WO2022188129A1 - 广谱趋化因子受体抑制剂增强新冠肺炎病毒感染的细胞免疫的分子机制及在其药物防治中的应用 - Google Patents

广谱趋化因子受体抑制剂增强新冠肺炎病毒感染的细胞免疫的分子机制及在其药物防治中的应用 Download PDF

Info

Publication number
WO2022188129A1
WO2022188129A1 PCT/CN2021/080378 CN2021080378W WO2022188129A1 WO 2022188129 A1 WO2022188129 A1 WO 2022188129A1 CN 2021080378 W CN2021080378 W CN 2021080378W WO 2022188129 A1 WO2022188129 A1 WO 2022188129A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
vmip
protein
infection
group
Prior art date
Application number
PCT/CN2021/080378
Other languages
English (en)
French (fr)
Inventor
孙晗笑
利时雨
刘姝婷
孙晗蓄
冯丽霞
Original Assignee
利时雨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 利时雨 filed Critical 利时雨
Priority to PCT/CN2021/080378 priority Critical patent/WO2022188129A1/zh
Publication of WO2022188129A1 publication Critical patent/WO2022188129A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/17Lymphocytes; B-cells; T-cells; Natural killer cells; Interferon-activated or cytokine-activated lymphocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues

Definitions

  • the present invention belongs to the basic research field of viral macrophage inflammatory protein vMIP-II in the prevention and treatment of inflammation and SARS-CoV-2 infection, and more specifically, the present invention relates to viral macrophage inflammatory protein vMIP-II Stem transformation of CD8 + T cells to CD8 + T CM cells is induced.
  • Viral macrophage inflammatory protein-II is a human chemokine small molecule protein encoded by the Kaposi's sarcoma herpes virus (KSHV) K4 gene, which interacts with human CC chemokine macrophage inflammatory proteins. Protein I has high homology in amino acid sequence. vMIP can interact with its receptors using a structural framework similar to other chemokines. vMIP-II is widely recognized as a broad-spectrum chemokine receptor inhibitor, which has the ability to bind a variety of human chemokine receptors.
  • KSHV Kaposi's sarcoma herpes virus
  • vMIP-II can antagonize a variety of chemokine receptors such as CCR1, CCR2, CCR3, CCR5, CCR8, CXCR4 and CX3CR1, but has no antagonistic effect on CXCR1 and CXCR2, but has no antagonistic effect on CCR7. There is no clear report.
  • CD8+ T cells After viral infection, CD8+ T cells go through three stages of expansion, contraction, and memory formation.
  • the surface molecules KLRG1 and CD127 Interleukin-7 receptor subunit alpha, IL-7R ⁇ ) are usually used to characterize the activation state of CD8+ T cells, and the activated CD8 + T cells are divided into short-lived effector cells (Short-lived effector cells).
  • short-lived effector cells Short-lived effector cells.
  • SLECs characterized by KLRG1 hi CD127 low
  • memory precursor effector cells Memory precursor effector cells
  • MPECs characterized by KLRG1 low CD127 hi
  • SLECs can produce a large number of cytotoxic molecules and cytokines, and most of them undergo apoptosis in the contractile stage, while MPECs cells further differentiate into memory cells after clearing pathogens.
  • Memory cells are further differentiated into different memory cell subsets, usually characterized by surface molecules CD45RA, CD45RO, chemokine receptor CCR7, and vascular L-selectin (CD62L), which are specifically divided into long-term memory T cells (Central memory T cells, T CM , phenotype CD45RA - CD45RO + CCR7 + CD62L + ), effector memory T cells (Effector memory T cells, TEM phenotype CD45RA - CD45RO + CCR7 - CD62L - ) and tissue-specific Sexual T cells (Tissue resident memory T cells, T RM , the phenotype is CD103 + CD69 + CD62L - CD27 - ).
  • TCMs are mainly distributed in peripheral tissues, immune organs and lymph nodes, and can rapidly divide, proliferate and differentiate when stimulated by antigens again.
  • T EM cells mainly exist in non-lymphoid tissues and organs, participate in the systemic circulation, and can migrate to peripheral inflammatory tissues to have immediate effector functions.
  • CD8 + T When CD8 + T is in an exhausted state (Exhausted T cells, T EX ) under continuous antigen stimulation, it shows low levels of IL-2, TNF- ⁇ , INF- ⁇ , and high levels of PD-1, TAG3, CD244, Inhibitory molecules such as CD160. Studies have shown that memory CD8 + T cells are a subset of effector T cells, and inhibiting the expression of na ⁇ ve-related genes can reverse the differentiation of effector CD8 + T cells into long-lived memory CD8 + T cells.
  • vMIP-II can promote the proliferation of the expression of this V ⁇ subfamily, indicating that it has an enhanced effect on the response of the immune system, and promotes the proliferation of immune cells that specifically respond.
  • our study on the monkey SIV model of recombinant vMIP-II and in the treatment of human AIDS has shown that it can significantly increase the level of memory CD8 + T cells in the virus-infected body, and has an important role in the onset of viremia .
  • the SARS-CoV-2 genome is +ssRNA with a total length of approximately 30kb.
  • the S protein determines host tropism and has become a major target for the development of antiviral drugs.
  • the receptor-binding domain contained in the S protein is less conserved among different viruses and contains most of its conformationally neutralizing epitopes, which allows the virus to easily spread across various hosts across tissue types and even species barriers.
  • the receptor binding domain is also a major epitope used in vaccine preparation.
  • SARS-CoV-2 An important strategy to address the rapid replication, wide host range, high variability and rapid cross-species spread that characterizes SARS-CoV-2 is to develop broad-spectrum antiviral drugs, including nucleic acid synthesis inhibitors, protease inhibitors, RNA polymerase inhibitors, Membrane fusion inhibitors, compound inhibitors, and even new applications for existing drugs. Considering the immune damage and immune exhaustion caused by SARS-CoV-2 infection, drugs that promote immune reconstitution will undoubtedly become an important new research focus.
  • the present invention successfully prepares the S protein of SARS-CoV-2 virus to stimulate PBMC cells. Sorting CD8 + T CM cells induced by S protein that can be transformed from CD8 + T effector cells into CD8 + T CM cells under vMIP-II treatment and studying the stem transformation of CD8 + T cells to CD8 + T CM cells induced by vMIP-II The mechanism of action makes it play a role in anti-SARS-CoV-2 viral therapy.
  • the method for preparing the S protein of the SARS-CoV-2 virus of the present invention is to construct a clone expression system of the S1 protein and the S2 protein of the SARS-CoV-2 virus respectively.
  • PBMCs were co-incubated with S protein (S1 and S2 proteins, 2:1), and the activity of the prepared S protein was identified by detecting the cell OD value.
  • the present invention conducts vMIP-II intervention therapy through PBMC/S protein stimulation model, studies the effect of vMIP-II on CD8 + T cells, CD8 + T CM cells, and CD8 + T EM cells, and studies the effects of vMIP-II on CD8 + T cells, CD8 + T CM cells, and CD8 + T CM cells.
  • Cells and CD8 + TEM cells were sorted by flow cytometry to determine the ratio of CD8 + T CM cells and CD8 + TEM cells.
  • the vMIP-II provided by the present invention which induces stem transformation of CD8 + T cells to CD8 + T CM cells, can promote the proliferation of CD8 + T CM cells and reduce the effect of inflammatory response, thereby protecting the body's immunity.
  • the vMIP-II provided by the present invention for inducing stem transformation of CD8 + T cells to CD8 + T CM cells can cause the proliferation of CD8 + T CM cells, and gene sequencing shows that the differentially expressed genes between the proliferating cells and CD8 + T cells are mainly enriched On the surface chemokine receptors CCR5, CXCR4, CX3CR1 and CCR7 and phosphorylation pathway related genes PI3K, AKT and so on.
  • the vMIP-II provided by the present invention for inducing stem transformation of CD8 + T cells to CD8 + T CM cells has the following mechanism: when vMIP-II is treated, CD8 + T cells mainly down-regulate signaling pathways related to phosphorylation, including Low expression of CD8 + T cell G protein levels, decreased cellular Ca 2+ concentration and mitochondrial membrane potential, and inhibition of the PI3K-AKT-mTOR pathway disrupted mitochondrial network structure, reduced mitochondrial function, changed cellular energy metabolism to glycolysis, and also affected the activity of the methylase Dnmt3a. Reduced phosphorylation leads to the transition of effector CD8 + T cells to stemness, producing more CD8 + T CM .
  • the present invention provides a mechanism of action of vMIP-II in which CD8+ T cells undergo stem transformation to CD8 + T CM cells, which can be used to prepare a drug for treating SARS-CoV-2 infection of COVID-19, and is an antiviral adoptive sexual immunization and prophylaxis or/and treatment of validated responses provide new means.
  • the present invention studies the effect of vMIP-II on patients by performing vMIP-II intervention treatment on COVID-19 patients, and collecting routine blood, biochemical blood and lung CT scan results before and one week after vMIP-II treatment in COVID-19 patients. clinical effect.
  • flow cytometer sorting is performed on the vMIP-II treatment group, the asymptomatic infection group and the symptomatic infection group to determine the proportion of lymphocyte types by analyzing the CD8 + T cell subsets in the PBMC of the convalescent patients.
  • the present invention determines the effect of vMIP-II on cytokines by detecting the changes of cytokine levels in different groups of peripheral blood mononuclear cells one week after S protein stimulation in convalescent patients.
  • vMIP-II can promote the proliferation of CD8 + T CM cells, and the proliferation is related to the co-action of chemokine receptors CCR5, CXCR4, CX3CR1 and CCR7 on the surface of CD8 + T cells.
  • vMIP-II Upon vMIP-II treatment, the chemokine receptors CCR7, CXCR4, CCR5, and CX3CR1 on the surface of CD8 + T cells were blocked, resulting in downregulation of phosphorylation-related signaling pathways, including low expression of CD8 + T cell G protein levels, decreased cellularity Ca 2+ concentration and mitochondrial membrane potential, inhibition of PI3K-AKT-mTOR pathway disrupted mitochondrial network structure, reduced mitochondrial function, changed cellular energy metabolism to glycolysis, and also affected the activity of methylase Dnmt3a. Reduced phosphorylation leads to the transition of effector CD8 + T cells to stemness, producing more CD8 + T CM .
  • This discovery of the mechanism of action of vMIP-II provides a new strategy for the development of drugs for SARS-CoV-2 infection with COVID-19, and also provides a new means for antiviral adoptive immunotherapy.
  • Figure 1 is a schematic diagram of the construction of the pEa-SARS-CoV-2-S1 plasmid in Example 1.
  • Figure 2 is a schematic diagram of the construction of the pEa-SARS-CoV-2-S2 plasmid in Example 1.
  • Figure 3 shows the SDS-PAGE electrophoresis of S1 and S2 cloned in Example 1.
  • FIG. 4 shows the electrophoresis identification of the purified S1 and S2 proteins in Example 1, and the purification is >95%.
  • FIG. 5 is the HPLC of the S1 protein purified in Example 1.
  • the chromatographic conditions are as follows: 20°C, 1 mL/min, 20 ⁇ L, wavelength: 445 nm.
