WO2022190155A1 - Workpiece processing apparatus - Google Patents

Workpiece processing apparatus Download PDF

Info

Publication number
WO2022190155A1
WO2022190155A1 PCT/JP2021/008858 JP2021008858W WO2022190155A1 WO 2022190155 A1 WO2022190155 A1 WO 2022190155A1 JP 2021008858 W JP2021008858 W JP 2021008858W WO 2022190155 A1 WO2022190155 A1 WO 2022190155A1
Authority
WO
WIPO (PCT)
Prior art keywords
machining
load
processing
value
determination threshold
Prior art date
Application number
PCT/JP2021/008858
Other languages
French (fr)
Japanese (ja)
Inventor
雄基 伊藤
信也 熊崎
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to JP2023504878A priority Critical patent/JPWO2022190155A1/ja
Priority to PCT/JP2021/008858 priority patent/WO2022190155A1/en
Publication of WO2022190155A1 publication Critical patent/WO2022190155A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • G05B19/4065Monitoring tool breakage, life or condition

Definitions

  • This specification relates to a work processing device.
  • Patent Document 1 discloses a machine tool in which an abnormality of a tool is determined by a tool abnormality detection device.
  • the tool abnormality detection device has a threshold value setting switch. When the threshold value setting switch is turned on, the input data is read until the NC information ends or changes, and the read input data (maximum value or average value ), the threshold used for the abnormality detection operation (abnormality determination) is automatically set.
  • the abnormality is determined during machining only after the threshold value setting switch is turned off.
  • the present specification discloses a work processing apparatus capable of automatically setting a judgment threshold used for abnormality judgment and improving convenience.
  • the present specification includes a machining program having a plurality of machining processing instructions that are instructions for machining a workpiece, a machining execution unit that uses a machining tool to machine the workpiece according to the machining program, a detection unit that detects a detectable physical quantity that is a physical quantity related to machining of the workpiece; a storage unit that stores actual detection data actually detected by the detection unit; an associating unit that detects actual detected data by the detecting unit, associates the actual detected data with the processing command, and stores the actual detected data as associated data in the storage unit; and uses the associated data stored by the associating unit. and a setting unit for setting a determination threshold value for determining the state of the detectable physical quantity for each processing command.
  • the work processing apparatus uses the association data that associates the actual detection data with the processing instruction to determine the state of the detectable physical quantity (abnormality determination) for each processing instruction.
  • a threshold can be set. That is, if the work processing device has the association data, it becomes possible to automatically set the determination threshold value without any special operation by the operator. In this way, the work processing apparatus can automatically set the determination threshold used for abnormality determination and improve convenience.
  • FIG. 1 is a front view showing a machine tool 10 to which a work machining device is applied;
  • FIG. 2 is a side view showing the machine tool 10 shown in FIG. 1;
  • 2 is a block diagram showing the machine tool 10;
  • FIG. FIG. 4 is a flow chart showing a program executed by the control device 50 shown in FIG. 3;
  • FIG. 4 is a flowchart showing a program (monitoring range automatic designation subroutine) executed by the control device 50 shown in FIG. 3; It is a figure which shows 50 d of load display screens. It is a figure which shows the axis setting screen 50e. A system setting screen 50f. It is a figure which shows 50 d of load display screens. It is a figure which shows 50 g of axis setting screens. It is a figure which shows 50 h of path setting screens.
  • the machine tool 10 is a work processing device that processes the work W.
  • the machine tool 10 includes a main body 11, a pair of main spindles 20a and 20b, a pair of tool rests 30a and 30b, and a pair of work transfer robots (hereinafter simply referred to as robots) 40a and 40b. , and a control device 50 for controlling the spindles 20a, 20b, the tool stands 30a, 30b, and the work transfer robots 40a, 40b.
  • the main shaft 20a holds the workpiece W rotatably.
  • the main shaft 20a is rotatably supported by a headstock (not shown) provided in the main body 11 so as to be arranged horizontally along the left-right direction (Z-axis direction) in FIG.
  • a spindle chuck 21 for detachably holding a workpiece W is provided at the tip of the spindle 20a.
  • the spindle chuck 21 has a plurality of gripping claws 21a, and can grip the workpiece W by closing these gripping claws 21a and release the workpiece W by opening them.
  • the opening and closing of the spindle chuck 21 is carried out according to instructions from the control device 50 .
  • the main shaft 20a is rotationally driven by a servomotor 22 (see FIG. 3).
  • the current (driving current) of the servomotor 22 is detected by a current sensor 23 (see FIG. 3), and the detection result (detected current value) is output to the control device 50 which will be described later.
  • the main shaft 20b is configured similarly to the main shaft 20a.
  • the tool rest 30a is a device that gives a feed motion to the cutting tool 31, which is a processing tool.
  • the tool rest 30a is a so-called turret-type tool rest, and has a tool holder 32 to which a plurality of cutting tools 31 for cutting the workpiece W are mounted.
  • the tool holding part 32 is rotatably supported by a rotary drive part (not shown) and can be positioned at a predetermined cutting position.
  • the tool table 30a and the cutting tool 31 are moved by a tool table moving device 33 along the left-right direction (X-axis direction) and the front-rear direction (Z-axis direction) in FIG.
  • the tool rest moving device 33 includes an X-axis driving device 33a (see FIG. 3; X-axis driving axis, sometimes simply referred to as X-axis) for moving the tool rest 30a along the X-axis direction, and a tool rest It has a Z-axis drive device 33b (see FIG. 3; it is a Z-axis drive shaft and may be simply referred to as the Z-axis in some cases) for moving 30a along the Z-axis direction.
  • the X-axis driving device 33a is rotationally driven by a servomotor 33a1 (see FIG. 3).
  • the current (driving current) of the servomotor 33a1 is detected by a current sensor 33a2 (see FIG.
  • the Z-axis driving device 33b is rotationally driven by a servomotor 33b1 (see FIG. 3).
  • a current (driving current) of the servomotor 33b1 is detected by a current sensor 33b2 (see FIG. 3), and the detection result (detected current value) is output to the control device 50, which will be described later.
  • the tool table 30b is configured similarly to the tool table 30a.
  • the spindle 20a and the tool rest 30a described above constitute a processing section 35a for processing the workpiece W.
  • the spindle 20b and the tool rest 30b described above constitute a processing section 35b for processing the workpiece W. As shown in FIG.
  • the robots 40a and 40b are capable of running on the same running platform, respectively, and are capable of loading and unloading the workpieces W to and from the spindles 20a and 20b and the workpiece mounting device 60, respectively.
  • the work placement device 60 is a device capable of placing a work W thereon. on a mounting surface, a reversing/shifting device for reversing or shifting the attitude of the work W carried out from the machine tool 10, and the like.
  • the robot 40a has a traveling portion 41 for causing itself to travel (movement along the X axis), a gripping portion 42 for detachably gripping the workpiece W, and relatively moving the gripping portion 42 with respect to the traveling portion 41.
  • a gripping portion moving portion 43 is provided.
  • the robot 40a is, for example, a three-axis orthogonal robot (three-axis gantry robot).
  • the robot 40a is not limited to an orthogonal robot, and may be a vertical articulated robot, a horizontal articulated robot (scalar type robot), or a parallel link robot.
  • the robot 40b is configured similarly to the robot 40a.
  • the traveling portion 41 includes a traveling portion slider 41a (which may also be referred to as an X-axis slider), a guide portion 41b which is a traveling platform for guiding and traveling the traveling portion slider 41a, and a traveling portion.
  • a traveling drive device (not shown) is provided for driving the slider 41a to travel.
  • the gripping portion 42 and the gripping portion moving portion 43 can be mounted on the traveling portion slider 41a. It is reciprocated (linearly moved) along the traveling portion slider 41a. It is reciprocated (linearly moved) along the traveling portion slider 41a. It is reciprocated (linearly moved) along the traveling portion slider 41a. It is reciprocated (linearly moved) along the
  • the guide portion 41b is provided on the main body 11 and arranged above the main shafts 20a and 20b and the tool stands 30a and 30b.
  • One end (the left end in FIG. 1) of the guide portion 41b extends right above the work placement device 60 installed on the left side of the main body 11.
  • the other end (the right end in FIG. 1) of the guide portion 41b extends right above the work placement device 60 installed on the right side of the main body 11.
  • a travel drive shaft (X-axis drive shaft) is composed of the travel portion slider 41a and the guide portion 41b.
  • the traveling drive device is provided on the side of the traveling portion slider 41a or the guide portion 41b.
  • the grip part 42 is rotatably connected to the Y-axis slider 45a via the rotation driving part 42b.
  • the grip portion 42 has a triangular prism-shaped main body 42a having two orthogonal side surfaces and the remaining side surface.
  • One side of the two orthogonal sides is a plane parallel to the XZ plane, and is provided with a robot chuck 42c that detachably holds the workpiece W.
  • the other side surface is a plane parallel to the XY plane, and is provided with a robot chuck 42d that detachably holds the workpiece W.
  • the main body 42a is rotatable by the rotation drive section 42b, and each robot chuck 42c, 42d can be rotated between two positions (Y-axis direction downward position and Z-axis direction inner position).
  • the gripping unit 42 moves the workpiece W onto the mounting surface facing upward in the Y-axis direction (for example, the mounting surface of the workpiece mounting device 60) by positioning the robot chucks 42c and 42d downward in the Y-axis direction. can be delivered.
  • the gripping section 42 has a mounting surface facing the front side in the Z-axis direction (for example, the mounting surfaces of the main shaft chucks 21 of the main shafts 20a and 20b).
  • the workpiece W can be delivered to and received from.
  • the robot chucks 42c and 42d have a plurality of gripping claws (not shown), and can grip the workpiece W by closing the gripping claws and release the workpiece W by opening the gripping claws.
  • the robot chucks 42 c and 42 d are opened and closed according to instructions from the controller 50 .
  • a rotary drive portion 42b provided on the inclined surface of the tip (lower end) of the Y-axis slider 45a is attached (connected) to the remaining side surface of the main body 42a.
  • the remaining side surfaces of the main body 42a are arranged parallel to the inclined surface at the tip of the Y-axis slider 45a.
  • the rotary drive section 42b has a rotary drive shaft 42e provided in the rotary drive section 42b and a rotary drive device (not shown) that rotationally drives the rotary drive shaft 42e.
  • the gripping portion moving portion 43 moves the gripping portion 42 relative to the traveling portion slider 41a along the horizontal direction (Z-axis direction) and the vertical direction (Y-axis direction) in FIG.
  • the gripping portion moving portion 43 has a Z-axis driving portion 44 that moves the gripping portion 42 along the Z-axis direction, and a Y-axis driving portion 45 that moves the gripping portion 42 along the Y-axis direction.
  • the Z-axis driving section 44 moves a Z-axis slider 44a slidably attached to the traveling section slider 41a along the Z-axis direction.
  • the Z-axis driving section 44 includes a Z-axis slider 44a, a Z-axis guide section 44b for guiding and moving the Z-axis slider 44a, and a Z-axis guide section 44b for moving and driving the Z-axis slider 44a. and a driving device (not shown).
  • the Z-axis slider 44a can mount the Y-axis driving portion 45 and the gripping portion 42, extends in the left-right direction (Z-axis direction) in FIG. 2, and is guided by the Z-axis guide portion 44b. It is reciprocated (linearly moved) along the Z-axis direction.
  • the Z-axis guide portion 44b is provided on the traveling portion slider 41a.
  • the Z-axis driving device is provided on the Z-axis guide portion 44b or the Z-axis slider 44a.
  • the Y-axis driving section 45 moves along the Y-axis direction a Y-axis slider 45a (on which the grip section 42 is supported) slidably attached to the Z-axis slider 44a.
  • the Y-axis driving section 45 includes a Y-axis slider 45a, a Y-axis guide section 45b for guiding and moving the Y-axis slider 45a, and a Y-axis guide section 45b for moving and driving the Y-axis slider 45a. and a driving device (not shown).
  • the Y-axis slider 45a can mount the grip portion 42, and extends along the vertical direction (Y-axis direction) in FIG. Reciprocating motion (linear motion) is performed.
  • the Y-axis guide portion 45b is provided on the Z-axis slider 44a.
  • the Y-axis driving device is provided on the Y-axis guide portion 45b or the Y-axis slider 45a.
  • the control device 50 is a control device that drives and controls the spindles 20a and 20b, the tool stands 30a and 30b, and the robots 40a and 40b. In particular, the control device 50 performs drive control of the spindles 20a and 20b and the tool rests 30a and 30b.
  • the control device 50 as shown in FIG. 3, is connected to an input device 50a, a display device 50b, a storage device 50c, current sensors 23, 33a2, 33b2 and servo motors 22, 33a1, 33b1.
  • the input device 50 a is provided on the front surface of the machine tool 10 and is used by the operator to input various settings and instructions to the control device 50 .
  • the display device 50b is provided on the front surface of the machine tool 10, and is used to display information such as operating conditions and maintenance conditions to the operator.
  • the storage device 50c stores data relating to the control of the machine tool 10, such as control programs (machining programs), parameters used in the control programs, data relating to various settings and instructions, actual detection data, association data, and the like. (storage unit).
  • the control device 50 has a microcomputer (not shown), and the microcomputer has an input/output interface, a CPU, a RAM and a ROM (all not shown) connected via a bus. The CPU executes various programs to acquire data, detection signals, control information, etc.
  • the RAM temporarily stores variables necessary for executing the program, and the ROM stores the program.
  • control device 50 performs processing according to this flowchart.
  • step S102 the control device 50 determines whether or not there is an instruction to start machining a new workpiece W (predetermined number) in the machine tool 10.
  • the control device 50 determines that there has been an instruction to start machining the work W ("YES” in step S102), and steps the program. Proceed to S104. If the machining program for machining the work W has not been newly started, the control device 50 determines that there has been no instruction to start machining the work W ("NO" in step S102), and The determination process of step S102 is repeatedly performed until there is an instruction to start machining.
  • step S104 the control device 50 determines whether or not there is an instruction to end the previously started machining (predetermined number) of the workpieces W.
  • the control device 50 determines that there has been an instruction to finish machining the work W ("YES” in step S104), and ends this flowchart. If the machining program has not ended, the control device 50 determines that there has been no instruction to finish machining the workpiece W ("NO" in step S104), and advances the program to step S106.
  • step S106 the control device 50 performs machining of the workpiece W according to the machining program (machining executing section).
  • the machining program includes one or more machining instructions (small machining steps) for machining (machining) the workpiece W with the cutting tool 31 and non-machining instructions for not machining the workpiece W, and the control device 50 , processing and non-processing are performed according to the order of the processing program.
  • Processing includes cutting and grinding.
  • For cutting processing there is turning processing in which a cutting tool is applied to a rotating work W by using a lathe or turning center, milling processing in which a rotating cutting tool is applied to a fixed work W by using a machining center or milling machine. It includes drilling by applying a rotating drill to a workpiece W fixed by using a machining center or a drilling machine.
  • the machining processing command is a command (command) for carrying out machining processing.
  • the machining program is in units of one line, and the number of program lines is 5, 7, 9, and 10 shown in the load display screen 50d of FIG. 6.).
  • the non-processing instruction includes a designated processing instruction for designating a processing instruction that is the object of determination (load monitoring) of the state of the processing load (detectable physical quantity described later).
  • the specified processing command is, for example, a block containing "M130", which is a command for starting load detection, "M131", which is a command for ending load detection, among the M codes. This is indicated by 6 and 11 program lines shown on the display screen 50d.
  • the load display screen 50d of FIG. 6 shows a case where the maximum value (maximum load) and the average value (average load) of the load detection values are within the normal range.
  • M code is an auxiliary function that turns the machine function on and off.
  • M130 also indicates a place to start load detection and can be called a designated start processing command
  • M131 also indicates a place to end load detection and can be said to be a designated end processing command.
  • a range sandwiched between "M130” and “M131” is defined as a "path” indicating a load monitoring target location. Also, since a path includes a plurality of sub-processes (program lines), it is called an in-process process.
  • the load display screen 50d includes a program display field 50d1, a maximum load display field 50d2, an average load display field 50d3, a target drive axis display field 50d4, a next pass switch 50d5, a previous pass switch 50d6, a program display operation switch group 50d7, and A return switch 50d8 is provided.
  • the program display column 50d1 is a column for displaying a machining program for each program line (block).
  • the maximum load display field 50d2 is a field for displaying, in each line of the machining program, the maximum load, which is the maximum value among the load data respectively associated with the programs shown in that line.
  • the average load display column 50d3 is a column for displaying the average load, which is the average value of the load data associated with the program shown in each line of the machining program.
  • the target drive axis display field 50d4 is a field for displaying the drive axis of the load data displayed in the maximum load display field 50d2 and the average load display field 50d3. In FIG. 6, the maximum load and average load on the X-axis are displayed for each program line (machining processing command).
  • the next pass switch 50d5 is displayed as “next M130” and is a switch for indicating the next pass in the machining program in the program display column 50d1.
  • the previous pass switch 50d6 is displayed as "previous M130” and is a switch for indicating the previous pass in the machining program in the program display column 50d1.
  • the program display operation switch group 50d7 is a switch for jumping to the top line, scrolling upward, jumping to the last line, or scrolling downward the program line displayed in the program display column 50d1. have.
  • the return switch 50d8 is a switch for returning from the load display screen 50d to the previous screen.
  • the control device 50 detects the processing load, which is a detectable physical quantity related to the processing of the workpiece W, as actual detection data (detection unit).
  • the machining load is a load generated when the workpiece W is cut (machined) by the cutting tool 31, and is a physical quantity (machining resistance) that acts as resistance to machining.
  • the machining load is the force and energy consumed by the workpiece W and the cutting tool 31 (driven side) that generate machining resistance to the driving side (in this embodiment, each servomotor described above). It is the magnitude of , for example, the torque load applied to the drive shaft.
  • the detectable physical quantity is not limited to the machining load, and may be current consumption or power consumption of the servomotor.
  • step S108 the control device 50 acquires from the current sensor 23 that detects the drive current of the servomotor 22 for driving the spindle 20a (or 20b), and from the detected current, the machining load of the servomotor 22 (main spindle 20a).
  • the torque load spindle machining load
  • the machining load is derived as the machining load corresponding to the detected current by using a map or an arithmetic expression showing the correlation between the drive current and the machining load. This correlation is such that the drive current increases as the machining load increases.
  • the X-axis machining load which is the machining load of the servo motor 33a1
  • the Z-axis machining load which is the machining load of the servo motor 33b1
  • the processing load is detected every predetermined short time (sampling period in this embodiment is several milliseconds (for example, 8 milliseconds)).
  • the machining load is detected at a plurality of predetermined machining points in a series of machining programs (machining processes). can be detected respectively. That is, even in machining sub-processes corresponding to a plurality of machining processing commands included in the machining program, the machining load is detected at a plurality of predetermined machining points. processing command), it is possible to detect the machining load at the same machining point for each workpiece W.
  • the machining load can be detected in the machining process during machining (machining process in units of passes (machining processing command)) as well as in the small machining process.
  • each machining point (sampling point) of the load data (sampling data) of the first workpiece machining and each machining point (sampling point) of each sampling data of the second and subsequent workpiece machining are all the same machining points.
  • a machining point is, for example, an arbitrary machining place during a machining step or a machining sub-step (further, a machining step), and may be a machining time, that is, an elapsed time from a machining start time.
  • the control device 50 stores the plurality of detected processing loads (actual detection data) as a series of load data in the storage device 50c (storage unit).
  • Actual detection data are stored at machining points (at sampling intervals) for each workpiece W to be machined.
  • the load data for each workpiece W can be stored in association with the machining point. That is, the load data can be associated with the machining sub-step (further, the machining process) via the machining point, and can be associated with the machining instruction associated with the machining sub-step. Furthermore, the load data can be associated with machining instructions associated with the machining process.
  • control device 50 detects the actual detection data in step S108 (detection unit) for each processing instruction, associates the actual detection data with the processing instruction, and stores the association data in the storage device 50c ( association part).
  • the load data is actually detected data included in the load monitoring range on a block-by-block basis and further on a path-by-path basis (a unit of collecting blocks whose load is to be monitored).
  • the processing of steps S106 to S110 described above is processing for sampling the load data.
  • the control device 50 automatically designates a monitoring range for monitoring the state of the processing load (detectable physical quantity) (step S114: automatic designation unit).
  • the monitoring range is a range for monitoring (determining) the state of the machining load (detectable physical quantity) along the machining process (machining program). If the load detection value is within the upper and lower limit value range of the monitoring range (the judgment threshold range defined by the judgment threshold value), the processing load is in a normal state, and the upper and lower limit value range (judgment threshold range) If outside, the processing load is abnormal.
  • the monitoring range is a range from a monitoring start point at which monitoring is started to a monitoring end point at which monitoring is terminated in the direction along the machining process (this range may be referred to as a monitoring section).
  • the monitoring range is defined by an upper limit value and a lower limit value in the direction along the magnitude of the machining load.
  • the abnormal state includes an abnormal state that requires the work to be stopped and a warning state in which the work is not necessary until the work is stopped and a warning is issued while the work is continued.
  • step S110 the control device 50 advances the program to step S112 and determines whether or not the flag F1 is 1.
  • the control device 50 determines that the flag F1 is "0" from the start of machining of the workpiece W to the end of the automatic designation of the monitoring range, determines "NO” in step S112, and executes the program. Proceed to step S114.
  • the control device 50 sets the flag F1 to "1" (step S118), determines "YES” in step S112, and processes steps S114 and S116. is omitted, and the program proceeds to step S120 and subsequent steps.
  • the flag F1 is a flag indicating whether or not the automatic designation of the monitoring range has been completed. When the flag F1 is "1", it indicates that the automatic designation of the monitoring range has been completed. When it is "0”, it indicates that the automatic designation of the monitoring range has not been completed. Note that the flag F1 is set to "0" when there is an instruction to start machining the workpiece.
  • step S116 the control device 50 determines whether or not the automatic designation of the monitoring range has ended. When the automatic designation of the monitoring range is completed, the control device 50 determines "YES" in step S116, advances the program to step S118, and sets the flag F1 to 1. If the automatic designation of the monitoring range has not been completed, the control device 50 determines "NO" in step S116, returns the program to step S114, and executes the automatic designation of the monitoring range.
  • the control device 50 executes the monitoring range automatic designation subroutine shown in FIG.
  • the control device 50 automatically sets the monitoring range in step S202. That is, the control device 50 sets the monitoring range for each path (processing instruction group specified by the specified start processing instruction) included in the machining program. Specifically, when a path is included in the machining program, the control device 50 determines that the process during machining by that path is within the monitoring range. , it is determined that the process by that path cannot be the monitoring range. For example, as shown in FIG. 6, the machining program includes "M130", which is the specified start processing command in the M code, so the control device 50 controls the machining corresponding to the path including this specified start processing command. It becomes possible to automatically set the middle process as the monitoring range. In this way, in step S114, the control device 50 can search for a specified processing command and automatically set the processing command specified by the searched specified processing command in the monitoring range.
