WO2019235411A1 - Humidity regulating device - Google Patents

Humidity regulating device Download PDF

Info

Publication number
WO2019235411A1
WO2019235411A1 PCT/JP2019/021949 JP2019021949W WO2019235411A1 WO 2019235411 A1 WO2019235411 A1 WO 2019235411A1 JP 2019021949 W JP2019021949 W JP 2019021949W WO 2019235411 A1 WO2019235411 A1 WO 2019235411A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
hygroscopic material
storage tank
humidity control
atomization
Prior art date
Application number
PCT/JP2019/021949
Other languages
French (fr)
Japanese (ja)
Inventor
洋香 濱田
井出 哲也
奨 越智
惇 佐久間
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2019235411A1 publication Critical patent/WO2019235411A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0615Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers spray being produced at the free surface of the liquid or other fluent material in a container and subjected to the vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/0081Apparatus supplied with low pressure gas, e.g. "hvlp"-guns; air supplied by a fan
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/12Air-humidification, e.g. cooling by humidification by forming water dispersions in the air

Definitions

  • the present invention relates to a humidity control apparatus.
  • This application claims priority based on Japanese Patent Application No. 2018-108967 for which it applied to Japan on June 6, 2018, and uses the content here.
  • Patent Document 1 discloses an ultrasonic atomization apparatus including an atomization liquid tank, an ultrasonic vibrator, and a partition member mounted in the atomization tank.
  • Patent Document 1 in the present invention, when the water column is formed on the surface of the atomized liquid by the ultrasonic vibrator, the upper part of the water column gets over the partition member. It is stated that there is no effect on the occurrence of pillars.
  • the present inventors include a moisture absorption part using a liquid moisture absorbent, and an atomization regeneration unit that atomizes and separates moisture contained in the liquid moisture absorbent discharged from the moisture absorbent and regenerates the liquid moisture absorbent.
  • a humidity control device As the atomization reproduction unit, the above-described ultrasonic atomizer is used. In order to ensure sufficient moisture absorption performance in this type of humidity control apparatus, it is necessary to ensure a certain amount of circulation of the liquid moisture absorbent material in order to improve gas-liquid contact in the moisture absorption tank.
  • the flow characteristics of the liquid hygroscopic material greatly affect the atomization efficiency. Specifically, when the flow rate of the liquid hygroscopic material in the atomization regeneration tank is increased to increase the circulation amount of the liquid hygroscopic material, if the flow rate is too high, the ultrasonic wave emitted from the ultrasonic transducer There is a problem that the radial axis becomes unstable, the shape of the liquid column generated on the liquid surface is disturbed, and the atomization efficiency is lowered.
  • the ultrasonic atomization device of Patent Document 1 is not assumed to be used for a humidity control device, and does not suggest a countermeasure to the above problem.
  • One aspect of the present invention is made in order to solve the above-mentioned problem, and while preventing the flow of the liquid hygroscopic material in the storage tank, suppressing the disturbance of the shape of the liquid column, the atomization efficiency
  • An object of the present invention is to provide a humidity control device that can secure moisture absorption performance by suppressing the decrease in the humidity.
  • a humidity control apparatus brings at least a part of moisture contained in the air into contact with a liquid hygroscopic material containing a hygroscopic substance and air.
  • An atomization regeneration unit that regenerates the liquid moisture absorbent by separating at least a part of the droplets, and the liquid absorbent material that has absorbed at least a part of the moisture is transported from the moisture absorber to the atomization regeneration unit.
  • the atomization regeneration unit has a liquid supply port to which the liquid hygroscopic material transport channel is connected, and is provided in the storage tank for storing the liquid hygroscopic material, and generates the mist droplets.
  • An ultrasonic generator that oscillates ultrasonic waves to allow the ultrasonic wave to propagate in an ultrasonic wave propagation region inside the storage tank, and the liquid moisture absorption that flows into the storage tank from the liquid supply port
  • a flow rate attenuating member for attenuating the flow rate of the material.
  • the flow velocity attenuating member may be provided in a region other than the ultrasonic wave propagation region.
  • the flow velocity attenuating member may be composed of a structure having a gap communicating with the internal space of the storage tank.
  • the structure includes a plurality of regions having mutually different void ratios, and the void ratio of a region relatively close to the ultrasonic wave propagation region is It may be higher than the porosity of the region relatively far from the sound wave propagation region.
  • the flow velocity attenuating member is provided with a plate surface facing in a direction intersecting with the flow of the liquid moisture absorbent material connecting the liquid supply port and the ultrasonic wave propagation region. You may be comprised with the plate.
  • the plate body may be provided at a distance from the inner wall surface of the storage tank.
  • the plate body may be provided in contact with the inner wall surface of the storage tank and may have openings on both sides.
  • both side portions of the plate body may be formed of a mesh plate material.
  • both side portions of the plate body may be formed of a plate material having a plurality of slits.
  • the ultrasonic wave generation unit includes a plurality of ultrasonic transducers, and some of the ultrasonic transducers and other ultrasonic transducers.
  • the vibrators may be arranged so that the falling directions of the liquid columns generated by the ultrasonic waves are opposite to each other, and may be arranged so as to be shifted in the flow direction of the liquid moisture absorbent.
  • a wet device can be provided.
  • FIG. 1 is a schematic configuration diagram of a humidity control apparatus according to the first embodiment.
  • the scale of the size may be varied depending on the component.
  • the humidity control apparatus 20 of the present embodiment includes a moisture absorption unit 21, an atomization regeneration unit 24, a first liquid moisture absorbent transport channel 22, and a second liquid moisture absorbent transport channel 25.
  • the first air introduction flow path 30, the second air introduction flow path 26, the first air discharge flow path 23, the second air discharge flow path 28, and the control unit 42 are provided.
  • the humidity control apparatus 20 includes a housing 201, and the moisture absorption unit 21 and the atomization reproduction unit 24 are accommodated in an internal space 201 c of the housing 201.
  • the moisture absorption part 21 includes a first storage tank 211 and a nozzle 213.
  • the hygroscopic part 21 causes the liquid hygroscopic material W to absorb at least a part of the moisture contained in the air A1 by bringing the liquid hygroscopic material W containing a hygroscopic substance into contact with the air A1 existing in the external space.
  • the moisture absorption part 21 it is desirable for the moisture absorption part 21 to absorb as much water as possible into the liquid moisture absorbent W, it is sufficient that the liquid absorbent material W absorbs at least part of the moisture contained in the air A1.
  • the liquid hygroscopic material W is stored inside the first storage tank 211.
  • the liquid hygroscopic material W will be described later.
  • a first air introduction channel 30, a first air discharge channel 23, and a first liquid hygroscopic material transport channel 22 are connected to the first storage tank 211.
  • a blower 212 is provided in the middle of the first air introduction channel 30.
  • the air A ⁇ b> 1 is supplied to the internal space of the first storage tank 211 through the first air introduction flow path 30 by the blower 212.
  • the nozzle 213 is disposed in the upper part of the internal space of the first storage tank 211.
  • the liquid hygroscopic material W1 returned to the hygroscopic unit 21 via the second liquid hygroscopic material transport channel 25 is transferred from the nozzle 213 to the internal space of the first storage tank 211.
  • the liquid hygroscopic material W1 and the air A1 come into contact with each other. This type of contact between the liquid hygroscopic material W1 and the air A1 is generally referred to as a “flow-down method”.
  • the contact form of the liquid hygroscopic material W1 and the air A1 is not limited to the flow-down method, and other methods can be used.
  • a so-called bubbling method in which air A1 is supplied in the form of foam into the liquid hygroscopic material W stored in the first storage tank 211 can also be used.
  • the air A1 existing in the external space forms an air flow from the blower 212 toward the discharge port 211a of the first storage tank 211, and comes into contact with the liquid moisture absorbent W flowing down from the nozzle 213. At this time, at least a part of the moisture contained in the air A1 is removed from the air A1 by being absorbed by the liquid moisture absorbent W. In the moisture absorption part 21, air from which moisture has been removed from the original indoor air is obtained, so the air A ⁇ b> 3 discharged from the discharge port 211 a is in a state of being drier than the air A ⁇ b> 1 in the external space of the humidity controller 20. . Thus, the dried air A3 is discharged to the outside of the housing 201 through the first air discharge channel 23.
  • the liquid hygroscopic material W is a liquid exhibiting a property of absorbing moisture (hygroscopicity). For example, a liquid that exhibits hygroscopicity under conditions of a temperature of 25 ° C., a relative humidity of 50%, and atmospheric pressure is preferable.
  • the liquid hygroscopic material W contains a hygroscopic substance to be described later.
  • the liquid hygroscopic material W may contain a hygroscopic substance and a solvent. Examples of this type of solvent include a solvent that dissolves the hygroscopic substance or is miscible with the hygroscopic substance, for example, water.
  • the hygroscopic substance may be an organic material or an inorganic material.
  • Examples of the organic material used as the hygroscopic substance include known materials used as raw materials for dihydric or higher alcohols, ketones, organic solvents having an amide group, sugars, moisturizing cosmetics, and the like. Among them, known organic materials that are used as raw materials for dihydric or higher alcohols, organic solvents having an amide group, saccharides, moisturizing cosmetics, and the like because of their high hydrophilicity. Is mentioned.
  • divalent or higher alcohol examples include glycerin, propanediol, butanediol, pentanediol, trimethylolpropane, butanetriol, ethylene glycol, diethylene glycol, and triethylene glycol.
  • organic solvent having an amide group examples include formamide and acetamide.
  • saccharide examples include sucrose, pullulan, glucose, xylol, fructose, mannitol, sorbitol and the like.
  • Examples of known materials used as raw materials for moisturizing cosmetics include 2-methacryloyloxyethyl phosphorylcholine (MPC), betaine, hyaluronic acid, collagen, and the like.
  • MPC 2-methacryloyloxyethyl phosphorylcholine
  • betaine betaine
  • hyaluronic acid collagen, and the like.
  • inorganic materials used as hygroscopic substances include calcium chloride, lithium chloride, magnesium chloride, potassium chloride, sodium chloride, zinc chloride, aluminum chloride, lithium bromide, calcium bromide, potassium bromide, sodium hydroxide, pyrrolidone.
  • examples thereof include sodium carboxylate.
  • the hygroscopic substance has high hydrophilicity, for example, when the hygroscopic substance material and water are mixed, the ratio of water molecules adsorbed near the surface (liquid surface) of the liquid hygroscopic material W increases.
  • a mist-like droplet W3 is generated from the vicinity of the surface of the liquid moisture absorbent W, and moisture is separated from the liquid moisture absorbent W. Therefore, if the ratio of water molecules adsorbed in the vicinity of the surface of the liquid moisture absorbent W is large, it is preferable in that water can be efficiently separated.
  • the ratio of the hygroscopic substance in the vicinity of the surface of the liquid hygroscopic material W is relatively small, it is preferable in that the loss of the hygroscopic substance in the atomization reproduction unit 24 can be suppressed.
  • the concentration of the hygroscopic substance contained in the liquid hygroscopic material W1 used for the treatment in the hygroscopic portion 21 is not particularly limited, but is preferably 40% by mass or more.
  • the concentration of the hygroscopic substance is 40% by mass or more, the liquid hygroscopic material W1 can efficiently absorb moisture.
  • the viscosity of the liquid hygroscopic material W is preferably 25 mPa ⁇ s or less.
  • FIG. 2 is a front view illustrating a schematic configuration of the atomization reproduction unit 24.
  • FIG. 3 is a plan view showing a schematic configuration of the atomization reproduction unit 24.
  • the atomization regeneration unit 24 includes a second storage tank 241 (storage tank), an ultrasonic transducer 244 (ultrasonic wave generation unit), and a flow velocity attenuation member 245. Yes.
  • the atomization regeneration unit 24 atomizes at least part of the moisture contained in the liquid absorbent material W2 supplied from the moisture absorbent unit 21 via the first liquid absorbent material transport channel 22, and at least part of the moisture from the liquid absorbent material W2
  • the liquid hygroscopic material W2 is regenerated by removing a part thereof.
  • the second storage tank 241 has a liquid supply port 241a to which the first liquid hygroscopic material transport channel 22 is connected, and stores the liquid hygroscopic material W2 to be regenerated.
  • the second storage tank 241 is connected to the first liquid hygroscopic material transport channel 22, the second liquid hygroscopic material transport channel 25, the second air introduction channel 26, and the second air discharge channel 28.
  • the 2nd storage tank 241 has the drainage port 241b to which the 2nd liquid hygroscopic material transport channel 25 was connected, and discharge
  • the ultrasonic transducer 244 is provided in the second storage tank 241 and oscillates an ultrasonic wave for generating the mist droplet W3.
  • the liquid hygroscopic material W2 is irradiated with ultrasonic waves, and mist droplets W3 containing water are generated from the liquid hygroscopic material W2.
  • the ultrasonic wave is applied from the ultrasonic vibrator 244 to the liquid absorbent material W2
  • the liquid column C of the liquid absorbent material W2 is generated on the liquid surface of the liquid absorbent material W2 by adjusting the generation conditions of the ultrasonic wave.
  • Many of the mist droplets W3 are generated from the liquid column C of the liquid hygroscopic material W2.
  • the ultrasonic transducer 244 is provided to be inclined with respect to the bottom plate 241 f of the second storage tank 241.
  • An axis perpendicular to the ultrasonic emission surface 244a from the center of the ultrasonic emission surface 244a of the ultrasonic transducer 244 is defined as an ultrasonic radiation axis J. Since the ultrasonic vibrator 244 is inclined with respect to the bottom plate 241f of the second storage tank 241, the ultrasonic wave is emitted from the ultrasonic wave emission surface so that the radial axis J is inclined with respect to the liquid surface of the liquid moisture absorbent W2. Propagated from 244a toward the liquid surface.
  • the ultrasonic wave reflected by the liquid surface is unlikely to return to the ultrasonic transducer 244, and the ultrasonic transducer 244 itself is not easily damaged by the ultrasonic wave.
  • the radial axis J is inclined, the liquid column C is generated so as to be inclined with respect to the liquid surface.
  • the end of the ultrasonic emission surface 244a on the side where the liquid supply port 241a is provided is high, and the end of the ultrasonic emission surface 244a on the side where the drainage port 241b is provided is low. It is inclined to. That is, as shown in FIG. 3, when the second storage tank 241 is viewed from the normal direction of the bottom plate 241f, the ultrasonic transducer 244 has a liquid that is liquid because the radial axis J indicated by the arrow Y1 is inclined. The direction of falling by forming a column is inclined in a direction in which the direction of the flow of the liquid hygroscopic material W from the liquid supply port 241a toward the liquid discharge port 241b indicated by the arrow Y2 coincides.
  • the configuration in which the ultrasonic transducer 244 is tilted in the above-described direction is a configuration in which the ultrasonic transducer 244 is tilted in the reverse direction, that is, the arrows Y1 and Y2 are in the reverse direction. It is preferable in that the disturbance of the liquid column C is less likely to occur.
  • the liquid hygroscopic material W2 stored in the second storage tank 241 is perpendicular to the ultrasonic emission surface 244a from the periphery of the ultrasonic emission surface 244a of the ultrasonic transducer 244.
  • a region surrounded by a virtual plane extending in the direction is referred to as an ultrasonic propagation region R.
  • the ultrasonic emission surface 244a is circular
  • a cylindrical region extending in the direction perpendicular to the ultrasonic emission surface 244a from the periphery of the ultrasonic emission surface 244a is the ultrasonic propagation region R.
  • the flow velocity attenuating member 245 is provided in a region other than the ultrasonic wave propagation region R inside the second storage tank 241.
  • the flow velocity attenuating member 245 is provided in a rectangular ring shape outside the ultrasonic wave propagation region R.
  • the flow velocity attenuating member 245 is configured by a structure having a gap communicating with the internal space of the second storage tank 241. As this type of structure, a porous member such as a sponge having a large number of voids, a mesh having a three-dimensional structure, or the like is used.
  • the flow velocity attenuating member 245 is provided in a region other than the ultrasonic wave propagation region R, and has a gap communicating with the internal space of the second storage tank 241, thereby allowing ultrasonic wave propagation in the ultrasonic wave propagation region R, and
  • the flow rate of the liquid hygroscopic material W2 flowing into the internal space of the second storage tank 241 from the liquid supply port 241a is attenuated.
  • the flow velocity of the liquid moisture absorbent W2 flowing through the ultrasonic wave propagation region R after passing through the flow velocity attenuation member 245 is lower than the flow velocity of the liquid absorbent material W2 before passing through the flow velocity attenuation member 245.
  • the gap size of the flow velocity attenuating member 245 is preferably about 2 mm to 10 mm. If the size of the gap is too large, the liquid hygroscopic material W2 does not collide with the structure frequently and the effect of reducing the flow rate of the liquid hygroscopic material W2 cannot be obtained sufficiently. On the other hand, if the size of the gap is too small, the circulation of the liquid hygroscopic material W2 is hindered and a sufficient amount of circulation cannot be ensured.
  • a blower 242 is provided in the middle of the second air introduction channel 26.
  • the blower 242 feeds air A1 from the outer space of the housing 201 into the second storage tank 241 via the second air introduction flow path 26, and the second air discharge flow path from the inside of the second storage tank 241. An airflow that flows to the outside of the housing 201 via the 28 is generated.
  • the second air discharge channel 28 discharges the air A4 containing the mist droplets W3 to the external space of the casing 201 and removes it from the inside of the humidity control apparatus 20. Thereby, moisture can be separated from the liquid hygroscopic material W2. Thereby, the hygroscopic performance of the liquid hygroscopic material W2 is increased again, and the liquid hygroscopic material W1 can be returned to the hygroscopic portion 21 and reused. Since the air A4 includes the mist droplets W3 generated inside the second storage tank 241, the air A4 is wetter than the air A1 in the external space of the housing 201. In this manner, the humidified air A4 is discharged to the outside of the housing 201 through the second air discharge channel 28.
  • the hygroscopic part 21 and the atomization regeneration part 24 are connected by a first liquid hygroscopic material transport channel 22 and a second liquid hygroscopic material transport channel 25 that constitute a circulation channel of the liquid hygroscopic material W.
  • a pump 252 for circulating the liquid hygroscopic material W is provided in the middle of the second liquid hygroscopic material transport channel 25.
  • the first liquid hygroscopic material transport channel 22 transports the liquid hygroscopic material W2 in which at least a part of moisture has been absorbed from the hygroscopic unit 21 to the atomization regeneration unit 24.
  • One end of the first liquid hygroscopic material transport channel 22 is connected to the lower portion of the first storage tank 211.
  • the connection location of the first liquid hygroscopic material transport channel 22 in the first storage tank 211 is located below the liquid level of the liquid hygroscopic material W1 in the first storage tank 211.
  • the other end of the first liquid hygroscopic material transport channel 22 is connected to the lower part of the second storage tank 241.
  • the connection location of the first liquid hygroscopic material transport channel 22 in the second storage tank 241 is located below the liquid level of the liquid hygroscopic material W2 in the second storage tank 241.
  • the second liquid hygroscopic material transport channel 25 transports the liquid hygroscopic material W regenerated by removing moisture from the atomization regenerating unit 24 to the hygroscopic unit 21.
  • One end of the second liquid hygroscopic material transport channel 25 is connected to the lower part of the second storage tank 241.
  • the connection location of the second liquid hygroscopic material transport channel 25 in the second storage tank 241 is located below the liquid level of the liquid hygroscopic material W2 in the second storage tank 241.
