for generating the generated low-frequency.
  • the high-frequency generation unit and the low-frequency generation unit have their ultrasonic wave generation surfaces with respect to the liquid surface of the hygroscopic liquid stored in the liquid storage tank.
  • the configuration may be such that one end portion side of each ultrasonic wave generation surface facing each other is lower than the other end portion side.
  • the high-frequency generating unit and the low-frequency generating unit are stacked and arranged with their ultrasonic wave generation surfaces facing the liquid surface of the hygroscopic liquid. It may be configured to be.
  • the low-frequency generating unit includes a low-frequency extending unit that extends in a direction perpendicular to the ultrasonic wave generation surface.
  • the frequency propagation region and the high frequency propagation region extending in a direction perpendicular to the ultrasonic wave generation surface of the high frequency generation unit may partially overlap with each other.
  • a photocatalyst filling section filled with a photocatalyst may be arranged in the low frequency propagation region.
  • the photocatalyst filling unit has the photocatalyst formed of a plurality of granules, and a photocatalyst holding member having a plurality of communication holes while holding the photocatalyst,
  • the photocatalyst in the photocatalyst holding member and the hygroscopic liquid in the liquid storage tank may be in contact with each other through the plurality of communication holes.
  • the diameter of the communication hole may be smaller than the particle diameter of the granulated body.
  • the photocatalyst holding member may be made of a material having an impedance close to that of the hygroscopic liquid.
  • FIG. 1 is a diagram showing a schematic configuration of the humidity control apparatus in the first embodiment.
  • FIG. 2 is a diagram showing a schematic configuration of the atomization regenerating unit of the humidity control apparatus in the first embodiment.
  • FIG. 3 is a diagram showing a schematic configuration of the atomizing and reproducing apparatus of the second embodiment.
  • FIG. 4 is a sectional view showing a schematic configuration of the ultrasonic wave generation mechanism of the second embodiment.
  • FIG. 5 is a side view showing a schematic configuration of the atomizing and reproducing means of the third embodiment.
  • FIG. 6 is a top view showing a schematic configuration of the atomization/regeneration unit according to the third embodiment.
  • FIG. 7 is a side view showing the atomizing and reproducing means of the fourth embodiment.
  • FIG. 1 is a diagram showing a schematic configuration of the humidity control apparatus in the first embodiment.
  • FIG. 2 is a diagram showing a schematic configuration of the atomization regenerating unit of the humidity control apparatus in the first embodiment.
  • FIG. 8 is a top view showing the atomizing and reproducing means of the fourth embodiment.
  • FIG. 9 is a diagram showing the ratio of the sound pressure amplitude of a concentric point with respect to the point of the ultrasonic wave irradiation axis.
  • FIG. 10 is a graph showing the directivity distribution due to the difference in frequency when the radius of the sound pressure generation range of the ultrasonic transducer in the hygroscopic liquid W is assumed to be 1 cm.
  • FIG. 1 is a diagram showing a schematic configuration of the humidity control apparatus 100 according to the first embodiment.
  • FIG. 2 is a diagram showing a schematic configuration of the atomization regenerating unit of the humidity control apparatus in the first embodiment.
  • the humidity control apparatus 100 of the present embodiment includes at least a housing 4, a moisture absorbing means 15, an atomizing and reproducing means 16, a classifying means 17, and a circulation mechanism 21.
  • the moisture absorbing unit 15, the atomizing and reproducing unit (atomizing and reproducing device) 16, the classifying unit 17, and the circulation mechanism 21 are housed in the housing 4.
  • the moisture absorption means 15 includes a moisture absorption storage tank 151 and a liquid supply unit 152 arranged in the moisture absorption storage tank 151.
  • the numbers of the moisture absorption storage tank 151 and the liquid supply unit 152 are not limited to one, and a plurality of them may be provided.
  • the hygroscopic means 15 brings the air (gas) A1 taken in from the external space K1 into contact with the hygroscopic liquid W containing a hygroscopic substance to convert at least a part of the water contained in the air A1 into the hygroscopic liquid W. It has the function of absorbing moisture. Therefore, the hygroscopic liquid W containing the hygroscopic substance is stored in the hygroscopic storage tank 151.
  • the liquid supply unit 152 is arranged above the internal space 151c of the moisture absorption storage tank 151, and has a large number of supply holes 152a for allowing the hygroscopic liquid W to flow down.
  • a first blower 32a and a first air supply flow path 31a provided via the first blower 32a are connected to the inlet 151a of the moisture absorption storage tank 151.
  • the first air discharge flow path 31b is connected to the discharge port 151b of the moisture absorption storage tank 151. Then, by driving the first blower 32a, the air A1 in the external space K1 introduced through the first air supply flow path 31a is introduced into the moisture storage tank 151.
  • the air A2 dehumidified in the moisture absorption storage tank 151 is discharged to the external space K1 from the first air discharge flow path 31b connected to the discharge port 151b.
  • the atomization/regeneration means 16 includes a regeneration storage tank (liquid storage tank) 161 and an ultrasonic wave generation mechanism 162.
  • the regeneration storage tank 161 is connected to the moisture absorption storage tank 151 via the first flow path 21A, and stores the hygroscopic liquid W transferred from the moisture absorption storage tank 151 in the internal space 161c.
  • the regeneration storage tank 161 of the present embodiment has a deepest bottom central portion 161f, and a first bottom surface 161d1 and a second bottom surface 61d2 that diagonally face each other via a central axis O passing through the bottom central portion 161f. have.
  • the first bottom surface 161d1 and the second bottom surface 161d2 have the first bottom surface when the angle ⁇ of the low frequency generation portion 162A with respect to the central axis O is ⁇ 1 and the ⁇ of the high frequency generation portion 162B with respect to the central axis O is ⁇ 2 ( ⁇ 1 ⁇ 2).
  • 161d1 and the second bottom surface 161d2 face each other via the central axis O and one end side connected to each other at the center is lower than the other end side connected to the peripheral wall portion 161e, and reproduction
  • the bottom of the storage tank 161 has a V-shaped cross section.
  • the ultrasonic wave generation mechanism 162 has a low frequency generation unit 162A that generates a low frequency of 20 to 100 kHz and a high frequency generation unit 162B that generates a high frequency of 1 to 5 MHz and preferably 2.4 MHz. doing.
  • Each of the low frequency generation unit 162A and the high frequency generation unit 162B is composed of a disc-shaped ultrasonic transducer.
  • the liquid level 7 of the hygroscopic liquid W is adjusted to a predetermined high level.
  • the liquid column S of the hygroscopic liquid W can be generated.
  • the axis perpendicular to the low frequency generation surface 162a1 of the low frequency generation surface (ultrasonic wave irradiation surface) 162a1 of the low frequency generation unit 162A is defined as the ultrasonic wave irradiation axis J1.
  • an axis perpendicular to the high frequency generating surface 162a2 of the high frequency generating portion 162B (ultrasonic wave irradiation surface) is defined as an ultrasonic wave irradiation axis J2.
  • the low-frequency generator 162A and the high-frequency generator 162B are preferably provided along the inclined first bottom surface 161d1 and second tilted bottom surface 161d2 of the regenerator 161.
  • the low-frequency generating unit 162A and the high-frequency generating unit 162B are arranged in an inclined posture in which their irradiation axes J1 and J2 intersect with each other on the central axis O.
  • the low frequency generation surface 162a1 and the high frequency generation surface 162a2 are respectively inclined with respect to the liquid surface 7 of the hygroscopic liquid W stored in the regeneration storage tank 161, so that the low frequency generation section 162A and the high frequency generation section 162B.
  • the low-frequency and high-frequency generated from the low-frequency generation surface 162a1 and the high-frequency generation surface 162a2 so that the irradiation axes J1 and J2 are inclined with respect to the liquid surface 7 of the hygroscopic liquid W. Are propagated toward each.
  • the low-frequency propagation region R1 extending in the direction perpendicular to the low-frequency generation surface 162a1 of the low-frequency generation unit 162A and the high-frequency generation unit 162B.
  • the high-frequency propagation region R2 extending in the direction perpendicular to the high-frequency generation surface 162a2 of FIG.
  • the storage amount of the hygroscopic liquid W stored in the regeneration storage tank 161 is the low frequency that the low frequency generation unit 162A propagates in the hygroscopic liquid W stored in the regeneration storage tank 161.
  • the predetermined amount is sufficient to ensure a sufficient overlapping region R3 in which the propagation region R1 and the high-frequency propagation region R2 propagated by the high-frequency generation unit 162B partially overlap in the liquid.
  • the overlapping region R3 be as large as possible.
  • the irradiation axes J1 and J2 are inclined with respect to the liquid surface 7, it is difficult for the low frequency and the high frequency reflected by the liquid surface 7 to return to the low frequency generating portion 162A or the high frequency generating portion 162B, and these low frequency generating portions are generated. 162A and the high frequency generation part 162B are not easily damaged by ultrasonic waves. Further, it is possible to prevent the liquid that has broken from the tip of the liquid column S from falling onto the liquid column S and obstructing atomization.
  • one low-frequency generating unit 162A and one high-frequency generating unit 162B are provided for each regenerating storage tank 161, but the number of low-frequency generating units 162A, the low-frequency generating unit 162A, and the high-frequency generating unit are set. Each number of 162B can be changed appropriately. Also in this case, it is preferable to arrange the low-frequency propagation region R1 and the high-frequency propagation region R2 so as to ensure the overlapping region R3 in which they overlap with each other, and to adjust the storage amount of the hygroscopic liquid W.
  • a second blower 32b and a second air supply flow path 36a provided via the second blower 32b are connected to the inlet 161a of the regeneration storage tank 161 shown in FIGS. 1 and 2.
  • the second air discharge flow path 36b is connected to the discharge port 161b of the regeneration storage tank 161.
  • the classification means 17 shown in FIG. 1 is arranged on the second air discharge flow path 36b and further separates the hygroscopic liquid W from the mist-like droplets generated on the surface of the liquid column S. That is, the classifying unit 17 collects and separates the droplet W1 having a relatively large particle size containing the hygroscopic liquid W, and the W2 having a relatively small particle size as humidified air A4, which is different from the external space K1. Discharge to the external space K2.
  • a cyclone type or a demister type is used as the classifying means 17.
  • the circulation mechanism 21 shown in FIG. 1 includes a first flow path 21A, a second flow path 21B, and a pump P, and is a flow for circulating the hygroscopic liquid W between the hygroscopic means 15 and the atomization regenerating means 16. It constitutes a road.
  • the first flow path 21A is a flow path for sending the hygroscopic liquid W containing water in the moisture absorption means 15 to the atomization regeneration means 16, one end side of which is the moisture absorption storage tank 151, and the other end side of which is the regeneration storage tank 161. It is connected.
  • the second flow path 21B constitutes a part of a flow path for sending the hygroscopic liquid W regenerated by the atomization/regeneration means 16 to the hygroscopic means 15, one end side is connected to the regeneration storage tank 161, and the other end side is It is connected to the moisture absorption storage tank 151.
  • the hygroscopic liquid W is a liquid exhibiting a property of absorbing water, that is, hygroscopicity.
  • a liquid exhibiting hygroscopicity under conditions of a temperature of 25° C., relative humidity of 50% and atmospheric pressure is preferable.
  • the hygroscopic liquid W contains a hygroscopic substance described later.
  • the hygroscopic liquid W may contain a hygroscopic substance and a solvent. Examples of this type of solvent include a solvent that dissolves a hygroscopic substance or a solvent that is miscible with a hygroscopic substance, such as water.
  • the hygroscopic substance may be an organic material or an inorganic material.
  • organic materials used as hygroscopic substances include known materials used as raw materials for dihydric or higher alcohols, ketones, organic solvents having an amide group, sugars, moisturizing cosmetics, and the like.
  • organic material preferably used as the hygroscopic substance because of its high hydrophilicity known materials used as raw materials for dihydric or higher alcohols, organic solvents having an amide group, sugars, moisturizing cosmetics and the like. are listed.
  • divalent or higher alcohol examples include glycerin, propanediol, butanediol, pentanediol, trimethylolpropane, butanetriol, ethylene glycol, diethylene glycol, triethylene glycol.
  • organic solvent having an amide group examples include formamide and acetamide.
  • Saccharides include, for example, sucrose, pullulan, glucose, xylol, fructose, mannitol, sorbitol and the like.
  • Known materials used as raw materials for moisturizing cosmetics include, for example, 2-methacryloyloxyethylphosphorylcholine (MPC), betaine, hyaluronic acid, collagen and the like.
  • MPC 2-methacryloyloxyethylphosphorylcholine
  • betaine betaine
  • hyaluronic acid collagen and the like.
  • Examples of the inorganic material used as the hygroscopic substance include calcium chloride, lithium chloride, magnesium chloride, potassium chloride, sodium chloride, zinc chloride, aluminum chloride, lithium bromide, calcium bromide, potassium bromide, sodium hydroxide, pyrrolidone.
  • Examples include sodium carboxylate.
  • the hygroscopic substance has high hydrophilicity
  • the ratio of water molecules adsorbed near the surface (liquid level) of the hygroscopic liquid W increases.
  • atomized droplets are generated from the vicinity of the surface of the hygroscopic liquid W formed into the liquid column S, and water is separated from the hygroscopic liquid W. Therefore, a large proportion of water molecules adsorbed in the vicinity of the surface of the hygroscopic liquid W is preferable in that water can be efficiently separated.
  • the ratio of the hygroscopic substance in the vicinity of the surface of the hygroscopic liquid W is relatively small, it is preferable in that the loss of the hygroscopic substance in the atomization/regeneration means 16 can be suppressed.
  • the concentration of the hygroscopic substance contained in the hygroscopic liquid W used for the treatment by the hygroscopic means 15 is not particularly limited, but is preferably 40% by mass or more.
  • the concentration of the hygroscopic substance is 40% by mass or more, the hygroscopic liquid W can efficiently absorb water.
  • the viscosity of the hygroscopic liquid W is preferably 25 mPa ⁇ s or less.