  • the monitoring range may be set for each block.
  • the control device 50 sets the monitoring range for each processing instruction (block) included in the machining program based on the processing instruction type. Specifically, when a block contains a processing command, the control device 50 determines that the processing sub-steps of that block (processing block) are within the monitoring range. If a non-processing instruction is included, it is determined that the process by that block (non-processing block) cannot be within the monitoring range. For example, program lines 5, 7, 9, and 10 shown in the load display screen 50d of FIG. Therefore, the control device 50 can automatically set the processing substep corresponding to the block containing this processing execution command as the monitoring range.
  • step S204 the control device 50 acquires the load data (machining data) linked (associated) with the machining point and thus the process during machining (or the sub-process of machining) from the storage device 50c. Then, in step S206, the control device 50 associates the automatically preset monitoring range (path) with the load data.
  • the monitoring range (path) is linked (associated) with the processing point, and the load data is also linked with the processing point.
  • the control device 50 can associate the monitoring range (path) and the load data via the processing points. Consequently, the control device 50 can associate the machining program with the load data. After that, the control device 50 terminates the processing of this subroutine.
  • step S120 Automatic setting of upper and lower limits of monitoring range (threshold for judgment)
  • the control device 50 is in the judgment threshold automatic setting mode for automatically setting the judgment threshold after the automatic designation of the monitoring range (for example, the automatic setting switch 50e4 (see FIG. 7) is turned on) If so ("YES" is determined in step S124), the upper and lower limits (threshold values for determination) of the specified monitoring range are automatically set (setting unit; step S128).
  • the determination threshold value automatic setting mode is not set (for example, if the automatic setting switch 50e4 is not turned on (determined as "NO” in step S124))
  • notification to the effect that the automatic setting switch 50e4 is turned on is provided. It implements (notification part; step S126).
  • the control device 50 can set the operation mode to the determination threshold value automatic setting mode when the automatic setting switch 50e4 is turned on.
  • step S124 the control device 50 determines whether or not the operation mode is the determination threshold value automatic setting mode based on whether or not the automatic setting switch 50e4 is turned on.
  • the automatic setting switch 50e4 is a determination threshold value setting switch for automatically setting the determination threshold value in a later-described setting unit (step S128).
  • the automatic setting switch 50e4 is displayed on the axis setting screen 50e shown in FIG.
  • the axis setting screen 50e is a screen displayed on the display device 50b, and is a screen for setting parameters related to drive axes such as the X axis, the Z axis, and the main axes 20a and 20b.
  • the axis setting screen 50e (display device 50b) is a touch panel, and can be input by the operator's operation, so it also functions as an input device.
  • the automatic setting switch 50e4 is a switch that is switched by tapping. When turned “ON”, the switch itself appears to be recessed, and when turned “OFF”, the switch itself appears to be flattened.
  • the automatic setting switch 50e4 may switch colors.
  • the judgment threshold is a value for judging the state of the processing load (detectable physical quantity).
  • the determination thresholds are the upper limit of the maximum load (two types), which is the maximum value of the processing load, the upper limit of the average load (two types), which is the average value of the processing load, and the lower limit of the average load. Adoptable.
  • the upper limit value of the maximum load is divided into an upper limit value for abnormal conditions that is determined to be an abnormal condition that requires the machine tool 10 to stop machining the workpiece, and an abnormal condition that requires a warning without stopping the workpiece machining of the machine tool 10 ( It has a warning upper limit value for determining that it is in a warning state.
  • the average load upper limit also has an abnormal upper limit and a warning upper limit.
  • the lower limit value of the average load is a value determined as an abnormal state (warning state) requiring a warning even before the machining of the machine tool 10 is stopped.
  • the lower limit value of the average load may be a value for determining an abnormal state that requires stopping the machining of the machine tool 10 .
  • the lower limit value of the minimum load which is the minimum value of the machining load, may be adopted.
  • step S126 in order to prompt the operator to press the automatic setting switch 50e4, the control device 50 displays on the display device 50b that the automatic setting switch 50e4 is turned on, or emits a voice message from the speaker. In this manner, the control device 50 notifies the operator to press the automatic setting switch 50e4 when the automatic setting switch 50e4 is not pressed (notification unit).
  • the automatic setting switch 50e4 is preferably turned on when the machine tool 10 is installed or before the first machining. According to this, when the machining process of the machine tool 10 is performed, the operator is not required to press the automatic setting switch 50e4, and the trouble of pressing the automatic setting switch 50e4 during the machining process can be saved. It becomes possible. It is also possible to omit the installation of the automatic setting switch 50e4 and always automatically set the determination threshold value (always set the determination threshold value automatic setting mode). In this case, the processing of steps S124 and S126 may be omitted.
  • the control device 50 When the automatic setting switch 50e4 is pressed, in other words, when the judgment threshold value automatic setting mode is set, the control device 50 completes the automatic designation of the monitoring range (monitoring section), and the designated monitoring range is set. Upper and lower limits (threshold values for judgment) are automatically set (step S128). First, the control device 50 performs machining of the workpiece W (workpiece machining) N times, and uses load data (actual detection data) for N times to set the upper and lower limit values (determination threshold) of the monitoring range. Set automatically.
  • control device 50 performs the first to N-th workpiece machining, stores the load data for each workpiece machining (determines "NO” in steps S120 and S122, respectively), and stores the load data for each workpiece machining. (After determining "NO”, “YES” and “YES” in steps S120, 122 and 124, step S128). At this time, in step S128, the control device 50 sets an upper limit value and a lower limit value (determination threshold value) of the monitoring range for each block (machining program line) to be monitored.
  • step S128, the control device 50 uses the association data stored in step S110 (association unit) to determine for each machining instruction (program line) during the machining of the workpiece in step S106 (machining execution unit). (setting unit). Specifically, the control device 50 calculates the maximum value (maximum load) and/or the average value (average load) of the load data (actual detection data) for each processing command (see FIG. 6), and calculates A determination threshold is set from the maximum load and/or the average load. The determination threshold can be calculated by adding or subtracting a preset (input) predetermined value to or from the maximum value and/or average value of the actual detection data. The predetermined value can be input by the operator on a screen 50f (system setting screen) shown in FIG. The predetermined value is not limited to input by the operator, and may be received as data. Furthermore, the control device 50 can set the determination threshold for the processing command designated by the designated processing command retrieved in step S114.
  • the system setting screen 50f is a screen for setting a determination threshold value, and is an abnormal value addition value for inputting (setting) an abnormal value addition value that is a predetermined value of an abnormal value.
  • a lower limit additional value box 50f3 is provided for this purpose. Numerical input to these boxes 50f1 to 50f3 is performed by the operator, for example, using a ten-key input.
  • "100" is input to the abnormal value additional value box 50f1
  • "50” is input to the warning value additional value box 50f2
  • "50” is input to the lower limit value additional value box 50f3.
  • ' is entered. It should be noted that it is preferable to input a value larger than the additional value for warning value as the additional value for abnormal value. If the additional value for warning value is greater than the additional value for abnormal value, a warning to that effect may be issued.
  • the system setting screen 50f also includes an upper limit valid box 50f4 indicating that the setting of the upper limit of the maximum load is valid, an upper limit invalid box 50f5 indicating that the setting of the upper limit of the maximum load is invalid, an average load average value valid box 50f6 indicating that the setting of the upper limit value (average value) of the average load is valid, average value invalid box 50f7 indicating that the setting of the upper limit value (average value) of the average load is invalid, setting of the lower limit value
  • a lower limit valid box 50f8 indicating that the setting of the lower limit is valid and a lower limit invalid box 50f9 indicating that the setting of the lower limit is invalid are provided.
  • "@” is entered in the upper limit valid box 50f4, and the automatic setting of the upper limit of the maximum load is valid. Furthermore, “@” is entered in the average value valid box 50f6, and the automatic setting of the upper limit value of the average load is valid. “@” is entered in the lower limit valid box 50f8, and the automatic setting of the lower limit of the average load or the minimum load is valid.
  • the system setting screen 50f is provided with a save switch 50fa.
  • the save switch 50fa is a switch for saving the valid/invalid setting and the addition value input on the system setting screen 50f. Save the input contents of the addition value.
  • step S128, the control device 50 calculates the maximum value (maximum load), the minimum value, and the average value (average load) among the load detection values for N machining points related to the machining command for each machining command. do. Furthermore, the control device 50 can calculate and set an abnormal upper limit value (for maximum load), which is a determination threshold value, by adding the abnormal value addition value to the maximum load for each processing command. The control device 50 can calculate and set a warning upper limit value (for maximum load), which is a determination threshold value, by adding the warning value additional value to the maximum load for each processing command. In addition, the control device 50 can calculate and set an abnormal upper limit value (for average load), which is a determination threshold value, by adding an abnormal value additional value to the average load for each processing command. The control device 50 can calculate and set a warning upper limit value (for average load), which is a determination threshold value, by adding the warning value additional value to the average load for each processing command. The control device 50 can calculate and set a warning upper limit value (for average load), which is a determination
  • control device 50 can calculate and set the lower limit value, which is the determination threshold value, by adding the additional value for lower limit value to the average load (or minimum load) for each processing command.
  • the control device 50 can calculate and set the lower limit value, which is the determination threshold value, by adding the additional value for the lower limit value to the average load (or the minimum load) for each processing command. Since the low adder is set to a negative value, adding the low adder to the average load (or min load) will result in subtracting the low adder from the average load (or min load). It is to be.
  • the set determination threshold can be confirmed on the axis setting screen 50g displayed for each axis, as shown in FIG. In FIG. 10, it is possible to display the determination threshold for the X-axis for each pass.
  • the axis setting screen 50g is provided with a judgment threshold display field 50g1, an axis display field 50g2, a work No. display field 50g3, a program display switch 50g4, and a judgment threshold display operation switch group 50g5.
  • the work No. which is the management number of the work, the tool No. used for machining the work, and the type of drive axis related to machining are associated with the load data.
  • the judgment threshold value display column 50g1 is a column for displaying the judgment threshold value for each pass. load), the maximum load among the load data used to calculate the threshold for judgment, the upper limit for abnormality (for average load), the upper limit for warning (for average load), the lower limit for warning, and , displays the average load, which is the average of the load data used to calculate the judgment threshold.
  • the axis display field 50g2 displays the axis on which the determination threshold value is displayed (load data is stored).
  • the work No. display column 50g3 displays the management number of the work for which the determination threshold value is displayed (load data is stored).
  • the program display switch 50g4 is a switch for switching the screen to a screen (for example, the load display screen 50d shown in FIG. 6) in which the program line (or path) in which the machining load is detected is displayed.
  • the determination threshold display operation switch group 50g5 has switches for scrolling upward or downward the lines displayed in the determination threshold display column 50g1.
  • the set determination threshold can be confirmed on the path setting screen 50h displayed for each path, as shown in FIG. In FIG. 11, it is possible to display the determination threshold value for a predetermined path for each axis.
  • the pass setting screen 50h is provided with a judgment threshold display field 50h1, a pass display field 50h2, a work No. display field 50h3, a tool No. display field 50h4, a program display switch 50h5, and a judgment threshold display operation switch group 50h6. .
  • the determination threshold value display field 50h1 is a field for displaying the determination threshold value for each axis. ), the maximum load among the load data used to calculate the threshold for judgment, the upper limit for abnormality (for average load), the upper limit for warning (for average load), the lower limit for warning, and judgment Displays the average load, which is the average of the load data used to calculate the threshold for
  • the path display column 50h2 displays the path No. for which the determination threshold value is displayed (load data is stored).
  • the work No. display column 50h3 displays the management number of the work for which the determination threshold value is displayed (load data is stored).
  • the tool No. display column 50h4 displays the management number of the cutting tool for which the determination threshold value is displayed (load data is stored).
  • the program display switch 50h5 is a switch for switching the screen to a screen (for example, the load display screen 50d shown in FIG. 6) displaying the program line (or path) in which the machining load is detected.
  • the judgment threshold display operation switch group 50h6 has switches for scrolling upward or downward the lines displayed in the judgment threshold display column 50h1.
  • the axis setting screen 50g shown in FIG. 10 and the path setting screen 50h shown in FIG. It is possible to highlight and display the location where the abnormal state or warning state has occurred. For example, when the maximum load of the path with the path No. 3 on the X-axis is in an abnormal state, the maximum load column and the abnormal upper limit value (max load) column is highlighted. When the average load of the path whose path number is 4 on the X axis is in a warning state, the average load column and the warning upper limit value (average load ) column is highlighted.
  • the axis setting screen 50g shown in FIG. 10 and the path setting screen 50h shown in FIG. 11 it is possible to manually change the determination threshold.
  • the part to be changed can be specified, and the change can be made by inputting with the numeric keypad.
  • the control device 50 sets the flag F2 to 1 in step S130.
  • the flag F2 is a flag indicating whether or not the upper and lower limit values of the monitoring range have been set by the load data for N times. When the flag F2 is "1", it indicates that the upper and lower limit values of the monitoring range have been set. , and indicates that the upper and lower limits of the monitoring range have not been set when the flag F2 is "0". Note that the flag F2 is set to "0" when there is an instruction to start machining the workpiece.
  • step S120 it is determined whether or not the flag F2 is 1.
  • the control device 50 determines that the flag F2 is "0" and “NO” in step S120 until the upper and lower limit values of the monitoring range are set after the machining of the workpiece W is started.
  • the control device 50 sets the flag F2 to "1", determines "YES” in step S120, and omits the processing of steps S122 to S130.
  • the program proceeds from step S132 onwards.
  • step S122 it is determined whether or not the above-described workpiece machining, machining load detection, and load data storage have been performed N times.
  • the control device 50 determines that the workpiece machining has not been completed N times after the first workpiece machining is started and before the Nth workpiece machining is completed ("NO” in step S122). ”), and the program returns to step S104.
  • control device 50 determines that the workpiece machining has been completed N times ("YES" in step S122), and advances the program to step S124.
  • step S132 the control device 50 determines whether or not the load detection value, which is the processing load detected after setting the threshold for determination, is within the normal range (threshold range for determination) of the monitoring range (monitoring interval). .
  • control device 50 determines that the load detection value is within the normal range of the monitoring range ("YES" in step S132)
  • control device 50 returns the program to step S104, and performs the series of steps S104 to S110 described above. are carried out according to the order of the machining program.
  • the normal range of the monitoring range is a range smaller than the abnormal upper limit value and the warning upper limit value for the maximum load and greater than the warning lower limit value, and the abnormal upper limit value and the warning upper limit value for the average load. A range that is less than and greater than the lower warning limit.
  • step S134 the control device 50 determines that the load detection value is within the abnormal state range. or in the warning state range.
  • the control device 50 determines that the load detection value is smaller than the abnormal upper limit value for maximum load and larger than the warning upper limit value for maximum load, or is smaller than the abnormal upper limit value for average load. If the range is greater than the warning upper limit value for average load, it is determined to be within the warning state range ("YES" in step S134), and the program proceeds to step S136 and subsequent steps. After that, the control device 50 issues a warning (step S136), then returns the program to step S104, and continues workpiece machining while issuing a warning.
  • steps S132 and S134 it is determined whether or not the load detection value is within the threshold range for determination. It may be determined whether or not it is within the determination threshold range, and whether or not the average value (average load) of the load detection values is within the determination threshold range for the average load.
  • step S134 if the load detection value is in a range larger than the abnormal upper limit value for maximum load or in a range larger than the abnormal upper limit value for average load, the control device 50 determines that the warning state is reached. It is determined that it is within the range ("NO" at step S134), machining of the workpiece W is stopped (step S138), and a warning is issued (step S140), after which this flow chart ends.
  • step S136 or step S140 the control device 50 automatically displays the load display screen 50d shown in FIG.
  • the load display screen 50d shown in FIG. 9 an abnormality is displayed at the maximum load and a warning is displayed at the average load. In either case, the maximum load or average load values are highlighted.
  • the program of 9 program lines it is shown that the detected load value exceeded the upper limit value for abnormalities of the maximum load and was judged to be abnormal.
  • the program of 10 program lines it is shown that it is determined that a warning is necessary because the load detection value has exceeded the warning upper limit value of the average load.
  • the machining program sandwiched between the M code for starting load detection and the M code for ending load detection is extracted, and the maximum load and average load are displayed for each program line of the extracted machining program (for each program line). be able to. Furthermore, it is possible to display together the locations where anomalies occur in the maximum load and the average load. Therefore, since the error occurrence location is displayed for each program line, the operator can refer to the displayed error occurrence location and perform more detailed cause analysis.
  • control device 50 manually designates a monitoring range (monitoring range section (monitoring section)) from among the monitoring ranges automatically designated in step S114, and also manually designates the designated monitoring range judgment threshold value (monitoring section). It is possible to manually adjust the upper and lower limit values automatically set in step S128 previously. As a result, the operator can perform a series of manual operations to first specify the monitoring range that requires the monitoring function from among the monitoring ranges, and then adjust the judgment threshold for the specified monitoring range. Become. As a result, the monitoring range can be specified and adjusted more easily. Note that the section designation of the monitoring range and the adjustment of the determination threshold value may be performed by separate operations instead of continuous operations.
  • the determination threshold can be adjusted by the operator's manual input on the axis setting screen 50g shown in FIG. Also, the adjustment of the determination threshold can be performed by the operator's manual input on the path setting screen 50h shown in FIG. In either case, the threshold value for determination to be adjusted may be specified and changed by inputting the numeric keypad.
  • the work machining apparatus (machine tool 10) uses a machining program having a plurality of machining processing commands, which are commands for machining a work W, and a cutting tool 31 (machining tool).
  • a machining execution unit (control device 50; step S106) that performs machining of W according to a machining program, and a detection unit that detects a detectable physical quantity (machining load) that is a physical quantity related to machining of the workpiece W.
  • control device 50; step S108 a storage unit (storage device 50c) that stores actual detection data actually detected in step S108; Using the association unit (control device 50; step S110) that associates the detected data with the processing instruction and stores it in the storage device 50c as association data, and the association data stored in step S110, processing is performed for each processing instruction. and a setting unit (control device 50; step S128) for setting a determination threshold value for determining the state of the load.
  • the machine tool 10 uses association data that associates actual detection data with processing instructions to determine the state of the processing load (abnormality determination) for each processing instruction.
  • a threshold can be set. That is, if the machine tool 10 has the association data, it becomes possible to automatically set the determination threshold value without any special operation by the operator. In this manner, the machine tool 10 can automatically set the determination threshold used for abnormality determination and improve convenience.
  • control device 50 sets a determination threshold from the maximum value or average value of the actual detection data for each processing command (step S128). According to this, it is possible to appropriately set the determination threshold value for each processing command.
  • the machining program has a specified processing command for specifying a processing command to be judged, and the control device 50 searches for the specified processing command, and according to the searched specified processing command, A determination threshold can be set for the designated processing command (step S128). According to this, it is possible to automatically set the processing command to be judged, and furthermore to appropriately set the threshold value for judgment of the automatically set processing command.
  • the machine tool 10 further includes a determination threshold value setting switch (automatic setting switch 50e4), which is a switch for automatically setting the determination threshold value in the setting unit (step S128).
  • the control device 50 sets the determination threshold when the operator presses the automatic setting switch 50e4 (step S128). According to this, when the automatic setting switch 50e4 is pressed by the operator, it becomes possible to switch to the determination threshold value automatic setting mode in which the determination threshold value is automatically set. It is possible to automatically set the threshold for use. As a result, after the determination threshold value is set, it is possible to carry out an abnormality determination during workpiece machining without performing an operation such as switching the setting.
  • control device 50 further includes a notification unit (step S126) that notifies the operator to press the automatic setting switch 50e4 when the automatic setting switch 50e4 is not pressed. According to this, it is possible to ensure that the operator presses down the automatic setting switch 50e4, and it is possible to ensure that the judgment threshold value automatic setting mode is set.
  • a cutting tool is used as a processing tool, but other processing tools for processing the workpiece W may be used.
  • the machining load is used as the detectable physical quantity, other physical quantity relating to machining of the workpiece W that is detectable may be used.
  • the dual gantry type machine tool 10 is provided with two spindles, tool rests and robots. can also be adopted.
  • Machine tool (workpiece processing device), 31... Cutting tool (processing tool), 50... Control device (machining execution unit (step S106), detection unit (step S108), association unit (step S110), setting unit (step S128), reporting section (step S126)), 50c...storage device (storage section), 50e4...automatic setting switch (determination threshold value setting switch), W...work.
  • control device machining execution unit (step S106), detection unit (step S108), association unit (step S110), setting unit (step S128), reporting section (step S126)
  • 50c...storage device storage section
  • 50e4...automatic setting switch determination threshold value setting switch

