WO2022188261A1 - 资源调度参数的调整方法、装置、存储介质及电子装置 - Google Patents

资源调度参数的调整方法、装置、存储介质及电子装置 Download PDF

Info

Publication number
WO2022188261A1
WO2022188261A1 PCT/CN2021/093683 CN2021093683W WO2022188261A1 WO 2022188261 A1 WO2022188261 A1 WO 2022188261A1 CN 2021093683 W CN2021093683 W CN 2021093683W WO 2022188261 A1 WO2022188261 A1 WO 2022188261A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
target
cqi
determining
resource scheduling
Prior art date
Application number
PCT/CN2021/093683
Other languages
English (en)
French (fr)
Inventor
王卫乔
梁刚
王得名
边艳春
李传煌
陈超
Original Assignee
三维通信股份有限公司
浙江三维利普维网络有限公司
浙江工商大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三维通信股份有限公司, 浙江三维利普维网络有限公司, 浙江工商大学 filed Critical 三维通信股份有限公司
Publication of WO2022188261A1 publication Critical patent/WO2022188261A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI

Definitions

  • Embodiments of the present invention relate to the field of communications, and in particular, to a method, a device, a storage medium, and an electronic device for adjusting a resource scheduling parameter.
  • the AMC (Adaptive Modulation and Coding) controller is an important function of the LTE (Long Term Evolution, Long Term Evolution) and NR (New Radio) system schedulers. It adjusts the modulation and coding of the uplink and downlink channels adaptively. way, so as to realize the optimal processing of time and frequency resources. Therefore, the quality of the AMC performance directly determines the scheduling performance of the base station, which in turn affects the user experience.
  • LTE Long Term Evolution, Long Term Evolution
  • NR New Radio
  • AMC is based on LTE and NR standard protocols, mainly through terminal side information feedback, and through certain algorithm scheduling strategies to achieve optimal performance.
  • uplink scheduling mainly uses the channel measurement information and demodulation information on the base station side
  • downlink scheduling mainly uses the feedback of terminal demodulation and measurement information.
  • the measurement information processing flow is attributed to the outer loop processing
  • the demodulation information processing flow is attributed to the inner loop processing.
  • the following line scheduling is used as an example to illustrate:
  • the terminal side decodes the received data, and feeds back the demodulation result to the base station through the traffic channel PUSCH (Physical Uplink Shared Control Channel) or PUCCH (Physical Uplink Control Channel).
  • PUSCH Physical Uplink Shared Control Channel
  • PUCCH Physical Uplink Control Channel
  • the base station side combines the difference between the target BLER (bit error rate, which is NACK/(ACK+NACK)) and the actual BLER and the error tolerance factor, and corrects it into the CQI (channel quality indicator) information.
  • the target BLER bit error rate, which is NACK/(ACK+NACK)
  • the error tolerance factor which is NACK/(ACK+NACK)
  • the terminal side selects the optimal CQI information based on the downlink channel estimation, such as the signal-to-noise ratio SINR value, after linear smoothing and mapping of the channel quality indicator, and feeds it back to the base station.
  • the optimal CQI information based on the downlink channel estimation, such as the signal-to-noise ratio SINR value, after linear smoothing and mapping of the channel quality indicator, and feeds it back to the base station.
  • the base station side obtains the actual effective CQI according to the reported CQI information and the correction value of the inner loop processing result. Subsequently, the effective CQI value is linearly smoothed to obtain a time smoothed value, and the scheduling parameter MCS and RB parameter are generated by using this value in combination with the amount of downlink data.
  • the demodulation performance is more sensitive to the modulation information, so using a fixed error tolerance factor cannot reflect the variation of channel conditions well.
  • the outer loop it is necessary to track the fast fading of the wireless channel environment in real time.
  • the SINR itself can reflect the channel change, after smooth filtering on the terminal side, the CQI time of the base station is smoothed, and the CQI feedback cycle lag of the channel itself leads to The real-time nature of modulation information modulation is weakened.
  • Embodiments of the present invention provide a method, device, storage medium, and electronic device for adjusting resource scheduling parameters, so as to at least solve the problem of unreasonable adjustment of resource scheduling parameters existing in the related art.
  • a method for adjusting resource scheduling parameters including: receiving feedback information sent by a target device; determining initialization parameters corresponding to the feedback information and step factors corresponding to the feedback information ; Determine the first channel quality indicator CQI parameter of the target channel based on the initialization parameter and the step factor, wherein the target channel is the channel through which the target device and the target base station carry out data communication; Receive the transmission from the target device the second CQI parameter of the target channel; determine the target interval where the second CQI parameter is located, and determine a target filtering method based on the target interval; process the first channel quality indicator CQI parameter based on the target filtering method and a second CQI parameter to determine a third CQI parameter; and adjust the resource scheduling parameter of the target channel based on the third CQI parameter.
  • an apparatus for adjusting a resource scheduling parameter including: a first receiving module configured to receive feedback information sent by a target device; a first determining module configured to determine the difference between the feedback information and the feedback information. a corresponding initialization parameter and a step factor corresponding to the feedback information; a second determination module configured to determine a first channel quality indicator CQI parameter of the target channel based on the initialization parameter and the step factor, wherein the The target channel is the channel for data communication between the target device and the target base station; the second receiving module is configured to receive the second CQI parameter of the target channel sent by the target device; the third determining module is configured to determine the The target interval in which the second CQI parameter is located, and a target filtering method is determined based on the target interval; the processing module is configured to process the first channel quality indicator CQI parameter and the second CQI parameter based on the target filtering method, so as to determine the first channel quality indicator CQI parameter and the second CQI parameter.
  • a computer-readable storage medium where a computer program is stored in the computer-readable storage medium, wherein, when the computer program is executed by a processor, any one of the above-mentioned items is implemented. steps of the method.
  • an electronic device comprising a memory and a processor, wherein the memory stores a computer program, the processor is configured to run the computer program to execute any of the above Steps in Method Examples.
  • the present invention receives the feedback information sent by the target device, determines the initialization parameter corresponding to the feedback information and the step factor corresponding to the feedback information, and determines the first channel quality indicator CQI parameter of the target channel according to the initialization parameter and the step factor.
  • Receive the second CQI parameter of the target information sent by the target device determine the target interval where the second CQI parameter is located, determine the target filtering method according to the target interval, and process the first CQI parameter and the second CQI parameter according to the target filtering method to determine
  • the third CQI parameter is obtained, and the resource scheduling parameter of the target channel is adjusted according to the third CQI parameter.
  • the first channel quality indicator CQI parameter of the target channel is determined according to the initialization parameter and the step factor, which can reduce the impact of fast fading and maintain high-performance stability.
  • Different filtering methods are used for the second CQI parameters in different intervals, and dynamic
  • the filtering strategy can track the fast fading situation of the wireless channel environment in real time, and then determine the accurate third CQI parameter, and use the third CQI parameter to determine the resource scheduling parameter, so as to improve the scheduling performance. Therefore, the problem of unreasonable adjustment of resource scheduling parameters in the related art can be solved, the effect of optimizing and adjusting the resource scheduling parameters can be achieved, the scheduling performance is improved, and the user experience is improved.
  • Fig. 1 is the position function schematic diagram of AMC controller in the system
  • FIG. 2 is a block diagram of a hardware structure of a mobile terminal according to a method for adjusting a resource scheduling parameter according to an embodiment of the present invention
  • FIG. 3 is a flowchart of a method for adjusting a resource scheduling parameter according to an embodiment of the present invention
  • FIG. 4 is a flowchart of an inner loop processing strategy for step adjustment according to an exemplary embodiment of the present invention
  • FIG. 5 is a flowchart of an outer loop processing strategy for segment filtering according to an exemplary embodiment of the present invention
  • FIG. 6 is a flowchart of a method for adjusting a resource scheduling parameter according to a specific embodiment of the present invention.
  • FIG. 7 is a structural block diagram of an apparatus for adjusting a resource scheduling parameter according to an embodiment of the present invention.
  • FIG. 2 is a block diagram of a hardware structure of a mobile terminal according to a method for adjusting a resource scheduling parameter according to an embodiment of the present invention.
  • the mobile terminal may include one or more (only one is shown in FIG.
  • processor 102 may include, but is not limited to, a processing device such as a microprocessor MCU or a programmable logic device FPGA) and a memory 104 configured to store data, wherein the above-mentioned mobile terminal may further include a transmission device 106 and an input/output device 108 configured as a communication function.
  • a processing device such as a microprocessor MCU or a programmable logic device FPGA
  • a memory 104 configured to store data
  • the above-mentioned mobile terminal may further include a transmission device 106 and an input/output device 108 configured as a communication function.
  • the structure shown in FIG. 2 is only for illustration, and does not limit the structure of the above-mentioned mobile terminal.
  • the mobile terminal may also include more or fewer components than those shown in FIG. 2 , or have a different configuration than that shown in FIG. 2 .
  • the memory 104 may be configured to store computer programs, for example, software programs and modules of application software, such as computer programs corresponding to the method for adjusting the resource scheduling parameters in the embodiment of the present invention.
  • the processor 102 runs the computer programs stored in the memory 104 , so as to perform various functional applications and data processing, that is, to implement the above method.
  • Memory 104 may include high-speed random access memory, and may also include non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid-state memory.
  • the memory 104 may further include memory located remotely from the processor 102, and these remote memories may be connected to the mobile terminal through a network. Examples of such networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the transmission device 106 is arranged to receive or transmit data via a network.
  • the specific example of the above-mentioned network may include a wireless network provided by a communication provider of the mobile terminal.
  • the transmission device 106 includes a network adapter (Network Interface Controller, NIC for short), which can be connected to other network devices through a base station so as to communicate with the Internet.
  • the transmission device 106 may be a radio frequency (Radio Frequency, RF for short) module, which is configured to communicate with the Internet in a wireless manner.
  • RF Radio Frequency
  • FIG. 3 is a flowchart of a method for adjusting a resource scheduling parameter according to an embodiment of the present invention. As shown in FIG. 3 , the process includes the following steps:
  • Step S302 receiving feedback information sent by the target device
  • Step S304 determining an initialization parameter corresponding to the feedback information and a step factor corresponding to the feedback information
  • Step S306 determining a first channel quality indicator CQI parameter of a target channel based on the initialization parameter and the step factor, where the target channel is a channel for data communication between the target device and the target base station;
  • Step S308 receiving the second CQI parameter of the target channel sent by the target device
  • Step S310 determining a target interval where the second CQI parameter is located, and determining a target filtering mode based on the target interval;
  • Step S312 processing the first CQI parameter and the second CQI parameter based on the target filtering mode to determine a third CQI parameter
  • Step S314 Adjust the resource scheduling parameter of the target channel based on the third CQI parameter.
  • the target device may be a terminal device, for example, a mobile phone, a computer, a tablet computer, a smart wearable device, and the like.
