WO2022190571A1 - 気泡発生装置、および気泡発生システム - Google Patents

気泡発生装置、および気泡発生システム Download PDF

Info

Publication number
WO2022190571A1
WO2022190571A1 PCT/JP2021/047550 JP2021047550W WO2022190571A1 WO 2022190571 A1 WO2022190571 A1 WO 2022190571A1 JP 2021047550 W JP2021047550 W JP 2021047550W WO 2022190571 A1 WO2022190571 A1 WO 2022190571A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylindrical body
bubble generator
tubular body
air bubble
piezoelectric element
Prior art date
Application number
PCT/JP2021/047550
Other languages
English (en)
French (fr)
Inventor
克己 藤本
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN202180094844.5A priority Critical patent/CN116917026A/zh
Priority to JP2023505125A priority patent/JPWO2022190571A1/ja
Publication of WO2022190571A1 publication Critical patent/WO2022190571A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms

Definitions

  • the present disclosure relates to an air bubble generator and an air bubble generation system.
  • the bubble generator described in Patent Document 1 uses a piezoelectric element to generate fine bubbles.
  • the vertical vibration at the central portion of the vibration plate that vibrates in bending is used to tear off the bubbles generated in the pores formed in the vibration plate by vibration to make them finer.
  • An example of an application for an air bubble generator is an in-vehicle application that generates air bubbles in light oil to improve the combustion of a diesel engine.
  • an in-vehicle application high reliability is required, and measures must be taken to prevent the liquid (light oil) in the liquid tank from leaking from the connection between the liquid tank and the bubble generator.
  • an object of the present disclosure is to provide an air bubble generator and an air bubble generation system in which the liquid in the liquid tank is less likely to leak from the connecting portion between the liquid tank and the air bubble generator.
  • An air bubble generator is an air bubble generator that is attached to a liquid tank and generates fine air bubbles in the liquid in the liquid tank.
  • a diaphragm provided at a position where the other surface is in contact with the gas, a first tubular body supporting one end of the diaphragm, and a plate-shaped body supporting the other end of the first tubular body a second tubular body supporting one end of the spring part at a position outside the position supporting the first tubular body; supporting the other end of the second tubular body; a plate-shaped flange extending outward from the position of the second tubular body; a third tubular body supporting one end of the flange at a position outside the position supporting the second tubular body; a weight provided at the other end of the cylindrical body; and a piezoelectric element provided on a surface of the spring supported by the second cylindrical body and vibrating the spring.
  • the portion is provided at a position where the amount of displacement of the side surface of the second cylindrical body is within a predetermined range
  • a bubble generation system includes the above-described bubble generation device and a liquid tank.
  • the third cylindrical body and the weight are provided in the air bubble generator.
  • the liquid in the liquid tank can be prevented from leaking from the connecting portion with the air bubble generator.
  • FIG. 1 is a schematic diagram of an air bubble generation system in which an air bubble generator according to an embodiment is used;
  • FIG. 1 is a perspective view of an air bubble generator according to an embodiment;
  • FIG. 1 is a cross-sectional view of an air bubble generator according to an embodiment;
  • FIG. 1 is a half cross-sectional view of a bubble generator according to this embodiment;
  • FIG. It is a half cross-sectional view of a type of air bubble generator in which the position of the weight provided at the other end of the third cylindrical body is different.
  • 4 is a graph showing the amount of displacement in the Z direction of the target side surface of type A among the air bubble generators according to the present embodiment.
  • 5 is a graph showing the amount of displacement in the X direction of the target side surface of type A among the air bubble generators according to the present embodiment.
  • FIG. 1 is a schematic diagram of an air bubble generation system 100 in which an air bubble generator 1 according to this embodiment is used.
  • the air bubble generator 1 shown in FIG. 1 is provided at the bottom of a liquid tank 10 that stores liquid such as water, gasoline, light oil, etc., and is used as an air bubble generation system 100 that generates fine air bubbles 200 in the liquid in the liquid tank 10. Used.
  • the air bubble generating system 100 can be applied to various systems such as a water purification device, a wastewater treatment device, a fish tank, and a fuel injection device.
  • the liquid introduced into the liquid tank 10 differs depending on the system to which it is applied. In the case of a water purification device, it is water, but in the case of a fuel injection device, it is liquid fuel. Further, the liquid tank 10 may be a tube into which the liquid is introduced and the liquid always flows through the tube.
  • the air bubble generator 1 includes a diaphragm 2, a cylindrical body 3, and a piezoelectric element 4.
  • the bubble generating device 1 is provided in a hole formed in a part of the bottom of the liquid tank 10, and vibrates the vibration plate 2 protruding from the hole toward the liquid side by a piezoelectric element 4, thereby forming a plurality of bubbles formed on the vibration plate 2. Fine bubbles 200 are generated from the pores (openings) of the film.
  • the diaphragm 2 is made of, for example, a resin plate, a metal plate, a Si or SOI (Silicon On Insulator) substrate, a porous ceramic plate, a glass plate, or the like.
  • the vibration plate 2 When the vibration plate 2 is made of a glass plate, it may be made of a glass plate that transmits ultraviolet light and deep ultraviolet light with wavelengths of 200 nm to 380 nm, for example.
  • a light source that emits ultraviolet light is provided from the other side of the diaphragm 2 to the liquid in the liquid tank 10, and sterilization by ozone generation and ultraviolet light irradiation. It can also be used as a sterilization by.
  • the vibration plate 2 has a plurality of pores, one surface is in contact with the liquid (eg water) of the liquid tank 10, and the other surface is in contact with gas (eg air). That is, in the bubble generator 1, the liquid and the air are separated by the vibration plate 2, and the back pressure is applied to the other surface (in the direction of the arrow shown in FIG. 1), so that the gas passes through the plurality of pores and becomes liquid.
  • the liquid in bath 10 is fed.
  • the air bubble generator 1 generates fine air bubbles 200 by tearing off the gas sent through a plurality of pores by vibration of the diaphragm 2 .
  • the surface tension of the liquid prevents the gas from entering the liquid side, while the buoyancy of the gas acts to cut off the surface tension.
  • the diameter of the air bubble 200 is determined by this balance, and the vibration of the diaphragm 2 produces the effect of peeling the air bubble 200 from the wall surface of the pore, as if the surface tension were reduced.
  • the gas is torn off due to the vibration of the diaphragm 2, and the diameter of the fine particles is reduced to about 1/10 compared to when the vibration of the diaphragm 2 is not applied. bubbles 200 can be generated.
  • a plurality of pores are formed in a 5 mm x 5 mm area provided in the central portion of the diaphragm 2 with a diameter of 14 mm.
  • the pore diameter is 1 ⁇ m and the pore interval is 0.25 mm, 441 pores can be formed in an area of 5 mm ⁇ 5 mm.
  • FIG. 2 is a perspective view of the bubble generator 1 according to this embodiment.
  • FIG. 3 is a cross-sectional view of the air bubble generator according to this embodiment.
  • the tubular body 3 shown in FIG. 1 includes a first tubular body 31, a spring portion 32, a second tubular body 33, a flange portion 34, a third tubular body 35, and a weight portion 36 as shown in FIG. contains.
  • 3 is a cross-sectional view cut at the center in the penetrating direction of the second cylindrical body 33 (vertical direction in the drawing).
  • the end of the diaphragm 2 is held by the end of the cylindrical first tubular body 31 .
  • Diaphragm 2 is supported by first tubular body 31 at a position where the penetrating direction of the plurality of pores formed in diaphragm 2 is parallel to the vibration direction of first tubular body 31 .
  • the first cylindrical body 31 is supported by the spring portion 32 at the end opposite to the diaphragm 2 side.