Abstract

This workpiece processing apparatus comprises: a processing program which contains a plurality of process handling commands that are commands for executing processing of a workpiece; a processing execution unit which executes the processing of the workpiece using a processing tool in accordance with the processing program; a detection unit which detects a detectable physical quantity pertaining to the processing of the workpiece; a memory unit which memorizes therein actual detection data actually detected by the detection unit; an association unit in which the actual detection data is detected by the detection unit for each of the process handling commands, the actual detection data is associated with the process handling command, and the associated data is memorized as association data in the memory unit; and a setting unit which, using the association data memorized by the association unit, sets a determination threshold for determining the state of the detectable physical quantity for each of the process handling commands.

Description

ワーク加工装置Work processing device
 本明細書は、ワーク加工装置に関する。 This specification relates to a work processing device.
 ワーク加工装置の一形式として、特許文献1には、工具異常検出装置によって工具の異常が判断される工作機械が開示されている。工具異常検出装置は、閾値設定用スイッチを有し、閾値設定用スイッチがオンされると、NC情報が終了または変化するまでの入力データを読み込み、この読み込まれた入力データ(最大値または平均値)に基づいて異常検出動作(異常判断)に用いる閾値を自動的に設定する。また、この工具異常検出装置においては、閾値設定用スイッチがオフされて初めて、加工中にて異常判断が行われるようになっている。 As one type of work processing device, Patent Document 1 discloses a machine tool in which an abnormality of a tool is determined by a tool abnormality detection device. The tool abnormality detection device has a threshold value setting switch. When the threshold value setting switch is turned on, the input data is read until the NC information ends or changes, and the read input data (maximum value or average value ), the threshold used for the abnormality detection operation (abnormality determination) is automatically set. In addition, in this tool abnormality detection device, the abnormality is determined during machining only after the threshold value setting switch is turned off.
特開昭56-139857号公報JP-A-56-139857
 上述した特許文献1に記載されている工具異常検出装置において、閾値を自動的に設定することが可能であるものの、閾値設定用スイッチをオフにしない限り、異常判断が行われないおそれがあり、このような工具異常検出装置を使用するワーク加工装置において、利便性が低下するという問題があった。 In the tool abnormality detection device described in the above-mentioned Patent Document 1, it is possible to automatically set the threshold value, but unless the threshold value setting switch is turned off, there is a possibility that the abnormality determination will not be performed. A workpiece machining apparatus using such a tool abnormality detection device has a problem of reduced convenience.
 このような事情に鑑みて、本明細書は、異常判断に使用する判定用閾値を自動的に設定するとともに利便性を向上することができるワーク加工装置を開示する。 In view of such circumstances, the present specification discloses a work processing apparatus capable of automatically setting a judgment threshold used for abnormality judgment and improving convenience.
 本明細書は、ワークの加工を実施するための命令である複数の加工処理命令を有する加工プログラムと、加工工具を使用してワークの加工を前記加工プログラムに沿って実施する加工実施部と、前記ワークの加工に係る物理量であって検出可能である検出可能物理量を検出する検出部と、前記検出部によって実際に検出された実検出データを記憶する記憶部と、前記加工処理命令毎に、前記検出部によって実検出データを検出し、前記実検出データを前記加工処理命令に関連付けして関連付けデータとして前記記憶部に記憶する関連付け部と、前記関連付け部によって記憶された前記関連付けデータを使用して、前記加工処理命令毎に前記検出可能物理量の状態の判定をするための判定用閾値を設定する設定部と、を備えたワーク加工装置を開示する。 The present specification includes a machining program having a plurality of machining processing instructions that are instructions for machining a workpiece, a machining execution unit that uses a machining tool to machine the workpiece according to the machining program, a detection unit that detects a detectable physical quantity that is a physical quantity related to machining of the workpiece; a storage unit that stores actual detection data actually detected by the detection unit; an associating unit that detects actual detected data by the detecting unit, associates the actual detected data with the processing command, and stores the actual detected data as associated data in the storage unit; and uses the associated data stored by the associating unit. and a setting unit for setting a determination threshold value for determining the state of the detectable physical quantity for each processing command.
 本開示によれば、ワーク加工装置は、実検出データを加工処理命令に関連付けした関連付けデータを使用して、加工処理命令毎に検出可能物理量の状態の判定(異常判断)をするための判定用閾値を設定することが可能となる。すなわち、ワーク加工装置は、関連付けデータを有していれば、特別な作業者の操作を伴うことなく、判定用閾値を自動的に設定することが可能となる。このように、ワーク加工装置は、異常判断に使用する判定用閾値を自動的に設定するとともに利便性を向上することができる。 According to the present disclosure, the work processing apparatus uses the association data that associates the actual detection data with the processing instruction to determine the state of the detectable physical quantity (abnormality determination) for each processing instruction. A threshold can be set. That is, if the work processing device has the association data, it becomes possible to automatically set the determination threshold value without any special operation by the operator. In this way, the work processing apparatus can automatically set the determination threshold used for abnormality determination and improve convenience.
ワーク加工装置が適用された工作機械10を示す正面図である。1 is a front view showing a machine tool 10 to which a work machining device is applied; FIG. 図1に示す工作機械10を示す側面図である。FIG. 2 is a side view showing the machine tool 10 shown in FIG. 1; 工作機械10を示すブロック図である。2 is a block diagram showing the machine tool 10; FIG. 図3に示す制御装置50にて実施されるプログラムを表すフローチャートである。FIG. 4 is a flow chart showing a program executed by the control device 50 shown in FIG. 3; FIG. 図3に示す制御装置50にて実施されるプログラム(監視範囲自動指定サブルーチン)を表すフローチャートである。4 is a flowchart showing a program (monitoring range automatic designation subroutine) executed by the control device 50 shown in FIG. 3; 負荷表示画面50dを示す図である。It is a figure which shows 50 d of load display screens. 軸設定画面50eを示す図である。It is a figure which shows the axis setting screen 50e. システム設定画面50fである。A system setting screen 50f. 負荷表示画面50dを示す図である。It is a figure which shows 50 d of load display screens. 軸設定画面50gを示す図である。It is a figure which shows 50 g of axis setting screens. パス設定画面50hを示す図である。It is a figure which shows 50 h of path setting screens.
(工作機械)
 以下、ワーク加工装置が適用された工作機械の一例である一実施形態について説明する。以下の各図において、XYZ座標系を用いて図中の方向を説明する。このXYZ座標系においては、水平面に平行な平面をXZ平面とする。このXZ平面において、後述する工作機械10の主軸20a,20bの軸線方向をZ軸方向と表記し、Z軸方向に直交する方向をX軸方向と表記する。また、XZ平面に垂直な方向はY軸方向と表記する。
(Machine Tools)
An embodiment, which is an example of a machine tool to which the work processing device is applied, will be described below. In each figure below, the directions in the figure are explained using an XYZ coordinate system. In this XYZ coordinate system, the plane parallel to the horizontal plane is the XZ plane. In this XZ plane, the axial direction of main shafts 20a and 20b of the machine tool 10, which will be described later, is referred to as the Z-axis direction, and the direction orthogonal to the Z-axis direction is referred to as the X-axis direction. Also, the direction perpendicular to the XZ plane is referred to as the Y-axis direction.
 工作機械10は、ワークWの加工を実施するワーク加工装置である。工作機械10は、図1に示すように、本体11、一対の主軸20a,20b、一対の工具台30a,30b、一対のワーク搬送ロボット(以下、単にロボットと称する場合もある。)40a,40b、並びに、主軸20a,20b、工具台30a,30b、及びワーク搬送ロボット40a,40bを制御する制御装置50を備えている。 The machine tool 10 is a work processing device that processes the work W. As shown in FIG. 1, the machine tool 10 includes a main body 11, a pair of main spindles 20a and 20b, a pair of tool rests 30a and 30b, and a pair of work transfer robots (hereinafter simply referred to as robots) 40a and 40b. , and a control device 50 for controlling the spindles 20a, 20b, the tool stands 30a, 30b, and the work transfer robots 40a, 40b.
 主軸20aは、ワークWを回転可能に保持するものである。主軸20aは、図2にて左右方向(Z軸方向)に沿って水平に配置されるように、本体11に設けられた主軸台(不図示)に回転可能に支持されている。主軸20aの先端部にはワークWを着脱可能に把持する主軸チャック21が設けられる。主軸チャック21は、複数の把持爪21aを有しており、これら把持爪21aを閉じることでワークWを掴み、開くことでワークWを放すことが可能である。主軸チャック21の開閉は、制御装置50からの指示によって実施されている。主軸20aは、サーボモータ22(図3参照)によって回転駆動される。サーボモータ22の電流(駆動電流)は、電流センサ23(図3参照)によって検出され、その検出結果(検出電流値)は後述する制御装置50に出力されている。主軸20bは、主軸20aと同様に構成されている。 The main shaft 20a holds the workpiece W rotatably. The main shaft 20a is rotatably supported by a headstock (not shown) provided in the main body 11 so as to be arranged horizontally along the left-right direction (Z-axis direction) in FIG. A spindle chuck 21 for detachably holding a workpiece W is provided at the tip of the spindle 20a. The spindle chuck 21 has a plurality of gripping claws 21a, and can grip the workpiece W by closing these gripping claws 21a and release the workpiece W by opening them. The opening and closing of the spindle chuck 21 is carried out according to instructions from the control device 50 . The main shaft 20a is rotationally driven by a servomotor 22 (see FIG. 3). The current (driving current) of the servomotor 22 is detected by a current sensor 23 (see FIG. 3), and the detection result (detected current value) is output to the control device 50 which will be described later. The main shaft 20b is configured similarly to the main shaft 20a.
 工具台30aは、加工工具である切削工具31に送り運動を与える装置である。工具台30aは、いわゆるタレット型の工具台であり、ワークWの切削をする複数の切削工具31が装着される工具保持部32を有している。工具保持部32は、回転駆動部(不図示)によって回転可能に支持されるとともに所定の切削位置に位置決め可能である。工具台30aは、工具台移動装置33によって工具台30aひいては切削工具31を図1にて左右方向(X軸方向)及び前後方向(Z軸方向)に沿って移動される。 The tool rest 30a is a device that gives a feed motion to the cutting tool 31, which is a processing tool. The tool rest 30a is a so-called turret-type tool rest, and has a tool holder 32 to which a plurality of cutting tools 31 for cutting the workpiece W are mounted. The tool holding part 32 is rotatably supported by a rotary drive part (not shown) and can be positioned at a predetermined cutting position. The tool table 30a and the cutting tool 31 are moved by a tool table moving device 33 along the left-right direction (X-axis direction) and the front-rear direction (Z-axis direction) in FIG.
 工具台移動装置33は、工具台30aをX軸方向に沿って移動させるX軸駆動装置33a(図3参照;X軸駆動軸であり、単にX軸と称する場合がある。)と、工具台30aをZ軸方向に沿って移動させるZ軸駆動装置33b(図3参照;Z軸駆動軸であり、単にZ軸と称する場合がある。)とを有している。X軸駆動装置33aは、サーボモータ33a1(図3参照)によって回転駆動される。サーボモータ33a1の電流(駆動電流)は、電流センサ33a2(図3参照)によって検出され、その検出結果(検出電流値)は後述する制御装置50に出力されている。Z軸駆動装置33bは、サーボモータ33b1(図3参照)によって回転駆動される。サーボモータ33b1の電流(駆動電流)は、電流センサ33b2(図3参照)によって検出され、その検出結果(検出電流値)は後述する制御装置50に出力されている。工具台30bは、工具台30aと同様に構成されている。 The tool rest moving device 33 includes an X-axis driving device 33a (see FIG. 3; X-axis driving axis, sometimes simply referred to as X-axis) for moving the tool rest 30a along the X-axis direction, and a tool rest It has a Z-axis drive device 33b (see FIG. 3; it is a Z-axis drive shaft and may be simply referred to as the Z-axis in some cases) for moving 30a along the Z-axis direction. The X-axis driving device 33a is rotationally driven by a servomotor 33a1 (see FIG. 3). The current (driving current) of the servomotor 33a1 is detected by a current sensor 33a2 (see FIG. 3), and the detection result (detected current value) is output to the control device 50, which will be described later. The Z-axis driving device 33b is rotationally driven by a servomotor 33b1 (see FIG. 3). A current (driving current) of the servomotor 33b1 is detected by a current sensor 33b2 (see FIG. 3), and the detection result (detected current value) is output to the control device 50, which will be described later. The tool table 30b is configured similarly to the tool table 30a.
 上述した主軸20a及び工具台30aは、ワークWを加工する加工部35aを構成する。上述した主軸20b及び工具台30bは、ワークWを加工する加工部35bを構成する。 The spindle 20a and the tool rest 30a described above constitute a processing section 35a for processing the workpiece W. The spindle 20b and the tool rest 30b described above constitute a processing section 35b for processing the workpiece W. As shown in FIG.
(ロボット)
 ロボット40a及び40bは、同一走行台の走行がそれぞれ可能であり、かつワークWを主軸20a,20bやワーク載置装置60に搬入出可能である。ワーク載置装置60は、ワークWを載置可能な装置であり、例えば、工作機械10に搬入されるワークWを載置面に載置するワーク搬入装置、工作機械10から搬出されるワークWを載置面に載置するワーク搬出装置、工作機械10から搬出されたワークWの姿勢を反転させたりシフトさせたりする反転・シフト装置などがある。
(robot)
The robots 40a and 40b are capable of running on the same running platform, respectively, and are capable of loading and unloading the workpieces W to and from the spindles 20a and 20b and the workpiece mounting device 60, respectively. The work placement device 60 is a device capable of placing a work W thereon. on a mounting surface, a reversing/shifting device for reversing or shifting the attitude of the work W carried out from the machine tool 10, and the like.
 ロボット40aは、自身の走行(X軸に沿った移動)をさせるための走行部41、ワークWを脱着可能に把持する把持部42、及び、把持部42を走行部41に対して相対移動させる把持部移動部43を備えている。本実施形態において、ロボット40aは、例えば3軸直交ロボット(3軸ガントリーロボット)である。ロボット40aは、直交ロボットに限定されず、垂直多関節ロボット、水平多関節ロボット(スカラー型ロボット)、パラレルリンクロボットでもよい。ロボット40bは、ロボット40aと同様に構成されている。 The robot 40a has a traveling portion 41 for causing itself to travel (movement along the X axis), a gripping portion 42 for detachably gripping the workpiece W, and relatively moving the gripping portion 42 with respect to the traveling portion 41. A gripping portion moving portion 43 is provided. In this embodiment, the robot 40a is, for example, a three-axis orthogonal robot (three-axis gantry robot). The robot 40a is not limited to an orthogonal robot, and may be a vertical articulated robot, a horizontal articulated robot (scalar type robot), or a parallel link robot. The robot 40b is configured similarly to the robot 40a.
(走行部)
 図1に示すように、走行部41は、走行部スライダ41a(X軸スライダと称してもよい。)と、走行部スライダ41aをガイドして走行させる走行台であるガイド部41bと、走行部スライダ41aを走行駆動させるための走行駆動装置(不図示)とを備えている。
(running part)
As shown in FIG. 1, the traveling portion 41 includes a traveling portion slider 41a (which may also be referred to as an X-axis slider), a guide portion 41b which is a traveling platform for guiding and traveling the traveling portion slider 41a, and a traveling portion. A traveling drive device (not shown) is provided for driving the slider 41a to travel.
 走行部スライダ41aは、把持部42及び把持部移動部43を搭載可能であり、図1にて左右方向(X軸方向)に沿って延設されているガイド部41bに案内されて左右方向に沿って往復動(直動)される。 The gripping portion 42 and the gripping portion moving portion 43 can be mounted on the traveling portion slider 41a. It is reciprocated (linearly moved) along the
 ガイド部41bは、本体11に設けられており、主軸20a,20b及び工具台30a,30bの上方に配設されている。ガイド部41bの一端部(図1にて左側端部)は、本体11の左側に設置されたワーク載置装置60の直上まで延設されている。ガイド部41bの他端部(図1にて右側端部)は、本体11の右側に設置されたワーク載置装置60の直上まで延設されている。尚、走行部スライダ41aとガイド部41bとから走行駆動軸(X軸駆動軸)が構成されている。走行駆動装置は、走行部スライダ41aまたはガイド部41b側に設けられている。 The guide portion 41b is provided on the main body 11 and arranged above the main shafts 20a and 20b and the tool stands 30a and 30b. One end (the left end in FIG. 1) of the guide portion 41b extends right above the work placement device 60 installed on the left side of the main body 11. As shown in FIG. The other end (the right end in FIG. 1) of the guide portion 41b extends right above the work placement device 60 installed on the right side of the main body 11. As shown in FIG. A travel drive shaft (X-axis drive shaft) is composed of the travel portion slider 41a and the guide portion 41b. The traveling drive device is provided on the side of the traveling portion slider 41a or the guide portion 41b.
(把持部)
 主として図2に示すように、把持部42は、Y軸スライダ45aに回転駆動部42bを介して回転可能に連結されている。把持部42は、直交する2つの側面と残りの側面を有する三角柱形状の本体42aを有している。直交する2つの側面のうち一方の側面は、X-Z平面に平行可能な平面であり、ワークWを脱着可能に把持するロボットチャック42cが設けられている。他方の側面は、X-Y平面に平行な平面であり、ワークWを脱着可能に把持するロボットチャック42dが設けられている。
(Grip part)
As mainly shown in FIG. 2, the grip part 42 is rotatably connected to the Y-axis slider 45a via the rotation driving part 42b. The grip portion 42 has a triangular prism-shaped main body 42a having two orthogonal side surfaces and the remaining side surface. One side of the two orthogonal sides is a plane parallel to the XZ plane, and is provided with a robot chuck 42c that detachably holds the workpiece W. As shown in FIG. The other side surface is a plane parallel to the XY plane, and is provided with a robot chuck 42d that detachably holds the workpiece W. As shown in FIG.
 本体42aは、回転駆動部42bによって回転可能であり、各ロボットチャック42c,42dは2つの位置(Y軸方向下向き位置とZ軸方向奥側向き位置)に回転切換が可能となる。その結果、把持部42は、各ロボットチャック42c,42dをY軸方向下向き位置にすることでY軸方向上向きの載置面(例えばワーク載置装置60の載置面)に対してワークWを受け渡しすることができる。また、把持部42は、各ロボットチャック42c,42dをZ軸方向奥側向き位置にすることでZ軸方向手前側向きの載置面(例えば主軸20a,20bの主軸チャック21の載置面)に対してワークWを受け渡しすることができる。ロボットチャック42c,42dは、図示しない複数の把持爪を有しており、これら把持爪を閉じることでワークWを掴み、開くことでワークWを放すことが可能である。ロボットチャック42c,42dの開閉は、制御装置50からの指示によって実施されている。 The main body 42a is rotatable by the rotation drive section 42b, and each robot chuck 42c, 42d can be rotated between two positions (Y-axis direction downward position and Z-axis direction inner position). As a result, the gripping unit 42 moves the workpiece W onto the mounting surface facing upward in the Y-axis direction (for example, the mounting surface of the workpiece mounting device 60) by positioning the robot chucks 42c and 42d downward in the Y-axis direction. can be delivered. In addition, by positioning the robot chucks 42c and 42d toward the inner side in the Z-axis direction, the gripping section 42 has a mounting surface facing the front side in the Z-axis direction (for example, the mounting surfaces of the main shaft chucks 21 of the main shafts 20a and 20b). The workpiece W can be delivered to and received from. The robot chucks 42c and 42d have a plurality of gripping claws (not shown), and can grip the workpiece W by closing the gripping claws and release the workpiece W by opening the gripping claws. The robot chucks 42 c and 42 d are opened and closed according to instructions from the controller 50 .