  • the target device After receiving the data sent by the base station, the target device can decode the received data, and send feedback information to the base station according to the decoding result.
  • the feedback information may be ACK or NACK.
  • the base station After receiving the feedback information, the base station may determine an initialization parameter corresponding to the feedback information and a step factor corresponding to the feedback information, and determine the first CQI parameter according to the initialization parameter and the step factor.
  • steps S302-S306 may be inner loop adjustment.
  • the inner loop adjustment is mainly based on the bit error rate BLER (Block Error Rate).
  • BLER Bit Error Rate
  • the higher the modulation order the greater the change in demodulation performance with order adjustment, in order to reduce the performance fluctuation caused by the increase of the modulation order, This can be achieved by increasing the fault tolerance factor.
  • the purpose of reducing the performance fluctuation caused by the improvement of the modulation order can be achieved by scaling the positive and negative factor fluctuations in equal proportions.
  • CQI is set to 1 as the initial default value.
  • the fault tolerance factor step increases by 0.1 times each time it increases.
  • the ratio of NACK/(ACK+NACK) remains unchanged after scaling, and can reflect the influence of channel quality changes, which is further reflected in the modulation order information scheduled by the base station.
  • the above step factor and initialization parameter are only an exemplary description, the present invention does not limit the step factor and initialization parameter, and those skilled in the art can customize the step factor and initialization parameter.
  • steps S308-S312 may be outer loop adjustment.
  • the outer loop adjustment is mainly based on the received CQI information (corresponding to the above-mentioned second CQI parameter) and the correction amount (corresponding to the above-mentioned first CQI parameter), and performs time smoothing processing.
  • a segmented interval processing method is adopted for design, which can achieve the effect of dynamic self-adaptation and improve the performance of the scheduler AMC controller.
  • the execution subject of the above steps may be a base station, but is not limited thereto.
  • the feedback information sent by the target device is received, the initialization parameter corresponding to the feedback information and the step factor corresponding to the feedback information are determined, and the first channel quality indicator CQI parameter of the target channel is determined according to the initialization parameter and the step factor.
  • Receive the second CQI parameter of the target information sent by the target device determine the target interval where the second CQI parameter is located, determine the target filtering method according to the target interval, and process the first CQI parameter and the second CQI parameter according to the target filtering method to determine
  • the third CQI parameter is obtained, and the resource scheduling parameter of the target channel is adjusted according to the third CQI parameter.
  • the first channel quality indicator CQI parameter of the target channel is determined according to the initialization parameter and the step factor, which can reduce the impact of fast fading and maintain high-performance stability.
  • Different filtering methods are used for the second CQI parameters in different intervals, and dynamic
  • the filtering strategy can track the fast fading situation of the wireless channel environment in real time, and then determine the accurate third CQI parameter, and use the third CQI parameter to determine the resource scheduling parameter, so as to improve the scheduling performance. Therefore, the problem of unreasonable adjustment of resource scheduling parameters in the related art can be solved, the effect of optimizing and adjusting the resource scheduling parameters can be achieved, the scheduling performance is improved, and the user experience is improved.
  • determining the first CQI parameter of the target channel based on the initialization parameter and the stepping factor includes: determining a target period for adjusting the resource scheduling parameter based on the initialization parameter; The received first bit error rate of the feedback information; the periodic bit error rate is determined based on the first bit error rate and the target period; the first channel quality indicator CQI parameter is determined based on the periodic bit error rate.
  • the first bit error rate of the received feedback information may be determined, and the periodic bit error rate is determined according to the first bit error rate and the target period.
  • the target period may be the sum of the initial value of the ACK information and the initial value of the NACK information, that is, the target period may be determined according to the initialization parameter.
  • determining the first bit error rate of the received feedback information includes: determining an index position of the feedback information; The first index value of the corresponding ACK information and the second index value corresponding to the NACK information corresponding to the index position, wherein the feedback information includes the ACK information and the NACK information; determine the first index value and the index sum of the second index value; if the feedback information is ACK information, determine a first ratio of the first index value to the index sum, and compare the first ratio to the first The difference between the index values is determined as the first bit error rate; in the case that the feedback information is NACK information, a second ratio between the second index value and the sum of the indices is determined, and the second ratio is equal to The sum of the second index values is determined as the first bit error rate.
  • CurrentBler is the first bit error rate
  • TableAck[CQI] is an array
  • the index value is the CQI reported value at the latest moment
  • TableAck[15] ⁇ 10,11,12,13,14,15,16,17,18 ,19,20,21,22,23,24 ⁇ .
  • ACK information which is
  • NACK information which is The initial value of the first bit error rate may be set to 0.
  • the fault tolerance factors of TableAck[15] and TableNack[15] are only designed with an initial value of ACK of 10, a step of 1, an initial value of NACK of 90, and a step of 9.
  • TargetBler represents the target bit error rate
  • the target bit error rate can be a preset value, for example, it can be set to 10 (that is, the step factor 10% target is expanded by 100 times). It should be noted that this value The value is only an exemplary illustration, and the target bit error rate can be adjusted according to the channel environment conditions.
  • TableAck[15] ⁇ 10,11,12,13,14,15,16,17,18,19,20,21,22,23,24 ⁇
  • TableNack[15] ⁇ 90, 99, 108, 117, 126, 135, 144, 153, 162, 171, 180, 189, 198, 207, 216 ⁇
  • the feedback information is ACK[2]
  • the index position corresponding to the feedback information is 2, the first index value is 11, and the second index value is 99.
  • determining a periodic bit error rate based on the first bit error rate and the target period includes: determining a target bit error rate of the feedback information; determining the relationship between the target bit error rate and the first bit error rate A first difference of the bit error rate; determining the ratio of the first difference to the target period as the period error rate.
  • the period error rate in the period can be calculated.
  • Periodic bit error rate can be used express.
  • the Period (target period) may be 100, that is, the sum value of ACK initvalue+NACK initvalue.
  • determining the first CQI parameter based on the periodic bit error rate includes: determining a second difference between the target bit error rate and the periodic bit error rate; determining the The first product of the second difference and the first constant; the sum of the first product and the historical CQI parameter is determined as the first channel quality indicator CQI parameter, wherein the adjustment of the resource scheduling parameter is the first adjustment
  • the historical CQI parameter is the preset initial CQI parameter, and in the case where the adjustment of the resource scheduling parameter is not the first adjustment, the historical CQI parameter is the CQI parameter determined when the resource scheduling parameter was adjusted last time .
  • alpha is a correction factor, which can be scaled on the basis of ACK initvalue
  • the ratio, alpha can be set to 1.1-1.5, and other values can also be adjusted according to the actual environment, which is not limited in the present invention.
  • the initial value of CqiCorrectVlaue may be set to 0, that is, the initial CQI parameter may be 0.
  • CqiCorrectVlaue (TargerBler-PeriodBler)*alpha.
  • CqiCorrectVlaue is the sum of the historical CQI parameters obtained during the previous adjustment and (TargerBler-PeriodBler)*alpha.
  • the inner loop processing strategy flow chart of step adjustment can refer to accompanying drawing 4, as shown in Figure 4, this flow process comprises:
  • Step S402 initialize the information variable
  • Step S404 judging the type of the received feedback information, in the case of determining that the feedback information is ACK information, perform step S406, and in the case of determining that the feedback information is NACK information, perform step S408;
  • Step S406 calculating the bit error rate (corresponding to the first bit error rate) after the ACK step adjustment according to the CQI information
  • Step S408 calculating the bit error rate (corresponding to the first bit error rate) after the NACK step adjustment according to the CQI information;
  • Step S410 calculating the bit error rate in the cycle (corresponding to the above-mentioned cycle bit error rate);
  • Step S412 Calculate the CQI information correction amount (corresponding to the above-mentioned first channel quality indicator CQI parameter).
  • determining a target interval in which the second CQI parameter is located, and determining a target filtering manner based on the target interval includes: determining a location for performing data communication with the target device when receiving the second CQI parameter The modulation mode used; the second CQI parameters corresponding to the same modulation mode are divided into one of the target intervals; when the modulation mode corresponding to the target interval is QPSK modulation or 64QAM modulation , determine that the target filtering mode is a dynamic filtering mode; in the case that the modulation mode corresponding to the target interval is 16QAM modulation, determine that the target filtering mode is linear smoothing filtering.
  • the received CQI value ReceiveCqi (corresponding to the above-mentioned second CQI parameter) may be divided into intervals according to the modulation method.
  • the 4bit CQI table (as shown in Table 1), CQI can be divided into three sections, CQI1 section [1, 6], CQI2 section [7, 9], CQI3 section [10, 15], considering that CQI falls within 16QAM The performance is the most stable. Therefore, the CQI2 interval value is designed as linear smoothing filtering, and the CQI1 interval and CQI3 interval are designed as dynamic filtering methods.
  • the 4bit CQI table is the table 7.2.3-1 in the LTE standard protocol 36213:
  • Table 1 4bit CQI table
  • processing the first CQI parameter and the second CQI parameter based on the target filtering manner to determine the third CQI parameter includes: determining the first CQI parameter and the first parameter sum of the second CQI parameter; in the case that the target filtering mode is determined to be a dynamic filtering mode, determine the third difference between the first parameter sum and the historical parameter sum, wherein after adjusting the In the case that the resource scheduling parameter is adjusted for the first time, the historical parameter sum is the parameter sum determined based on the initial first channel quality indicator CQI parameter and the initial second CQI parameter, and in the case that the adjustment of the resource scheduling parameter is not the first adjustment Next, the historical parameter sum is the parameter sum determined when the resource scheduling parameter was adjusted last time; the third ratio between the sum of the third difference value and the historical third difference value and the second constant is determined.
  • the historical third difference value is the difference value determined based on the initial first channel quality indicator CQI parameter and the initial second CQI parameter, and the adjustment of the resource scheduling parameter is not the first time.
  • the historical third difference is the difference determined when the resource scheduling parameter was adjusted last time; the sum of the first parameter sum, the third difference and the third ratio is determined as the first parameter sum, the third difference and the third ratio.
  • the effective CQI parameter may be determined according to the first CQI parameter and the second CQI parameter, that is, the CQI value (corresponding to the above-mentioned second CQI parameter) and the previously calculated inner-loop modified CQI value (corresponding to the above-mentioned first CQI parameter) may be received.
  • processing the first CQI parameter and the second CQI parameter based on the target filtering manner to determine the third CQI parameter includes: determining the first CQI parameter and the first parameter sum of the second CQI parameter; when it is determined that the target filtering mode is a linear smoothing filtering mode, determine the fourth ratio of the third constant to the fourth constant; determine the fourth ratio and the history