  • the other end of the second liquid hygroscopic material transport channel 25 is connected to the upper part of the first storage tank 211.
  • the connection location of the second liquid hygroscopic material transport channel 25 in the first storage tank 211 is located above the liquid surface of the liquid hygroscopic material W1 in the first storage tank 211 and is connected to the nozzle 213 described above. .
  • the dehumidified air is discharged from the hygroscopic unit 21 via the first air discharge channel 23, and the humidified air passes through the second air discharge channel 28 from the atomization regeneration unit 24. It was explained that it was discharged through.
  • the humidity adjustment function when the humidity control device 20 of the present embodiment is a humidity control device having only a dehumidification function, for example, the air discharge port of the first air discharge channel 23 is arranged indoors, What is necessary is just to set it as the structure which has arrange
  • the air discharge port of the second air discharge channel 28 is arranged indoors, while the air discharge port of the first air discharge channel 23 is arranged. What is necessary is just to set it as the structure arrange
  • the air discharge ports of both the first air discharge channel 23 and the second air discharge channel 28 are arranged indoors, What is necessary is just to set it as the structure which controls which control part 42 discharges air from which air discharge port.
  • the inventors of the present invention have a reason that the atomization amount decreases when the circulation flow rate is increased.
  • the flow rate of the liquid hygroscopic material in the storage tank is high, the radiation axis of the ultrasonic wave radiated from the ultrasonic vibrator was destabilized and the liquid column generated on the liquid surface was disturbed. Therefore, the present inventors have the effect of attenuating the flow rate of the liquid hygroscopic material in order to suppress the disturbance of the liquid column without completely blocking the flow of the liquid hygroscopic material in order to ensure a predetermined circulation flow rate.
  • the inventors came up with a configuration in which the structure is disposed in the storage tank.
  • the inventors conducted an experiment in which the porous structure is disposed in the storage tank, the flow rate of the liquid hygroscopic material is made constant, and the atomization amount of the liquid hygroscopic material is measured by changing the size of the voids in the structure. It was.
  • the atomization amount in the atomization reproduction unit of the comparative example in which the structure is not arranged is 1, the atomization amount in the atomization reproduction unit of the example is defined as a normalized atomization amount.
  • the normalized atomization amount when a structure having a void size of 2 mm to 10 mm was arranged was about 1.1 to 1.2.
  • This normalized atomization amount was substantially equivalent to about 1.2, which is the normalized atomization amount when the flow velocity was set to zero in the atomization regeneration section of the comparative example. Thus, it was confirmed that the amount of atomization can be increased by disposing the porous structure in the storage tank as compared with the case where the porous structure is not disposed.
  • the flow rate attenuation member 245 is provided inside the second storage tank 241, the liquid column C generated when the flow rate of the liquid hygroscopic material W is high. Disturbance is suppressed and a desired atomization amount can be ensured.
  • the flow velocity attenuating member 245 is composed of a structure having a large number of gaps, the flow of the liquid hygroscopic material W is not blocked, and a desired circulating flow rate can be ensured.
  • the flow velocity attenuating member 245 is provided in a region other than the ultrasonic wave propagation region R, the ultrasonic wave propagation is not hindered. Thereby, the humidity control apparatus 20 which has both the moisture absorption performance and reproduction
  • FIG. 4 is a plan view showing a schematic configuration of the atomization reproduction unit 32 of the second embodiment.
  • the same components as those used in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the atomization regeneration unit 32 of the second embodiment includes a second storage tank 241 (storage tank), an ultrasonic vibrator 244 (ultrasonic wave generation unit), and a flow velocity attenuation member 325.
  • the flow velocity attenuating member 325 is not provided over the entire second storage tank 241, and is provided only in the vicinity of the liquid supply port 241a.
  • the flow velocity attenuating member 325 is provided in a region other than the ultrasonic wave propagation region R inside the second storage tank 241.
  • the flow velocity attenuating member 325 is configured by a porous structure such as a sponge or a mesh having a gap communicating with the internal space of the second storage tank 241.
  • regeneration part 32 is the same as that of 1st Embodiment.
  • the flow velocity attenuation member 325 becomes a resistance to the flow of the liquid hygroscopic material W, and the liquid hygroscopic material W The flow velocity of the material W is attenuated. Thereby, disorder of the liquid column C accompanying the flow of the liquid hygroscopic material W is suppressed.
  • the same effect as in the first embodiment can be obtained that a humidity control apparatus having both the moisture absorption performance and the regeneration performance of the liquid moisture absorbent W can be realized.
  • the flow velocity attenuating member 325 provided only in the vicinity of the liquid supply port 241a can obtain the same effect of suppressing the disturbance of the liquid column as that of the first embodiment, the flow velocity is attenuated.
  • the usage amount of the member 325 can be reduced as compared with the first embodiment.
  • FIG. 5 is a plan view illustrating a schematic configuration of the atomization reproduction unit 34 of the third embodiment.
  • the same reference numerals are given to the same components as those used in the first embodiment, and the description thereof is omitted.
  • the atomization reproduction unit 34 of the third embodiment includes a second storage tank 241 (storage tank), an ultrasonic vibrator 244 (ultrasonic wave generation unit), and a flow velocity attenuation member 343.
  • the flow velocity attenuating member 343 is provided in a region other than the ultrasonic wave propagation region R, and is provided in a rectangular ring shape outside the ultrasonic wave propagation region R when the second storage tank 241 is viewed from the normal direction of the bottom plate 241f. .
  • the flow velocity attenuation member 343 includes a first flow velocity attenuation member 341 and a second flow velocity attenuation member 342.
  • the first flow velocity attenuating member 341 is provided in a rectangular ring shape on the side close to the ultrasonic wave propagation region R.
  • the second flow velocity attenuating member 342 is provided in a rectangular ring shape outside the first flow velocity attenuating member 341.
  • the first flow velocity attenuating member 341 and the second flow velocity attenuating member 342 are configured by a structure such as a sponge or a mesh having a gap communicating with the internal space of the second storage tank 241.
  • the first flow velocity attenuating member 341 and the second flow velocity attenuating member 342 may be composed of structures made of different materials.
  • the ratio of the void volume contained in the structure per unit volume is defined as the void ratio of the flow velocity attenuating member.
  • the first flow velocity attenuation member 341 and the second flow velocity attenuation member 342 have different void ratios regardless of whether or not the material of the structure is the same.
  • the porosity of the first flow velocity attenuation member 341 is smaller than the porosity of the second flow velocity attenuation member 342. That is, the structure constituting the flow velocity attenuating member 343 has a plurality of regions having mutually different void ratios, and the void ratio in the region relatively close to the ultrasonic wave propagation region R is the ultrasonic wave propagation region. It is higher than the porosity of the region relatively far from R.
  • the resistance of the first flow velocity attenuation member 341 is greater than the resistance of the second flow velocity attenuation member 342 with respect to the flow of the liquid hygroscopic material W.
  • regeneration part 34 is the same as that of 1st Embodiment.
  • the flow velocity of the liquid hygroscopic material W is attenuated by the action of the flow velocity damping member 343, and the disturbance of the liquid column C is suppressed.
  • the porosity of the first flow velocity attenuation member 341 on the side closer to the ultrasonic propagation region R is smaller than the porosity of the second flow velocity attenuation member 342 on the side far from the ultrasonic propagation region R. Therefore, the closer the flow of the liquid hygroscopic material W is to the ultrasonic wave propagation region R, the greater the degree to which the flow velocity is attenuated. As a result, the flow velocity attenuating member 343 reduces the flow velocity of the liquid moisture absorbent material W passing through the path toward the ultrasonic wave propagation region R without significantly reducing the flow velocity of the liquid moisture absorbent material W flowing through the route away from the ultrasonic wave propagation region R. It can be sufficiently reduced.
  • FIG. 6 is a plan view illustrating a schematic configuration of an atomization reproduction unit according to the third embodiment.
  • FIG. 7 is a front view showing a schematic configuration of the atomization reproduction unit.
  • FIG. 8 is a plan view showing a schematic configuration of the atomization reproduction unit. 6 to 8, the same reference numerals are given to the same components as those used in the first embodiment, and the description thereof will be omitted.
  • the humidity control apparatus 27 includes a moisture absorption unit 21, an atomization regeneration unit 29, a first liquid moisture absorbent transport channel 22, and a second liquid moisture absorbent transport channel 25.
  • the configuration of the humidity control device 27 other than the atomization regeneration unit 29 is the same as that of the first embodiment.
  • the atomization regeneration unit 29 includes a second storage tank 241 (storage tank), an ultrasonic transducer 244 (ultrasonic wave generation unit), and a flow velocity attenuation member 291. Yes.
  • damping member 291 is the same as that of 1st Embodiment.
  • the flow velocity attenuating member 291 is configured by a plate body provided with the plate surface facing in the direction intersecting with the flow of the liquid moisture absorbent W connecting the liquid supply port 241a and the ultrasonic wave propagation region R.
  • the plate body is provided at a distance from the inner wall surface of the second storage tank 241.
  • the flow velocity attenuating member 291 is provided in parallel with the side plate 241c of the second storage tank 241 on the side where the liquid supply port 241a is provided.
  • the flow velocity attenuating member 291 may be provided to be inclined with respect to the side plate 241c.
  • the material, shape, dimensions, etc. of the plate constituting the flow velocity attenuating member 291 are not particularly limited.
  • the flow velocity attenuating member 291 is provided in a region other than the ultrasonic wave propagation region R, thereby allowing the ultrasonic wave to propagate in the ultrasonic wave propagation region R and attenuating the flow rate of the liquid hygroscopic material W.
  • the flow velocity attenuating member 291 is provided so as to intersect the flow of the liquid hygroscopic material W connecting the liquid supply port 241a and the ultrasonic wave propagation region R.
  • the liquid hygroscopic material W that has flowed into the second storage tank 241 collides with the flow velocity attenuation member 291 and then wraps around the outside of the flow velocity attenuation member 291 so that the flow velocity attenuation member 291 and the second storage tank It flows toward the drainage port 241b from the gap between the inner wall surface of 241.
  • the flow velocity of the liquid hygroscopic material W is attenuated by the flow velocity attenuating member 291 and the disturbance of the liquid column C is suppressed.
  • the same effect as in the first embodiment can be obtained that the humidity control device 27 having both the moisture absorption performance and the regeneration performance of the liquid moisture absorbent W can be realized.
  • FIG. 9 is a plan view illustrating a schematic configuration of the atomization reproduction unit 36 of the fifth embodiment.
  • the same components as those used in the first embodiment are designated by the same reference numerals, and the description thereof is omitted.
  • the atomization reproduction unit 36 of the fifth embodiment includes a second storage tank 241 (storage tank), an ultrasonic vibrator 244 (ultrasonic wave generation unit), and a flow velocity attenuation member 361.
  • the flow velocity attenuating member 361 is configured by a plate body provided with the plate surface facing in a direction intersecting with the flow of the liquid moisture absorbent W connecting the liquid supply port 241a and the ultrasonic wave propagation region R.
  • the flow velocity attenuating member 361 is provided in contact with the inner wall surface of the second storage tank 241, and has openings 361h on both sides 361s.
  • Both side portions 361 s of the plate body constituting the flow velocity attenuating member 361 are made of a mesh plate material provided with a plurality of holes.
  • the central part 361c of the plate is configured by a plate that is not provided with a hole.
  • the central part 361c and both side parts 361s of the plate body may be an integral member or separate members.
  • damping member 361 is the same as that of 1st Embodiment.
  • the liquid hygroscopic material W flows through the both side portions 361s of the flow velocity attenuating member 361, whereby the flow velocity of the liquid hygroscopic material W is attenuated and the disturbance of the liquid column C is suppressed.
  • the liquid hygroscopic material W flows through the gap between the flow velocity attenuation member 291 and the side plate of the second storage tank 241, whereas in the fifth embodiment, the liquid hygroscopic material W is a flow velocity attenuation member. It flows through the openings 361h on both sides 361s of 361.
  • the same effect as in the first embodiment can be obtained that a humidity control apparatus having both the moisture absorption performance and the regeneration performance of the liquid moisture absorbent W can be realized.
  • the flow of the liquid hygroscopic material W is rectified as compared with the fourth embodiment. Effect is high and less turbulent flow. Thereby, the effect which suppresses disturbance of the liquid column C increases, and the atomization efficiency can be improved.
  • FIG. 10 is a plan view showing a schematic configuration of the atomization reproduction unit 38 of the sixth embodiment. 10, the same code
  • the atomization reproduction unit 38 of the sixth embodiment includes a second storage tank 241 (storage tank), an ultrasonic vibrator 244 (ultrasonic wave generation unit), and a flow velocity attenuation member 381.
  • the flow velocity attenuating member 381 is provided in contact with the inner wall surface of the second storage tank 241, and has openings 381h on both side portions 381s.
  • Both side portions 381 s of the plate constituting the flow velocity attenuating member 381 are made of a plate material provided with a plurality of slits.
  • the central portion 381c of the plate is formed of a plate that is not provided with a slit.
  • the central portion 381c and both side portions 381s of the plate body may be an integral member or separate members.
  • the configuration of the atomization reproduction unit 38 other than the flow velocity attenuating member 381 is the same as that in the first embodiment.
  • the same effect as in the first embodiment can be obtained that a humidity control device having both the moisture absorption performance and the regeneration performance of the liquid moisture absorbent W can be realized.
  • the effect of rectifying the flow of the liquid hygroscopic material W is high. Disturbance is reduced. Thereby, the effect which suppresses disturbance of the liquid column C increases, and the atomization efficiency can be improved.
  • FIG. 11 is a plan view showing a schematic configuration of the atomization reproduction unit 40 of the seventh embodiment.
  • the same reference numerals are given to the same components as those used in the above embodiment, and the description thereof will be omitted.
  • regeneration part 40 of 7th Embodiment is the 2nd storage tank 246 (storage tank), several ultrasonic transducer
  • the atomization reproduction unit 40 of the seventh embodiment includes a plurality of ultrasonic transducers 244, the number of liquid columns C equal to the number of ultrasonic transducers 244 is formed, and the atomization efficiency is improved. Can do.
  • the atomization reproduction unit 40 shown in FIG. 11 includes six ultrasonic transducers 244, but the number of ultrasonic transducers 244 is not limited to six and can be changed as appropriate.
  • the second storage tank 246 six ultrasonic transducers 244 are arranged in two rows of three.
  • three ultrasonic transducers 244 in the upper row and three ultrasonic transducers 244 in the lower row are installed such that the direction Y1 in which the liquid column falls is inclined in the opposite direction. That is, the three ultrasonic transducers 244 in the upper row are installed such that the direction Y1 in which the liquid column falls is directed downward.
  • the three ultrasonic transducers 244 in the lower row are installed such that the direction Y1 in which the liquid column falls is directed upward.
  • the three ultrasonic transducers 244 in the upper row and the three ultrasonic transducers 244 in the lower row are arranged with their positions in the flow direction Y2 of the liquid hygroscopic material W shifted.
  • the ultrasonic transducer 244 at the left end of the lower row is disposed between the ultrasonic transducer 244 at the left end of the upper row and the ultrasonic transducer 244 at the center of the upper row, and the ultrasonic vibration at the center of the lower row.
  • the child 244 is disposed between the ultrasonic transducer 244 at the center of the upper row and the ultrasonic transducer 244 at the right end of the upper row in the flow direction Y2.
  • some ultrasonic transducers 244 and other ultrasonic transducers 244 have the liquid column C drop direction Y1 generated by the ultrasonic waves opposite to each other. And arranged so as to be shifted in the flow direction Y2 of the liquid hygroscopic material W.
  • the flow velocity attenuating member 291 is configured by a plate body that is provided with the plate surface facing in a direction intersecting with the flow of the liquid moisture absorbent W connecting the liquid supply port 241a and the ultrasonic wave propagation region R. ing.
  • Each of the plurality of flow velocity attenuating members 291 is provided corresponding to each of the plurality of ultrasonic transducers 244.
  • the flow velocity attenuating member 291 is disposed on the upstream side of the flow of the liquid hygroscopic material W in the ultrasonic transducer 244 corresponding to the flow velocity attenuating member 291.
  • the flow velocity attenuating member 291 is provided in parallel with the side plate 241c of the second storage tank 241 on the side where the liquid supply port 241a is provided.
  • the flow velocity attenuating member 291A may be provided to be inclined with respect to the side plate 241c along the flow direction Y2 of the liquid hygroscopic material W.
  • the material, shape, dimensions, arrangement, etc. of the plate constituting the flow velocity attenuating member 291 are not particularly limited.
  • the flow velocity attenuating member 291 is provided in a region other than the ultrasonic wave propagation region R, thereby allowing the ultrasonic wave to propagate in the ultrasonic wave propagation region R and attenuating the flow velocity of the liquid hygroscopic material W.
  • the ultrasonic vibrators 244 whose liquid column falling directions Y1 are opposite to each other are disposed in a position shifted in the flow direction Y2 of the liquid hygroscopic material W, the liquid column C The liquid columns C do not interfere with each other and the liquid column C is easily formed stably. Further, since the flow velocity attenuating member 291 is arranged as described above, the turbulent flow caused by the drop of the liquid column C caused by the ultrasonic vibrators 244 whose liquid column falling directions Y1 are opposite to each other is ultrasonically propagated. An adverse effect on ultrasonic wave propagation in the region R can be suppressed.
  • the example in which the atomization reproducing unit 40 including the plurality of ultrasonic transducers 244 is combined with the flow velocity attenuating member 291 of the fourth embodiment is shown.
  • the flow velocity attenuating member of the fifth embodiment is shown. 361 (see FIG. 9) or the flow velocity attenuating member 381 of the sixth embodiment (see FIG. 10) may be combined.
  • the atomization reproduction unit 40 including a plurality of ultrasonic transducers 244 is added to the flow velocity attenuation member 245 (see FIG. 2) of the first embodiment, the flow velocity attenuation member 325 (see FIG. 4) of the second embodiment,
  • a flow velocity attenuating member made of a porous member such as the flow velocity attenuating member 343 (see FIG. 5) of the third embodiment may be combined.
  • the atomization regeneration unit of the first embodiment is configured with a structure in which the flow velocity attenuation member has a gap communicating with the internal space of the storage tank. It was comprised with the board provided in the direction which cross
  • a flow velocity attenuating member having a configuration in which the structure body and the plate body are combined may be used.
  • a part of the structure of the first embodiment may be replaced with a plate, or both sides of the plate of the fourth embodiment may be replaced with a porous structure.
  • the arrangement of the moisture absorption unit and the atomization reproduction unit constituting the humidity control apparatus is not particularly limited.
  • the moisture absorption unit and the atomization reproduction unit may be arranged in the horizontal direction, or the moisture absorption unit may be arranged.
  • the atomization regeneration unit may be stacked in the vertical direction.
  • the present invention can be used for, for example, a humidity control device used to adjust indoor humidity.