 本体42aの残りの側面には、Y軸スライダ45aの先端部(下端部)の傾斜面に設けられた回転駆動部42bが取り付けられている(接続されている)。本体42aの残りの側面は、Y軸スライダ45aの先端部の傾斜面に平行に配設されている。回転駆動部42bは、図2に示すように、回転駆動部42bに設けられた回転駆動軸42eと、回転駆動軸42eを回転駆動する回転駆動装置(不図示)とを有している。 A rotary drive portion 42b provided on the inclined surface of the tip (lower end) of the Y-axis slider 45a is attached (connected) to the remaining side surface of the main body 42a. The remaining side surfaces of the main body 42a are arranged parallel to the inclined surface at the tip of the Y-axis slider 45a. As shown in FIG. 2, the rotary drive section 42b has a rotary drive shaft 42e provided in the rotary drive section 42b and a rotary drive device (not shown) that rotationally drives the rotary drive shaft 42e.
(把持部移動部)
 把持部移動部43は、把持部42を走行部スライダ41aに対して図2にて左右方向(Z軸方向)及び上下方向(Y軸方向)に沿って相対移動させるものである。把持部移動部43は、把持部42をZ軸方向に沿って移動させるZ軸駆動部44と、把持部42をY軸方向に沿って移動させるY軸駆動部45とを有している。
(Grip part moving part)
The gripping portion moving portion 43 moves the gripping portion 42 relative to the traveling portion slider 41a along the horizontal direction (Z-axis direction) and the vertical direction (Y-axis direction) in FIG. The gripping portion moving portion 43 has a Z-axis driving portion 44 that moves the gripping portion 42 along the Z-axis direction, and a Y-axis driving portion 45 that moves the gripping portion 42 along the Y-axis direction.
(Z軸駆動部)
 Z軸駆動部44は、走行部スライダ41aに対して摺動可能に取り付けられたZ軸スライダ44aをZ軸方向に沿って移動させる。主として図2に示すように、Z軸駆動部44は、Z軸スライダ44aと、Z軸スライダ44aをガイドして移動させるZ軸ガイド部44bと、Z軸スライダ44aを移動駆動させるためのZ軸駆動装置(不図示)とを備えている。
(Z-axis drive unit)
The Z-axis driving section 44 moves a Z-axis slider 44a slidably attached to the traveling section slider 41a along the Z-axis direction. As shown mainly in FIG. 2, the Z-axis driving section 44 includes a Z-axis slider 44a, a Z-axis guide section 44b for guiding and moving the Z-axis slider 44a, and a Z-axis guide section 44b for moving and driving the Z-axis slider 44a. and a driving device (not shown).
 Z軸スライダ44aは、Y軸駆動部45ひいては把持部42を搭載可能であり、図2にて左右方向(Z軸方向)に沿って延設されており、Z軸ガイド部44bに案内されてZ軸方向に沿って往復動(直動)される。Z軸ガイド部44bは、走行部スライダ41aに設けられている。Z軸駆動装置は、Z軸ガイド部44bまたはZ軸スライダ44aに設けられている。 The Z-axis slider 44a can mount the Y-axis driving portion 45 and the gripping portion 42, extends in the left-right direction (Z-axis direction) in FIG. 2, and is guided by the Z-axis guide portion 44b. It is reciprocated (linearly moved) along the Z-axis direction. The Z-axis guide portion 44b is provided on the traveling portion slider 41a. The Z-axis driving device is provided on the Z-axis guide portion 44b or the Z-axis slider 44a.
(Y軸駆動部)
 Y軸駆動部45は、Z軸スライダ44aに対して摺動可能に取り付けられたY軸スライダ45a(把持部42が支持されている)をY軸方向に沿って移動させる。主として図2に示すように、Y軸駆動部45は、Y軸スライダ45aと、Y軸スライダ45aをガイドして移動させるY軸ガイド部45bと、Y軸スライダ45aを移動駆動させるためのY軸駆動装置(不図示)とを備えている。
(Y-axis drive unit)
The Y-axis driving section 45 moves along the Y-axis direction a Y-axis slider 45a (on which the grip section 42 is supported) slidably attached to the Z-axis slider 44a. As shown mainly in FIG. 2, the Y-axis driving section 45 includes a Y-axis slider 45a, a Y-axis guide section 45b for guiding and moving the Y-axis slider 45a, and a Y-axis guide section 45b for moving and driving the Y-axis slider 45a. and a driving device (not shown).
 Y軸スライダ45aは、把持部42を搭載可能であり、図2にて上下方向(Y軸方向)に沿って延設されており、Y軸ガイド部45bに案内されてY軸方向に沿って往復動(直動)される。Y軸ガイド部45bは、Z軸スライダ44aに設けられている。Y軸駆動装置は、Y軸ガイド部45bまたはY軸スライダ45aに設けられている。 The Y-axis slider 45a can mount the grip portion 42, and extends along the vertical direction (Y-axis direction) in FIG. Reciprocating motion (linear motion) is performed. The Y-axis guide portion 45b is provided on the Z-axis slider 44a. The Y-axis driving device is provided on the Y-axis guide portion 45b or the Y-axis slider 45a.
(制御装置)
 制御装置50は、主軸20a,20b、工具台30a,30b、及びロボット40a,40bを駆動制御する制御装置である。特に、制御装置50は、主軸20a,20b、及び工具台30a,30bの駆動制御を実施する。制御装置50は、図3に示すように、入力装置50a、表示装置50b、記憶装置50c、電流センサ23,33a2,33b2及びサーボモータ22,33a1,33b1に接続されている。入力装置50aは、工作機械10の前面に設けられており、作業者が各種設定、各種指示などを制御装置50に入力するためのものである。表示装置50bは、工作機械10の前面に設けられており、作業者に対して運転状況やメンテナンス状況などの情報を表示するためのものである。記憶装置50cは、工作機械10の制御に係るデータ、例えば、制御プログラム(加工プログラム)、制御プログラムで使用するパラメータ、各種設定や各種指示に関するデータ、実検出データ、関連付けデータなどを記憶している(記憶部)。制御装置50は、マイクロコンピュータ(不図示)を有しており、マイクロコンピュータは、バスを介してそれぞれ接続された入出力インターフェース、CPU、RAMおよびROM(いずれも不図示)を備えている。CPUは、各種プログラムを実施して、入力装置50a、記憶装置50c及び電流センサ23,33a2,33b2からデータ、検出信号、制御情報などを取得したり、表示装置50b及びサーボモータ22,33a1,33b1を制御したりする。RAMは同プログラムの実施に必要な変数を一時的に記憶するものであり、ROMは前記プログラムを記憶するものである。
(Control device)
The control device 50 is a control device that drives and controls the spindles 20a and 20b, the tool stands 30a and 30b, and the robots 40a and 40b. In particular, the control device 50 performs drive control of the spindles 20a and 20b and the tool rests 30a and 30b. The control device 50, as shown in FIG. 3, is connected to an input device 50a, a display device 50b, a storage device 50c, current sensors 23, 33a2, 33b2 and servo motors 22, 33a1, 33b1. The input device 50 a is provided on the front surface of the machine tool 10 and is used by the operator to input various settings and instructions to the control device 50 . The display device 50b is provided on the front surface of the machine tool 10, and is used to display information such as operating conditions and maintenance conditions to the operator. The storage device 50c stores data relating to the control of the machine tool 10, such as control programs (machining programs), parameters used in the control programs, data relating to various settings and instructions, actual detection data, association data, and the like. (storage unit). The control device 50 has a microcomputer (not shown), and the microcomputer has an input/output interface, a CPU, a RAM and a ROM (all not shown) connected via a bus. The CPU executes various programs to acquire data, detection signals, control information, etc. from the input device 50a, the storage device 50c, and the current sensors 23, 33a2, 33b2, and the display device 50b and the servo motors 22, 33a1, 33b1. to control. The RAM temporarily stores variables necessary for executing the program, and the ROM stores the program.
(ワークの加工)
 さらに、上述したワーク加工装置(工作機械10)によるワークWの加工(切削)について図4に示すフローチャートに沿って説明する。制御装置50は、本フローチャートに沿った処理を実施する。
(workpiece processing)
Further, the processing (cutting) of the work W by the work processing apparatus (machine tool 10) described above will be described along the flowchart shown in FIG. The control device 50 performs processing according to this flowchart.
 制御装置50は、ステップS102において、工作機械10にて新たなワークWの加工(所定数量)の開始の指示があったか否かを判定する。制御装置50は、ワークWを加工するための加工プログラムが新たに開始されている場合には、ワークWの加工開始の指示があったと判定し(ステップS102にて「YES」)、プログラムをステップS104に進める。制御装置50は、ワークWを加工するための加工プログラムが新たに開始されていない場合には、ワークWの加工開始の指示がなかったと判定し(ステップS102にて「NO」)、ワークWの加工開始指示があるまでステップS102の判定処理を繰り返し実施する。 In step S102, the control device 50 determines whether or not there is an instruction to start machining a new workpiece W (predetermined number) in the machine tool 10. When the machining program for machining the work W has been newly started, the control device 50 determines that there has been an instruction to start machining the work W ("YES" in step S102), and steps the program. Proceed to S104. If the machining program for machining the work W has not been newly started, the control device 50 determines that there has been no instruction to start machining the work W ("NO" in step S102), and The determination process of step S102 is repeatedly performed until there is an instruction to start machining.
 制御装置50は、ステップS104において、先に開始されたワークWの加工(所定数量)の終了の指示があったか否かを判定する。制御装置50は、加工プログラムが全ての所定数量について終了した場合には、ワークWの加工終了の指示があったと判定し(ステップS104にて「YES」)、本フローチャートを終了する。制御装置50は、加工プログラムが終了していない場合には、ワークWの加工終了の指示がなかったと判定し(ステップS104にて「NO」)、プログラムをステップS106に進める。 In step S104, the control device 50 determines whether or not there is an instruction to end the previously started machining (predetermined number) of the workpieces W. When the machining program has been completed for all the predetermined quantities, the control device 50 determines that there has been an instruction to finish machining the work W ("YES" in step S104), and ends this flowchart. If the machining program has not ended, the control device 50 determines that there has been no instruction to finish machining the workpiece W ("NO" in step S104), and advances the program to step S106.
 制御装置50は、ステップS106において、ワークWの加工を加工プログラムに従って実施する(加工実施部)。加工プログラムは、切削工具31によってワークWを加工(加工処理)する加工処理命令(加工小工程)及びワークWを加工しない処理である非加工処理命令を一または複数含んでおり、制御装置50は、加工プログラムの順番に沿って加工処理や非加工処理を実施する。 In step S106, the control device 50 performs machining of the workpiece W according to the machining program (machining executing section). The machining program includes one or more machining instructions (small machining steps) for machining (machining) the workpiece W with the cutting tool 31 and non-machining instructions for not machining the workpiece W, and the control device 50 , processing and non-processing are performed according to the order of the processing program.
 加工処理には、切削加工、研削加工などが含まれる。切削加工には、旋盤やターニングセンタを使用することで回転するワークWに刃具を当てて削る旋削加工、マシニングセンタやフライス盤を使用することで固定したワークWに回転する刃具を当てて削るフライス加工、マシニングセンタやボール盤を使用することで固定したワークWに回転するドリルを当てて穴を開ける穴加工などが含まれる。 Processing includes cutting and grinding. For cutting processing, there is turning processing in which a cutting tool is applied to a rotating work W by using a lathe or turning center, milling processing in which a rotating cutting tool is applied to a fixed work W by using a machining center or milling machine. It includes drilling by applying a rotating drill to a workpiece W fixed by using a machining center or a drilling machine.
 加工処理命令は、加工処理を実施するための命令(指令)であり、例えば、Gコードのうち切削送り指令である「G1」、円弧補間指令である「G2」,「G3」などを含むブロック(加工プログラムの一行単位であり、図6の負荷表示画面50dに示すプログラム行数5,7,9,10である。)で示されている。 The machining processing command is a command (command) for carrying out machining processing. (The machining program is in units of one line, and the number of program lines is 5, 7, 9, and 10 shown in the load display screen 50d of FIG. 6.).
 非加工処理命令として、加工負荷(後述する検出可能物理量)の状態の判定(負荷監視)の対象である加工処理命令を指定するための指定処理命令が挙げられる。指定処理命令は、例えば、Mコードのうち、負荷検知を開始するための指令である「M130」、負荷検知を終了するための指令である「M131」などを含むブロックであり、図6の負荷表示画面50dに示すプログラム行数6,11で示されている。尚、図6の負荷表示画面50dには、負荷検出値の最大値(最大負荷)及び平均値(平均負荷)が正常範囲である場合を示している。 The non-processing instruction includes a designated processing instruction for designating a processing instruction that is the object of determination (load monitoring) of the state of the processing load (detectable physical quantity described later). The specified processing command is, for example, a block containing "M130", which is a command for starting load detection, "M131", which is a command for ending load detection, among the M codes. This is indicated by 6 and 11 program lines shown on the display screen 50d. The load display screen 50d of FIG. 6 shows a case where the maximum value (maximum load) and the average value (average load) of the load detection values are within the normal range.
 尚、Mコードは、機械機能をオンオフさせる補助機能である。また、「M130」は、負荷検知開始の場所も示し指定開始処理命令ともいえ、「M131」は、負荷検知終了の場所も示し、指定終了処理命令ともいえる。「M130」と「M131」とで挟まれた範囲は、負荷監視対象の場所を示す「パス」と定義する。また、パスは、加工小工程(プログラム行)を複数含んでいるので、加工中工程と称する。 It should be noted that the M code is an auxiliary function that turns the machine function on and off. Further, "M130" also indicates a place to start load detection and can be called a designated start processing command, and "M131" also indicates a place to end load detection and can be said to be a designated end processing command. A range sandwiched between "M130" and "M131" is defined as a "path" indicating a load monitoring target location. Also, since a path includes a plurality of sub-processes (program lines), it is called an in-process process.
 負荷表示画面50dは、プログラム表示欄50d1、最大負荷表示欄50d2、平均負荷表示欄50d3、対象の駆動軸表示欄50d4、次パススイッチ50d5、前パススイッチ50d6、プログラム表示操作スイッチ群50d7、及び、戻るスイッチ50d8が設けられている。プログラム表示欄50d1は、加工プログラムをプログラム行(ブロック)ごとに表示する欄である。最大負荷表示欄50d2は、加工プログラムの各行において、その行に示すプログラムにそれぞれ関連付けられた負荷データのうち最大の値である最大負荷を表示する欄である。平均負荷表示欄50d3は、加工プログラムの各行において、その行に示すプログラムにそれぞれ関連付けられた負荷データの平均の値である平均負荷を表示する欄である。対象の駆動軸表示欄50d4は、最大負荷表示欄50d2及び平均負荷表示欄50d3に表示されている負荷データの駆動軸を表示する欄である。尚、図6には、X軸の最大負荷及び平均負荷がプログラム行(加工処理命令)毎に表示されている。 The load display screen 50d includes a program display field 50d1, a maximum load display field 50d2, an average load display field 50d3, a target drive axis display field 50d4, a next pass switch 50d5, a previous pass switch 50d6, a program display operation switch group 50d7, and A return switch 50d8 is provided. The program display column 50d1 is a column for displaying a machining program for each program line (block). The maximum load display field 50d2 is a field for displaying, in each line of the machining program, the maximum load, which is the maximum value among the load data respectively associated with the programs shown in that line. The average load display column 50d3 is a column for displaying the average load, which is the average value of the load data associated with the program shown in each line of the machining program. The target drive axis display field 50d4 is a field for displaying the drive axis of the load data displayed in the maximum load display field 50d2 and the average load display field 50d3. In FIG. 6, the maximum load and average load on the X-axis are displayed for each program line (machining processing command).
 次パススイッチ50d5は、「次のM130」と表示されており、加工プログラム中の次の順番のパスをプログラム表示欄50d1に示すためのスイッチである。前パススイッチ50d6は、「前のM130」と表示されており、加工プログラム中の前の順番のパスをプログラム表示欄50d1に示すためのスイッチである。プログラム表示操作スイッチ群50d7は、プログラム表示欄50d1に表示されているプログラム行を、先頭行にジャンプさせたり、上向きにスクロールさせたり、最後行にジャンプさせたり、下向きにスクロールさせたりするためのスイッチを有している。戻るスイッチ50d8は、負荷表示画面50dから前の画面に戻るためのスイッチである。 The next pass switch 50d5 is displayed as "next M130" and is a switch for indicating the next pass in the machining program in the program display column 50d1. The previous pass switch 50d6 is displayed as "previous M130" and is a switch for indicating the previous pass in the machining program in the program display column 50d1. The program display operation switch group 50d7 is a switch for jumping to the top line, scrolling upward, jumping to the last line, or scrolling downward the program line displayed in the program display column 50d1. have. The return switch 50d8 is a switch for returning from the load display screen 50d to the previous screen.
 制御装置50は、ステップS108において、ワークWの加工に係る物理量であって検出可能である検出可能物理量である加工負荷を実検出データとして検出する(検出部)。具体的には、加工負荷は、ワークWを切削工具31により切削(加工)する際に発生する負荷であり、加工に対して抵抗となる物理量(加工抵抗)である。ここでは、加工負荷は、駆動する側(本実施例では、上述した各サーボモータ)に対して、加工抵抗を発生させるワークWや切削工具31(駆動される側)が及ぼす力や消費するエネルギーの大きさをいい、例えば駆動軸にかかるトルク負荷のことをいう。尚、検出可能物理量としては、加工負荷に限られず、サーボモータの消費電流、消費電力を採用してもよい。 In step S108, the control device 50 detects the processing load, which is a detectable physical quantity related to the processing of the workpiece W, as actual detection data (detection unit). Specifically, the machining load is a load generated when the workpiece W is cut (machined) by the cutting tool 31, and is a physical quantity (machining resistance) that acts as resistance to machining. Here, the machining load is the force and energy consumed by the workpiece W and the cutting tool 31 (driven side) that generate machining resistance to the driving side (in this embodiment, each servomotor described above). It is the magnitude of , for example, the torque load applied to the drive shaft. Note that the detectable physical quantity is not limited to the machining load, and may be current consumption or power consumption of the servomotor.
 ステップS108においては、制御装置50は、主軸20a(または20b)を駆動するためのサーボモータ22の駆動電流を検出した電流センサ23から取得し、その検出電流からサーボモータ22の加工負荷(主軸20aにかかるトルク負荷(主軸加工負荷))を導出することができる。例えば、加工負荷は、駆動電流と加工負荷との相関関係を示すマップまたは演算式を使用することにより、検出電流に対応する加工負荷として導出される。尚、この相関関係は、加工負荷が大きくなるほど駆動電流が大きくなるという関係である。主軸加工負荷と同様に、サーボモータ33a1の加工負荷であるX軸加工負荷、及びサーボモータ33b1の加工負荷であるZ軸加工負荷も導出することができる。 In step S108, the control device 50 acquires from the current sensor 23 that detects the drive current of the servomotor 22 for driving the spindle 20a (or 20b), and from the detected current, the machining load of the servomotor 22 (main spindle 20a It is possible to derive the torque load (spindle machining load) applied to For example, the machining load is derived as the machining load corresponding to the detected current by using a map or an arithmetic expression showing the correlation between the drive current and the machining load. This correlation is such that the drive current increases as the machining load increases. As with the spindle machining load, the X-axis machining load, which is the machining load of the servo motor 33a1, and the Z-axis machining load, which is the machining load of the servo motor 33b1, can also be derived.