  • the first product of the third CQI parameter in the case that the adjustment of the resource scheduling parameter is the first adjustment, the historical third CQI parameter is the initial third CQI parameter, and the adjustment of the resource scheduling parameter is not the first adjustment.
  • the historical third CQI parameter is the third CQI parameter determined when the resource scheduling parameter was adjusted last time; the second product of the fourth difference and the sum of the first parameters is determined, wherein the fourth difference The value is the difference between the fifth constant and the fourth ratio; the sum of the first product and the second product is determined as the third CQI parameter.
  • a linear smoothing filtering method is used.
  • the third CQI parameter can be expressed as
  • the flow chart of the outer loop processing strategy of segment filtering can be seen in FIG. 5. As shown in FIG. 5, the flow includes:
  • Step S502 determine the current valid CQI (corresponding to the above-mentioned first parameter sum);
  • Step S504 determine the CQI received value (corresponding to the above-mentioned second CQI parameter) interval, in the case that the CQI received value is in the CQI1 interval and the CQI3 interval, execute step S506, and in the case of the CQI received value in the CQI2 interval, execute step S508 ;
  • Step S506 using dynamic adaptive filtering to determine the third CQI parameter
  • Step S508 using linear smoothing filtering to determine the third CQI parameter
  • Step S510 using the third CQI parameter to map the MCS
  • Step S512 generating scheduling parameters (corresponding to the above-mentioned resource scheduling parameters).
  • MCS resource mapping may be performed, and Table 1 may be converted and expanded to meet the one-to-one correspondence requirement of CQI ⁇ MCS mapping, wherein the CQI-MCS mapping table may be See Table 2. Combined with Table 7.1.7.1-1 of LTE standard protocol 36.213 (as shown in Table 3), the final MCS/RB scheduling parameters are generated.
  • FIG. 6 is a flow chart of the method for adjusting the resource scheduling parameters according to the specific embodiment of the present invention. As shown in FIG. 6 , the flow includes:
  • Step S602 based on the received feedback information (ACK/NACK), that is, the inner loop processing of step-by-step error tolerance factor adjustment;
  • Step S604 the outer loop processing based on dynamic segment filtering
  • Step S606 determining scheduling parameters such as MCS/RB.
  • the AMC mainly realizes the optimal performance through a certain algorithm scheduling strategy through information feedback on the terminal side.
  • uplink scheduling mainly uses the channel measurement information and demodulation information on the base station side
  • downlink scheduling mainly uses the feedback of terminal demodulation and measurement information.
  • the methods described in the foregoing embodiments can be used in both uplink scheduling and downlink scheduling.
  • a segmented dynamic adaptive method is designed for the outer loop processing of the AMC controller, and a step adjustment method is designed for the inner loop processing, which can reduce the influence of fast fading.
  • the stability of high performance is maintained, so as to improve the shortcomings of the above-mentioned AMC controller, improve the effectiveness of the strategy of the AMC controller, and then improve the processing performance and efficiency of the entire base station receiver, and improve user perception.
  • the scheduling algorithm strategy of the present invention is applicable to systems such as LTE and NR.
  • This embodiment also provides an apparatus for adjusting a resource scheduling parameter, the apparatus is used to implement the above embodiments and preferred implementations, and what has been described will not be repeated.
  • the term "module” may be a combination of software and/or hardware that implements a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, implementations in hardware, or a combination of software and hardware, are also possible and contemplated.
  • FIG. 7 is a structural block diagram of an apparatus for adjusting resource scheduling parameters according to an embodiment of the present invention. As shown in FIG. 7 , the apparatus includes:
  • the first receiving module 702 is configured to receive feedback information sent by the target device
  • a first determining module 704 configured to determine an initialization parameter corresponding to the feedback information and a step factor corresponding to the feedback information
  • the second determining module 706 is configured to determine the first channel quality indicator CQI parameter of the target channel based on the initialization parameter and the step factor, wherein the target channel is a channel for data communication between the target device and the target base station ;
  • a second receiving module 708, configured to receive the second CQI parameter of the target channel sent by the target device
  • a third determining module 710 configured to determine a target interval where the second CQI parameter is located, and determine a target filtering mode based on the target interval;
  • a processing module 712 configured to process the first CQI parameter and the second CQI parameter based on the target filtering mode to determine a third CQI parameter
  • the adjustment module 714 is configured to adjust the resource scheduling parameter of the target channel based on the third CQI parameter.
  • the second determining module 706 may implement determining the first CQI parameter of the target channel based on the initialization parameter and the step factor in the following manner: determining adjustment based on the initialization parameter the target period of the resource scheduling parameter; determine the first bit error rate of the received feedback information; determine the periodic bit error rate based on the first bit error rate and the target period; based on the periodic bit error rate The first channel quality indicator CQI parameter is determined.
  • the second determining module 706 may determine the first bit error rate of the received feedback information by: determining an index position of the feedback information; based on the initialization parameter and The step factor determines a first index value of the ACK information corresponding to the index position and a second index value corresponding to the NACK information corresponding to the index position, wherein the feedback information includes the ACK information and NACK information; determine the index sum of the first index value and the second index value; if the feedback information is ACK information, determine the first ratio of the first index value to the index sum, Determining the difference between the first ratio and the first index value as the first bit error rate; when the feedback information is NACK information, determining the difference between the second index value and the index sum A second ratio, where the sum of the second ratio and the second index value is determined as the first bit error rate.
  • the second determining module 706 may determine the periodic bit error rate based on the first bit error rate and the target period by: determining the target bit error rate of the feedback information; determining a first difference between the target bit error rate and the first bit error rate; and determining a ratio of the first difference to the target period as the period error rate.
  • the second determining module 706 may determine the first CQI parameter based on the periodic bit error rate by: determining the target bit error rate and the periodic error rate the second difference value of the code rate; determining the first product of the second difference value and the first constant; determining the sum of the first product and the historical CQI parameter as the first channel quality indicator CQI parameter, wherein, In the case that the adjustment of the resource scheduling parameters is the first adjustment, the historical CQI parameters are the preset initial CQI parameters, and in the case that the adjustment of the resource scheduling parameters is not the first adjustment, the historical CQI parameters are the previous CQI parameters The CQI parameter determined when the resource scheduling parameter is adjusted.
  • the third determining module 710 may determine the target interval in which the second CQI parameter is located in the following manner, and determine a target filtering manner based on the target interval: determining to receive the second CQI The modulation method used for data communication with the target device when the parameter is used; the second CQI parameters corresponding to the same modulation method are divided into one of the target intervals; In the case where the modulation mode is QPSK modulation or 64QAM modulation, determine that the target filtering mode is a dynamic filtering mode; when the modulation mode corresponding to the target interval is 16QAM modulation, determine that the target filtering mode is linear smooth filter.
  • the processing module 712 may process the first CQI parameter and the second CQI parameter based on the target filtering manner to determine the third CQI parameter by: determining The first parameter sum of the first channel quality indicator CQI parameter and the second CQI parameter; when it is determined that the target filtering mode is the dynamic filtering mode, the first parameter sum and the historical parameter sum are determined.
  • the historical parameter sum is the parameter sum determined based on the initial first channel quality indicator CQI parameter and the initial second CQI parameter, and after adjusting the In the case that the resource scheduling parameter is not adjusted for the first time, the historical parameter sum is the sum of the parameters determined when the resource scheduling parameter was adjusted last time; the sum of the third difference value and the historical third difference value and the second constant are determined the third ratio of In the case where the adjustment of the resource scheduling parameter is not the first adjustment, the historical third difference value is the difference value determined when the resource scheduling parameter was adjusted last time; the first parameter sum, the third difference value and the third The sum of the three ratios is determined as the third CQI parameter.
  • the processing module 712 may process the first CQI parameter and the second CQI parameter based on the target filtering manner to determine the third CQI parameter by: determining The first parameter sum of the first channel quality indicator CQI parameter and the second CQI parameter; in the case where the target filtering mode is determined to be a linear smoothing filtering mode, a fourth ratio of the third constant to the fourth constant is determined determine the first product of the fourth ratio and the historical third CQI parameter, in the case that adjusting the resource scheduling parameter is the first adjustment, the historical third CQI parameter is the initial third CQI parameter, and after adjusting the In the case that the resource scheduling parameter is not adjusted for the first time, the historical third CQI parameter is the third CQI parameter determined when the resource scheduling parameter was adjusted last time; the second difference between the fourth difference and the sum of the first parameter is determined. product, wherein the fourth difference is the difference between the fifth constant and the fourth ratio; and the sum of the first product and the second product is determined as the third CQI parameter.
  • the above modules can be implemented by software or hardware, and the latter can be implemented in the following ways, but not limited to this: the above modules are all located in the same processor; or, the above modules can be combined in any combination The forms are located in different processors.
  • An embodiment of the present invention further provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, wherein, when the computer program is executed by a processor, the steps in any of the foregoing method embodiments are implemented .
  • the above-mentioned computer-readable storage medium may include, but is not limited to, a USB flash drive, a read-only memory (Read-Only Memory, referred to as ROM for short), and a random access memory (Random Access Memory, referred to as RAM for short) , mobile hard disk, magnetic disk or CD-ROM and other media that can store computer programs.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • An embodiment of the present invention also provides an electronic device, comprising a memory and a processor, where a computer program is stored in the memory, and the processor is configured to run the computer program to execute the steps in any of the above method embodiments.
  • the above-mentioned electronic device may further include a transmission device and an input-output device, wherein the transmission device is connected to the above-mentioned processor, and the input-output device is connected to the above-mentioned processor.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be centralized on a single computing device, or distributed in a network composed of multiple computing devices
  • they can be implemented in program code executable by a computing device, so that they can be stored in a storage device and executed by the computing device, and in some cases, can be performed in a different order than shown here.
  • the described steps, or they are respectively made into individual integrated circuit modules, or a plurality of modules or steps in them are made into a single integrated circuit module to realize.
  • the present invention is not limited to any particular combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种资源调度参数的调整方法、装置、存储介质及电子装置,其中,该方法包括:接收目标设备发送的反馈信息;确定与反馈信息对应的初始化参数以及与反馈信息对应的步进因子;基于初始化参数以及步进因子确定目标信道的第一信道质量指示CQI参数,其中,目标信道为目标设备与目标基站进行数据通信的信道;接收目标设备发送的目标信道的第二CQI参数;确定第二CQI参数所处的目标区间,基于目标区间确定目标滤波方式;基于目标滤波方式处理第一信道质量指示CQI参数以及第二CQI参数,以确定第三CQI参数;基于第三CQI参数调整目标信道的资源调度参数。通过本发明,解决了相关技术中存在的调整资源调度参数不合理的问题。

Description

资源调度参数的调整方法、装置、存储介质及电子装置 技术领域
本发明实施例涉及通信领域,具体而言,涉及一种资源调度参数的调整方法、装置、存储介质及电子装置。
背景技术
AMC(Adaptive Modulation and Coding,自适应调制编码)控制器是LTE(Long Term Evolution,长期演进)和NR(New Radio)系统调度器的一项重要功能,通过自适应调节上下行信道的调制和编码方式,从而实现时间和频率资源的最优化处理。因此,AMC性能的优劣直接决定了基站的调度性能,进而影响到用户的体验。
AMC依据LTE及NR标准协议,主要通过终端侧信息反馈情况,经过一定的算法调度策略,实现性能的最优。其中,上行调度主要利用基站侧信道测量信息及解调信息,下行调度主要利用终端解调及测量信息的反馈实现。通常将测量信息处理流程归结为外环处理,解调信息处理流程归结为内环处理。下面以下行调度为例进行说明:
AMC控制器在系统中的位置功能示意图可参见附图1,
内环处理:
(1)终端侧将接收的数据进行解码,并通过业务信道PUSCH(物理上行共享控制信道)或PUCCH(物理上行链路控制信道)将解调结果反馈给基站。
(2)基站侧根据接收到的ACK/NACK信息,结合目标BLER(误码率,为NACK/(ACK+NACK))与实际BLER差异以及容错因子,修正到CQI(信道质量指示)信息里。
外环处理:
(1)终端侧根据下行信道估计得到的参考信号测量信息,例如信噪比SINR值,经过线性平滑,经信道质量指示映射,选择最优CQI信息,反馈给基站。
(2)基站侧根据上报CQI信息,结合内环处理结果修正值,得到实际有效CQI。后续将有效CQI值进行线性平滑,得到时间平滑值,使用该值并结合下行数据量进行调度参数MCS及RB参数的生成。
通常,对内环来讲,随着调制阶数的升高,解调性能对调制信息越敏 感,因此采用固定的容错因子就不能很好反应信道条件的变动情况。对外环来讲,需要实时跟踪无线信道环境的快速衰落情况,虽然SINR本身能够反应信道变化情况,但经过终端侧的平滑滤波,基站的CQI时间平滑,以及信道本身的CQI反馈周期滞后性,导致调制信息调制的实时性弱化。
由此可知,相关技术中存在调整资源调度参数不合理的问题。
发明内容
本发明实施例提供了一种资源调度参数的调整方法、装置、存储介质及电子装置,以至少解决相关技术中存在的调整资源调度参数不合理的问题。
根据本发明的一个实施例,提供了一种资源调度参数的调整方法,包括:接收目标设备发送的反馈信息;确定与所述反馈信息对应的初始化参数以及与所述反馈信息对应的步进因子;基于所述初始化参数以及所述步进因子确定目标信道的第一信道质量指示CQI参数,其中,所述目标信道为所述目标设备与目标基站进行数据通信的信道;接收所述目标设备发送的所述目标信道的第二CQI参数;确定所述第二CQI参数所处的目标区间,基于所述目标区间确定目标滤波方式;基于所述目标滤波方式处理所述第一信道质量指示CQI参数以及第二CQI参数,以确定第三CQI参数;基于所述第三CQI参数调整所述目标信道的资源调度参数。
根据本发明的另一个实施例,提供了一种资源调度参数的调整装置,包括:第一接收模块,设置为接收目标设备发送的反馈信息;第一确定模块,设置为确定与所述反馈信息对应的初始化参数以及与所述反馈信息对应的步进因子;第二确定模块,设置为基于所述初始化参数以及所述步进因子确定目标信道的第一信道质量指示CQI参数,其中,所述目标信道为所述目标设备与目标基站进行数据通信的信道;第二接收模块,设置为接收所述目标设备发送的所述目标信道的第二CQI参数;第三确定模块,设置为确定所述第二CQI参数所处的目标区间,基于所述目标区间确定目标滤波方式;处理模块,设置为基于所述目标滤波方式处理所述第一信道质量指示CQI参数以及第二CQI参数,以确定第三CQI参数;调整模块,设置为基于所述第三CQI参数调整所述目标信道的资源调度参数。
根据本发明的又一个实施例,还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,其中,所述计算机程序被处理器执行时实现上述任一项中方法的步骤。
根据本发明的又一个实施例,还提供了一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述 计算机程序以执行上述任一项方法实施例中的步骤。
通过本发明,接收目标设备发送的反馈信息,确定与反馈信息对应的初始化参数以及与反馈信息对应的步进因子,根据初始化参数以及步进因子确定目标信道的第一信道质量指示CQI参数。接收目标设备发送的目标信息的第二CQI参数,确定第二CQI参数所处的目标区间,根据目标区间确定目标滤波方式,并根据目标滤波方式处理第一CQI参数以及第二CQI参数,以确定出第三CQI参数,并根据第三CQI参数调整目标信道的资源调度参数。根据初始化参数以及步进因子确定目标信道的第一信道质量指示CQI参数,能够降低快衰落的影响的同时保持高性能的稳定性,对不同区间的第二CQI参数采用不同的滤波方式,采用动态滤波策略能够实时跟踪无线信道环境的快速衰落情况,进而确定准确的第三CQI参数,并利用第三CQI参数确定资源调度参数,提升调度性能。因此,可以解决相关技术中存在的调整资源调度参数不合理的问题,达到优化调整资源调度参数的效果,提升了调度性能,提高了用户体验。
附图说明
图1是AMC控制器在系统中的位置功能示意图;
图2是本发明实施例的一种资源调度参数的调整方法的移动终端的硬件结构框图;
图3是根据本发明实施例的资源调度参数的调整方法的流程图;
图4是根据本发明示例性实施例的步进调整的内环处理策略流程图;
图5是根据本发明示例性实施例的分段滤波的外环处理策略流程图;
图6是根据本发明具体实施例的资源调度参数的调整方法流程图;
图7是根据本发明实施例的资源调度参数的调整装置的结构框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明的实施例。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本申请实施例中所提供的方法实施例可以在移动终端、计算机终端或者类似的运算装置中执行。以运行在移动终端上为例,图2是本发明实施例的一种资源调度参数的调整方法的移动终端的硬件结构框图。如图2所示,移动终端可以包括一个或多个(图2中仅示出一个)处理器102(处 理器102可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)和设置为存储数据的存储器104,其中,上述移动终端还可以包括设置为通信功能的传输设备106以及输入输出设备108。本领域普通技术人员可以理解,图2所示的结构仅为示意,其并不对上述移动终端的结构造成限定。例如,移动终端还可包括比图2中所示更多或者更少的组件,或者具有与图2所示不同的配置。
存储器104可设置为存储计算机程序,例如,应用软件的软件程序以及模块,如本发明实施例中的资源调度参数的调整方法对应的计算机程序,处理器102通过运行存储在存储器104内的计算机程序,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器104可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器104可进一步包括相对于处理器102远程设置的存储器,这些远程存储器可以通过网络连接至移动终端。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输设备106设置为经由一个网络接收或者发送数据。上述的网络具体实例可包括移动终端的通信供应商提供的无线网络。在一个实例中,传输设备106包括一个网络适配器(Network Interface Controller,简称为NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输设备106可以为射频(Radio Frequency,简称为RF)模块,其设置为通过无线方式与互联网进行通讯。
在本实施例中提供了一种资源调度参数的调整方法,图3是根据本发明实施例的资源调度参数的调整方法的流程图,如图3所示,该流程包括如下步骤:
步骤S302,接收目标设备发送的反馈信息;
步骤S304,确定与所述反馈信息对应的初始化参数以及与所述反馈信息对应的步进因子;
步骤S306,基于所述初始化参数以及所述步进因子确定目标信道的第一信道质量指示CQI参数,其中,所述目标信道为所述目标设备与目标基站进行数据通信的信道;
步骤S308,接收所述目标设备发送的所述目标信道的第二CQI参数;
步骤S310,确定所述第二CQI参数所处的目标区间,基于所述目标区间确定目标滤波方式;
步骤S312,基于所述目标滤波方式处理所述第一信道质量指示CQI 参数以及第二CQI参数,以确定第三CQI参数;
步骤S314,基于所述第三CQI参数调整所述目标信道的资源调度参数。
在上述实施例中,目标设备可以为终端设备,例如,手机、计算机、平板电脑、智能穿戴设备等。目标设备在接收基站发送的数据后,可以对接收到的数据进行解码,根据解码结果向基站发送反馈信息。其中,反馈信息可以为ACK、NACK。基站在接收到反馈信息后,可以确定与反馈信息对应的初始化参数以及反馈信息对应的步进因子,并根据初始化参数以及步进因子确定第一CQI参数。
在上述实施例中,步骤S302-S306可以为内环调整。内环调整主要基于误码率BLER(Block Error Rate)进行调整,考虑到调制阶数越高,解调性能随阶数调整变动越大的特点,为减少调制阶数提升带来的性能波动,可以通过增大容错因子来实现。同时为了不改变目标BLER的期望目标值,需要对容错因子变动进行限制。通过等比例缩放正负因子变动量可以达到减少调制阶数提升带来的性能波动目的。结合调制阶数变动信息,CQI为1设置为初始默认值,根据上报CQI值,每上升一阶,容错因子步进增加0.1倍,由此进行等比例缩放后,既保持了BLER的不变性,NACK/(ACK+NACK)等比缩放后比值不变,又能体现信道质量变动的影响,进而体现在基站调度的调制阶数信息里。
在上述实施例中,当反馈信息为ACK信息时,步进因子可以为1,ACK信息的初始值可以为10,则ACK信息对应的初始化参数可以为TableAck[15]={10,11,12,13,14,15,16,17,18,19,20,21,22,23,24},当反馈信息为NACK信息时,步进因子可以为9,NACK信息初始值可为90,则TableNack[15]={90,99,108,117,126,135,144,153,162,171,180,189,198,207,216}。需要说明的是,上述步进因子以及初始化参数仅是一种示例性说明,本发明对步进因子以及初始化参数不做限制,本领域技术人员可以自定义步进因子以及初始化参数。