Abstract

Provided is a humidity regulating device capable of maintaining moisture absorption performance by suppressing a disturbance in a liquid column and suppressing a deterioration in atomizing efficiency, while maintaining a flow of a liquid hygroscopic material in a storage tank. The humidity regulating device is provided with: a moisture absorption unit which causes at least a portion of moisture contained in air to be absorbed by a liquid hygroscopic material; an atomizing regeneration unit which atomizes the liquid hygroscopic material to regenerate the same; and a liquid hygroscopic material transportation flow passage for transporting the liquid hygroscopic material that has absorbed at least a portion of the moisture, from the moisture absorption unit to the atomizing regeneration unit. The atomizing regeneration unit is provided with: a storage tank which has a liquid supply port to which the liquid hygroscopic material transportation flow passage is connected, and which stores the liquid hygroscopic material; an ultrasonic wave generating unit which is provided in the storage tank and which gives rise to oscillations of ultrasonic waves for generating atomized droplets; and a flow velocity attenuating member which permits the propagation of the ultrasonic waves in an ultrasonic wave propagation region inside the storage tank, and attenuates the flow velocity of the liquid hygroscopic material flowing from the liquid supply port into the storage tank.

Description

調湿装置Humidity control device
 本発明は、調湿装置に関する。
 本願は、2018年6月6日に日本に出願された特願2018-108967号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a humidity control apparatus.
This application claims priority based on Japanese Patent Application No. 2018-108967 for which it applied to Japan on June 6, 2018, and uses the content here.
 液体に超音波を照射することによって霧を発生させる超音波霧化装置が従来から知られている。例えば下記の特許文献1には、霧化液槽と、超音波振動子と、霧化槽内に装着された仕切り部材と、を備えた超音波霧化装置が開示されている。特許文献1には、本発明では、超音波振動子により霧化液の水面に水柱が形成された際に水柱の上部が仕切り部材を乗り越えるため、水柱発生部分の波立ちが抑えられ、次の液柱の発生に影響がない、と記載されている。 Conventionally, an ultrasonic atomizer that generates mist by irradiating a liquid with ultrasonic waves is known. For example, Patent Document 1 below discloses an ultrasonic atomization apparatus including an atomization liquid tank, an ultrasonic vibrator, and a partition member mounted in the atomization tank. In Patent Document 1, in the present invention, when the water column is formed on the surface of the atomized liquid by the ultrasonic vibrator, the upper part of the water column gets over the partition member. It is stated that there is no effect on the occurrence of pillars.
特開2012-143684号公報JP 2012-143684 A
 本発明者らは、液体吸湿材を用いた吸湿部と、吸湿部から排出された液体吸湿材に含まれる水分を霧化して分離し、液体吸湿材を再生する霧化再生部と、を備えた調湿装置を開発している。霧化再生部としては、上記の超音波霧化装置を利用している。この種の調湿装置において十分な吸湿性能を確保するためには、吸湿槽内での気液接触性を高めるために液体吸湿材の循環量をある程度確保する必要がある。 The present inventors include a moisture absorption part using a liquid moisture absorbent, and an atomization regeneration unit that atomizes and separates moisture contained in the liquid moisture absorbent discharged from the moisture absorbent and regenerates the liquid moisture absorbent. Has developed a humidity control device. As the atomization reproduction unit, the above-described ultrasonic atomizer is used. In order to ensure sufficient moisture absorption performance in this type of humidity control apparatus, it is necessary to ensure a certain amount of circulation of the liquid moisture absorbent material in order to improve gas-liquid contact in the moisture absorption tank.
 一方、霧化再生槽内では、液体吸湿材の流動特性が霧化効率に大きな影響を与える。具体的には、液体吸湿材の循環量を増やそうとして、霧化再生槽内での液体吸湿材の流速を大きくした場合、流速が大きすぎると、超音波振動子から放射される超音波の放射軸が不安定化し、液面に発生する液柱の形状が乱れ、霧化効率が低下するという問題がある。特許文献1の超音波霧化装置は、調湿装置に用いることを想定しておらず、上記の問題への対応策を示唆するものではない。 On the other hand, in the atomization regeneration tank, the flow characteristics of the liquid hygroscopic material greatly affect the atomization efficiency. Specifically, when the flow rate of the liquid hygroscopic material in the atomization regeneration tank is increased to increase the circulation amount of the liquid hygroscopic material, if the flow rate is too high, the ultrasonic wave emitted from the ultrasonic transducer There is a problem that the radial axis becomes unstable, the shape of the liquid column generated on the liquid surface is disturbed, and the atomization efficiency is lowered. The ultrasonic atomization device of Patent Document 1 is not assumed to be used for a humidity control device, and does not suggest a countermeasure to the above problem.
 本発明の一つの態様は、上記の課題を解決するためになされたものであって、貯留槽内での液体吸湿材の流れを確保しつつ、液柱の形状の乱れを抑え、霧化効率の低下を抑制することで吸湿性能を確保できる調湿装置を提供することを目的の一つとする。 One aspect of the present invention is made in order to solve the above-mentioned problem, and while preventing the flow of the liquid hygroscopic material in the storage tank, suppressing the disturbance of the shape of the liquid column, the atomization efficiency An object of the present invention is to provide a humidity control device that can secure moisture absorption performance by suppressing the decrease in the humidity.
 上記の目的を達成するために、本発明の一つの態様の調湿装置は、吸湿性物質を含む液体吸湿材と空気とを接触させることにより、前記空気に含まれる水分の少なくとも一部を前記液体吸湿材に吸収させる吸湿部と、前記吸湿部から供給された前記液体吸湿材に含まれる水分の少なくとも一部を霧化して霧状液滴を発生させ、前記液体吸湿材から前記霧状液滴の少なくとも一部を分離することによって前記液体吸湿材を再生する霧化再生部と、前記水分の少なくとも一部が吸収された前記液体吸湿材を前記吸湿部から前記霧化再生部に輸送する液体吸湿材輸送流路と、を備える。前記霧化再生部は、前記液体吸湿材輸送流路が接続された給液口を有し、前記液体吸湿材を貯留する貯留槽と、前記貯留槽に設けられ、前記霧状液滴を発生させるための超音波を発振する超音波発生部と、前記貯留槽の内部の超音波伝播領域における超音波の伝播を許容するとともに、前記給液口から前記貯留槽の内部に流入する前記液体吸湿材の流速を減衰させる流速減衰部材と、を備える。 In order to achieve the above object, a humidity control apparatus according to one aspect of the present invention brings at least a part of moisture contained in the air into contact with a liquid hygroscopic material containing a hygroscopic substance and air. A hygroscopic part to be absorbed by the liquid hygroscopic material, and atomizing at least part of the water contained in the liquid hygroscopic material supplied from the hygroscopic part to generate mist droplets, and from the liquid hygroscopic material to the mist liquid An atomization regeneration unit that regenerates the liquid moisture absorbent by separating at least a part of the droplets, and the liquid absorbent material that has absorbed at least a part of the moisture is transported from the moisture absorber to the atomization regeneration unit. A liquid hygroscopic material transport channel. The atomization regeneration unit has a liquid supply port to which the liquid hygroscopic material transport channel is connected, and is provided in the storage tank for storing the liquid hygroscopic material, and generates the mist droplets. An ultrasonic generator that oscillates ultrasonic waves to allow the ultrasonic wave to propagate in an ultrasonic wave propagation region inside the storage tank, and the liquid moisture absorption that flows into the storage tank from the liquid supply port A flow rate attenuating member for attenuating the flow rate of the material.
 本発明の一つの態様の調湿装置において、前記流速減衰部材は、前記超音波伝播領域以外の領域に設けられていてもよい。 In the humidity control apparatus according to one aspect of the present invention, the flow velocity attenuating member may be provided in a region other than the ultrasonic wave propagation region.
 本発明の一つの態様の調湿装置において、前記流速減衰部材は、前記貯留槽の内部空間と連通する空隙を有する構造体で構成されていてもよい。 In the humidity control apparatus according to one aspect of the present invention, the flow velocity attenuating member may be composed of a structure having a gap communicating with the internal space of the storage tank.
 本発明の一つの態様の調湿装置において、前記構造体は、互いに異なる空隙率を有する複数の領域を有し、前記超音波伝播領域に相対的に近い位置の領域の空隙率は、前記超音波伝播領域から相対的に遠い位置の領域の空隙率よりも高くてもよい。 In the humidity control apparatus according to one aspect of the present invention, the structure includes a plurality of regions having mutually different void ratios, and the void ratio of a region relatively close to the ultrasonic wave propagation region is It may be higher than the porosity of the region relatively far from the sound wave propagation region.
 本発明の一つの態様の調湿装置において、前記流速減衰部材は、前記給液口と前記超音波伝播領域とを結ぶ前記液体吸湿材の流れと交差する方向に板面を向けて設けられた板体で構成されていてもよい。 In the humidity control apparatus according to one aspect of the present invention, the flow velocity attenuating member is provided with a plate surface facing in a direction intersecting with the flow of the liquid moisture absorbent material connecting the liquid supply port and the ultrasonic wave propagation region. You may be comprised with the plate.
 本発明の一つの態様の調湿装置において、前記板体は、前記貯留槽の内壁面から間隔をおいて設けられていてもよい。 In the humidity control apparatus according to one aspect of the present invention, the plate body may be provided at a distance from the inner wall surface of the storage tank.
 本発明の一つの態様の調湿装置において、前記板体は、前記貯留槽の内壁面に接して設けられ、両側部に開口部を有していてもよい。 In the humidity control apparatus according to one aspect of the present invention, the plate body may be provided in contact with the inner wall surface of the storage tank and may have openings on both sides.
 本発明の一つの態様の調湿装置において、前記板体の両側部は、メッシュ状の板材で構成されていてもよい。 In the humidity control apparatus according to one aspect of the present invention, both side portions of the plate body may be formed of a mesh plate material.
 本発明の一つの態様の調湿装置において、前記板体の両側部は、複数のスリットを有する板材で構成されていてもよい。 In the humidity control apparatus according to one aspect of the present invention, both side portions of the plate body may be formed of a plate material having a plurality of slits.
 本発明の一つの態様の調湿装置において、前記超音波発生部は、複数の超音波振動子を含み、前記複数の超音波振動子のうち、一部の超音波振動子と他の超音波振動子とは、超音波により発生する液柱の落下方向が互いに逆向きとなるように配列されるとともに、前記液体吸湿材の流れ方向にずれて配置されていてもよい。 In the humidity control apparatus according to one aspect of the present invention, the ultrasonic wave generation unit includes a plurality of ultrasonic transducers, and some of the ultrasonic transducers and other ultrasonic transducers. The vibrators may be arranged so that the falling directions of the liquid columns generated by the ultrasonic waves are opposite to each other, and may be arranged so as to be shifted in the flow direction of the liquid moisture absorbent.
 本発明の一つの態様によれば、貯留槽内での液体吸湿材の流れを確保しつつ、液柱の形状の乱れを抑え、霧化効率の低下を抑制することで吸湿性能を確保できる調湿装置を提供することができる。 According to one aspect of the present invention, while ensuring the flow of the liquid hygroscopic material in the storage tank, it is possible to suppress the disturbance of the liquid column shape and to suppress the decrease in the atomization efficiency, thereby ensuring the hygroscopic performance. A wet device can be provided.
第1実施形態の調湿装置の概略構成図である。It is a schematic block diagram of the humidity control apparatus of 1st Embodiment. 霧化再生部の概略構成を示す正面図である。It is a front view which shows schematic structure of an atomization reproduction | regeneration part. 霧化再生部の概略構成を示す平面図である。It is a top view which shows schematic structure of an atomization reproduction | regeneration part. 第2実施形態の霧化再生部の概略構成を示す平面図である。It is a top view which shows schematic structure of the atomization reproduction | regeneration part of 2nd Embodiment. 第3実施形態の霧化再生部の概略構成を示す平面図である。It is a top view which shows schematic structure of the atomization reproduction | regeneration part of 3rd Embodiment. 第4実施形態の調湿装置の概略構成図である。It is a schematic block diagram of the humidity control apparatus of 4th Embodiment. 霧化再生部の概略構成を示す正面図である。It is a front view which shows schematic structure of an atomization reproduction | regeneration part. 霧化再生部の概略構成を示す平面図である。It is a top view which shows schematic structure of an atomization reproduction | regeneration part. 第5実施形態の霧化再生部の概略構成を示す正面図である。It is a front view which shows schematic structure of the atomization reproduction | regeneration part of 5th Embodiment. 第6実施形態の霧化再生部の概略構成を示す正面図である。It is a front view which shows schematic structure of the atomization reproduction | regeneration part of 6th Embodiment. 第7実施形態の霧化再生部の概略構成を示す平面図である。It is a top view which shows schematic structure of the atomization reproduction | regeneration part of 7th Embodiment.
[第1実施形態]
 以下、本発明の第1実施形態について、図1を用いて説明する。
 図1は、第1実施形態の調湿装置の概略構成図である。
 なお、以下の各図面においては各構成要素を見やすくするため、構成要素によって寸法の縮尺を異ならせて示すことがある。
[First Embodiment]
Hereinafter, a first embodiment of the present invention will be described with reference to FIG.
FIG. 1 is a schematic configuration diagram of a humidity control apparatus according to the first embodiment.
In the following drawings, in order to make each component easy to see, the scale of the size may be varied depending on the component.
 図1に示すように、本実施形態の調湿装置20は、吸湿部21と、霧化再生部24と、第1液体吸湿材輸送流路22と、第2液体吸湿材輸送流路25と、第1空気導入流路30と、第2空気導入流路26と、第1空気排出流路23と、第2空気排出流路28と、制御部42と、を備えている。調湿装置20は、筐体201を備えており、吸湿部21および霧化再生部24は、筐体201の内部空間201cに収容されている。 As shown in FIG. 1, the humidity control apparatus 20 of the present embodiment includes a moisture absorption unit 21, an atomization regeneration unit 24, a first liquid moisture absorbent transport channel 22, and a second liquid moisture absorbent transport channel 25. The first air introduction flow path 30, the second air introduction flow path 26, the first air discharge flow path 23, the second air discharge flow path 28, and the control unit 42 are provided. The humidity control apparatus 20 includes a housing 201, and the moisture absorption unit 21 and the atomization reproduction unit 24 are accommodated in an internal space 201 c of the housing 201.
 吸湿部21は、第1貯留槽211と、ノズル213と、を備えている。吸湿部21は、吸湿性物質を含む液体吸湿材Wと外部空間に存在する空気A1とを接触させることにより、空気A1に含まれる水分の少なくとも一部を液体吸湿材Wに吸収させる。吸湿部21は、できるだけ多くの水分を液体吸湿材Wに吸収させることが望ましいが、空気A1に含まれる水分のうちの少なくとも一部の水分を液体吸湿材Wに吸収させればよい。 The moisture absorption part 21 includes a first storage tank 211 and a nozzle 213. The hygroscopic part 21 causes the liquid hygroscopic material W to absorb at least a part of the moisture contained in the air A1 by bringing the liquid hygroscopic material W containing a hygroscopic substance into contact with the air A1 existing in the external space. Although it is desirable for the moisture absorption part 21 to absorb as much water as possible into the liquid moisture absorbent W, it is sufficient that the liquid absorbent material W absorbs at least part of the moisture contained in the air A1.
 第1貯留槽211の内部には、液体吸湿材Wが貯留されている。液体吸湿材Wについては後述する。第1貯留槽211には、第1空気導入流路30、第1空気排出流路23、および第1液体吸湿材輸送流路22が接続されている。第1空気導入流路30の途中には、ブロア212が設けられている。空気A1は、ブロア212によって第1空気導入流路30を介して第1貯留槽211の内部空間に供給される。 The liquid hygroscopic material W is stored inside the first storage tank 211. The liquid hygroscopic material W will be described later. A first air introduction channel 30, a first air discharge channel 23, and a first liquid hygroscopic material transport channel 22 are connected to the first storage tank 211. A blower 212 is provided in the middle of the first air introduction channel 30. The air A <b> 1 is supplied to the internal space of the first storage tank 211 through the first air introduction flow path 30 by the blower 212.
 ノズル213は、第1貯留槽211の内部空間の上部に配置されている。後述する霧化再生部24によって再生された後、第2液体吸湿材輸送流路25を介して吸湿部21に戻された液体吸湿材W1は、ノズル213から第1貯留槽211の内部空間に流下し、この際に液体吸湿材W1と空気A1とが接触する。この種の液体吸湿材W1と空気A1との接触の形態は、一般に「流下方式」と呼ばれる。なお、液体吸湿材W1と空気A1との接触形態は、流下方式に限らず、他の方式を用いることができる。例えば第1貯留槽211に貯留された液体吸湿材Wの中に空気A1を泡状にして供給する方式、いわゆるバブリング方式を用いることもできる。 The nozzle 213 is disposed in the upper part of the internal space of the first storage tank 211. After being regenerated by the atomization regenerating unit 24 described later, the liquid hygroscopic material W1 returned to the hygroscopic unit 21 via the second liquid hygroscopic material transport channel 25 is transferred from the nozzle 213 to the internal space of the first storage tank 211. At this time, the liquid hygroscopic material W1 and the air A1 come into contact with each other. This type of contact between the liquid hygroscopic material W1 and the air A1 is generally referred to as a “flow-down method”. In addition, the contact form of the liquid hygroscopic material W1 and the air A1 is not limited to the flow-down method, and other methods can be used. For example, a so-called bubbling method in which air A1 is supplied in the form of foam into the liquid hygroscopic material W stored in the first storage tank 211 can also be used.
 外部空間に存在する空気A1は、ブロア212から第1貯留槽211の排出口211aに向かう気流を形成し、ノズル213から流れ落ちる液体吸湿材Wと接触する。このとき、空気A1中に含まれる水分の少なくとも一部は、液体吸湿材Wに吸収されることによって空気A1中から除去される。吸湿部21では、元々の室内の空気から水分が除去された空気が得られるため、排出口211aから排出される空気A3は、調湿装置20の外部空間の空気A1よりも乾燥した状態となる。このように、乾燥した空気A3が第1空気排出流路23を介して筐体201の外部に排出される。 The air A1 existing in the external space forms an air flow from the blower 212 toward the discharge port 211a of the first storage tank 211, and comes into contact with the liquid moisture absorbent W flowing down from the nozzle 213. At this time, at least a part of the moisture contained in the air A1 is removed from the air A1 by being absorbed by the liquid moisture absorbent W. In the moisture absorption part 21, air from which moisture has been removed from the original indoor air is obtained, so the air A <b> 3 discharged from the discharge port 211 a is in a state of being drier than the air A <b> 1 in the external space of the humidity controller 20. . Thus, the dried air A3 is discharged to the outside of the housing 201 through the first air discharge channel 23.
 液体吸湿材Wは、水分を吸収する性質(吸湿性)を示す液体であり、例えば温度が25℃、相対湿度が50%、大気圧下の条件で吸湿性を示す液体が好ましい。液体吸湿材Wは、後述する吸湿性物質を含んでいる。また、液体吸湿材Wは、吸湿性物質と溶媒とを含んでいてもよい。この種の溶媒としては、吸湿性物質を溶解させる、または吸湿性物質と混和する溶媒が挙げられ、例えば水が挙げられる。吸湿性物質は、有機材料であってもよいし、無機材料であってもよい。 The liquid hygroscopic material W is a liquid exhibiting a property of absorbing moisture (hygroscopicity). For example, a liquid that exhibits hygroscopicity under conditions of a temperature of 25 ° C., a relative humidity of 50%, and atmospheric pressure is preferable. The liquid hygroscopic material W contains a hygroscopic substance to be described later. The liquid hygroscopic material W may contain a hygroscopic substance and a solvent. Examples of this type of solvent include a solvent that dissolves the hygroscopic substance or is miscible with the hygroscopic substance, for example, water. The hygroscopic substance may be an organic material or an inorganic material.
 吸湿性物質として用いられる有機材料としては、例えば2価以上のアルコール、ケトン、アミド基を有する有機溶媒、糖類、保湿化粧品などの原料として用いられる公知の材料などが挙げられる。それらの中でも、親水性が高いことから、吸湿性物質として好適に用いられる有機材料としては、2価以上のアルコール、アミド基を有する有機溶媒、糖類、保湿化粧品等の原料として用いられる公知の材料が挙げられる。 Examples of the organic material used as the hygroscopic substance include known materials used as raw materials for dihydric or higher alcohols, ketones, organic solvents having an amide group, sugars, moisturizing cosmetics, and the like. Among them, known organic materials that are used as raw materials for dihydric or higher alcohols, organic solvents having an amide group, saccharides, moisturizing cosmetics, and the like because of their high hydrophilicity. Is mentioned.
 2価以上のアルコールとしては、例えばグリセリン、プロパンジオール、ブタンジオール、ペンタンジオール、トリメチロールプロパン、ブタントリオール、エチレングリコール、ジエチレングリコール、トリエチレングリコールなどが挙げられる。 Examples of the divalent or higher alcohol include glycerin, propanediol, butanediol, pentanediol, trimethylolpropane, butanetriol, ethylene glycol, diethylene glycol, and triethylene glycol.
 アミド基を有する有機溶媒としては、例えばホルムアミド、アセトアミドなどが挙げられる。 Examples of the organic solvent having an amide group include formamide and acetamide.
 糖類としては、例えばスクロース、プルラン、グルコース、キシロール、フラクトース、マンニトール、ソルビトールなどが挙げられる。 Examples of the saccharide include sucrose, pullulan, glucose, xylol, fructose, mannitol, sorbitol and the like.
 保湿化粧品などの原料として用いられる公知の材料としては、例えば2-メタクリロイルオキシエチルホスホリルコリン(MPC)、ベタイン、ヒアルロン酸、コラーゲンなどが挙げられる。 Examples of known materials used as raw materials for moisturizing cosmetics include 2-methacryloyloxyethyl phosphorylcholine (MPC), betaine, hyaluronic acid, collagen, and the like.
 吸湿性物質として用いられる無機材料としては、例えば塩化カルシウム、塩化リチウム、塩化マグネシウム、塩化カリウム、塩化ナトリウム、塩化亜鉛、塩化アルミニウム、臭化リチウム、臭化カルシウム、臭化カリウム、水酸化ナトリウム、ピロリドンカルボン酸ナトリウムなどが挙げられる。 Examples of inorganic materials used as hygroscopic substances include calcium chloride, lithium chloride, magnesium chloride, potassium chloride, sodium chloride, zinc chloride, aluminum chloride, lithium bromide, calcium bromide, potassium bromide, sodium hydroxide, pyrrolidone. Examples thereof include sodium carboxylate.
 吸湿性物質の親水性が高いと、例えば吸湿性物質の材料と水とを混合させたときに、液体吸湿材Wの表面(液面)近傍に吸着される水分子の割合が多くなる。後述する霧化再生部24では、液体吸湿材Wの表面近傍から霧状液滴W3を発生させ、液体吸湿材Wから水分を分離する。そのため、液体吸湿材Wの表面近傍に吸着される水分子の割合が多いと、水分を効率的に分離できる点で好ましい。また、液体吸湿材Wの表面近傍における吸湿性物質の割合が相対的に少なくなるため、霧化再生部24での吸湿性物質の損失を抑えられる点で好ましい。 If the hygroscopic substance has high hydrophilicity, for example, when the hygroscopic substance material and water are mixed, the ratio of water molecules adsorbed near the surface (liquid surface) of the liquid hygroscopic material W increases. In an atomization regeneration unit 24 described later, a mist-like droplet W3 is generated from the vicinity of the surface of the liquid moisture absorbent W, and moisture is separated from the liquid moisture absorbent W. Therefore, if the ratio of water molecules adsorbed in the vicinity of the surface of the liquid moisture absorbent W is large, it is preferable in that water can be efficiently separated. Moreover, since the ratio of the hygroscopic substance in the vicinity of the surface of the liquid hygroscopic material W is relatively small, it is preferable in that the loss of the hygroscopic substance in the atomization reproduction unit 24 can be suppressed.
 液体吸湿材Wのうち、吸湿部21での処理に用いられる液体吸湿材W1に含まれる吸湿性物質の濃度は、特に限定されないが、40質量%以上であることが好ましい。吸湿性物質の濃度が40質量%以上である場合、液体吸湿材W1は、効率良く水分を吸収することができる。 Of the liquid hygroscopic material W, the concentration of the hygroscopic substance contained in the liquid hygroscopic material W1 used for the treatment in the hygroscopic portion 21 is not particularly limited, but is preferably 40% by mass or more. When the concentration of the hygroscopic substance is 40% by mass or more, the liquid hygroscopic material W1 can efficiently absorb moisture.
 液体吸湿材Wの粘度は、25mPa・s以下であることが好ましい。これにより、後述する霧化再生部24において、液体吸湿材Wの液面に液体吸湿材Wの液柱Cを生じさせやすい。そのため、液体吸湿材Wから効率良く水分を分離することができる。 The viscosity of the liquid hygroscopic material W is preferably 25 mPa · s or less. Thereby, in the atomization reproduction | regeneration part 24 mentioned later, it is easy to produce the liquid column C of the liquid hygroscopic material W on the liquid surface of the liquid hygroscopic material W. Therefore, water can be efficiently separated from the liquid hygroscopic material W.
 図2は、霧化再生部24の概略構成を示す正面図である。図3は、霧化再生部24の概略構成を示す平面図である。
 図2および図3に示すように、霧化再生部24は、第2貯留槽241(貯留槽)と、超音波振動子244(超音波発生部)と、流速減衰部材245と、を備えている。霧化再生部24は、第1液体吸湿材輸送流路22を介して吸湿部21から供給された液体吸湿材W2に含まれる水分の少なくとも一部を霧化し、液体吸湿材W2から水分の少なくとも一部を除去することにより液体吸湿材W2を再生する。
FIG. 2 is a front view illustrating a schematic configuration of the atomization reproduction unit 24. FIG. 3 is a plan view showing a schematic configuration of the atomization reproduction unit 24.
As shown in FIGS. 2 and 3, the atomization regeneration unit 24 includes a second storage tank 241 (storage tank), an ultrasonic transducer 244 (ultrasonic wave generation unit), and a flow velocity attenuation member 245. Yes. The atomization regeneration unit 24 atomizes at least part of the moisture contained in the liquid absorbent material W2 supplied from the moisture absorbent unit 21 via the first liquid absorbent material transport channel 22, and at least part of the moisture from the liquid absorbent material W2 The liquid hygroscopic material W2 is regenerated by removing a part thereof.
 第2貯留槽241は、第1液体吸湿材輸送流路22が接続された給液口241aを有しており、再生すべき液体吸湿材W2を貯留する。第2貯留槽241には、第1液体吸湿材輸送流路22、第2液体吸湿材輸送流路25、第2空気導入流路26、および第2空気排出流路28が接続されている。また、第2貯留槽241は、第2液体吸湿材輸送流路25が接続された排液口241bを有しており、再生された液体吸湿材W1を排液口241bから排出する。 The second storage tank 241 has a liquid supply port 241a to which the first liquid hygroscopic material transport channel 22 is connected, and stores the liquid hygroscopic material W2 to be regenerated. The second storage tank 241 is connected to the first liquid hygroscopic material transport channel 22, the second liquid hygroscopic material transport channel 25, the second air introduction channel 26, and the second air discharge channel 28. Moreover, the 2nd storage tank 241 has the drainage port 241b to which the 2nd liquid hygroscopic material transport channel 25 was connected, and discharge | releases the regenerated liquid hygroscopic material W1 from the drainage port 241b.
 超音波振動子244は、第2貯留槽241に設けられ、霧状液滴W3を発生させるための超音波を発振する。これにより、液体吸湿材W2に超音波が照射され、液体吸湿材W2から水分を含む霧状液滴W3が発生する。超音波振動子244から液体吸湿材W2に超音波が照射される際、超音波の発生条件を調整することにより、液体吸湿材W2の液面に液体吸湿材W2の液柱Cを生じさせることができる。霧状液滴W3は、液体吸湿材W2の液柱Cから多く発生する。 The ultrasonic transducer 244 is provided in the second storage tank 241 and oscillates an ultrasonic wave for generating the mist droplet W3. As a result, the liquid hygroscopic material W2 is irradiated with ultrasonic waves, and mist droplets W3 containing water are generated from the liquid hygroscopic material W2. When the ultrasonic wave is applied from the ultrasonic vibrator 244 to the liquid absorbent material W2, the liquid column C of the liquid absorbent material W2 is generated on the liquid surface of the liquid absorbent material W2 by adjusting the generation conditions of the ultrasonic wave. Can do. Many of the mist droplets W3 are generated from the liquid column C of the liquid hygroscopic material W2.
 また、図1に示すように、超音波振動子244は、第2貯留槽241の底板241fに対して傾斜して設けられている。超音波振動子244の超音波射出面244aの中心から超音波射出面244aに対して垂直な軸を超音波の放射軸Jと定義する。超音波振動子244が第2貯留槽241の底板241fに対して傾斜していることにより、超音波は、放射軸Jが液体吸湿材W2の液面に対して傾くように、超音波射出面244aから液面に向けて伝播される。これにより、液面で反射した超音波が超音波振動子244に戻りにくく、超音波振動子244自身が超音波によるダメージを受けにくい。また、放射軸Jが傾くことに伴って、液柱Cは液面に対して傾くように生成される。 Further, as shown in FIG. 1, the ultrasonic transducer 244 is provided to be inclined with respect to the bottom plate 241 f of the second storage tank 241. An axis perpendicular to the ultrasonic emission surface 244a from the center of the ultrasonic emission surface 244a of the ultrasonic transducer 244 is defined as an ultrasonic radiation axis J. Since the ultrasonic vibrator 244 is inclined with respect to the bottom plate 241f of the second storage tank 241, the ultrasonic wave is emitted from the ultrasonic wave emission surface so that the radial axis J is inclined with respect to the liquid surface of the liquid moisture absorbent W2. Propagated from 244a toward the liquid surface. As a result, the ultrasonic wave reflected by the liquid surface is unlikely to return to the ultrasonic transducer 244, and the ultrasonic transducer 244 itself is not easily damaged by the ultrasonic wave. Further, as the radial axis J is inclined, the liquid column C is generated so as to be inclined with respect to the liquid surface.
 超音波振動子244は、給液口241aが設けられた側の超音波射出面244aの端部が高く、排液口241bが設けられた側の超音波射出面244aの端部が低くなる方向に傾斜している。すなわち、図3に示すように、第2貯留槽241を底板241fの法線方向から見たとき、超音波振動子244は、矢印Y1で示す放射軸Jが傾斜していることによって液体が液柱を形成して落下する向きと、矢印Y2で示す給液口241aから排液口241bに向かう液体吸湿材Wの流れの向きと、が一致する方向に傾斜している。 In the ultrasonic transducer 244, the end of the ultrasonic emission surface 244a on the side where the liquid supply port 241a is provided is high, and the end of the ultrasonic emission surface 244a on the side where the drainage port 241b is provided is low. It is inclined to. That is, as shown in FIG. 3, when the second storage tank 241 is viewed from the normal direction of the bottom plate 241f, the ultrasonic transducer 244 has a liquid that is liquid because the radial axis J indicated by the arrow Y1 is inclined. The direction of falling by forming a column is inclined in a direction in which the direction of the flow of the liquid hygroscopic material W from the liquid supply port 241a toward the liquid discharge port 241b indicated by the arrow Y2 coincides.
 超音波振動子244が上述した向きに傾斜している構成は、超音波振動子244が上述した向きと逆向きに傾斜している構成、すなわち、矢印Y1と矢印Y2とが逆向きである場合に比べて、液柱Cの乱れが生じにくい点で好ましい。 The configuration in which the ultrasonic transducer 244 is tilted in the above-described direction is a configuration in which the ultrasonic transducer 244 is tilted in the reverse direction, that is, the arrows Y1 and Y2 are in the reverse direction. It is preferable in that the disturbance of the liquid column C is less likely to occur.
 本明細書において、図1に示すように、第2貯留槽241に貯留された液体吸湿材W2のうち、超音波振動子244の超音波射出面244aの周縁から超音波射出面244aに垂直な方向に延びる仮想的な面によって囲まれた領域を超音波伝播領域Rと称する。例えば超音波射出面244aが円形であったとすると、超音波射出面244aの周縁から超音波射出面244aに垂直な方向に延びる円柱状の領域が超音波伝播領域Rである。 In this specification, as shown in FIG. 1, the liquid hygroscopic material W2 stored in the second storage tank 241 is perpendicular to the ultrasonic emission surface 244a from the periphery of the ultrasonic emission surface 244a of the ultrasonic transducer 244. A region surrounded by a virtual plane extending in the direction is referred to as an ultrasonic propagation region R. For example, if the ultrasonic emission surface 244a is circular, a cylindrical region extending in the direction perpendicular to the ultrasonic emission surface 244a from the periphery of the ultrasonic emission surface 244a is the ultrasonic propagation region R.
 図2および図3に示すように、流速減衰部材245は、第2貯留槽241の内部において、超音波伝播領域R以外の領域に設けられている。第2貯留槽241を底板241fの法線方向から見たとき、流速減衰部材245は、超音波伝播領域Rの外側に矩形環状に設けられている。 2 and 3, the flow velocity attenuating member 245 is provided in a region other than the ultrasonic wave propagation region R inside the second storage tank 241. When the second storage tank 241 is viewed from the normal direction of the bottom plate 241f, the flow velocity attenuating member 245 is provided in a rectangular ring shape outside the ultrasonic wave propagation region R.
 流速減衰部材245は、第2貯留槽241の内部空間と連通する空隙を有する構造体で構成されている。この種の構造体として、多数の空隙を有するスポンジ等の多孔質部材、立体構造を有するメッシュ等が用いられる。流速減衰部材245は、超音波伝播領域R以外の領域に設けられ、第2貯留槽241の内部空間と連通する空隙を有することにより、超音波伝播領域Rにおける超音波の伝播を許容するとともに、給液口241aから第2貯留槽241の内部空間に流入する液体吸湿材W2の流速を減衰させる。これにより、流速減衰部材245を通過した後に超音波伝播領域Rを流れる液体吸湿材W2の流速は、流速減衰部材245を通過する前の液体吸湿材W2の流速に比べて低下する。 The flow velocity attenuating member 245 is configured by a structure having a gap communicating with the internal space of the second storage tank 241. As this type of structure, a porous member such as a sponge having a large number of voids, a mesh having a three-dimensional structure, or the like is used. The flow velocity attenuating member 245 is provided in a region other than the ultrasonic wave propagation region R, and has a gap communicating with the internal space of the second storage tank 241, thereby allowing ultrasonic wave propagation in the ultrasonic wave propagation region R, and The flow rate of the liquid hygroscopic material W2 flowing into the internal space of the second storage tank 241 from the liquid supply port 241a is attenuated. Thereby, the flow velocity of the liquid moisture absorbent W2 flowing through the ultrasonic wave propagation region R after passing through the flow velocity attenuation member 245 is lower than the flow velocity of the liquid absorbent material W2 before passing through the flow velocity attenuation member 245.
 流速減衰部材245の空隙のサイズは、2mm~10mm程度であることが好ましい。空隙のサイズが大きすぎると、液体吸湿材W2が構造体に衝突する頻度が少なく、液体吸湿材W2の流速を低減させる効果が充分に得られない。また、空隙のサイズが小さすぎると、液体吸湿材W2の循環が阻害され、十分な循環量を確保できない。 The gap size of the flow velocity attenuating member 245 is preferably about 2 mm to 10 mm. If the size of the gap is too large, the liquid hygroscopic material W2 does not collide with the structure frequently and the effect of reducing the flow rate of the liquid hygroscopic material W2 cannot be obtained sufficiently. On the other hand, if the size of the gap is too small, the circulation of the liquid hygroscopic material W2 is hindered and a sufficient amount of circulation cannot be ensured.
 図1に示すように、第2空気導入流路26の途中にブロア242が設けられている。ブロア242は、筐体201の外部空間から、第2空気導入流路26を介して第2貯留槽241の内部に空気A1を送り込み、第2貯留槽241の内部から、第2空気排出流路28を介して筐体201の外部に流れる気流を発生させる。 As shown in FIG. 1, a blower 242 is provided in the middle of the second air introduction channel 26. The blower 242 feeds air A1 from the outer space of the housing 201 into the second storage tank 241 via the second air introduction flow path 26, and the second air discharge flow path from the inside of the second storage tank 241. An airflow that flows to the outside of the housing 201 via the 28 is generated.
 第2空気排出流路28は、霧状液滴W3を含む空気A4を筐体201の外部空間に排出し、調湿装置20の内部から除去する。これにより、液体吸湿材W2から水分を分離することができる。これにより、液体吸湿材W2の吸湿性能が再び高まり、液体吸湿材W1を吸湿部21に戻して再利用することができる。空気A4は、第2貯留槽241の内部で発生した霧状液滴W3を含んでいるため、筐体201の外部空間の空気A1よりも湿っている。このように、加湿された空気A4が第2空気排出流路28を介して筐体201の外部に排出される。 The second air discharge channel 28 discharges the air A4 containing the mist droplets W3 to the external space of the casing 201 and removes it from the inside of the humidity control apparatus 20. Thereby, moisture can be separated from the liquid hygroscopic material W2. Thereby, the hygroscopic performance of the liquid hygroscopic material W2 is increased again, and the liquid hygroscopic material W1 can be returned to the hygroscopic portion 21 and reused. Since the air A4 includes the mist droplets W3 generated inside the second storage tank 241, the air A4 is wetter than the air A1 in the external space of the housing 201. In this manner, the humidified air A4 is discharged to the outside of the housing 201 through the second air discharge channel 28.
 吸湿部21と霧化再生部24とは、液体吸湿材Wの循環流路を構成する第1液体吸湿材輸送流路22と第2液体吸湿材輸送流路25とによって接続されている。第2液体吸湿材輸送流路25の途中には、液体吸湿材Wを循環させるためのポンプ252が設けられている。 The hygroscopic part 21 and the atomization regeneration part 24 are connected by a first liquid hygroscopic material transport channel 22 and a second liquid hygroscopic material transport channel 25 that constitute a circulation channel of the liquid hygroscopic material W. A pump 252 for circulating the liquid hygroscopic material W is provided in the middle of the second liquid hygroscopic material transport channel 25.
 第1液体吸湿材輸送流路22は、水分の少なくとも一部が吸収された液体吸湿材W2を吸湿部21から霧化再生部24に輸送する。第1液体吸湿材輸送流路22の一端は、第1貯留槽211の下部に接続されている。第1貯留槽211における第1液体吸湿材輸送流路22の接続箇所は、第1貯留槽211内の液体吸湿材W1の液面よりも下方に位置している。一方、第1液体吸湿材輸送流路22の他端は、第2貯留槽241の下部に接続されている。第2貯留槽241における第1液体吸湿材輸送流路22の接続箇所は、第2貯留槽241内の液体吸湿材W2の液面よりも下方に位置している。 The first liquid hygroscopic material transport channel 22 transports the liquid hygroscopic material W2 in which at least a part of moisture has been absorbed from the hygroscopic unit 21 to the atomization regeneration unit 24. One end of the first liquid hygroscopic material transport channel 22 is connected to the lower portion of the first storage tank 211. The connection location of the first liquid hygroscopic material transport channel 22 in the first storage tank 211 is located below the liquid level of the liquid hygroscopic material W1 in the first storage tank 211. On the other hand, the other end of the first liquid hygroscopic material transport channel 22 is connected to the lower part of the second storage tank 241. The connection location of the first liquid hygroscopic material transport channel 22 in the second storage tank 241 is located below the liquid level of the liquid hygroscopic material W2 in the second storage tank 241.
 第2液体吸湿材輸送流路25は、水分が除去されて再生された液体吸湿材Wを霧化再生部24から吸湿部21に輸送する。第2液体吸湿材輸送流路25の一端は、第2貯留槽241の下部に接続されている。第2貯留槽241における第2液体吸湿材輸送流路25の接続箇所は、第2貯留槽241内の液体吸湿材W2の液面よりも下方に位置している。一方、第2液体吸湿材輸送流路25の他端は、第1貯留槽211の上部に接続されている。第1貯留槽211における第2液体吸湿材輸送流路25の接続箇所は、第1貯留槽211内の液体吸湿材W1の液面よりも上方に位置し、上述のノズル213に接続されている。 The second liquid hygroscopic material transport channel 25 transports the liquid hygroscopic material W regenerated by removing moisture from the atomization regenerating unit 24 to the hygroscopic unit 21. One end of the second liquid hygroscopic material transport channel 25 is connected to the lower part of the second storage tank 241. The connection location of the second liquid hygroscopic material transport channel 25 in the second storage tank 241 is located below the liquid level of the liquid hygroscopic material W2 in the second storage tank 241. On the other hand, the other end of the second liquid hygroscopic material transport channel 25 is connected to the upper part of the first storage tank 211. The connection location of the second liquid hygroscopic material transport channel 25 in the first storage tank 211 is located above the liquid surface of the liquid hygroscopic material W1 in the first storage tank 211 and is connected to the nozzle 213 described above. .
 上記では、調湿装置20において、除湿された空気が吸湿部21から第1空気排出流路23を介して排出され、加湿された空気が霧化再生部24から第2空気排出流路28を介して排出される、と説明した。湿度調整機能について、本実施形態の調湿装置20を除湿機能のみを備えた調湿装置とする場合には、例えば第1空気排出流路23の空気排出口を室内に向けて配置する一方、第2空気排出流路28の空気排出口を室外に向けて配置した構成とすればよい。もしくは、加湿機能のみを備えた調湿装置とする場合には、例えば第2空気排出流路28の空気排出口を室内に向けて配置する一方、第1空気排出流路23の空気排出口を室外に向けて配置した構成とすればよい。また、除湿機能と加湿機能の双方を備えた調湿装置とする場合には、第1空気排出流路23および第2空気排出流路28の双方の空気排出口を室内に向けて配置し、制御部42がいずれの空気排出口から空気を排出するかを制御する構成とすればよい。 In the above, in the humidity control apparatus 20, the dehumidified air is discharged from the hygroscopic unit 21 via the first air discharge channel 23, and the humidified air passes through the second air discharge channel 28 from the atomization regeneration unit 24. It was explained that it was discharged through. As for the humidity adjustment function, when the humidity control device 20 of the present embodiment is a humidity control device having only a dehumidification function, for example, the air discharge port of the first air discharge channel 23 is arranged indoors, What is necessary is just to set it as the structure which has arrange | positioned the air exhaust port of the 2nd air exhaust flow path 28 toward the outdoor side. Alternatively, in the case of a humidity control apparatus having only a humidifying function, for example, the air discharge port of the second air discharge channel 28 is arranged indoors, while the air discharge port of the first air discharge channel 23 is arranged. What is necessary is just to set it as the structure arrange | positioned toward outdoor. In the case of a humidity control device having both a dehumidifying function and a humidifying function, the air discharge ports of both the first air discharge channel 23 and the second air discharge channel 28 are arranged indoors, What is necessary is just to set it as the structure which controls which control part 42 discharges air from which air discharge port.
 本発明者らは、調湿装置20において、霧化再生部24における液体吸湿材Wの循環流量と液体吸湿材Wの霧化量との関係を測定した結果、循環流量がゼロの場合(液体吸湿材Wを循環させない場合)に所定の霧化量が得られたとき、循環流量を増加させると、霧化量が低下する傾向にあることを確認した。このことから、本発明者らは、所望の吸湿性能を達成するのに必要な循環流量を得ようとすると、霧化量が低下して液体吸湿材の再生が不充分になる、すなわち、液体吸湿材の吸湿性能と再生性能とがトレードオフの関係にあることを見出した。 As a result of measuring the relationship between the circulation flow rate of the liquid hygroscopic material W and the atomization amount of the liquid hygroscopic material W in the atomization regeneration unit 24 in the humidity control apparatus 20, When the predetermined atomization amount was obtained in the case where the hygroscopic material W was not circulated), it was confirmed that when the circulation flow rate was increased, the atomization amount tended to decrease. From this, the present inventors try to obtain the circulation flow rate necessary to achieve the desired moisture absorption performance, the atomization amount is reduced and the regeneration of the liquid moisture absorbent becomes insufficient, that is, the liquid It was found that the moisture absorption performance and the regeneration performance of the moisture absorbent material are in a trade-off relationship.
 本発明者らは、循環流量を増加させた際に霧化量が低下する原因は、貯留槽内での液体吸湿材の流速が速いと、超音波振動子から放射される超音波の放射軸が不安定化し、液面に発生する液柱が乱れることにあると想定した。そこで、本発明者らは、所定の循環流量を確保するために液体吸湿材の流れを完全に遮断することなく、液柱の乱れを抑制するため、液体吸湿材の流速を減衰させる作用を有する構造体を貯留槽内に配置する構成に想到した。 The inventors of the present invention have a reason that the atomization amount decreases when the circulation flow rate is increased. When the flow rate of the liquid hygroscopic material in the storage tank is high, the radiation axis of the ultrasonic wave radiated from the ultrasonic vibrator Was destabilized and the liquid column generated on the liquid surface was disturbed. Therefore, the present inventors have the effect of attenuating the flow rate of the liquid hygroscopic material in order to suppress the disturbance of the liquid column without completely blocking the flow of the liquid hygroscopic material in order to ensure a predetermined circulation flow rate. The inventors came up with a configuration in which the structure is disposed in the storage tank.
 本発明者らは、貯留槽内に多孔質構造体を配置するとともに、液体吸湿材の流速を一定にし、構造体の空隙のサイズを変えて液体吸湿材の霧化量を測定する実験を行った。構造体を配置しない比較例の霧化再生部における霧化量を1としたとき、実施例の霧化再生部での霧化量を規格化霧化量と定義する。このとき、空隙のサイズが2mm~10mmの構造体を配置したときの規格化霧化量は約1.1~1.2であった。この規格化霧化量は、比較例の霧化再生部において流速をゼロとしたときの規格化霧化量である約1.2と略同等であった。このように、貯留槽内に多孔質構造体を配置することによって、多孔質構造体を配置しない場合に比べて霧化量を増やせることが確認された。 The inventors conducted an experiment in which the porous structure is disposed in the storage tank, the flow rate of the liquid hygroscopic material is made constant, and the atomization amount of the liquid hygroscopic material is measured by changing the size of the voids in the structure. It was. When the atomization amount in the atomization reproduction unit of the comparative example in which the structure is not arranged is 1, the atomization amount in the atomization reproduction unit of the example is defined as a normalized atomization amount. At this time, the normalized atomization amount when a structure having a void size of 2 mm to 10 mm was arranged was about 1.1 to 1.2. This normalized atomization amount was substantially equivalent to about 1.2, which is the normalized atomization amount when the flow velocity was set to zero in the atomization regeneration section of the comparative example. Thus, it was confirmed that the amount of atomization can be increased by disposing the porous structure in the storage tank as compared with the case where the porous structure is not disposed.
 上述したように、本実施形態の調湿装置20においては、第2貯留槽241の内部に流速減衰部材245が設けられているため、液体吸湿材Wの流速が速い場合に生じる液柱Cの乱れが抑制され、所望の霧化量を確保することができる。また、流速減衰部材245が多数の空隙を有する構造体から構成されているため、液体吸湿材Wの流れが遮断されることはなく、所望の循環流量を確保することができる。さらに、流速減衰部材245は、超音波伝播領域R以外の領域に設けられているため、超音波の伝播を阻害することもない。これにより、液体吸湿材Wの吸湿性能と再生性能との双方を兼ね備えた調湿装置20を実現することができる。 As described above, in the humidity control apparatus 20 of the present embodiment, since the flow rate attenuation member 245 is provided inside the second storage tank 241, the liquid column C generated when the flow rate of the liquid hygroscopic material W is high. Disturbance is suppressed and a desired atomization amount can be ensured. In addition, since the flow velocity attenuating member 245 is composed of a structure having a large number of gaps, the flow of the liquid hygroscopic material W is not blocked, and a desired circulating flow rate can be ensured. Furthermore, since the flow velocity attenuating member 245 is provided in a region other than the ultrasonic wave propagation region R, the ultrasonic wave propagation is not hindered. Thereby, the humidity control apparatus 20 which has both the moisture absorption performance and reproduction | regeneration performance of the liquid moisture absorption material W is realizable.
[第2実施形態]
 以下、第2実施形態の調湿装置について、図4を用いて説明する。
 第2実施形態の調湿装置の基本構成は第1実施形態と同一であり、霧化再生部の構成が第1実施形態と異なる。したがって、第2実施形態では、霧化再生部以外の構成の説明を省略する。
 図4は、第2実施形態の霧化再生部32の概略構成を示す平面図である。
 図4において、第1実施形態で用いた図面と共通の構成要素には同一の符号を付し、説明を省略する。
[Second Embodiment]
Hereinafter, the humidity control apparatus of 2nd Embodiment is demonstrated using FIG.
The basic configuration of the humidity control apparatus of the second embodiment is the same as that of the first embodiment, and the configuration of the atomization regeneration unit is different from that of the first embodiment. Therefore, in 2nd Embodiment, description of structures other than the atomization reproduction | regeneration part is abbreviate | omitted.
FIG. 4 is a plan view showing a schematic configuration of the atomization reproduction unit 32 of the second embodiment.
In FIG. 4, the same components as those used in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
 図4に示すように、第2実施形態の霧化再生部32は、第2貯留槽241(貯留槽)と、超音波振動子244(超音波発生部)と、流速減衰部材325と、を備えている。流速減衰部材325は、第2貯留槽241の全体にわたって設けられておらず、給液口241aの近傍のみに設けられている。このように、流速減衰部材325は、第2貯留槽241の内部において、超音波伝播領域R以外の領域に設けられている。流速減衰部材325は、第1実施形態と同様、第2貯留槽241の内部空間と連通する空隙を有するスポンジ、メッシュ等の多孔質構造体で構成されている。霧化再生部32のその他の構成は、第1実施形態と同様である。 As shown in FIG. 4, the atomization regeneration unit 32 of the second embodiment includes a second storage tank 241 (storage tank), an ultrasonic vibrator 244 (ultrasonic wave generation unit), and a flow velocity attenuation member 325. I have. The flow velocity attenuating member 325 is not provided over the entire second storage tank 241, and is provided only in the vicinity of the liquid supply port 241a. Thus, the flow velocity attenuating member 325 is provided in a region other than the ultrasonic wave propagation region R inside the second storage tank 241. Similar to the first embodiment, the flow velocity attenuating member 325 is configured by a porous structure such as a sponge or a mesh having a gap communicating with the internal space of the second storage tank 241. The other structure of the atomization reproduction | regeneration part 32 is the same as that of 1st Embodiment.
 第2実施形態においては、液体吸湿材Wが第1液体吸湿材輸送流路22から第2貯留槽241に流入する際に、流速減衰部材325が液体吸湿材Wの流れの抵抗となり、液体吸湿材Wの流速が減衰される。これにより、液体吸湿材Wの流れに伴う液柱Cの乱れが抑制される。 In the second embodiment, when the liquid hygroscopic material W flows from the first liquid hygroscopic material transport channel 22 into the second storage tank 241, the flow velocity attenuation member 325 becomes a resistance to the flow of the liquid hygroscopic material W, and the liquid hygroscopic material W The flow velocity of the material W is attenuated. Thereby, disorder of the liquid column C accompanying the flow of the liquid hygroscopic material W is suppressed.
 第2実施形態においても、液体吸湿材Wの吸湿性能と再生性能との双方を兼ね備えた調湿装置を実現できる、といった第1実施形態と同様の効果が得られる。 Also in the second embodiment, the same effect as in the first embodiment can be obtained that a humidity control apparatus having both the moisture absorption performance and the regeneration performance of the liquid moisture absorbent W can be realized.
 また、第2実施形態の場合、給液口241aの近傍のみに設けられた流速減衰部材325のみで第1実施形態と同等の液柱の乱れを抑制する効果が得られるのであれば、流速減衰部材325の使用量を第1実施形態よりも減らすことができる。 In the case of the second embodiment, if only the flow velocity attenuating member 325 provided only in the vicinity of the liquid supply port 241a can obtain the same effect of suppressing the disturbance of the liquid column as that of the first embodiment, the flow velocity is attenuated. The usage amount of the member 325 can be reduced as compared with the first embodiment.
[第3実施形態]
 以下、第3実施形態の調湿装置について、図5を用いて説明する。
 第3実施形態の調湿装置の基本構成は第1実施形態と同一であり、霧化再生部の構成が第1実施形態と異なる。したがって、第3実施形態では、霧化再生部以外の構成の説明を省略する。
 図5は、第3実施形態の霧化再生部34の概略構成を示す平面図である。
 図5において、第1実施形態で用いた図面と共通の構成要素には同一の符号を付し、説明を省略する。
[Third Embodiment]
Hereinafter, the humidity control apparatus of 3rd Embodiment is demonstrated using FIG.
The basic configuration of the humidity control apparatus of the third embodiment is the same as that of the first embodiment, and the configuration of the atomization regeneration unit is different from that of the first embodiment. Therefore, in 3rd Embodiment, description of structures other than the atomization reproduction | regeneration part is abbreviate | omitted.
FIG. 5 is a plan view illustrating a schematic configuration of the atomization reproduction unit 34 of the third embodiment.
In FIG. 5, the same reference numerals are given to the same components as those used in the first embodiment, and the description thereof is omitted.
 図5に示すように、第3実施形態の霧化再生部34は、第2貯留槽241(貯留槽)と、超音波振動子244(超音波発生部)と、流速減衰部材343と、を備えている。流速減衰部材343は、超音波伝播領域R以外の領域に設けられ、第2貯留槽241を底板241fの法線方向から見たとき、超音波伝播領域Rの外側に矩形環状に設けられている。 As illustrated in FIG. 5, the atomization reproduction unit 34 of the third embodiment includes a second storage tank 241 (storage tank), an ultrasonic vibrator 244 (ultrasonic wave generation unit), and a flow velocity attenuation member 343. I have. The flow velocity attenuating member 343 is provided in a region other than the ultrasonic wave propagation region R, and is provided in a rectangular ring shape outside the ultrasonic wave propagation region R when the second storage tank 241 is viewed from the normal direction of the bottom plate 241f. .
 流速減衰部材343は、第1流速減衰部材341と、第2流速減衰部材342と、から構成されている。第2貯留槽241を底板241fの法線方向から見たとき、第1流速減衰部材341は、超音波伝播領域Rに近い側に矩形環状に設けられている。第2流速減衰部材342は、第1流速減衰部材341の外側に矩形環状に設けられている。第1流速減衰部材341および第2流速減衰部材342は、第2貯留槽241の内部空間と連通する空隙を有するスポンジ、メッシュ等の構造体で構成されている。第1流速減衰部材341と第2流速減衰部材342とは、異なる材料からなる構造体で構成されていてもよい。 The flow velocity attenuation member 343 includes a first flow velocity attenuation member 341 and a second flow velocity attenuation member 342. When the second storage tank 241 is viewed from the normal direction of the bottom plate 241f, the first flow velocity attenuating member 341 is provided in a rectangular ring shape on the side close to the ultrasonic wave propagation region R. The second flow velocity attenuating member 342 is provided in a rectangular ring shape outside the first flow velocity attenuating member 341. The first flow velocity attenuating member 341 and the second flow velocity attenuating member 342 are configured by a structure such as a sponge or a mesh having a gap communicating with the internal space of the second storage tank 241. The first flow velocity attenuating member 341 and the second flow velocity attenuating member 342 may be composed of structures made of different materials.
 単位体積あたりの構造体に含まれる空隙の体積の割合を流速減衰部材の空隙率と定義する。第1流速減衰部材341と第2流速減衰部材342とは、構造体の材質が同じであるか否かにかかわらず、空隙率は互いに異なっている。具体的に、第1流速減衰部材341の空隙率は、第2流速減衰部材342の空隙率よりも小さい。すなわち、流速減衰部材343を構成する構造体は、互いに異なる空隙率を有する複数の領域を有しており、超音波伝播領域Rに相対的に近い位置の領域の空隙率は、超音波伝播領域Rから相対的に遠い位置の領域の空隙率よりも高い。したがって、液体吸湿材Wの流れに対して、第1流速減衰部材341の抵抗は、第2流速減衰部材342の抵抗よりも大きい。霧化再生部34のその他の構成は、第1実施形態と同様である。 The ratio of the void volume contained in the structure per unit volume is defined as the void ratio of the flow velocity attenuating member. The first flow velocity attenuation member 341 and the second flow velocity attenuation member 342 have different void ratios regardless of whether or not the material of the structure is the same. Specifically, the porosity of the first flow velocity attenuation member 341 is smaller than the porosity of the second flow velocity attenuation member 342. That is, the structure constituting the flow velocity attenuating member 343 has a plurality of regions having mutually different void ratios, and the void ratio in the region relatively close to the ultrasonic wave propagation region R is the ultrasonic wave propagation region. It is higher than the porosity of the region relatively far from R. Therefore, the resistance of the first flow velocity attenuation member 341 is greater than the resistance of the second flow velocity attenuation member 342 with respect to the flow of the liquid hygroscopic material W. The other structure of the atomization reproduction | regeneration part 34 is the same as that of 1st Embodiment.
 第3実施形態においても、流速減衰部材343の作用によって液体吸湿材Wの流速が減衰され、液柱Cの乱れが抑制される。これにより、液体吸湿材Wの吸湿性能と再生性能との双方を兼ね備えた調湿装置を実現できる、といった第1実施形態と同様の効果が得られる。 Also in the third embodiment, the flow velocity of the liquid hygroscopic material W is attenuated by the action of the flow velocity damping member 343, and the disturbance of the liquid column C is suppressed. Thereby, the effect similar to 1st Embodiment that the humidity control apparatus which has both the moisture absorption performance and reproduction | regeneration performance of the liquid moisture absorption material W is realizable is acquired.
 特に第3実施形態の場合、超音波伝播領域Rに近い側にある第1流速減衰部材341の空隙率が超音波伝播領域Rから遠い側にある第2流速減衰部材342の空隙率よりも小さいため、液体吸湿材Wの流れが超音波伝播領域Rに近付く程、流速が減衰される程度が大きくなる。これにより、流速減衰部材343は、超音波伝播領域Rから外れた経路を流れる液体吸湿材Wの流速をそれ程低減させることなく、超音波伝播領域Rに向かう経路を通る液体吸湿材Wの流速を十分に低減させることができる。 Particularly in the case of the third embodiment, the porosity of the first flow velocity attenuation member 341 on the side closer to the ultrasonic propagation region R is smaller than the porosity of the second flow velocity attenuation member 342 on the side far from the ultrasonic propagation region R. Therefore, the closer the flow of the liquid hygroscopic material W is to the ultrasonic wave propagation region R, the greater the degree to which the flow velocity is attenuated. As a result, the flow velocity attenuating member 343 reduces the flow velocity of the liquid moisture absorbent material W passing through the path toward the ultrasonic wave propagation region R without significantly reducing the flow velocity of the liquid moisture absorbent material W flowing through the route away from the ultrasonic wave propagation region R. It can be sufficiently reduced.
[第4実施形態]
 以下、第4実施形態の調湿装置について、図6~図8を用いて説明する。
 第4実施形態の調湿装置の基本構成は第1実施形態と同一であり、霧化再生部の構成が第1実施形態と異なる。
 図6は、第3実施形態の霧化再生部の概略構成を示す平面図である。図7は、霧化再生部の概略構成を示す正面図である。図8は、霧化再生部の概略構成を示す平面図である。
 図6~図8において、第1実施形態で用いた図面と共通の構成要素には同一の符号を付し、説明を省略する。
[Fourth Embodiment]
Hereinafter, a humidity control apparatus according to the fourth embodiment will be described with reference to FIGS.
The basic configuration of the humidity control apparatus of the fourth embodiment is the same as that of the first embodiment, and the configuration of the atomization reproduction unit is different from that of the first embodiment.
FIG. 6 is a plan view illustrating a schematic configuration of an atomization reproduction unit according to the third embodiment. FIG. 7 is a front view showing a schematic configuration of the atomization reproduction unit. FIG. 8 is a plan view showing a schematic configuration of the atomization reproduction unit.
6 to 8, the same reference numerals are given to the same components as those used in the first embodiment, and the description thereof will be omitted.
 図6に示すように、第4実施形態の調湿装置27は、吸湿部21と、霧化再生部29と、第1液体吸湿材輸送流路22と、第2液体吸湿材輸送流路25と、第1空気導入流路30と、第2空気導入流路26と、第1空気排出流路23と、第2空気排出流路28と、制御部42と、を備えている。霧化再生部29以外の調湿装置27の構成は、第1実施形態と同様である。 As shown in FIG. 6, the humidity control apparatus 27 according to the fourth embodiment includes a moisture absorption unit 21, an atomization regeneration unit 29, a first liquid moisture absorbent transport channel 22, and a second liquid moisture absorbent transport channel 25. A first air introduction flow path 30, a second air introduction flow path 26, a first air discharge flow path 23, a second air discharge flow path 28, and a control unit 42. The configuration of the humidity control device 27 other than the atomization regeneration unit 29 is the same as that of the first embodiment.
 図7および図8に示すように、霧化再生部29は、第2貯留槽241(貯留槽)と、超音波振動子244(超音波発生部)と、流速減衰部材291と、を備えている。流速減衰部材291以外の霧化再生部29の構成は、第1実施形態と同様である。 As shown in FIGS. 7 and 8, the atomization regeneration unit 29 includes a second storage tank 241 (storage tank), an ultrasonic transducer 244 (ultrasonic wave generation unit), and a flow velocity attenuation member 291. Yes. The structure of the atomization reproduction | regeneration part 29 other than the flow velocity attenuation | damping member 291 is the same as that of 1st Embodiment.
 流速減衰部材291は、給液口241aと超音波伝播領域Rとを結ぶ液体吸湿材Wの流れと交差する方向に板面を向けて設けられた板体で構成されている。板体は、第2貯留槽241の内壁面から間隔をおいて設けられている。本実施形態において、流速減衰部材291は、給液口241aが設けられた側の第2貯留槽241の側板241cと平行に設けられている。ただし、流速減衰部材291は、側板241cに対して傾いて設けられていてもよい。また、流速減衰部材291を構成する板体の材質、形状、寸法等は特に限定されない。 The flow velocity attenuating member 291 is configured by a plate body provided with the plate surface facing in the direction intersecting with the flow of the liquid moisture absorbent W connecting the liquid supply port 241a and the ultrasonic wave propagation region R. The plate body is provided at a distance from the inner wall surface of the second storage tank 241. In the present embodiment, the flow velocity attenuating member 291 is provided in parallel with the side plate 241c of the second storage tank 241 on the side where the liquid supply port 241a is provided. However, the flow velocity attenuating member 291 may be provided to be inclined with respect to the side plate 241c. Further, the material, shape, dimensions, etc. of the plate constituting the flow velocity attenuating member 291 are not particularly limited.
 流速減衰部材291は、超音波伝播領域R以外の領域に設けられていることにより、超音波伝播領域Rにおける超音波の伝播を許容するとともに、液体吸湿材Wの流速を減衰させる。 The flow velocity attenuating member 291 is provided in a region other than the ultrasonic wave propagation region R, thereby allowing the ultrasonic wave to propagate in the ultrasonic wave propagation region R and attenuating the flow rate of the liquid hygroscopic material W.
 第4実施形態の場合、流速減衰部材291が給液口241aと超音波伝播領域Rとを結ぶ液体吸湿材Wの流れと交差するように設けられているため、液体吸湿材Wの流れを破線の矢印Y2で示したように、第2貯留槽241に流入した液体吸湿材Wは、流速減衰部材291に衝突した後、流速減衰部材291の外側を回り込み、流速減衰部材291と第2貯留槽241の内壁面との間の間隙から排液口241bに向かって流れる。このように、流速減衰部材291によって液体吸湿材Wの流速が減衰され、液柱Cの乱れが抑制される。 In the case of the fourth embodiment, the flow velocity attenuating member 291 is provided so as to intersect the flow of the liquid hygroscopic material W connecting the liquid supply port 241a and the ultrasonic wave propagation region R. As indicated by the arrow Y2, the liquid hygroscopic material W that has flowed into the second storage tank 241 collides with the flow velocity attenuation member 291 and then wraps around the outside of the flow velocity attenuation member 291 so that the flow velocity attenuation member 291 and the second storage tank It flows toward the drainage port 241b from the gap between the inner wall surface of 241. Thus, the flow velocity of the liquid hygroscopic material W is attenuated by the flow velocity attenuating member 291 and the disturbance of the liquid column C is suppressed.
 第4実施形態においても、液体吸湿材Wの吸湿性能と再生性能との双方を兼ね備えた調湿装置27を実現できる、といった第1実施形態と同様の効果が得られる。 Also in the fourth embodiment, the same effect as in the first embodiment can be obtained that the humidity control device 27 having both the moisture absorption performance and the regeneration performance of the liquid moisture absorbent W can be realized.
[第5実施形態]
 以下、第5実施形態の調湿装置について、図9を用いて説明する。
 第5実施形態の調湿装置の基本構成は第1実施形態と同一であり、霧化再生部の構成が第1実施形態と異なる。したがって、第5実施形態では、霧化再生部以外の構成の説明を省略する。
 図9は、第5実施形態の霧化再生部36の概略構成を示す平面図である。
 図9において、第1実施形態で用いた図面と共通の構成要素には同一の符号を付し、説明を省略する。
[Fifth Embodiment]
Hereinafter, the humidity control apparatus of 5th Embodiment is demonstrated using FIG.
The basic configuration of the humidity control apparatus of the fifth embodiment is the same as that of the first embodiment, and the configuration of the atomization regeneration unit is different from that of the first embodiment. Therefore, in 5th Embodiment, description of structures other than the atomization reproduction | regeneration part is abbreviate | omitted.
FIG. 9 is a plan view illustrating a schematic configuration of the atomization reproduction unit 36 of the fifth embodiment.
In FIG. 9, the same components as those used in the first embodiment are designated by the same reference numerals, and the description thereof is omitted.
 図9に示すように、第5実施形態の霧化再生部36は、第2貯留槽241(貯留槽)と、超音波振動子244(超音波発生部)と、流速減衰部材361と、を備えている。第4実施形態と同様、流速減衰部材361は、給液口241aと超音波伝播領域Rとを結ぶ液体吸湿材Wの流れと交差する方向に板面を向けて設けられた板体で構成されている。ただし、第4実施形態と異なり、流速減衰部材361は、第2貯留槽241の内壁面に接して設けられており、両側部361sに開口部361hを有している。 As illustrated in FIG. 9, the atomization reproduction unit 36 of the fifth embodiment includes a second storage tank 241 (storage tank), an ultrasonic vibrator 244 (ultrasonic wave generation unit), and a flow velocity attenuation member 361. I have. Similar to the fourth embodiment, the flow velocity attenuating member 361 is configured by a plate body provided with the plate surface facing in a direction intersecting with the flow of the liquid moisture absorbent W connecting the liquid supply port 241a and the ultrasonic wave propagation region R. ing. However, unlike the fourth embodiment, the flow velocity attenuating member 361 is provided in contact with the inner wall surface of the second storage tank 241, and has openings 361h on both sides 361s.
 流速減衰部材361を構成する板体の両側部361sは、複数の孔が設けられたメッシュ状の板材で構成されている。一方、板体の中央部361cは、孔が設けられていない板体で構成されている。板体の中央部361cと両側部361sとは、一体の部材であってもよいし、別体の部材であってもよい。流速減衰部材361以外の霧化再生部36の構成は、第1実施形態と同様である。 Both side portions 361 s of the plate body constituting the flow velocity attenuating member 361 are made of a mesh plate material provided with a plurality of holes. On the other hand, the central part 361c of the plate is configured by a plate that is not provided with a hole. The central part 361c and both side parts 361s of the plate body may be an integral member or separate members. The structure of the atomization reproduction | regeneration part 36 other than the flow velocity attenuation | damping member 361 is the same as that of 1st Embodiment.
 第5実施形態においても、第4実施形態と同様、液体吸湿材Wが流速減衰部材361の両側部361sを通して流れることにより、液体吸湿材Wの流速が減衰され、液柱Cの乱れが抑制される。ただし、第4実施形態では、液体吸湿材Wは、流速減衰部材291と第2貯留槽241の側板との間隙を流れるのに対し、第5実施形態では、液体吸湿材Wは、流速減衰部材361の両側部361sの開口部361hを通して流れる。 Also in the fifth embodiment, as in the fourth embodiment, the liquid hygroscopic material W flows through the both side portions 361s of the flow velocity attenuating member 361, whereby the flow velocity of the liquid hygroscopic material W is attenuated and the disturbance of the liquid column C is suppressed. The However, in the fourth embodiment, the liquid hygroscopic material W flows through the gap between the flow velocity attenuation member 291 and the side plate of the second storage tank 241, whereas in the fifth embodiment, the liquid hygroscopic material W is a flow velocity attenuation member. It flows through the openings 361h on both sides 361s of 361.
 第5実施形態においても、液体吸湿材Wの吸湿性能と再生性能との双方を兼ね備えた調湿装置を実現できる、といった第1実施形態と同様の効果が得られる。 Also in the fifth embodiment, the same effect as in the first embodiment can be obtained that a humidity control apparatus having both the moisture absorption performance and the regeneration performance of the liquid moisture absorbent W can be realized.
 また、第5実施形態においては、液体吸湿材Wが流速減衰部材361の両側部361sの開口部361hの複数の孔を通して流れるため、第4実施形態に比べて、液体吸湿材Wの流れを整流化する効果が高く、流れの乱れが少なくなる。これにより、液柱Cの乱れを抑える効果が高まり、霧化効率を向上させることができる。 In the fifth embodiment, since the liquid hygroscopic material W flows through a plurality of holes in the openings 361h of the both side portions 361s of the flow velocity attenuating member 361, the flow of the liquid hygroscopic material W is rectified as compared with the fourth embodiment. Effect is high and less turbulent flow. Thereby, the effect which suppresses disturbance of the liquid column C increases, and the atomization efficiency can be improved.
[第6実施形態]
 以下、第6実施形態の調湿装置について、図10を用いて説明する。
 第6実施形態の調湿装置の基本構成は第1実施形態と同一であり、霧化再生部の構成が第1実施形態と異なる。したがって、第6実施形態では、霧化再生部以外の構成の説明を省略する。
 図10は、第6実施形態の霧化再生部38の概略構成を示す平面図である。
 図10において、第1実施形態で用いた図面と共通の構成要素には同一の符号を付し、説明を省略する。
[Sixth Embodiment]
Hereinafter, the humidity control apparatus of 6th Embodiment is demonstrated using FIG.
The basic configuration of the humidity control apparatus of the sixth embodiment is the same as that of the first embodiment, and the configuration of the atomization regeneration unit is different from that of the first embodiment. Therefore, in 6th Embodiment, description of structures other than the atomization reproduction | regeneration part is abbreviate | omitted.
FIG. 10 is a plan view showing a schematic configuration of the atomization reproduction unit 38 of the sixth embodiment.
10, the same code | symbol is attached | subjected to the same component as drawing used in 1st Embodiment, and description is abbreviate | omitted.
 図10に示すように、第6実施形態の霧化再生部38は、第2貯留槽241(貯留槽)と、超音波振動子244(超音波発生部)と、流速減衰部材381と、を備えている。第5実施形態と同様、流速減衰部材381は、第2貯留槽241の内壁面に接して設けられ、両側部381sに開口部381hを有している。流速減衰部材381を構成する板体の両側部381sは、複数のスリットが設けられた板材で構成されている。一方、板体の中央部381cは、スリットが設けられていない板体で構成されている。板体の中央部381cと両側部381sとは、一体の部材であってもよいし、別体の部材であってもよい。流速減衰部材381以外の霧化再生部38の構成は、第1実施形態と同様である。 As shown in FIG. 10, the atomization reproduction unit 38 of the sixth embodiment includes a second storage tank 241 (storage tank), an ultrasonic vibrator 244 (ultrasonic wave generation unit), and a flow velocity attenuation member 381. I have. Similar to the fifth embodiment, the flow velocity attenuating member 381 is provided in contact with the inner wall surface of the second storage tank 241, and has openings 381h on both side portions 381s. Both side portions 381 s of the plate constituting the flow velocity attenuating member 381 are made of a plate material provided with a plurality of slits. On the other hand, the central portion 381c of the plate is formed of a plate that is not provided with a slit. The central portion 381c and both side portions 381s of the plate body may be an integral member or separate members. The configuration of the atomization reproduction unit 38 other than the flow velocity attenuating member 381 is the same as that in the first embodiment.
 第6実施形態においても、液体吸湿材Wの吸湿性能と再生性能との双方を兼ね備えた調湿装置を実現できる、といった第1実施形態と同様の効果が得られる。 Also in the sixth embodiment, the same effect as in the first embodiment can be obtained that a humidity control device having both the moisture absorption performance and the regeneration performance of the liquid moisture absorbent W can be realized.
 また、第6実施形態においては、液体吸湿材Wが流速減衰部材381の両側部381sの開口部381hの複数のスリットを通して流れるため、液体吸湿材Wの流れを整流化する効果が高く、流れの乱れが少なくなる。これにより、液柱Cの乱れを抑える効果が高まり、霧化効率を向上させることができる。 In the sixth embodiment, since the liquid hygroscopic material W flows through the plurality of slits of the openings 381h of the both side portions 381s of the flow velocity attenuating member 381, the effect of rectifying the flow of the liquid hygroscopic material W is high. Disturbance is reduced. Thereby, the effect which suppresses disturbance of the liquid column C increases, and the atomization efficiency can be improved.
[第7実施形態]
 以下、第7実施形態の調湿装置について、図11を用いて説明する。
 第7実施形態の調湿装置の基本構成は第1実施形態と同一であり、霧化再生部の構成が第1実施形態と異なる。したがって、第7実施形態では、霧化再生部以外の構成の説明を省略する。
 図11は、第7実施形態の霧化再生部40の概略構成を示す平面図である。
 図11において、上記実施形態で用いた図面と共通の構成要素には同一の符号を付し、説明を省略する。
[Seventh Embodiment]
Hereinafter, the humidity control apparatus of 7th Embodiment is demonstrated using FIG.
The basic configuration of the humidity control apparatus of the seventh embodiment is the same as that of the first embodiment, and the configuration of the atomization regeneration unit is different from that of the first embodiment. Therefore, in 7th Embodiment, description of structures other than the atomization reproduction | regeneration part is abbreviate | omitted.
FIG. 11 is a plan view showing a schematic configuration of the atomization reproduction unit 40 of the seventh embodiment.
In FIG. 11, the same reference numerals are given to the same components as those used in the above embodiment, and the description thereof will be omitted.
 図11に示すように、第7実施形態の霧化再生部40は、第2貯留槽246(貯留槽)と、複数の超音波振動子244(超音波発生部)と、複数の流速減衰部材291と、を備えている。 As shown in FIG. 11, the atomization reproduction | regeneration part 40 of 7th Embodiment is the 2nd storage tank 246 (storage tank), several ultrasonic transducer | vibrator 244 (ultrasound generation part), and several flow velocity attenuation | damping member. 291.
 第7実施形態の霧化再生部40は、複数の超音波振動子244を備えているため、超音波振動子244の数と等しい数の液柱Cが形成され、霧化効率を向上させることができる。図11に示す霧化再生部40は6個の超音波振動子244を備えているが、超音波振動子244の数は6個に限ることなく、適宜変更が可能である。 Since the atomization reproduction unit 40 of the seventh embodiment includes a plurality of ultrasonic transducers 244, the number of liquid columns C equal to the number of ultrasonic transducers 244 is formed, and the atomization efficiency is improved. Can do. The atomization reproduction unit 40 shown in FIG. 11 includes six ultrasonic transducers 244, but the number of ultrasonic transducers 244 is not limited to six and can be changed as appropriate.
 第2貯留槽246の内部において、6個の超音波振動子244は、3個ずつ2列に配列されている。図11において、上列の3個の超音波振動子244と下列の3個の超音波振動子244とは、液柱の落下する向きY1が逆向きに傾斜するように設置されている。すなわち、上列の3個の超音波振動子244は、液柱の落下する向きY1が下側を向くように設置されている。下列の3個の超音波振動子244は、液柱の落下する向きY1が上側を向くように設置されている。 In the second storage tank 246, six ultrasonic transducers 244 are arranged in two rows of three. In FIG. 11, three ultrasonic transducers 244 in the upper row and three ultrasonic transducers 244 in the lower row are installed such that the direction Y1 in which the liquid column falls is inclined in the opposite direction. That is, the three ultrasonic transducers 244 in the upper row are installed such that the direction Y1 in which the liquid column falls is directed downward. The three ultrasonic transducers 244 in the lower row are installed such that the direction Y1 in which the liquid column falls is directed upward.
 また、上列の3個の超音波振動子244と下列の3個の超音波振動子244とは、液体吸湿材Wの流れ方向Y2における位置がずれて配置されている。例えば、下列左端の超音波振動子244は、流れ方向Y2の位置が上列左端の超音波振動子244と上列中央の超音波振動子244との間に配置され、下列中央の超音波振動子244は、流れ方向Y2の位置が上列中央の超音波振動子244と上列右端の超音波振動子244との間に配置されている。このように、複数の超音波振動子244のうち、一部の超音波振動子244と他の超音波振動子244とは、超音波により発生する液柱Cの落下方向Y1が互いに逆向きとなるように配列されるとともに、液体吸湿材Wの流れ方向Y2にずれて配置されている。 Also, the three ultrasonic transducers 244 in the upper row and the three ultrasonic transducers 244 in the lower row are arranged with their positions in the flow direction Y2 of the liquid hygroscopic material W shifted. For example, the ultrasonic transducer 244 at the left end of the lower row is disposed between the ultrasonic transducer 244 at the left end of the upper row and the ultrasonic transducer 244 at the center of the upper row, and the ultrasonic vibration at the center of the lower row. The child 244 is disposed between the ultrasonic transducer 244 at the center of the upper row and the ultrasonic transducer 244 at the right end of the upper row in the flow direction Y2. In this way, among the plurality of ultrasonic transducers 244, some ultrasonic transducers 244 and other ultrasonic transducers 244 have the liquid column C drop direction Y1 generated by the ultrasonic waves opposite to each other. And arranged so as to be shifted in the flow direction Y2 of the liquid hygroscopic material W.
 流速減衰部材291は、第4実施形態と同様、給液口241aと超音波伝播領域Rとを結ぶ液体吸湿材Wの流れと交差する方向に板面を向けて設けられた板体で構成されている。複数の流速減衰部材291の各々は、複数の超音波振動子244の各々に対応して設けられている。流速減衰部材291は、当該流速減衰部材291に対応する超音波振動子244における液体吸湿材Wの流れの上流側に配置されている。 As in the fourth embodiment, the flow velocity attenuating member 291 is configured by a plate body that is provided with the plate surface facing in a direction intersecting with the flow of the liquid moisture absorbent W connecting the liquid supply port 241a and the ultrasonic wave propagation region R. ing. Each of the plurality of flow velocity attenuating members 291 is provided corresponding to each of the plurality of ultrasonic transducers 244. The flow velocity attenuating member 291 is disposed on the upstream side of the flow of the liquid hygroscopic material W in the ultrasonic transducer 244 corresponding to the flow velocity attenuating member 291.
 本実施形態において、流速減衰部材291は、給液口241aが設けられた側の第2貯留槽241の側板241cと平行に設けられている。ただし、破線で示したように、流速減衰部材291Aは、液体吸湿材Wの流れ方向Y2に沿って側板241cに対して傾いて設けられていてもよい。また、流速減衰部材291を構成する板体の材質、形状、寸法、配置等は特に限定されない。 In this embodiment, the flow velocity attenuating member 291 is provided in parallel with the side plate 241c of the second storage tank 241 on the side where the liquid supply port 241a is provided. However, as indicated by a broken line, the flow velocity attenuating member 291A may be provided to be inclined with respect to the side plate 241c along the flow direction Y2 of the liquid hygroscopic material W. Further, the material, shape, dimensions, arrangement, etc. of the plate constituting the flow velocity attenuating member 291 are not particularly limited.
 流速減衰部材291は、超音波伝播領域R以外の領域に設けられていることにより、超音波伝播領域Rにおける超音波の伝播を許容するとともに、液体吸湿材Wの流速を減衰させる。 The flow velocity attenuating member 291 is provided in a region other than the ultrasonic wave propagation region R, thereby allowing the ultrasonic wave to propagate in the ultrasonic wave propagation region R and attenuating the flow velocity of the liquid hygroscopic material W.
 第7実施形態においても、液体吸湿材Wの吸湿性能と再生性能との双方を兼ね備えた調湿装置を実現できる、といった第1実施形態と同様の効果が得られる。 Also in the seventh embodiment, an effect similar to that of the first embodiment can be obtained, such that a humidity control device having both the moisture absorption performance and the regeneration performance of the liquid moisture absorbent W can be realized.
 また、第7実施形態の場合、液柱の落下する向きY1が互いに逆向きの超音波振動子244は、液体吸湿材Wの流れ方向Y2における位置がずれて配置されているため、液柱C同士が互いに干渉し合うことがなく、液柱Cが安定して形成されやすい。さらに、流速減衰部材291が上記のように配置されたことにより、液柱の落下する向きY1が互いに逆向きの超音波振動子244によって生じる液柱Cの落下に起因する乱流が超音波伝播領域Rにおける超音波伝播に悪影響を及ぼすことを抑制できる。 Further, in the case of the seventh embodiment, since the ultrasonic vibrators 244 whose liquid column falling directions Y1 are opposite to each other are disposed in a position shifted in the flow direction Y2 of the liquid hygroscopic material W, the liquid column C The liquid columns C do not interfere with each other and the liquid column C is easily formed stably. Further, since the flow velocity attenuating member 291 is arranged as described above, the turbulent flow caused by the drop of the liquid column C caused by the ultrasonic vibrators 244 whose liquid column falling directions Y1 are opposite to each other is ultrasonically propagated. An adverse effect on ultrasonic wave propagation in the region R can be suppressed.
 なお、第7実施形態では、複数の超音波振動子244を備えた霧化再生部40に第4実施形態の流速減衰部材291を組み合わせた例を示したが、第5実施形態の流速減衰部材361(図9参照)や第6実施形態の流速減衰部材381(図10参照)を組み合わせてもよい。あるいは、複数の超音波振動子244を備えた霧化再生部40に、第1実施形態の流速減衰部材245(図2参照)、第2実施形態の流速減衰部材325(図4参照)、第3実施形態の流速減衰部材343(図5参照)等の多孔質部材からなる流速減衰部材を組み合わせてもよい。 In the seventh embodiment, the example in which the atomization reproducing unit 40 including the plurality of ultrasonic transducers 244 is combined with the flow velocity attenuating member 291 of the fourth embodiment is shown. However, the flow velocity attenuating member of the fifth embodiment is shown. 361 (see FIG. 9) or the flow velocity attenuating member 381 of the sixth embodiment (see FIG. 10) may be combined. Alternatively, the atomization reproduction unit 40 including a plurality of ultrasonic transducers 244 is added to the flow velocity attenuation member 245 (see FIG. 2) of the first embodiment, the flow velocity attenuation member 325 (see FIG. 4) of the second embodiment, A flow velocity attenuating member made of a porous member such as the flow velocity attenuating member 343 (see FIG. 5) of the third embodiment may be combined.
 なお、本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば第1実施形態の霧化再生部は、流速減衰部材が貯留槽の内部空間と連通する空隙を有する構造体で構成され、第4実施形態の霧化再生部は、流速減衰部材が液体吸湿材の流れと交差する方向に設けられた板体で構成されていた。これに対して、前記構造体と前記板体とが組み合わされた構成の流速減衰部材が用いられてもよい。例えば、第1実施形態の構造体の一部が板体に置き換わっていてもよいし、第4実施形態の板体の両側方が多孔質の構造体に置き換わっていてもよい。
The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.
For example, the atomization regeneration unit of the first embodiment is configured with a structure in which the flow velocity attenuation member has a gap communicating with the internal space of the storage tank. It was comprised with the board provided in the direction which cross | intersects the flow of material. On the other hand, a flow velocity attenuating member having a configuration in which the structure body and the plate body are combined may be used. For example, a part of the structure of the first embodiment may be replaced with a plate, or both sides of the plate of the fourth embodiment may be replaced with a porous structure.
 また、調湿装置を構成する吸湿部および霧化再生部の配置については、特に限定されることはなく、例えば吸湿部と霧化再生部とを水平方向に並べて配置してもよいし、吸湿部と霧化再生部とを鉛直方向に積み重ねて配置してもよい。 Further, the arrangement of the moisture absorption unit and the atomization reproduction unit constituting the humidity control apparatus is not particularly limited. For example, the moisture absorption unit and the atomization reproduction unit may be arranged in the horizontal direction, or the moisture absorption unit may be arranged. And the atomization regeneration unit may be stacked in the vertical direction.
 本発明は、例えば室内の湿度の調整に用いる調湿装置に利用が可能である。 The present invention can be used for, for example, a humidity control device used to adjust indoor humidity.