 尚、加工負荷の検出は、所定の短時間(本実施例のサンプリング周期は、数msec(例えば8msec))毎に実施される。加工負荷の検出は、一連の加工プログラム(加工工程)において所定の複数の加工ポイントにて実施されるようになっており、同じ加工プログラムであれば、ワークW毎に同じ加工ポイントにて加工負荷をそれぞれ検出することが可能となっている。すなわち、加工プログラムに含まれている複数の加工処理命令に対応する加工小工程においても、所定の複数の加工ポイントにて加工負荷の検出が実施されるということであり、同じ加工小工程(加工処理命令)であれば、ワークW毎に同じ加工ポイントにて加工負荷をそれぞれ検出することが可能となっている。また、加工中工程(パス単位の加工工程(加工処理命令))においても、加工小工程と同様に、加工負荷を検出することができる。 The processing load is detected every predetermined short time (sampling period in this embodiment is several milliseconds (for example, 8 milliseconds)). The machining load is detected at a plurality of predetermined machining points in a series of machining programs (machining processes). can be detected respectively. That is, even in machining sub-processes corresponding to a plurality of machining processing commands included in the machining program, the machining load is detected at a plurality of predetermined machining points. processing command), it is possible to detect the machining load at the same machining point for each workpiece W. In addition, the machining load can be detected in the machining process during machining (machining process in units of passes (machining processing command)) as well as in the small machining process.
 例えば、加工回数毎において加工ポイント毎に加工負荷が検出・記憶される。すなわち、1回目のワーク加工の負荷データ(サンプリングデータ)の各加工ポイント(サンプリングポイント)と2回目以降のワーク加工の各サンプリングデータの各加工ポイント(サンプリングポイント)とは、全て同一の加工ポイントである。加工ポイントは、例えば、加工工程中ひいては加工小工程中(さらには加工中工程)の任意の加工場所であり、加工時刻、すなわち加工開始時刻からの経過時間でもよい。 For example, the processing load is detected and stored for each processing point for each processing count. That is, each machining point (sampling point) of the load data (sampling data) of the first workpiece machining and each machining point (sampling point) of each sampling data of the second and subsequent workpiece machining are all the same machining points. be. A machining point is, for example, an arbitrary machining place during a machining step or a machining sub-step (further, a machining step), and may be a machining time, that is, an elapsed time from a machining start time.
 制御装置50は、ステップS110において、検出した複数の加工負荷(実検出データ)を一連の負荷データとして記憶装置50c(記憶部)に記憶する。実検出データは、加工されるワークW毎に加工ポイントにて(サンプリング周期間隔にて)記憶されている。換言すると、ワークW毎の負荷データは加工ポイントと関連付けされて記憶されることが可能である。すなわち、負荷データは、加工ポイントを介して加工小工程(さらには加工中工程)と関連付けが可能であり、ひいては加工小工程と対応付けされている加工処理命令と関連付けが可能である。さらには、負荷データは、加工中工程と対応付けされている加工処理命令と関連付けが可能である。このように、制御装置50は、加工処理命令毎に、ステップS108(検出部)によって実検出データを検出し、実検出データを加工処理命令に関連付けして関連付けデータとして記憶装置50cに記憶する(関連付け部)。負荷データは、ブロック単位ひいてはパス単位(負荷を監視する対象であるブロックをまとめた単位)にて負荷監視範囲に含まれる実検出データである。このように、上述したステップS106~110の処理は、負荷データをサンプリングするための処理である。 In step S110, the control device 50 stores the plurality of detected processing loads (actual detection data) as a series of load data in the storage device 50c (storage unit). Actual detection data are stored at machining points (at sampling intervals) for each workpiece W to be machined. In other words, the load data for each workpiece W can be stored in association with the machining point. That is, the load data can be associated with the machining sub-step (further, the machining process) via the machining point, and can be associated with the machining instruction associated with the machining sub-step. Furthermore, the load data can be associated with machining instructions associated with the machining process. In this way, the control device 50 detects the actual detection data in step S108 (detection unit) for each processing instruction, associates the actual detection data with the processing instruction, and stores the association data in the storage device 50c ( association part). The load data is actually detected data included in the load monitoring range on a block-by-block basis and further on a path-by-path basis (a unit of collecting blocks whose load is to be monitored). Thus, the processing of steps S106 to S110 described above is processing for sampling the load data.
(監視範囲(監視区間)自動指定処理)
 次に、制御装置50は、加工負荷(検出可能な物理量)の状態を監視するための監視範囲を自動的に指定する(ステップS114:自動指定部)。尚、監視範囲は、加工工程(加工プログラム)に沿って加工負荷(検出可能物理量)の状態を監視(判定)するための範囲である。負荷検出値が監視範囲の上下限値範囲(判定用閾値で規定された範囲である判定用閾値範囲)内にあれば、加工負荷は正常状態であり、上下限値範囲(判定用閾値範囲)外であれば、加工負荷は異常状態である。監視範囲は、加工工程に沿った方向では監視を開始する監視開始ポイントから監視を終了する監視終了ポイントまでの間の範囲(この範囲を監視区間という場合がある。)である。監視範囲は、加工負荷の大きさに沿った方向では上限値と下限値とによって規定される範囲である。尚、異常状態には、ワーク加工の停止を必要とする異常状態と、ワーク加工の停止までは必要でなくワーク加工を継続しながら警告を発する警告状態とがある。
(monitoring range (monitoring section) automatic designation process)
Next, the control device 50 automatically designates a monitoring range for monitoring the state of the processing load (detectable physical quantity) (step S114: automatic designation unit). The monitoring range is a range for monitoring (determining) the state of the machining load (detectable physical quantity) along the machining process (machining program). If the load detection value is within the upper and lower limit value range of the monitoring range (the judgment threshold range defined by the judgment threshold value), the processing load is in a normal state, and the upper and lower limit value range (judgment threshold range) If outside, the processing load is abnormal. The monitoring range is a range from a monitoring start point at which monitoring is started to a monitoring end point at which monitoring is terminated in the direction along the machining process (this range may be referred to as a monitoring section). The monitoring range is defined by an upper limit value and a lower limit value in the direction along the magnitude of the machining load. The abnormal state includes an abnormal state that requires the work to be stopped and a warning state in which the work is not necessary until the work is stopped and a warning is issued while the work is continued.
 具体的には、制御装置50は、ステップS110の処理後、プログラムをステップS112に進め、フラグF1が1であるか否かを判定する。制御装置50は、ワークWの加工が開始された後から監視範囲の自動指定が終了するまでの間は、フラグF1は「0」であり、ステップS112にて「NO」と判定し、プログラムをステップS114に進める。制御装置50は、監視範囲の自動指定が終了となった場合には、フラグF1を「1」に設定し(ステップS118)、ステップS112にて「YES」と判定し、ステップS114,116の処理を省略してプログラムをステップS120以降に進める。 Specifically, after the process of step S110, the control device 50 advances the program to step S112 and determines whether or not the flag F1 is 1. The control device 50 determines that the flag F1 is "0" from the start of machining of the workpiece W to the end of the automatic designation of the monitoring range, determines "NO" in step S112, and executes the program. Proceed to step S114. When the automatic designation of the monitoring range is completed, the control device 50 sets the flag F1 to "1" (step S118), determines "YES" in step S112, and processes steps S114 and S116. is omitted, and the program proceeds to step S120 and subsequent steps.
 尚、フラグF1は、監視範囲の自動指定が終了されたか否かを示すフラグであり、フラグF1が「1」であるときに監視範囲の自動指定が終了済みである旨を示し、フラグF1が「0」であるときに監視範囲の自動指定が未終了である旨を示す。尚、ワーク加工開始指示があったときに、フラグF1は「0」に設定される。 The flag F1 is a flag indicating whether or not the automatic designation of the monitoring range has been completed. When the flag F1 is "1", it indicates that the automatic designation of the monitoring range has been completed. When it is "0", it indicates that the automatic designation of the monitoring range has not been completed. Note that the flag F1 is set to "0" when there is an instruction to start machining the workpiece.
 また、ステップS116において、制御装置50は、監視範囲の自動指定が終了したか否かを判定する。制御装置50は、監視範囲の自動指定が終了した場合には、ステップS116にて「YES」と判定し、プログラムをステップS118に進めてフラグF1を1に設定する。制御装置50は、監視範囲の自動指定が終了していない場合には、ステップS116にて「NO」と判定し、プログラムをステップS114に戻し監視範囲の自動指定を実施する。 Also, in step S116, the control device 50 determines whether or not the automatic designation of the monitoring range has ended. When the automatic designation of the monitoring range is completed, the control device 50 determines "YES" in step S116, advances the program to step S118, and sets the flag F1 to 1. If the automatic designation of the monitoring range has not been completed, the control device 50 determines "NO" in step S116, returns the program to step S114, and executes the automatic designation of the monitoring range.
 制御装置50は、ステップS114において、図5に示す監視範囲自動指定サブルーチンを実施する。最初に、制御装置50は、ステップS202において、監視範囲を自動的に設定する。すなわち、制御装置50は、加工プログラムに含まれているパス(指定開始処理命令で指定された加工処理命令群)毎に監視範囲を設定する。具体的には、制御装置50は、加工プログラムにパスが含まれている場合には、そのパスによる加工中工程は監視範囲であると判定し、一方、加工プログラムにパスが含まれていない場合には、そのパスによる工程は監視範囲となりえないと判定する。例えば、図6に示すように加工プログラムには、Mコードのうち指定開始処理命令である「M130」が含まれているので、制御装置50は、この指定開始処理命令を含むパスに対応する加工中工程を監視範囲として自動的に設定することが可能となる。このように、ステップS114においては、制御装置50は、指定処理命令を検索し、検索した指定処理命令により指定された加工処理命令を監視範囲に自動的に設定することが可能である。 At step S114, the control device 50 executes the monitoring range automatic designation subroutine shown in FIG. First, the control device 50 automatically sets the monitoring range in step S202. That is, the control device 50 sets the monitoring range for each path (processing instruction group specified by the specified start processing instruction) included in the machining program. Specifically, when a path is included in the machining program, the control device 50 determines that the process during machining by that path is within the monitoring range. , it is determined that the process by that path cannot be the monitoring range. For example, as shown in FIG. 6, the machining program includes "M130", which is the specified start processing command in the M code, so the control device 50 controls the machining corresponding to the path including this specified start processing command. It becomes possible to automatically set the middle process as the monitoring range. In this way, in step S114, the control device 50 can search for a specified processing command and automatically set the processing command specified by the searched specified processing command in the monitoring range.
 尚、ブロック単位毎に監視範囲を設定するようにしてもよい。具体的には、制御装置50は、加工プログラムに含まれている処理命令(ブロック)毎にその処理命令種に基づいて監視範囲を設定する。具体的には、制御装置50は、ブロックに加工処理命令が含まれている場合には、そのブロック(加工ブロック)による加工小工程は監視範囲であると判定し、一方、ブロックに加工処理命令でない非加工処理命令が含まれている場合には、そのブロック(非加工ブロック)による工程は監視範囲となりえないと判定する。例えば、図6の負荷表示画面50dに示すプログラム行数5,7,9,10には、Gコードのうち加工処理実施命令(「G1」、「G2」、「G3」など)が含まれているので、制御装置50は、この加工処理実施命令を含むブロックに対応する加工小工程を監視範囲として自動的に設定することが可能となる。 Note that the monitoring range may be set for each block. Specifically, the control device 50 sets the monitoring range for each processing instruction (block) included in the machining program based on the processing instruction type. Specifically, when a block contains a processing command, the control device 50 determines that the processing sub-steps of that block (processing block) are within the monitoring range. If a non-processing instruction is included, it is determined that the process by that block (non-processing block) cannot be within the monitoring range. For example, program lines 5, 7, 9, and 10 shown in the load display screen 50d of FIG. Therefore, the control device 50 can automatically set the processing substep corresponding to the block containing this processing execution command as the monitoring range.
 制御装置50は、ステップS204において、加工ポイントひいては加工中工程(または加工小工程)と紐づけされている(関連付けされている)負荷データ(加工データ)を記憶装置50cから取得する。そして、制御装置50は、ステップS206において、予め自動設定された監視範囲(パス)と負荷データとを関連付ける。監視範囲(パス)は加工ポイントと紐づけされており(関連付けされており)、負荷データも加工ポイントと紐づけされている。その結果、制御装置50は、監視範囲(パス)と負荷データとを加工ポイントを介して関連付けすることが可能となる。ひいては、制御装置50は、加工プログラムと負荷データとを関連付けすることが可能となる。その後、制御装置50は、本サブルーチンの処理を終了する。 In step S204, the control device 50 acquires the load data (machining data) linked (associated) with the machining point and thus the process during machining (or the sub-process of machining) from the storage device 50c. Then, in step S206, the control device 50 associates the automatically preset monitoring range (path) with the load data. The monitoring range (path) is linked (associated) with the processing point, and the load data is also linked with the processing point. As a result, the control device 50 can associate the monitoring range (path) and the load data via the processing points. Consequently, the control device 50 can associate the machining program with the load data. After that, the control device 50 terminates the processing of this subroutine.
(監視範囲の上下限値(判定用閾値)の自動設定)
 説明を図4に示すステップS120以降に進める。制御装置50は、監視範囲の自動指定が終了した後、判定用閾値を自動的に設定する判定用閾値自動設定モードである場合(例えば、自動設定スイッチ50e4(図7参照)がオンされている場合には(ステップS124にて「YES」と判定し))、指定した監視範囲の上下限値(判定用閾値)を自動的に設定する(設定部;ステップS128)。一方、判定用閾値自動設定モードでない場合(例えば、自動設定スイッチ50e4がオンされていない場合には(ステップS124にて「NO」と判定し))、自動設定スイッチ50e4をオンする旨の報知を実施する(報知部;ステップS126)。尚、制御装置50は、自動設定スイッチ50e4がオンされている場合には、運転モードを判定用閾値自動設定モードとすることが可能である。
(Automatic setting of upper and lower limits of monitoring range (threshold for judgment))
The description proceeds to step S120 and subsequent steps shown in FIG. When the control device 50 is in the judgment threshold automatic setting mode for automatically setting the judgment threshold after the automatic designation of the monitoring range (for example, the automatic setting switch 50e4 (see FIG. 7) is turned on) If so ("YES" is determined in step S124), the upper and lower limits (threshold values for determination) of the specified monitoring range are automatically set (setting unit; step S128). On the other hand, if the determination threshold value automatic setting mode is not set (for example, if the automatic setting switch 50e4 is not turned on (determined as "NO" in step S124)), notification to the effect that the automatic setting switch 50e4 is turned on is provided. It implements (notification part; step S126). Note that the control device 50 can set the operation mode to the determination threshold value automatic setting mode when the automatic setting switch 50e4 is turned on.
 ステップS124においては、制御装置50は、運転モードが判定用閾値自動設定モードであるか否かを、自動設定スイッチ50e4がオンされているか否かに基づいて判定する。自動設定スイッチ50e4は、後述する設定部(ステップS128)にて判定用閾値の設定を自動的に実施させるためのスイッチである判定用閾値設定スイッチである。自動設定スイッチ50e4は、図7に示す軸設定画面50eに表示される。軸設定画面50eは、表示装置50bに表示される画面であり、X軸、Z軸及び主軸20a,20bなどの駆動軸に関するパラメータを設定するための画面である。軸設定画面50e(表示装置50b)はタッチパネルとなっており、作業者の操作により入力が可能であるため、入力装置としても機能する。自動設定スイッチ50e4は、タップして切り替えるスイッチであり、「オン」にされていればスイッチ自体が凹んだように見え、「オフ」にされていれば平らになったように見える。尚、自動設定スイッチ50e4は、色を切り替えるようにしてもよい。 In step S124, the control device 50 determines whether or not the operation mode is the determination threshold value automatic setting mode based on whether or not the automatic setting switch 50e4 is turned on. The automatic setting switch 50e4 is a determination threshold value setting switch for automatically setting the determination threshold value in a later-described setting unit (step S128). The automatic setting switch 50e4 is displayed on the axis setting screen 50e shown in FIG. The axis setting screen 50e is a screen displayed on the display device 50b, and is a screen for setting parameters related to drive axes such as the X axis, the Z axis, and the main axes 20a and 20b. The axis setting screen 50e (display device 50b) is a touch panel, and can be input by the operator's operation, so it also functions as an input device. The automatic setting switch 50e4 is a switch that is switched by tapping. When turned "ON", the switch itself appears to be recessed, and when turned "OFF", the switch itself appears to be flattened. The automatic setting switch 50e4 may switch colors.
 判定用閾値は、加工負荷(検出可能物理量)の状態の判定をするための値である。本実施形態では、判定用閾値は、加工負荷の最大値である最大負荷の上限値(2種類)、加工負荷の平均値である平均負荷の上限値(2種類)、平均負荷の下限値を採用可能である。最大負荷の上限値は、工作機械10のワーク加工の停止を必要とする異常状態と判定する異常用上限値と、工作機械10のワーク加工を停止するまでもなく警告を必要とする異常状態(警告状態)と判定する警告用上限値を有する。平均負荷の上限値も、最大負荷の上限値と同様に、異常用上限値と警告用上限値を有する。平均負荷の下限値は、工作機械10の加工を停止するまでもなく警告を必要とする異常状態(警告状態)と判定する値である。尚、平均負荷の下限値は、工作機械10の加工の停止を必要とする異常状態と判定する値としてもよい。また、加工負荷の最小値である最小負荷の下限値を採用するようにしてもよい。 The judgment threshold is a value for judging the state of the processing load (detectable physical quantity). In this embodiment, the determination thresholds are the upper limit of the maximum load (two types), which is the maximum value of the processing load, the upper limit of the average load (two types), which is the average value of the processing load, and the lower limit of the average load. Adoptable. The upper limit value of the maximum load is divided into an upper limit value for abnormal conditions that is determined to be an abnormal condition that requires the machine tool 10 to stop machining the workpiece, and an abnormal condition that requires a warning without stopping the workpiece machining of the machine tool 10 ( It has a warning upper limit value for determining that it is in a warning state. Like the maximum load upper limit, the average load upper limit also has an abnormal upper limit and a warning upper limit. The lower limit value of the average load is a value determined as an abnormal state (warning state) requiring a warning even before the machining of the machine tool 10 is stopped. Note that the lower limit value of the average load may be a value for determining an abnormal state that requires stopping the machining of the machine tool 10 . Alternatively, the lower limit value of the minimum load, which is the minimum value of the machining load, may be adopted.