  • Figure 6 shows the cell proliferation of PBMCs stimulated by S protein detected by MTT method in Example 1. *p value ⁇ 0.05 with S protein (10, 50, 250 ng/ml) and PHA (2 ⁇ g/ml) as controls.
  • Figure 7 shows the cytokine secretion of PBMCs stimulated by different doses of S protein in Example 1, there is a dose-dependent relationship, *p value ⁇ 0.05; **p value ⁇ 0.01.
  • Figure 8 is the effect of Example 1 vMIP-II on cytokine secretion stimulated by S protein. *p value ⁇ 0.05, **p value ⁇ 0.01 compared to the S protein group.
  • FIG. 9 shows the detection of memory CD8 + T cells by flow cytometry in Example 1.
  • FIG. Different subsets of memory CD8 + T cells are distinguished by CD45RA and CD62L.
  • the third row is the detection of inhibitory molecules on the surface of CD8 + T cells.
  • Depleted CD8 + T cells (T EX ) are characterized by high expression of the inhibitory molecules PD-1 and Tim-3.
  • FIG. 10 shows the ratio and distribution of CD8 + T cell subsets and S protein in different vMIP-IIs of Example 1.
  • FIG. *p value ⁇ 0.05 compared to control group (n 3).
  • Figure 11 shows the effect of Example 1 vMIP-II on the cytokine secretion level of CD8 + T cells induced by S protein. *p value ⁇ 0.05 compared to the S protein group.
  • FIG. 12 is an MA diagram of the differentially expressed genes in Example 1.
  • FIG. 12 Gene differential expression analysis was performed on effector CD8 + T cell samples from the vMIP-II-treated group and the S-protein group by DESeq.
  • Figure 13 is an analysis of the KEGG pathway of Example 1 (note: the longer the bars, the higher the enrichment; vice versa).
  • Figure 14 is the qRT-PCR verification of the differentially expressed genes in Example 1. *p value ⁇ 0.01 compared to the S protein group.
  • FIG. 15 shows that vMIP-II reduces the G protein expression of CD8 + T cells as detected by Western blot in Example 1.
  • the reduction in G protein induced by vMIP-II was more pronounced in the presence of Gi ⁇ antisense oligodeoxynucleotides.
  • Figure 16 is the effect of Example 1 vMIP-II on calcium flux. Compared with the control group, vMIP-II significantly inhibited the rapid influx of calcium, with p values ⁇ 0.01 in the S protein and vMIP-1 ⁇ groups.
  • Figure 17 shows that compared with the control group in Example 1, vMIP-II treatment can increase intracellular calcium chelation, p value ⁇ 0.01.
  • FIG 18 shows that Example 1 vMIP-II reduces the mitochondrial membrane potential of CD8 + T cells.
  • the left side is the vMIP-II treatment group and the right side is the control group.
  • the intensity of the fluorescent color was reduced compared to the control group, p-value ⁇ 0.01.
  • Figure 19 shows the effect of Example 1 vMIP-II on phosphorylation of PK, LDH, Dnmt3a, PI3K and Akt.
  • CD8 + T cells were incubated with or without vMIP-II under S protein stimulation. The results showed that phosphorylation levels were significantly reduced in the presence of vMIP-II.
  • Figure 20 shows that vMIP-II in Example 1 increased the ROS level of CD8 + T cells, the left side is the S protein control group, and the right side is the vMIP-II treatment group. bar. 20 ⁇ m, p-value ⁇ 0.01.
  • Figure 21 shows the effects of Example 1 vMIP-II on mitochondrial proliferation genes SIRT1, PGC-1 ⁇ and autophagy genes LC3, PINK1, and parkin genes.
  • CD8 + T cells were incubated with or without vMIP-II under S protein stimulation.
  • Figure 22 shows the effect of Example 1 vMIP-II on mitochondrial network structure.
  • the left side is the S protein control group, and the right side is the vMIP-II treatment group. It can be seen that mitochondria are fragmented and the mitochondrial network is disrupted after vMIP-II treatment. 400 ⁇ , p-value ⁇ 0.01.
  • Figure 23 is the effect of Example 1 vMIP-II on the downstream proteins of mTOR pathway. Under S protein stimulation, S protein CD8 + T cells were incubated with vMIP-II for 6 h or 12 h.
  • Fig. 24 is the lung CT before and after the treatment of Example 1 vMIP-II.
  • Five common patients infected with SARS-CoV-2 virus were scanned by lung CT scans before and 1 week after vMIP-II treatment.
  • Figure 25 shows the analysis of T cell subsets in PBMCs of convalescent patients by flow cytometry one week after the virus in Example 1 was negative.
  • Figure 26 shows the different cytokine levels of S protein-stimulated PBMCs in convalescent patients of Example 1, *p value ⁇ 0.05, **p value ⁇ 0.01.
  • Viruses, patients and cells The S protein of SARS-CoV-2 Guangzhou strain occupies bases 21563-25384 of its genome, corresponding to 1273 amino acids, encoding a protein of 141.2 kDa.
  • vMIP-II stock solution for injection and lyophilized powder for injection vMIP-II antigen standard (physical and chemical reference substance) was developed by the Institute of Genomic Medicine of Jinan University and passed the national drug and biological product test.
  • vMIP-II monoclonal antibody anti-CD8 antibody-APC (allophycocyanin, allophycocyanin), anti-CD3 antibody-FITC (fluorescein isothiocyanate, fluorescein isothiocyanate), anti-CD4 antibody-ECD, anti-CCR7 antibody-PE ( phycoerythrin, phycoerythrin), etc., were purchased from Biolegend Company; BD FACS flow cytometer (Bio-Rad Company, USA), etc.
  • vMIP-II stock solution for injection and lyophilized powder for injection vMIP-II antigen standard (physical and chemical reference substance) was developed by the Institute of Genomic Medicine of Jinan University and passed the national drug and biological product test.
  • vMIP-II monoclonal antibody anti-CD8 antibody-APC (allophycocyanin, allophycocyanin), anti-CD3 antibody-FITC (fluorescein isothiocyanate, fluorescein isothiocyanate), anti-CD4 antibody-ECD, anti-CCR7 antibody-PE ( phycoerythrin, phycoerythrin), etc.
  • Anti-CD8 antibody-APC allophycocyanin, allophycocyanin
  • anti-CD3 antibody-FITC fluorescein isothiocyanate, fluorescein isothiocyanate
  • anti-CD4 antibody-ECD anti-CD4 antibody-ECD
  • anti-CCR7 antibody-PE phycoerythrin, phycoerythrin
  • CCR7 ELISA kit 1640 complete medium, dithiothreitol (DTT); 1 mmol/L ethylenediaminetetraacetic acid (EDTA); PQE-TriSystem with His
  • the SARS-CoV-2 S1 and S2 subunit genes were amplified and recombined to obtain pQE-His SARS-CoV-2-S1 and pQE-His SARS-CoV-2 -S2 (Fig. 1, 2).
  • the plasmid was digested and sequenced to confirm, and the plasmid was transfected into E. coli M15 for culture. Control the speed and ventilation during the bacterial fermentation culture and set the dissolved oxygen to ⁇ 40%.
  • the lymphocytes were separated according to the conventional peripheral blood lymphocyte separation method to obtain PBMC.
  • the cell concentration in RPMI1640 medium was adjusted to 2.5 ⁇ 106/mL, then 20 ⁇ L of 5 mg/mL MTT solution was added and incubated for 4 hours. Discard the supernatant and add 150 ⁇ L DMSO to dissolve the pellet.
  • PBMCs were stimulated.
  • Cells were seeded in 96-well plates at a density of 5 ⁇ 104/well and incubated with S protein for 12 hours to examine morphological changes.
  • the samples were divided into blank control group, S protein stimulation group (10, 50 and 250 ng/mL) and PHA (2 ⁇ g/mL) group. There are three replicate samples in each group.
  • the S protein forms a corolla structure in the form of a trimer, which is cleaved into two subunits S1 and S2 by the action of host cell proteases.
  • S1 mainly contains the receptor binding domain, which is responsible for recognizing cellular receptors.
  • S2 contains the essential components required for the membrane fusion process.
  • the S protein determines the host range and specificity of the virus, and the S protein is an important site for host immunity and vaccine design. As shown in Figures 3, 4, and 5, the purity of SARS-CoV-2 cloned and expressed in E. coli was over 95% for the 2S protein (S1 and S2 subunits). The effect of S protein on the proliferation of normal human PBMCs was observed by MTT analysis, Figure 6.
  • Example 2 The effect of vMIP-II on S protein-stimulated CD8+T differentiation.
  • CD45RA and CD62L are used to distinguish different subsets of CD8 + T cells: CD45RA+CD62L+ is the phenotype of naive CD8 + T cells (Tn cells), CD45RA+CD62L- is the phenotype of effector CD8 + T cells (TE cells), CD45RA-CD62L+ is the phenotype of central memory CD8 + T cells (T CM cells); CD45RA-CD62L- is the phenotype of effector memory CD8 + T cells ( TEM cells).
  • Tn cells naive CD8 + T cells
  • CD45RA+CD62L- is the phenotype of effector CD8 + T cells (TE cells)
  • CD45RA-CD62L+ is the phenotype of central memory CD8 + T cells (T CM cells)
  • CD45RA-CD62L- is the phenotype of effector memory CD8 + T cells ( TEM cells).
  • T EX cells highly expressed inhibitory molecules
  • Cultured cells (1.5 mL) were placed in test tubes and PMA (50 mg/L), ionomycin (750 mg/L) and blocking agent BFA (1x) were added. Cells were then incubated for 6 hours at 37°C, 5% CO2. Each group of cells was equally divided into five 1.5 mL centrifuge tubes and centrifuged at 1500 rpm for 5 minutes. Discard the supernatant and wash the cells with PBS. After discarding the supernatant, the flow cytometer surface antibody CD8-APC-Cy7 was added to the cells in the dark. Cells were incubated in the dark at 4°C for 20 minutes. Cells were then fixed with 200 ⁇ L of 4% paraformaldehyde.
  • each tube was centrifuged at 500 rpm for 5 minutes and the supernatant was discarded. After the addition of 200 ⁇ L of disruptor, the cells were incubated at 4° C. in the dark for 1 h and then centrifuged at 1500 rpm for 5 min. Discard the supernatant. Five tubes in each group were protected from light, and intracellular antibodies, including IFN- ⁇ -APC, TNF- ⁇ -APC, IL2-APC, IL4-APC, and granzyme APC (BD Biosciences), were added and incubated. 20 min at 4 °C. Flow cytometry was used to detect cytokine secretion.
  • effector CD8 + T cells may be transformed into memory CD8 + T cells during the systolic phase of effector CD8 + T cells, which may be related to the increase in the number of T CM cells.
  • a decrease in CD8 + T EX cells indicates a decrease in the number of apoptotic cells or an enhanced proliferative capacity.
  • the results show that vMIP-II has an effect on the differentiation of CD8 + T cells, but the specific mechanism needs further study.
  • RNA-seq library Total RNA is enriched in Oligo(dT). The RNA was randomly cut into 200nt fragments, the random primer hexamers were reverse transcribed into cDNA, end repaired, and adenine was added. After adding the adapter, PCR amplification can construct the library.
  • KEGG is a database that contains mined molecular-level information, especially large-scale molecular datasets generated by genome sequencing and other high-throughput experimental techniques, on high-level biological systems such as cells, organisms, and ecosystems. Features (http:///www.genome.jp/kegg/).
  • Statistical enrichment analysis of differentially expressed genes in the KEGG pathway was performed using KOBAS software. Pathway enrichment analysis of differentially expressed genes is used to analyze whether genes are overexpressed in certain pathways, while gene enrichment factors are used to analyze the degree of pathway enrichment.
  • RNA-seq data we selected some differentially expressed genes and performed relative real-time PCR analysis of their expression levels.
  • the sorted CD8 + T cells were placed in a 5% CO2 cell incubator and incubated at 37°C for 24h.
  • Total RNA extraction from CD8 + T cells was performed according to the instructions of the cell total RNA extraction kit, and cDNA synthesis was performed using the SuperScriptTM Predmplification System for First Strand cDNA Synthesis kit. All primer sequences used in real-time PCR reactions are listed in Supplementary Table 8. Reactions were performed in a real-time PCR machine (MiniOpticon; Bio-Rad, Hercules, CA, USA) according to the manufacturer's instructions.
  • the total reaction volume was 25.0 ⁇ L, including 2.0 ⁇ L total RNA, 8.5 ⁇ L RNase-free H2O, 0.5 ⁇ L forward and reverse primers (10 mM/L), 12.5 ⁇ L 2 ⁇ 1-step SYBR RT-PCR Buffer III, 0.5 ⁇ L TaKaRa Ex Taq HS (5U/ ⁇ L) and 0.5 ⁇ L PrimeScript RT Enzyme Mix II.
  • PCR reactions were performed at 95°C for 5 min, 30 s at 95°C, 45s at 60°C, and 45s at 72°C for a total of 33 cycles. All experiments were performed in 3 independent biological replicates. Standard relative transcript levels were estimated using the 2- ⁇ Ct method.
  • RNA-seq to detect the differential expression of CD8 + T cell genes in the 100ng/mL vMIP-II treatment group (S+vMIP-II group) and the S protein group (not receiving vMIP-II treatment).
  • the criteria screened a total of 97 significantly differentially expressed genes (fold difference ⁇ 2, p ⁇ 0.01), including 54 significantly up-regulated genes and 43 significantly down-regulated genes (Figure 12).
  • vMIP-II is mainly involved in the phosphorylation signaling pathway of effector CD8 + T cells in S protein-stimulated PBMC, cell motility, anti-apoptosis and regulation of chemokine receptors, especially the phosphorylation signaling of chemokine receptors Regulation of pathways that affect CD8 + T CM cell differentiation. This idea was supported by the substantial enrichment of differentially expressed genes involved in signaling pathway molecules, transcription factor activity and cellular energy metabolism following vMIP-II treatment.
  • Example 4 The effect of vMIP-II on effector CD8+ T cell signaling pathway proteins and mitochondrial function
  • CD8 + T cell proteins in the 100 ng/mL vMIP-II treatment group and the S protein group were detected by immunoblotting. After SDS-PAGE, we performed immunoblot analysis for each antibody.
  • Primary antibody Anti-G protein alpha12 Abcam, Cambridge, UK
  • secondary antibody goat anti-rabbit IgG-HRP diluent mouse anti-labeled monoclonal antibody SIRT1, PGC-1a, Parkin, LC3I/II, PINK1, PK, LDH, Dnmt3a (Shanghai Aibixin Biotechnology Company).
  • the antisense oligonucleotide sequence of Gi ⁇ mRNA was 5'-ATG GTC AGC CCA GAG CCT CCG GAT GAC GCC CGA-3', a phosphorothioate oligonucleotide synthesized by Takara Bio (Kusatsu, Japan).
  • CD8 + T cells were divided into four groups: Gi ⁇ At-RNA group, S protein, S protein+Gi ⁇ At-RNA group and S protein+Gi ⁇ At-RNA+vMIP-II group. After adding S protein for 1 h, Gi ⁇ ODN was added in groups, Gi ⁇ ODN was added for 1 h, and vMIP-II was added. Cells were collected for flow cytometric sorting of CD8 + T cell subtypes.
  • vMIP-II-induced calcium rapid influx and vMIP-II-induced calcium release were measured separately from the intracellular calcium pool.
  • Previous experiments were divided into 3 groups with vMIP-II concentrations of 25 ng/mL, 50 ng/mL and 100 ng/mL, respectively. The latter experiments were divided into two groups, EDTA-containing and EDTA-free background solutions.
  • JC-1kit (Shanghai Biyuntian Company, Shanghai, China) according to the manufacturer's instructions. After removing the medium from the cells, the cells were washed once with PBS. After that, 1 mL of cell culture solution and 0.5 mL of JC-1 staining working solution were added to the cells. After shaking well, cells were incubated at 37°C for 20 minutes. Afterwards, the supernatant was removed and cells were washed twice with diluted JC-1 staining buffer (1x). Cell culture solution (2 mL) was added to the washed cells, and the cells were observed under a fluorescence microscope.
  • CD8 + T cell proteins in the 100 ng/mL vMIP-II treatment group and the S protein group were detected by immunoblotting. After SDS-PAGE, we performed immunoblot analysis for each antibody.
  • CD8 + T cells selected from the 100ng/mL vMIP-II treated group and the S protein group each sample was washed with PBS, then 5 ⁇ mol/L DCFH-DA in PBS was added, mixed well, and incubated at 650°C . 37°C for 30 minutes. Wash twice with PBS buffer to remove probes that have not yet entered the cells and incubate at 37°C for 30 minutes. After centrifugation at 8000 rpm for 2 min, cells were resuspended in 1 ml of PBS buffer.
  • the fluorescence intensity of each tube was measured by a flow cytometer (excitation wavelength of 488 nm, emission wavelength of 530 nm), 10,000 cells were counted, and the mean fluorescence intensity was calculated.
  • the samples were observed under a fluorescence microscope after excitation with ultraviolet light (excitation wavelength 380 nm, absorption wavelength 420 nm).
  • FIG. 15 shows that Gi[alpha] antisense oligodeoxynucleotides significantly reduced G protein expression, indicating potent activity of antisense RNA on Gi[alpha].
  • vMIP-II The effect of vMIP-II on rapid intracellular calcium ion concentration was continuously and dynamically detected in time-resolved assays.
  • Cells were stimulated with vMIP-II (50 ng/mL), and a dramatic increase in intracellular calcium ion concentration was found.
  • Stimulation of cells by vMIP-II 100 ng/mL did not increase the magnitude of intracellular calcium ion concentration (FIG. 16), and the rate of calcium ion influx stabilized at a low level.
  • CD8 + T cells from the 100 ng/mL vMIP-II treated group were cultured in 0.1% bovine serum medium for 1 hour, and the S protein group without vMIP-II treatment was used as a control.
  • the expression levels of phosphorylated PI3K and Akt proteins, the expression levels of Dnmt3a protein and the expression levels of PK and LDH were detected after 12h stimulation.
  • the results in Figure 19 show that high levels of Dnmt3a, PK, phosphorylated PI3K, Akt and low levels of LDH were detected in CD8 + T cells only in the presence of S protein.
  • vMIP-II In the presence of vMIP-II, the expression levels of Dnmt3a, PK, phosphorylated PI3K and Akt were significantly decreased, whereas the expression levels of LDH were significantly increased. This indicated that vMIP-II inhibited the expression of phosphorylated PI3K and Akt proteins in the chemokine receptor signaling pathway, as well as the expression of Dnmt3a downstream of the phosphorylation pathway, and increased the level of glycolysis in cells.
  • the cellular mitochondrial network is influenced by the balance of mitochondrial proliferation genes and autophagy genes.
  • differential genes it was found that the mRNA expression levels of mitophagy-related genes LC3 and PINK1 in the S protein + vMIP-II treatment group were significantly higher than those in the S protein group, while the mRNA expression levels of this gene, SIRT1, which regulates mitochondrial proliferation, were greatly reduced.
  • SIRT1 which regulates mitochondrial proliferation
  • Mitochondria were labeled with Mito-Tracker Red fluorescent probe and observed under a confocal laser microscope. The results are shown in Figure 22: In the S proteome, the mitochondria of most cells are interconnected to form a network. After 6 hours of treatment with vMIP-II, broken mitochondria (small circles or dots) appeared and the mitochondrial network was disrupted. This suggests that vMIP-II can disrupt mitochondrial structure by inhibiting mitochondrial proliferation and enhancing autophagy, impairing cellular mitochondrial function, and transforming cells into stem cells.
  • vMIP-II inhibits the mTOR pathway
  • PBMCs Preparation of PBMCs: Blood samples were mixed with 4 mL of EDTA to prevent clotting and centrifuged at 1500 rpm (centrifugation radius 10 cm) for 10 minutes. The upper plasma was extracted and 3 mL of lymphocyte separation solution was added. The resulting mixture was centrifuged at 2500 rpm (centrifugation radius 10 cm) for 20 minutes, and the supernatant was discarded. Add one milliliter of 1640 medium to resuspend 1 x 107 cells/mL. The isolated normal human PBMCs were divided into five groups: blank control group, S protein group (100 ⁇ g S1+S2 protein, ratio of 2:1) and three vMIP-II treatment groups.
  • the vMIP-II treatment groups included Group I (25 ng vMIP-II+S protein), Group II (50 ng vMIP-II+S protein) and Group III (100 ng vMIP-II+S protein).
  • PBMCs were co-incubated with S protein and vMIP-II according to the above group doses. Each group was cultured in vitro for 12 hours before use.
  • the cultured cells (1.5 mL) were placed in a test tube and 10 ⁇ L of each of the four monoclonal fluorescent antibodies, including anti-human CD3-PE, CD4-FITC, CD8-APC, CD45RO-PE-Cy5 and CD62L-APC- were added H7 in anti-human CD3-PE sorted T cells (BD Biosciences, Franklin Lakes, NJ, USA), then mixed with a shaker and stored in the dark at room temperature (20-25°C) for 15-30 min at C ). 2 mL of hemolysin was added, and the culture was mixed on a shaker, kept at room temperature in the dark for 10 minutes, and then centrifuged at 1000 rpm for 10 minutes. Discard the supernatant.
  • monoclonal fluorescent antibodies including anti-human CD3-PE, CD4-FITC, CD8-APC, CD45RO-PE-Cy5 and CD62L-APC- were added H7 in anti-human CD3-PE sorted T cells (BD Biosciences
  • Cells were washed with 1 mL of 0.1% NaN3 in PBS buffer and centrifuged at 1000 rpm for 10 minutes. Pour off the supernatant. Cells were resuspended by adding fixative (300 ⁇ L), and then detected using a BD-FACsCalibur flow cytometer (BD Biosciences).
  • CD45RA and CD62L are used to distinguish different subsets of CD8 + T cells: CD45RA+CD62L+ is the phenotype of naive CD8 + T cells (Tn cells), CD45RA+CD62L- is the phenotype of effector CD8 + T cells (TE cells), CD45RA-CD62L+ is the phenotype of central memory CD8 + T cells (T CM cells); CD45RA-CD62L- is the phenotype of effector memory CD8 + T cells ( TEM cells).
  • Tn cells naive CD8 + T cells
  • CD45RA+CD62L- is the phenotype of effector CD8 + T cells (TE cells)
  • CD45RA-CD62L+ is the phenotype of central memory CD8 + T cells (T CM cells)
  • CD45RA-CD62L- is the phenotype of effector memory CD8 + T cells ( TEM cells).
  • T EX cells highly expressed inhibitory molecules
  • Cultured cells (1.5 mL) were placed in test tubes and PMA (50 mg/L), ionomycin (750 mg/L) and blocking agent BFA (1x) were added. Cells were then incubated for 6 hours at 37°C, 5% CO2. Each group of cells was equally divided into five 1.5 mL centrifuge tubes and centrifuged at 1500 rpm for 5 minutes. Discard the supernatant and wash the cells with PBS. After discarding the supernatant, the flow cytometer surface antibody CD8-APC-Cy7 was added to the cells in the dark. Cells were incubated in the dark at 4°C for 20 minutes. Cells were then fixed with 200 ⁇ L of 4% paraformaldehyde.
  • each tube was centrifuged at 500 rpm for 5 minutes and the supernatant was discarded.
  • cells were incubated at 4[deg.]C in the dark for 1 h, then centrifuged at 1500 rpm for 5 min. Discard the supernatant.
  • Five tubes in each group were protected from light, and intracellular antibodies, including IFN- ⁇ -APC, TNF- ⁇ -APC, IL2-APC, IL4-APC, and granzyme APC (BD Biosciences), were added and incubated. 20 min at 4 °C. Flow cytometry was used to detect cytokine secretion.
  • vMIP-II as a treatment for SARS-CoV-2 infection

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Cell Biology (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Virology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Wood Science & Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Toxicology (AREA)
  • Communicable Diseases (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Hematology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Epidemiology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

提供了病毒巨噬细胞炎性蛋白vMIP-II通过促进CD8+T细胞去磷酸化影响PI3K-AKT-mTOR信号通路从而诱导COVID-19患者中的CD8 +T细胞转化为T CM。通过SARS-CoV-2的S蛋白刺激的外周血PBMC的T细胞亚群,vMIP-II可使T CM依赖vMIP-II剂量增殖,该增殖细胞的差异基因主要富集于趋化因子受体和磷酸化通路。可以重建在急性SARS-CoV-2感染中丧失的细胞免疫能力,用于病毒感染的新型治疗用药物。

Description

广谱趋化因子受体抑制剂增强新冠肺炎病毒感染的细胞免疫的分子机制及在其药物防治中的应用 技术领域
本发明属病毒病毒巨噬细胞炎性蛋白vMIP-II在防治炎症和SARS-CoV-2感染等方面进行的基础研究领域,更具体地说,本发明涉及病毒巨噬细胞炎性蛋白vMIP-II诱导CD8 +T细胞向CD8 +T CM细胞发生干性转化。
技术背景
病毒巨噬细胞炎症蛋白-Ⅱ(vMIP-Ⅱ)是由卡波氏肉瘤疱疹病毒(KSHV)K4基因编码的一种人趋化因子小分子蛋白,与人CC类趋化因子巨噬细胞炎性蛋白Ⅰ在氨基酸序列上有较高的同源性。vMIP可以利用与其他趋化因子相似的结构骨架与其受体进行相互结合作用,vMIP-Ⅱ被广泛公认为是一种广谱的趋化因子受体抑制剂,具有结合多种人趋化因子受体亚族的能力,已有研究证明vMIP-II能够拮抗CCR1、CCR2、CCR3、CCR5、CCR8、CXCR4和CX3CR1等多种趋化因子受体,但对CXCR1和CXCR2没拮抗作用,对CCR7的作用暂无明确报道。
病毒感染后,CD8+T细胞会经历扩增、收缩和记忆形成三个阶段。通常使用表面分子KLRG1和CD127(Interleukin-7 receptor subunit alpha,IL-7Rα)来表征CD8+T细胞的活化状态,并将活化后的CD8 +T细胞分为短活效应细胞(Short-lived effector cells,SLECs,表征为KLRG1 hiCD127 low)和记忆前体效应细胞(Memory precursor effector cells,MPECs,表征为KLRG1 lowCD127 hi)两大类。SLECs能产生大量的细胞毒性分子和细胞因子,大部分在收缩阶段凋亡,而MPECs细胞在清除病原后进一步分化形成记忆细胞。记忆细胞进一步分化为不同的记忆细胞亚群,通常使用表面分子CD45RA、CD45RO、趋化因子受体CCR7和血管L-选择素(CD62L)来表征不同的记忆亚群,具体分为长期记忆T细胞(Central memory T cells,T CM,表型为CD45RA -CD45RO +CCR7 +CD62L +)、效应记忆性T细胞(Effector memory T cells,T EM表型为CD45RA -CD45RO +CCR7 -CD62L -)和组织特异性T细胞(Tissue resident memory T cells,T RM,表型为CD103 +CD69 +CD62L -CD27 -)。一般情况下T CM主要分布于外周组织免疫器官和淋巴结,当再次受抗原刺激时可迅速分裂增殖和分化。T EM细胞主要存在于非淋巴组织和器官,参与周身循环,可迁移至外周炎症组织发生速发性效应功能。
当持续抗原刺激下CD8 +T呈耗竭态(Exhausted T cells,T EX),表现为低水平IL-2、TNF-α、INF-γ,细胞表面表达高水平的PD-1、TAG3、CD244、CD160等抑制分子。有研究表明记忆CD8 +T细胞是来自效应T细胞的子集,抑制幼稚相关基因的表达可以逆转效应CD8 +T细胞分化为长寿记忆CD8 +T细胞。
本实验室前期研究利用vMIP-II能竞争性抑制HIV与靶细胞上共受体CCR5、CXCR4、CCR3等的结合,以阻止病毒进入靶细胞,研究其具有抗HIV感染的作用,体内实验表明SIV感染初期的食蟹猴体内部分TCRVβ亚家族的表达量有所变化,一些Vβ亚家族有特异性的增生,且增生的TCRVβ亚家族克隆性发生改变,提示其可能为针对病毒的特异性增生。vMIP-Ⅱ对此种Vβ亚家族的表达的 增生有促进的作用,说明其对免疫系统的应答有增强的作用,促使特异性应答的免疫细胞的增生。事实上,我们对重组vMIP-II的猴SIV模型和在人AIDS治疗的研究均显示了其具有显著增加病毒感染机体的记忆CD8 +T细胞水平作用,对发病期的病毒感染血症具有重要作用。
SARS-CoV-2基因组是+ssRNA,总长度约为30kb。S蛋白决定宿主的嗜性,并已成为开发抗病毒药物的主要目标。S蛋白中包含的受体结合结构域在不同病毒中保守性较低,并包含其大多数构象中和表位,这使病毒易于在各种宿主之间跨组织类型甚至物种屏障传播。受体结合域也是疫苗制备中使用的主要抗原表位。
针对解决SARS-CoV-2特征的快速复制,宿主范围广,变异高以及跨物种传播快的重要策略是开发广谱抗病毒药物,包括核酸合成抑制剂,蛋白酶抑制剂,RNA聚合酶抑制剂,膜融合抑制剂,化合物抑制剂,甚至是现有药物的新应用。考虑到SARS-CoV-2感染引起的免疫损伤和免疫衰竭,促进免疫重建的药物无疑将成为重要的新研究重点。为了进一步阐明vMIP-II在SARS-CoV-2感染后T细胞免疫重构中的作用,我们研究了S蛋白在体外刺激外周血单个核细胞(PBMC)CD8 +T亚群的分化机制,并探讨了其潜力。深入探索效应CD8 +T细胞转化为CD8 +T CM细胞的机制。
发明内容
本发明成功制备SARS-CoV-2病毒的S蛋白,刺激PBMC细胞。分选出S蛋白诱导的能在vMIP-II治疗下由CD8 +T效应细胞干性转化成的CD8 +T CM细胞并研究vMIP-II诱导CD8 +T细胞向CD8 +T CM细胞发生干性转化的作用机制,使其在抗SARS-CoV-2病毒治疗中发挥作用。
本发明制备SARS-CoV-2病毒的S蛋白的方法,是分别构建SARS-CoV-2病毒的S1蛋白和S2蛋白的克隆表达系统。将PBMC与S蛋白(S1和S2蛋白,2:1)共孵育,通过检测细胞OD值鉴定制备的S蛋白的活性。
本发明通过PBMC/S蛋白刺激模型进行vMIP-II干预治疗,研究vMIP-II对CD8 +T细胞、CD8 +T CM细胞、CD8 +T EM细胞的影响,对CD8 +T细胞、CD8 +T CM细胞和CD8 +T EM细胞进行流式细胞仪分选,以确定CD8 +T CM细胞和CD8 +T EM细胞的比例。
本发明提供的诱导CD8 +T细胞向CD8 +T CM细胞发生干性转化的vMIP-II能促使CD8 +T CM细胞增殖,降低炎症反应的作用,从而对机体免疫产生保护作用。
本发明提供的诱导CD8 +T细胞向CD8 +T CM细胞发生干性转化的vMIP-II可引起CD8 +T CM细胞增殖,基因测序显示该增殖细胞与CD8 +T细胞的差异表达基因主要富集于表面趋化因子受体CCR5、CXCR4、CX3CR1和CCR7和磷酸化通路相关基因PI3K、AKT等。
本发明提供的诱导CD8 +T细胞向CD8 +T CM细胞发生干性转化的vMIP-II具有如下机制:当vMIP-II治疗时,CD8 +T细胞主要通过下调与磷酸化相关的信号通路,包括低表达CD8 +T细胞G蛋白水平、降低细胞Ca 2+浓度和线粒体膜电位、抑制PI3K-AKT-mTOR通路破坏了线粒体网络结构,降低线粒体功能,将细胞能量代谢改变为糖酵解,还影响了甲基化酶Dnmt3a的活性。减少的磷酸化导致效应CD8 +T细胞向干性转化,产生更多的CD8 +T CM
本发明提供了一种CD8+T细胞向CD8 +T CM细胞发生干性转化的vMIP-II的作用机制,其可用于制备治疗SARS-CoV-2感染COVID-19的药物,为抗病毒的过继性免疫以及验证反应的预防或/和治疗提供新的手段。
本发明通过对COVID-19患者进行vMIP-II干预治疗,并且收集对COVID-19患者vMIP-II治疗之前和之后一周的常规血液,生化血液和肺部CT扫描结果,研究vMIP-II对患者的临床效果。
本发明通过恢复期患者PBMC对CD8 +T细胞亚组的分析,对vMIP-II治疗组,无症状感染组和对症感染组进行流式细胞仪分选,以确定淋巴细胞种类的比例。
本发明通过检测康复期患者经S蛋白刺激后一周不同组外周血单个核细胞细胞因子水平的变化,以确定vMIP-II对细胞因子的影响。
相对于现有技术,本发明经实验发现,vMIP-II可以促使CD8 +T CM细胞增殖,该增殖与CD8 +T细胞表面的趋化因子受体CCR5、CXCR4、CX3CR1和CCR7的共同作用相关。当vMIP-II治疗时,CD8 +T细胞表面的趋化因子受体CCR7、CXCR4、CCR5和CX3CR1封闭,引起与磷酸化相关的信号通路下调,包括低表达CD8 +T细胞G蛋白水平、降低细胞Ca 2+浓度和线粒体膜电位、抑制PI3K-AKT-mTOR通路破坏了线粒体网络结构,降低线粒体功能,将细胞能量代谢改变为糖酵解,还影响了甲基化酶Dnmt3a的活性。减少的磷酸化导致效应CD8 +T细胞向干性转化,产生更多的CD8 +T CM。vMIP-II的作用机制的这一发现为SARS-CoV-2感染COVID-19的药物研发提供了全新策略,也为抗病毒的过继性免疫治疗提供新的手段。
附图说明
图1为实施例1pEa-SARS-CoV-2-S1质粒的构建示意图。
图2为实施例1pEa-SARS-CoV-2-S2质粒的构建示意图。
图3为实施例1克隆的S1,S2的SDS-PAGE电泳。
图4为实施例1纯化S1和S2蛋白的电泳鉴定,纯化>95%。
图5为实施例1纯化的S1蛋白的HPLC。色谱条件如下:20℃,1mL/min,20μL,波长:445nm。流动相A为乙腈:水(v/v=9:1),流动相B为乙酸乙酯。
图6为实施例1MTT法检测S蛋白刺激PBMCs的细胞增殖。以S蛋白(10、50、250ng/ml)和PHA(2μg/ml)为对照,*p值<0.05。
图7为实施例1不同剂量的S蛋白刺激的PBMC的细胞因子分泌,存在剂量依赖性关系,*p值<0.05;**p值<0.01。
图8为实施例1vMIP-II影响S蛋白刺激的细胞因子分泌。与S蛋白组相比,*p值<0.05,**p值<0.01。
图9为实施例1流式细胞术检测记忆CD8 +T细胞。记忆CD8 +T细胞的不同亚组由CD45RA和CD62L区分。第三行是检测CD8 +T细胞表面的抑制分子。耗尽的CD8 +T细胞(T EX)的特征是高表达的抑制分子PD-1和Tim-3。图10为实施例1不同vMIP-II中CD8 +T细胞亚群与S蛋白的比例和分布。与对照组相比,*p值<0.05,(n=3)。
图11为实施例1vMIP-II对S蛋白诱导的CD8 +T细胞细胞因子分泌水平的影响。与S蛋白组相比,*p值<0.05。
图12为实施例1差异表达基因的MA图。通过DESeq对vMIP-II治疗组和S蛋白组的效应CD8 +T细胞样品进行基因差异表达分析。
图13为实施例1KEGG途径的分析(注意:条形越长,富集度越高;反之亦然)。
图14为实施例1差异表达基因的qRT-PCR验证。与S蛋白组相比,*p值<0.01。
图15为实施例1Western blot检测到,vMIP-II降低了CD8 +T细胞的G蛋白表达。在存在Giα反义寡聚脱氧核苷酸的情况下,vMIP-II诱导的G蛋白减少更为明显。
图16为实施例1vMIP-II对钙流的影响。与对照组相比,vMIP-II显着抑制钙的快速流入,S蛋白和vMIP-1ɑ组的p值<0.01。
图17为实施例1与对照组相比,vMIP-II治疗可增加细胞内钙螯合,p值<0.01。
图18为实施例1vMIP-II降低了CD8 +T细胞的线粒体膜电位。左侧是vMIP-II治疗组,右侧是对照组。与对照组相比,荧光色的强度降低,p值<0.01。
图19为实施例1vMIP-II对PK,LDH,Dnmt3a,PI3K和Akt磷酸化的影响。在S蛋白刺激下,将CD8 +T细胞与vMIP-II或不与vMIP-II一起孵育。结果表明,在存在vMIP-II的情况下,磷酸化水平显着降低。
图20为实施例1vMIP-II增加了CD8 +T细胞的ROS水平,左侧为S蛋白对照组,右侧为vMIP-II治疗组。bar.20μm,p值<0.01。
图21为实施例1vMIP-II对线粒体增殖基因SIRT1,PGC-1ɑ和自噬基因LC3,PINK1,parkin基因的影响。在S蛋白刺激下,将CD8 +T细胞与vMIP-II或不与vMIP-II一起孵育。
图22为实施例1vMIP-II对线粒体网络结构的影响。左侧是S蛋白对照组,右侧是vMIP-II治疗组。可以看出,经vMIP-II处理后,线粒体出现碎片化,线粒体网络被破坏。400×,p值<0.01。
图23为实施例1vMIP-II对mTOR途径下游蛋白的影响。在S蛋白刺激下,将S蛋白CD8 +T细胞与vMIP-II孵育6h或12h。
图24为实施例1vMIP-II治疗前后肺部CT。在vMIP-II治疗之前和之后1周,通过肺部CT扫描了5例感染SARS-CoV-2病毒的普通患者。
图25为实施例1病毒阴性一周后,流式细胞仪对恢复期患者PBMC中T细胞亚群的分析。
图26为实施例1在恢复期患者中,S蛋白刺激的PBMCs的不同细胞因子水平,*p值<0.05,**p值<0.01。
图27为实施例1在恢复为阴性一周后,恢复期组中由S蛋白刺激的PMBC的增殖。与普通症状组相比,vMIP-II组和非症状组,*p值<0.05,n=5。
具体实施方式
以下结合实施例,对本发明进行进一步详细说明。
实施例1 SARS-CoV-2的S蛋白的克隆、表达和抗原活性检测
材料与方法
病毒、患者和细胞:SARS-CoV-2广州毒株的S蛋白占据其基因组的21563-25384位碱基,对应于1273个氨基酸,编码141.2kDa的蛋白。这项研究包括武汉协和医院(方舟医院)和南阳市第一人民医院的患者,这些患者的临床症状包括发烧,咳嗽和胸闷(但无呼吸衰竭或插管)。人外周血单个核细胞(PBMC)。
实验试剂:vMIP-II注射用原液和冻干粉针剂,vMIP-II抗原标准品(理化对照品)由暨南大学基因组药物研究所研制并通过国家药品和生物制品检定。 vMIP-II单克隆抗体、抗CD8抗体-APC(allophycocyanin,别藻蓝蛋白)、抗CD3抗体-FITC(fluorescein isothiocyanate,异硫氰酸荧光素)、抗CD4抗体-ECD、抗CCR7抗体-PE(phycoerythrin,藻红蛋白)等,均购自Biolegend公司;BD FACS流式细胞仪(美国Bio-Rad公司)等。
实验试剂:vMIP-II注射用原液和冻干粉针剂,vMIP-II抗原标准品(理化对照品)由暨南大学基因组药物研究所研制并通过国家药品和生物制品检定。vMIP-II单克隆抗体、抗CD8抗体-APC(allophycocyanin,别藻蓝蛋白)、抗CD3抗体-FITC(fluorescein isothiocyanate,异硫氰酸荧光素)、抗CD4抗体-ECD、抗CCR7抗体-PE(phycoerythrin,藻红蛋白)等,均购自Biolegend公司;Real-time PCR Master Mix试剂盒(日本TOYOBO公司);BD FACS流式细胞仪、荧光定量PCR系统(美国Bio-Rad公司);人CC趋化因子受体7(CCR7)ELISA试剂盒;1640完全培养基、二硫苏糖醇(DTT);1mmol/L乙二胺四乙酸(EDTA);带有His标签的PQE-TriSystem购自Invitrogen公司;JC-1试剂盒、DCFH-DA试剂盒均购自上海碧云天公司等。
S蛋白抗原的制备
使用带有His标签的PQE-TriSystem(Invitrogen)作为质粒,扩增SARS-CoV-2S1和S2亚基基因并重组以获得pQE-His SARS-CoV-2-S1和pQE-His SARS-CoV-2-S2(图1,2)。消化质粒并测序以确认,将质粒转染到大肠杆菌M15中进行培养。在细菌发酵培养过程中控制速度和通风,并将溶解氧设置为≥40%。当在OD600=0.8处测量的细菌光密度(OD)时,加入诱导剂IPTG(1mM)。发酵后,我们收集细菌,加入包涵体裂解缓冲液并离心10分钟。使收集的包涵体上清液通过亲和Ni柱,以获得粗纯化的S1和S2蛋白。将加工后的蛋白质依次加载到Superdex-75分子筛和DEAE柱上,并用洗脱缓冲液洗脱。收集洗脱的峰以获得纯化的S1和S2蛋白。通过HPLC测定纯度。
鉴定S1和S2蛋白活性
按照常规的外周血淋巴细胞分离方法分离淋巴细胞得到PBMC。将RPMI1640培养基中的细胞浓度调节至2.5×106/mL,然后加入20μL5mg/mL MTT溶液并孵育4小时。弃去上清液,并加入150μLDMSO以溶解沉淀物。在490nm处测量OD值,并通过下式计算细胞生存力:(%)=(OD处理组/OD空白)×100%。实验一式三份进行。在以下实验中使用生存力>90%的细胞。
以2:1的比例混合S1和S2蛋白后,刺激PBMC。将细胞以5×104/孔的密度接种在96孔板中,并与S蛋白孵育12小时,以检查形态变化。将样品分为空白对照组,S蛋白刺激组(10、50和250ng/mL)和PHA(2μg/mL)组。每个组中有三个重复样本。
结果分析
S1和S2蛋白的制备和活性鉴定
S蛋白以三聚体的形式形成花冠状结构,在宿主细胞蛋白酶的作用下被切割成两个亚基S1和S2。S1主要包含受体结合结构域,负责识别细胞受体。S2包含膜融合过程所需的基本成分。S蛋白决定了病毒的宿主范围和特异性,S蛋白是宿主免疫力和疫苗设计的重要场所。如图3,4,5所示,SARS-CoV-2的纯度在大肠杆菌中克隆表达的2S蛋白(S1和S2亚基)超过95%。通过MTT分析观察到S蛋白对正常人PBMCs增殖的影响,图6。进一步检测S蛋白对细胞因子的分泌影响,如图7,8。结果表明,S蛋白刺激PBMC的增殖和细胞因子分泌,表明S蛋白具有抗原的特征。
实施例2 vMIP-II对S蛋白刺激的效应CD8+T分化的影响。
材料方法
CD8 +T细胞亚型的流式细胞仪分选
将培养的细胞(1.5mL)放入两个试管中,并将四种单克隆荧光抗体各10μL,包括抗人CD3-PE,CD4-FITC,CD8-APC,CD45RO-PE-Cy5和CD62L-APC将抗人CD3-PE(BD Biosciences)分选后的T细胞中的-H7加入第一个试管中,按照[0038]中的方法进行处理,然后在流式细胞仪上分选。CD45RA和CD62L用于区分CD8 +T细胞的不同亚群:CD45RA+CD62L+是幼稚CD8 +T细胞(Tn细胞)的表型,CD45RA+CD62L-是效应CD8 +T细胞(TE细胞)的表型,CD45RA-CD62L+是中央记忆CD8 +T细胞(T CM细胞)的表型;CD45RA-CD62L-是效应记忆CD8 +T细胞(T EM细胞)的表型。在第二个试管中,以与上述相同的方式分别应用10μL三种单克隆荧光抗体中的每一种,包括CD8-APC,PD-1-PE和Tim-3-APC-H7(BD Biosciences)并在流式细胞仪上分类高度表达的抑制分子PD-1和Tim-3用于区分疲惫的CD8 +T细胞(T EX细胞)。
S蛋白诱导的特定CD8 +T细胞的细胞因子检测
将培养的细胞(1.5mL)放入试管中,并添加PMA(50mg/L),离子霉素(750mg/L)和阻断剂BFA(1x)。然后将细胞在37℃,5%CO2下孵育6小时。将每组细胞均等地分成五个1.5mL离心管,并以1500rpm离心5分钟。丢弃上清液,并用PBS洗涤细胞。丢弃上清液后,在黑暗中将流式细胞仪表面抗体CD8-APC-Cy7添加到细胞中。将细胞在黑暗中于4℃孵育20分钟。然后将细胞用200μL4%多聚甲醛固定。在黑暗中于4℃固定30分钟后,将每个试管以500rpm离心5分钟,并弃去上清液。加入200μL破膜剂后,将细胞于4℃在黑暗中孵育1h,然后以1500rpm离心5分钟。弃去上清液。将每组的五个试管避光,并向其中添加细胞内抗体,包括IFN-γ-APC,TNF-α-APC,IL2-APC,IL4-APC和颗粒酶APC(BD Biosciences),并进行孵育在4℃下20分钟。流式细胞仪用于检测细胞因子的分泌。
结果分析
vMIP-II对S特异性CD8 +T淋巴细胞亚群扩增的影响
对用S蛋白和vMIP-II处理的PBMC进行CD8 +T淋巴细胞亚组分析。如表2和图9,10所示,S蛋白对照组中CD8 +T CM细胞的数量仍然很低,仅占约6.19%。在三个vMIP-II治疗组中,记忆CD8 +T细胞总数没有明显变化,但是有趣的是CD8 +T CM细胞和效应CD8 +T细胞数量的变化显着不同。T CM细胞的比例显着增加,而T EM细胞的比例则显着下降,二者均呈剂量依赖性。此外,与S蛋白组相比,vMIP-II治疗组的T EX细胞明显减少。这表明在vMIP-II处理下,效应CD8 +T细胞在效应CD8 +T细胞的收缩期可能转变为记忆CD8 +T细胞,这可能与T CM细胞数量的增加有关。CD8 +T EX细胞的减少表明凋亡细胞数量减少或增殖能力增强。结果表明vMIP-II对CD8 +T细胞的分化有影响,但具体机制尚需进一步研究。
表2记忆CD8 +T细胞亚群的变化(%,平均值±SD,n=3)
Figure PCTCN2021080378-appb-000001
Figure PCTCN2021080378-appb-000002
注:*表示与阴性对照组相比,P<0.05;**表示与阴性对照组相比,P<0.01。
CD8 +T细胞的细胞因子检测
研究表明,患有新型冠状病毒性肺炎的患者患有严重的细胞因子风暴。通过流式细胞仪,我们发现CD8 +T细胞的细胞因子分泌发生了变化(图11)。检测了不同组CD8 +T细胞产生的细胞因子INF-γ,TNF-α,IL-2,IL-4和颗粒溶素。在S蛋白和S蛋白/vMIP-II组中,Th1细胞因子(INF-γ,IL-2)显着增加。与对照组相比,S蛋白组的TNF-α和IL-4水平也显着升高,而S蛋白/vMIP-II共孵育组的TNF-α和IL-4水平也显着降低。各组之间的颗粒溶素水平无显着差异。这些结果表明,在存在vMIP-II的情况下,CD8 +T细胞保持了相应的效应子激活水平。对这些细胞因子的检测还证实,vMIP-II调节CD8 +T细胞亚群的功能。
实施例3用vMIP-II处理的CD8+T细胞中基因表达的差异
材料方法
RNA测序
转录组测序由上海康成生物技术有限公司(中国上海)进行。所使用的测序平台为Illumina Hiseq 2500V4,测序方式为125PE,样品为来自S的CD8 +T细胞群体的RNA-seq文库。蛋白组和100ng/mL vMIP-II+S蛋白组。RNA-seq文库的构建:总RNA富含Oligo(dT)。将RNA随机切成200nt片段,将随机引物六聚体反转录为cDNA,进行末端修复,并添加腺嘌呤。添加适配器后,PCR扩增可以构建文库。
根据Illumina标准将样品库混合以制备簇。复制链的一端固定在芯片上,另一端随机固定,以补充附近的另一个引物并形成“桥”。形成的桥的单链使用周围的引物作为扩增引物,将其在芯片表面上扩增成双链,然后变性为单链。然后进行下一轮扩增反应。在几轮之后,每个单个分子被大量扩增成簇。根据质量控制标准,去除了含有接头的短序列,N>10%的短序列以及低质量的短序列。其余序列(Q30>85%)用于后续分析。
差异基因表达分析
使用DESeq软件对100ng/mLvMIP-Ⅱ治疗组和S蛋白组的效应CD8 +T细胞样品进行差异基因表达分析。使用Benjamini和Hochberg的方法控制和调整结果的P值。通过DESeq选择调整后的P值<0.01和差异表达倍数>2(|log2|>1),并将其标记为差异表达基因。
使用GOseq R软件包和Gene Ontology资源(http://www.geneontology.org/)进行差异表达基因的功能富集分析。KEGG是一个数据库,其中包含挖掘的分子水平信息,尤其是通过基因组测序和其他高通量实验技术生成的大规模分子数据集,这些信息涉及生物系统(例如细胞,生物体和生态系统)的高级功能(http:///www.genome.jp/kegg/)。使用KOBAS软件对KEGG途径中差异表达基因进行 统计富集分析。差异表达基因的途径富集分析用于分析某些途径中基因是否过度表达,而基因富集因子用于分析途径富集的程度。
实时PCR
为了验证RNA-seq数据的准确性,我们选择了一些差异表达的基因,并对其表达水平进行了相对荧光定量PCR分析。将分选的CD8 +T细胞置于5%CO2细胞培养箱中,并在37℃下培养24h。根据细胞总RNA提取试剂盒的说明进行CD8 +T细胞总RNA提取,并使用SuperScriptTM Predmplification System for First Strand cDNA Synthesis kit进行cDNA合成。实时PCR反应中使用的所有引物序列均列在补充表8中。反应是根据制造商的说明,在实时PCR机(MiniOpticon;Bio-Rad,Hercules,CA,美国)中进行的。总反应体积为25.0μL,包括2.0μL总RNA,8.5μL无RNase的H2O,0.5μL正向和反向引物(10mM/L),12.5μL2×一步SYBR RT-PCR缓冲液Ⅲ,0.5μLTaKaRa Ex Taq HS(5U/μL)和0.5μLPrimeScript RT酶混合物II。PCR反应在95℃下进行5分钟,在95℃下进行30s,在60℃下进行45s,在72℃下进行45s,共进行33个循环。所有实验均进行3次独立的生物学重复。使用2-ΔΔCt方法估计标准相对转录水平。
表1实时PCR引物序列
Figure PCTCN2021080378-appb-000003
Figure PCTCN2021080378-appb-000004
结果分析
vMIP-II处理的CD8 +T细胞中的差异基因表达
我们应用RNA-seq检测100ng/mL vMIP-II治疗组(S+vMIP-II组)和S蛋白组(未接受vMIP-II处理)中的CD8 +T细胞基因差异表达。该标准共筛选了97个显着差异表达的基因(倍数差异≥2,p<0.01),包括54个显着上调的基因和43个显着下调的基因(图12)。
基因本体分析
对差异表达的基因进行GO本体分析。结果显示(表3、4、5),基因参与的主要生物学过程是细胞分化,凋亡,细胞定位和代谢以及磷酸化。细胞的主要成分是线粒体和膜成分。主要分子功能是信号传导途径分子,跨膜受体调节蛋白和转录因子活性等。因此,vMIP-II主要参与S蛋白刺激的PBMC中效应CD8 +T细胞的磷酸化信号通路,细胞运动,抗凋亡和趋化因子受体的调节,特别是趋化因子受体的磷酸化信号通路的调节,影响CD8 +T CM细胞分化。vMIP-II处理后,参与信号通路分子,转录因子活性和细胞能量代谢的差异表达基因的大量富集支持了这一想法。
表3基因本体分析可显着改变基因-生物学过程
Figure PCTCN2021080378-appb-000005
表4显着改变基因细胞成分的基因本体分析
Figure PCTCN2021080378-appb-000006
Figure PCTCN2021080378-appb-000007
表5显着改变基因分子功能的基因本体分析
Figure PCTCN2021080378-appb-000008
差异表达基因的KEGG途径分析
我们已经在线注释了差异基因的KEGG生物学途径,发现它们主要富含细胞凋亡途径,容量代谢(TCA循环)途径,磷酸化途径和某些细胞信号传导途径(图13)。在全面分析差异表达基因的组成和比例后,我们得出结论,与效应CD8 +T细胞相关的最丰富的途径是磷酸化信号通路。
鉴定候选差异表达基因
根据基因本体分析的结果,磷酸化途径,TCA循环和凋亡调控是三个差异表达基因最丰富的GO术语。我们按照从大到小的降序对这三类生物过程中涉及的基因的差异表达折叠进行了排序,然后选择了差异表达>3倍的差异表达基因(P值<0.001;log2比>1.5)。最终,GNAT1,PI3K,p38mapk,AKT,TSC1,PINK1,LC-3,BCL-2,FAS,CXCR4,CX3CR1,CCR5,CCR7,PK,LDH和SIRT1被确定为我们后续研究的关键靶基因。
qRT-PCR检测
我们用qRT-PCR对这16个基因进行了反向检查,结果如图14所示。与S蛋白和S+vMIP-II(100ng/ml)组的效应CD8 +T细胞相比,CXCR4,CCR5,CX3CR1,GNAT1,PI3K,p38MAPK,BCL-2,TSC1,PK和vMIP-II治疗组的AKT均显着降低,而CCR7,LDH,FAS,SIRT1,LC-3和PINK1的表达均显着增加,这与RNA-seq的上调和下调结果相符。
实施例4 vMIP-II对效应CD8+T细胞信号通路蛋白和线粒体功能的影响
材料方法
免疫印迹
通过免疫印迹检测100ng/mL vMIP-II治疗组和S蛋白组的CD8 +T细胞蛋白。SDS-PAGE后,我们对每种抗体进行了免疫印迹分析。一抗Anti-G蛋白alpha12(Abcam,英国剑桥),二抗山羊抗兔IgG-HRP稀释剂,小鼠抗标记单克隆抗体SIRT1,PGC-1a,Parkin,LC3I/II,PINK1,PK,LDH,Dnmt3a(上海爱比信生物技术公司)。
用反义RNA处理G蛋白α亚基
GiαmRNA的反义寡核苷酸序列是5'-ATG GTC AGC CCA GAG CCT CCG GAT GAC GCC CGA-3',由Takara Bio(日本草津)合成的硫代磷酸酯寡核苷酸。CD8 +T细胞分为四组:GiαAt-RNA组,S蛋白,S蛋白+GiαAt-RNA组和S蛋白+GiαAt-RNA+vMIP-II组。加入S蛋白1h后,按分组添加GiαODN,加入GiαODN1h,加入vMIP-II。收集细胞用于CD8 +T细胞亚型的流式细胞术分选。
检测细胞内钙离子浓度
从细胞内钙离子库分别测量vMIP-II诱导的钙快速流入和vMIP-II诱导的钙释放。先前的实验分为3组,vMIP-II浓度分别为25ng/mL,50ng/mL和100ng/mL。后者的实验分为两组,分别是含EDTA和无EDTA的背景溶液。向细胞加载Fluo-3/AM,并将2mL细胞悬浮液添加到每个比色皿中。在488nm处激发,并在525nm处发射光。在1-2分钟内达到基线后,将vMIP-II添加到细胞中。用荧光分光光度计检测。
线粒体膜电位的测量
根据制造商的说明,使用JC-1kit(上海碧云天公司,中国上海)进行线粒体膜电位的测量。从细胞中除去培养基后,将细胞用PBS洗涤一次。之后,将1mL细胞培养溶液和0.5mL JC-1染色工作溶液添加至细胞。充分摇匀后,将细胞在37℃下孵育20分钟。之后,除去上清液,然后将细胞用稀释的JC-1染色缓冲液(1x)洗涤两次。将细胞培养溶液(2mL)加入到洗涤的细胞中,并在荧光显微镜下观察细胞。
检测细胞磷酸化蛋白水平
通过免疫印迹检测100ng/mL vMIP-II治疗组和S蛋白组的CD8 +T细胞蛋白。SDS-PAGE后,我们对每种抗体进行了免疫印迹分析。一抗兔抗磷酸化Akt(1:1000),PI3K(1:1000)和Akt(1:1000),PI3K(1:1000),S6K(1:1000),S6(1:1000),4E-BP1(1:1000)。绵羊二抗HRP抗兔IgG(1:2000)。
ROS检测
对于选自100ng/mL vMIP-II处理组和S蛋白组的CD8 +T细胞,将每个样品用PBS洗涤,然后加入含5μmol/L DCFH-DA的PBS溶液,充分混合,并于650℃孵育。37℃持续30分钟。用PBS缓冲液洗涤两次,以除去尚未进入细胞的探针, 并在37℃下孵育30分钟。以8000rpm的速度离心2分钟,然后将细胞重悬于1ml PBS缓冲液中。用流式细胞仪检测每个管的荧光强度(激发波长为488nm,发射波长为530nm),计数10,000个细胞,然后求出平均荧光强度。在荧光显微镜下用紫外光(激发波长380nm,吸收波长420nm)激发后观察。
统计分析
所有实验均进行3次独立的生物学重复。使用Prism software确定统计显着性。使用两尾t检验确定P值。*P<0.05;**P<0.01。
结果分析
vMIP-II对效应CD8 +T细胞Giα的影响
我们的基因测序和qRT-PCR结果表明,CD8 +T细胞中的Gi蛋白α受vMIP-II的影响。因此,我们进行了蛋白质印迹实验,以确定vMIP-II是否影响CD8 +T细胞中的Gi蛋白受体α。结果表明,与S蛋白组相比,vMIP-II处理的CD8 +T细胞中Gi蛋白受体α的表达被显着抑制(图15),表明vMIP-II通过G蛋白信号通路和趋化因子受体影响效应CD8 +T CM亚组的分化。
为了进一步了解G蛋白对vMIP-II的重要性,使用了Giα反义寡聚脱氧核苷酸。图15显示Giα反义寡脱氧核苷酸显着降低了G蛋白的表达,表明反义RNA对Giα的有效活性。当用Giα反义寡聚脱氧核苷酸处理S蛋白组,然后用vMIP-II(100ng/mL)处理时,通过流式细胞仪检测,CD8 +T CM的分化没有明显变化。
vMIP-II减少钙的快速流入
vMIP-II对细胞内快速钙离子浓度的影响在时间分辨测定中被连续且动态地检测到。用vMIP-II(50ng/mL)刺激细胞,发现细胞内钙离子浓度急剧增加。vMIP-II(100ng/mL)刺激细胞时不会增加细胞内钙离子浓度的幅度(图16),并且钙离子流入的速度稳定在较低水平。
vMIP-II诱导的钙从细胞内钙离子池中释放
如图17所示,当vMIP-II与EDTA共培养时,EDTA螯合了细胞外钙离子,但仍然可以在细胞中检测到弱钙离子,表明vMIP-II诱导了钙从细胞内钙离子库中的释放。
vMIP-II对效应CD8 +T细胞线粒体膜电位的影响
细胞中线粒体功能障碍最直观的表现是线粒体膜电位降低。为了检测vMIP-II对CD8 +T细胞中线粒体功能的影响,我们检测了S蛋白处理过的CD8 +T细胞中线粒体膜电位的变化(图18a)。JC-1荧光探针广泛用于测定线粒体膜电位。当电位高时,探针聚集在线粒体基质中并形成聚合物以产生红色荧光。相反,JC-1作为单体存在,当膜电位低时会产生绿色荧光。实验结果如下图所示。vMIP-II处理后红色荧光的程度更高,表明vMIP-II组的线粒体膜电位高于S蛋白对照组(P<0.01)(图18b)。
磷酸化途径和糖酵解分析
将来自100ng/mL vMIP-II处理组的CD8 +T细胞在0.1%牛血清培养基中培养1小时,并将未经vMIP-II处理的S蛋白组用作对照。刺激12h后检测磷酸化PI3K和Akt蛋白的表达水平,Dnmt3a蛋白的表达水平以及PK和LDH的表达水平。图19中的结果表明,仅在存在S蛋白的情况下,才在CD8 +T细胞中检测到高水平的Dnmt3a,PK,磷酸化的PI3K,Akt和低水平的LDH。在存在vMIP-II的情况下,Dnmt3a,PK,磷酸化的PI3K和Akt的表达水平显着降低,而LDH的表达水平显着升高。这表明vMIP-II抑制了趋化因子受体信号传导途径中磷酸 化的PI3K和Akt蛋白的表达,以及磷酸化途径下游的Dnmt3a的表达,并增加了细胞中糖酵解的水平。
vMIP-II对线粒体活性氧(ROS)的影响
我们使用DCFH-DA探针检测CD8 +T效应细胞中的超氧化物。当细胞内ROS水平增加时,绿色荧光增加。如图20所示,我们发现用vMIP-II处理的CD8 +T效应细胞的绿色荧光强于S蛋白组。
vMIP-II对效应CD8 +T细胞线粒体网络的影响
细胞线粒体网络受线粒体增殖基因和自噬基因平衡的影响。检测差异基因时,发现S蛋白+vMIP-II治疗组线粒体自噬相关基因LC3和PINK1的mRNA表达水平明显高于S蛋白组,而该基因的mRNA表达水平调节线粒体增殖的SIRT1大大减少。接下来,我们首先通过检测空白组,S蛋白组和S蛋白+vMIP-II治疗组中SIRT1及其下游靶标PGC-1α的蛋白水平来评估线粒体的增殖水平。如图21所示,与空白组和S蛋白组相比,vMIP-II处理后,SIRT1和PGC-1α的表达显着降低。结果表明,vMIP-II处理后CD8 +T效应细胞线粒体的增殖受到明显抑制。然后我们继续检测空白组,S蛋白治疗组和S蛋白+vMIP-II治疗组中线粒体自噬相关蛋白LC3-II,LC3-I和PINK1的蛋白水平,以评估线粒体自噬水平。发现如图21所示的S蛋白处理组中,LC3-II,LC3-I和PINK1的表达显着降低,并且在添加vMIP-II后这种改变被逆转。PINK1依次激活Parkin,使其积聚在线粒体外膜上,从而可以及时清除受损的线粒体。因此,我们最终评估了线粒体帕金(mito-Parkin)和细胞质帕金(cyto-Parkin)的蛋白质表达水平。如图21所示,在S蛋白诱导后,线粒体-帕金蛋白的表达降低,而细胞-帕金蛋白的表达增加。在S蛋白+vMIP-II治疗组中,mito-Parkin的表达增加,而细胞Parkin的表达减少表明线粒体自噬被激活。
线粒体用Mito-Tracker Red荧光探针标记,并在激光共聚焦显微镜下观察。结果如图22所示:在S蛋白组中,大多数细胞的线粒体相互连接形成一个网络。用vMIP-II处理6小时后,出现了破碎的线粒体(小圆圈或小点),并破坏了线粒体网络。这表明vMIP-II可通过抑制线粒体增殖和增强自噬,削弱细胞线粒体功能以及将细胞转化为干细胞来破坏线粒体结构。
vMIP-II抑制mTOR途径
我们探讨了线粒体功能障碍的原因。通过先前的研究,我们发现磷酸化途径的抑制将导致PI3K,AKT和TSC1的表达降低,并影响PI3K-AKT-mTOR途径。在这里,我们假设线粒体功能是通过抑制mTOR的下游目标蛋白来实现的。我们使用mTORC1的下游目标分子S6K,S6和4E-BP1的磷酸化水平作为指标。Western Blot分析发现,如图23所示,与S蛋白组CD8 +T细胞相比,用vMIP-II处理的细胞的S6K,S6和4E-BP1的磷酸化水平在6h时显着下降,并在12小时受到强烈抑制。我们进一步使用雷帕霉素(mTORC1途径的强效抑制剂)作对照实验实验结果与其一致。表明vMIP-II抑制了mTORC1途径的活性。
实施例5 vMIP-II治疗新型冠状病毒性肺炎的临床研究。
材料与方法
vMIP-II用于治疗SARS-CoV-2感染
本研究得到华中科技大学同济医院联合医院伦理委员会批准(No.2020-0006)。收集45例患者的外周血样本,其中10例在联合医院(湖北省武汉市)被临床诊断为COVID-19。随机选择5例患者作为vMIP治疗组,并静脉 内注射vMIP-II(250,000活性单位/青霉素瓶约250μg),疗程为7天。另外5例患者分为症状组。在南阳市人民医院(中国河南省南阳市),被诊断为无症状感染的35人被分为无症状组。
患者血液中SARS-CoV-2阴性后7天,从康复患者中采集血液样本。如下所述,对血液样品进行PBMC分离,CD8+T细胞亚组分选以及涉及SARS-CoV-2S蛋白和vMIP-II的共孵育实验。
PBMC的分离
PBMC的制备:将血样与4mL EDTA混合以防止凝结,并以1500rpm(离心半径10cm)离心10分钟。提取上层血浆,并加入3mL淋巴细胞分离溶液。将得到的混合物在2500rpm(离心半径10cm)下离心20分钟,并丢弃上清液。加入一毫升1640培养基以重悬1×10 7细胞/mL。分离的正常人PBMC分为五组:空白对照组,S蛋白组(100μgS1+S2蛋白,比例为2:1)和三个vMIP-II治疗组。vMIP-II治疗组包括I组(25ng vMIP-II+S蛋白),II组(50ng vMIP-II+S蛋白)和III组(100ng vMIP-II+S蛋白)。根据上述组剂量,将PBMC与S蛋白和vMIP-II共孵育。每组在使用前体外培养12小时。
PBMC中CD3 +,CD4 +和CD8 +T细胞的亚组分析
将培养的细胞(1.5mL)置于试管中,并将四种单克隆荧光抗体各10μL,包括抗人CD3-PE,CD4-FITC,CD8-APC,CD45RO-PE-Cy5和CD62L-APC-加入抗人CD3-PE分选后的T细胞中的H7(BD Biosciences,Franklin Lakes,NJ,美国),然后与振荡器混合并在室温(20-25℃)下在黑暗中保存15-30分钟C)。加入2mL溶血素,将培养物在振荡器上混合,在室温下于黑暗中保存10分钟,然后在1000rpm下离心10分钟。弃去上清液。用1mL含0.1%NaN3的PBS缓冲液洗涤细胞,并以1000rpm离心10分钟。倒出上清液。加入固定剂(300μL)重悬细胞,然后使用BD-FACsCalibur流式细胞仪(BD Biosciences)检测细胞。
CD8 +T细胞亚型的流式细胞仪分选
将培养的细胞(1.5mL)放入两个试管中,并将四种单克隆荧光抗体各10μL,包括抗人CD3-PE,CD4-FITC,CD8-APC,CD45RO-PE-Cy5和CD62L-APC将抗人CD3-PE(BD Biosciences)分选后的T细胞中的-H7加入第一个试管中,按照[0038]中的方法进行处理,然后在流式细胞仪上分选。CD45RA和CD62L用于区分CD8 +T细胞的不同亚群:CD45RA+CD62L+是幼稚CD8 +T细胞(Tn细胞)的表型,CD45RA+CD62L-是效应CD8 +T细胞(TE细胞)的表型,CD45RA-CD62L+是中央记忆CD8 +T细胞(T CM细胞)的表型;CD45RA-CD62L-是效应记忆CD8 +T细胞(T EM细胞)的表型。在第二个试管中,以与上述相同的方式分别应用10μL三种单克隆荧光抗体中的每一种,包括CD8-APC,PD-1-PE和Tim-3-APC-H7(BD Biosciences)并在流式细胞仪上分类高度表达的抑制分子PD-1和Tim-3用于区分疲惫的CD8 +T细胞(T EX细胞)。
S蛋白诱导的特定CD8 +T细胞的细胞因子检测
将培养的细胞(1.5mL)放入试管中,并添加PMA(50mg/L),离子霉素(750mg/L)和阻断剂BFA(1x)。然后将细胞在37℃,5%CO2下孵育6小时。将每组细胞均等地分成五个1.5mL离心管,并以1500rpm离心5分钟。丢弃上清液,并用PBS洗涤细胞。丢弃上清液后,在黑暗中将流式细胞仪表面抗体CD8-APC-Cy7添加到细胞中。将细胞在黑暗中于4℃孵育20分钟。然后将细胞用200μL4%多聚甲醛固定。在黑暗中于4℃固定30分钟后,将每个试管以500rpm离心5分钟,并弃去上清液。加入200μL破膜剂后,将细胞于4℃在 黑暗中孵育1h,然后以1500rpm离心5分钟。弃去上清液。将每组的五个试管避光,并向其中添加细胞内抗体,包括IFN-γ-APC,TNF-α-APC,IL2-APC,IL4-APC和颗粒酶APC(BD Biosciences),并进行孵育在4℃下20分钟。流式细胞仪用于检测细胞因子的分泌。
统计分析
所有实验均进行3次独立的生物学重复。使用Prism software确定统计显着性。使用两尾t检验确定P值。*P<0.05;**P<0.01。
结果分析
vMIP-II作为SARS-CoV-2感染的治疗方法
vMIP-II治疗一周后,临床症状明显改善。温度正常,咳嗽减轻,胸闷变轻。vMIP-II治疗之前和之后一周的常规血液,生化血液和肺部CT扫描显示,毛玻璃样病变和肺部白色区域显着减轻,而外周血成分检查显示淋巴细胞总数和比例显着增加(表6和图24)。与接受常规治疗(非vMIP-II)的患者相比,临床症状明显减轻。病毒转为阴性的中位时间为16天,比传统治疗组(22天)短得多。
表6连续vMIP-Ⅱ治疗1周后患者外周血淋巴细胞的变化(平均值±标准差,n=5,10 9/L)
Figure PCTCN2021080378-appb-000009
注:*表示与阴性对照组相比,P<0.05;**表示与阴性对照组相比,P<0.01。
恢复期患者血液PBMC对S蛋白的反应
根据恢复期患者PBMC对CD8 +T细胞亚组的分类显示,在vMIP-II治疗组和无症状感染组中,T CM细胞的比率显着高于对症感染组,尽管在淋巴细胞总数上两者之间无显着差异。(表7,图25)。
表7恢复期患者PBMC中T亚群的分析
Figure PCTCN2021080378-appb-000010
注:*表示与阴性对照组相比,P<0.05;**表示与阴性对照组相比,P<0.01。
在恢复期病毒感染呈阴性的一周后,检查了恢复期患者中S蛋白对不同组PBMC细胞因子产生的影响。用S蛋白(比例为2:1的100ng/mL S1+S2蛋白)处理不同组的分离的PBMC,并使用细胞因子试剂盒进行检测,*P<0.05。在三组患者中,与S蛋白和vMIP-II共孵育的PBMC的细胞因子分泌也存在差异。S蛋白(100ng/mL)刺激12h后,vMIP-II治疗组和无症状感染组的细胞因子分泌均强于对照组(P<0.05)(图26)。当同时施用S蛋白和vMIP-II(50ng/mL)时,细胞增殖曲线趋于持久。同样,vMIP-II组的恢复期显示出更持久的细胞增殖(图27)。结果显示,vMIP-II治疗组和无症状感染组的PBMC记忆亚群明显多于对照组。相应地,体外培养并受S蛋白刺激的PBMC的细胞增殖速率与记忆CD8 +T细胞的水平一致。这表明记忆CD8 +T水平与抗病毒能力有关。
在我们的临床患者中使用vMIP-II和恢复性血液样本的研究均显示,vMIP-II治疗组和无症状感染组的CD4 +T细胞数量均高于对照组(P<0.05)。vMIP-II治疗组的CD45RA+CD4 +T细胞数量多于其他两组,但无症状感染组和对照组的CD45RA+亚组大小没有显着差异。相比之下,vMIP-II治疗组和无症状组中 CD8 +T细胞中CD45RO+亚组的比例高于对照组,而CD45RO+T细胞中T CM中亚组的比例显着增加。

Claims (8)

  1. 一种诱导CD8 +T细胞向CD8 +T CM细胞发生干性转化的病毒巨噬细胞炎性蛋白vMIP-II,其特征在于,所述的病毒巨噬细胞炎性蛋白vMIP-II包括可诱导CD8 +T细胞向CD8 +T CM细胞发生干性转化的vMIP-II活性成分,还包括其可药用的盐和酯、选择性取代的类似物或者包含vMIP-II的一种或多种化合物的组合,还包括vMIP-II的衍生物,或者其衍生物在药学上可接受的介质或载体。
  2. 权利要求1所述能诱导CD8 +T细胞向CD8 +T CM细胞发生干性转化的病毒巨噬细胞炎性蛋白vMIP-II的应用,其特征在于,所述的vMIP-II作用机制包括vMIP-II通过封闭CD8 +T细胞表面趋化因子受体CCR7、CXCR4、CXCR5和CX3CR1,通过下调其与磷酸化相关的信号通路,包括低表达CD8 +T细胞G蛋白水平、抑制mTOR通路、降低细胞Ca 2+浓度和线粒体膜电位等,使CD8 +T细胞发生代谢重编程,并通过抑制磷酸化相关基因GNAT1、PI3K、AKT、BCL-2使CD8 +T细胞磷酸化蛋白PI3K和Akt低表达,从而使CD8 +T发生重编程发生干性转化为CD8 +T CM细胞,促进CD8 +T CM细胞增殖。
  3. 权利要求1所述vMIP-II诱导CD8 +T细胞向CD8 +T CM细胞发生干性转化的作用机制,其特征在于,vMIP-II封闭CD8 +T细胞的CCR7、CXCR4、CXCR5和CX3CR1通过下调其与磷酸化相关的信号通路,包括低表达CD8 +T细胞G蛋白水平、抑制mTOR通路、降低细胞Ca 2+浓度和线粒体膜电位等,使CD8 +T细胞发生代谢重编程,并通过抑制磷酸化相关基因GNAT1、PI3K、AKT、BCL-2使CD8 +T细胞磷酸化蛋白PI3K和Akt低表达,从而使CD8 +T发生重编程发生干性转化为CD8 +T CM细胞,促进CD8 +T CM细胞增殖。
  4. 权利要求1所述vMIP-II防御SAR-CoV-2感染的作用机制,其特征在于,vMIP-II在COVID-19感染患者中能提高CD8+T细胞的TCM亚群的水平重建特定的细胞免疫。
  5. 一种诱导CD8 +T细胞向CD8 +T CM细胞发生干性转化的病毒巨噬细胞炎性蛋白vMIP-II,其特征在于,包括有效剂量的作为活性成分的权利要求1所述具有诱导CD8 +T细胞向CD8 +T CM细胞发生干性转化的作用机制的治疗感染COVID-19的药物成分的vMIP-II。
  6. 一种诱导CD8 +T细胞向CD8 +T CM细胞发生干性转化的病毒巨噬细胞炎性蛋白vMIP-II,其特征在于,包括有效剂量的作为活性成分的权利要求1所述具有诱导CD8 +T细胞向CD8 +T CM细胞发生干性转化作用机制的抗炎症反应的vMIP-II药物。
  7. 一种诱导CD8 +T细胞向CD8 +T CM细胞发生干性转化防御SAR-CoV-2感染的病毒巨噬细胞炎性蛋白vMIP-II,其特征在于,在其他病毒感染中可提高CD8 +T细胞的T CM亚群的水平,重建细胞免疫的药物中的应用。
  8. 一种可以提高CD8 +T细胞的T CM亚群的水平防御SAR-CoV-2感染的病毒巨噬细胞炎性蛋白vMIP-II,其特征在于,在SAR-CoV-2感染的早期患者包括无症状感染者的药物中的应用。
PCT/CN2021/080378 2021-03-12 2021-03-12 广谱趋化因子受体抑制剂增强新冠肺炎病毒感染的细胞免疫的分子机制及在其药物防治中的应用 WO2022188129A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/080378 WO2022188129A1 (zh) 2021-03-12 2021-03-12 广谱趋化因子受体抑制剂增强新冠肺炎病毒感染的细胞免疫的分子机制及在其药物防治中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/080378 WO2022188129A1 (zh) 2021-03-12 2021-03-12 广谱趋化因子受体抑制剂增强新冠肺炎病毒感染的细胞免疫的分子机制及在其药物防治中的应用

Publications (1)

Publication Number Publication Date
WO2022188129A1 true WO2022188129A1 (zh) 2022-09-15

Family

ID=83227259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/080378 WO2022188129A1 (zh) 2021-03-12 2021-03-12 广谱趋化因子受体抑制剂增强新冠肺炎病毒感染的细胞免疫的分子机制及在其药物防治中的应用

Country Status (1)

Country Link
WO (1) WO2022188129A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1242236A (zh) * 1999-07-13 2000-01-26 暨南大学 Hhv8的mip同源物在防治艾滋病的药物中的应用
CN1470284A (zh) * 2003-06-24 2004-01-28 暨南大学 vMIP及其同类的E蛋白配体在制药中的应用
CN111214650A (zh) * 2018-11-23 2020-06-02 广州溯原生物科技有限公司 一种hiv抗原-受体三聚体复合物的解离因子的应用
WO2020146423A1 (en) * 2019-01-07 2020-07-16 Thomas Jefferson University Multi-functional fusion proteins and uses thereof
CN111593022A (zh) * 2018-12-27 2020-08-28 广州溯原生物科技有限公司 vMIP-Ⅱ诱导CD8+ T细胞去磷酸化为Tcm及其在药物中的应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1242236A (zh) * 1999-07-13 2000-01-26 暨南大学 Hhv8的mip同源物在防治艾滋病的药物中的应用
CN1470284A (zh) * 2003-06-24 2004-01-28 暨南大学 vMIP及其同类的E蛋白配体在制药中的应用
CN111214650A (zh) * 2018-11-23 2020-06-02 广州溯原生物科技有限公司 一种hiv抗原-受体三聚体复合物的解离因子的应用
CN111593022A (zh) * 2018-12-27 2020-08-28 广州溯原生物科技有限公司 vMIP-Ⅱ诱导CD8+ T细胞去磷酸化为Tcm及其在药物中的应用
WO2020146423A1 (en) * 2019-01-07 2020-07-16 Thomas Jefferson University Multi-functional fusion proteins and uses thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI SHIYU, LIU SHUTING, JIANG ZHENYOU, FENG LIXIA, GAO YONG, CHEN YOUYU, XU ANDING, HUANG WENHUA, ZHANG NUOFU, SUN HANXIAO: "Study on the promotion of lymphocytes in patients with COVID-19 by broad-spectrum chemokine receptor inhibitor vMIP-II and its Mechanism of signal transmission in vitro", SIGNAL TRANSDUCTION AND TARGETED THERAPY, vol. 6, no. 1, 1 December 2021 (2021-12-01), XP055964960, DOI: 10.1038/s41392-021-00516-4 *
LI SHIYU, WANG YUZHE, FENG LIXIA, JIANG ZHENYOU, CONG FENG, CHEN YOUYU, DAI ZHENNING, LIU SHUTING, ZHU SHITAO, FEI ZHENGBIN, XU YI: "Chemokine Receptor Inhibitor vMIP-II Promoting Lymphocytes in COVID-19 Patients and Its Related Mechanism In Vitro", RESEARCH SQUARE, 2 June 2020 (2020-06-02), pages 1 - 28, XP055964962, [retrieved on 20220926], DOI: 10.21203/rs.3.rs-33165/v1 *

Similar Documents

Publication Publication Date Title
Liu et al. Sinomenine inhibits the progression of rheumatoid arthritis by regulating the secretion of inflammatory cytokines and monocyte/macrophage subsets
Choi et al. Severe fever with thrombocytopenia syndrome phlebovirus non-structural protein activates TPL2 signalling pathway for viral immunopathogenesis
Ye et al. Antibody-dependent cell-mediated cytotoxicity epitopes on the hemagglutinin head region of pandemic H1N1 influenza virus play detrimental roles in H1N1-infected mice
JP7085006B2 (ja) エボラウイルス阻害剤の調製におけるベルバミン二塩酸塩の使用
Qiu et al. Gingipains disrupt F‐actin and cause osteoblast apoptosis via integrin β1
Loregian et al. The 6-aminoquinolone WC5 inhibits human cytomegalovirus replication at an early stage by interfering with the transactivating activity of viral immediate-early 2 protein
Slivka et al. Small molecule and pooled CRISPR screens investigating IL17 signaling identify BRD2 as a novel contributor to keratinocyte inflammatory responses
Campbell et al. HIV-1 clade B Tat, but not clade C Tat, increases X4 HIV-1 entry into resting but not activated CD4+ T cells
Föhse et al. The impact of BNT162b2 mRNA vaccine on adaptive and innate immune responses
US10765664B2 (en) Treatment of infectious diseases
JP2013510832A (ja) A型インフルエンザウイルス感染症の治療または予防用のpar−1アンタゴニスト
Gong et al. COVID-19: A state of art on immunological responses, mutations, and treatment modalities in riposte
Wu et al. Exacerbated AIDS progression by PD-1 blockade during therapeutic vaccination in chronically simian immunodeficiency virus-infected rhesus macaques after interruption of antiretroviral therapy
Xia et al. A SARS-CoV-2-specific CAR-T-cell model identifies felodipine, fasudil, imatinib, and caspofungin as potential treatments for lethal COVID-19
US20160074428A1 (en) Compositions and methods for the treatment of human immunodeficiency virus infection
WO2022188129A1 (zh) 广谱趋化因子受体抑制剂增强新冠肺炎病毒感染的细胞免疫的分子机制及在其药物防治中的应用
WO2006068133A1 (ja) Nfat2発現抑制方法
Li et al. Chemokine Receptor Inhibitor vMIP-II Promoting Lymphocytes in COVID-19 Patients and Its Related Mechanism In Vitro
CN115073560A (zh) vMIP增强新冠肺炎病毒CD8+T细胞转化为记忆细胞重建病毒感染的细胞免疫及应用
Sehgal Analysis of Vaccines to tackle COVID-19 with Patent Review
Lorenzo Examining the Aged Immune System: Elucidating the Underlying Mechanisms That Promote More Effective Influenza Responses and Regulate CD4 T Cell Subsets
Faia Evidence and Mechanisms of Aberrantly Trained Monocytes in Persons Living with HIV
US20220249653A1 (en) Compositions and methods for detecting hiv latency, treating hiv infection, and reversing hiv latency
Zheng et al. Interleukin-1 prevents SARS-CoV-2-induced membrane fusion to restrict viral transmission via induction of actin bundles
Jacotot et al. Innate immune responses in COVID-19

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21929607

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21929607

Country of ref document: EP

Kind code of ref document: A1