  • the spring portion 32 is an elastically deformable plate-like member, supports the bottom surface of the cylindrical first tubular body 31 , and extends outward from the first tubular body 31 .
  • the spring part 32 is not provided with a hole penetrating the first tubular body 31 and the second tubular body 33, and has at least one communication part 320 for allowing gas to flow into the first tubular body 31 from the side surface. is provided. Since the spring portion 32 is not provided with a hole penetrating the first tubular body 31 and the second tubular body 33 , the liquid leaking from the plurality of pores formed in the diaphragm 2 flows into the second tubular body 33 . The piezoelectric element 4 can be protected from the liquid without leakage to the lower side.
  • the spring portion 32 may be hollow circular and have a hole passing through the first tubular body 31 and the second tubular body 33 .
  • the communication portion 320 may not be provided in the spring portion 32 .
  • the spring part 32 is supported by the second tubular body 33 at a position outside the position where the first tubular body 31 is supported.
  • the second cylindrical body 33 has a cylindrical shape.
  • the second cylindrical body 33 supports the spring portion 32 with one end.
  • the second cylindrical body 33 is supported by the flange portion 34 at the end opposite to the spring portion 32 side.
  • the flange portion 34 is a plate-like member, supports the bottom surface of the cylindrical second tubular body 33 , and extends outward from the position where the second tubular body 33 is supported.
  • the flange portion 34 is supported by the third tubular body 35 at a position outside the position where the second tubular body 33 is supported.
  • the third tubular body 35 has a cylindrical shape.
  • the third tubular body 35 supports the flange portion 34 with one end.
  • the other end of the third cylindrical body 35 has a cylindrical weight portion 36 on the outside.
  • the third cylindrical body 35 and the weight section 36 are provided at positions where the amount of displacement of the side surface of the second cylindrical body 33 is within a predetermined range when the spring section 32 is vibrated by the piezoelectric element 4. .
  • a circular piezoelectric element 4 is provided on the lower surface of the spring portion 32 so as to match the shape of the spring portion 32 .
  • the piezoelectric element 4 vibrates in the penetrating direction of the first cylindrical body 31 (vertical direction in the figure). By vibrating the piezoelectric element 4 in the penetrating direction of the first cylindrical body 31, the spring portion 32 is vibrated in the penetrating direction of the first cylindrical body 31, and the first cylindrical body 31 is substantially uniformly displaced in the vertical direction.
  • the piezoelectric element 4 may have a hollow circular shape having a hole in the center instead of the circular shape covering the entire inner diameter of the second cylindrical body 33 .
  • the first tubular body 31, the spring part 32, the second tubular body 33, the flange part 34, the third tubular body 35, and the weight part 36 are integrally formed.
  • the first tubular body 31, the spring portion 32, the second tubular body 33, the flange portion 34, the third tubular body 35, and the weight portion 36 are made of, for example, metal such as stainless steel or synthetic resin. Preferably, a highly rigid metal such as stainless steel is desirable.
  • the first tubular body 31, the spring portion 32, the second tubular body 33, the flange portion 34, the third tubular body 35, and the weight portion 36 may be formed as separate members or may be formed as separate members. You may A method for joining the diaphragm 2 and the first cylindrical body 31 is not particularly limited. Diaphragm 2 and first cylindrical body 31 may be joined by adhesive, welding, fitting, press-fitting, or the like.
  • the air bubble generator 1 is connected to a hole formed in a part of the bottom of the liquid tank 10 at the outer end of the spring portion 32 or the outer surface of the second cylindrical body 33. .
  • the outer end of the spring portion 32 or the outer surface of the second cylindrical body 33 is provided with a third cylindrical body 35 and a weight 36 as will be described later, so that the piezoelectric element 4 vibrates the diaphragm 2 . is also almost vibration-free. Therefore, it is possible to substantially vibrate only the vibration plate 2 without transmitting the vibration of the piezoelectric element 4 to the liquid tank 10 .
  • the liquid in the liquid tank 10 can be prevented from leaking from the connecting portion between the air bubble generator 1 and the liquid tank 10 or the like.
  • the piezoelectric element 4 vibrates by being polarized in the thickness direction, for example.
  • the piezoelectric element 4 is made of lead zirconate titanate piezoelectric ceramics. However, other piezoelectric ceramics such as (K,Na)NbO3 may be used. Furthermore, a piezoelectric single crystal such as LiTaO3 may be used.
  • the piezoelectric element 4 vibrates in the penetrating direction of the first cylindrical body 31 based on a drive signal from the controller 20 (see FIG. 1).
  • the structure of the diaphragm 2 in contact with the liquid is, for example, a glass plate. and can be completely separated. By completely separating the space into which the gas is introduced from the liquid, it is possible to prevent the electrical wiring of the piezoelectric element 4 from being immersed in the liquid. Further, in the bubble generator 1, even when a light source that emits ultraviolet light is provided for the liquid in the liquid tank 10, the light source can be provided in the space into which the gas is introduced. It can also prevent drowning.
  • FIG. 4 is a half cross-sectional view of the air bubble generator according to this embodiment.
  • a dashed-dotted line shown in FIG. 4 is a portion passing through the central axis of the first tubular body 31 .
  • Position A is the inner position of the first cylindrical body 31
  • position B is the inner position of the second cylindrical body 33
  • position C is the outer position of the second cylindrical body 33
  • third cylindrical body 35 A position D is a position outside of .
  • the outer end of the spring portion 32 or the outer surface of the second tubular body 33 is a side surface that joins with the liquid tank 10 and is a target side surface for suppressing the amount of displacement within a predetermined range.
  • the penetrating direction of the second cylindrical body 33 (vertical direction in the drawing) is defined as the Z direction, and the horizontal direction in the drawing is defined as the X direction.
  • FIG. 5 is a half cross-sectional view of a bubble generator 1 of a type in which the position of the weight portion 36 provided at the other end of the third cylindrical body 35 is different.
  • FIG. 5(a) shows type A of the air bubble generator 1 in which the length from the central axis to the outside of the weight portion 36 is 7.0 mm.
  • FIG. 5(b) shows type B of the air bubble generator 1 in which the length from the central axis to the outside of the weight portion 36 is 7.5 mm.
  • 5(a) and 5(b) the length from the center axis to the inside of the weight portion 36 changes according to the length from the center axis to the inside of the third cylindrical body 35.
  • FIG. 5(c) shows type C of the air bubble generator 1 in which the length from the central axis to the outside of the weight 36 is 7.0 mm, and the inner position of the weight 36 is fixed at position B.
  • FIG. 6 is a graph showing the amount of displacement in the Z direction of the target side surface of type A of the air bubble generator 1 .
  • FIG. 7 is a graph showing the amount of displacement in the X direction of the target side surface of the type A air bubble generator 1.
  • the vertical axis represents the amount of displacement (unit: ⁇ m)
  • the horizontal axis represents the position on the side surface of the object (the position on the side surface of the second cylindrical body 33 from the spring portion 32 to the flange portion 34) (unit: mm). ).
  • the length from the central axis to the position D (hereinafter also simply referred to as the length of the position D) is 4.5 mm (D1), 5.25 mm (D2), 5.75 mm (D3 ), 6.0 mm (D4), 6.25 mm (D5), 6.5 mm (D6), 6.75 mm (D7), and 7.0 mm (D8). ing.
  • FIG. 8 is a graph showing changes in the average amount of displacement with respect to the length of position D.
  • the vertical axis is the average amount of displacement (unit: ⁇ m)
  • the horizontal axis is the length of the position D (unit: mm).
  • FIG. 8 is a graph obtained by plotting average values of the displacement amounts shown in FIGS. 6 and 7 for each length from the central axis to the position D.