 ステップS126においては、制御装置50は、自動設定スイッチ50e4の押下を作業者に促すために、自動設定スイッチ50e4をオンする旨を表示装置50bに表示したり、音声メッセージをスピーカから発したりする。このように、制御装置50は、自動設定スイッチ50e4が押下されない場合に、作業者に自動設定スイッチ50e4の押下を促す旨を報知する(報知部)。 In step S126, in order to prompt the operator to press the automatic setting switch 50e4, the control device 50 displays on the display device 50b that the automatic setting switch 50e4 is turned on, or emits a voice message from the speaker. In this manner, the control device 50 notifies the operator to press the automatic setting switch 50e4 when the automatic setting switch 50e4 is not pressed (notification unit).
 尚、自動設定スイッチ50e4のオン操作は、工作機械10の設置時または最初の加工までに実施するのが好ましい。これによれば、工作機械10の加工処理を実施する際に、作業者に対する自動設定スイッチ50e4の押下要求をすることはなく、加工処理中に自動設定スイッチ50e4を押下する手間を省略することが可能となる。また、自動設定スイッチ50e4の設置を省略して、常に判定用閾値を自動的に設定する(常に判定用閾値自動設定モードに設定する。)ことは可能である。この場合、ステップS124,126の処理を省略すればよい。 The automatic setting switch 50e4 is preferably turned on when the machine tool 10 is installed or before the first machining. According to this, when the machining process of the machine tool 10 is performed, the operator is not required to press the automatic setting switch 50e4, and the trouble of pressing the automatic setting switch 50e4 during the machining process can be saved. It becomes possible. It is also possible to omit the installation of the automatic setting switch 50e4 and always automatically set the determination threshold value (always set the determination threshold value automatic setting mode). In this case, the processing of steps S124 and S126 may be omitted.
 制御装置50は、自動設定スイッチ50e4が押された場合、換言すると、判定用閾値自動設定モードになっている場合には、監視範囲(監視区間)の自動指定が終了すると、指定した監視範囲の上下限値(判定用閾値)を自動的に設定する(ステップS128)。最初に、制御装置50は、ワークWの加工(ワーク加工)をN回実施し、N回分の負荷データ(実検出データ)を使用することにより、監視範囲の上下限値(判定用閾値)を自動的に設定する。 When the automatic setting switch 50e4 is pressed, in other words, when the judgment threshold value automatic setting mode is set, the control device 50 completes the automatic designation of the monitoring range (monitoring section), and the designated monitoring range is set. Upper and lower limits (threshold values for judgment) are automatically set (step S128). First, the control device 50 performs machining of the workpiece W (workpiece machining) N times, and uses load data (actual detection data) for N times to set the upper and lower limit values (determination threshold) of the monitoring range. Set automatically.
 具体的には、制御装置50は、1回目からN回目までのワーク加工を実施し、ワーク加工毎の負荷データを記憶し(ステップS120,122にてそれぞれ「NO」と判定)、ワーク加工毎の負荷データを使用して監視範囲の上下限値を設定する(ステップS120,122,124にて「NO」,「YES」,「YES」と判定後、ステップS128にて)。このとき、ステップS128において、制御装置50は、監視対象となるブロック(加工プログラム行)毎に監視範囲の上限値と下限値(判定用閾値)を設定する。 Specifically, the control device 50 performs the first to N-th workpiece machining, stores the load data for each workpiece machining (determines "NO" in steps S120 and S122, respectively), and stores the load data for each workpiece machining. (After determining "NO", "YES" and "YES" in steps S120, 122 and 124, step S128). At this time, in step S128, the control device 50 sets an upper limit value and a lower limit value (determination threshold value) of the monitoring range for each block (machining program line) to be monitored.
 ステップS128において、制御装置50は、ステップS106(加工実施部)によるワークの加工中において、ステップS110(関連付け部)によって記憶された関連付けデータを使用して、加工処理命令(プログラム行)毎に判定用閾値を設定する(設定部)。具体的には、制御装置50は、加工処理命令毎に、負荷データ(実検出データ)の最大値(最大負荷)及び/または平均値(平均負荷)を算出し(図6参照)、算出した最大負荷及び/または平均負荷から判定用閾値を設定する。判定用閾値は、予め設定(入力)された所定値を、実検出データの最大値及び/または平均値に加減算することにより算出することが可能である。所定値は、図8に示す画面50f(システム設定画面)にて作業者によって入力可能である。所定値は、作業者による入力に限られず、データ受信するようにしてもよい。さらには、制御装置50は、ステップS114にて検索した指定処理命令により指定された加工処理命令に対して判定用閾値を設定可能である。 In step S128, the control device 50 uses the association data stored in step S110 (association unit) to determine for each machining instruction (program line) during the machining of the workpiece in step S106 (machining execution unit). (setting unit). Specifically, the control device 50 calculates the maximum value (maximum load) and/or the average value (average load) of the load data (actual detection data) for each processing command (see FIG. 6), and calculates A determination threshold is set from the maximum load and/or the average load. The determination threshold can be calculated by adding or subtracting a preset (input) predetermined value to or from the maximum value and/or average value of the actual detection data. The predetermined value can be input by the operator on a screen 50f (system setting screen) shown in FIG. The predetermined value is not limited to input by the operator, and may be received as data. Furthermore, the control device 50 can set the determination threshold for the processing command designated by the designated processing command retrieved in step S114.
 図8に示すように、システム設定画面50fは、判定用閾値を設定するための画面であり、異常値の所定値である異常値用加算値を入力(設定)するための異常値用加算値ボックス50f1、警告値の所定値である警告値用加算値を入力(設定)するための警告値用加算値ボックス50f2、及び、下限値の所定値である下限値用加算値を入力(設定)するための下限値用加算値ボックス50f3が設けられている。これらボックス50f1~50f3への数値入力は、例えば作業者によるテンキー入力により行われる。本実施形態では、異常値用加算値ボックス50f1には「100」が入力され、警告値用加算値ボックス50f2には「50」が入力され、そして、下限値用加算値ボックス50f3には「50」が入力されている。尚、異常値用加算値は、警告値用加算値より大きい値が入力されるのが好ましい。警告値用加算値が異常値用加算値より大きい場合には、その旨を警告するようにしてもよい。 As shown in FIG. 8, the system setting screen 50f is a screen for setting a determination threshold value, and is an abnormal value addition value for inputting (setting) an abnormal value addition value that is a predetermined value of an abnormal value. A box 50f1, a warning value addition value box 50f2 for inputting (setting) a warning value addition value that is a predetermined value of the warning value, and a lower limit value addition value that is a predetermined value of the lower limit (setting) A lower limit additional value box 50f3 is provided for this purpose. Numerical input to these boxes 50f1 to 50f3 is performed by the operator, for example, using a ten-key input. In this embodiment, "100" is input to the abnormal value additional value box 50f1, "50" is input to the warning value additional value box 50f2, and "50" is input to the lower limit value additional value box 50f3. ' is entered. It should be noted that it is preferable to input a value larger than the additional value for warning value as the additional value for abnormal value. If the additional value for warning value is greater than the additional value for abnormal value, a warning to that effect may be issued.
 また、システム設定画面50fは、最大負荷の上限値の設定が有効であることを示す上限値有効ボックス50f4、最大負荷の上限値の設定が無効であることを示す上限値無効ボックス50f5、平均負荷の上限値(平均値)の設定が有効であることを示す平均値有効ボックス50f6、平均負荷の上限値(平均値)の設定が無効であることを示す平均値無効ボックス50f7、下限値の設定が有効であることを示す下限値有効ボックス50f8、及び、下限値の設定が無効であることを示す下限値無効ボックス50f9が設けられている。各ボックスが作業者によりチェックされる(「@」や「レ」を入力する)ことにより、そのボックスの示す機能が有効となる。 The system setting screen 50f also includes an upper limit valid box 50f4 indicating that the setting of the upper limit of the maximum load is valid, an upper limit invalid box 50f5 indicating that the setting of the upper limit of the maximum load is invalid, an average load average value valid box 50f6 indicating that the setting of the upper limit value (average value) of the average load is valid, average value invalid box 50f7 indicating that the setting of the upper limit value (average value) of the average load is invalid, setting of the lower limit value A lower limit valid box 50f8 indicating that the setting of the lower limit is valid and a lower limit invalid box 50f9 indicating that the setting of the lower limit is invalid are provided. When each box is checked by the operator (inputting "@" or "re"), the function indicated by the box becomes valid.
 本実施形態では、上限値有効ボックス50f4に「@」が入力されており、最大負荷の上限値の自動設定が有効となっている。さらに、平均値有効ボックス50f6に「@」が入力されており、平均負荷の上限値の自動設定が有効となっている。そして、下限値有効ボックス50f8に「@」が入力されており、平均負荷または最小負荷の下限値の自動設定が有効となっている。 In this embodiment, "@" is entered in the upper limit valid box 50f4, and the automatic setting of the upper limit of the maximum load is valid. Furthermore, "@" is entered in the average value valid box 50f6, and the automatic setting of the upper limit value of the average load is valid. "@" is entered in the lower limit valid box 50f8, and the automatic setting of the lower limit of the average load or the minimum load is valid.
 さらに、システム設定画面50fは、保存スイッチ50faが設けられている。保存スイッチ50faは、システム設定画面50fにおける有効無効の設定、加算値の入力を保存するためのスイッチであり、有効無効の設定、加算値の入力の後に、押下されることにより有効無効の設定、加算値の入力内容を保存する。 Furthermore, the system setting screen 50f is provided with a save switch 50fa. The save switch 50fa is a switch for saving the valid/invalid setting and the addition value input on the system setting screen 50f. Save the input contents of the addition value.
 ステップS128において、制御装置50は、加工処理命令毎に、加工処理命令に係る加工ポイントのN個分の負荷検出値のうち最大値(最大負荷)、最小値及び平均値(平均負荷)を算出する。さらに、制御装置50は、加工処理命令毎に、最大負荷に異常値用加算値を加算することにより、判定用閾値である異常用上限値(最大負荷用)を算出・設定することができる。制御装置50は、加工処理命令毎に、最大負荷に警告値用加算値を加算することにより、判定用閾値である警告用上限値(最大負荷用)を算出・設定することができる。また、制御装置50は、加工処理命令毎に、平均負荷に異常値用加算値を加算することにより、判定用閾値である異常用上限値(平均負荷用)を算出・設定することができる。制御装置50は、加工処理命令毎に、平均負荷に警告値用加算値を加算することにより、判定用閾値である警告用上限値(平均負荷用)を算出・設定することができる。 In step S128, the control device 50 calculates the maximum value (maximum load), the minimum value, and the average value (average load) among the load detection values for N machining points related to the machining command for each machining command. do. Furthermore, the control device 50 can calculate and set an abnormal upper limit value (for maximum load), which is a determination threshold value, by adding the abnormal value addition value to the maximum load for each processing command. The control device 50 can calculate and set a warning upper limit value (for maximum load), which is a determination threshold value, by adding the warning value additional value to the maximum load for each processing command. In addition, the control device 50 can calculate and set an abnormal upper limit value (for average load), which is a determination threshold value, by adding an abnormal value additional value to the average load for each processing command. The control device 50 can calculate and set a warning upper limit value (for average load), which is a determination threshold value, by adding the warning value additional value to the average load for each processing command.
 そして、制御装置50は、加工処理命令毎に、平均負荷(または最小負荷)に下限値用加算値を加算することにより、判定用閾値である下限値を算出・設定することができる。制御装置50は、加工処理命令毎に、平均負荷(または最小負荷)に下限値用加算値を加算することにより、判定用閾値である下限値を算出・設定することができる。下限値用加算値は負の値に設定されているので、平均負荷(または最小負荷)に下限値用加算値を加算することは、平均負荷(または最小負荷)から下限値用加算値を減算することである。 Then, the control device 50 can calculate and set the lower limit value, which is the determination threshold value, by adding the additional value for lower limit value to the average load (or minimum load) for each processing command. The control device 50 can calculate and set the lower limit value, which is the determination threshold value, by adding the additional value for the lower limit value to the average load (or the minimum load) for each processing command. Since the low adder is set to a negative value, adding the low adder to the average load (or min load) will result in subtracting the low adder from the average load (or min load). It is to be.
 設定された判定用閾値は、図10に示すように、軸毎に表示される軸設定画面50gにて確認することが可能である。図10にはX軸に係る判定用閾値が、パス毎に表示が可能である。軸設定画面50gは、判定用閾値表示欄50g1、軸表示欄50g2、ワークNo表示欄50g3、プログラム表示スイッチ50g4、及び、判定用閾値表示操作スイッチ群50g5が設けられている。尚、ワークの管理番号であるワークNo、ワークの加工に使用した工具No、及び加工に関係した駆動軸の種類は、負荷データと関連付けられている。 The set determination threshold can be confirmed on the axis setting screen 50g displayed for each axis, as shown in FIG. In FIG. 10, it is possible to display the determination threshold for the X-axis for each pass. The axis setting screen 50g is provided with a judgment threshold display field 50g1, an axis display field 50g2, a work No. display field 50g3, a program display switch 50g4, and a judgment threshold display operation switch group 50g5. The work No., which is the management number of the work, the tool No. used for machining the work, and the type of drive axis related to machining are associated with the load data.
 判定用閾値表示欄50g1は、パス毎に判定用閾値を表示する欄であり、左から順番に、パスNo、使用した工具No、異常用上限値(最大負荷用)、警告用上限値(最大負荷用)、判定用閾値を算出するために使用した負荷データのうち最大である最大負荷、異常用上限値(平均負荷用)、警告用上限値(平均負荷用)、警告用下限値、及び、判定用閾値を算出するために使用した負荷データの平均である平均負荷を表示する。軸表示欄50g2は、判定用閾値が表示されている(負荷データが記憶されている)軸を表示する。ワークNo表示欄50g3は、判定用閾値が表示されている(負荷データが記憶されている)ワークの管理番号を表示する。プログラム表示スイッチ50g4は、加工負荷が検出されているプログラム行(またはパス)が表示される画面(例えば、図6に示す負荷表示画面50d)に画面を切り替えるためのスイッチである。判定用閾値表示操作スイッチ群50g5は、判定用閾値表示欄50g1に表示されている行を、上向きにスクロールさせたり、下向きにスクロールさせたりするためのスイッチを有している。 The judgment threshold value display column 50g1 is a column for displaying the judgment threshold value for each pass. load), the maximum load among the load data used to calculate the threshold for judgment, the upper limit for abnormality (for average load), the upper limit for warning (for average load), the lower limit for warning, and , displays the average load, which is the average of the load data used to calculate the judgment threshold. The axis display field 50g2 displays the axis on which the determination threshold value is displayed (load data is stored). The work No. display column 50g3 displays the management number of the work for which the determination threshold value is displayed (load data is stored). The program display switch 50g4 is a switch for switching the screen to a screen (for example, the load display screen 50d shown in FIG. 6) in which the program line (or path) in which the machining load is detected is displayed. The determination threshold display operation switch group 50g5 has switches for scrolling upward or downward the lines displayed in the determination threshold display column 50g1.
 設定された判定用閾値は、図11に示すように、パス毎に表示されるパス設定画面50hにて確認することが可能である。図11には所定のパスに係る判定用閾値が、軸毎に表示が可能である。パス設定画面50hは、判定用閾値表示欄50h1、パス表示欄50h2、ワークNo表示欄50h3、工具No表示欄50h4、プログラム表示スイッチ50h5、及び、判定用閾値表示操作スイッチ群50h6が設けられている。 The set determination threshold can be confirmed on the path setting screen 50h displayed for each path, as shown in FIG. In FIG. 11, it is possible to display the determination threshold value for a predetermined path for each axis. The pass setting screen 50h is provided with a judgment threshold display field 50h1, a pass display field 50h2, a work No. display field 50h3, a tool No. display field 50h4, a program display switch 50h5, and a judgment threshold display operation switch group 50h6. .
 判定用閾値表示欄50h1は、軸毎に判定用閾値を表示する欄であり、左から順番に、表示対象となる軸、異常用上限値(最大負荷用)、警告用上限値(最大負荷用)、判定用閾値を算出するために使用した負荷データのうち最大である最大負荷、異常用上限値(平均負荷用)、警告用上限値(平均負荷用)、警告用下限値、及び、判定用閾値を算出するために使用した負荷データの平均である平均負荷を表示する。パス表示欄50h2は、判定用閾値が表示されている(負荷データが記憶されている)パスNoを表示する。ワークNo表示欄50h3は、判定用閾値が表示されている(負荷データが記憶されている)ワークの管理番号を表示する。工具No表示欄50h4は、判定用閾値が表示されている(負荷データが記憶されている)切削工具の管理番号を表示する。プログラム表示スイッチ50h5は、加工負荷が検出されているプログラム行(またはパス)が表示される画面(例えば、図6に示す負荷表示画面50d)に画面を切り替えるためのスイッチである。判定用閾値表示操作スイッチ群50h6は、判定用閾値表示欄50h1に表示されている行を、上向きにスクロールさせたり、下向きにスクロールさせたりするためのスイッチを有している。 The determination threshold value display field 50h1 is a field for displaying the determination threshold value for each axis. ), the maximum load among the load data used to calculate the threshold for judgment, the upper limit for abnormality (for average load), the upper limit for warning (for average load), the lower limit for warning, and judgment Displays the average load, which is the average of the load data used to calculate the threshold for The path display column 50h2 displays the path No. for which the determination threshold value is displayed (load data is stored). The work No. display column 50h3 displays the management number of the work for which the determination threshold value is displayed (load data is stored). The tool No. display column 50h4 displays the management number of the cutting tool for which the determination threshold value is displayed (load data is stored). The program display switch 50h5 is a switch for switching the screen to a screen (for example, the load display screen 50d shown in FIG. 6) displaying the program line (or path) in which the machining load is detected. The judgment threshold display operation switch group 50h6 has switches for scrolling upward or downward the lines displayed in the judgment threshold display column 50h1.
 尚、図10に示す軸設定画面50g及び図11に示すパス設定画面50hは、後述するステップS132において、異常状態または警告状態と判定された際にも、表示可能であり、この場合には、異常状態または警告状態となった箇所を強調して表示することが可能である。例えば、X軸においてパスNoが3であるパスの最大負荷が異常状態である場合には、図10の軸設定画面50gの判定用閾値表示欄50g1にて最大負荷の欄及び異常用上限値(最大負荷)の欄が強調して表示される。X軸においてパスNoが4であるパスの平均負荷が警告状態である場合には、図10の軸設定画面50gの判定用閾値表示欄50g1にて平均負荷の欄及び警告用上限値(平均負荷)の欄が強調して表示される。 It should be noted that the axis setting screen 50g shown in FIG. 10 and the path setting screen 50h shown in FIG. It is possible to highlight and display the location where the abnormal state or warning state has occurred. For example, when the maximum load of the path with the path No. 3 on the X-axis is in an abnormal state, the maximum load column and the abnormal upper limit value ( maximum load) column is highlighted. When the average load of the path whose path number is 4 on the X axis is in a warning state, the average load column and the warning upper limit value (average load ) column is highlighted.