  • control unit 14 drives the pump P to cause the hygroscopic liquid W to flow down from the liquid supply unit 152 of the moisture absorbing means 15.
  • the air A1 in the external space K1 is introduced into the moisture absorption storage tank 151 via the first air supply flow passage 31a, and the air flow toward the first air discharge flow passage 31b is generated.
  • the controller 14 supplies the dehumidified air A2 to the external space K1 by driving the first blower 32a provided on the first air supply flow path 31a.
  • the controller 14 drives the pump P to supply the hygroscopic liquid W containing the water stored in the moisture storage tank 151 to the atomization/regeneration means 16 via the first flow path 21A. Then, it is stored in the regeneration storage tank 161.
  • the control unit 14 simultaneously drives the low-frequency generation unit 162A and the high-frequency generation unit 162B to ultrasonically generate the hygroscopic liquid W for atomization stored in the regeneration storage tank 161. To form a liquid column S, and the hygroscopic liquid W containing water is lifted high.
  • the high-frequency propagation region R2 that planarly overlaps the high-frequency generation unit 162B is intensively irradiated with high-frequency waves, and the liquid column S is formed on the liquid surface 7 of the high-frequency propagation region R2.
  • the high-frequency ultrasonic waves have higher directivity than the low-frequency ultrasonic waves, and the wave front of the liquid column S formed by the capillary waves generated on the liquid surface 7 is split, and, for example, many nano-sized fine droplets are generated. To be done.
  • the low frequency propagation region R1 that planarly overlaps with the low frequency generation unit 162A is intensively irradiated with the low frequency.
  • Low-frequency ultrasonic waves have lower directivity than high-frequency ultrasonic waves and have a small threshold value for cavitation, and thus cavitation with high intensity is likely to occur.
  • the micro bubbles generated by the cavitation are destroyed near the surface of the liquid column S, so that various large and small droplets of, for example, micro size and nano size are generated.
  • the control unit 14 supplies the air A1 into the regeneration storage tank 161 through the second air supply flow path 36a to form an airflow toward the second air discharge flow path 36b.
  • the air A1 flowing in the regeneration storage tank 161 into contact with the liquid column S, atomized droplets of different sizes separated from the liquid column S are absorbed by the air A1.
  • the moisture is separated from the hygroscopic liquid W containing moisture to regenerate the hygroscopic liquid W.
  • the air A3 containing large and small atomized droplets is supplied to the classifying means 17.
  • control unit 14 causes the classifying unit 17 to classify large micro-sized droplets.
  • cavitation also produces physically large micro-sized droplets.
  • the classification means 17 separates the micro-sized droplets. In this way, the humidified air A4 containing water is discharged to the external space K1 via the second air discharge flow path 36b.
  • control unit 14 drives the pump P to transfer the hygroscopic liquid W regenerated by the atomization/regeneration unit 16 to the hygroscopic unit 15 through the second flow path 21B. In this way, the hygroscopic liquid W is circulated.
  • low-frequency ultrasonic waves and high-frequency ultrasonic waves are simultaneously applied to the hygroscopic liquid W so that a superposed region R3 where the low-frequency propagation region R1 and the high-frequency propagation region R2 overlap each other is formed in the hygroscopic liquid W. Irradiate.
  • cavitation is intensively caused by the low-frequency ultrasonic waves on the liquid column S formed by the high-frequency ultrasonic waves to generate droplets of various sizes, thereby increasing the atomization amount. It is possible to
  • the atomization due to the destabilization of the surface of the liquid column S caused by the high frequency ultrasonic wave and the minute amount generated by the cavitation of the low frequency ultrasonic wave The generation of minute droplets caused by the bubbles breaking near the surface of the liquid column S and the promotion of atomization due to the vaporization of water vapor inside the cavitation in the air occur. As a result, many nanomist-sized droplets are generated and atomization is promoted. Further, since the droplet having a large micro size is classified by the classifying unit 17, the atomization amount can be increased.
  • FIG. 3 is a diagram showing a schematic configuration of the atomization reproducing device of the second embodiment.
  • FIG. 4 is a sectional view showing a schematic configuration of the ultrasonic wave generation mechanism of the second embodiment.
  • the atomization reproduction means 20 of the present embodiment includes a reproduction storage tank 171 whose bottom surface 171d is a flat surface, and an ultrasonic wave generation mechanism 172.
  • the ultrasonic wave generation mechanism 172 is disposed in the center of the bottom surface 171d of the regeneration storage tank 171 while stacking the low frequency generation unit 162A and the high frequency generation unit 162B in a state where their centers coincide with each other.
  • the low frequency generating surface 162a1 of the low frequency generating section 162A faces the bottom surface 171d of the regeneration storage tank 171, and a high frequency is generated on the back side of the low frequency generating section 162A opposite to the low frequency generating surface 162a1.
  • the high frequency generation surface 162a2 of the portion 162B faces.
  • the low-frequency generation section 162A has a larger size than the high-frequency generation section 162B, and the circular area of the low-frequency generation surface 162a1 is larger than the circular area of the high-frequency generation surface 162a2. Since the high-frequency generation unit 162B and the low-frequency generation unit 162A are arranged with their centers aligned with each other, the outer peripheral portion of the low-frequency generation unit 162A is closer to the outer peripheral portion of the high-frequency generation unit 162B in a side view. It projects outward in the radial direction.
  • the high-frequency generator 162B is smaller than that and does not easily hinder vibration.
  • an axis perpendicular to the center of the low frequency generation surface 162a1 and the high frequency generation surface 162a2 to the low frequency generation surface 162a1 and the high frequency generation surface 162a2 is defined as an ultrasonic irradiation axis J.
  • the low-frequency generation unit 162A and the high-frequency generation unit 162B may be provided obliquely with respect to the bottom surface 171d of the regeneration storage tank 171.
  • the high frequency and the low frequency are propagated from the low frequency generating surface 162a1 and the high frequency generating surface 162a2 toward the liquid surface 7 so that the irradiation axis J is inclined with respect to the liquid surface 7 of the hygroscopic liquid W.
  • the low frequency and the high frequency reflected on the liquid surface 7 are unlikely to return to the low frequency generating section 162A and the high frequency generating section 162B, and the low frequency generating section 162A and the high frequency generating section 162B are less likely to be damaged by the ultrasonic waves.
  • the low-frequency generation unit 162A and the high-frequency generation unit 162B are stacked and arranged, so that space can be saved.
  • the atomization reproduction means (atomization reproduction device) 30 of the third embodiment will be described.
  • the basic configuration of the atomization/regeneration means 30 of the present embodiment described below is substantially the same as that of the first embodiment, but is different in that the photocatalyst filling section 37 is provided. Therefore, in the following description, the photocatalyst filling section 37 will be described in detail, and description of common points will be omitted.
  • FIG. 5 is a side view showing a schematic configuration of the atomization regenerating unit 30 of the third embodiment.
  • FIG. 6 is a top view showing a schematic configuration of the atomizing/regenerating unit 30 of the third embodiment.
  • a low frequency generation unit 162A and a high frequency generation unit 162B are provided in the regeneration storage tank 161 in contrast to the regeneration storage tank 161 similar to the first embodiment.
  • Each of the hygroscopic liquids W is arranged in an inclined state with respect to the liquid surface 7.
  • the photocatalyst filling part 37 is arranged in the low-frequency propagation region R1 of the hygroscopic liquid W stored in the regeneration storage tank 161.
  • the photocatalyst filling section 37 is configured to include a photocatalyst 38 composed of a plurality of granules and a photocatalyst holding member 39 that holds the photocatalyst 38.
  • the plurality of photocatalysts 38 contained in the photocatalyst holding member 39 are in contact with the hygroscopic liquid W in the regeneration storage tank 161 through the plurality of communication holes 39a provided in the photocatalyst holding member 39.
  • the particle diameter of the photocatalyst 38 is preferably about 2.0 mm, for example. If the photocatalyst 38 flows out from the communication hole 39a, it may be discharged into the air together with the droplets. Therefore, the diameter of the communication hole 39a is smaller than the particle diameter of the photocatalyst 38, and the photocatalyst from the communication hole 39a may be discharged. The size of 38 does not flow out.
  • the photocatalyst holding member 39 is made of a material whose impedance is close to that of the hygroscopic liquid W, and thereby suppresses low-frequency reflection.
  • the hygroscopic liquid W is glycerin and the photocatalyst holding member 39 is polystyrene
  • the low frequency reflectance is 0.08%.
  • the photocatalyst holding member 39 is polyethylene
  • the low frequency reflectance is 0.02%.
  • the photocatalyst holding member 39 is rubber, the low frequency reflectance is 0.05%.
  • the photocatalyst filling portion 37 has a circular shape in a plan view, but may have a rectangular shape or another shape.
  • the photocatalyst filling portion 37 is provided in the low frequency propagation region R1, and the low frequency is present in the state where the plurality of photocatalysts 38 are dispersed in the hygroscopic liquid W inside the photocatalyst holding member 39. Is irradiated, the photocatalyst 38 is excited by the contact of the low frequency with the photocatalyst 38, and the OH hydroxy radical is generated. As a result, it is possible to prevent the growth of bacteria in the hygroscopic liquid W. Further, due to the photocatalytic action, the effect is semipermanently maintained, and it is possible to maintain a clean state for a long time.
  • the plurality of photocatalysts 38 accommodated in the photocatalyst holding member 39 are configured to come into contact with the hygroscopic liquid W in the regeneration storage tank 161 through the plurality of communication holes 39a, whereby the photocatalysts are irradiated by ultrasonic waves. It is possible to efficiently disperse the plurality of photocatalysts 38 held in the holding member 39. As a result, the contact efficiency between the low frequency and the photocatalyst 38 can be increased, and the diffusion efficiency of the generated OH hydroxy radicals can be improved.
  • the particle size of the photocatalyst 38 is preferably about 2.0 mm described above. If the particle size of the photocatalyst 38 is too small, it may be released into the air. On the contrary, if it is too large, the contact efficiency with ultrasonic waves may be insufficient and the efficiency of OH hydroxy radical generation may decrease.
  • the diameter is preferable.
  • the atomization reproduction means (atomization reproduction device) 40 of the fourth embodiment will be described.
  • the basic structure of the atomization/regeneration means 40 of the present embodiment described below is substantially the same as that of the second embodiment, except that the photocatalyst filling section 37 is provided. Therefore, in the following description, the photocatalyst filling portion 37 will be described in detail, and description of common portions will be omitted.
  • FIG. 7 is a side view showing the atomizing/regenerating means 40 of the fourth embodiment.
  • FIG. 8 is a top view showing the atomization reproducing means 40 of the fourth embodiment.
  • the low-frequency generation unit 162A and the high-frequency generation unit 162B have their centers aligned with each other with respect to the regeneration storage tank 171 similar to that of the second embodiment. They are arranged in a stacked state.
  • the photocatalyst filling section 37 is arranged in the hygroscopic liquid W stored in the regeneration storage tank 171, in a state of being aligned with the centers of the low frequency generation section 162A and the high frequency generation section 162B. .. It is preferable that the low-frequency generating unit 162A, the high-frequency generating unit 162B, and the photocatalyst filling unit 37 are aligned with the central axis O of the regeneration storage tank 171.
  • the low-frequency generating section 162A is driven independently, so that the growth of bacteria in the hygroscopic liquid W can be suppressed. It is possible.
  • the photocatalyst filling section 37 is installed in the low frequency propagation area R1 as far as possible so as not to overlap the high frequency propagation area R2 of the high frequency generation section 162B. As a result, only low-frequency propagation is possible, and the photocatalyst-filled portion 37 can be efficiently irradiated with low-frequency, so that a high photocatalytic action can be obtained.
  • the photocatalyst filling portion 37 in a plan view, for example, as shown in FIG. 8, an annular shape with a hole in the center such as a donut shape may be used, and it does not overlap the high frequency generating portion 162B in a plan view. Other shapes such as a square shape may be used as long as the central portion is open. Further, the photocatalyst filling section 37 may be in contact with the inner wall surface of the regeneration storage tank 171.
  • FIG. 9 is a diagram showing the ratio of the sound pressure amplitude at a point X2 that is concentric to the point X1 on the ultrasonic wave irradiation axis J.
  • FIG. 10 is a graph showing the directivity distribution due to the difference in frequency when the radius of the sound pressure generation range of the ultrasonic wave generation mechanism (low frequency generation part, high frequency generation part) 162 in the hygroscopic liquid W is assumed to be 1 cm. is there. In FIG. 10, the vertical axis represents frequency and the horizontal axis represents azimuth.
  • the directivity function D by the ultrasonic wave generation mechanism 162 which is a circular plane sound source is obtained by a conventional method including a point X1 in the direction of an angle ⁇ from the ultrasonic wave irradiation axis J of the ultrasonic wave generation mechanism 162 shown in FIG. It is known to be defined as the ratio of the sound pressure amplitude between the point X1 on J and the point X2 at the same distance, and is known to be obtained by the following formula 1.
  • the distribution of the directivity function D differs depending on the frequency.
  • the center of the ultrasonic wave generation surface 162a having the highest sound pressure is taken as the reference 1
  • up to 1 ⁇ 5 of the central sound pressure is defined as an overlapping ultrasonic wave propagation region.
  • the center angle ⁇ is about 6 degrees in the case of the high frequency generating section (2.4 MHz)
  • the center angle ⁇ is about 140 degrees in the case of the low frequency generating section (100 kHz)
  • the sound pressure is 1 ⁇ 5 or more of the center. Amplitude ratio can be obtained.
  • the humidity control apparatus and the atomization/regeneration means of each of the above-described embodiments can be applied to the technique of concentrating a solution.