Claims (10)

  1.  吸湿性物質を含む液体吸湿材と空気とを接触させることにより、前記空気に含まれる水分の少なくとも一部を前記液体吸湿材に吸収させる吸湿部と、
     前記吸湿部から供給された前記液体吸湿材に含まれる水分の少なくとも一部を霧化して霧状液滴を発生させ、前記液体吸湿材から前記霧状液滴の少なくとも一部を分離することによって前記液体吸湿材を再生する霧化再生部と、
     前記水分の少なくとも一部が吸収された前記液体吸湿材を前記吸湿部から前記霧化再生部に輸送する液体吸湿材輸送流路と、
     を備え、
     前記霧化再生部は、
     前記液体吸湿材輸送流路が接続された給液口を有し、前記液体吸湿材を貯留する貯留槽と、
     前記貯留槽に設けられ、前記霧状液滴を発生させるための超音波を発振する超音波発生部と、
     前記貯留槽の内部の超音波伝播領域における超音波の伝播を許容するとともに、前記給液口から前記貯留槽の内部に流入する前記液体吸湿材の流速を減衰させる流速減衰部材と、
     を備えた、調湿装置。
    A moisture-absorbing part that causes the liquid-absorbent material to absorb at least a part of moisture contained in the air by bringing the liquid-absorbent material containing the hygroscopic substance into contact with air; and
    By atomizing at least part of the water contained in the liquid hygroscopic material supplied from the hygroscopic part to generate mist droplets and separating at least part of the mist droplets from the liquid hygroscopic material An atomization regenerator for regenerating the liquid hygroscopic material;
    A liquid hygroscopic material transport channel for transporting the liquid hygroscopic material in which at least a part of the moisture is absorbed from the hygroscopic part to the atomization regeneration unit;
    With
    The atomization reproduction unit
    A storage tank that has a liquid supply port connected to the liquid hygroscopic material transport channel and stores the liquid hygroscopic material;
    An ultrasonic generator provided in the storage tank, which oscillates an ultrasonic wave for generating the mist-like droplets;
    A flow rate attenuating member that allows ultrasonic wave propagation in an ultrasonic wave propagation region inside the storage tank, and attenuates the flow rate of the liquid moisture absorbent flowing into the storage tank from the liquid supply port;
    A humidity control device.
  2.  前記流速減衰部材は、前記超音波伝播領域以外の領域に設けられた、請求項1に記載の調湿装置。 The humidity control apparatus according to claim 1, wherein the flow velocity attenuating member is provided in a region other than the ultrasonic wave propagation region.
  3.  前記流速減衰部材は、前記貯留槽の内部空間と連通する空隙を有する構造体で構成されている、請求項2に記載の調湿装置。 The humidity control apparatus according to claim 2, wherein the flow velocity attenuating member is configured by a structure having a gap communicating with the internal space of the storage tank.
  4.  前記構造体は、互いに異なる空隙率を有する複数の領域を有し、
     前記超音波伝播領域に相対的に近い位置の領域の空隙率は、前記超音波伝播領域から相対的に遠い位置の領域の空隙率よりも高い、請求項3に記載の調湿装置。
    The structure has a plurality of regions having different porosity.
    The humidity control apparatus according to claim 3, wherein a porosity of a region relatively close to the ultrasonic wave propagation region is higher than a porosity of a region relatively far from the ultrasonic wave propagation region.
  5.  前記流速減衰部材は、前記給液口と前記超音波伝播領域とを結ぶ前記液体吸湿材の流れと交差する方向に板面を向けて設けられた板体で構成されている、請求項2に記載の調湿装置。 The flow rate attenuating member is configured by a plate body provided with a plate surface facing in a direction intersecting with the flow of the liquid moisture absorbent material connecting the liquid supply port and the ultrasonic wave propagation region. The humidity control apparatus described.
  6.  前記板体は、前記貯留槽の内壁面から間隔をおいて設けられた、請求項5に記載の調湿装置。 The humidity control apparatus according to claim 5, wherein the plate body is provided at a distance from an inner wall surface of the storage tank.
  7.  前記板体は、前記貯留槽の内壁面に接して設けられ、両側部に開口部を有する、請求項5に記載の調湿装置。 The humidity control apparatus according to claim 5, wherein the plate body is provided in contact with an inner wall surface of the storage tank and has openings on both sides.
  8.  前記板体の両側部は、メッシュ状の板材で構成されている、請求項7に記載の調湿装置。 The humidity control apparatus according to claim 7, wherein both side portions of the plate body are made of a mesh plate material.
  9.  前記板体の両側部は、複数のスリットを有する板材で構成されている、請求項7に記載の調湿装置。 The humidity control apparatus according to claim 7, wherein both side portions of the plate body are formed of a plate material having a plurality of slits.
  10.  前記超音波発生部は、複数の超音波振動子を含み、
     前記複数の超音波振動子のうち、一部の超音波振動子と他の超音波振動子とは、超音波により発生する液柱の落下方向が互いに逆向きとなるように配列されるとともに、前記液体吸湿材の流れ方向にずれて配置されている、請求項1から請求項9までのいずれか一項に記載の調湿装置。