 また、図10に示す軸設定画面50g及び図11に示すパス設定画面50hにおいては、判定用閾値を手動によって変更することが可能である。変更したい箇所を指定して、テンキー入力により変更すればよい。 Also, in the axis setting screen 50g shown in FIG. 10 and the path setting screen 50h shown in FIG. 11, it is possible to manually change the determination threshold. The part to be changed can be specified, and the change can be made by inputting with the numeric keypad.
 さらに、制御装置50は、ステップS130において、フラグF2を1に設定する。フラグF2は、N回分の負荷データによって監視範囲の上下限値が設定されたか否かを示すフラグであり、フラグF2が「1」であるときに監視範囲の上下限値が設定済みである旨を示し、フラグF2が「0」であるときに監視範囲の上下限値が未設定である旨を示す。尚、ワーク加工開始指示があったときに、フラグF2は「0」に設定される。 Furthermore, the control device 50 sets the flag F2 to 1 in step S130. The flag F2 is a flag indicating whether or not the upper and lower limit values of the monitoring range have been set by the load data for N times. When the flag F2 is "1", it indicates that the upper and lower limit values of the monitoring range have been set. , and indicates that the upper and lower limits of the monitoring range have not been set when the flag F2 is "0". Note that the flag F2 is set to "0" when there is an instruction to start machining the workpiece.
 尚、ステップS120において、フラグF2が1であるか否かが判定される。制御装置50は、ワークWの加工が開始された後から監視範囲の上下限値が設定されるまでの間は、フラグF2は「0」であり、ステップS120にて「NO」と判定する。制御装置50は、監視範囲の上下限値が設定済みとなった場合には、フラグF2は「1」となり、ステップS120にて「YES」と判定し、ステップS122~130の処理を省略してプログラムをステップS132以降に進める。 In step S120, it is determined whether or not the flag F2 is 1. The control device 50 determines that the flag F2 is "0" and "NO" in step S120 until the upper and lower limit values of the monitoring range are set after the machining of the workpiece W is started. When the upper and lower limits of the monitoring range have already been set, the control device 50 sets the flag F2 to "1", determines "YES" in step S120, and omits the processing of steps S122 to S130. The program proceeds from step S132 onwards.
 また、ステップS122において、上述したワーク加工、加工負荷の検出及び負荷データの記憶がN回実施されたか否かを判定する。制御装置50は、1回目のワーク加工を開始した後であって、N回目のワーク加工が終了する前までは、ワーク加工等がN回終了していないと判定し(ステップS122にて「NO」)、プログラムをステップS104に戻す。制御装置50は、N回目のワーク加工が終了すると、ワーク加工等がN回終了したと判定し(ステップS122にて「YES」)、プログラムをステップS124に進める。 Also, in step S122, it is determined whether or not the above-described workpiece machining, machining load detection, and load data storage have been performed N times. The control device 50 determines that the workpiece machining has not been completed N times after the first workpiece machining is started and before the Nth workpiece machining is completed ("NO" in step S122). ”), and the program returns to step S104. When the Nth workpiece machining is completed, control device 50 determines that the workpiece machining has been completed N times ("YES" in step S122), and advances the program to step S124.
 制御装置50は、ステップS132において、判定用閾値を設定した後に検出した加工負荷である負荷検出値が監視範囲(監視区間)の正常範囲(判定用閾値範囲)内であるか否かを判定する。制御装置50は、負荷検出値が監視範囲の正常範囲内であると判定した場合には(ステップS132にて「YES」)、プログラムをステップS104に戻し、上述したステップS104~110の一連の処理を加工プログラムの順番に沿って実施する。尚、監視範囲の正常範囲は、最大負荷用の異常用上限値及び警告用上限値より小さくかつ警告用下限値より大きい範囲であり、かつ、平均負荷用の異常用上限値及び警告用上限値より小さくかつ警告用下限値より大きい範囲である。 In step S132, the control device 50 determines whether or not the load detection value, which is the processing load detected after setting the threshold for determination, is within the normal range (threshold range for determination) of the monitoring range (monitoring interval). . When control device 50 determines that the load detection value is within the normal range of the monitoring range ("YES" in step S132), control device 50 returns the program to step S104, and performs the series of steps S104 to S110 described above. are carried out according to the order of the machining program. The normal range of the monitoring range is a range smaller than the abnormal upper limit value and the warning upper limit value for the maximum load and greater than the warning lower limit value, and the abnormal upper limit value and the warning upper limit value for the average load. A range that is less than and greater than the lower warning limit.
 一方、制御装置50は、負荷検出値が監視範囲の正常範囲内でないと判定した場合には(ステップS132にて「NO」)、プログラムをステップS134に進め、負荷検出値が異常状態範囲であるか警告状態範囲であるかを判定する。制御装置50は、ステップS134において、負荷検出値が、最大負荷用の異常用上限値より小さくかつ最大負荷用の警告用上限値より大きい範囲であるか、平均負荷用の異常用上限値より小さくかつ平均負荷用の警告用上限値より大きい範囲である場合には、警告状態範囲であると判定し(ステップS134にて「YES」)、プログラムをステップS136以降に進める。その後、制御装置50は、警告を発し(ステップS136)、その後プログラムをステップS104に戻し、警告を発しながらワーク加工を継続する。 On the other hand, when control device 50 determines that the load detection value is not within the normal range of the monitoring range ("NO" in step S132), the program proceeds to step S134, and the load detection value is within the abnormal state range. or in the warning state range. In step S134, the control device 50 determines that the load detection value is smaller than the abnormal upper limit value for maximum load and larger than the warning upper limit value for maximum load, or is smaller than the abnormal upper limit value for average load. If the range is greater than the warning upper limit value for average load, it is determined to be within the warning state range ("YES" in step S134), and the program proceeds to step S136 and subsequent steps. After that, the control device 50 issues a warning (step S136), then returns the program to step S104, and continues workpiece machining while issuing a warning.
 尚、上述した実施形態においては、ステップS132,134においては、負荷検出値が判定用閾値範囲内であるか否かを判定したが、負荷検出値の最大値(最大負荷)が最大負荷用の判定用閾値範囲内であるか否か、及び負荷検出値の平均値(平均負荷)が平均負荷用の判定用閾値範囲内であるか否かを判定するようにしてもよい。 In the above-described embodiment, in steps S132 and S134, it is determined whether or not the load detection value is within the threshold range for determination. It may be determined whether or not it is within the determination threshold range, and whether or not the average value (average load) of the load detection values is within the determination threshold range for the average load.
 さらに、制御装置50は、ステップS134において、負荷検出値が、最大負荷用の異常用上限値より大きい範囲であるか、平均負荷用の異常用上限値より大きい範囲である場合には、警告状態範囲であると判定し(ステップS134にて「NO」)、ワークWの加工を停止する(ステップS138)とともに警告を発し(ステップS140)、その後、本フローチャートを終了する。 Further, in step S134, if the load detection value is in a range larger than the abnormal upper limit value for maximum load or in a range larger than the abnormal upper limit value for average load, the control device 50 determines that the warning state is reached. It is determined that it is within the range ("NO" at step S134), machining of the workpiece W is stopped (step S138), and a warning is issued (step S140), after which this flow chart ends.
 制御装置50は、ステップS136またはステップS140において、作業者の操作によって、または作業者による操作を待つまでもなく、図9に示す負荷表示画面50dを表示装置50bに自動的に表示する。図9に示す負荷表示画面50dにおいては、最大負荷にて異常が表示され、平均負荷にて警告が表示されている。いずれの場合も、最大負荷または平均負荷の値が強調して表示される。プログラム行数9のプログラムにおいて、負荷検出値が最大負荷の異常用上限値を越えたとして異常であると判定されたことが示されている。プログラム行数10のプログラムにおいて、負荷検出値が平均負荷の警告用上限値を越えたとして警告が必要であると判定されたことが示されている。 In step S136 or step S140, the control device 50 automatically displays the load display screen 50d shown in FIG. In the load display screen 50d shown in FIG. 9, an abnormality is displayed at the maximum load and a warning is displayed at the average load. In either case, the maximum load or average load values are highlighted. In the program of 9 program lines, it is shown that the detected load value exceeded the upper limit value for abnormalities of the maximum load and was judged to be abnormal. In the program of 10 program lines, it is shown that it is determined that a warning is necessary because the load detection value has exceeded the warning upper limit value of the average load.
 このように、負荷検知開始用Mコードと負荷検知終了用Mコードとにより挟まれた加工プログラムを抜き出し、抜き出した加工プログラムをプログラム行単位で(プログラム行毎に)最大負荷と平均負荷を表示することができる。さらには、最大負荷と平均負荷において異常が発生している箇所を合わせて表示することができる。よって、プログラム行毎に異常発生箇所が表示されるので、作業者は、表示された異常発生箇所を参照してより詳細な原因分析をすることが可能となる。 In this way, the machining program sandwiched between the M code for starting load detection and the M code for ending load detection is extracted, and the maximum load and average load are displayed for each program line of the extracted machining program (for each program line). be able to. Furthermore, it is possible to display together the locations where anomalies occur in the maximum load and the average load. Therefore, since the error occurrence location is displayed for each program line, the operator can refer to the displayed error occurrence location and perform more detailed cause analysis.
(作業者の手動操作による監視範囲の区間指定及び判定用閾値の調整)
 尚、制御装置50は、先にステップS114にて自動的に指定した監視範囲のなかから監視範囲(監視範囲の区間(監視区間))を手動で指定するとともに指定した監視範囲の判定用閾値(先にステップS128にて自動的に設定した上下限値)を手動で調整することが可能である。これにより、作業者は、一連の手動操作によって、最初に監視範囲のなかから監視機能が必要な監視範囲を指定し、続けて、その指定した監視範囲の判定用閾値を調整することが可能となる。その結果、より簡便に監視範囲を指定・調整することができる。尚、監視範囲の区間指定及び判定用閾値の調整は、連続した操作でなく、別々の分離した操作によって行われるようにしてもよい。
(Specification of section of monitoring range and adjustment of threshold for judgment by operator's manual operation)
Note that the control device 50 manually designates a monitoring range (monitoring range section (monitoring section)) from among the monitoring ranges automatically designated in step S114, and also manually designates the designated monitoring range judgment threshold value (monitoring section). It is possible to manually adjust the upper and lower limit values automatically set in step S128 previously. As a result, the operator can perform a series of manual operations to first specify the monitoring range that requires the monitoring function from among the monitoring ranges, and then adjust the judgment threshold for the specified monitoring range. Become. As a result, the monitoring range can be specified and adjusted more easily. Note that the section designation of the monitoring range and the adjustment of the determination threshold value may be performed by separate operations instead of continuous operations.
 判定用閾値の調整は、図10に示す軸設定画面50gにおいて作業者の手動入力により行うことができる。また、判定用閾値の調整は、図11に示すパス設定画面50hにおいて作業者の手動入力により行うことができる。いずれの場合も、調整したい判定用閾値を指定して、テンキー入力により変更すればよい。 The determination threshold can be adjusted by the operator's manual input on the axis setting screen 50g shown in FIG. Also, the adjustment of the determination threshold can be performed by the operator's manual input on the path setting screen 50h shown in FIG. In either case, the threshold value for determination to be adjusted may be specified and changed by inputting the numeric keypad.
(本実施形態の作用効果)
 上述した実施形態によるワーク加工装置(工作機械10)は、ワークWの加工を実施するための命令である複数の加工処理命令を有する加工プログラムと、切削工具31(加工工具)を使用してワークWの加工を加工プログラムに沿って実施する加工実施部(制御装置50;ステップS106)と、ワークWの加工に係る物理量であって検出可能である検出可能物理量(加工負荷)を検出する検出部(制御装置50;ステップS108)と、ステップS108によって実際に検出された実検出データを記憶する記憶部(記憶装置50c)と、加工処理命令毎に、ステップS108によって実検出データを検出し、実検出データを加工処理命令に関連付けして関連付けデータとして記憶装置50cに記憶する関連付け部(制御装置50;ステップS110)と、ステップS110によって記憶された関連付けデータを使用して、加工処理命令毎に加工負荷の状態の判定をするための判定用閾値を設定する設定部(制御装置50;ステップS128)と、を備えている。
(Action and effect of the present embodiment)
The work machining apparatus (machine tool 10) according to the above-described embodiment uses a machining program having a plurality of machining processing commands, which are commands for machining a work W, and a cutting tool 31 (machining tool). A machining execution unit (control device 50; step S106) that performs machining of W according to a machining program, and a detection unit that detects a detectable physical quantity (machining load) that is a physical quantity related to machining of the workpiece W. (control device 50; step S108); a storage unit (storage device 50c) that stores actual detection data actually detected in step S108; Using the association unit (control device 50; step S110) that associates the detected data with the processing instruction and stores it in the storage device 50c as association data, and the association data stored in step S110, processing is performed for each processing instruction. and a setting unit (control device 50; step S128) for setting a determination threshold value for determining the state of the load.
 本実施形態によれば、工作機械10は、実検出データを加工処理命令に関連付けした関連付けデータを使用して、加工処理命令毎に加工負荷の状態の判定(異常判断)をするための判定用閾値を設定することが可能となる。すなわち、工作機械10は、関連付けデータを有していれば、作業者の特別な操作を伴うことなく、判定用閾値を自動的に設定することが可能となる。このように、工作機械10は、異常判断に使用する判定用閾値を自動的に設定するとともに利便性を向上することができる。 According to the present embodiment, the machine tool 10 uses association data that associates actual detection data with processing instructions to determine the state of the processing load (abnormality determination) for each processing instruction. A threshold can be set. That is, if the machine tool 10 has the association data, it becomes possible to automatically set the determination threshold value without any special operation by the operator. In this manner, the machine tool 10 can automatically set the determination threshold used for abnormality determination and improve convenience.
 また、制御装置50は、加工処理命令毎に、実検出データの最大値または平均値から判定用閾値を設定する(ステップS128)。これによれば、加工処理命令毎に判定用閾値を適切に設定することが可能となる。 Also, the control device 50 sets a determination threshold from the maximum value or average value of the actual detection data for each processing command (step S128). According to this, it is possible to appropriately set the determination threshold value for each processing command.
 また、上述した実施形態において、加工プログラムは、判定の対象となる加工処理命令を指定するための指定処理命令を有し、制御装置50は、指定処理命令を検索し、検索した指定処理命令により指定された加工処理命令に対して判定用閾値を設定可能である(ステップS128)。これによれば、判定の対象となる加工処理命令を自動的に設定し、さらには、自動設定された加工処理命令の判定用閾値を適切に設定することが可能となる。 Further, in the above-described embodiment, the machining program has a specified processing command for specifying a processing command to be judged, and the control device 50 searches for the specified processing command, and according to the searched specified processing command, A determination threshold can be set for the designated processing command (step S128). According to this, it is possible to automatically set the processing command to be judged, and furthermore to appropriately set the threshold value for judgment of the automatically set processing command.
 また、上述した実施形態において、工作機械10は、設定部(ステップS128)にて判定用閾値の設定を自動的に実施させるためのスイッチである判定用閾値設定スイッチ(自動設定スイッチ50e4)をさらに備え、制御装置50は、自動設定スイッチ50e4が作業者に押下された場合に、判定用閾値を設定する(ステップS128)。これによれば、自動設定スイッチ50e4が作業者に押下されることにより、判定用閾値を自動的に設定する判定用閾値自動設定モードにすることが可能となり、ワーク加工を実施中においても、判定用閾値を自動的に設定することが可能となる。その結果、判定用閾値が設定された後には、特に設定を切り替えるなどの操作をすることなく、ワーク加工を実施し実施中に異常判定を実施することが可能となる。 In the above-described embodiment, the machine tool 10 further includes a determination threshold value setting switch (automatic setting switch 50e4), which is a switch for automatically setting the determination threshold value in the setting unit (step S128). In preparation, the control device 50 sets the determination threshold when the operator presses the automatic setting switch 50e4 (step S128). According to this, when the automatic setting switch 50e4 is pressed by the operator, it becomes possible to switch to the determination threshold value automatic setting mode in which the determination threshold value is automatically set. It is possible to automatically set the threshold for use. As a result, after the determination threshold value is set, it is possible to carry out an abnormality determination during workpiece machining without performing an operation such as switching the setting.
 また、上述した実施形態において、制御装置50は、自動設定スイッチ50e4が押下されない場合に、作業者に自動設定スイッチ50e4の押下を促す旨を報知する報知部(ステップS126)をさらに備えている。これによれば、作業者による自動設定スイッチ50e4の押下を確実に実施させることが可能となり、ひいては判定用閾値自動設定モードに確実にすることが可能となる。 In the above-described embodiment, the control device 50 further includes a notification unit (step S126) that notifies the operator to press the automatic setting switch 50e4 when the automatic setting switch 50e4 is not pressed. According to this, it is possible to ensure that the operator presses down the automatic setting switch 50e4, and it is possible to ensure that the judgment threshold value automatic setting mode is set.
 尚、上述した実施形態においては、加工工具として切削工具を使用するようにしたが、ワークWを加工する他の加工工具を使用するようにしてもよい。また、検出可能物理量として加工負荷を使用するようにしたが、ワークWの加工に係る他の物理量であって検出可能である物理量を使用するようにしてもよい。 In addition, in the above-described embodiment, a cutting tool is used as a processing tool, but other processing tools for processing the workpiece W may be used. Also, although the machining load is used as the detectable physical quantity, other physical quantity relating to machining of the workpiece W that is detectable may be used.
 また、上述した実施形態においては、主軸、工具台及びロボットが2つ設けられたデュアルガントリータイプの工作機械10であったが、主軸、工具台及びロボットが1つ設けられたガントリータイプの工作機械を採用することも可能である。 Further, in the above-described embodiment, the dual gantry type machine tool 10 is provided with two spindles, tool rests and robots. can also be adopted.
 10…工作機械(ワーク加工装置)、31…切削工具(加工工具)、50…制御装置(加工実施部(ステップS106)、検出部(ステップS108)、関連付け部(ステップS110)、設定部(ステップS128)、報知部(ステップS126))、50c…記憶装置(記憶部)、50e4…自動設定スイッチ(判定用閾値設定スイッチ)、W…ワーク。
 

 
10... Machine tool (workpiece processing device), 31... Cutting tool (processing tool), 50... Control device (machining execution unit (step S106), detection unit (step S108), association unit (step S110), setting unit (step S128), reporting section (step S126)), 50c...storage device (storage section), 50e4...automatic setting switch (determination threshold value setting switch), W...work.


Claims (5)

  1.  ワークの加工を実施するための命令である複数の加工処理命令を有する加工プログラムと、
     加工工具を使用してワークの加工を前記加工プログラムに沿って実施する加工実施部と、
     前記ワークの加工に係る物理量であって検出可能である検出可能物理量を検出する検出部と、
     前記検出部によって実際に検出された実検出データを記憶する記憶部と、
     前記加工処理命令毎に、前記検出部によって実検出データを検出し、前記実検出データを前記加工処理命令に関連付けして関連付けデータとして前記記憶部に記憶する関連付け部と、
     前記関連付け部によって記憶された前記関連付けデータを使用して、前記加工処理命令毎に前記検出可能物理量の状態の判定をするための判定用閾値を設定する設定部と、
     を備えたワーク加工装置。
    a machining program having a plurality of machining instructions that are instructions for machining a workpiece;
    a machining execution unit that uses a machining tool to machine a workpiece according to the machining program;
    a detection unit that detects a detectable physical quantity that is a physical quantity related to machining of the workpiece;
    a storage unit that stores actual detection data actually detected by the detection unit;
    an association unit that detects actual detection data by the detection unit for each processing instruction, associates the actual detection data with the processing instruction, and stores the actual detection data in the storage unit as association data;
    a setting unit that uses the association data stored by the association unit to set a determination threshold value for determining the state of the detectable physical quantity for each processing command;
    A work processing device equipped with
  2.  前記設定部は、前記加工処理命令毎に、前記実検出データの最大値または平均値から前記判定用閾値を設定する請求項1に記載のワーク加工装置。 The work processing apparatus according to claim 1, wherein the setting unit sets the determination threshold from a maximum value or an average value of the actual detection data for each processing command.
  3.  前記加工プログラムは、前記判定の対象となる前記加工処理命令を指定するための指定処理命令を有し、
     前記設定部は、前記指定処理命令を検索し、検索した前記指定処理命令により指定された前記加工処理命令に対して前記判定用閾値を設定可能である請求項1に記載のワーク加工装置。
    The machining program has a designation processing instruction for designating the processing instruction to be determined,
    2. The work processing apparatus according to claim 1, wherein the setting unit searches for the specified processing command, and can set the determination threshold for the processing command specified by the searched specified processing command.
  4.  前記設定部にて前記判定用閾値の設定を自動的に実施させるためのスイッチである判定用閾値設定スイッチをさらに備え、
     前記設定部は、前記判定用閾値設定スイッチが作業者に押下された場合に、前記判定用閾値を設定する請求項1に記載のワーク加工装置。
    further comprising a determination threshold value setting switch, which is a switch for causing the setting unit to automatically set the determination threshold value;
    2. The work processing apparatus according to claim 1, wherein the setting unit sets the determination threshold when the determination threshold setting switch is pressed by an operator.
  5.  前記判定用閾値設定スイッチが押下されない場合に、前記作業者に前記判定用閾値設定スイッチの押下を促す旨を報知する報知部をさらに備えた請求項4に記載のワーク加工装置。
     

     
    5. The work processing apparatus according to claim 4, further comprising a notification unit that notifies the worker to press the determination threshold setting switch when the determination threshold setting switch is not pressed.


PCT/JP2021/008858 2021-03-08 2021-03-08 Workpiece processing apparatus WO2022190155A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023504878A JPWO2022190155A1 (en) 2021-03-08 2021-03-08
PCT/JP2021/008858 WO2022190155A1 (en) 2021-03-08 2021-03-08 Workpiece processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/008858 WO2022190155A1 (en) 2021-03-08 2021-03-08 Workpiece processing apparatus

Publications (1)

Publication Number Publication Date
WO2022190155A1 true WO2022190155A1 (en) 2022-09-15

Family

ID=83227541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008858 WO2022190155A1 (en) 2021-03-08 2021-03-08 Workpiece processing apparatus

Country Status (2)

Country Link
JP (1) JPWO2022190155A1 (en)
WO (1) WO2022190155A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0392249A (en) * 1989-09-04 1991-04-17 Mori Seiki Seisakusho:Kk Motor load measuring method for nc machine tool and nc machine tool group control system
JP2009129395A (en) * 2007-11-28 2009-06-11 Brother Ind Ltd Numerical control apparatus, computer program and storage medium
JP2020116666A (en) * 2019-01-22 2020-08-06 ファナック株式会社 Tool management system of machine tool
JP2020191043A (en) * 2019-05-24 2020-11-26 ファナック株式会社 Abnormality detector, abnormality detection server, and abnormality detection method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0392249A (en) * 1989-09-04 1991-04-17 Mori Seiki Seisakusho:Kk Motor load measuring method for nc machine tool and nc machine tool group control system
JP2009129395A (en) * 2007-11-28 2009-06-11 Brother Ind Ltd Numerical control apparatus, computer program and storage medium
JP2020116666A (en) * 2019-01-22 2020-08-06 ファナック株式会社 Tool management system of machine tool
JP2020191043A (en) * 2019-05-24 2020-11-26 ファナック株式会社 Abnormality detector, abnormality detection server, and abnormality detection method

Also Published As

Publication number Publication date
JPWO2022190155A1 (en) 2022-09-15

Similar Documents

Publication Publication Date Title
US7899574B2 (en) Machine-tool controller
JP4676544B2 (en) Robot control device for controlling a robot for supplying and taking out workpieces from a machine tool
US6937942B2 (en) Method and apparatus of detecting tool abnormality in a machine tool
EP1243992B1 (en) Tool presetter and tool offset amount calculation method
US20220168858A1 (en) Automatic tool changer and control method therefor and machine tool including same
US20220244701A1 (en) Control Device for Use on a Numerically Controlled Machine Tool, and Machine Tool Comprising a Control Device
CN115552341A (en) Machine tool and information processing device
US20080086221A1 (en) Machine-tool controller
JP3606595B2 (en) Machine tool control device
WO2022190155A1 (en) Workpiece processing apparatus
US7136718B2 (en) Numerical control apparatus
JP7390479B2 (en) Workpiece processing equipment
JP2023067294A (en) Workpiece machining apparatus
WO2023127159A1 (en) Workpiece machining apparatus
JP2002210635A (en) Instrumentation method of workpiece dimension by electric chuck
WO2022208899A1 (en) Workpiece processing apparatus
JP3487713B2 (en) Fast-forward moving speed control method and device
JP7084906B2 (en) Machine tools and machine tool control methods
JP2023060916A (en) Work processing device
KR20210108613A (en) Workpiece cutoff confirmation apparatus of machine tool and method thereof
JPH081794Y2 (en) Automatic tool changer Automatic check device for operating range
JP2023103137A (en) Workpiece processing device
JPH056046Y2 (en)
JPH02250747A (en) Cnc tapping/drilling/milling machine
CN116547107A (en) Machine tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21930014

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023504878

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21930014

Country of ref document: EP

Kind code of ref document: A1