  • FIG. 8 in the type A of the air bubble generator 1, when the length of the position D is 6.5 mm, the displacement amounts in the X and Z directions are almost 0 (zero).
  • FIG. 9 is a graph showing changes in the average displacement amount in the Z direction with respect to the length of position D for each type.
  • the vertical axis represents the average amount of displacement in the Z direction (unit: ⁇ m), and the horizontal axis represents the length of the position D (unit: mm).
  • a predetermined range S is illustrated.
  • the displacement amount of the displacement target range (the side surface of the second tubular body 33) being within the predetermined range S means, for example, that the average displacement amount falls within about half of the initial value. Specifically, in the example shown in FIG.
  • the range of absolute values (approximately ⁇ 0.03 ⁇ m range) obtained by halving the initial value (approximately +0.06 ⁇ m) of the average displacement amount in the Z direction is the predetermined range S. It is said that there is.
  • the predetermined range S is a range that is half the amount of displacement when the third cylindrical body 35 is not present, it is not limited to this, and the liquid tank 10 can be It is sufficient if the liquid is in a range where it is difficult for the liquid to leak.
  • the position where the third cylindrical body 35 and the weight portion 36 are provided can also be defined from the viewpoint of the moment of inertia.
  • Ma includes the masses of the diaphragm 2, the first cylindrical body 31, and the spring portion 32, and is an equivalent mass considering the surface density
  • a and B are the coordinates of the positions A and B. .
  • Mb is an equivalent mass including the masses of the third cylindrical body 35 and the weight 36 and considering surface density
  • C and D are the coordinates of the positions C and D.
  • the moment of inertia Ia between position A and position B does not depend on the type of air bubble generator 1, but the moment of inertia Ib between position C and position D depends on the type of air bubble generator 1.
  • 10 is a graph showing changes in moment of inertia with respect to length of D; In FIG. 10, the vertical axis is the moment of inertia (arbitrary unit ARB.), and the horizontal axis is the length of the position D (unit: mm).
  • the moment of inertia Ib depends on the type of air bubble generator 1, so the graph is shown for each type.
  • the length of the position D where the moment of inertia Ia coincides with the moment of inertia Ib of each type corresponds to the length of the position D where the amount of displacement in the Z direction shown in FIG. 9 is approximately 0 (zero). value close to Specifically, the length of the position D where the moment of inertia Ia and the moment of inertia Ib coincide is about 6.6 mm for the type A of the bubble generator 1, about 6.2 mm for the type B, and about 5.9 mm for the type C. becomes.
  • the displacement amount of the displacement target range (the side surface of the second cylindrical body 33) is within the predetermined range S as shown in FIG. Become.
  • FIG. 11 is a graph showing the amount of displacement in the Z direction with respect to the density of the weight portion 36.
  • the vertical axis is the displacement amount in the Z direction (unit: ⁇ m)
  • the horizontal axis is the position on the target side surface (the position on the side surface of the second cylindrical body 33 from the spring portion 32 to the flange portion 34) (unit: mm). ).
  • the weight 36 is made of Cu (density 8.93 g/cm 3 ), the weight 36 is made of SUS (Steel Use Stainless) (density 7.75 g/cm 3 ), and the weight 36 is made of duralumin (density 2.93 g/cm 3 ). 79 g/cm 3 ) is shown. It can be seen from FIG. 11 that even if the positions of the third cylindrical body 35 and the weight portion 36 are the same, the displacement amount of the target side surface increases if the density is low.
  • the bubble generator 1 is attached to the liquid tank 10 and generates fine bubbles in the liquid in the liquid tank 10 .
  • the bubble generator 1 includes a diaphragm 2, a first tubular body 31, a spring portion 32, a second tubular body 33, a flange portion 34, a third tubular body 35, a weight portion 36, and a piezoelectric element 4 .
  • the vibration plate 2 has a plurality of openings, and is provided at a position where one surface is in contact with the liquid in the liquid tank 10 and the other surface is in contact with the gas.
  • the first cylindrical body 31 supports the diaphragm 2 with one end.
  • the spring portion 32 is plate-shaped and supports the other end of the first tubular body 31 .
  • the second tubular body 33 supports the spring portion 32 at a position outside the position where the first tubular body 31 is supported.
  • the flange portion 34 has a plate shape, supports the other end of the second tubular body 33 , and extends outward from the position of the second tubular body 33 .
  • the third tubular body 35 supports one end of the flange portion 34 at a position outside the position where the second tubular body 33 is supported.
  • Weight 36 is provided at the other end of third tubular body 35 .
  • the piezoelectric element 4 vibrates the spring portion 32 .
  • the third cylindrical body 35 and the weight 36 are provided at positions where the amount of displacement of the side surface of the second cylindrical body 33 is within a predetermined range S when the spring portion 32 is vibrated by the piezoelectric element 4 .
  • the amount of displacement of the portion connected to the liquid tank 10 can be adjusted within a predetermined range S.
  • the liquid in the liquid tank 10 can be prevented from leaking from the connecting portion between the liquid tank 10 and the air bubble generator 1 or the like.
  • the spring portion 32 when light oil leaks into the first cylindrical body 31 from the pores of the diaphragm 2, the spring portion 32 is provided with a A hole penetrating from the first cylindrical body 31 to the second cylindrical body 33 is not provided. Instead, as shown in FIG. 3, the spring portion 32 is provided with a communicating portion 320 that allows gas to flow into the first cylindrical body 31 from the side surface. The amount of displacement of the second cylindrical body 33 including the spring portion 32 must be suppressed within a predetermined range S in order to allow the gas to flow in from the opening of the communicating portion 320 .
  • the third cylindrical body 35 and the weight 36 have a first moment of inertia (Ia) generated at one end of the second cylindrical body 33 when the spring portion 32 is vibrated by the piezoelectric element 4, and a second It is preferable to provide it at a position where the difference from the second moment of inertia (Ib) generated at the other end of the cylindrical body 33 is a predetermined difference.
  • the air bubble generator 1 can adjust the amount of displacement of the side surface of the second cylindrical body 33 to be within the predetermined range S when the spring portion 32 is vibrated by the piezoelectric element 4 .
  • the predetermined difference is preferably within ⁇ 3%.
  • the piezoelectric element 4 is preferably provided inside the position supported by the second tubular body 33 on the surface of the spring portion 32 on the side supported by the second tubular body 33 .
  • the bubble generator 1 can efficiently transmit the vibration of the piezoelectric element 4 to the first cylindrical body 31, and can vertically vibrate the first cylindrical body 31 and the vibration plate 2 in parallel. .
  • the piezoelectric element 4 is preferably provided over the entire inner diameter of the second cylindrical body 33 on the side of the spring portion 32 supported by the second cylindrical body 33 . Thereby, fine air bubbles can be generated more effectively.
  • FIG. 12 is a diagram showing an example in which the end of the spring portion is tapered.
  • the same components as those of the air bubble generator 1 shown in FIG. 3 are denoted by the same reference numerals, and detailed description thereof will not be repeated.
  • the spring portion 32a has its end portion processed into a tapered shape 32b. As shown in FIG. 12, by processing the corners of the ends of the spring portion 32a closer to the diaphragm 2 into a tapered shape 32b, the vibration of the piezoelectric element 4 can be less damped by the spring portion 32a.
  • the second cylindrical body 33 may be provided with a flange portion 33a as shown in FIG. 1, and the liquid tank 10 may be connected via the flange portion 33a.
  • airtightness between the bubble generator 1 and the liquid tank 10 is improved in the bubble generation system 100 including the bubble generator 1 and the liquid tank 10 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

本開示は、液体槽(10)に取り付け、液体槽(10)の液体中に微細な気泡を発生させる気泡発生装置(1)に関する。気泡発生装置(1)は、振動板(2)と、第1筒状体(31)と、バネ部(32)と、第2筒状体(33)と、つば部(34)と、第3筒状体(35)と、錘部(36)と、圧電素子(4)と、を備える。第3筒状体(35)および錘部(36)は、圧電素子(4)によりバネ部(32)を振動させた場合に第2筒状体(33)の側面の変位量が所定の範囲内となる位置に設ける。

Description

気泡発生装置、および気泡発生システム
 本開示は、気泡発生装置、および気泡発生システムに関する。
 近年、微細な気泡を使って水質浄化、排水処理、魚の養殖などが行なわれており、微細な気泡が様々な分野で利用されている。そのため、微細な気泡を発生する気泡発生装置が開発されている(特許第6108526号公報:特許文献1)。
 特許文献1に記載の気泡発生装置では、圧電素子を利用して微細な気泡を発生させている。この気泡発生装置では、屈曲振動する振動板の中央部での上下振動を利用して、振動板に形成した細孔で発生した気泡を振動で引きちぎり微細化している。
特許第6108526号公報
 気泡発生装置の用途には、例えば、ディーゼルエンジンの燃焼を向上させるため軽油に気泡を発生させる車載用途がある。車載用途の場合、高い信頼性が求められ、気泡発生装置は、液体槽と気泡発生装置との結合部分などから液体槽の液体(軽油)が漏れないような対策を行う必要があった。
 そこで、本開示の目的は、液体槽と気泡発生装置との結合部分などから液体槽の液体が漏れにくい気泡発生装置、および気泡発生システムを提供することである。
 本開示の一形態に係る気泡発生装置は、液体槽に取り付け、液体槽の液体中に微細な気泡を発生させる気泡発生装置であって、複数の開口部が形成され、一方の面が液体槽の液体と接し、他方の面が気体と接する位置に設けられる振動板と、振動板の一方の端を支持する第1筒状体と、第1筒状体の他方の端を支持する板状のバネ部と、第1筒状体を支持する位置より外側にある位置においてバネ部の一方の端を支持する第2筒状体と、第2筒状体の他方の端を支持し、第2筒状体の位置より外側に伸びる板状のつば部と、第2筒状体を支持する位置より外側にある位置においてつば部を一方の端を支持する第3筒状体と、第3筒状体の他方の端に設けられる錘部と、第2筒状体により支持されるバネ部の面に設けられ、バネ部を振動させる圧電素子と、を備え、第3筒状体および錘部は、圧電素子によりバネ部を振動させた場合に第2筒状体の側面の変位量が所定の範囲内となる位置に設ける。
 本開示の別の一形態に係る気泡発生システムは、前述の気泡発生装置と、液体槽と、を備える。
 本開示によれば、気泡発生装置において、第3筒状体および錘部を設けるので、液体槽との結合部分の変位量を所定の範囲内となるように調整することができ、液体槽と気泡発生装置との結合部分などから液体槽の液体が漏れにくくできる。
本実施の形態に係る気泡発生装置が用いられる気泡発生システムの概略図である。 本実施の形態に係る気泡発生装置の斜視図である。 本実施の形態に係る気泡発生装置の断面図である。 本実施の形態に係る気泡発生装置の半断面図である。 第3筒状体の他方の端に設けられる錘部の位置が異なるタイプの気泡発生装置の半断面図である。 本実施の形態に係る気泡発生装置のうち、タイプAの対象側面のZ方向の変位量を示すグラフである。 本実施の形態に係る気泡発生装置うち、タイプAの対象側面のX方向の変位量を示すグラフである。 位置Dの長さに対する平均変位量の変化を示すグラフである。 タイプごとの位置Dの長さに対するZ方向の平均変位量の変化を示すグラフである。 位置Dの長さに対する慣性モーメントの変化を示すグラフである。 錘部の密度に対するZ方向の変位量を示すグラフである。 バネ部の端部をテーパ形状に加工した例を示す図である。
 (実施の形態)
 以下に、本実施の形態に係る気泡発生装置、および気泡発生システムについて、図面を参照しながら詳細に説明する。なお、図中の同一または相当部分については、同一符号を付してその説明は繰り返さない。
 まず、図1は、本実施の形態に係る気泡発生装置1が用いられる気泡発生システム100の概略図である。図1に示す気泡発生装置1は、例えば、水,ガソリン,軽油などの液体を貯留する液体槽10の底部に設けられ、液体槽10の液体に微細な気泡200を発生させる気泡発生システム100に用いられる。なお、気泡発生システム100は、例えば、水質浄化装置、排水処理装置、魚の養殖用水槽、燃料噴射装置などの様々なシステムに適用することができる。
 また、液体槽10は、適用するシステムにより導入される液体が異なり、水質浄化装置であれば水になるが、燃料噴射装置であれば液体燃料になる。さらに、液体槽10は、液体を一時的に貯留することができればよく、液体が導入される管において当該管の中を常に液体が流れるようなものも含む。
 気泡発生装置1は、振動板2と、筒状体3と、圧電素子4とを備えている。気泡発生装置1は、液体槽10の底部の一部に開けた孔に設けられ、当該孔から液体側に突き出た振動板2を圧電素子4により振動させることにより、振動板2に形成した複数の細孔(開口部)から微細な気泡200を発生させている。
 振動板2は、例えば、樹脂板、金属板、SiもしくはSOI(Silicon On Insulator)基板、多孔質のセラミック板、ガラス板などで形成されている。振動板2をガラス板により形成する場合、例えば、波長が200nm~380nmの紫外光および深紫外光を透過させるガラス板により形成してもよい。紫外光および深紫外光を透過させるガラス板により形成することで、振動板2の他方の面側から液体槽10の液体に対して紫外光を発する光源を設け、オゾン生成による殺菌と紫外光照射による殺菌とを兼用させることができる。
 振動板2は、複数の細孔が形成され、一方の面が液体槽10の液体(例えば、水)と接し、他方の面が気体(例えば、空気)と接している。つまり、気泡発生装置1では、振動板2により液体と空気とを分離し、他方の面に背圧を加え(図1に示す矢印方向)ることで、複数の細孔を通って気体が液体槽10の液体に送り込まれる。気泡発生装置1は、複数の細孔を通って送り込まれた気体を、振動板2の振動により引きちぎることで微細な気泡200を発生させている。
 さらに詳しく説明すると、複数の細孔から気体が出ようとする際、液体の表面張力によって液体側へ気体が侵入するのを阻害する一方、気体の浮力によりその表面張力を断ち切る力が働くことになる。このバランスにより気泡200の径が決まることになるが、振動板2の振動により細孔の壁面からの引きはがし効果が生じ、あたかも表面張力が小さくなったかのような状態となる。その結果、複数の細孔から気体が出ようとする初期の段階で、振動板2の振動により気体が引きちぎられ、振動板2の振動を加えない場合に比べて1/10程度の径の微細な気泡200を発生させることができる。
 図示していないが、たとえば、直径14mmの振動板2の中央部に設ける5mm×5mmの領域に複数の細孔が形成されている。細孔の孔径を1μm、細孔の間隔を0.25mmにした場合、5mm×5mmの領域に441個の細孔を形成することができる。
 気泡発生装置1では、筒状体3を介して圧電素子4により振動板2を振動させている。図2は、本実施の形態に係る気泡発生装置1の斜視図である。図3は、本実施の形態に係る気泡発生装置の断面図である。図1に示す筒状体3は、図3に示すように第1筒状体31、バネ部32、第2筒状体33、つば部34、第3筒状体35、および錘部36を含んでいる。なお、図3の気泡発生装置1は、第2筒状体33の貫通方向(図中、上下方向)に中央で切断した断面図である。
 振動板2の端部は、円筒状の第1筒状体31の端部により保持されている。振動板2に形成された複数の細孔の貫通方向が、第1筒状体31の振動方向に対して平行となる位置において、振動板2が第1筒状体31に支持されている。第1筒状体31は、振動板2側とは反対側の端部がバネ部32に支持されている。バネ部32は、弾性変形可能な板状の部材であり、円筒状の第1筒状体31の底面を支持し、第1筒状体31の外側に向かって延伸している。バネ部32には、第1筒状体31と第2筒状体33とを貫通する孔が設けられておらず、側面から第1筒状体31に気体を流入させる少なくとも1つの連通部320を設けている。第1筒状体31と第2筒状体33とを貫通する孔をバネ部32に設けないことで、振動板2に形成された複数の細孔から漏れた液体が第2筒状体33より下側に漏れることがなく、圧電素子4を液体から保護することができる。もちろん、バネ部32が中空円状で、第1筒状体31と第2筒状体33とを貫通する孔を有していてもよい。また、連通部320をバネ部32に設けなくてもよい。
 バネ部32は、第1筒状体31を支持する位置の外側にある位置において第2筒状体33により支持されている。第2筒状体33は、円筒状の形態である。第2筒状体33は、一方の端によりバネ部32を支持する。第2筒状体33は、バネ部32側とは反対側の端部がつば部34に支持されている。つば部34は、板状の部材であり、円筒状の第2筒状体33の底面を支持し、第2筒状体33を支持した位置から外側に向かって延伸している。
 つば部34は、第2筒状体33を支持する位置の外側にある位置において第3筒状体35により支持されている。第3筒状体35は、円筒状の形態である。第3筒状体35は、一方の端によりつば部34を支持する。第3筒状体35の他方の端には、外側に円筒状の錘部36を有している。なお、第3筒状体35および錘部36は、圧電素子4によりバネ部32を振動させた場合に第2筒状体33の側面の変位量が所定の範囲内となる位置に設けてある。
 バネ部32の下面には、バネ部32の形状に合わせて円状の圧電素子4が設けられている。圧電素子4は、第1筒状体31の貫通方向(図中、上下方向)に振動する。圧電素子4が第1筒状体31の貫通方向に振動することにより、バネ部32を第1筒状体31の貫通方向に振動させて第1筒状体31が略均一に上下方向に変位させる。なお、圧電素子4は、第2筒状体33の内径の全面を覆う円状ではなく、中央部に孔を有する中空円状であってもよい。
 第1筒状体31、バネ部32、第2筒状体33、つば部34、第3筒状体35、および錘部36は、一体的に形成される。第1筒状体31、バネ部32、第2筒状体33、つば部34、第3筒状体35、および錘部36は、たとえば、ステンレスなどの金属や合成樹脂からなる。好ましくは、ステンレスなどの剛性の高い金属が望ましい。なお、第1筒状体31、バネ部32、第2筒状体33、つば部34、第3筒状体35、および錘部36を別体として形成してもよいし、別部材として形成してもよい。振動板2と第1筒状体31との接合方法は、特に問わない。振動板2と第1筒状体31とを、接着剤、溶着、嵌合、圧入、などで接合してもよい。
 気泡発生装置1は、図1に示すように、バネ部32の外側の端部または第2筒状体33の外側面において、液体槽10の底部の一部に開けた孔と結合している。バネ部32の外側の端部または第2筒状体33の外側面は、後述するように第3筒状体35および錘部36を設けることで、圧電素子4により振動板2を振動させてもほぼ無振動である。そのため、圧電素子4の振動を液体槽10に伝えずに、実質的に振動板2のみを振動させることが可能である。さらに、気泡発生装置1と液体槽10との結合部分などから液体槽10の液体が漏れにくくできる。
 圧電素子4は、例えば、厚み方向において分極することで振動する。圧電素子4は、チタン酸ジルコン酸鉛系圧電セラミックスからなる。もっとも、(K,Na)NbO3などの他の圧電セラミックスが用いられてもよい。さらにLiTaO3などの圧電単結晶が用いられてもよい。圧電素子4は、コントローラ20(図1参照)からの駆動信号に基づいて、第1筒状体31の貫通方向に振動させる。
 気泡発生装置1では、液体に接する振動板2の構造を例えばガラス板とし、筒状体3を介して圧電素子4により振動板2を振動させる構成にすることで、気体を導入する空間と液体とを完全分離することができる。気体を導入する空間と液体とを完全分離することで、圧電素子4の電気配線等が液体に浸かることを防止できる。また、気泡発生装置1では、液体槽10の液体に対して紫外光を発する光源を設ける場合でも、気体を導入する空間に当該光源を設けることができるので、当該光源の電気配線等が液体に浸かることも防止できる。
 次に、気泡発生装置1に第3筒状体35および錘部36を設けることで、第2筒状体33の外側面(液体槽10との結合部分)の変位量を調整することについて詳しく説明する。図4は、本実施の形態に係る気泡発生装置の半断面図である。図4に示す一点鎖線は、第1筒状体31の中心軸を通る部分である。また、第1筒状体31の内側の位置を位置A、第2筒状体33の内側の位置を位置B、第2筒状体33の外側の位置を位置C、第3筒状体35の外側の位置を位置Dとしている。また、バネ部32の外側の端部または第2筒状体33の外側面が、液体槽10と接合する側面で、変位量を所定の範囲内に抑える対象側面である。第2筒状体33の貫通方向(図中、上下方向)をZ方向、図中、左右方向をX方向とする。
 図5は、第3筒状体35の他方の端に設けられる錘部36の位置が異なるタイプの気泡発生装置1の半断面図である。図5(a)は、中心軸から錘部36の外側までの長さが7.0mmとなる気泡発生装置1のタイプAが図示されている。図5(b)は、中心軸から錘部36の外側までの長さが7.5mmとなる気泡発生装置1のタイプBが図示されている。図5(a)および図5(b)では、中心軸から錘部36の内側までの長さが、中心軸から第3筒状体35の内側までの長さに合わせて変化する。図5(c)は、中心軸から錘部36の外側までの長さが7.0mmで、錘部36の内側の位置が位置Bに固定された気泡発生装置1のタイプCが図示されている。
 図5(a)~図5(c)に示す気泡発生装置1のタイプA~タイプCのそれぞれに対して、圧電素子4により振動板2を振動させるシミュレーションを行い、対象側面の変位量の変化を求めた。図6は、気泡発生装置1のタイプAの対象側面のZ方向の変位量を示すグラフである。図7は、気泡発生装置1のタイプAの対象側面のX方向の変位量を示すグラフである。図6および図7では、縦軸を変位量(単位μm)、横軸を対象側面での位置(バネ部32~つば部34までの第2筒状体33の側面上の位置)(単位mm)としている。さらに、図6および図7では、中心軸から位置Dまでの長さ(以下、単に位置Dの長さともいう)を4.5mm(D1)、5.25mm(D2)、5.75mm(D3)、6.0mm(D4)、6.25mm(D5)、6.5mm(D6)、6.75mm(D7)、7.0mm(D8)に変化させた場合の対象側面の変位量が図示されている。
 図8は、位置Dの長さに対する平均変位量の変化を示すグラフである。図8では、縦軸を平均変位量(単位μm)、横軸を位置Dの長さ(単位mm)としている。図6および図7で示した変位量を中心軸から位置Dまでの長さごとに平均値を求めてプロットしたグラフが図8である。図8から分かるように気泡発生装置1のタイプAでは、位置Dの長さが6.5mmの時にX方向およびZ方向の変位量がほぼ0(ゼロ)になる。
 気泡発生装置1のタイプBおよびタイプCについても同様にシミュレーションを行い、図6~図8で示した処理を行うことで、タイプAと同様、X方向の変位量がZ方向の変位量に比べて小さく、また位置Dの長さが長いほどX方向の変位量が小さくなる。気泡発生装置1のタイプBでは、位置Dの長さが6.3mmの時にX方向およびZ方向の変位量がほぼ0(ゼロ)になる。気泡発生装置1のタイプCでは、位置Dの長さが6.1mmの時にX方向およびZ方向の変位量がほぼ0(ゼロ)になる。
 図9は、タイプごとの位置Dの長さに対するZ方向の平均変位量の変化を示すグラフである。図9では、縦軸をZ方向の平均変位量(単位μm)、横軸を位置Dの長さ(単位mm)としている。さらに、図9には、所定の範囲Sが図示されている。変位対象範囲(第2筒状体33の側面)の変位量が所定の範囲S内になるとは、例えば、初期値の半分程度に平均変位量が収まることである。具体的に、図9に示す例では、Z方向の平均変位量において、初期値(約+0.06μm)を半分にした絶対値の範囲(約±0.03μmの範囲)が所定の範囲Sであるとしている。この所定の範囲Sを満たす位置Dの範囲は、一番厳しいタイプCで約±0.4mm=約±3%で、タイプAで約±0.7mm=約±5%となる。所定の範囲Sは、第3筒状体35がない場合の変位量の半分になる範囲としたが、これに限定されず、液体槽10と気泡発生装置1との結合部分などから液体槽10の液体が漏れにくくできる範囲であればよい。
 第3筒状体35および錘部36を設ける位置を、慣性モーメントの観点から規定することもできる。位置A-位置B間の慣性モーメントIaは、第2筒状体33の一方の端に生じる第1の慣性モーメントであり、Ia=Ma(B-A)×(1/2)と求めることができる。ここで、Maは、振動板2、第1筒状体31、およびバネ部32の質量を含み、面密度を考慮した等価質量であり、AおよびBは、位置Aおよび位置Bの座標である。一方、位置C-位置D間の慣性モーメントIbは、第2筒状体33の他方の端に生じる第2の慣性モーメントであり、Ib=Mb(D-C)×(1/2)と求めることができる。ここで、Mbは、第3筒状体35、および錘部36の質量を含み、面密度を考慮した等価質量であり、CおよびDは、位置Cおよび位置Dの座標である。
 位置A-位置B間の慣性モーメントIaは、気泡発生装置1のタイプに依存しないが、位置C-位置D間の慣性モーメントIbは、気泡発生装置1のタイプに依存する、図10は、位置Dの長さに対する慣性モーメントの変化を示すグラフである。図10では、縦軸を慣性モーメント(任意単位ARB.)、横軸を位置Dの長さ(単位mm)としている。慣性モーメントIaは、気泡発生装置1のタイプに依存しないため一定値(=83565)となる。一方、慣性モーメントIbは、気泡発生装置1のタイプに依存するため、タイプごとにグラフが図示されている。
 図10から分かるように、慣性モーメントIaとそれぞれタイプの慣性モーメントIbとが一致する位置Dの長さは、図9で示したZ方向の変位量がほぼ0(ゼロ)となる位置Dの長さに近い値となる。具体的に、慣性モーメントIaと慣性モーメントIbとが一致する位置Dの長さは、気泡発生装置1のタイプAでは約6.6mm、タイプBでは約6.2mm、タイプCでは約5.9mmとなる。そのため、慣性モーメントIaと慣性モーメントIbと差が±3%以内であれば、図9に示したように変位対象範囲(第2筒状体33の側面)の変位量が所定の範囲S内となる。
 なお、タイプAの慣性モーメントIbのグラフの変化がなだらかであることから、位置Dの範囲の許容度も広いことが分かり、この点からも図9に示したタイプAの位置Dの範囲の傾向と同じである。
 錘部36の密度によっても対象側面の変位量が変化することを説明する。図11は、錘部36の密度に対するZ方向の変位量を示すグラフである。図11では、縦軸をZ方向の変位量(単位μm)、横軸を対象側面での位置(バネ部32~つば部34までの第2筒状体33の側面上の位置)(単位mm)としている。さらに、図11では、錘部36がCu(密度8.93g/cm)、錘部36がSUS(Steel Use Stainless)(密度7.75g/cm)、錘部36がジュラルミン(密度2.79g/cm)とした場合の対象側面の変位量が図示されている。図11から、第3筒状体35および錘部36の位置が同じであっても密度が小さければ対象側面の変位量が大きくなることが分かる。
 以上のように、本実施の形態に係る気泡発生装置1は、液体槽10に取り付け、液体槽10の液体中に微細な気泡を発生させる。気泡発生装置1は、振動板2と、第1筒状体31と、バネ部32と、第2筒状体33と、つば部34と、第3筒状体35と、錘部36と、圧電素子4と、を備える。振動板2は、複数の開口部が形成され、一方の面が液体槽10の液体と接し、他方の面が気体と接する位置に設けられる。第1筒状体31は、一方の端により振動板2を支持する。バネ部32は、板状であり、第1筒状体31の他方の端を支持する。第2筒状体33は、第1筒状体31を支持する位置より外側にある位置においてバネ部32を一方の端により支持する。つば部34は、板状であり、第2筒状体33の他方の端を支持し、第2筒状体33の位置より外側に伸びる。第3筒状体35は、第2筒状体33を支持する位置より外側にある位置においてつば部34を一方の端を支持する。錘部36は、第3筒状体35の他方の端に設けられる。圧電素子4は、バネ部32を振動させる。第3筒状体35および錘部36は、圧電素子4によりバネ部32を振動させた場合に第2筒状体33の側面の変位量が所定の範囲S内となる位置に設ける。
 これにより、気泡発生装置1では、第3筒状体35および錘部36を設けることで、液体槽10との結合部分の変位量を所定の範囲S内となるように調整することができ、液体槽10と気泡発生装置1との結合部分などから液体槽10の液体が漏れにくくできる。
 また、気泡発生装置1では、振動板2の細孔から軽油が第1筒状体31の内部に漏れ出た場合、漏れた軽油が圧電素子4にかかって腐食しないように、バネ部32に第1筒状体31から第2筒状体33へ貫通する孔を設けていない。その代わりに、バネ部32は、図3に示すように、側面から第1筒状体31に気体を流入させる連通部320を設けている。この連通部320の開口から気体を流入させるためにも、バネ部32を含む第2筒状体33の変位量を所定の範囲S内に抑える必要がある。さらに、第1筒状体31の底に溜まった軽油を連通部320を使って外部に逃がす構造を採用した場合、当該構造と連通部320の開口との結合部が圧電素子4の振動の影響を受けにくくするためにも、バネ部32を含む第2筒状体33の変位量を所定の範囲S内に抑える必要がある。
 第3筒状体35および錘部36は、圧電素子4によりバネ部32を振動させた場合に、第2筒状体33の一方の端に生じる第1の慣性モーメント(Ia)と、第2筒状体33の他方の端に生じる第2の慣性モーメント(Ib)との差が所定の差となる位置に設けることが好ましい。これにより、気泡発生装置1は、圧電素子4によりバネ部32を振動させた場合に第2筒状体33の側面の変位量が所定の範囲S内となる調整することができる。特に、所定の差は、±3%以内であることが好ましい。
 圧電素子4は、第2筒状体33により支持される側のバネ部32の面において、第2筒状体33により支持される位置よりも内側に設けられることが好ましい。これにより、気泡発生装置1は、圧電素子4による振動を第1筒状体31に対して効率よく伝えることができ、第1筒状体31および振動板2を平行に上下振動させることができる。
 圧電素子4は、第2筒状体33により支持される側のバネ部32の面において、第2筒状体33の内径の全面に設けられることが好ましい。これにより、微細な気泡をより効果的に発生させることができる。
 (変形例1)
 前述の実施の形態に係る気泡発生装置1では、バネ部32は板状であると説明したが、バネ部32の端部をテーパ形状に加工してもよい。エッジ部には変位の大きい傾斜が現れる場合が多く、テーパをつけることにより内部の変位量の傾斜が少ない部位への保持板形成が可能になるからである。側面部に2つの保持部を設けて保持強度を上げ、液漏れを二重に防いだり、空間部に気体を導入したりする場合に、1枚をこのテーパ部に設けることが可能になる。図12は、バネ部の端部をテーパ形状に加工した例を示す図である。なお、図12に示す気泡発生装置1aのうち、図3に示す気泡発生装置1と同じ構成については同じ符号を付して詳しい説明は繰り返さない。
 図12に示すように、バネ部32aは、端部をテーパ形状32bに加工してある。図12に示すように、バネ部32aの端部のうち振動板2に近い側の角をテーパ形状32bに加工することで、圧電素子4の振動をバネ部32aでダンピングさせにくくできる。
 (変形例2)
 第2筒状体33は、図1に示すようにフランジ部33aを設け、フランジ部33aを介して液体槽10を結合させてもよい。これにより、気泡発生装置1と液体槽10とを備える気泡発生システム100において、気泡発生装置1と液体槽10との気密性が高くなる。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1,1a 気泡発生装置、2 振動板、3 筒状体、4 圧電素子、10 液体槽、20 コントローラ、31 第1筒状体、32 バネ部、33 第2筒状体、33a フランジ部、34 つば部、35 第3筒状体、36 錘部、100 気泡発生システム、200 気泡。

Claims (7)

  1.  液体槽に取り付け、前記液体槽の液体中に微細な気泡を発生させる気泡発生装置であって、
     複数の開口部が形成され、一方の面が前記液体槽の液体と接し、他方の面が気体と接する位置に設けられる振動板と、
     前記振動板の一方の端を支持する第1筒状体と、
     前記第1筒状体の他方の端を支持する板状のバネ部と、
     前記第1筒状体を支持する位置より外側にある位置において前記バネ部の一方の端を支持する第2筒状体と、
     前記第2筒状体の他方の端を支持し、前記第2筒状体の位置より外側に伸びる板状のつば部と、
     前記第2筒状体を支持する位置より外側にある位置において前記つば部を一方の端を支持する第3筒状体と、
     前記第3筒状体の他方の端に設けられる錘部と、
     前記第2筒状体により支持される前記バネ部の面に設けられ、前記バネ部を振動させる圧電素子と、を備え、
     前記第3筒状体および前記錘部は、前記圧電素子により前記バネ部を振動させた場合に前記第2筒状体の側面の変位量が所定の範囲内となる位置に設ける、気泡発生装置。
  2.  前記第3筒状体および前記錘部は、前記圧電素子により前記バネ部を振動させた場合に、前記第2筒状体の一方の端に生じる第1の慣性モーメントと、前記第2筒状体の他方の端に生じる第2の慣性モーメントとの差が所定の差となる位置に設ける、請求項1に記載の気泡発生装置。
  3.  前記所定の差は、±3%以内である、請求項2に記載の気泡発生装置。
  4.  前記圧電素子は、前記第2筒状体により支持される側の前記バネ部の面において、前記第2筒状体により支持される位置よりも内側に設けられる、請求項1~請求項3のいずれか1項に記載の気泡発生装置。
  5.  前記圧電素子は、前記第2筒状体により支持される側の前記バネ部の面において、前記第2筒状体の内径の全面に設けられる、請求項1~請求項3のいずれか1項に記載の気泡発生装置。
  6.  請求項1~請求項5のいずれか1項に記載の前記気泡発生装置と、
     前記液体槽と、を備える、気泡発生システム。
  7.  前記気泡発生装置は、前記第2筒状体の側面において前記液体槽と結合されている、請求項6に記載の気泡発生システム。
PCT/JP2021/047550 2021-03-09 2021-12-22 気泡発生装置、および気泡発生システム WO2022190571A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180094844.5A CN116917026A (zh) 2021-03-09 2021-12-22 气泡产生装置以及气泡产生系统
JP2023505125A JPWO2022190571A1 (ja) 2021-03-09 2021-12-22

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-037607 2021-03-09
JP2021037607 2021-03-09

Publications (1)

Publication Number Publication Date
WO2022190571A1 true WO2022190571A1 (ja) 2022-09-15

Family

ID=83226044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047550 WO2022190571A1 (ja) 2021-03-09 2021-12-22 気泡発生装置、および気泡発生システム

Country Status (3)

Country Link
JP (1) JPWO2022190571A1 (ja)
CN (1) CN116917026A (ja)
WO (1) WO2022190571A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023233701A1 (ja) * 2022-05-30 2023-12-07 株式会社村田製作所 気泡発生装置、および気泡発生システム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001197594A (ja) * 1999-10-28 2001-07-19 Murata Mfg Co Ltd 超音波振動装置
JP2004097851A (ja) * 2002-09-04 2004-04-02 Murata Mfg Co Ltd 超音波振動装置
JP2006087984A (ja) * 2004-09-21 2006-04-06 Ngk Insulators Ltd 気泡噴射装置
WO2018207395A1 (ja) * 2017-05-12 2018-11-15 株式会社村田製作所 振動装置
WO2020189271A1 (ja) * 2019-03-19 2020-09-24 株式会社村田製作所 気泡発生装置
WO2020189272A1 (ja) * 2019-03-20 2020-09-24 株式会社村田製作所 気泡発生装置
WO2020189270A1 (ja) * 2019-03-19 2020-09-24 株式会社村田製作所 気泡発生装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001197594A (ja) * 1999-10-28 2001-07-19 Murata Mfg Co Ltd 超音波振動装置
JP2004097851A (ja) * 2002-09-04 2004-04-02 Murata Mfg Co Ltd 超音波振動装置
JP2006087984A (ja) * 2004-09-21 2006-04-06 Ngk Insulators Ltd 気泡噴射装置
WO2018207395A1 (ja) * 2017-05-12 2018-11-15 株式会社村田製作所 振動装置
WO2020189271A1 (ja) * 2019-03-19 2020-09-24 株式会社村田製作所 気泡発生装置
WO2020189270A1 (ja) * 2019-03-19 2020-09-24 株式会社村田製作所 気泡発生装置
WO2020189272A1 (ja) * 2019-03-20 2020-09-24 株式会社村田製作所 気泡発生装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023233701A1 (ja) * 2022-05-30 2023-12-07 株式会社村田製作所 気泡発生装置、および気泡発生システム

Also Published As

Publication number Publication date
CN116917026A (zh) 2023-10-20
JPWO2022190571A1 (ja) 2022-09-15

Similar Documents

Publication Publication Date Title
EP3943184B1 (en) Air bubble generation device
US11389603B2 (en) Vibration systems and methods
WO2021245995A1 (ja) 気泡発生装置、および気泡発生システム
JP4566669B2 (ja) 気泡噴射装置
WO2022190571A1 (ja) 気泡発生装置、および気泡発生システム
AU687136B2 (en) Liquid spray apparatus and method
US20210380448A1 (en) Bubble generator
CN113396011B (zh) 气泡产生装置
WO2022190570A1 (ja) 気泡発生装置、および気泡発生システム
WO2022190865A1 (ja) 気泡発生装置、および気泡発生システム
WO2021245996A1 (ja) 気泡発生装置、および気泡発生システム
WO2023228589A1 (ja) 気泡発生装置、および気泡発生システム
JP2008207054A (ja) 超音波霧化装置及びそれを備えた設備機器
WO2023228588A1 (ja) 気泡発生装置、および気泡発生システム
WO2023233700A1 (ja) 気泡発生装置、および気泡発生システム
CN116897074A (zh) 气泡产生装置以及气泡产生系统
WO2023233701A1 (ja) 気泡発生装置、および気泡発生システム
JP2017096667A (ja) 液体吸引装置及び液体吸引方法
JP2009101267A (ja) 超音波霧化装置
KR20200142627A (ko) 멤브레인과 초음파를 적용한 미세버블 생성장치 및 생성방법
JPS6314654B2 (ja)
WO2007113503A2 (en) Ultrasonic transducer/receiver
JP2008207057A (ja) 超音波霧化装置及びそれを備えた設備機器
JP2018065116A (ja) 集束音場形成装置
JPS59203663A (ja) 霧化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21930416

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023505125

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180094844.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21930416

Country of ref document: EP

Kind code of ref document: A1