在上述实施例中,步骤S308-S312可以为外环调整。外环调整主要基于接收到CQI信息(对应于上述第二CQI参数)及修正量(对应于上述第一CQI参数),并进行时间平滑处理。考虑到不同信道环境对实时性要求的不同,采取分段区间处理的方式进行设计,这样能够达到动态自适应的效果,提升调度器AMC控制器的性能。
可选地,上述步骤的执行主体可以是基站,但不限于此。
通过本发明,接收目标设备发送的反馈信息,确定与反馈信息对应的 初始化参数以及与反馈信息对应的步进因子,根据初始化参数以及步进因子确定目标信道的第一信道质量指示CQI参数。接收目标设备发送的目标信息的第二CQI参数,确定第二CQI参数所处的目标区间,根据目标区间确定目标滤波方式,并根据目标滤波方式处理第一CQI参数以及第二CQI参数,以确定出第三CQI参数,并根据第三CQI参数调整目标信道的资源调度参数。根据初始化参数以及步进因子确定目标信道的第一信道质量指示CQI参数,能够降低快衰落的影响的同时保持高性能的稳定性,对不同区间的第二CQI参数采用不同的滤波方式,采用动态滤波策略能够实时跟踪无线信道环境的快速衰落情况,进而确定准确的第三CQI参数,并利用第三CQI参数确定资源调度参数,提升调度性能。因此,可以解决相关技术中存在的调整资源调度参数不合理的问题,达到优化调整资源调度参数的效果,提升了调度性能,提高了用户体验。
在一个示例性实施例中,基于所述初始化参数以及所述步进因子确定目标信道的第一信道质量指示CQI参数包括:基于所述初始化参数确定调整所述资源调度参数的目标周期;确定接收到的所述反馈信息的第一误码率;基于所述第一误码率及所述目标周期确定周期误码率;基于所述周期误码率确定所述第一信道质量指示CQI参数。在本实施例中,在接收到反馈信息时,可以确定接收到的反馈信息的第一误码率,并根据第一误码率和目标周期确定周期误码率。其中,目标周期可以为ACK信息的初始值与NACK信息的初始值的和,即可以根据初始化参数确定目标周期。当然,也可以先确定目标周期,再根据目标周期确定ACK信息的初始值与NACK信息的初始值,即ACK initvalue(ACK信息的初始值)+NACK initvalue(NACK信息的初始值)=调整周期量(目标周期)。
在一个示例性实施例中,确定接收到的所述反馈信息的第一误码率包括:确定所述反馈信息的索引位置;基于所述初始化参数以及所述步进因子确定所述索引位置所对应的ACK信息的第一索引值、所述索引位置所对应的NACK信息所对应的第二索引值,其中,所述反馈信息包括所述ACK信息和NACK信息;确定所述第一索引值与所述第二索引值的索引和;在所述反馈信息为ACK信息的情况下,确定所述第一索引值与所述索引和的第一比值,将所述第一比值与所述第一索引值的差确定为所述第一误码率;在所述反馈信息为NACK信息的情况下,确定所述第二索引值与所述索引和的第二比值,将所述第二比值与所述第二索引值的和确定为所述第一误码率。在本实施例中,当反馈信息为ACK信息时,第一误码率的表达式可以为CurrentBler=CurrentBler-TableAck[CQI]。其中,CurrentBler即为第一误码率,TableAck[CQI]为数组,索引值为CQI最近 时刻上报值,TableAck[15]={10,11,12,13,14,15,16,17,18,19,20,21,22,23,24}。当反馈信息为NACK信息时,第一误码率的表达式可以为CurrentBler=CurrentBler+TableNack[CQI]。其中,TableNack[CQI]为数组,索引值为CQI最近时刻上报值,TableNack[15]={90,99,108,117,126,135,144,153,162,171,180,189,198,207,216}。当反馈信息为ACK信息时,
Figure PCTCN2021093683-appb-000001
Figure PCTCN2021093683-appb-000002
当反馈信息为NACK信息时,
Figure PCTCN2021093683-appb-000003
Figure PCTCN2021093683-appb-000004
其中,第一误码率的初始值可以设置为0。
在上述实施例中,TableAck[15],TableNack[15]容错因子只是以ACK初始值10,步进1,NACK初始值90,步进9设计的。事实上,只要满足初始值ACK initvalue+NACK initvalue=调整周期量(目标周期),目标周期为100仅是一种示例性说明,ACK initvalue和NACK initvalue步进调整比例因子相同,例如0.1(该取值仅是一种示例性说明),同时满足公式
Figure PCTCN2021093683-appb-000005
(此处只是中间转换关系公式,并非BLER定义公式)的取值都是可以的。其中,TargetBler表示目标误码率,目标误码率可以是预先设置的值,例如,可以设置为10(即,将步进因子10%目标扩大100倍取值),需要说明的是,该取值仅是一种示例性说明,目标误码率可以根据信道环境状况调整。
在上述实施例中,当TableAck[15]={10,11,12,13,14,15,16,17,18,19,20,21,22,23,24},TableNack[15]={90,99,108,117,126,135,144,153,162,171,180,189,198,207,216}时,当反馈信息为ACK[2]时,可以确认反馈信息所对应的索引位置为2,则第一索引值为11,第二索引值为99。
在一个示例性实施例中,基于所述第一误码率及所述目标周期确定周期误码率包括:确定所述反馈信息的目标误码率;确定所述目标误码率与所述第一误码率的第一差值;将所述第一差值与所述目标周期的比值确定为所述周期误码率。在本实施例中,当达到调整周期后,可以计算周期内的周期误码率。周期误码率可以用
Figure PCTCN2021093683-appb-000006
表示。其中,Period(目标周期)可以为100,也即ACK initvalue+NACK initvalue的加和值。
在一个示例性实施例中,基于所述周期误码率确定所述第一信道质量 指示CQI参数包括:确定所述目标误码率与所述周期误码率的第二差值;确定所述第二差值与第一常数的第一乘积;将所述第一乘积与历史CQI参数的和确定为所述第一信道质量指示CQI参数,其中,在调整所述资源调度参数为首次调整的情况下,所述历史CQI参数为预先设置的初始CQI参数,在调整所述资源调度参数为非首次调整的情况下,所述历史CQI参数为前一次调整所述资源调度参数时确定的CQI参数。在本实施例中,第一信道质量指示CQI参数(即CQI信息调整量)可以用CqiCorrectVlaue=CqiCorrectVlaue+(TargerBler-PeriodBler)*alpha表示,其中,alpha为修正因子,可在ACK initvalue基础上进行缩放一定比例,alpha可设为1.1~1.5,也可根据实际环境设置其他值调整,本发明对此不作限制。
在上述实施例中,CqiCorrectVlaue的初始值可以设置为0,即初始CQI参数可以为0,当调整资源调度参数为首次调整时,CqiCorrectVlaue=(TargerBler-PeriodBler)*alpha。当调整资源调度参数为非首次调整时,CqiCorrectVlaue即为前一次调整时得到的历史CQI参数与(TargerBler-PeriodBler)*alpha的和。
在上述实施例中,步进调整的内环处理策略流程图可参见附图4,如图4所示,该流程包括:
步骤S402,初始化信息变量;
步骤S404,判断接收到的反馈信息的类型,在确定反馈信息为ACK信息的情况下,执行步骤S406,在确定反馈信息为NACK信息的情况下,执行步骤S408;
步骤S406,根据CQI信息计算ACK步进调整后的误码率(对应于第一误码率);
步骤S408,根据CQI信息计算NACK步进调整后的误码率(对应于第一误码率);
步骤S410,计算周期内误码率(对应于上述周期误码率);
步骤S412,计算CQI信息修正量(对应于上述第一信道质量指示CQI参数)。
在一个示例性实施例中,确定所述第二CQI参数所处的目标区间,基于所述目标区间确定目标滤波方式包括:确定接收所述第二CQI参数时与所述目标设备进行数据通信所使用的调制方式;将相同的所述调制方式对应的所述第二CQI参数中划分到一个所述目标区间;在所述目标区间所对应的所述调制方式为QPSK调制或64QAM调制的情况下,确定所述目标滤波方式为动态滤波方式;在所述目标区间所对应的所述调制方式为 16QAM调制的情况下,确定所述目标滤波方式为线性平滑滤波。在本实施例中,可以根据调制方式对接收CQI值ReceiveCqi(对应于上述第二CQI参数)进行区间划分。根据4bit CQI表(如表1所示)可以将CQI划分为三段区间,CQI1区间[1,6],CQI2区间[7,9],CQI3区间[10,15],考虑CQI落在16QAM内性能最平稳,因此,将CQI2区间值设计为线性平滑滤波,CQI1区间和CQI3区间设计为动态滤波方式。其中,4bit CQI表为LTE标准协议36213中7.2.3-1表格:
表1 4bit CQI表
Figure PCTCN2021093683-appb-000007
在一个示例性实施例中,基于所述目标滤波方式处理所述第一信道质量指示CQI参数以及第二CQI参数,以确定所述第三CQI参数包括:确定所述第一信道质量指示CQI参数与所述第二CQI参数的第一参数和;在确定所述目标滤波方式为动态滤波方式的情况下,确定所述第一参数和与历史参数和的第三差值,其中,在调整所述资源调度参数为首次调整的情况下,所述历史参数和为基于初始第一信道质量指示CQI参数以及初始第二CQI参数确定的参数和,在调整所述资源调度参数为非首次调整的情况下,所述历史参数和为前一次调整所述资源调度参数时确定的参数和;确定所述第三差值与历史第三差值的和与第二常数的第三比值,其中,在 调整所述资源调度参数为首次调整的情况下,所述历史第三差值为基于初始第一信道质量指示CQI参数以及初始第二CQI参数确定的差值,在调整所述资源调度参数为非首次调整的情况下,所述历史第三差值为前一次调整所述资源调度参数时确定的差值;将所述第一参数和、第三差值以及第三比值的和确定为所述第三CQI参数。在本实施例中,可以根据第一CQI参数以及第二CQI参数确定有效CQI参数,即,可以接收CQI值(对应于上述第二CQI参数)与之前计算内环修正CQI值(对应于上述第一CQI参数)确定当前有效CQI值(对应于上述第一参数和),EffectCqi(第一参数和)=ReceiveCqi(第二CQI参数)+CqiCorrectVlaue(第一CQI参数)。然后再判断当前接收CQI值的接收区间,若落在CQI1和CQI3区间,则DelataCqi(i)=EffectCqi(i)-EffectCqi(i-1),其中EffectCqi(i)为当前有效CQI值,EffectCqi(i-1)为前一时刻有效CQI值(对应于上述历史参数和)。调度使用CQI值ResultCqi(第三CQI参数)可以表示为
Figure PCTCN2021093683-appb-000008
由于公式中信息包含了动态变化信息,具有非线性滤波特性,因此,适应复杂信道环境及快衰落环境条件。
在一个示例性实施例中,基于所述目标滤波方式处理所述第一信道质量指示CQI参数以及第二CQI参数,以确定所述第三CQI参数包括:确定所述第一信道质量指示CQI参数与所述第二CQI参数的第一参数和;在确定所述目标滤波方式为线性平滑滤波方式的情况下,确定第三常数与第四常数的第四比值;确定所述第四比值与历史第三CQI参数的第一乘积,在调整所述资源调度参数为首次调整的情况下,所述历史第三CQI参数为初始第三CQI参数,在调整所述资源调度参数为非首次调整的情况下,所述历史第三CQI参数为前一次调整所述资源调度参数时确定的第三CQI参数;确定第四差值与所述第一参数和的第二乘积,其中,所述第四差值为第五常数与所述第四比值的差值;将所述第一乘积与所述第二乘积的和确定为所述第三CQI参数。在本实施例中,若第二CQI参数落在CQI2区间,则使用线性平滑滤波方式。第三CQI参数可以表示为
Figure PCTCN2021093683-appb-000009
在上述实施例中,分段滤波的外环处理策略流程图可参见附图5,如图5所示,该流程包括:
步骤S502,确定当前有效CQI(对应于上述第一参数和);
步骤S504,判断CQI接收值(对应于上述第二CQI参数)区间,在 CQI接收值处于CQI1区间和CQI3区间的情况下,执行步骤S506,在CQI接收值处于CQI2区间的情况下,执行步骤S508;
步骤S506,利用动态自适应滤波确定第三CQI参数;
步骤S508,利用线性平滑滤波确定第三CQI参数;
步骤S510,利用第三CQI参数映射MCS;
步骤S512,生成调度参数(对应于上述资源调度参数)。
在一个示例性实施例中,在确定出第三CQI后,可以进行MCS资源映射,对表1进行转换扩展,以满足CQI→MCS的映射的一一对应要求,其中,CQI-MCS映射表可参见表2。再结合LTE标准协议36.213表格7.1.7.1-1(如表3所示),生成最终的MCS/RB调度参数。
表2 CQI-MCS映射表
Figure PCTCN2021093683-appb-000010
Figure PCTCN2021093683-appb-000011
表3
Figure PCTCN2021093683-appb-000012
下面结合具体实施方式对资源调度参数的调整方法流程进行说明:图6是根据本发明具体实施例的资源调度参数的调整方法流程图,如图6所示,该流程包括:
步骤S602,基于接收到的反馈信息(ACK/NACK)即步进容错因子调整的内环处理;
步骤S604,基于动态分段滤波的外环处理;
步骤S606,确定MCS/RB等调度参数。
需要说明的是,AMC依据LTE及NR标准协议,主要通过终端侧信息反馈情况,经过一定的算法调度策略,实现性能的最优。其中,上行调度主要利用基站侧信道测量信息及解调信息,下行调度主要利用终端解调及测量信息的反馈实现。前述各实施例中所述的方法既可以用在上行调度中,也可以用在下行调度中。
在前述实施例中,基于AMC基本功能原理,针对AMC控制器外环处理,设计一种分段动态自适应方法,对内环处理,设计一种步进调整方法,能够降低快衰落的影响的同时保持高性能的稳定性,以改善上述AMC控制器不足之处,提升AMC控制器的策略的有效性,进而提升整个基站接收器的处理性能和效率,并带来用户感知的提升。本发明的调度算法策略对LTE和NR等系统均适用。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
在本实施例中还提供了一种资源调度参数的调整装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图7是根据本发明实施例的资源调度参数的调整装置的结构框图,如图7所示,该装置包括:
第一接收模块702,设置为接收目标设备发送的反馈信息;
第一确定模块704,设置为确定与所述反馈信息对应的初始化参数以及与所述反馈信息对应的步进因子;
第二确定模块706,设置为基于所述初始化参数以及所述步进因子确定目标信道的第一信道质量指示CQI参数,其中,所述目标信道为所述目标设备与目标基站进行数据通信的信道;
第二接收模块708,设置为接收所述目标设备发送的所述目标信道的第二CQI参数;
第三确定模块710,设置为确定所述第二CQI参数所处的目标区间,基于所述目标区间确定目标滤波方式;
处理模块712,设置为基于所述目标滤波方式处理所述第一信道质量指示CQI参数以及第二CQI参数,以确定第三CQI参数;
调整模块714,设置为基于所述第三CQI参数调整所述目标信道的资源调度参数。
在一个示例性实施例中,所述第二确定模块706可以通过如下方式实现基于所述初始化参数以及所述步进因子确定目标信道的第一信道质量指示CQI参数:基于所述初始化参数确定调整所述资源调度参数的目标周期;确定接收到的所述反馈信息的第一误码率;基于所述第一误码率及所述目标周期确定周期误码率;基于所述周期误码率确定所述第一信道质量指示CQI参数。
在一个示例性实施例中,所述第二确定模块706可以通过如下方式实现确定接收到的所述反馈信息的第一误码率:确定所述反馈信息的索引位置;基于所述初始化参数以及所述步进因子确定所述索引位置所对应的ACK信息的第一索引值、所述索引位置所对应的NACK信息所对应的第二索引值,其中,所述反馈信息包括所述ACK信息和NACK信息;确定所述第一索引值与所述第二索引值的索引和;在所述反馈信息为ACK信息的情况下,确定所述第一索引值与所述索引和的第一比值,将所述第一比值与所述第一索引值的差确定为所述第一误码率;在所述反馈信息为NACK信息的情况下,确定所述第二索引值与所述索引和的第二比值,将所述第二比值与所述第二索引值的和确定为所述第一误码率。
在一个示例性实施例中,所述第二确定模块706可以通过如下方式实现基于所述第一误码率及所述目标周期确定周期误码率:确定所述反馈信息的目标误码率;确定所述目标误码率与所述第一误码率的第一差值;将所述第一差值与所述目标周期的比值确定为所述周期误码率。
在一个示例性实施例中,所述第二确定模块706可以通过如下方式实 现基于所述周期误码率确定所述第一信道质量指示CQI参数:确定所述目标误码率与所述周期误码率的第二差值;确定所述第二差值与第一常数的第一乘积;将所述第一乘积与历史CQI参数的和确定为所述第一信道质量指示CQI参数,其中,在调整所述资源调度参数为首次调整的情况下,所述历史CQI参数为预先设置的初始CQI参数,在调整所述资源调度参数为非首次调整的情况下,所述历史CQI参数为前一次调整所述资源调度参数时确定的CQI参数。
在一个示例性实施例中,所述第三确定模块710可以通过如下方式实现确定所述第二CQI参数所处的目标区间,基于所述目标区间确定目标滤波方式:确定接收所述第二CQI参数时与所述目标设备进行数据通信所使用的调制方式;将相同的所述调制方式对应的所述第二CQI参数中划分到一个所述目标区间;在所述目标区间所对应的所述调制方式为QPSK调制或64QAM调制的情况下,确定所述目标滤波方式为动态滤波方式;在所述目标区间所对应的所述调制方式为16QAM调制的情况下,确定所述目标滤波方式为线性平滑滤波。
在一个示例性实施例中,所述处理模块712可以通过如下方式实现基于所述目标滤波方式处理所述第一信道质量指示CQI参数以及第二CQI参数,以确定所述第三CQI参数:确定所述第一信道质量指示CQI参数与所述第二CQI参数的第一参数和;在确定所述目标滤波方式为动态滤波方式的情况下,确定所述第一参数和与历史参数和的第三差值,其中,在调整所述资源调度参数为首次调整的情况下,所述历史参数和为基于初始第一信道质量指示CQI参数以及初始第二CQI参数确定的参数和,在调整所述资源调度参数为非首次调整的情况下,所述历史参数和为前一次调整所述资源调度参数时确定的参数和;确定所述第三差值与历史第三差值的和与第二常数的第三比值,其中,在调整所述资源调度参数为首次调整的情况下,所述历史第三差值为基于初始第一信道质量指示CQI参数以及初始第二CQI参数确定的差值,在调整所述资源调度参数为非首次调整的情况下,所述历史第三差值为前一次调整所述资源调度参数时确定的差值;将所述第一参数和、第三差值以及第三比值的和确定为所述第三CQI参数。
在一个示例性实施例中,所述处理模块712可以通过如下方式实现基于所述目标滤波方式处理所述第一信道质量指示CQI参数以及第二CQI参数,以确定所述第三CQI参数:确定所述第一信道质量指示CQI参数与所述第二CQI参数的第一参数和;在确定所述目标滤波方式为线性平滑滤波方式的情况下,确定第三常数与第四常数的第四比值;确定所述第四比值与历史第三CQI参数的第一乘积,在调整所述资源调度参数为首次调 整的情况下,所述历史第三CQI参数为初始第三CQI参数,在调整所述资源调度参数为非首次调整的情况下,所述历史第三CQI参数为前一次调整所述资源调度参数时确定的第三CQI参数;确定第四差值与所述第一参数和的第二乘积,其中,所述第四差值为第五常数与所述第四比值的差值;将所述第一乘积与所述第二乘积的和确定为所述第三CQI参数。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
本发明的实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,其中,所述计算机程序被处理器执行时实现上述任一项方法实施例中的步骤。
在一个示例性实施例中,上述计算机可读存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储计算机程序的介质。
本发明的实施例还提供了一种电子装置,包括存储器和处理器,该存储器中存储有计算机程序,该处理器被设置为运行计算机程序以执行上述任一项方法实施例中的步骤。
在一个示例性实施例中,上述电子装置还可以包括传输设备以及输入输出设备,其中,该传输设备和上述处理器连接,该输入输出设备和上述处理器连接。
本实施例中的具体示例可以参考上述实施例及示例性实施方式中所描述的示例,本实施例在此不再赘述。显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (11)

  1. 一种资源调度参数的调整方法,包括:
    接收目标设备发送的反馈信息;
    确定与所述反馈信息对应的初始化参数以及与所述反馈信息对应的步进因子;
    基于所述初始化参数以及所述步进因子确定目标信道的第一信道质量指示CQI参数,其中,所述目标信道为所述目标设备与目标基站进行数据通信的信道;
    接收所述目标设备发送的所述目标信道的第二CQI参数;
    确定所述第二CQI参数所处的目标区间,基于所述目标区间确定目标滤波方式;
    基于所述目标滤波方式处理所述第一信道质量指示CQI参数以及第二CQI参数,以确定第三CQI参数;
    基于所述第三CQI参数调整所述目标信道的资源调度参数。
  2. 根据权利要求1所述的方法,其中,基于所述初始化参数以及所述步进因子确定目标信道的第一信道质量指示CQI参数包括:
    基于所述初始化参数确定调整所述资源调度参数的目标周期;
    确定接收到的所述反馈信息的第一误码率;
    基于所述第一误码率及所述目标周期确定周期误码率;
    基于所述周期误码率确定所述第一信道质量指示CQI参数。
  3. 根据权利要求2所述的方法,其中,确定接收到的所述反馈信息的第一误码率包括:
    确定所述反馈信息的索引位置;
    基于所述初始化参数以及所述步进因子确定所述索引位置所对应的ACK信息的第一索引值、所述索引位置所对应的NACK信息所对应的第二索引值,其中,所述反馈信息包括所述ACK信息和所述NACK信息;
    确定所述第一索引值与所述第二索引值的索引和;
    在所述反馈信息为所述ACK信息的情况下,确定所述第一索引值与所述索引和的第一比值,将所述第一比值与所述第一索引值的差确定为所述第一误码率;
    在所述反馈信息为所述NACK信息的情况下,确定所述第二索引值与所述索引和的第二比值,将所述第二比值与所述第二索引值的和确定为所述第一误码率。
  4. 根据权利要求2所述的方法,其中,基于所述第一误码率及所述目标周期确定周期误码率包括:
    确定所述反馈信息的目标误码率;
    确定所述目标误码率与所述第一误码率的第一差值;
    将所述第一差值与所述目标周期的比值确定为所述周期误码率。
  5. 根据权利要求4所述的方法,其中,基于所述周期误码率确定所述第一信道质量指示CQI参数包括:
    确定所述目标误码率与所述周期误码率的第二差值;
    确定所述第二差值与第一常数的第一乘积;
    将所述第一乘积与历史CQI参数的和确定为所述第一信道质量指示CQI参数,其中,在调整所述资源调度参数为首次调整的情况下,所述历史CQI参数为预先设置的初始CQI参数,在调整所述资源调度参数为非首次调整的情况下,所述历史CQI参数为前一次调整所述资源调度参数时确定的CQI参数。
  6. 根据权利要求1所述的方法,其中,确定所述第二CQI参数所处的目标区间,基于所述目标区间确定目标滤波方式包括:
    确定接收所述第二CQI参数时与所述目标设备进行数据通信所使用的调制方式;
    将相同的所述调制方式对应的所述第二CQI参数中划分到一个所述目标区间;
    在所述目标区间所对应的所述调制方式为QPSK调制或64QAM调制的情况下,确定所述目标滤波方式为动态滤波方式;
    在所述目标区间所对应的所述调制方式为16QAM调制的情况下,确定所述目标滤波方式为线性平滑滤波。
  7. 根据权利要求6所述的方法,其中,基于所述目标滤波方式处理所述第一信道质量指示CQI参数以及第二CQI参数,以确定所述第三CQI参数包括:
    确定所述第一信道质量指示CQI参数与所述第二CQI参数的第一 参数和;
    在确定所述目标滤波方式为动态滤波方式的情况下,确定所述第一参数和与历史参数和的第三差值,其中,在调整所述资源调度参数为首次调整的情况下,所述历史参数和为基于初始第一信道质量指示CQI参数以及初始第二CQI参数确定的参数和,在调整所述资源调度参数为非首次调整的情况下,所述历史参数和为前一次调整所述资源调度参数时确定的参数和;
    确定所述第三差值与历史第三差值的和与第二常数的第三比值,其中,在调整所述资源调度参数为首次调整的情况下,所述历史第三差值为基于初始第一信道质量指示CQI参数以及初始第二CQI参数确定的差值,在调整所述资源调度参数为非首次调整的情况下,所述历史第三差值为前一次调整所述资源调度参数时确定的差值;
    将所述第一参数和、第三差值以及第三比值的和确定为所述第三CQI参数。
  8. 根据权利要求6所述的方法,其中,基于所述目标滤波方式处理所述第一信道质量指示CQI参数以及第二CQI参数,以确定所述第三CQI参数包括:
    确定所述第一信道质量指示CQI参数与所述第二CQI参数的第一参数和;
    在确定所述目标滤波方式为线性平滑滤波方式的情况下,确定第三常数与第四常数的第四比值;
    确定所述第四比值与历史第三CQI参数的第一乘积,在调整所述资源调度参数为首次调整的情况下,所述历史第三CQI参数为初始第三CQI参数,在调整所述资源调度参数为非首次调整的情况下,所述历史第三CQI参数为前一次调整所述资源调度参数时确定的第三CQI参数;
    确定第四差值与所述第一参数和的第二乘积,其中,所述第四差值为第五常数与所述第四比值的差值;
    将所述第一乘积与所述第二乘积的和确定为所述第三CQI参数。
  9. 一种资源调度参数的调整装置,包括:
    第一接收模块,设置为接收目标设备发送的反馈信息;
    第一确定模块,设置为确定与所述反馈信息对应的初始化参数以 及与所述反馈信息对应的步进因子;
    第二确定模块,设置为基于所述初始化参数以及所述步进因子确定目标信道的第一信道质量指示CQI参数,其中,所述目标信道为所述目标设备与目标基站进行数据通信的信道;
    第二接收模块,设置为接收所述目标设备发送的所述目标信道的第二CQI参数;
    第三确定模块,设置为确定所述第二CQI参数所处的目标区间,基于所述目标区间确定目标滤波方式;
    处理模块,设置为基于所述目标滤波方式处理所述第一信道质量指示CQI参数以及第二CQI参数,以确定第三CQI参数;
    调整模块,设置为基于所述第三CQI参数调整所述目标信道的资源调度参数。
  10. 一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,其中,所述计算机程序被处理器执行时实现所述权利要求1至8任一项中所述的方法的步骤。
  11. 一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行所述权利要求1至8任一项中所述的方法。
PCT/CN2021/093683 2021-03-09 2021-05-13 资源调度参数的调整方法、装置、存储介质及电子装置 WO2022188261A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110252636.5A CN112636891B (zh) 2021-03-09 2021-03-09 资源调度参数的调整方法、装置、存储介质及电子装置
CN202110252636.5 2021-03-09

Publications (1)

Publication Number Publication Date
WO2022188261A1 true WO2022188261A1 (zh) 2022-09-15

Family

ID=75297791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093683 WO2022188261A1 (zh) 2021-03-09 2021-05-13 资源调度参数的调整方法、装置、存储介质及电子装置

Country Status (2)

Country Link
CN (1) CN112636891B (zh)
WO (1) WO2022188261A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024067100A1 (zh) * 2022-09-30 2024-04-04 中兴通讯股份有限公司 目标误块率控制方法及装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112636891B (zh) * 2021-03-09 2021-06-04 三维通信股份有限公司 资源调度参数的调整方法、装置、存储介质及电子装置
CN115866779B (zh) * 2022-11-22 2024-05-14 三维通信股份有限公司 基站下行调度的控制方法、装置、存储介质和电子装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1960232A (zh) * 2005-11-04 2007-05-09 大唐移动通信设备有限公司 提高信道质量指示准确性的方法及其应用
CN101132227A (zh) * 2006-08-23 2008-02-27 大唐移动通信设备有限公司 一种无线通信信道质量的监控方法及系统
US20180198579A1 (en) * 2017-01-06 2018-07-12 At&T Intellectual Property I, L.P. Adaptive channel state information reference signal configurations for a 5g wireless communication network or other next generation network
CN112636891A (zh) * 2021-03-09 2021-04-09 三维通信股份有限公司 资源调度参数的调整方法、装置、存储介质及电子装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101414893B (zh) * 2007-10-16 2011-05-04 大唐移动通信设备有限公司 一种修正信道质量指示的方法及系统
CN112202536A (zh) * 2009-10-01 2021-01-08 交互数字专利控股公司 上行链路控制数据传输
CN102724016B (zh) * 2012-06-05 2017-02-08 青岛艾特网络发展有限公司 调制编码方案的自适应调整方法及装置
CN104038308B (zh) * 2013-03-06 2017-12-22 华为技术有限公司 调整信道质量指示的方法和基站
US9379842B2 (en) * 2013-10-30 2016-06-28 Telefonaktiebolaget Lm Ericsson (Publ) Outer-loop adjustment for wireless communication link adaptation
CN110266430B (zh) * 2014-04-30 2021-07-30 中兴通讯股份有限公司 一种反馈信息的处理方法、装置及系统
CN108988997B (zh) * 2017-05-31 2021-04-02 株式会社Kt 收发pucch时多路复用调度请求信息和harqack/nack信息的方法及装置
CN110351001B (zh) * 2018-04-02 2020-07-28 电信科学技术研究院有限公司 一种信道质量指示的发送方法、数据发送方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1960232A (zh) * 2005-11-04 2007-05-09 大唐移动通信设备有限公司 提高信道质量指示准确性的方法及其应用
CN101132227A (zh) * 2006-08-23 2008-02-27 大唐移动通信设备有限公司 一种无线通信信道质量的监控方法及系统
US20180198579A1 (en) * 2017-01-06 2018-07-12 At&T Intellectual Property I, L.P. Adaptive channel state information reference signal configurations for a 5g wireless communication network or other next generation network
CN112636891A (zh) * 2021-03-09 2021-04-09 三维通信股份有限公司 资源调度参数的调整方法、装置、存储介质及电子装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AT&T: "Physical layer procedures for sidelink", 3GPP DRAFT; R1-1907167 PHYSICAL LAYER PROCEDURES FOR SIDELINK, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051728612 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024067100A1 (zh) * 2022-09-30 2024-04-04 中兴通讯股份有限公司 目标误块率控制方法及装置

Also Published As

Publication number Publication date
CN112636891A (zh) 2021-04-09
CN112636891B (zh) 2021-06-04

Similar Documents

Publication Publication Date Title
WO2022188261A1 (zh) 资源调度参数的调整方法、装置、存储介质及电子装置
EP3251280B1 (en) Apparatus and method for link adaptation for low cost user equipments
US20200119836A1 (en) Channel Quality Feedback Method and Apparatus
JP6030754B2 (ja) デバイス再開のためのアウターループリンク適応
WO2017050273A1 (zh) Cqi信息接收方法、发送方法、接收装置及发送装置
CN112913272A (zh) 方法、装置和计算机程序
CN102255717B (zh) 信道质量指示cqi信息修正的方法和装置
JP2016504823A (ja) 無線通信システムにおけるスケジューリングを実行する方法及び装置
CN105142227B (zh) 一种mcs等级的确定方法和设备
WO2019095315A1 (en) Methods, apparatus and systems for determining a transport block size in a wireless communication
US10673558B2 (en) Configuring transmission parameters in a cellular system
KR102142363B1 (ko) 기지국 장치, 단말 장치, 무선 통신 시스템 및 무선 통신 시스템 제어 방법
GB2491222A (en) Transmission parameters based on CQI and subsequent transmission size
WO2022067817A1 (zh) 一种调制与编码策略mcs的选择方法及通信装置
JP2022523487A (ja) 無線通信におけるチャネル状態の推定および報告スキーム
WO2015106652A1 (zh) 一种资源配置方法及装置
WO2017193260A1 (zh) 一种数据传输的方法及装置
WO2019109971A1 (zh) 一种调整数据传输方式的方法及装置
WO2017067613A1 (en) Decoding margin estimation
JP2010263605A (ja) Pcinr及びrssiのために平均化パラメータを適応制御するシステム及び方法
CN109687937B (zh) 调制编码方式和重复次数选择方法及装置
CN102546111A (zh) 一种cqi确定方法及装置
CN101841843A (zh) 连续性分组连接技术的下行传输方法、装置和系统
CN108023676B (zh) 一种调制方式控制方法、装置及基站
WO2024021652A1 (zh) 一种无线通信方法及设备、存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21929731

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21929731

Country of ref document: EP

Kind code of ref document: A1