     
    The ultrasonic generator includes a plurality of ultrasonic transducers,
    Among the plurality of ultrasonic transducers, some ultrasonic transducers and other ultrasonic transducers are arranged so that the falling directions of the liquid columns generated by the ultrasonic waves are opposite to each other, The humidity control apparatus according to any one of claims 1 to 9, wherein the humidity control apparatus is arranged so as to be shifted in a flow direction of the liquid hygroscopic material.

PCT/JP2019/021949 2018-06-06 2019-06-03 Humidity regulating device WO2019235411A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018108967A JP2021143767A (en) 2018-06-06 2018-06-06 Humidity control device
JP2018-108967 2018-06-06

Publications (1)

Publication Number Publication Date
WO2019235411A1 true WO2019235411A1 (en) 2019-12-12

Family

ID=68769869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021949 WO2019235411A1 (en) 2018-06-06 2019-06-03 Humidity regulating device

Country Status (2)

Country Link
JP (1) JP2021143767A (en)
WO (1) WO2019235411A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020116438A1 (en) * 2018-12-04 2020-06-11 シャープ株式会社 Humidity control system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51141047U (en) * 1975-05-07 1976-11-13
US20020100292A1 (en) * 2001-01-30 2002-08-01 Carlson Ronald Frederick Ultrasonic absorption refrigeration
JP2012132657A (en) * 2010-12-24 2012-07-12 Univ Of Tokyo Humidity controller, and method for adjusting absorbing solution concentration for the same
WO2018235773A1 (en) * 2017-06-20 2018-12-27 シャープ株式会社 Humidity conditioning device and humidity conditioning method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51141047U (en) * 1975-05-07 1976-11-13
US20020100292A1 (en) * 2001-01-30 2002-08-01 Carlson Ronald Frederick Ultrasonic absorption refrigeration
JP2012132657A (en) * 2010-12-24 2012-07-12 Univ Of Tokyo Humidity controller, and method for adjusting absorbing solution concentration for the same
WO2018235773A1 (en) * 2017-06-20 2018-12-27 シャープ株式会社 Humidity conditioning device and humidity conditioning method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020116438A1 (en) * 2018-12-04 2020-06-11 シャープ株式会社 Humidity control system

Also Published As

Publication number Publication date
JP2021143767A (en) 2021-09-24

Similar Documents

Publication Publication Date Title
JP6878583B2 (en) Humidity control device and humidity control method
WO2019168028A1 (en) Atomizing device and humidity regulating device
JP6994109B2 (en) Atomizer and humidity control device
JP7037576B2 (en) Air conditioner and air conditioning method
WO2019235411A1 (en) Humidity regulating device
WO2020241150A1 (en) Ultrasonic atomization device and humidification device
WO2019202940A1 (en) Ultrasonic atomizing separation device and humidity controller
WO2019097961A1 (en) Air conditioning device
JPWO2019138794A1 (en) Humidity control device and separation device
CN110081528A (en) A kind of compound ventilation air-changing device of muting function
KR101669644B1 (en) Humidifier combined an air cleaner
JP2021028050A (en) Humidity control device and humidity control method
KR102009774B1 (en) Membrane dehumidification module and dehumidification apparatus using the same
WO2020145388A1 (en) Humidity conditioner and atomization/regeneration apparatus
WO2020059284A1 (en) Humidity control system
KR20060108350A (en) Wet-type air cleaner with vibrators
US20210113958A1 (en) Air conditioner
WO2020049878A1 (en) Humidity regulating system
KR102118324B1 (en) Filter and humidifier having the same
JP6955582B2 (en) Humidity control device and humidity control method
WO2022059428A1 (en) Humidity adjustment device
WO2022190670A1 (en) Ultrasonic atomization separation device and humidity control system
CN212430968U (en) Fume exhaust fan
JP3836047B2 (en) Steam drum
KR20160001837U (en) Humidifier combined an air cleaner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19815360

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19815360

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP