WO2022186452A1 - Apparatus and method for recovery of ammonia in wastewater - Google Patents
Apparatus and method for recovery of ammonia in wastewater Download PDFInfo
- Publication number
- WO2022186452A1 WO2022186452A1 PCT/KR2021/017541 KR2021017541W WO2022186452A1 WO 2022186452 A1 WO2022186452 A1 WO 2022186452A1 KR 2021017541 W KR2021017541 W KR 2021017541W WO 2022186452 A1 WO2022186452 A1 WO 2022186452A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ammonia
- cathode
- anode
- ammonium ions
- reduction
- Prior art date
Links
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 title claims abstract description 238
- 229910021529 ammonia Inorganic materials 0.000 title claims abstract description 113
- 238000011084 recovery Methods 0.000 title claims abstract description 39
- 239000002351 wastewater Substances 0.000 title claims abstract description 27
- 238000000034 method Methods 0.000 title claims description 16
- -1 ammonium ions Chemical class 0.000 claims abstract description 57
- 238000006722 reduction reaction Methods 0.000 claims abstract description 49
- 238000006243 chemical reaction Methods 0.000 claims abstract description 43
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 36
- 239000012528 membrane Substances 0.000 claims abstract description 27
- 238000005341 cation exchange Methods 0.000 claims abstract description 26
- 230000003647 oxidation Effects 0.000 claims abstract description 12
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims abstract description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 21
- 239000001301 oxygen Substances 0.000 claims description 21
- 229910052760 oxygen Inorganic materials 0.000 claims description 21
- 239000003054 catalyst Substances 0.000 claims description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- 239000011368 organic material Substances 0.000 claims description 6
- 230000001939 inductive effect Effects 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims 1
- 239000007789 gas Substances 0.000 description 23
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 239000005416 organic matter Substances 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- LCTONWCANYUPML-UHFFFAOYSA-N Pyruvic acid Chemical compound CC(=O)C(O)=O LCTONWCANYUPML-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- CKMXBZGNNVIXHC-UHFFFAOYSA-L ammonium magnesium phosphate hexahydrate Chemical compound [NH4+].O.O.O.O.O.O.[Mg+2].[O-]P([O-])([O-])=O CKMXBZGNNVIXHC-UHFFFAOYSA-L 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 238000003487 electrochemical reaction Methods 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910052567 struvite Inorganic materials 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000012851 eutrophication Methods 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 229910001414 potassium ion Inorganic materials 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 229940107700 pyruvic acid Drugs 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006557 surface reaction Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/467—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/58—Treatment of water, waste water, or sewage by removing specified dissolved compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/58—Treatment of water, waste water, or sewage by removing specified dissolved compounds
- C02F1/586—Treatment of water, waste water, or sewage by removing specified dissolved compounds by removing ammoniacal nitrogen
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/46104—Devices therefor; Their operating or servicing
- C02F1/46109—Electrodes
- C02F2001/46133—Electrodes characterised by the material
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/16—Nitrogen compounds, e.g. ammonia
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2201/00—Apparatus for treatment of water, waste water or sewage
- C02F2201/46—Apparatus for electrochemical processes
- C02F2201/461—Electrolysis apparatus
- C02F2201/46105—Details relating to the electrolytic devices
- C02F2201/46115—Electrolytic cell with membranes or diaphragms
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2201/00—Apparatus for treatment of water, waste water or sewage
- C02F2201/46—Apparatus for electrochemical processes
- C02F2201/461—Electrolysis apparatus
- C02F2201/46105—Details relating to the electrolytic devices
- C02F2201/4616—Power supply
Definitions
- An apparatus and method for recovering ammonia in wastewater are provided.
- the high concentration of ammonia that may exist in the wastewater causes defects in the operation of the bioreactor and causes environmental problems such as eutrophication when discharged to water.
- Ammonia may be treated by 1) ammonia stripping, 2) struvite mineral precipitation method, 3) ion exchange method, and the like.
- ammonia is recoverable in the form of solid salt, but since Mg 2+ , NH 4+ , and PO 4 3- react in a 1:1:1 ratio, it is not necessary to inject additional pollutants have.
- ammonia can be selectively removed and recovered, but a large amount of salt such as NaCl is required for regeneration of the ion exchange resin.
- One embodiment of the present invention is to purely recover only ammonia in wastewater.
- One embodiment of the present invention is to recover ammonia present in wastewater in a pure gaseous state.
- One embodiment of the present invention is to purely recover ammonia in a gaseous state using an electrochemical system.
- One embodiment of the present invention is to increase the economic efficiency and productivity of the ammonia removal and recovery process.
- the embodiment according to the present invention may be used to achieve other problems not specifically mentioned.
- Ammonia recovery apparatus is connected to a reaction tank containing wastewater containing ammonia or ammonium ions, the reaction tank, the oxidation reaction takes place, the anode opposite to the oxidation electrode and the reduction reaction occurs, the oxidation electrode It is located between the and the cathode, and includes a cation exchange membrane through which ammonium ions pass, and a power supply device connected to the anode and the cathode to supply electrical energy.
- Ammonium ions are converted to ammonia, and gaseous ammonia can be recovered.
- Ammonium ions can be concentrated into liquid ammonia by reacting with hydroxide ions generated between the cathode and the cation exchange membrane.
- the concentrated liquid ammonia may be recovered as gaseous ammonia by air or oxygen supplied to the cathode.
- Hydroxide ions may be generated by a reduction reaction of oxygen or a reduction reaction of water at the reduction electrode.
- the wastewater may contain organic matter, and the organic matter may be decomposed by an oxidation reaction at the anode.
- the ammonia recovery device may further include a catalyst located on the cathode.
- the movement speed of ammonium ions can be controlled by adjusting the voltage applied to the power supply.
- the concentration of recovered ammonia can be controlled by adjusting the flow rate of air or oxygen supplied to the cathode.
- Ammonia recovery method includes the steps of putting wastewater containing ammonia or ammonium ions in a reaction tank, an oxidation reaction taking place in an anode connected to the reaction tank, a reduction reaction occurring in a cathode facing the anode electrode , a step of passing ammonium ions in a cation exchange membrane positioned between the anode and the cathode, and a power supply connected to the anode and the cathode for supplying electrical energy.
- the electrochemical device for an ammonia recovery device is a reaction tank containing ammonia or ammonium ion-containing wastewater, connected to the reaction tank, an oxidation electrode where an oxidation reaction occurs, a reduction electrode facing the oxidation electrode and a reduction reaction occurs, oxidation It is located between the electrode and the cathode, and includes a cation exchange membrane through which ammonium ions pass, and a power supply device connected to the anode and the cathode to supply electrical energy.
- the electrochemical device for the ammonia recovery device may further include a catalyst positioned on the reduction electrode.
- the present invention it is possible to recover only the gaseous pure ammonia gas from the wastewater by using the electrochemical device, and it is possible to increase the economic efficiency and productivity of the ammonia removal and recovery process.
- FIG. 1 is a view showing an apparatus for removing ammonia in wastewater and recovering gaseous pure ammonia according to an embodiment.
- FIG. 1 is a schematic configuration diagram of an ammonia recovery apparatus according to an embodiment.
- the ammonia recovery device may include an electrochemical device 100 for recovering ammonia.
- the electrochemical device 100 for recovering ammonia may include an electrochemical cell capable of recovering pure ammonia by an electrochemical method.
- the electrochemical apparatus 100 for recovering ammonia includes an electrochemical cell capable of separating ammonia or ammonium ions contained in the wastewater and converting the ammonia or ammonium ions into ammonia to degas and recover in gaseous form.
- the electrochemical device 100 is a pair of electrodes including a reaction tank 140 containing high concentration ammonia, ammonium ions, etc., an oxidation electrode 110 inducing an oxidation reaction, and a reduction electrode 120 inducing a reduction reaction, And it includes a cation exchange membrane (CEM, Cation exchange membrane) 150 for separating the pair of electrodes.
- CEM Cation exchange membrane
- a solution containing a high concentration of ammonia, ammonium ions, etc. may contain wastewater that must be purified through a treatment facility such as livestock wastewater.
- the cation exchange membrane 150 is positioned between the anode 110 and the cathode 120 for separation of ammonium ions inside the electrochemical device 100 . Ions passing through the cation exchange membrane 150 may include ammonium ions (NH 4 + ).
- the cathode 120 may include a gas diffusion electrode (GDE, gas diffusion membrane) through which the gas may pass.
- GDE gas diffusion electrode
- the ammonia recovery device may further include a gas supply device 160 for supplying a gas to induce a reduction reaction of the electrochemical device 100 and degassing ammonia converted between the cation exchange membrane 150 and the reduction electrode 120 .
- the gas supplied from the gas supply device 160 may be air or oxygen.
- the operating energy of the ammonia recovery device may be reduced by the oxygen gas present in the air among the supplied gas.
- the concentration of the recovered ammonia may be adjusted. Ammonia concentrated to a high concentration may be degassed by the air supplied from the gas supply device 160 .
- the separated ammonia can be recovered purely in gaseous form without an additional stripping process.
- the ammonia recovery device may further include an air blower for supplying air to the gas diffusion electrode.
- an air blower for supplying air to the gas diffusion electrode.
- gaseous ammonia may be separated and recovered.
- Ammonium ions may be separated through the cation exchange membrane 150 in the reaction tank 140 .
- the moved ammonium ions may react with the hydroxide ions generated between the reduction electrode 120 and the cation exchange membrane 150 to be directly concentrated in the form of ammonia.
- hydroxide ions may be generated by a reduction reaction of oxygen or a reduction reaction of water under a platinum-based catalyst.
- ammonia generated between the cathode 120 and the cation exchange membrane 150 may be directly concentrated to a high concentration.
- ammonium ions that have passed through the cation exchange membrane 150 from the reaction tank 140 are converted to the form of hydroxide ions (OH - ) and ammonia (NH 3 ) generated on the surface of the reduction electrode 120 through Reaction Equation 1 (NH 3 ).
- Ammonia produced and dissolved by Reaction Equation 1 may be degassed in a gaseous state through Reaction Equation 2 by the supplied air.
- Ammonia generated in the electrochemical device 100 may be recovered in the form of a pure gas having a specific concentration without including other interfering substances.
- the oxidation electrode 110 is located inside the electrochemical device 100 and is an electrode where an oxidation reaction occurs when an electrochemical reaction occurs as an anode.
- the anode 110 may be included in the reaction tank 140 .
- Sewage water containing ammonia may be circulated and introduced into the reaction tank 140 .
- the reduction electrode 120 is located inside the electrochemical device 100 and is an electrode where the reduction reaction occurs when the electrochemical reaction occurs as a cathode of the electrochemical device 100 .
- the surface of the cathode 120 may include a catalyst 130 capable of increasing the surface reaction of the cathode 120 .
- the power supply unit 170 supplies electrical energy for separation of ammonium ions inside the electrochemical device 100 .
- a voltage is applied by connecting the anode 110 and the cathode 120 using the power supply 170, water is decomposed in the anode 110 to generate oxygen and hydrogen ions, and oxidized Electrons may be provided at the same time as the reaction, and accordingly, carbon-based organic materials present in the wastewater may be oxidized and decomposed.
- the voltage applied to the power supply unit 170 By adjusting the voltage applied to the power supply unit 170, the movement speed of ammonium ions may be controlled.
- the oxidation reaction of water occurring on the surface of the anode 110 may be expressed by the following Reaction Equation 1.
- the oxidation reaction of the organic material in the typical urban wastewater that occurs on the surface of the anode 110 may be expressed by the following Reaction Equation 2.
- the oxidation reaction of formic acid occurring on the surface of the anode 110 may be expressed by the following Reaction Equation 4.
- the oxidation reaction of glucose occurring on the surface of the anode 110 may be expressed by the following Reaction Equation 5.
- the oxidation reaction of carbohydrates occurring on the surface of the anode 110 may be expressed by the following Reaction Equation 6.
- the oxidation reaction of propionic acid which is a representative material among volatile organic acids, occurring on the surface of the anode 110 may be expressed by the following Reaction Equation 8.
- the oxidation reaction of acetic acid occurring on the surface of the anode 110 may be expressed by the following Reaction Equation 9.
- the supplied electrons may be supplied to the cathode 120 via a wire connected to the power supply 170 .
- the cathode 120 may be an electrode made of carbon having micropores, for example, several tens of micrometers, and gas may pass therethrough.
- the catalyst 130 may be applied to the reduction electrode 120 .
- the catalyst 130 may be a platinum-based catalyst.
- the total energy requirement of the electrochemical device 100 for recovering ammonia may be reduced by the applied catalyst 130 .
- the catalyst may induce a reduction reaction of oxygen or water.
- Air containing oxygen may be supplied in the direction of the cathode 120 having micropores by using the gas supply device 160 .
- the flow rate of air can be flexibly adjusted according to the applied voltage or current.
- Oxygen containing about 21% concentration in the supplied air may be reduced in the reduction electrode 120 coated with the catalyst 130 , and may also be reduced in water that may exist between the catalyst 130 and the cation exchange membrane 150 . may cause a reaction.
- the reduction reaction of oxygen occurring on the surface of the reduction electrode 120 may be expressed by the following Reaction Equation 10.
- the reduction reaction of water occurring on the surface of the cathode 120 may be expressed by the following Reaction Equation 11.
- a voltage is applied by the power supply unit 170, and when electrons move from the anode 110 to the cathode 120, ammonium ions are generated between the anode 110 and the cathode 120 to match electrical neutrality. It can move through the cation exchange membrane 150 installed in the The speed of moving ammonium ions may be adjusted by adjusting the applied voltage of the power supply unit 170 .
- various cations such as hydrogen ions, sodium ions, potassium ions, and calcium ions can also move, but only in wastewater containing a high concentration of ammonium ions, ammonium ions can serve as the first charge carrier.
- the high concentration of ammonium ions may be at a concentration of 3,000 mg/L or more per 1 L of wastewater.
- Ammonium ions flowing in the direction of the cathode 120 may be converted to liquid ammonia by combining with hydroxide ions generated by Reaction Scheme 10 or Reaction Scheme 11, and the reaction to be converted into liquid ammonia may be expressed by Scheme 12 below.
- the liquid ammonia produced has a very high solubility of about 520 g/L at about 20 o C, it may be difficult to convert to gaseous phase and degas.
- the space between the cation exchange membrane 150 and the cathode 120 is very narrow compared to the volume of the reaction tank 140, the liquid ammonia flowing over can be concentrated to a very high concentration. Therefore, the ammonia stripping reaction can occur directly in the electrochemical device 100 for recovering ammonia by the gas supplied by the gas supply device 160 without additional energy supply. As a result, gaseous ammonia may be produced.
- gases that are degassed, generated, or supplied from the electrochemical device 100 for recovering ammonia are ammonia, nitrogen, hydrogen, and oxygen, gaseous ammonia can be directly recovered.
- the ammonia concentration is measured using the Nessler method after absorbing ammonia discharged in the gas phase into the sulfuric acid tank.
- the flow rate supplied to the cathode 120 is increased from about 5 mL/min/cm 2 to about 20 mL/min/cm 2 It is confirmed that the amount of ammonia recovery is increased by about 2 times. Since desorption of ammonia occurs by effective contact of gas and liquid, it is confirmed that excess ammonia is degassed at a high flow rate. At this time, the supplied air flow rate may be adjusted to adjust the concentration of gaseous ammonia.
- 3 is a result showing the ratio of ammonia ions present in the reaction tank 140 are transferred through the cation exchange membrane 150 in the form of ions, and the converted ammonia is desorbed by the gas supply unit 160 .
- the ammonia recovery rate is from about 55% to about 98% It can be seen that increases up to
- Ammonia recovery method includes a step of putting wastewater containing ammonia or ammonium ions in a reaction tank, an oxidation reaction taking place in an anode connected to the reaction tank, a step in which a reduction reaction occurs in a cathode facing the anode electrode, and an anode and A step of passing ammonium ions in the cation exchange membrane positioned between the cathodes, and a power supply connected to the anode and the cathode for supplying electrical energy.
- Ammonium ions are converted to ammonia, and gaseous ammonia can be recovered.
- Ammonium ions can be concentrated into liquid ammonia by reacting with hydroxide ions generated between the cathode and the cation exchange membrane.
- the concentrated liquid ammonia may be recovered as gaseous ammonia by oxygen supplied to the cathode.
- Hydroxide ions may be generated by a reduction reaction of oxygen or a reduction reaction of water at the reduction electrode.
- the wastewater may contain organic matter, and the organic matter may be decomposed by an oxidation reaction at the anode.
- a reduction reaction can be induced in the catalyst located on the reduction electrode.
- the movement speed of ammonium ions can be controlled by adjusting the voltage applied to the power supply.
- the concentration of recovered ammonia can be controlled by adjusting the flow rate of oxygen supplied to the cathode.
- the electrochemical device for the ammonia recovery device is connected to a reaction tank containing ammonia or ammonium ion-containing wastewater, the reaction tank, an anode where an oxidation reaction occurs, a cathode opposite to the anode and where a reduction reaction occurs, and between the anode and the cathode.
- a power supply device connected to the anode and cathode to supply electrical energy.
- the electrochemical device for the ammonia recovery device may further include a catalyst positioned on the reduction electrode.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
- Removal Of Specific Substances (AREA)
- Physical Water Treatments (AREA)
Abstract
An apparatus for recovery of ammonia comprises: a reaction tank containing ammonia or ammonium ion-containing wastewater; an oxidation electrode connected to the reaction tank, where an oxidation reaction takes place; a reduction electrode facing the oxidation electrode, where a reduction reaction occurs; a cation exchange membrane located between the oxidation electrode and the reduction electrode and allowing ammonium ions to pass therethrough; and a power supply device connected to the oxidation electrode and the reduction electrode to supply electrical energy.
Description
하폐수 내 암모니아를 회수할 수 있는 장치 및 방법이 제공된다.An apparatus and method for recovering ammonia in wastewater are provided.
하폐수 내 존재할 수 있는 고농도 암모니아는 생물반응조 운전에 결함을 일으키며, 수계로 방류될 경우 부영양화 등 환경문제를 야기시킨다.The high concentration of ammonia that may exist in the wastewater causes defects in the operation of the bioreactor and causes environmental problems such as eutrophication when discharged to water.
암모니아는 1)암모니아 스트리핑(stripping), 2)스트루바이트(struvite) 광물 침전법, 3) 이온교환법 등으로 처리될 수 있다. Ammonia may be treated by 1) ammonia stripping, 2) struvite mineral precipitation method, 3) ion exchange method, and the like.
암모니아 스트리핑 방법의 경우, 암모니아의 고효율 제거 및 회수가 가능하지만 에너지 소모량이 크다.In the case of the ammonia stripping method, high-efficiency removal and recovery of ammonia is possible, but the energy consumption is large.
스트루바이트 광물 침전법의 경우, 암모니아가 고체염의 형태로 회수 가능하지만, Mg2+, NH4+, PO4
3-가 1:1:1 비율로 반응하기 때문에, 추가적인 오염원을 주입할 필요가 있다.In the case of struvite mineral precipitation, ammonia is recoverable in the form of solid salt, but since Mg 2+ , NH 4+ , and PO 4 3- react in a 1:1:1 ratio, it is not necessary to inject additional pollutants have.
이온교환법의 경우, 암모니아가 선택적으로 제거 및 회수될 수 있지만, 이온교환 수지의 재생에 다량의 염, 예를 들어 NaCl 등이 필요하다.In the case of the ion exchange method, ammonia can be selectively removed and recovered, but a large amount of salt such as NaCl is required for regeneration of the ion exchange resin.
이에 따라, 암모니아의 회수를 위한 저에너지 및 고효율 운전에 관한 여러가지 연구, 개발이 이루어지고 있다.Accordingly, various studies and developments have been made on low-energy and high-efficiency operation for the recovery of ammonia.
본 발명의 한 실시예는 하폐수 내 암모니아만을 순수하게 회수하기 위한 것이다.One embodiment of the present invention is to purely recover only ammonia in wastewater.
본 발명의 한 실시예는 하폐수에 존재하는 암모니아를 순수한 기체상태로 회수하기 위한 것이다.One embodiment of the present invention is to recover ammonia present in wastewater in a pure gaseous state.
본 발명의 한 실시예는 전기화학 시스템을 이용하여 기체상태로 암모니아를 순수하게 회수 위한 것이다.One embodiment of the present invention is to purely recover ammonia in a gaseous state using an electrochemical system.
본 발명의 한 실시예는 암모니아의 제거 및 회수 공정의 경제성과 생산성을 증대시키기 위한 것이다.One embodiment of the present invention is to increase the economic efficiency and productivity of the ammonia removal and recovery process.
상기 과제 이외에도 구체적으로 언급되지 않은 다른 과제를 달성하는데 본 발명에 따른 실시예가 사용될 수 있다.In addition to the above problems, the embodiment according to the present invention may be used to achieve other problems not specifically mentioned.
본 발명의 한 실시예에 따른 암모니아 회수 장치는 암모니아 또는 암모늄 이온을 포함하는 폐수를 담는 반응조, 반응조에 연결되며, 산화 반응이 일어나는 산화전극, 산화전극에 대향하고 환원반응이 일어나는 환원전극, 산화전극과 환원전극 사이에 위치하고, 암모늄 이온을 통과시키는 양이온교환막, 그리고 산화전극 및 환원전극에 연결되어 전기에너지를 공급하는 전원공급장치를 포함한다.Ammonia recovery apparatus according to an embodiment of the present invention is connected to a reaction tank containing wastewater containing ammonia or ammonium ions, the reaction tank, the oxidation reaction takes place, the anode opposite to the oxidation electrode and the reduction reaction occurs, the oxidation electrode It is located between the and the cathode, and includes a cation exchange membrane through which ammonium ions pass, and a power supply device connected to the anode and the cathode to supply electrical energy.
암모늄 이온은 암모니아로 전환되고, 기체 상태의 암모니아가 회수될 수 있다.Ammonium ions are converted to ammonia, and gaseous ammonia can be recovered.
암모늄 이온은 환원전극과 양이온교환막 사이에서 생성되는 수산화 이온과 반응하여 액체상 암모니아로 농축될 수 있다. Ammonium ions can be concentrated into liquid ammonia by reacting with hydroxide ions generated between the cathode and the cation exchange membrane.
농축되는 액체상 암모니아는 환원전극으로 공급되는 공기 또는 산소에 의해 기체 상태의 암모니아로 회수될 수 있다.The concentrated liquid ammonia may be recovered as gaseous ammonia by air or oxygen supplied to the cathode.
수산화 이온은 환원전극에서 산소의 환원반응 또는 물의 환원반응에 의하여 생성될 수 있다.Hydroxide ions may be generated by a reduction reaction of oxygen or a reduction reaction of water at the reduction electrode.
폐수는 유기물을 포함할 수 있고, 유기물은 산화전극에서의 산화반응에 의하여 분해될 수 있다.The wastewater may contain organic matter, and the organic matter may be decomposed by an oxidation reaction at the anode.
암모니아 회수 장치는 환원전극 상에 위치하는 촉매를 더 포함할 수 있다.The ammonia recovery device may further include a catalyst located on the cathode.
전원공급장치에 인가하는 전압을 조절하여 암모늄 이온의 이동 속도를 제어할 수 있다.The movement speed of ammonium ions can be controlled by adjusting the voltage applied to the power supply.
환원전극으로 공급되는 공기 또는 산소의 유량을 조절하여 회수되는 암모니아의 농도를 제어할 수 있다.The concentration of recovered ammonia can be controlled by adjusting the flow rate of air or oxygen supplied to the cathode.
일 실시예에 따른 암모니아 회수 방법은 반응조에 암모니아 또는 암모늄 이온을 포함하는 폐수를 담는 단계, 반응조에 연결되어 있는 산화전극에서 산화반응이 일어나는 단계, 산화전극에 대향하는 환원전극에서 환원반응이 일어나는 단계, 산화전극과 환원전극 사이에 위치하는 양이온교환막에서 암모늄 이온이 통과하는 단계, 그리고 산화전극 및 환원전극에 연결되어 있는 전원공급장치가 전기에너지를 공급하는 단계를 포함할 수 있다.Ammonia recovery method according to an embodiment includes the steps of putting wastewater containing ammonia or ammonium ions in a reaction tank, an oxidation reaction taking place in an anode connected to the reaction tank, a reduction reaction occurring in a cathode facing the anode electrode , a step of passing ammonium ions in a cation exchange membrane positioned between the anode and the cathode, and a power supply connected to the anode and the cathode for supplying electrical energy.
일 실시예에 따른 암모니아회수장치용 전기화학장치는 암모니아 또는 암모늄 이온을 포함하는 폐수를 담는 반응조, 반응조에 연결되며, 산화 반응이 일어나는 산화전극, 산화전극에 대향하고 환원반응이 일어나는 환원전극, 산화전극과 환원전극 사이에 위치하고, 암모늄 이온을 통과시키는 양이온교환막, 그리고 산화전극 및 환원전극에 연결되어 전기에너지를 공급하는 전원공급장치를 포함한다. The electrochemical device for an ammonia recovery device according to an embodiment is a reaction tank containing ammonia or ammonium ion-containing wastewater, connected to the reaction tank, an oxidation electrode where an oxidation reaction occurs, a reduction electrode facing the oxidation electrode and a reduction reaction occurs, oxidation It is located between the electrode and the cathode, and includes a cation exchange membrane through which ammonium ions pass, and a power supply device connected to the anode and the cathode to supply electrical energy.
암모니아회수장치용 전기화학장치는 환원전극 상에 위치하는 촉매를 더 포함할 수 있다.The electrochemical device for the ammonia recovery device may further include a catalyst positioned on the reduction electrode.
본 발명의 한 실시예에 따르면, 전기화학 장치를 이용하여 하폐수 내에서 가스상태의 순수 암모니아 가스만을 회수할 수 있으며, 암모니아의 제거 및 회수 공정의 경제성과 생산성을 증대시킬 수 있다.According to one embodiment of the present invention, it is possible to recover only the gaseous pure ammonia gas from the wastewater by using the electrochemical device, and it is possible to increase the economic efficiency and productivity of the ammonia removal and recovery process.
도 1은 실시예에 따른 하폐수 내 암모니아의 제거와, 가스상태의 순수 암모니아를 회수하는 장치를 나타내는 도면이다.1 is a view showing an apparatus for removing ammonia in wastewater and recovering gaseous pure ammonia according to an embodiment.
도 2는 공급해주는 공기 유량에 따라 전기화학 장치로부터 순수 분리된 암모니아를 황산용액에 흡수시켜 시간에 따라 측정한 결과이다.2 is a result of absorbing ammonia separated purely from an electrochemical device in a sulfuric acid solution according to the supplied air flow rate and measuring the result over time.
도 3은 산화전극 반응조로부터 분리된 암모니아의 회수효율을 나타낸 결과이다.3 is a result showing the recovery efficiency of ammonia separated from the anode reaction tank.
첨부한 도면을 참고로 하여 본 발명의 실시예에 대해 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 도면부호가 사용되었다. 또한 널리 알려져 있는 공지기술의 경우 그 구체적인 설명은 생략한다. With reference to the accompanying drawings, the embodiments of the present invention will be described in detail so that those of ordinary skill in the art to which the present invention pertains can easily implement them. The present invention may be embodied in many different forms and is not limited to the embodiments described herein. In order to clearly explain the present invention in the drawings, parts irrelevant to the description are omitted, and the same reference numerals are used for the same or similar components throughout the specification. In addition, in the case of a well-known known technology, a detailed description thereof will be omitted.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. Throughout the specification, when a part "includes" a certain component, it means that other components may be further included, rather than excluding other components, unless otherwise stated.
그러면 일 실시예에 따른 암모니아의 회수 장치에 대하여 상세하게 설명한다. Then, the ammonia recovery apparatus according to an embodiment will be described in detail.
도 1은 일 실시예에 따른 암모니아 회수장치에 대한 개략적인 구성도이다.1 is a schematic configuration diagram of an ammonia recovery apparatus according to an embodiment.
일 실시예에 따른 암모니아 회수장치는, 암모니아회수용 전기화학장치(100)을 포함할 수 있다.The ammonia recovery device according to an embodiment may include an electrochemical device 100 for recovering ammonia.
암모니아회수용 전기화학장치(100)는 전기화학적 방법으로 순수 암모니아를 회수할 수 있는 전기화학 셀을 포함할 수 있다. 예를 들어, 암모니아회수용 전기화학장치(100)는 하폐수 내부에 포함되어 있는 암모니아 또는 암모늄 이온을 분리한 다음, 암모니아로 전환시켜 가스 형태로 탈기 및 회수할 수 있는 전기화학 셀을 포함한다. The electrochemical device 100 for recovering ammonia may include an electrochemical cell capable of recovering pure ammonia by an electrochemical method. For example, the electrochemical apparatus 100 for recovering ammonia includes an electrochemical cell capable of separating ammonia or ammonium ions contained in the wastewater and converting the ammonia or ammonium ions into ammonia to degas and recover in gaseous form.
전기화학장치(100)는 고농도 암모니아, 암모늄 이온 등을 포함하는 반응조(140), 산화반응을 유도하는 산화전극(110) 및 환원반응을 유도하는 환원전극(120)을 포함하는 한 쌍의 전극, 그리고 한 쌍의 전극을 분리하는 양이온교환막(CEM, Cation exchange membrane)(150)을 포함한다.The electrochemical device 100 is a pair of electrodes including a reaction tank 140 containing high concentration ammonia, ammonium ions, etc., an oxidation electrode 110 inducing an oxidation reaction, and a reduction electrode 120 inducing a reduction reaction, And it includes a cation exchange membrane (CEM, Cation exchange membrane) 150 for separating the pair of electrodes.
고농도 암모니아, 암모늄 이온 등을 포함하는 용액은 축산폐수 등 처리시설을 통해 정화해야만 하는 폐수를 포함할 수 있다.A solution containing a high concentration of ammonia, ammonium ions, etc. may contain wastewater that must be purified through a treatment facility such as livestock wastewater.
양이온교환막(150)은 전기화학장치(100)의 내부의 암모늄 이온의 분리를 위해 산화전극(110)과 환원전극(120)의 사이에 위치한다. 양이온교환막(150)을 통과하는 이온은 암모늄 이온 (NH4
+)을 포함할 수 있다.The cation exchange membrane 150 is positioned between the anode 110 and the cathode 120 for separation of ammonium ions inside the electrochemical device 100 . Ions passing through the cation exchange membrane 150 may include ammonium ions (NH 4 + ).
환원전극(120)은 가스가 투과할 수 있는 가스확산전극(GDE, Gas diffusion membrane)을 포함할 수 있다.The cathode 120 may include a gas diffusion electrode (GDE, gas diffusion membrane) through which the gas may pass.
암모니아 회수 장치는 양이온교환막(150)과 환원전극(120) 사이에서 전환된 암모니아의 탈기와 전기화학장치(100)의 환원반응을 유도하기 위해 기체를 공급하는 기체공급장치(160)를 더 포함할 수 있다. 예를 들어, 기체공급장치(160)로부터 공급하는 기체는 공기 또는 산소일 수 있다. 공급하는 기체 중 공기에 존재하는 산소 기체에 의해 암모니아 회수 장치의 운전에너지가 감소될 수 있다. 또한, 기체공급장치(160)에서 공급하는 공기 또는 산소의 유량을 조절하여, 회수되는 암모니아의 농도가 조절될 수 있다. 기체공급장치(160)에서 공급하는 공기에 의해 고농도로 농축된 암모니아가 탈기될 수 있다. 분리된 암모니아는 추가적인 스트리핑 공정 없이 가스형태로 순수하게 회수될 수 있다.The ammonia recovery device may further include a gas supply device 160 for supplying a gas to induce a reduction reaction of the electrochemical device 100 and degassing ammonia converted between the cation exchange membrane 150 and the reduction electrode 120 . can For example, the gas supplied from the gas supply device 160 may be air or oxygen. The operating energy of the ammonia recovery device may be reduced by the oxygen gas present in the air among the supplied gas. In addition, by adjusting the flow rate of air or oxygen supplied from the gas supply device 160, the concentration of the recovered ammonia may be adjusted. Ammonia concentrated to a high concentration may be degassed by the air supplied from the gas supply device 160 . The separated ammonia can be recovered purely in gaseous form without an additional stripping process.
예를 들어, 암모니아 회수 장치는 가스확산전극으로 공기를 공급하기 위한 에어 블로워(air blower)를 더 포함할 수 있다. 가스확산전극에서 가스 상태의 암모니아가 분리 및 회수될 수 있다.For example, the ammonia recovery device may further include an air blower for supplying air to the gas diffusion electrode. At the gas diffusion electrode, gaseous ammonia may be separated and recovered.
반응조(140)에서 양이온교환막(150)을 통해 암모늄 이온이 분리될 수 있다. 이동한 암모늄 이온이 환원전극(120)과 양이온교환막(150) 사이에서 생성된 수산화이온과 반응하여 곧바로 암모니아 형태로 농축될 수 있다. 여기서 수산화 이온은 백금기반 촉매 하 산소의 환원반응 또는 물의 환원반응에 의하여 생성될 수 있다. 또한, 환원전극(120)과 양이온교환막(150) 사이에서 생성된 암모니아가 곧바로 고농도로 농축될 수 있다.Ammonium ions may be separated through the cation exchange membrane 150 in the reaction tank 140 . The moved ammonium ions may react with the hydroxide ions generated between the reduction electrode 120 and the cation exchange membrane 150 to be directly concentrated in the form of ammonia. Here, hydroxide ions may be generated by a reduction reaction of oxygen or a reduction reaction of water under a platinum-based catalyst. In addition, ammonia generated between the cathode 120 and the cation exchange membrane 150 may be directly concentrated to a high concentration.
예를 들어, 반응조(140)로부터 양이온교환막(150)을 통과한 암모늄 이온은 환원전극(120)의 표면에 생성된 수산화 이온(OH-)과 반응식 1을 통해 암모니아(NH3) 형태로 전환될 수 있다. For example, ammonium ions that have passed through the cation exchange membrane 150 from the reaction tank 140 are converted to the form of hydroxide ions (OH - ) and ammonia (NH 3 ) generated on the surface of the reduction electrode 120 through Reaction Equation 1 (NH 3 ). can
[반응식 1][Scheme 1]
NH4
+ + OH- → NH3 (aq) + H2ONH 4 + + OH - → NH 3 (aq) + H 2 O
반응식 1에의해 생성되어 용해된 암모니아는 공급되는 공기에 의하여 반응식 2를 통해 가스상태로 탈기될 수 있다.Ammonia produced and dissolved by Reaction Equation 1 may be degassed in a gaseous state through Reaction Equation 2 by the supplied air.
[반응식 2][Scheme 2]
NH3 (aq) → NH3 (g)NH 3 (aq) → NH 3 (g)
전기화학장치(100)에서 생성된 암모니아는 다른 방해물질을 포함하지 않은 특정 농도의 순수한 가스형태로 회수될 수 있다.Ammonia generated in the electrochemical device 100 may be recovered in the form of a pure gas having a specific concentration without including other interfering substances.
산화전극(110)은 전기화학장치(100)의 내부에 위치하며 양극으로서 전기화학 반응이 일어날 때 산화반응이 일어나는 전극이다. 이때, 산화전극(110)은 반응조(140) 내부에 포함될 수 있다. 반응조(140) 내부로 암모니아를 함유하는 하폐수가 순환되어 유입될 수 있다. The oxidation electrode 110 is located inside the electrochemical device 100 and is an electrode where an oxidation reaction occurs when an electrochemical reaction occurs as an anode. In this case, the anode 110 may be included in the reaction tank 140 . Sewage water containing ammonia may be circulated and introduced into the reaction tank 140 .
환원전극(120)은 전기화학장치(100)의 내부에 위치하며 전기화학장치(100)의 음극으로서 전기화학 반응이 일어날 때 환원반응이 일어나는 전극이다. 환원전극(120)의 표면에는 환원전극(120)의 표면 반응을 증대시킬 수 있는 촉매(130)를 포함할 수 있다.The reduction electrode 120 is located inside the electrochemical device 100 and is an electrode where the reduction reaction occurs when the electrochemical reaction occurs as a cathode of the electrochemical device 100 . The surface of the cathode 120 may include a catalyst 130 capable of increasing the surface reaction of the cathode 120 .
전원공급장치(170)는 전기화학장치(100) 내부의 암모늄 이온의 분리를 위해 전기에너지를 공급한다. 전원공급장치(170)를 이용하여 산화전극(110)과 환원전극(120)을 연결하여 전압을 인가하는 경우, 산화전극(110)에서는 물이 분해되어 산소와 수소이온이 생성될 수 있고, 산화반응과 동시에 전자를 제공할 수 있으며, 이에 따라 하폐수 내부에 존재하는 탄소 기반 유기물들이 산화되어 분해될 수 있다. 전원공급장치(170)에 인가하는 전압을 조절함으로써, 암모늄 이온의 이동 속도가 제어될 수 있다.The power supply unit 170 supplies electrical energy for separation of ammonium ions inside the electrochemical device 100 . When a voltage is applied by connecting the anode 110 and the cathode 120 using the power supply 170, water is decomposed in the anode 110 to generate oxygen and hydrogen ions, and oxidized Electrons may be provided at the same time as the reaction, and accordingly, carbon-based organic materials present in the wastewater may be oxidized and decomposed. By adjusting the voltage applied to the power supply unit 170, the movement speed of ammonium ions may be controlled.
전압 인가 시, 산화전극(110) 표면에서 일어나는 물의 산화반응은 하기 반응식 1로 표현될 수 있다.When a voltage is applied, the oxidation reaction of water occurring on the surface of the anode 110 may be expressed by the following Reaction Equation 1.
[반응식 1][Scheme 1]
2H2O → O2 + 4H+ + 4e- 2H 2 O → O 2 + 4H + + 4e -
전압 인가 시, 산화전극(110) 표면에서 일어나는 대표적인 도시 하폐수 내부 유기물의 산화반응은 하기 반응식 2로 표현될 수 있다.When a voltage is applied, the oxidation reaction of the organic material in the typical urban wastewater that occurs on the surface of the anode 110 may be expressed by the following Reaction Equation 2.
[반응식 2][Scheme 2]
1/50C10H19O3N + 9/25H2O → 9/50CO2 + 1/50 NH4
+ + 1/50HCO3
- + H+ + e-
1/50C 10 H 19 O 3 N + 9/25H 2 O → 9/50CO 2 + 1/50 NH 4 + + 1/50HCO 3 - + H + + e -
전압 인가 시, 산화전극(110) 표면에서 일어나는 대표적인 단백질의 산화반응은 하기 반응식 3으로 표현될 수 있다.When a voltage is applied, the oxidation reaction of a typical protein that occurs on the surface of the anode 110 can be expressed by the following Reaction Equation 3.
[반응식 3][Scheme 3]
1/66C16H24O5N4 + 27/66H2O → 8/33CO2 + 2/33 NH4
+ + 13/33H+ + e-
1/66C 16 H 24 O 5 N 4 + 27/66H 2 O → 8/33CO 2 + 2/33 NH 4 + + 13/33H + + e -
전압 인가 시, 산화전극(110) 표면에서 일어나는 포름산의 산화반응은 하기 반응식 4로 표현될 수 있다.When a voltage is applied, the oxidation reaction of formic acid occurring on the surface of the anode 110 may be expressed by the following Reaction Equation 4.
[반응식 4][Scheme 4]
1/2HCOO- + 1/2H2O → 1/2HCO3
- + H+ + e-
1/2HCOO - + 1/2H 2 O → 1/2HCO 3 - + H + + e -
전압 인가 시, 산화전극(110) 표면에서 일어나는 글루코스의 산화반응은 하기 반응식 5로 표현될 수 있다.When a voltage is applied, the oxidation reaction of glucose occurring on the surface of the anode 110 may be expressed by the following Reaction Equation 5.
[반응식 5][Scheme 5]
1/24C6H12O6 + 1/4H2O → 1/4CO2 + H+ + e-
1/24C 6 H 12 O 6 + 1/4H 2 O → 1/4CO 2 + H + + e -
전압 인가 시, 산화전극(110) 표면에서 일어나는 탄수화물의 산화반응은 하기 반응식 6으로 표현될 수 있다.When a voltage is applied, the oxidation reaction of carbohydrates occurring on the surface of the anode 110 may be expressed by the following Reaction Equation 6.
[반응식 6][Scheme 6]
1/4CH2O + 1/4H2O → 1/4CO2 + H+ + e-
1/4CH 2 O + 1/4H 2 O → 1/4CO 2 + H + + e -
전압 인가 시, 산화전극(110) 표면에서 일어나는 휘발성 유기산 중 대표적인 물질인 피루브산의 산화반응은 하기 반응식 7로 표현될 수 있다.When a voltage is applied, the oxidation reaction of pyruvic acid, which is a representative material among volatile organic acids, occurring on the surface of the anode 110 can be expressed by the following Reaction Equation 7.
[반응식 7][Scheme 7]
1/10CH3COCOO- + 2/5H2O → 1/5CO2 + 1/10HCO3
- + H_ + e-
1/10CH 3 COCOO - + 2/5H 2 O → 1/5CO 2 + 1/10HCO 3 - + H _ + e -
전압 인가 시, 산화전극(110) 표면에서 일어나는 휘발성 유기산 중 대표적인 물질인 프로피온산의 산화반응은 하기 반응식 8로 표현될 수 있다.When a voltage is applied, the oxidation reaction of propionic acid, which is a representative material among volatile organic acids, occurring on the surface of the anode 110 may be expressed by the following Reaction Equation 8.
[반응식 8][Scheme 8]
1/14CH3CH2COO- + 5/14H2O → 1/7CO2 + 1/14HCO3
- + H_ + e-
1/14CH 3 CH 2 COO - + 5/14H 2 O → 1/7CO 2 + 1/14HCO 3 - + H _ + e -
전압 인가 시, 산화전극(110) 표면에서 일어나는 아세트산의 산화반응은 하기 반응식 9로 표현될 수 있다.When a voltage is applied, the oxidation reaction of acetic acid occurring on the surface of the anode 110 may be expressed by the following Reaction Equation 9.
[반응식 9][Scheme 9]
1/8CH3COO- + 3/8H2O → 1/8CO2 + 1/8HCO3
- + H_ + e-
1/8CH 3 COO - + 3/8H 2 O → 1/8CO 2 + 1/8HCO 3 - + H _ + e -
공급된 전자는 전원공급장치(170)와 연결된 전선을 타고 환원전극(120)으로 공급될 수 있다. 환원전극(120)은 미세 공극, 예를 들어 수십 마이크로미터를 갖는 탄소로 이루어진 전극일 수 있으며, 가스가 투과될 수 있다. The supplied electrons may be supplied to the cathode 120 via a wire connected to the power supply 170 . The cathode 120 may be an electrode made of carbon having micropores, for example, several tens of micrometers, and gas may pass therethrough.
환원전극(120)에 촉매(130)가 도포될 수 있다. 예를 들어 촉매(130)는 백금 기반의 촉매일 수 있다. 도포된 촉매(130)에 의하여 암모니아회수용 전기화학장치(100)의 총 에너지 요구량이 저감될 수 있다. 촉매는 산소 또는 물의 환원반응을 유도할 수 있다.The catalyst 130 may be applied to the reduction electrode 120 . For example, the catalyst 130 may be a platinum-based catalyst. The total energy requirement of the electrochemical device 100 for recovering ammonia may be reduced by the applied catalyst 130 . The catalyst may induce a reduction reaction of oxygen or water.
기체공급장치(160)을 이용하여 미세 공극을 갖는 환원전극(120) 방향으로 산소를 함유하는 공기가 공급될 수 있다. 공기의 유량은 인가하는 전압 혹은 전류에 상응하여 유동적으로 조절 가능하다. 공급된 공기 중 약 21% 농도를 함유하는 산소는, 촉매(130)로 도포된 환원전극(120)에서 환원될 수 있으며, 또한 촉매(130)와 양이온교환막(150)사이에 존재할 수 있는 물의 환원반응을 일으킬 수 있다.Air containing oxygen may be supplied in the direction of the cathode 120 having micropores by using the gas supply device 160 . The flow rate of air can be flexibly adjusted according to the applied voltage or current. Oxygen containing about 21% concentration in the supplied air may be reduced in the reduction electrode 120 coated with the catalyst 130 , and may also be reduced in water that may exist between the catalyst 130 and the cation exchange membrane 150 . may cause a reaction.
전압 인가 시, 환원전극(120) 표면에서 일어나는 산소의 환원반응은 하기 반응식 10으로 표현될 수 있다.When a voltage is applied, the reduction reaction of oxygen occurring on the surface of the reduction electrode 120 may be expressed by the following Reaction Equation 10.
[반응식 10][Scheme 10]
O2 + 2H2O + 4e- → 4OH-
O 2 + 2H 2 O + 4e - → 4OH -
전압 인가 시, 환원전극(120) 표면에서 일어나는 물의 환원반응은 하기 반응식 11로 표현될 수 있다.When a voltage is applied, the reduction reaction of water occurring on the surface of the cathode 120 may be expressed by the following Reaction Equation 11.
[반응식 11][Scheme 11]
H2O + e- → 1/2H2 + OH-
H 2 O + e - → 1/2H 2 + OH -
전원공급장치(170)에 의해 전압이 인가되며, 전자가 산화전극(110)에서 환원전극(120)으로 이동할 때, 전기적 중성을 맞추기 위하여 암모늄이온이 산화전극(110)과 환원전극(120) 사이에 설치된 양이온교환막(150)을 통과해 이동할 수 있다. 전원공급장치(170)의 인가 전압을 조절하여 암모늄 이온을 이동시키는 속도가 조절될 수 있다. 암모늄 이온 이외에 수소이온, 나트륨 이온, 칼륨 이온, 칼슘 이온 등 여러 양이온 또한 이동 가능하지만, 고농도 암모늄 이온을 함유하고 있는 하폐수에 한해서 암모늄 이온이 제1 전하 전달체의 역할을 할 수 있다. 예를 들어, 고농도의 암모늄 이온은 하폐수 1 L 당 3,000 mg/L 이상의 농도일 수 있다.A voltage is applied by the power supply unit 170, and when electrons move from the anode 110 to the cathode 120, ammonium ions are generated between the anode 110 and the cathode 120 to match electrical neutrality. It can move through the cation exchange membrane 150 installed in the The speed of moving ammonium ions may be adjusted by adjusting the applied voltage of the power supply unit 170 . In addition to ammonium ions, various cations such as hydrogen ions, sodium ions, potassium ions, and calcium ions can also move, but only in wastewater containing a high concentration of ammonium ions, ammonium ions can serve as the first charge carrier. For example, the high concentration of ammonium ions may be at a concentration of 3,000 mg/L or more per 1 L of wastewater.
환원전극(120) 방향으로 넘어온 암모늄 이온은, 반응식 10 또는 반응식 11에 의해 생성된 수산화이온과 결합하여 액체상 암모니아로 전환될 수 있으며, 액체상 암모니아로 전환되는 반응은 하기 반응식 12로 표현될 수 있다.Ammonium ions flowing in the direction of the cathode 120 may be converted to liquid ammonia by combining with hydroxide ions generated by Reaction Scheme 10 or Reaction Scheme 11, and the reaction to be converted into liquid ammonia may be expressed by Scheme 12 below.
[반응식 12][Scheme 12]
NH4
+ + OH- → NH3 (l) + H2ONH 4 + + OH - → NH 3 (l) + H 2 O
생성된 액체상 암모니아는 약 20oC에서 용해도가 약 520g/L로 매우 높기 때문에 기체상으로 전환되어 탈기되기 어려울 수 있다. 하지만 반응조(140)의 부피에 비하면 양이온교환막(150)과 환원전극(120) 사이의 공간은 매우 협소하기 때문에 넘어온 액체상 암모니아는 매우 고농도로 농축될 수 있다. 따라서 추가 에너지 공급 없이 기체공급장치(160)에 의해 공급된 기체에 의하여 암모니아 스트리핑 반응이 암모니아회수용 전기화학장치(100)에서 곧바로 일어날 수 있다. 이에 따라 기체상 암모니아가 생성될 수 있다.Since the liquid ammonia produced has a very high solubility of about 520 g/L at about 20 o C, it may be difficult to convert to gaseous phase and degas. However, since the space between the cation exchange membrane 150 and the cathode 120 is very narrow compared to the volume of the reaction tank 140, the liquid ammonia flowing over can be concentrated to a very high concentration. Therefore, the ammonia stripping reaction can occur directly in the electrochemical device 100 for recovering ammonia by the gas supplied by the gas supply device 160 without additional energy supply. As a result, gaseous ammonia may be produced.
암모니아회수용 전기화학장치(100)로부터 탈기, 생성 혹은 공급되어 빠져나가는 기체는 암모니아, 질소, 수소, 그리고 산소이므로, 곧바로 가스상 암모니아를 회수할 수 있다.Since the gases that are degassed, generated, or supplied from the electrochemical device 100 for recovering ammonia are ammonia, nitrogen, hydrogen, and oxygen, gaseous ammonia can be directly recovered.
도 2는 기체공급장치(160)에 의하여 공급되는 단위 전극면적 당 공기유량에 따른 암모니아 회수량을 나타낸 결과이다. 측정의 용이성을 위하여 가스상으로 배출되는 암모니아를 황산조에 흡수한 후 네슬러 방법을 이용하여 암모니아 농도를 측정한다. 2 is a result showing the ammonia recovery amount according to the air flow rate per unit electrode area supplied by the gas supply device (160). For ease of measurement, the ammonia concentration is measured using the Nessler method after absorbing ammonia discharged in the gas phase into the sulfuric acid tank.
환원전극(120)으로 공급되는 유량이 약 5 mL/min/cm2에서 약 20 mL/min/cm2으로 증가하는 동안 암모니아 회수량이 약 2 배 증가한 것이 확인된다. 암모니아의 탈리는 기체와 액체의 효과적인 접촉에 의해서 일어나므로, 고유량에서 과량의 암모니아가 탈기되는 것이 확인된다. 이때, 가스상 암모니아의 농도를 조절하기 위하여 공급되는 공기유량이 조절될 수 있다. While the flow rate supplied to the cathode 120 is increased from about 5 mL/min/cm 2 to about 20 mL/min/cm 2 It is confirmed that the amount of ammonia recovery is increased by about 2 times. Since desorption of ammonia occurs by effective contact of gas and liquid, it is confirmed that excess ammonia is degassed at a high flow rate. At this time, the supplied air flow rate may be adjusted to adjust the concentration of gaseous ammonia.
도 3은 반응조(140)에 존재하는 암모늄 이온이 이온 형태로 양이온교환막(150)을 통해 전달되어 전환된 암모니아가 기체공급장치(160)에 의하여 탈리된 비율을 나타낸 결과이다.3 is a result showing the ratio of ammonia ions present in the reaction tank 140 are transferred through the cation exchange membrane 150 in the form of ions, and the converted ammonia is desorbed by the gas supply unit 160 .
기체공급장치(160)에 의하여 환원전극(120)으로 공급되는 유량이 약 5 mL/min/cm2에서 약 20 mL/min/cm2으로 증가할 때, 암모니아 회수율이 약 55 %에서 약 98%까지 증가하는 것을 확인할 수 있다.When the flow rate supplied to the cathode 120 by the gas supply device 160 is increased from about 5 mL/min/cm 2 to about 20 mL/min/cm 2 , the ammonia recovery rate is from about 55% to about 98% It can be seen that increases up to
그러면 일 실시예에 따른 암모니아의 회수 방법에 대하여 상세하게 설명한다. 전술한 암모니아의 회수 장치에 대한 설명과 중복되는 설명은 생략한다.Then, a method for recovering ammonia according to an embodiment will be described in detail. A description overlapping with the description of the above-described ammonia recovery device will be omitted.
암모니아의 회수 방법은 반응조에 암모니아 또는 암모늄 이온을 포함하는 폐수를 담는 단계, 반응조에 연결되어 있는 산화전극에서 산화반응이 일어나는 단계, 산화전극에 대향하는 환원전극에서 환원반응이 일어나는 단계, 산화전극과 환원전극 사이에 위치하는 양이온교환막에서 암모늄 이온이 통과하는 단계, 그리고 산화전극 및 환원전극에 연결되어 있는 전원공급장치가 전기에너지를 공급하는 단계를 포함한다.Ammonia recovery method includes a step of putting wastewater containing ammonia or ammonium ions in a reaction tank, an oxidation reaction taking place in an anode connected to the reaction tank, a step in which a reduction reaction occurs in a cathode facing the anode electrode, and an anode and A step of passing ammonium ions in the cation exchange membrane positioned between the cathodes, and a power supply connected to the anode and the cathode for supplying electrical energy.
암모늄 이온은 암모니아로 전환되고, 기체 상태의 암모니아가 회수될 수 있다.Ammonium ions are converted to ammonia, and gaseous ammonia can be recovered.
암모늄 이온은 환원전극과 양이온교환막 사이에서 생성되는 수산화 이온과 반응하여 액체상 암모니아로 농축될 수 있다. Ammonium ions can be concentrated into liquid ammonia by reacting with hydroxide ions generated between the cathode and the cation exchange membrane.
농축되는 액체상 암모니아는 환원전극으로 공급되는 산소에 의해 기체 상태의 암모니아로 회수될 수 있다.The concentrated liquid ammonia may be recovered as gaseous ammonia by oxygen supplied to the cathode.
수산화 이온은 환원전극에서 산소의 환원반응 또는 물의 환원반응에 의하여 생성될 수 있다.Hydroxide ions may be generated by a reduction reaction of oxygen or a reduction reaction of water at the reduction electrode.
폐수는 유기물을 포함할 수 있고, 유기물은 산화전극에서의 산화반응에 의하여 분해될 수 있다.The wastewater may contain organic matter, and the organic matter may be decomposed by an oxidation reaction at the anode.
환원전극 상에 위치하는 촉매에서 환원반응을 유도할 수 있다.A reduction reaction can be induced in the catalyst located on the reduction electrode.
전원공급장치에 인가하는 전압을 조절하여 암모늄 이온의 이동 속도를 제어할 수 있다.The movement speed of ammonium ions can be controlled by adjusting the voltage applied to the power supply.
환원전극으로 공급되는 산소의 유량을 조절하여 회수되는 암모니아의 농도를 제어할 수 있다.The concentration of recovered ammonia can be controlled by adjusting the flow rate of oxygen supplied to the cathode.
그러면 일 실시예에 따른 암모니아회수장치용 전기화학장치에 대하여 상세하게 설명한다. 전술한 암모니아의 회수 장치에 대한 설명과 중복되는 설명은 생략한다.Then, an electrochemical device for an ammonia recovery device according to an embodiment will be described in detail. A description overlapping with the description of the above-described ammonia recovery device will be omitted.
암모니아회수장치용 전기화학장치는 암모니아 또는 암모늄 이온을 포함하는 폐수를 담는 반응조, 반응조에 연결되며, 산화 반응이 일어나는 산화전극, 산화전극에 대향하고 환원반응이 일어나는 환원전극, 산화전극과 환원전극 사이에 위치하고, 암모늄 이온을 통과시키는 양이온교환막, 그리고 산화전극 및 환원전극에 연결되어 전기에너지를 공급하는 전원공급장치를 포함한다.The electrochemical device for the ammonia recovery device is connected to a reaction tank containing ammonia or ammonium ion-containing wastewater, the reaction tank, an anode where an oxidation reaction occurs, a cathode opposite to the anode and where a reduction reaction occurs, and between the anode and the cathode. Located in the cation exchange membrane through which ammonium ions pass, and a power supply device connected to the anode and cathode to supply electrical energy.
암모니아회수장치용 전기화학장치는 환원전극 상에 위치하는 촉매를 더 포함할 수 있다.The electrochemical device for the ammonia recovery device may further include a catalyst positioned on the reduction electrode.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다. Although the preferred embodiment of the present invention has been described in detail above, the scope of the present invention is not limited thereto, and various modifications and improvements by those skilled in the art using the basic concept of the present invention as defined in the following claims are also provided. is within the scope of the
Claims (20)
- 암모니아 또는 암모늄 이온을 포함하는 폐수를 담는 반응조,a reactor containing wastewater containing ammonia or ammonium ions;상기 반응조에 연결되며, 산화 반응이 일어나는 산화전극,an anode connected to the reaction tank, where an oxidation reaction occurs,상기 산화전극에 대향하고 환원반응이 일어나는 환원전극, a reduction electrode facing the anode and a reduction reaction occurs;상기 산화전극과 상기 환원전극 사이에 위치하고, 상기 암모늄 이온을 통과시키는 양이온교환막, 그리고A cation exchange membrane positioned between the anode and the cathode and allowing the ammonium ions to pass therethrough, and상기 산화전극 및 상기 환원전극에 연결되어 전기에너지를 공급하는 전원공급장치A power supply device connected to the anode and the cathode to supply electrical energy를 포함하는 암모니아 회수 장치.Ammonia recovery device comprising a.
- 제1항에서, In claim 1,상기 암모늄 이온은 암모니아로 전환되고, 기체 상태의 암모니아가 회수되는 것인 암모니아 회수 장치.The ammonium ions are converted to ammonia, and ammonia recovery apparatus in which gaseous ammonia is recovered.
- 제2항에서, In claim 2,상기 암모늄 이온은 상기 환원전극과 상기 양이온교환막 사이에서 생성되는 수산화 이온과 반응하여 액체상 암모니아로 농축되는 것인 암모니아 회수 장치.The ammonium ions react with the hydroxide ions generated between the cathode and the cation exchange membrane to be concentrated into liquid ammonia.
- 제3항에서, In claim 3,농축되는 상기 액체상 암모니아는 상기 환원전극으로 공급되는 공기 또는 산소에 의해 기체 상태의 암모니아로 회수되는 것인 암모니아 회수 장치.The concentrated liquid ammonia is recovered as gaseous ammonia by air or oxygen supplied to the cathode.
- 제4항에서, In claim 4,상기 수산화 이온은 상기 환원전극에서 산소의 환원반응 또는 물의 환원반응에 의하여 생성되는 것인 암모니아 회수 장치.The hydroxide ion is an ammonia recovery device that is generated by the reduction reaction of oxygen or the reduction reaction of water in the reduction electrode.
- 제4항에서, In claim 4,상기 폐수는 유기물을 포함하고, 상기 유기물은 상기 산화전극에서의 산화반응에 의하여 분해되는 것인 암모니아 회수 장치.The wastewater includes an organic material, and the organic material is decomposed by an oxidation reaction at the anode.
- 제1항에서, In claim 1,상기 환원전극 상에 위치하는 촉매를 더 포함하는 암모니아 회수 장치.Ammonia recovery device further comprising a catalyst located on the cathode.
- 제1항에서, In claim 1,상기 전원공급장치에 인가하는 전압을 조절하여 암모늄 이온의 이동 속도를 제어하는 암모니아 회수 장치.Ammonia recovery device for controlling the movement speed of ammonium ions by adjusting the voltage applied to the power supply.
- 제1항에서, In claim 1,상기 환원전극으로 공급되는 공기 또는 산소의 유량을 조절하여 회수되는 암모니아의 농도를 제어하는 암모니아 회수 장치.Ammonia recovery device for controlling the concentration of the recovered ammonia by adjusting the flow rate of air or oxygen supplied to the cathode.
- 반응조에 암모니아 또는 암모늄 이온을 포함하는 폐수를 담는 단계,Putting wastewater containing ammonia or ammonium ions in a reactor;상기 반응조에 연결되어 있는 산화전극에서 산화반응이 일어나는 단계,Oxidation reaction occurs in the oxidation electrode connected to the reaction tank;상기 산화전극에 대향하는 환원전극에서 환원반응이 일어나는 단계, a step in which a reduction reaction occurs in the anode opposite to the anode;상기 산화전극과 상기 환원전극 사이에 위치하는 양이온교환막에서 상기 암모늄 이온이 통과하는 단계, 그리고The step of passing the ammonium ion in the cation exchange membrane located between the anode and the cathode, and상기 산화전극 및 상기 환원전극에 연결되어 있는 전원공급장치가 전기에너지를 공급하는 단계The step of supplying electrical energy by a power supply connected to the anode and the cathode를 포함하는 암모니아 회수 방법.Ammonia recovery method comprising a.
- 제10항에서, In claim 10,상기 암모늄 이온은 암모니아로 전환되고, 기체 상태의 암모니아가 회수되는 것인 암모니아 회수 방법.The ammonium ion is converted to ammonia, and ammonia in a gaseous state is recovered.
- 제11항에서, In claim 11,상기 암모늄 이온은 상기 환원전극과 상기 양이온교환막 사이에서 생성되는 수산화 이온과 반응하여 액체상 암모니아로 농축되는 것인 암모니아 회수 방법.The ammonium ion reacts with hydroxide ions generated between the cathode and the cation exchange membrane and is concentrated to liquid ammonia.
- 제12항에서, In claim 12,농축되는 상기 액체상 암모니아는 상기 환원전극으로 공급되는 산소에 의해 기체 상태의 암모니아로 회수되는 것인 암모니아 회수 방법.The concentrated liquid ammonia is recovered as gaseous ammonia by oxygen supplied to the cathode.
- 제13항에서, In claim 13,상기 수산화 이온은 상기 환원전극에서 산소의 환원반응 또는 물의 환원반응에 의하여 생성되는 것인 암모니아 회수 방법.The method for recovering ammonia is that the hydroxide ions are generated by a reduction reaction of oxygen or a reduction reaction of water in the reduction electrode.
- 제13항에서, In claim 13,상기 폐수는 유기물을 포함하고, 상기 유기물은 상기 산화전극에서의 산화반응에 의하여 분해되는 것인 암모니아 회수 방법.The wastewater includes an organic material, and the organic material is decomposed by an oxidation reaction at the anode.
- 제10항에서, In claim 10,상기 환원전극 상에 위치하는 촉매에서 상기 환원반응을 유도하는 암모니아 회수 방법.Ammonia recovery method for inducing the reduction reaction in the catalyst located on the reduction electrode.
- 제10항에서, In claim 10,상기 전원공급장치에 인가하는 전압을 조절하여 암모늄 이온의 이동 속도를 제어하는 암모니아 회수 방법.Ammonia recovery method for controlling the movement speed of ammonium ions by adjusting the voltage applied to the power supply.
- 제10항에서, In claim 10,상기 환원전극으로 공급되는 산소의 유량을 조절하여 회수되는 암모니아의 농도를 제어하는 암모니아 회수 방법.Ammonia recovery method for controlling the concentration of the recovered ammonia by adjusting the flow rate of oxygen supplied to the cathode.
- 암모니아 또는 암모늄 이온을 포함하는 폐수를 담는 반응조,a reactor containing wastewater containing ammonia or ammonium ions;상기 반응조에 연결되며, 산화 반응이 일어나는 산화전극,an anode connected to the reaction tank, where an oxidation reaction occurs,상기 산화전극에 대향하고 환원반응이 일어나는 환원전극, a reduction electrode facing the anode and a reduction reaction occurs;상기 산화전극과 상기 환원전극 사이에 위치하고, 상기 암모늄 이온을 통과시키는 양이온교환막, 그리고A cation exchange membrane positioned between the anode and the cathode and allowing the ammonium ions to pass therethrough, and상기 산화전극 및 상기 환원전극에 연결되어 전기에너지를 공급하는 전원공급장치A power supply device connected to the anode and the cathode to supply electrical energy를 포함하는 암모니아회수장치용 전기화학장치.An electrochemical device for an ammonia recovery device comprising a.
- 제19항에서, In paragraph 19,상기 환원전극 상에 위치하는 촉매를 더 포함하는 암모니아회수장치용 전기화학장치.An electrochemical device for an ammonia recovery device further comprising a catalyst positioned on the cathode.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2021-0028244 | 2021-03-03 | ||
KR1020210028244A KR20220124512A (en) | 2021-03-03 | 2021-03-03 | Apparatus and method for recovery of ammonia in wastewater |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022186452A1 true WO2022186452A1 (en) | 2022-09-09 |
Family
ID=83155388
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2021/017541 WO2022186452A1 (en) | 2021-03-03 | 2021-11-25 | Apparatus and method for recovery of ammonia in wastewater |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20220124512A (en) |
WO (1) | WO2022186452A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030061230A (en) * | 2002-01-11 | 2003-07-18 | 김병화 | System for treating wastewater contained nitrogen |
US20040251212A1 (en) * | 2001-06-28 | 2004-12-16 | Mineo Ikematsu | Method of wastewater treatment and wastewater treatment apparatus |
KR20130019640A (en) * | 2011-08-17 | 2013-02-27 | 광주과학기술원 | A process of desalination and preparing hydrogen peroxide by using microbial electrochemical cell |
KR20140103693A (en) * | 2013-02-19 | 2014-08-27 | 코웨이 주식회사 | Apparatus for treatment of wastewater capable of recovery of nitrogen and phosphate and method for treatment of wastewater |
KR20200072218A (en) * | 2018-12-12 | 2020-06-22 | 한국과학기술원 | Method for simultaneous removal of ammonia, hydrogen sulfide and heavy metal in wastewater |
-
2021
- 2021-03-03 KR KR1020210028244A patent/KR20220124512A/en not_active Application Discontinuation
- 2021-11-25 WO PCT/KR2021/017541 patent/WO2022186452A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040251212A1 (en) * | 2001-06-28 | 2004-12-16 | Mineo Ikematsu | Method of wastewater treatment and wastewater treatment apparatus |
KR20030061230A (en) * | 2002-01-11 | 2003-07-18 | 김병화 | System for treating wastewater contained nitrogen |
KR20130019640A (en) * | 2011-08-17 | 2013-02-27 | 광주과학기술원 | A process of desalination and preparing hydrogen peroxide by using microbial electrochemical cell |
KR20140103693A (en) * | 2013-02-19 | 2014-08-27 | 코웨이 주식회사 | Apparatus for treatment of wastewater capable of recovery of nitrogen and phosphate and method for treatment of wastewater |
KR20200072218A (en) * | 2018-12-12 | 2020-06-22 | 한국과학기술원 | Method for simultaneous removal of ammonia, hydrogen sulfide and heavy metal in wastewater |
Also Published As
Publication number | Publication date |
---|---|
KR20220124512A (en) | 2022-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017010814A1 (en) | Method and apparatus for preparing reduced product of carbon dioxide by electrically reducing carbon dioxide | |
WO2014094399A1 (en) | Wastewater treatment device and method for in-situ electric generation of h2o2 cooperating with o3 oxidation | |
WO2014196825A1 (en) | Bioelectrochemical system having polyvalent ion removing function | |
CA2120177C (en) | Method for recovering and reproducing tinning liquid | |
WO2020184796A1 (en) | Electrolysis device for producing hydrogen and oxygen | |
WO2017023029A1 (en) | Electrolysis reactor for acidic gas removal with high gas/liquid contact efficiency and method therefor | |
WO2016208965A1 (en) | Catalyst for water splitting and method for preparing same | |
WO2012005548A2 (en) | Method for economical extraction of magnesium,boron and calcium from lithium bearing solution | |
WO2018066756A1 (en) | Carbon dioxide separator | |
WO2022186452A1 (en) | Apparatus and method for recovery of ammonia in wastewater | |
WO2020159224A1 (en) | Electrochemical reactor and production method for producing ammonium nitrate from nitrogen oxides | |
US20220177343A1 (en) | Combined waste water and gas treatment system for efficiently decarbonizing and removing nitrogen | |
WO2021015378A1 (en) | Method for producing lithium hydroxide | |
WO2017171115A1 (en) | Formic acid preparation apparatus and formic acid preparation method | |
WO2022045747A1 (en) | Method for manufacturing lithium hydroxide from lithium-containing source | |
WO2019013373A1 (en) | Radical scavenger composition for pemfc, radical scavenger for pemfc, and preparation method therefor | |
WO2016114439A1 (en) | Method for simultaneously recovering cobalt and manganese from lithium based battery | |
WO2011049281A1 (en) | Carbon dioxide isolating device and method | |
WO2020071631A1 (en) | Bioelectrochemical reactor for biological c1 gas conversion process, and process method using same | |
WO2017047915A1 (en) | Apparatus for treating fly ash, and method for treating fly ash by using same | |
WO2018052220A1 (en) | Method and facility for preparing sodium bicarbonate and calcium carbonate | |
WO2018088783A1 (en) | Method and apparatus for continuous removal of carbon dioxide | |
WO2013191402A1 (en) | Method for generating hydrogen and sulfuric acid from sulfur dioxide gas by using diluted gas | |
WO2020204393A1 (en) | Exhaust gas purification system for reducing fine dust | |
WO2022092547A2 (en) | High-concentration sterilizing water generation device and method using plasma discharge |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21929314 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21929314 Country of ref document: EP Kind code of ref document: A1 |