Abstract

Provided are a humidity conditioner with which it is possible to improve atomization efficiency and an atomization/regeneration apparatus. The humidity conditioner comprises a moisture-absorbing means for absorbing moisture contained in air in a moisture-absorbing liquid and an atomizing/regenerating means for atomizing and separating a portion of the moisture comprised in the moisture-absorbing liquid to regenerate the moisture-absorbing liquid. The atomizing/regenerating means comprises a liquid storage tank for storing the moisture-absorbing liquid and an ultrasonic wave-generating mechanism for generating ultrasonic waves and forming liquid columns of the moisture-absorbing liquid to perform the atomization and separation. The ultrasonic wave-generating mechanism comprises a high frequency-generating unit for generating high frequency waves and a low frequency-generating unit for generating low frequency waves.

Description

調湿装置、霧化再生装置Humidity control device, atomization regeneration device
 本発明は、調湿装置、霧化再生装置に関するものである。
 本願は、2019年1月11日に日本に出願された特願2019-003850号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a humidity control device and an atomizing/reproducing device.
The present application claims priority based on Japanese Patent Application No. 2019-003850 filed in Japan on January 11, 2019, the contents of which are incorporated herein by reference.
 従来、超音波を利用して霧化液体の霧化を行っている。例えば、特許文献1では、ライン型振動子を並べて配置するとともに、水柱を発生させるための低周波ライン型超音波振動子と、キャビテーションを発生させるための高周波ライン型超音波振動子と、備えている。この構成では、低周波(200kHz)と高周波(1.6MHz)を併用して、霧化量を増大させることが可能である。 Conventionally, atomization liquid is atomized using ultrasonic waves. For example, in Patent Document 1, line type transducers are arranged side by side, and a low frequency line type ultrasonic transducer for generating a water column and a high frequency line type ultrasonic transducer for generating cavitation are provided. There is. With this configuration, it is possible to increase the atomization amount by using both low frequency (200 kHz) and high frequency (1.6 MHz).
特開2009-254949号公報JP, 2009-254949, A
 超音波を利用した調湿装置においては、吸湿性液体の再生効率の向上、および粒径の小さいミストを増大させることが課題となっている。高周波超音波によって生じた液柱の表面が不安定化し、キャピラリー波の振幅臨界値を超えたとき、表面波の波頭が破断して霧化が生じる。また、高周波超音波ではキャビテーション閾値が高く、キャビテーションが生じにくい。
 また、調湿装置においては、吸湿性液体を外気と接触させて循環させるため、長期間使用することにより、貯留している吸湿液体に大腸菌や雑菌等の細菌が繁殖し、清潔性が損なわれる恐れがある。
In the humidity control device using ultrasonic waves, there are problems to improve the regeneration efficiency of the hygroscopic liquid and to increase the mist having a small particle size. When the surface of the liquid column generated by the high-frequency ultrasonic waves becomes unstable and exceeds the amplitude critical value of the capillary wave, the wavefront of the surface wave breaks and atomization occurs. Further, with high frequency ultrasonic waves, the cavitation threshold is high, and cavitation is unlikely to occur.
Further, in the humidity control device, since the hygroscopic liquid is circulated in contact with the outside air, bacteria such as Escherichia coli and miscellaneous bacteria are propagated in the stored hygroscopic liquid and the cleanliness is impaired by long-term use. There is a fear.
 本発明の一つの態様は、上記従来技術の問題点に鑑み成されたものであって、霧化効率の向上を図ることのできる調湿装置、霧化再生装置を提供することを目的とする。 One aspect of the present invention is made in view of the problems of the above-described conventional technology, and an object of the present invention is to provide a humidity control device and an atomization/regeneration device capable of improving atomization efficiency. ..
 本発明における一態様の調湿装置は、気体に含まれる水分を吸湿性液体に吸湿させる吸湿手段と、前記吸湿性液体に含まれる水分の一部を霧化分離させて前記吸湿性液体を再生する霧化再生手段と、を備え、前記霧化再生手段は、前記吸湿性液体を貯留する液体貯留槽と、超音波を発生して前記霧化分離を行うための前記吸湿性液体の液面に液柱を形成する超音波発生機構と、を有し、前記超音波発生機構は、高周波を発生する高周波発生部と、低周波を発生する低周波発生部と、を有する。 The humidity control apparatus according to one aspect of the present invention regenerates the hygroscopic liquid by atomizing and separating a part of the water contained in the hygroscopic liquid and a hygroscopic means for absorbing the water contained in the gas into the hygroscopic liquid. And a liquid storage tank for storing the hygroscopic liquid, and a liquid surface of the hygroscopic liquid for performing the atomization separation by generating ultrasonic waves. And an ultrasonic wave generating mechanism that forms a liquid column, and the ultrasonic wave generating mechanism has a high frequency generating section that generates a high frequency and a low frequency generating section that generates a low frequency.
 本発明における一態様の調湿装置において、前記高周波発生部および前記低周波発生部は、互いの超音波発生面が前記液体貯留槽内に貯留された前記吸湿性液体の前記液面に対して傾斜しているとともに、各超音波発生面のうち互いに対向する一方の端部側を他方の端部側よりも低くした配置となっている構成としてもよい。 In the humidity control apparatus according to one aspect of the present invention, the high-frequency generation unit and the low-frequency generation unit, the ultrasonic wave generation surface of each other with respect to the liquid surface of the hygroscopic liquid stored in the liquid storage tank The configuration may be such that one end portion side of each ultrasonic wave generation surface facing each other is inclined and is lower than the other end portion side.
 本発明における一態様の調湿装置において、前記高周波発生部および前記低周波発生部は、互いの超音波発生面を前記吸湿性液体の前記液面に向けた状態で、互いに積層されて配置されている構成としてもよい。 In the humidity control apparatus according to one aspect of the present invention, the high-frequency generation unit and the low-frequency generation unit are arranged in a stacked state with their ultrasonic wave generation surfaces facing the liquid surface of the hygroscopic liquid. It may be configured to have.
 本発明における一態様の調湿装置において、前記液体貯留槽内に貯留された所定量の前記吸湿性液体のうち、前記低周波発生部の前記超音波発生面に垂直な方向に延びる前記低周波伝搬領域と、前記高周波発生部の前記超音波発生面に垂直な方向に延びる前記高周波伝搬領域と、が部分的に重なり合っている構成としてもよい。 In the humidity control apparatus according to one aspect of the present invention, of the predetermined amount of the hygroscopic liquid stored in the liquid storage tank, the low frequency extending in a direction perpendicular to the ultrasonic wave generation surface of the low frequency generation unit. The propagation region and the high frequency propagation region extending in a direction perpendicular to the ultrasonic wave generation surface of the high frequency generation unit may partially overlap with each other.
 本発明における一態様の調湿装置において、前記低周波伝搬領域内に、光触媒が充填された光触媒充填部が配置されている構成としてもよい。 In the humidity control apparatus according to one aspect of the present invention, a photocatalyst filling section filled with a photocatalyst may be arranged in the low frequency propagation region.
 本発明における一態様の調湿装置において、前記光触媒充填部は、複数の造粒体からなる前記光触媒と、前記光触媒を保持するとともに複数の連通孔を有する光触媒保持部材と、を有し、前記複数の連通孔を通じて、前記光触媒保持部材内の前記光触媒と前記液体貯留槽内の前記吸湿性液体とが接触している構成としてもよい。 In the humidity control apparatus according to one aspect of the present invention, the photocatalyst filling portion includes the photocatalyst formed of a plurality of granules, and a photocatalyst holding member that holds the photocatalyst and has a plurality of communication holes, and The photocatalyst in the photocatalyst holding member and the hygroscopic liquid in the liquid storage tank may be in contact with each other through a plurality of communication holes.
 本発明における一態様の調湿装置において、前記連通孔の直径は、前記造粒体の粒子径よりも小さい構成としてもよい。 In the humidity control apparatus of one aspect of the present invention, the diameter of the communication hole may be smaller than the particle diameter of the granulated body.
 本発明における一態様の調湿装置において、前記光触媒保持部材は前記吸湿性液体とインピーダンスが近い材料からなる構成としてもよい。 In the humidity control apparatus according to one aspect of the present invention, the photocatalyst holding member may be made of a material having an impedance close to that of the hygroscopic liquid.
 本発明における一態様の調湿装置において、前記霧状液滴のうち、相対的に粒径の大きい液滴と、相対的に粒径の小さい液滴とを分級する分級手段を備える構成としてもよい。 The humidity control apparatus according to one aspect of the present invention may be configured to include a classifying unit that classifies droplets having a relatively large particle diameter and droplets having a relatively small particle diameter among the atomized droplets. Good.
 本発明における一態様の調湿装置において、前記分級手段として、サイクロン式もしくはデミスター式が用いられる構成としてもよい。 In the humidity control apparatus of one aspect of the present invention, a cyclone type or a demister type may be used as the classification means.
 本発明における一態様の霧化再生装置において、霧化用の吸湿性液体を貯留する液体貯留槽と、前記液体貯留槽に設けられ、前記吸湿性液体を霧化して霧状液滴を発生させるための超音波を発生することで前記吸湿性液体の液面に液柱を形成する超音波発生機構と、を備え、前記超音波発生機構は、高周波を発生する高周波発生部と、低周波を発生する低周波発生部と、を有する。 In the atomization/regeneration device according to one aspect of the present invention, a liquid storage tank that stores a hygroscopic liquid for atomization and a liquid storage tank that is provided in the liquid storage tank and atomizes the hygroscopic liquid to generate atomized droplets. An ultrasonic wave generation mechanism that forms a liquid column on the liquid surface of the hygroscopic liquid by generating ultrasonic waves for the ultrasonic wave generation mechanism, and the ultrasonic wave generation mechanism generates a high frequency wave and a low frequency wave. And a low-frequency generator for generating the generated low-frequency.
 本発明における一態様の霧化再生装置において、前記高周波発生部および前記低周波発生部は、互いの超音波発生面が前記液体貯留槽内に貯留された前記吸湿性液体の前記液面に対して傾斜しているとともに、各超音波発生面のうち互いに対向する一方の端部側を他方の端部側よりも低くした配置となっている構成としてもよい。 In the atomization/regeneration device of one aspect of the present invention, the high-frequency generation unit and the low-frequency generation unit have their ultrasonic wave generation surfaces with respect to the liquid surface of the hygroscopic liquid stored in the liquid storage tank. The configuration may be such that one end portion side of each ultrasonic wave generation surface facing each other is lower than the other end portion side.
 本発明における一態様の霧化再生装置において、前記高周波発生部および前記低周波発生部は、互いの超音波発生面を前記吸湿性液体の前記液面に向けた状態で、互いに積層されて配置されている構成としてもよい。 In the atomizing and reproducing apparatus according to one aspect of the present invention, the high-frequency generating unit and the low-frequency generating unit are stacked and arranged with their ultrasonic wave generation surfaces facing the liquid surface of the hygroscopic liquid. It may be configured to be.
 本発明における一態様の霧化再生装置において、前記液体貯留槽内に貯留された所定量の前記吸湿性液体のうち、前記低周波発生部の前記超音波発生面に垂直な方向に延びる前記低周波伝搬領域と、前記高周波発生部の前記超音波発生面に垂直な方向に延びる前記高周波伝搬領域と、が部分的に重なり合っている構成としてもよい。 In the atomization/regeneration device according to one aspect of the present invention, among the predetermined amount of the hygroscopic liquid stored in the liquid storage tank, the low-frequency generating unit includes a low-frequency extending unit that extends in a direction perpendicular to the ultrasonic wave generation surface. The frequency propagation region and the high frequency propagation region extending in a direction perpendicular to the ultrasonic wave generation surface of the high frequency generation unit may partially overlap with each other.
 本発明における一態様の霧化再生装置において、前記低周波伝搬領域内に、光触媒が充填された光触媒充填部が配置されている構成としてもよい。 In the atomization/regeneration device according to one aspect of the present invention, a photocatalyst filling section filled with a photocatalyst may be arranged in the low frequency propagation region.
 本発明における一態様の霧化再生装置において、前記光触媒充填部は、複数の造粒体からなる前記光触媒と、前記光触媒を保持するとともに複数の連通孔を有する光触媒保持部材と、を有し、前記複数の連通孔を通じて、前記光触媒保持部材内の前記光触媒と前記液体貯留槽内の前記吸湿性液体とが接触している構成としてもよい。 In the atomization/regeneration device of one aspect of the present invention, the photocatalyst filling unit has the photocatalyst formed of a plurality of granules, and a photocatalyst holding member having a plurality of communication holes while holding the photocatalyst, The photocatalyst in the photocatalyst holding member and the hygroscopic liquid in the liquid storage tank may be in contact with each other through the plurality of communication holes.
 本発明における一態様の霧化再生装置において、前記連通孔の直径は、前記造粒体の粒子径よりも小さい構成としてもよい。 In the atomization/regeneration device according to one aspect of the present invention, the diameter of the communication hole may be smaller than the particle diameter of the granulated body.
 本発明における一態様の霧化再生装置において、前記光触媒保持部材は前記吸湿性液体とインピーダンスが近い材料からなる構成としてもよい。 In the atomization/regeneration device according to one aspect of the present invention, the photocatalyst holding member may be made of a material having an impedance close to that of the hygroscopic liquid.
 本発明の一態様によれば、霧化効率の向上を図ることのできる調湿装置、霧化再生装置を提供することができる。 According to an aspect of the present invention, it is possible to provide a humidity control device and an atomization/regeneration device that can improve atomization efficiency.
図1は、第1実施形態における調湿装置の概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of the humidity control apparatus in the first embodiment. 図2は、第1実施形態における調湿装置の霧化再生手段の概略構成を示す図である。FIG. 2 is a diagram showing a schematic configuration of the atomization regenerating unit of the humidity control apparatus in the first embodiment. 図3は、第2実施形態の霧化再生装置の概略構成を示す図である。FIG. 3 is a diagram showing a schematic configuration of the atomizing and reproducing apparatus of the second embodiment. 図4は、第2実施形態の超音波発生機構の概略構成を示す断面図である。FIG. 4 is a sectional view showing a schematic configuration of the ultrasonic wave generation mechanism of the second embodiment. 図5は、第3実施形態の霧化再生手段の概略構成を示す側面図である。FIG. 5 is a side view showing a schematic configuration of the atomizing and reproducing means of the third embodiment. 図6は、第3実施形態の霧化再生手段の概略構成を示す上面図である。FIG. 6 is a top view showing a schematic configuration of the atomization/regeneration unit according to the third embodiment. 図7は、第4実施形態の霧化再生手段を示す側面図である。FIG. 7 is a side view showing the atomizing and reproducing means of the fourth embodiment. 図8は、第4実施形態の霧化再生手段を示す上面図である。FIG. 8 is a top view showing the atomizing and reproducing means of the fourth embodiment. 図9は、超音波照射軸の点に対して同心円状の点の音圧振幅の比を示す図である。FIG. 9 is a diagram showing the ratio of the sound pressure amplitude of a concentric point with respect to the point of the ultrasonic wave irradiation axis. 図10は、吸湿性液体W中における超音波振動子の音圧発生範囲の半径を1cmと仮定した時の周波数の違いによる指向性分布を示すグラフである。FIG. 10 is a graph showing the directivity distribution due to the difference in frequency when the radius of the sound pressure generation range of the ultrasonic transducer in the hygroscopic liquid W is assumed to be 1 cm.
 以下、本発明の各実施形態の調湿装置および霧化再生手段について説明する。
 なお、以下の各図面においては、各構成要素を見やすくするため、構成要素によって寸法の縮尺を異ならせて示すことがある。
Hereinafter, the humidity control apparatus and the atomization/regeneration means of each embodiment of the present invention will be described.
In each of the following drawings, in order to make each component easy to see, the scale of dimensions may be different depending on the component.
 [第1実施形態]
 以下、本発明における第1実施形態の調湿装置100について説明する。
 なお、以下の各図面においては、各構成要素を見やすくするため、構成要素によって寸法の縮尺を異ならせて示すことがある。
[First Embodiment]
Hereinafter, the humidity control apparatus 100 according to the first embodiment of the present invention will be described.
In each of the following drawings, in order to make each component easy to see, the scale of dimensions may be different depending on the component.
 図1は、第1実施形態における調湿装置100の概略構成を示す図である。図2は、第1実施形態における調湿装置の霧化再生手段の概略構成を示す図である。 FIG. 1 is a diagram showing a schematic configuration of the humidity control apparatus 100 according to the first embodiment. FIG. 2 is a diagram showing a schematic configuration of the atomization regenerating unit of the humidity control apparatus in the first embodiment.
 本実施形態の調湿装置100は、図1に示すように、筐体4と、吸湿手段15と、霧化再生手段16と、分級手段17と、循環機構21とを少なくとも備えている。吸湿手段15、霧化再生手段(霧化再生装置)16、分級手段17および循環機構21は、筐体4内に収容されている。 As shown in FIG. 1, the humidity control apparatus 100 of the present embodiment includes at least a housing 4, a moisture absorbing means 15, an atomizing and reproducing means 16, a classifying means 17, and a circulation mechanism 21. The moisture absorbing unit 15, the atomizing and reproducing unit (atomizing and reproducing device) 16, the classifying unit 17, and the circulation mechanism 21 are housed in the housing 4.
 吸湿手段15は、吸湿貯留槽151と、吸湿貯留槽151内に配置された液体供給部152とを備えている。吸湿貯留槽151および液体供給部152の数は、一つに限られず、複数設けてもよい。 The moisture absorption means 15 includes a moisture absorption storage tank 151 and a liquid supply unit 152 arranged in the moisture absorption storage tank 151. The numbers of the moisture absorption storage tank 151 and the liquid supply unit 152 are not limited to one, and a plurality of them may be provided.
 吸湿手段15は、外部空間K1から取り入れた空気(気体)A1を、吸湿性物質を含む吸湿性液体Wに接触させることにより、空気A1に含まれる水分の少なくとも一部を、吸湿性液体Wに吸湿させる機能を有する。そのため、吸湿貯留槽151内には、吸湿性物質を含む吸湿性液体Wが貯留される。 The hygroscopic means 15 brings the air (gas) A1 taken in from the external space K1 into contact with the hygroscopic liquid W containing a hygroscopic substance to convert at least a part of the water contained in the air A1 into the hygroscopic liquid W. It has the function of absorbing moisture. Therefore, the hygroscopic liquid W containing the hygroscopic substance is stored in the hygroscopic storage tank 151.
 液体供給部152は、吸湿貯留槽151の内部空間151cの上部に配置され、吸湿性液体Wを流下させるための供給孔152aを多数有している。 The liquid supply unit 152 is arranged above the internal space 151c of the moisture absorption storage tank 151, and has a large number of supply holes 152a for allowing the hygroscopic liquid W to flow down.
 吸湿貯留槽151の導入口151aには、第1ブロア32aと、第1ブロア32aを介して設けられた第1空気供給流路31aとが接続されている。吸湿貯留槽151の排出口151bには、第1空気排出流路31bが接続されている。そして、第1ブロア32aの駆動によって、第1空気供給流路31aを通じて導入した外部空間K1の空気A1が吸湿貯留槽151内に導入される。吸湿貯留槽151内において除湿された空気A2は、排出口151bに接続された第1空気排出流路31bから外部空間K1へ排出される。 A first blower 32a and a first air supply flow path 31a provided via the first blower 32a are connected to the inlet 151a of the moisture absorption storage tank 151. The first air discharge flow path 31b is connected to the discharge port 151b of the moisture absorption storage tank 151. Then, by driving the first blower 32a, the air A1 in the external space K1 introduced through the first air supply flow path 31a is introduced into the moisture storage tank 151. The air A2 dehumidified in the moisture absorption storage tank 151 is discharged to the external space K1 from the first air discharge flow path 31b connected to the discharge port 151b.
 霧化再生手段16は、再生貯留槽(液体貯留槽)161と、超音波発生機構162とを備えている。 The atomization/regeneration means 16 includes a regeneration storage tank (liquid storage tank) 161 and an ultrasonic wave generation mechanism 162.
 再生貯留槽161は、第1流路21Aを介して吸湿貯留槽151と接続されており、吸湿貯留槽151から移送された吸湿性液体Wを内部空間161c内に貯留する。本実施形態の再生貯留槽161は、図2に示すように、底部中央部161fが最も深く、底部中央部161fを通る中心軸Oを介して斜めに向かい合う第1底面161d1と第2底面61d2とを有している。第1底面161d1および第2底面161d2は、中心軸Oに対する低周波発生部162Aの角度θをθ1、中心軸Oに対する高周波発生部162Bのθをθ2とする時(θ1≧θ2)、第1底面161d1および第2底面161d2は、中心軸Oを介して互いに対向するとともに中央において互いに接続される一方の端部側が、周壁部161eに接続される他方の端部側よりも低くなっており、再生貯留槽161の底部の断面視がV字形状となっている。 The regeneration storage tank 161 is connected to the moisture absorption storage tank 151 via the first flow path 21A, and stores the hygroscopic liquid W transferred from the moisture absorption storage tank 151 in the internal space 161c. As shown in FIG. 2, the regeneration storage tank 161 of the present embodiment has a deepest bottom central portion 161f, and a first bottom surface 161d1 and a second bottom surface 61d2 that diagonally face each other via a central axis O passing through the bottom central portion 161f. have. The first bottom surface 161d1 and the second bottom surface 161d2 have the first bottom surface when the angle θ of the low frequency generation portion 162A with respect to the central axis O is θ1 and the θ of the high frequency generation portion 162B with respect to the central axis O is θ2 (θ1≧θ2). 161d1 and the second bottom surface 161d2 face each other via the central axis O and one end side connected to each other at the center is lower than the other end side connected to the peripheral wall portion 161e, and reproduction The bottom of the storage tank 161 has a V-shaped cross section.
 超音波発生機構162は、20~100kHzの低周波を発生する低周波発生部162Aと、1~5MHzの範囲内であって好ましくは2.4MHzの高周波を発生する高周波発生部162Bと、を有している。低周波発生部162Aおよび高周波発生部162Bは、いずれも円盤形状の超音波振動子からなる。 The ultrasonic wave generation mechanism 162 has a low frequency generation unit 162A that generates a low frequency of 20 to 100 kHz and a high frequency generation unit 162B that generates a high frequency of 1 to 5 MHz and preferably 2.4 MHz. doing. Each of the low frequency generation unit 162A and the high frequency generation unit 162B is composed of a disc-shaped ultrasonic transducer.
 各超音波振動子から発生された超音波が、再生貯留槽161内に貯留されている吸湿性液体Wに照射されると、吸湿性液体Wの液面7に液柱Sが形成され、液柱Sの表面から霧状液滴が発生する。 When the ultrasonic wave generated from each ultrasonic transducer is applied to the hygroscopic liquid W stored in the regeneration storage tank 161, a liquid column S is formed on the liquid surface 7 of the hygroscopic liquid W, Mist-like droplets are generated from the surface of the pillar S.
 各超音波振動子から吸湿性液体Wに高周波および低周波がそれぞれ照射される際、高周波および低周波の出力等の発生条件を調整することにより、吸湿性液体Wの液面7に所定の高さの吸湿性液体Wの液柱Sを生じさせることができる。 When the hygroscopic liquid W is irradiated with high frequency and low frequency from each ultrasonic transducer, by adjusting the generation conditions such as high frequency and low frequency output, the liquid level 7 of the hygroscopic liquid W is adjusted to a predetermined high level. The liquid column S of the hygroscopic liquid W can be generated.
 ここで、低周波発生部162Aの低周波発生面(超音波照射面)162a1の中心から低周波発生面162a1に対して垂直な軸を超音波の照射軸J1と定義する。また、高周波発生部162Bの高周波発生面(超音波照射面)162a2の中心から高周波発生面162a2に対して垂直な軸を超音波の照射軸J2と定義する。 Here, the axis perpendicular to the low frequency generation surface 162a1 of the low frequency generation surface (ultrasonic wave irradiation surface) 162a1 of the low frequency generation unit 162A is defined as the ultrasonic wave irradiation axis J1. Further, an axis perpendicular to the high frequency generating surface 162a2 of the high frequency generating portion 162B (ultrasonic wave irradiation surface) is defined as an ultrasonic wave irradiation axis J2.
 低周波発生部162Aおよび高周波発生部162Bは、再生貯留槽161の傾斜した第1底面161d1および第2底面161d2に沿ってそれぞれ設けられていることが好ましい。低周波発生部162Aおよび高周波発生部162Bは、互いの照射軸J1,J2が中心軸O上において互いに交わる傾斜姿勢で配置される。 The low-frequency generator 162A and the high-frequency generator 162B are preferably provided along the inclined first bottom surface 161d1 and second tilted bottom surface 161d2 of the regenerator 161. The low-frequency generating unit 162A and the high-frequency generating unit 162B are arranged in an inclined posture in which their irradiation axes J1 and J2 intersect with each other on the central axis O.
 また、低周波発生面162a1および高周波発生面162a2が再生貯留槽161内に貯留されている吸湿性液体Wの液面7に対してそれぞれ傾斜することとなり、低周波発生部162Aおよび高周波発生部162Bから発生された低周波および高周波は、照射軸J1、J2が吸湿性液体Wの液面7に対して傾くように、低周波発生面162a1,高周波発生面162a2から吸湿性液体Wの液面7に向けてそれぞれ伝搬される。 Further, the low frequency generation surface 162a1 and the high frequency generation surface 162a2 are respectively inclined with respect to the liquid surface 7 of the hygroscopic liquid W stored in the regeneration storage tank 161, so that the low frequency generation section 162A and the high frequency generation section 162B. The low-frequency and high-frequency generated from the low-frequency generation surface 162a1 and the high-frequency generation surface 162a2 so that the irradiation axes J1 and J2 are inclined with respect to the liquid surface 7 of the hygroscopic liquid W. Are propagated toward each.
 これにより、再生貯留槽161内に貯留された所定量の吸湿性液体Wのうち、低周波発生部162Aの低周波発生面162a1に垂直な方向に延びる低周波伝搬領域R1と、高周波発生部162Bの高周波発生面162a2に垂直な方向に延びる高周波伝搬領域R2と、が部分的に重なり合って、低周波および高周波が照射される重畳領域R3を形成することができる。 As a result, of the predetermined amount of hygroscopic liquid W stored in the regeneration storage tank 161, the low-frequency propagation region R1 extending in the direction perpendicular to the low-frequency generation surface 162a1 of the low-frequency generation unit 162A and the high-frequency generation unit 162B. The high-frequency propagation region R2 extending in the direction perpendicular to the high-frequency generation surface 162a2 of FIG.
 さらに、本実施形態において、再生貯留槽161内に貯留される吸湿性液体Wの貯留量は、再生貯留槽161内に貯留される吸湿性液体Wにおいて、低周波発生部162Aが伝搬する低周波伝搬領域R1と、高周波発生部162Bが伝搬する高周波伝搬領域R2と、が液中で部分的に重なり合う重畳領域R3を十分に確保できる所定の量とする。霧化量の向上を図るためには重畳領域R3がなるべく大きい方が好ましい。 Further, in the present embodiment, the storage amount of the hygroscopic liquid W stored in the regeneration storage tank 161 is the low frequency that the low frequency generation unit 162A propagates in the hygroscopic liquid W stored in the regeneration storage tank 161. The predetermined amount is sufficient to ensure a sufficient overlapping region R3 in which the propagation region R1 and the high-frequency propagation region R2 propagated by the high-frequency generation unit 162B partially overlap in the liquid. In order to improve the atomization amount, it is preferable that the overlapping region R3 be as large as possible.
 また、照射軸J1,J2が液面7に対して傾斜することにより、液面7で反射した低周波および高周波が、低周波発生部162Aあるいは高周波発生部162Bに戻りにくく、これら低周波発生部162Aおよび高周波発生部162Bが超音波によるダメージを受けにくい。また、液柱Sの先端から破断した液が液柱Sに落下して、霧化が阻害されてしまうのを防ぐことができる。 Further, since the irradiation axes J1 and J2 are inclined with respect to the liquid surface 7, it is difficult for the low frequency and the high frequency reflected by the liquid surface 7 to return to the low frequency generating portion 162A or the high frequency generating portion 162B, and these low frequency generating portions are generated. 162A and the high frequency generation part 162B are not easily damaged by ultrasonic waves. Further, it is possible to prevent the liquid that has broken from the tip of the liquid column S from falling onto the liquid column S and obstructing atomization.
 本実施形態では、1つの再生貯留槽161に対して低周波発生部162Aおよび高周波発生部162Bをそれぞれ一つずつ備えているが、再生貯留槽161の数、低周波発生部162Aおよび高周波発生部162Bの各数は、適宜変更が可能である。この場合も、低周波伝搬領域R1と、高周波伝搬領域R2とが互いに重なり合う重畳領域R3を確保できるような配置にするとともに、吸湿性液体Wの貯留量を調整することが好ましい。 In the present embodiment, one low-frequency generating unit 162A and one high-frequency generating unit 162B are provided for each regenerating storage tank 161, but the number of low-frequency generating units 162A, the low-frequency generating unit 162A, and the high-frequency generating unit are set. Each number of 162B can be changed appropriately. Also in this case, it is preferable to arrange the low-frequency propagation region R1 and the high-frequency propagation region R2 so as to ensure the overlapping region R3 in which they overlap with each other, and to adjust the storage amount of the hygroscopic liquid W.
 図1および図2に示す再生貯留槽161の導入口161aには、第2ブロア32bと、第2ブロア32bを介して設けられた第2空気供給流路36aとが接続されている。再生貯留槽161の排出口161bには、第2空気排出流路36bが接続されている。第2ブロア32bの駆動により、第2空気供給流路36aを通じて導入した外部空間K1の空気A1が再生貯留槽161内に導入されて除湿される。除湿された空気A3は、第2空気排出流路36bを通じて外部空間K1へ排出される。 A second blower 32b and a second air supply flow path 36a provided via the second blower 32b are connected to the inlet 161a of the regeneration storage tank 161 shown in FIGS. 1 and 2. The second air discharge flow path 36b is connected to the discharge port 161b of the regeneration storage tank 161. By driving the second blower 32b, the air A1 in the external space K1 introduced through the second air supply passage 36a is introduced into the regeneration storage tank 161 and dehumidified. The dehumidified air A3 is discharged to the external space K1 through the second air discharge passage 36b.
 図1に示す分級手段17は、第2空気排出流路36b上に配置され、液柱Sの表面において生成された霧状液滴からさらに吸湿性液体Wを分離する。すなわち、分級手段17は、吸湿性液体Wを含む相対的に粒径の大きい液滴W1を回収分離し、相対的に粒径の小さいW2を加湿された空気A4として、外部空間K1とは異なる外部空間K2へ排出する。分級手段17としては、サイクロン式もしくはデミスター式が用いられる。 The classification means 17 shown in FIG. 1 is arranged on the second air discharge flow path 36b and further separates the hygroscopic liquid W from the mist-like droplets generated on the surface of the liquid column S. That is, the classifying unit 17 collects and separates the droplet W1 having a relatively large particle size containing the hygroscopic liquid W, and the W2 having a relatively small particle size as humidified air A4, which is different from the external space K1. Discharge to the external space K2. As the classifying means 17, a cyclone type or a demister type is used.
 図1に示す循環機構21は、第1流路21A、第2流路21BおよびポンプPを備え、吸湿手段15と霧化再生手段16との間で、吸湿性液体Wを循環させるための流路を構成している。 The circulation mechanism 21 shown in FIG. 1 includes a first flow path 21A, a second flow path 21B, and a pump P, and is a flow for circulating the hygroscopic liquid W between the hygroscopic means 15 and the atomization regenerating means 16. It constitutes a road.
 第1流路21Aは、吸湿手段15において水分を含んだ吸湿性液体Wを霧化再生手段16へ送るための流路であって、一端側が吸湿貯留槽151、他端側が再生貯留槽161に接続されている。 The first flow path 21A is a flow path for sending the hygroscopic liquid W containing water in the moisture absorption means 15 to the atomization regeneration means 16, one end side of which is the moisture absorption storage tank 151, and the other end side of which is the regeneration storage tank 161. It is connected.
 第2流路21Bは、霧化再生手段16において再生された吸湿性液体Wを吸湿手段15へ送るための流路の一部を構成し、一端側が再生貯留槽161に接続され、他端側が吸湿貯留槽151に接続されている。 The second flow path 21B constitutes a part of a flow path for sending the hygroscopic liquid W regenerated by the atomization/regeneration means 16 to the hygroscopic means 15, one end side is connected to the regeneration storage tank 161, and the other end side is It is connected to the moisture absorption storage tank 151.
 吸湿性液体Wは、水分を吸収する性質、つまり吸湿性を示す液体であり、例えば、温度が25℃、相対湿度が50%、大気圧下の条件で吸湿性を示す液体が好ましい。吸湿性液体Wは、後述する吸湿性物質を含んでいる。また、吸湿性液体Wは、吸湿性物質と溶媒とを含んでいてもよい。この種の溶媒としては、吸湿性物質を溶解させる溶媒、または吸湿性物質と混和する溶媒があげられ、例えば水が挙げられる。吸湿性物質は、有機材料であってもよいし、無機材料であってもよい。 The hygroscopic liquid W is a liquid exhibiting a property of absorbing water, that is, hygroscopicity. For example, a liquid exhibiting hygroscopicity under conditions of a temperature of 25° C., relative humidity of 50% and atmospheric pressure is preferable. The hygroscopic liquid W contains a hygroscopic substance described later. The hygroscopic liquid W may contain a hygroscopic substance and a solvent. Examples of this type of solvent include a solvent that dissolves a hygroscopic substance or a solvent that is miscible with a hygroscopic substance, such as water. The hygroscopic substance may be an organic material or an inorganic material.
 吸湿性物質として用いられる有機材料としては、例えば2価以上のアルコール、ケトン、アミド基を有する有機溶媒、糖類、保湿化粧品などの原料として用いられる公知の材料などが挙げられる。それらの中でも、親水性が高いことから、吸湿性物質として好適に用いられる有機材料としては、2価以上のアルコール、アミド基を有する有機溶媒、糖類、保湿化粧品等の原料として用いられる公知の材料が挙げられる。 Examples of organic materials used as hygroscopic substances include known materials used as raw materials for dihydric or higher alcohols, ketones, organic solvents having an amide group, sugars, moisturizing cosmetics, and the like. Among them, as the organic material preferably used as the hygroscopic substance because of its high hydrophilicity, known materials used as raw materials for dihydric or higher alcohols, organic solvents having an amide group, sugars, moisturizing cosmetics and the like. Are listed.
 2価以上のアルコールとしては、例えばグリセリン、プロパンジオール、ブタンジオール、ペンタンジオール、トリメチロールプロパン、ブタントリオール、エチレングリコール、ジエチレングリコール、トリエチレングリコールなどが挙げられる。 Examples of the divalent or higher alcohol include glycerin, propanediol, butanediol, pentanediol, trimethylolpropane, butanetriol, ethylene glycol, diethylene glycol, triethylene glycol.
 アミド基を有する有機溶媒としては、例えばホルムアミド、アセトアミドなどが挙げられる。 Examples of the organic solvent having an amide group include formamide and acetamide.
 糖類としては、例えばスクロース、プルラン、グルコース、キシロール、フラクトース、マンニトール、ソルビトールなどが挙げられる。 Saccharides include, for example, sucrose, pullulan, glucose, xylol, fructose, mannitol, sorbitol and the like.
 保湿化粧品などの原料として用いられる公知の材料としては、例えば2-メタクリロイルオキシエチルホスホリルコリン(MPC)、ベタイン、ヒアルロン酸、コラーゲンなどが挙げられる。 Known materials used as raw materials for moisturizing cosmetics include, for example, 2-methacryloyloxyethylphosphorylcholine (MPC), betaine, hyaluronic acid, collagen and the like.
 吸湿性物質として用いられる無機材料としては、例えば塩化カルシウム、塩化リチウム、塩化マグネシウム、塩化カリウム、塩化ナトリウム、塩化亜鉛、塩化アルミニウム、臭化リチウム、臭化カルシウム、臭化カリウム、水酸化ナトリウム、ピロリドンカルボン酸ナトリウムなどが挙げられる。 Examples of the inorganic material used as the hygroscopic substance include calcium chloride, lithium chloride, magnesium chloride, potassium chloride, sodium chloride, zinc chloride, aluminum chloride, lithium bromide, calcium bromide, potassium bromide, sodium hydroxide, pyrrolidone. Examples include sodium carboxylate.
 吸湿性物質の親水性が高いと、例えば吸湿性物質の材料と水とを混合させたときに、吸湿性液体Wの表面(液面)近傍に吸着される水分子の割合が多くなる。後述する霧化再生手段16では、液柱Sとされた吸湿性液体Wの表面近傍から霧状液滴を発生させ、吸湿性液体Wから水分を分離する。そのため、吸湿性液体Wの表面近傍に吸着される水分子の割合が多いと、水分を効率的に分離できる点で好ましい。また、吸湿性液体Wの表面近傍における吸湿性物質の割合が相対的に少なくなるため、霧化再生手段16での吸湿性物質の損失を抑えられる点で好ましい。 When the hygroscopic substance has high hydrophilicity, for example, when the material of the hygroscopic substance and water are mixed, the ratio of water molecules adsorbed near the surface (liquid level) of the hygroscopic liquid W increases. In the atomization/regeneration means 16 described later, atomized droplets are generated from the vicinity of the surface of the hygroscopic liquid W formed into the liquid column S, and water is separated from the hygroscopic liquid W. Therefore, a large proportion of water molecules adsorbed in the vicinity of the surface of the hygroscopic liquid W is preferable in that water can be efficiently separated. Further, since the ratio of the hygroscopic substance in the vicinity of the surface of the hygroscopic liquid W is relatively small, it is preferable in that the loss of the hygroscopic substance in the atomization/regeneration means 16 can be suppressed.
 吸湿性液体Wのうち、吸湿手段15での処理に用いられる吸湿性液体Wに含まれる吸湿性物質の濃度は、特に限定されないが、40質量%以上であることが好ましい。吸湿性物質の濃度が40質量%以上である場合、吸湿性液体Wは、効率良く水分を吸収することができる。 Of the hygroscopic liquid W, the concentration of the hygroscopic substance contained in the hygroscopic liquid W used for the treatment by the hygroscopic means 15 is not particularly limited, but is preferably 40% by mass or more. When the concentration of the hygroscopic substance is 40% by mass or more, the hygroscopic liquid W can efficiently absorb water.
 吸湿性液体Wの粘度は、25mPa・s以下であることが好ましい。これにより、後述する霧化再生手段16において、吸湿性液体Wの液面7に吸湿性液体Wの液柱Sを生じさせやすい。そのため、吸湿性液体Wから効率良く水分を分離することができる。 The viscosity of the hygroscopic liquid W is preferably 25 mPa·s or less. Thereby, in the atomizing and reproducing means 16 described later, the liquid column S of the hygroscopic liquid W is easily generated on the liquid surface 7 of the hygroscopic liquid W. Therefore, the moisture can be efficiently separated from the hygroscopic liquid W.
(調湿装置の作用)
 まず、制御部14は、ポンプPを駆動することにより、吸湿手段15の液体供給部152から吸湿性液体Wを流下させる。同時に、第1ブロア32aを駆動することにより、第1空気供給流路31aを介して外部空間K1の空気A1を吸湿貯留槽151内に導入して、第1空気排出流路31bへ向かう気流を形成する。
(Operation of humidity control device)
First, the control unit 14 drives the pump P to cause the hygroscopic liquid W to flow down from the liquid supply unit 152 of the moisture absorbing means 15. At the same time, by driving the first blower 32a, the air A1 in the external space K1 is introduced into the moisture absorption storage tank 151 via the first air supply flow passage 31a, and the air flow toward the first air discharge flow passage 31b is generated. Form.
 吸湿貯留槽151内を流動する空気が、液体供給部152から流下する吸湿性液体Wに接触すると、空気中の水分が吸湿性液体Wに吸収されて除去される。制御部14は、第1空気供給流路31a上に設けられた第1ブロア32aを駆動することにより、除湿した空気A2を外部空間K1へ供給する。 When the air flowing in the moisture storage tank 151 comes into contact with the hygroscopic liquid W flowing down from the liquid supply unit 152, the moisture in the air is absorbed by the hygroscopic liquid W and removed. The controller 14 supplies the dehumidified air A2 to the external space K1 by driving the first blower 32a provided on the first air supply flow path 31a.
 次に、制御部14は、ポンプPを駆動することにより、吸湿貯留槽151内に貯留されている水分を含む吸湿性液体Wを、第1流路21Aを介して霧化再生手段16へ供給し、再生貯留槽161内に貯留させる。 Next, the controller 14 drives the pump P to supply the hygroscopic liquid W containing the water stored in the moisture storage tank 151 to the atomization/regeneration means 16 via the first flow path 21A. Then, it is stored in the regeneration storage tank 161.
 霧化再生手段16では、制御部14により、低周波発生部162Aおよび高周波発生部162Bをそれぞれ同時に駆動することで、再生貯留槽161内に貯留された霧化用の吸湿性液体Wに超音波を照射して液柱Sを形成し、水分を含んだ吸湿性液体Wを高く持ち上げる。 In the atomization/regeneration unit 16, the control unit 14 simultaneously drives the low-frequency generation unit 162A and the high-frequency generation unit 162B to ultrasonically generate the hygroscopic liquid W for atomization stored in the regeneration storage tank 161. To form a liquid column S, and the hygroscopic liquid W containing water is lifted high.
 このとき、高周波発生部162Bと平面的に重なる高周波伝搬領域R2には、集中的に高周波が照射され、この高周波伝搬領域R2の液面7に液柱Sが形成される。高周波超音波は、低周波超音波に比べて指向性が高く、液面7に生じるキャピラリー波によって形成される液柱Sの波頭が分裂して、例えば、ナノサイズの微細な液滴が多く生成される。 At this time, the high-frequency propagation region R2 that planarly overlaps the high-frequency generation unit 162B is intensively irradiated with high-frequency waves, and the liquid column S is formed on the liquid surface 7 of the high-frequency propagation region R2. The high-frequency ultrasonic waves have higher directivity than the low-frequency ultrasonic waves, and the wave front of the liquid column S formed by the capillary waves generated on the liquid surface 7 is split, and, for example, many nano-sized fine droplets are generated. To be done.
 一方、再生貯留槽161内に貯留されている吸湿性液体Wのうち、低周波発生部162Aと平面的に重なる低周波伝搬領域R1には、集中的に低周波が照射される。低周波超音波は、高周波超音波よりも指向性が低く、キャビテーションの閾値が小さいため、強度の大きいキャビテーションが起こりやすい。キャビテーションによって生じた微小気泡が液柱Sの表面付近において破壊することによって、例えばマイクロサイズ、ナノサイズの大小さまざまな液滴が多く生成される。 On the other hand, of the hygroscopic liquid W stored in the regeneration storage tank 161, the low frequency propagation region R1 that planarly overlaps with the low frequency generation unit 162A is intensively irradiated with the low frequency. Low-frequency ultrasonic waves have lower directivity than high-frequency ultrasonic waves and have a small threshold value for cavitation, and thus cavitation with high intensity is likely to occur. The micro bubbles generated by the cavitation are destroyed near the surface of the liquid column S, so that various large and small droplets of, for example, micro size and nano size are generated.
 制御部14は、第2空気供給流路36aを介して空気A1を再生貯留槽161内に供給して第2空気排出流路36bへ向かう気流を形成する。再生貯留槽161内を流動する空気A1を、液柱Sに接触させることで、液柱Sから分離した大きさの異なる霧状液滴は、空気A1に吸収される。このようにして、水分を含んだ吸湿性液体Wから水分を分離して吸湿性液体Wを再生する。大小の霧状液滴を含んだ空気A3は、分級手段17へ供給される。 The control unit 14 supplies the air A1 into the regeneration storage tank 161 through the second air supply flow path 36a to form an airflow toward the second air discharge flow path 36b. By bringing the air A1 flowing in the regeneration storage tank 161 into contact with the liquid column S, atomized droplets of different sizes separated from the liquid column S are absorbed by the air A1. In this way, the moisture is separated from the hygroscopic liquid W containing moisture to regenerate the hygroscopic liquid W. The air A3 containing large and small atomized droplets is supplied to the classifying means 17.
 次に、制御部14は、分級手段17においてマイクロサイズの大きな液滴を分級する。上述したように、キャビテーションによって物理的に大きいマイクロサイズの液滴も生成される。マイクロサイズの液滴には吸湿性液体Wが含まれている可能性があるため、分級手段17において、マイクロサイズの液滴を分離する。このようにして水分を含んだ加湿空気A4は、第2空気排出流路36bを介して外部空間K1へと排出される。 Next, the control unit 14 causes the classifying unit 17 to classify large micro-sized droplets. As mentioned above, cavitation also produces physically large micro-sized droplets. Since the hygroscopic liquid W may be contained in the micro-sized droplets, the classification means 17 separates the micro-sized droplets. In this way, the humidified air A4 containing water is discharged to the external space K1 via the second air discharge flow path 36b.
 次に、制御部14は、ポンプPを駆動させることにより、霧化再生手段16において再生された吸湿性液体Wを、第2流路21Bを通じて吸湿手段15へと移送する。このようにして、吸湿性液体Wを循環させる。 Next, the control unit 14 drives the pump P to transfer the hygroscopic liquid W regenerated by the atomization/regeneration unit 16 to the hygroscopic unit 15 through the second flow path 21B. In this way, the hygroscopic liquid W is circulated.
 本実施形態では、吸湿性液体Wにおいて低周波伝搬領域R1と高周波伝搬領域R2とが重なる重畳領域R3が形成されるように、吸湿性液体Wに対して低周波超音波および高周波超音波を同時に照射する。これにより、高周波超音波によって形成される液柱Sに対して集中的に低周波超音波によるキャビテーションを起こして、大小さまざまなサイズの液滴の液滴を生成することで、霧化量を増大させることが可能である。 In the present embodiment, low-frequency ultrasonic waves and high-frequency ultrasonic waves are simultaneously applied to the hygroscopic liquid W so that a superposed region R3 where the low-frequency propagation region R1 and the high-frequency propagation region R2 overlap each other is formed in the hygroscopic liquid W. Irradiate. As a result, cavitation is intensively caused by the low-frequency ultrasonic waves on the liquid column S formed by the high-frequency ultrasonic waves to generate droplets of various sizes, thereby increasing the atomization amount. It is possible to
 つまり、本実施形態では、低周波超音波と高周波超音波とを組み合わせることによって、高周波超音波によって生じる液柱Sの表面の不安定化による霧化と、低周波超音波のキャビテーションで生じた微小気泡が液柱Sの表面付近で破壊することで生じる微小液滴生成と、キャビテーションの内部に揮発した水蒸気が空気中に拡散されることによる霧化の促進が生じる。これにより、ナノミストサイズの液滴が多く生成されて霧化が促進される。また、マイクロサイズの大きい液滴は、分級手段17によって分級されるため、霧化量の増大が図れる。 That is, in the present embodiment, by combining the low frequency ultrasonic wave and the high frequency ultrasonic wave, the atomization due to the destabilization of the surface of the liquid column S caused by the high frequency ultrasonic wave and the minute amount generated by the cavitation of the low frequency ultrasonic wave The generation of minute droplets caused by the bubbles breaking near the surface of the liquid column S and the promotion of atomization due to the vaporization of water vapor inside the cavitation in the air occur. As a result, many nanomist-sized droplets are generated and atomization is promoted. Further, since the droplet having a large micro size is classified by the classifying unit 17, the atomization amount can be increased.
 また、吸湿貯留槽151において吸湿性液体Wに空気が触れた際、高粘度の吸湿性液体Wの内部に取り込まれた気泡は消えにくい。このような気泡を含んだ吸湿性液体Wに対して、再生貯留槽161において低周波超音波を照射すると、気泡がキャビテーションの核となりやすく、低周波の出力が小さくても十分なキャビテーションを起こすことができる。 Also, when air comes into contact with the hygroscopic liquid W in the hygroscopic storage tank 151, bubbles taken inside the high-viscosity hygroscopic liquid W are hard to disappear. When the hygroscopic liquid W containing such bubbles is irradiated with low-frequency ultrasonic waves in the regeneration storage tank 161, the bubbles are likely to become the core of cavitation, and sufficient cavitation occurs even if the low-frequency output is small. You can
 また、高周波超音波のみ採用する場合よりも、一方向に音圧が生じるので、液柱Sの形成の相乗効果が得られる。 Moreover, since a sound pressure is generated in one direction compared to the case where only high frequency ultrasonic waves are adopted, a synergistic effect of forming the liquid column S can be obtained.
[第2実施形態の霧化再生手段]
 次に、第2実施形態の霧化再生手段(霧化再生装置)20について説明する。以下に示す本実施形態の霧化再生手段20の基本構成は、上記第1実施形態と略同様であるが、低周波発生部および高周波発生部の位置関係が異なっている。よって、以下の説明では、第1実施形態と異なる点について詳しく説明し、共通な箇所の説明は省略する。また、説明に用いる各図面において、図1、図2と共通の構成要素には同一の符号を付すものとする。
[Atomization Reproducing Means of Second Embodiment]
Next, the atomization reproduction means (atomization reproduction device) 20 of the second embodiment will be described. The basic structure of the atomizing and reproducing means 20 of the present embodiment shown below is substantially the same as that of the first embodiment, but the positional relationship between the low frequency generating section and the high frequency generating section is different. Therefore, in the following description, points different from the first embodiment will be described in detail, and description of common points will be omitted. Further, in each drawing used for the explanation, the same components as those in FIGS. 1 and 2 are designated by the same reference numerals.
 図3は、第2実施形態の霧化再生装置の概略構成を示す図である。図4は、第2実施形態の超音波発生機構の概略構成を示す断面図である。 FIG. 3 is a diagram showing a schematic configuration of the atomization reproducing device of the second embodiment. FIG. 4 is a sectional view showing a schematic configuration of the ultrasonic wave generation mechanism of the second embodiment.
 本実施形態の霧化再生手段20は、底面171dが平面をなす再生貯留槽171と、超音波発生機構172と、を備えている。
 超音波発生機構172は、低周波発生部162Aおよび高周波発生部162Bを互いの中心を一致させた状態で積層さら、再生貯留槽171の底面171dの中央に配置されている。本実施形態では、再生貯留槽171の底面171dに低周波発生部162Aの低周波発生面162a1が対向し、低周波発生部162Aの低周波発生面162a1とは反対側の背面側に、高周波発生部162Bの高周波発生面162a2が対向している。
The atomization reproduction means 20 of the present embodiment includes a reproduction storage tank 171 whose bottom surface 171d is a flat surface, and an ultrasonic wave generation mechanism 172.
The ultrasonic wave generation mechanism 172 is disposed in the center of the bottom surface 171d of the regeneration storage tank 171 while stacking the low frequency generation unit 162A and the high frequency generation unit 162B in a state where their centers coincide with each other. In the present embodiment, the low frequency generating surface 162a1 of the low frequency generating section 162A faces the bottom surface 171d of the regeneration storage tank 171, and a high frequency is generated on the back side of the low frequency generating section 162A opposite to the low frequency generating surface 162a1. The high frequency generation surface 162a2 of the portion 162B faces.
 本実施形態では、高周波発生部162Bよりも低周波発生部162Aの方が大きさを有しており、高周波発生面162a2の円形面積よりも、低周波発生面162a1の円形面積の方が大きい。高周波発生部162Bおよび低周波発生部162Aは、互いの中心を一致させて配置されていることから、側面視において、高周波発生部162Bの外周部よりも低周波発生部162Aの外周部の方が径方向外側へ張り出している。 In the present embodiment, the low-frequency generation section 162A has a larger size than the high-frequency generation section 162B, and the circular area of the low-frequency generation surface 162a1 is larger than the circular area of the high-frequency generation surface 162a2. Since the high-frequency generation unit 162B and the low-frequency generation unit 162A are arranged with their centers aligned with each other, the outer peripheral portion of the low-frequency generation unit 162A is closer to the outer peripheral portion of the high-frequency generation unit 162B in a side view. It projects outward in the radial direction.
 これは低周波発生部162Aが単独で駆動する時に高周波発生部162Bがそれより小さいため振動を阻害しにくいため好適である。 This is preferable because when the low-frequency generator 162A is driven independently, the high-frequency generator 162B is smaller than that and does not easily hinder vibration.
 本実施形態では、低周波発生面162a1および高周波発生面162a2の中心から低周波発生面162a1および高周波発生面162a2に対して垂直な軸を超音波の照射軸Jと定義する。 In the present embodiment, an axis perpendicular to the center of the low frequency generation surface 162a1 and the high frequency generation surface 162a2 to the low frequency generation surface 162a1 and the high frequency generation surface 162a2 is defined as an ultrasonic irradiation axis J.
 低周波発生部162Aおよび高周波発生部162Bは、再生貯留槽171の底面171dに対して斜めに設けられていてもよい。これにより、高周波および低周波は、照射軸Jが吸湿性液体Wの液面7に対して傾くように、低周波発生面162a1および高周波発生面162a2から液面7に向けて伝搬される。これにより、液面7で反射した低周波および高周波が、低周波発生部162Aおよび高周波発生部162Bに戻りにくく、これら低周波発生部162Aおよび高周波発生部162Bが超音波によるダメージを受けにくい。また、液柱Sの先端から破断した液が液柱Sに落下して、霧化が阻害されてしまうのを防ぐことができる。 The low-frequency generation unit 162A and the high-frequency generation unit 162B may be provided obliquely with respect to the bottom surface 171d of the regeneration storage tank 171. Thereby, the high frequency and the low frequency are propagated from the low frequency generating surface 162a1 and the high frequency generating surface 162a2 toward the liquid surface 7 so that the irradiation axis J is inclined with respect to the liquid surface 7 of the hygroscopic liquid W. As a result, the low frequency and the high frequency reflected on the liquid surface 7 are unlikely to return to the low frequency generating section 162A and the high frequency generating section 162B, and the low frequency generating section 162A and the high frequency generating section 162B are less likely to be damaged by the ultrasonic waves. Further, it is possible to prevent the liquid that has broken from the tip of the liquid column S from falling onto the liquid column S and obstructing atomization.
 本実施形態では、低周波発生部162Aおよび高周波発生部162Bを積層させて配置してあるので、省スペース化が可能である。 In the present embodiment, the low-frequency generation unit 162A and the high-frequency generation unit 162B are stacked and arranged, so that space can be saved.
[第3実施形態]
 次に、第3実施形態の霧化再生手段(霧化再生装置)30について説明する。以下に示す本実施形態の霧化再生手段30の基本構成は、上記第1実施形態と略同様であるが、光触媒充填部37を備える点において異なる。よって、以下の説明では、光触媒充填部37について詳しく説明し、共通な箇所の説明は省略する。
[Third Embodiment]
Next, the atomization reproduction means (atomization reproduction device) 30 of the third embodiment will be described. The basic configuration of the atomization/regeneration means 30 of the present embodiment described below is substantially the same as that of the first embodiment, but is different in that the photocatalyst filling section 37 is provided. Therefore, in the following description, the photocatalyst filling section 37 will be described in detail, and description of common points will be omitted.
 図5は、第3実施形態の霧化再生手段30の概略構成を示す側面図である。図6は、第3実施形態の霧化再生手段30の概略構成を示す上面図である。 FIG. 5 is a side view showing a schematic configuration of the atomization regenerating unit 30 of the third embodiment. FIG. 6 is a top view showing a schematic configuration of the atomizing/regenerating unit 30 of the third embodiment.
 図5および図6に示すように、霧化再生手段30では、第1実施形態と同様の再生貯留槽161に対して、低周波発生部162Aおよび高周波発生部162Bが、再生貯留槽161内に貯留された吸湿性液体Wの液面7に対してそれぞれ傾斜した状態で配置されている。 As shown in FIG. 5 and FIG. 6, in the atomization regeneration means 30, a low frequency generation unit 162A and a high frequency generation unit 162B are provided in the regeneration storage tank 161 in contrast to the regeneration storage tank 161 similar to the first embodiment. Each of the hygroscopic liquids W is arranged in an inclined state with respect to the liquid surface 7.
 本実施形態では、再生貯留槽161内に貯留されている吸湿性液体Wのうち、低周波伝搬領域R1内に、光触媒充填部37が配置されている。光触媒充填部37は、複数の造粒体からなる光触媒38と、光触媒38を保持する光触媒保持部材39と、を有して構成されている。 In the present embodiment, the photocatalyst filling part 37 is arranged in the low-frequency propagation region R1 of the hygroscopic liquid W stored in the regeneration storage tank 161. The photocatalyst filling section 37 is configured to include a photocatalyst 38 composed of a plurality of granules and a photocatalyst holding member 39 that holds the photocatalyst 38.
 光触媒保持部材39内に収容されている複数の光触媒38は、光触媒保持部材39に設けられた複数の連通孔39aを通じて、再生貯留槽161内の吸湿性液体Wと接触している。光触媒38の粒子径は、例えば2.0mm程度が好ましい。連通孔39aから光触媒38が流出してしまうと、液滴とともに空気中へ放出されてしまうおそれがあることから、連通孔39aの直径は、光触媒38の粒子径よりも小さく、連通孔39aから光触媒38が流出しない寸法となっている。 The plurality of photocatalysts 38 contained in the photocatalyst holding member 39 are in contact with the hygroscopic liquid W in the regeneration storage tank 161 through the plurality of communication holes 39a provided in the photocatalyst holding member 39. The particle diameter of the photocatalyst 38 is preferably about 2.0 mm, for example. If the photocatalyst 38 flows out from the communication hole 39a, it may be discharged into the air together with the droplets. Therefore, the diameter of the communication hole 39a is smaller than the particle diameter of the photocatalyst 38, and the photocatalyst from the communication hole 39a may be discharged. The size of 38 does not flow out.
 光触媒保持部材39は、吸湿性液体Wとインピーダンスが近い材料によって構成されており、これによって低周波の反射を抑制している。吸湿性液体Wがグリセリンのとき、光触媒保持部材39がポリスチレンの場合における低周波の反射率は0.08%である。光触媒保持部材39がポリエチレンの場合における低周波の反射率は0.02%である。光触媒保持部材39がゴムの場合における低周波の反射率は0.05%である。 The photocatalyst holding member 39 is made of a material whose impedance is close to that of the hygroscopic liquid W, and thereby suppresses low-frequency reflection. When the hygroscopic liquid W is glycerin and the photocatalyst holding member 39 is polystyrene, the low frequency reflectance is 0.08%. When the photocatalyst holding member 39 is polyethylene, the low frequency reflectance is 0.02%. When the photocatalyst holding member 39 is rubber, the low frequency reflectance is 0.05%.
 光触媒充填部37は、平面視における形状が円形となっているが、矩形あるいはその他の形状であってもよい。 The photocatalyst filling portion 37 has a circular shape in a plan view, but may have a rectangular shape or another shape.
 本実施形態のように、低周波伝搬領域R1内に光触媒充填部37を設けて、光触媒保持部材39の内部において吸湿性液体W中に複数の光触媒38が分散している状態のところに低周波を照射すると、低周波が光触媒38に接触することで光触媒38が励起され、OHヒドロキシラジカルが生成される。
 これにより、吸湿性液体Wに対する細菌の繁殖を防止することができる。また、光触媒作用のため、半永久的に効果が持続し、清潔な状態を長期的に維持することが可能である。
As in the present embodiment, the photocatalyst filling portion 37 is provided in the low frequency propagation region R1, and the low frequency is present in the state where the plurality of photocatalysts 38 are dispersed in the hygroscopic liquid W inside the photocatalyst holding member 39. Is irradiated, the photocatalyst 38 is excited by the contact of the low frequency with the photocatalyst 38, and the OH hydroxy radical is generated.
As a result, it is possible to prevent the growth of bacteria in the hygroscopic liquid W. Further, due to the photocatalytic action, the effect is semipermanently maintained, and it is possible to maintain a clean state for a long time.
 また、光触媒充填部37を低周波伝搬領域R1内に配置することによって、指向性の高い高周波の伝搬を阻害することもなく、液柱Sの形成に影響を及ぼすことなく、光触媒作用を得ることができる。 Further, by arranging the photocatalyst filling portion 37 in the low frequency propagation region R1, it is possible to obtain a photocatalytic action without disturbing the propagation of the high frequency wave having high directivity and without affecting the formation of the liquid column S. You can
 また、光触媒保持部材39内に収容されている複数の光触媒38は、複数の連通孔39aを通じて、再生貯留槽161内の吸湿性液体Wと接触する構成にすることで、超音波の照射によって光触媒保持部材39内に保持された複数の光触媒38を効率よく分散させることができる。これによって、低周波と光触媒38の接触効率を高めることができるとともに、生成されるOHヒドロキシラジカルの拡散効率の向上を図ることができる。 Further, the plurality of photocatalysts 38 accommodated in the photocatalyst holding member 39 are configured to come into contact with the hygroscopic liquid W in the regeneration storage tank 161 through the plurality of communication holes 39a, whereby the photocatalysts are irradiated by ultrasonic waves. It is possible to efficiently disperse the plurality of photocatalysts 38 held in the holding member 39. As a result, the contact efficiency between the low frequency and the photocatalyst 38 can be increased, and the diffusion efficiency of the generated OH hydroxy radicals can be improved.
 なお、本実施形態では、光触媒38の粒子径は、上記した2.0mm程度が好ましいとした。光触媒38の粒子径が上記寸法より小さすぎると空気中に放出される恐れがあり、逆に大きすぎると、超音波との接触が不十分でOHヒドロキシラジカルの生成効率が低下するため、上記粒径とすることが好ましい。 In the present embodiment, the particle size of the photocatalyst 38 is preferably about 2.0 mm described above. If the particle size of the photocatalyst 38 is too small, it may be released into the air. On the contrary, if it is too large, the contact efficiency with ultrasonic waves may be insufficient and the efficiency of OH hydroxy radical generation may decrease. The diameter is preferable.
 このように、光触媒充填部37をさらに備えることによって、霧化効率を高めつつ吸湿性液体Wに対する細菌の繁殖を防ぐことができる。 As described above, by further providing the photocatalyst filling portion 37, it is possible to prevent the growth of bacteria in the hygroscopic liquid W while improving the atomization efficiency.
[第4実施形態]
 次に、第4実施形態の霧化再生手段(霧化再生装置)40について説明する。以下に示す本実施形態の霧化再生手段40の基本構成は、上記第2実施形態と略同様であるが、光触媒充填部37を備える点において異なる。よって、以下の説明では、光触媒充填部37について詳しく説明し、共通な箇所の説明は省略する。
[Fourth Embodiment]
Next, the atomization reproduction means (atomization reproduction device) 40 of the fourth embodiment will be described. The basic structure of the atomization/regeneration means 40 of the present embodiment described below is substantially the same as that of the second embodiment, except that the photocatalyst filling section 37 is provided. Therefore, in the following description, the photocatalyst filling portion 37 will be described in detail, and description of common portions will be omitted.
 図7は、第4実施形態の霧化再生手段40を示す側面図である。図8は、第4実施形態の霧化再生手段40を示す上面図である。 FIG. 7 is a side view showing the atomizing/regenerating means 40 of the fourth embodiment. FIG. 8 is a top view showing the atomization reproducing means 40 of the fourth embodiment.
 図7および図8に示すように、霧化再生手段40では、第2実施形態と同様の再生貯留槽171に対して、低周波発生部162Aおよび高周波発生部162Bが互いの中心を一致させて積層した状態で配置されている。 As shown in FIGS. 7 and 8, in the atomization regeneration means 40, the low-frequency generation unit 162A and the high-frequency generation unit 162B have their centers aligned with each other with respect to the regeneration storage tank 171 similar to that of the second embodiment. They are arranged in a stacked state.
 本実施形態では、再生貯留槽171内に貯留されている吸湿性液体W内に、低周波発生部162Aおよび高周波発生部162Bの中心と一致させた状態で、光触媒充填部37が配置されている。低周波発生部162A、高周波発生部162B、光触媒充填部37は、再生貯留槽171の中心軸Oに一致していることが好ましい。 In the present embodiment, the photocatalyst filling section 37 is arranged in the hygroscopic liquid W stored in the regeneration storage tank 171, in a state of being aligned with the centers of the low frequency generation section 162A and the high frequency generation section 162B. .. It is preferable that the low-frequency generating unit 162A, the high-frequency generating unit 162B, and the photocatalyst filling unit 37 are aligned with the central axis O of the regeneration storage tank 171.
 本実施形態によれば、低周波伝搬領域R1内に、光触媒充填部37を配置したことにより、低周波発生部162Aを単独で駆動させることにより、吸湿性液体Wに対する細菌の繁殖を抑えることが可能である。 According to the present embodiment, by disposing the photocatalyst filling section 37 in the low-frequency propagation region R1, the low-frequency generating section 162A is driven independently, so that the growth of bacteria in the hygroscopic liquid W can be suppressed. It is possible.
 また、光触媒充填部37は、低周波伝搬領域R1のうち、なるべく高周波発生部162Bの高周波伝搬領域R2に重ならない位置に設置されることが好ましい。これにより、低周波の伝搬のみが可能となり、光触媒充填部37に対して効率よく低周波を照射することができるため、高い光触媒作用を得ることができる。 Further, it is preferable that the photocatalyst filling section 37 is installed in the low frequency propagation area R1 as far as possible so as not to overlap the high frequency propagation area R2 of the high frequency generation section 162B. As a result, only low-frequency propagation is possible, and the photocatalyst-filled portion 37 can be efficiently irradiated with low-frequency, so that a high photocatalytic action can be obtained.
 光触媒充填部37の平面視における形態としては、例えば図8に示すように、ドーナツ型のような中心部が穴の開いた環状形状でも構わないし、平面視において高周波発生部162Bと重ならないように中心部が開いていれば、四角形状など、他の形状でもよい。また、光触媒充填部37は、再生貯留槽171の内壁面に接していてもよい。 As a form of the photocatalyst filling portion 37 in a plan view, for example, as shown in FIG. 8, an annular shape with a hole in the center such as a donut shape may be used, and it does not overlap the high frequency generating portion 162B in a plan view. Other shapes such as a square shape may be used as long as the central portion is open. Further, the photocatalyst filling section 37 may be in contact with the inner wall surface of the regeneration storage tank 171.
 次に、実施例1の霧化再生手段における低周波発生部と高周波発生部とにおける超音波伝搬領域の重なりについて説明する。
 図9は、超音波照射軸J上の点X1に対して同心円状の点X2の音圧振幅の比を示す図である。図10は、吸湿性液体W中における超音波発生機構(低周波発生部、高周波発生部)162の音圧発生範囲の半径を1cmと仮定した時の周波数の違いによる指向性分布を示すグラフである。図10では、縦軸が周波数を示し、横軸が方位角を示している。
Next, the overlapping of the ultrasonic wave propagation regions in the low frequency generation unit and the high frequency generation unit in the atomization reproduction unit of the first embodiment will be described.
FIG. 9 is a diagram showing the ratio of the sound pressure amplitude at a point X2 that is concentric to the point X1 on the ultrasonic wave irradiation axis J. FIG. 10 is a graph showing the directivity distribution due to the difference in frequency when the radius of the sound pressure generation range of the ultrasonic wave generation mechanism (low frequency generation part, high frequency generation part) 162 in the hygroscopic liquid W is assumed to be 1 cm. is there. In FIG. 10, the vertical axis represents frequency and the horizontal axis represents azimuth.
 本実施例における構成要件は以下に示す通りである。
・吸湿性液体:グリセリン水溶液
・低周波発生部:100kHz
・高周波発生部:2.4MHz
The constituent features of this embodiment are as follows.
・Hygroscopic liquid: Aqueous glycerin solution ・Low frequency generator: 100 kHz
・High frequency generator: 2.4MHz
 円形平面音源である超音波発生機構162による指向性関数Dは、従来において、図9に示す超音波発生機構162の超音波照射軸Jから角度αの方向のある点X1と、超音波照射軸J上の点X1と同じ距離の点X2との音圧振幅の比であると定義され、下記数1により求められることが知られている。 Conventionally, the directivity function D by the ultrasonic wave generation mechanism 162 which is a circular plane sound source is obtained by a conventional method including a point X1 in the direction of an angle α from the ultrasonic wave irradiation axis J of the ultrasonic wave generation mechanism 162 shown in FIG. It is known to be defined as the ratio of the sound pressure amplitude between the point X1 on J and the point X2 at the same distance, and is known to be obtained by the following formula 1.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
D:指向性関数
f:周波数
λ:波長=(伝搬速度/周波数)
k:波数(=2π/λ)
a:振動子半径
:第1種ベッセル関数
α:振動子中心軸からの角度(偏角)
D: Directivity function f: Frequency λ: Wavelength=(propagation velocity/frequency)
k: wave number (=2π/λ)
a: oscillator radius J 1 : Bessel function of the first kind α: angle from the central axis of the oscillator (declination)
 図10に示すように、指向性関数Dの分布は周波数によって異なっている。ここで、超音波伝搬領域のうち、最も音圧が高くなる超音波発生面162aの中心を基準1とした場合、中心音圧の1/5までを重なり合う超音波伝搬領域と定義する。
 この場合、高周波発生部(2.4MHz)の場合は中心角αが6度程度、低周波発生部(100kHz)の場合は中心角αが140度程度で、中心の1/5以上の音圧振幅の比がとれる。
As shown in FIG. 10, the distribution of the directivity function D differs depending on the frequency. Here, in the ultrasonic wave propagation region, when the center of the ultrasonic wave generation surface 162a having the highest sound pressure is taken as the reference 1, up to ⅕ of the central sound pressure is defined as an overlapping ultrasonic wave propagation region.
In this case, the center angle α is about 6 degrees in the case of the high frequency generating section (2.4 MHz), and the center angle α is about 140 degrees in the case of the low frequency generating section (100 kHz), and the sound pressure is ⅕ or more of the center. Amplitude ratio can be obtained.
 以上、添付図面を参照しながら本発明に係る好適な実施形態について説明したが、本発明は係る例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 The preferred embodiments of the present invention have been described above with reference to the accompanying drawings, but it goes without saying that the present invention is not limited to the examples. It is obvious to those skilled in the art that various changes or modifications can be conceived within the scope of the technical idea described in the claims, and of course, the technical scope of the present invention is also applicable to them. Understood to belong to.
 例えば、上述した各実施形態の調湿装置および霧化再生手段は、溶液を濃縮する技術に応用することができる。

 
For example, the humidity control apparatus and the atomization/regeneration means of each of the above-described embodiments can be applied to the technique of concentrating a solution.

Claims (18)

  1.  気体に含まれる水分を吸湿性液体に吸湿させる吸湿手段と、
     前記吸湿性液体に含まれる水分の一部を霧化分離させて前記吸湿性液体を再生する霧化再生手段と、を備え、
     前記霧化再生手段は、
     前記吸湿性液体を貯留する液体貯留槽と、
     超音波を発生して前記霧化分離を行うための前記吸湿性液体の液面に液柱を形成する超音波発生機構と、を有し、
     前記超音波発生機構は、高周波を発生する高周波発生部と、低周波を発生する低周波発生部と、を有する、
    調湿装置。
    Hygroscopic means for absorbing the moisture contained in the gas into the hygroscopic liquid,
    Atomizing and regenerating means for regenerating the hygroscopic liquid by atomizing and separating a part of the water contained in the hygroscopic liquid,
    The atomization reproducing means,
    A liquid storage tank for storing the hygroscopic liquid,
    An ultrasonic wave generation mechanism that forms a liquid column on the liquid surface of the hygroscopic liquid for generating the ultrasonic wave to perform the atomization separation, and
    The ultrasonic wave generating mechanism has a high frequency generating section for generating a high frequency and a low frequency generating section for generating a low frequency.
    Humidity control device.
  2.  前記高周波発生部および前記低周波発生部は、
     互いの超音波発生面が前記液体貯留槽内に貯留された前記吸湿性液体の前記液面に対して傾斜しているとともに、各超音波発生面のうち互いに対向する一方の端部側を他方の端部側よりも低くした配置となっている、
    請求項1に記載の調湿装置。
    The high-frequency generator and the low-frequency generator are
    Mutual ultrasonic wave generation surfaces are inclined with respect to the liquid surface of the hygroscopic liquid stored in the liquid storage tank, and one of the ultrasonic wave generation surfaces facing each other is the other end side. It is placed lower than the end side of
    The humidity control apparatus according to claim 1.
  3.  前記高周波発生部および前記低周波発生部は、互いの超音波発生面を前記吸湿性液体の前記液面に向けた状態で、互いに積層されて配置されている、
    請求項1に記載の調湿装置。
    The high-frequency generation unit and the low-frequency generation unit, the ultrasonic wave generation surface of each other in a state of facing the liquid surface of the hygroscopic liquid, are arranged to be laminated with each other,
    The humidity control apparatus according to claim 1.
  4.  前記液体貯留槽内に貯留された所定量の前記吸湿性液体のうち、
     前記低周波発生部の前記超音波発生面に垂直な方向に延びる前記低周波伝搬領域と、
     前記高周波発生部の前記超音波発生面に垂直な方向に延びる前記高周波伝搬領域と、が部分的に重なり合っている、
    請求項2または3に記載の調湿装置。
    Of the predetermined amount of the hygroscopic liquid stored in the liquid storage tank,
    The low frequency propagation region extending in a direction perpendicular to the ultrasonic wave generation surface of the low frequency generation unit,
    The high frequency propagation region extending in a direction perpendicular to the ultrasonic wave generation surface of the high frequency generation part, and partially overlap,
    The humidity control apparatus according to claim 2 or 3.
  5.  前記低周波伝搬領域内に、光触媒が充填された光触媒充填部が配置されている、
    請求項1から4のいずれか一項に記載の調湿装置。
    In the low frequency propagation region, a photocatalyst filling portion filled with a photocatalyst is arranged,
    The humidity control apparatus according to any one of claims 1 to 4.
  6.  前記光触媒充填部は、
     複数の造粒体からなる前記光触媒と、
     前記光触媒を保持するとともに複数の連通孔を有する光触媒保持部材と、を有し、
     前記複数の連通孔を通じて、前記光触媒保持部材内の前記光触媒と前記液体貯留槽内の前記吸湿性液体とが接触している、
    請求項5に記載の調湿装置。
    The photocatalyst filling section,
    The photocatalyst consisting of a plurality of granules,
    A photocatalyst holding member which holds the photocatalyst and has a plurality of communication holes,
    The photocatalyst in the photocatalyst holding member and the hygroscopic liquid in the liquid storage tank are in contact with each other through the plurality of communication holes,
    The humidity control apparatus according to claim 5.
  7.  前記連通孔の直径は、前記造粒体の粒子径よりも小さい、
    請求項6に記載の調湿装置。
    The diameter of the communication hole is smaller than the particle diameter of the granulated body,
    The humidity control apparatus according to claim 6.
  8.  前記光触媒保持部材は前記吸湿性液体とインピーダンスが近い材料からなる、
    請求項6または7に記載の調湿装置。
    The photocatalyst holding member is made of a material having an impedance close to that of the hygroscopic liquid,
    The humidity control apparatus according to claim 6 or 7.
  9.  前記霧状液滴のうち、相対的に粒径の大きい液滴と、相対的に粒径の小さい液滴とを分級する分級手段を備える、
    請求項1から請求項8のいずれか一項に記載の調湿装置。
    Out of the atomized droplets, a classification means for classifying a droplet having a relatively large particle diameter and a droplet having a relatively small particle diameter is provided,
    The humidity control apparatus according to any one of claims 1 to 8.
  10.  前記分級手段として、サイクロン式もしくはデミスター式が用いられる、請求項9に記載の調湿装置。 The humidity control apparatus according to claim 9, wherein a cyclone type or a demister type is used as the classification means.
  11.  霧化用の吸湿性液体を貯留する液体貯留槽と、
     前記液体貯留槽に設けられ、前記吸湿性液体を霧化して霧状液滴を発生させるための超音波を発生することで前記吸湿性液体の液面に液柱を形成する超音波発生機構と、を備え、
     前記超音波発生機構は、高周波を発生する高周波発生部と、低周波を発生する低周波発生部と、を有する、
    霧化再生装置。
    A liquid storage tank for storing a hygroscopic liquid for atomization,
    An ultrasonic wave generation mechanism that is provided in the liquid storage tank and that forms a liquid column on the liquid surface of the hygroscopic liquid by generating ultrasonic waves for atomizing the hygroscopic liquid to generate atomized droplets, ,,
    The ultrasonic wave generating mechanism has a high frequency generating section for generating a high frequency and a low frequency generating section for generating a low frequency.
    Atomization playback device.
  12.  前記高周波発生部および前記低周波発生部は、
     互いの超音波発生面が前記液体貯留槽内に貯留された前記吸湿性液体の前記液面に対して傾斜しているとともに、各超音波発生面のうち互いに対向する一方の端部側を他方の端部側よりも低くした配置となっている、
    請求項11に記載の霧化再生装置。
    The high-frequency generator and the low-frequency generator are
    Mutual ultrasonic wave generation surfaces are inclined with respect to the liquid surface of the hygroscopic liquid stored in the liquid storage tank, and one of the ultrasonic wave generation surfaces facing each other is the other end side. It is placed lower than the end side of
    The atomization reproducing device according to claim 11.
  13.  前記高周波発生部および前記低周波発生部は、互いの超音波発生面を前記吸湿性液体の前記液面に向けた状態で、互いに積層されて配置されている、
    請求項11に記載の霧化再生装置。
    The high-frequency generation unit and the low-frequency generation unit, the ultrasonic wave generation surface of each other in a state of facing the liquid surface of the hygroscopic liquid, are arranged to be laminated with each other,
    The atomization reproducing device according to claim 11.
  14.  前記液体貯留槽内に貯留された所定量の前記吸湿性液体のうち、
     前記低周波発生部の前記超音波発生面に垂直な方向に延びる前記低周波伝搬領域と、
     前記高周波発生部の前記超音波発生面に垂直な方向に延びる前記高周波伝搬領域と、が部分的に重なり合っている、
    請求項12または13に記載の霧化再生装置。
    Of the predetermined amount of the hygroscopic liquid stored in the liquid storage tank,
    The low frequency propagation region extending in a direction perpendicular to the ultrasonic wave generation surface of the low frequency generation unit,
    The high frequency propagation region extending in a direction perpendicular to the ultrasonic wave generation surface of the high frequency generation part, and partially overlap,
    The atomization reproducing device according to claim 12 or 13.
  15.  前記低周波伝搬領域内に、光触媒が充填された光触媒充填部が配置されている、
    請求項11から14のいずれか一項に記載の霧化再生装置。
    In the low frequency propagation region, a photocatalyst filling portion filled with a photocatalyst is arranged,
    The atomization reproducing device according to any one of claims 11 to 14.
  16.  前記光触媒充填部は、
     複数の造粒体からなる前記光触媒と、
     前記光触媒を保持するとともに複数の連通孔を有する光触媒保持部材と、を有し、
     前記複数の連通孔を通じて、前記光触媒保持部材内の前記光触媒と前記液体貯留槽内の前記吸湿性液体とが接触している、
    請求項15に記載の霧化再生装置。
    The photocatalyst filling section,
    The photocatalyst consisting of a plurality of granules,
    A photocatalyst holding member which holds the photocatalyst and has a plurality of communication holes,
    The photocatalyst in the photocatalyst holding member and the hygroscopic liquid in the liquid storage tank are in contact with each other through the plurality of communication holes,
    The atomization reproducing device according to claim 15.
  17.  前記連通孔の直径は、前記造粒体の粒子径よりも小さい、
    請求項16に記載の霧化再生装置。
    The diameter of the communication hole is smaller than the particle diameter of the granulated body,
    The atomization reproducing device according to claim 16.
  18.  前記光触媒保持部材は前記吸湿性液体とインピーダンスが近い材料からなる
    請求項15から17のいずれか一項に記載の霧化再生装置。
    18. The atomization/regeneration device according to claim 15, wherein the photocatalyst holding member is made of a material having an impedance close to that of the hygroscopic liquid.
PCT/JP2020/000674 2019-01-11 2020-01-10 Humidity conditioner and atomization/regeneration apparatus WO2020145388A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019003850A JP2022037261A (en) 2019-01-11 2019-01-11 Humidity control device and atomization regeneration device
JP2019-003850 2019-01-11

Publications (1)

Publication Number Publication Date
WO2020145388A1 true WO2020145388A1 (en) 2020-07-16

Family

ID=71521362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000674 WO2020145388A1 (en) 2019-01-11 2020-01-10 Humidity conditioner and atomization/regeneration apparatus

Country Status (2)

Country Link
JP (1) JP2022037261A (en)
WO (1) WO2020145388A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022190670A1 (en) * 2021-03-12 2022-09-15 シャープ株式会社 Ultrasonic atomization separation device and humidity control system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54136859U (en) * 1978-03-15 1979-09-22
JPS6061045U (en) * 1983-10-03 1985-04-27 オムロン株式会社 Ultrasonic atomizer
JP2007283281A (en) * 2005-05-20 2007-11-01 Nishimura Kikai Kk Ultrasonic atomizing apparatus
JP2009254949A (en) * 2008-04-15 2009-11-05 Casio Comput Co Ltd Atomizing apparatus
JP2010194471A (en) * 2009-02-25 2010-09-09 Yamaguchi Prefectural Industrial Technology Institute Atomizer and atomization method using the same
WO2018235773A1 (en) * 2017-06-20 2018-12-27 シャープ株式会社 Humidity conditioning device and humidity conditioning method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54136859U (en) * 1978-03-15 1979-09-22
JPS6061045U (en) * 1983-10-03 1985-04-27 オムロン株式会社 Ultrasonic atomizer
JP2007283281A (en) * 2005-05-20 2007-11-01 Nishimura Kikai Kk Ultrasonic atomizing apparatus
JP2009254949A (en) * 2008-04-15 2009-11-05 Casio Comput Co Ltd Atomizing apparatus
JP2010194471A (en) * 2009-02-25 2010-09-09 Yamaguchi Prefectural Industrial Technology Institute Atomizer and atomization method using the same
WO2018235773A1 (en) * 2017-06-20 2018-12-27 シャープ株式会社 Humidity conditioning device and humidity conditioning method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022190670A1 (en) * 2021-03-12 2022-09-15 シャープ株式会社 Ultrasonic atomization separation device and humidity control system

Also Published As

Publication number Publication date
JP2022037261A (en) 2022-03-09

Similar Documents

Publication Publication Date Title
Riera et al. Airborne ultrasound for the precipitation of smokes and powders and the destruction of foams
CN102458627B (en) Use the mist of elastic surface wave and the production method of micro-bubble or micro-bubble and mist and micro-bubble or micro-bubble generation device
WO2020145388A1 (en) Humidity conditioner and atomization/regeneration apparatus
JP5494902B2 (en) Ultrasonic separator for solution
JP6932237B2 (en) Atomizer and humidity control device
US20080156320A1 (en) Ultrasonic nebulizer and method for atomizing liquid
US20120073596A1 (en) Ultrasonic cleaning method and apparatus
JP2009178683A (en) Suspension production apparatus and suspension production method
JP2021509084A (en) Particles for use in acoustic standing wave processes
CN104923436A (en) Low-frequency ultrasonic triple atomization nozzle
WO2007070957A1 (en) Process and apparatus for generating particles
JP2010227840A (en) Air cleaning apparatus
WO2019202940A1 (en) Ultrasonic atomizing separation device and humidity controller
WO2020209317A1 (en) Humidity adjustment device
JP7169443B2 (en) Ultrasonic atomizer and humidity controller
JP4990707B2 (en) Ultrasonic fog generator
TW201313342A (en) Improved ultrasonic cleaning method and apparatus
JP2003322369A (en) Method and apparatus for generating minus ion
CN106687178A (en) Method and apparatus for effecting alternating ultrasonic transmissions without cavitation
TWM518115U (en) Ultrasound vibration extraction equipment
WO2019235411A1 (en) Humidity regulating device
WO2020059284A1 (en) Humidity control system
JP6721367B2 (en) UV irradiation module
JP2021028050A (en) Humidity control device and humidity control method
CN1299070C (en) Supersonic activator for realizing air purification of vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20737876

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20737876

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP