WO2014094399A1 - Wastewater treatment device and method for in-situ electric generation of h2o2 cooperating with o3 oxidation - Google Patents

Wastewater treatment device and method for in-situ electric generation of h2o2 cooperating with o3 oxidation Download PDF

Info

Publication number
WO2014094399A1
WO2014094399A1 PCT/CN2013/074737 CN2013074737W WO2014094399A1 WO 2014094399 A1 WO2014094399 A1 WO 2014094399A1 CN 2013074737 W CN2013074737 W CN 2013074737W WO 2014094399 A1 WO2014094399 A1 WO 2014094399A1
Authority
WO
WIPO (PCT)
Prior art keywords
wastewater
oxidation
gas diffusion
cathode
inert anode
Prior art date
Application number
PCT/CN2013/074737
Other languages
French (fr)
Chinese (zh)
Inventor
王玉珏
袁实
Original Assignee
Wang Yujue
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN2012105494723 priority Critical
Priority to CN2012105494723A priority patent/CN102976451A/en
Application filed by Wang Yujue filed Critical Wang Yujue
Publication of WO2014094399A1 publication Critical patent/WO2014094399A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • C02F2001/46157Perforated or foraminous electrodes
    • C02F2001/46161Porous electrodes
    • C02F2001/46166Gas diffusion electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/023Reactive oxygen species, singlet oxygen, OH radical

Abstract

A wastewater treatment device and a method for in-situ electric generation of H2O2 cooperating with O3 oxidation. The device comprises a reaction container. Bottom of the reaction container is provided with a magnetic stirrer. A stirring magneton is arranged in the reaction container. An inner part of the reaction container is provided with a stainless steel micro-pore aeration plate, an inert anode and a gas diffusion cathode, the inert anode and the gas diffusion cathode are vertically opposite to each other, the reaction container is also provided with a pipeline for introducing O3, and the inert anode and the gas diffusion cathode adopt a DC (direct current) power supply. The method comprises: firstly the inert anode and the gas diffusion cathode being immersed in a wastewater solution, and connecting with the DC power supply, then connecting pure oxygen with an ozone generator by a polytetrafluoroethylene tube, connecting the stainless steel micro-pore aeration plate with gas outlet of the ozone generator, and inserting the stainless steel micro-pore aeration plate into the bottom of the wastewater solution, finally, switching on the DC power supply to treat the wastewater solution. Through the invention, H2O2 is continuously and efficiently generated and can quickly react with O3 to generate·OH so as to efficiently remove persistent organic pollutants in the water.

Description

一种原位电产生 H2O2 协同 O3 氧化的废水处理装置及方法 In situ electrical generation H2O2 collaboration O3 oxidation wastewater treatment device and method 技术领域Technical field
本发明属于电化学废水处理技术领域,具体涉及一种原位电产生 H2O2 协同 O3 氧化的废水处理装置及方法。 The invention belongs to the technical field of electrochemical wastewater treatment, and particularly relates to a wastewater treatment device and method for in situ electric generation of H 2 O 2 and O 3 oxidation.
背景技术Background technique
O3 氧化技术被广泛用于污水治理和净化工艺。 O3 在氧化过程中有两种机理:( 1 )直接氧化。在酸性溶液中,由于其氧化还原电位较高 2.07 V vs. NHE , O3 分子可亲电进攻有机物使其氧化。( 2 )间接氧化。在碱性溶液中,其氧化还原电位为 1.25 V vs. NHE , O3 分子先产生具有强氧化性的 •OH ,从而降解有机物。根据以上特点, O3 氧化具有氧化能力有限、受 pH 影响较大等缺陷,不适用于实际污水的处理。O 3 oxidation technology is widely used in wastewater treatment and purification processes. O 3 has two mechanisms in the oxidation process: (1) direct oxidation. In an acidic solution, due to its higher redox potential of 2.07 V vs. NHE, the O 3 molecule can attack the organic substance by electroporation to oxidize it. (2) Indirect oxidation. In an alkaline solution, the redox potential is 1.25 V vs. NHE, and the O 3 molecule first produces a strong oxidizing •OH, thereby degrading organic matter. According to the above characteristics, O 3 oxidation has defects such as limited oxidation capacity and large influence by pH, and is not suitable for the treatment of actual sewage.
近些年,一些基于 O3 氧化的高级氧化技术(如 UV/O3 、 H2O2/O3(Peroxone) 等)得到了广泛研究,这些新技术可有效处理含氯、有机农药以及药物的污水。In recent years, some advanced oxidation technologies based on O 3 oxidation (such as UV/O 3 , H 2 O 2 /O 3 (Peroxone), etc.) have been extensively studied. These new technologies can effectively treat chlorine, organic pesticides and drugs. Sewage.
Peroxone 过程是指在水溶液中,利用 H2O2 和 O3 反应产生 •OH 而降解有机污染物的过程。 Ormad 等人研究了使用 Peroxone 过程处理有机氯废水(三氯杀螨醇和涕滴恩),结果表明 Peroxone 氧化体系比 O3 氧化体系能更有效的去除氯苯类物质。 Ku 等人将 Peroxone 过程用于降解丙酮溶液,其结果表明:( 1 )在碱性条件下 Peroxone 降解效率更高( 2 ) H2O2 与 O3 的摩尔比为 0.5 时,降解效果最佳。The Peroxone process refers to the process of degrading organic contaminants by using an aqueous solution of H 2 O 2 and O 3 to produce •OH. Ormad et al. studied the use of the Peroxone process for the treatment of organochlorine wastewater (dicloxanol and hydrazine). The results show that the Peroxone oxidation system is more effective at removing chlorobenzenes than the O 3 oxidation system. Ku et al. used the Peroxone process to degrade acetone solution. The results showed that: (1) Peroxone has higher degradation efficiency under alkaline conditions. (2) When the molar ratio of H 2 O 2 to O 3 is 0.5, the degradation effect is best. .
1894 年,法国人 Fenton 在研究中发现亚铁离子( Fe2+ )与过氧化氢( H2O2 )在酸性水溶液中,可以有效氧化酒石酸,这种亚铁盐和 H2O2 的反应叫做 Fenton 反应。随着进一步的研究,电 - 芬顿( Electro-Fenton )综合了电化学过程和 Fenton 过程,将电化学过程产生的 Fe2+ 和 H2O2 作为 Fenton 试剂的持续来源,在反应过程中无须添加任何试剂,且大大提高了 Fenton 处理的效率。In 1894, the French Fenton found in the study that ferrous ions (Fe 2+ ) and hydrogen peroxide (H 2 O 2 ) in an acidic aqueous solution can effectively oxidize tartaric acid, the reaction of this ferrous salt and H 2 O 2 Called the Fenton reaction. With further research, Electro-Fenton combines electrochemical processes with Fenton processes to provide Fe 2+ and H 2 O 2 from electrochemical processes as a continuous source of Fenton reagents, without the need for a reaction Add any reagents and greatly increase the efficiency of Fenton treatment.
技术问题technical problem
O3 氧化具有氧化能力有限、受 pH 影响较大等缺陷,不适用于实际污水的处理 。 O 3 oxidation has defects such as limited oxidation capacity and large influence on pH, and is not suitable for the treatment of actual sewage.
技术解决方案Technical solution
一种原位电产生 H2O2 协同 O3 氧化的废水处理装置及方法,完全不需加药剂,利用电化学方法持续、高效产生 H2O2 ,并能与 O3 迅速反应产生 •OH 高效去除水体中难降解有机污染物。The invention relates to a waste water treatment device and a method for generating H 2 O 2 and O 3 oxidation in situ, which does not need to add a chemical agent, and continuously and efficiently generates H 2 O 2 by electrochemical method, and can rapidly react with O 3 to generate •OH Efficient removal of refractory organic pollutants in water.
具体方案为:The specific plan is:
一种原位电产生 H2O2 协同 O3 氧化的废水处理装置,包括反应容器 4 ,反应容器 4 的底部设有磁力搅拌器 1 ,搅拌磁子 2 设在反应容器 4 内,反应容器 4 的内部设有不锈钢微孔曝气头 3 、惰性阳极 5 和气体扩散阴极 6 ,搅拌磁子 2 、不锈钢微孔曝气头 3 、惰性阳极 5 和气体扩散阴极 6 浸没在废水溶液中,惰性阳极 5 和气体扩散阴极 6 竖直相对,反应容器 4 还设有通入 O3 的管路,惰性阳极 5 和气体扩散阴极 6 采用直流电源。A waste water treatment device for generating H 2 O 2 and O 3 oxidation in situ, comprising a reaction vessel 4, a magnetic stirrer 1 is arranged at the bottom of the reaction vessel 4, and a stirring magnet 2 is arranged in the reaction vessel 4, the reaction vessel 4 The inside is provided with a stainless steel microporous aeration head 3, an inert anode 5 and a gas diffusion cathode 6, a stirring magnet 2, a stainless steel microporous aeration head 3, an inert anode 5 and a gas diffusion cathode 6 immersed in a waste water solution, an inert anode 5 The gas diffusion cathode 6 is vertically opposed, the reaction vessel 4 is also provided with a line leading to O 3 , and the inert anode 5 and the gas diffusion cathode 6 are made of a DC power source.
阴极 O2 还原过程需要对废水溶液进行微孔曝气,所曝气体为 O2 与 O3 的混合气体,其中 O2 体积分数大于 95% ,所曝 O3 的量为 0-20 g/(h·L 废水 ) ,采用不锈钢微孔曝气,曝气流量范围为 0-0.5 L/min ,曝气同时伴随着 800-1200 rpm 的搅拌。The cathode O 2 reduction process requires microporous aeration of the wastewater solution. The exposed gas is a mixed gas of O 2 and O 3 , wherein the volume fraction of O 2 is greater than 95%, and the amount of O 3 exposed is 0-20 g/ (h·L wastewater), using stainless steel microporous aeration, aeration flow rate range of 0-0.5 L / min, aeration accompanied by 800-1200 rpm agitation.
所述的气体扩散阴极 6 采用炭黑 - 聚四氟乙烯( C-PTFE )气体扩散电极,在直流电场中,制得 C-PTFE 阴极表面在废水溶液中形成固液气三相界面,并于此三相界面处还原溶解的 O2 生成 H2O2 ,进而与通入的 O3 反应生成具有强氧化性的 •OH 。The gas diffusion cathode 6 adopts a carbon black-polytetrafluoroethylene (C-PTFE) gas diffusion electrode, and in the direct current electric field, a C-PTFE cathode surface is formed to form a solid-liquid three-phase interface in the wastewater solution, and At this three-phase interface, the dissolved O 2 is reduced to form H 2 O 2 , which in turn reacts with the introduced O 3 to form a strong oxidizing •OH.
所述直流电源为恒定电流的直流电源,通电时阴极电流密度范围为 0-60 mA/cm2The DC power source is a constant current DC power source, and the cathode current density ranges from 0 to 60 mA/cm 2 when energized.
所述的废水的溶液初始 TOC 范围为 0-100000 ppm ;允许的 pH 范围为 2-12 。 The initial TOC range of the wastewater solution is 0-100000 ppm; the allowable pH range is 2-12 .
一种原位电产生 H2O2 协同 O3 氧化的废水处理方法,包括以下步骤:A wastewater treatment method for generating H 2 O 2 and O 3 oxidation in situ, comprising the following steps:
第一步,将准备好的惰性阳极 5 和气体扩散阴极 6 插入到 废水溶液 中,并将之与直流电源连接,通电时阴极电流密度范围为 0-60 mA/cm2In the first step, the prepared inert anode 5 and the gas diffusion cathode 6 are inserted into the wastewater solution and connected to the DC power source, and the cathode current density ranges from 0 to 60 mA/cm 2 when energized;
第二步,向反应容器 4 中通过微孔曝气头 3 曝入 O2 和 O3 的混合气体,所曝气体流速范围为 0-0.5 L/min ;In the second step, the mixed gas of O 2 and O 3 is exposed to the reaction vessel 4 through the microporous aeration head 3, and the exposed gas flow rate ranges from 0 to 0.5 L/min;
第三步,根据恒定电流、 O2 和 O3 混合气体流量,接通直流电源,处理废水溶液。In the third step, according to the constant current, O 2 and O 3 mixed gas flow rate, the DC power source is turned on to treat the wastewater solution.
原位电产生 H2O2 协同 O3 氧化处理废水 0.5 h-12 h之后,可达到明显的去除效果。In situ generation of H 2 O 2 and O 3 oxidation treatment of wastewater for 0.5 h-12 h can achieve significant removal.
有益效果Beneficial effect
1、不需要加入化学药剂,大幅降低处理成本。  1. There is no need to add chemical agents, which greatly reduces the processing cost.
2、 H2O2 由气体扩散阴极持续原位产生,提高了安全性能。 2. H 2 O 2 is continuously generated in situ by the gas diffusion cathode, improving safety performance.
3、 持续原位产生的 H2O2 与持续制得的 O3 可充分发生反应,提高反应效率。 3. Continuously generating H 2 O 2 in situ and continuously producing O 3 can fully react and improve the reaction efficiency.
4、 处理废水的 pH 范围广,无需调节 pH 。 4. The pH range of wastewater treatment is wide, and there is no need to adjust pH.
5、 处理过程清洁,不会产生污泥以及二次污染。 5, the process is clean, no sludge and secondary pollution.
6、 处理过程中只需控制直流电流以及曝气流速,易于控制。 6. It is only necessary to control the DC current and the aeration flow rate during the process, which is easy to control.
7、 可与其他废水处理技术联用,提高处理效率。 7. It can be combined with other wastewater treatment technologies to improve treatment efficiency.
附图说明DRAWINGS
附图为本发明的装置结构示意图。 The drawings are schematic views of the structure of the device of the present invention.
本发明的最佳实施方式BEST MODE FOR CARRYING OUT THE INVENTION
参照附图,本发明的原理是:向有机 废水的溶液 中通入 O2 和 O3 的混合气体,在直流电场中,废水中溶解的 O2 被还原为 H2O2 ,继而与溶液中溶解的 O3 发生反应生成具有强氧化性的 •OH ,从而氧化降解有机污染物,此过程中需根据情况,向被处理废水中加入或不加入一定量电解质使其具有良好的导电性能。 Referring to the drawings, the principle of the present invention is to introduce a mixed gas of O 2 and O 3 into a solution of organic wastewater, in which a dissolved O 2 in the wastewater is reduced to H 2 O 2 , and then to the solution. The dissolved O 3 reacts to form a strong oxidizing •OH, which oxidizes and degrades organic pollutants. In this process, depending on the situation, a certain amount of electrolyte may or may not be added to the treated wastewater to have good electrical conductivity.
下面采用本装置及方法对几种废水进行处理,其结果如下:  The following several devices are used to treat several wastewaters, and the results are as follows:
实施例 1 : 与 O3 氧化、电产生 H2O2 氧化对有机物的去除比较Example 1: Comparison of Oxidation with O 3 and Electrochemical Production of H 2 O 2 Oxidation
实验条件:气体扩散阴极 6 面积: 10 cm 2 Experimental conditions: gas diffusion cathode 6 area: 10 cm 2
惰性阳极 5 面积: 1 cm 2 Inert anode 5 Area: 1 cm 2
直流电源: 100 mA DC power supply: 100 mA
电解质: 0.05 M Na2SO4 溶液Electrolyte: 0.05 M Na 2 SO 4 solution
O3 浓度: 60.82 mg/LO 3 concentration: 60.82 mg/L
曝气流速: 0.4 L /min Aeration flow rate: 0.4 L / min
废水溶液 初始 TOC 值: 85 ppm Wastewater solution Initial TOC value: 85 ppm
废水溶液 初始 pH 值: 8.18 Wastewater solution initial pH: 8.18
注: 废水的溶液 为 Orange II 水溶液 , Orange II 是一种染料,化学式为 C16H11N2NaO4S ; O3 氧化实验中直接向溶液中曝混合气体;电产生 H2O2 氧化实验中所曝气体为纯氧气。Note: The solution of wastewater is Orange II aqueous solution, Orange II is a dye with chemical formula C 16 H 11 N 2 NaO 4 S; O 3 oxidation experiment directly exposes mixed gas to solution; electricity produces H 2 O 2 oxidation experiment The gas exposed in the process is pure oxygen.
表 1 不同处理工艺去除效果比较  Table 1 Comparison of removal effects of different treatment processes
处理时间( min ) Processing time ( min ) 去除率( % )  Removal rate (%) 去除率( % ) Removal rate (%) 去除率( % ) Removal rate (%)
O3 氧化 O 3 oxidation 电产生 H2O2 氧化 Electrically generated H 2 O 2 oxidation Electro-Peroxone Electro-Peroxone
0 0 0 0 0 0 0 0
15 15 31.65 31.65 2.31 2.31 40.47 40.47
30 30 45.62 45.62 3.14 3.14 63.49 63.49
45 45 58.41 58.41 4.59 4.59 78.74 78.74
60 60 71.51 71.51 5.72 5.72 88.84 88.84
90 90 85.71 85.71 10.30 10.30 94.68 94.68
表 1 说明了相对于 O3 氧化、电产生 H2O2 直接氧化,电产生 H2O2 协同 O3 氧化显示了更优异的降解 Orange II 能力,去除效果有了明显的提升。 Table 1 shows that the direct oxidation of H 2 O 2 with respect to O 3 oxidation and electricity generation, the electrical generation of H 2 O 2 and the O 3 oxidation show a superior degradation of Orange II ability, and the removal effect is significantly improved.
实施例 2. :不同电解电流对有机物的去除比较 Example 2. Comparison of removal of organic matter by different electrolysis currents
实验条件:气体扩散阴极 6 面积: 20 cm2 Experimental conditions: gas diffusion cathode 6 area: 20 cm 2
惰性阳极 5 面积: 1 cm2 Inert anode 5 Area: 1 cm 2
直流电源: 0 mA 、 200 mA 、 400 mA 、 DC power supply: 0 mA, 200 mA, 400 mA,
O3 浓度: 60.82 mg/LO 3 concentration: 60.82 mg/L
曝气流速: 0.3 L/min Aeration flow rate: 0.3 L/min
废水溶液 初始 TOC 值: 1550 ppm Wastewater solution Initial TOC value: 1550 ppm
废水溶液 初始 pH 值: 7.91 Wastewater solution initial pH: 7.91
注:被处理溶液为垃圾渗滤液 Note: The treated solution is landfill leachate
表 2 不同电解电流对降解结果的影响 Table 2 Effect of different electrolysis currents on degradation results
处理时间( min ) Processing time ( min ) 去除率( % ) Removal rate (%) 去除率( % ) Removal rate (%) 去除率( % ) Removal rate (%)
I= 0 mA  I= 0 mA I= 200 mA I= 200 mA I= 400mA I= 400mA
0 0 0 0 0 0 0 0
30 30 12.74 12.74 13.42 13.42 18.99 18.99
60 60 18.79 18.79 21.84 21.84 29.57 29.57
120 120 31.57 31.57 35.84 35.84 47.92 47.92
180 180 33.17 33.17 54.89 54.89 62.92 62.92
240 240 34.00 34.00 64.74 64.74 76.20 76.20
300 300 43.00 43.00 76.19 76.19 84.82 84.82
360 360 54.65 54.65 84.90 84.90 88.81 88.81
表 2 说明了在所控电流范围内,电解电流越大,电产生 H2O2 协同 O3 氧化去除效果越好,这是由于电流增大会产生更多的 H2O2 ,提高了降解效率。Table 2 shows that the larger the electrolysis current in the controlled current range, the better the effect of H 2 O 2 and O 3 oxidation removal. This is because the current increases to produce more H 2 O 2 , which improves the degradation efficiency. .
实施例 3. :曝不同浓度 O3 对有机物的去除比较Example 3. Comparison of removal of organic matter by exposure to different concentrations of O 3
实验条件:气体扩散阴极 6 面积: 20 cm2 Experimental conditions: gas diffusion cathode 6 area: 20 cm 2
惰性阳极 5 面积: 1 cm2 Inert anode 5 Area: 1 cm 2
直流电源: 100 mA DC power supply: 100 mA
O3 浓度: 0 mg/L 、 30 mg/L 、 60.82 mg/LO 3 concentration: 0 mg/L, 30 mg/L, 60.82 mg/L
曝气流速: 0.3 L/min Aeration flow rate: 0.3 L/min
废水溶液 初始 TOC 值: 1550 ppm Wastewater solution Initial TOC value: 1550 ppm
废水溶液 初始 pH 值: 7.91 Wastewater solution initial pH: 7.91
注:被处理溶液为垃圾渗滤液 Note: The treated solution is landfill leachate
表 3 曝不同浓度 O3 对降解结果影响Table 3 Effect of exposure to different concentrations of O 3 on degradation results
处理时间( min ) Processing time ( min ) 去除率( % ) Removal rate (%) 去除率( % ) Removal rate (%) 去除率( % ) Removal rate (%)
COzone=0 mg/L C Ozone =0 mg/L COzone=30 mg/L C Ozone = 30 mg/L COzone=60.82 mg/L C Ozone =60.82 mg/L
0 0 0 0 0 0 0 0
30 30 2.67 2.67 15.14 15.14 15.54 15.54
60 60 7.41 7.41 24.09 24.09 24.09 24.09
120 120 17.07 17.07 33.41 33.41 45.86 45.86
180 180 18.46 18.46 47.20 47.20 60.56 60.56
240 240 18.66 18.66 57.71 57.71 73.20 73.20
300 300 30.52 30.52 67.63 67.63 86.46 86.46
360 360 34.01 34.01 76.80 76.80 91.35 91.35
表 3 说明了随着所曝 O3 浓度增加,对垃圾渗滤液的去除效率更高,这是由于在此过程中产生了更多的 •OH 。Table 3 shows that as the concentration of O 3 exposed increases, the removal efficiency of landfill leachate is higher because more •OH is produced in the process.
实施例 4. :对不同初始 TOC 废水溶液的去除比较 Example 4. Comparison of removal of different initial TOC wastewater solutions
实验条件:惰性阳极 5 : 1 cm2 Experimental conditions: inert anode 5 : 1 cm 2
O3 浓度: 60.82 mg/LO 3 concentration: 60.82 mg/L
废水溶液 初始 TOC 值: 85 ppm 、 1550 ppm Wastewater solution Initial TOC value: 85 ppm, 1550 ppm
废水溶液 初始 pH 值: 8.18 Wastewater solution initial pH: 8.18
注: TOC=85 ppm 溶液为 Orange II 溶液,电解电流为 100 mA ,以 0.05 M Na2SO4 溶液作为电解质,曝气流速为 0.4 L/min ,气体扩散阴极 6 面积为 10 cm2 ; TOC=1550 ppm 溶液为垃圾渗滤液,电解电流为 600 mA ,曝气流速为 0.3 L/min ,气体扩散阴极 6 面积 20 cm2Note: The TOC=85 ppm solution is Orange II solution, the electrolysis current is 100 mA, the 0.05 M Na 2 SO 4 solution is used as the electrolyte, the aeration flow rate is 0.4 L/min, and the gas diffusion cathode 6 area is 10 cm 2 ; TOC= The 1550 ppm solution is landfill leachate with an electrolysis current of 600 mA, an aeration flow rate of 0.3 L/min, and a gas diffusion cathode with an area of 20 cm 2 .
表 4 不同初始 TOC 废水溶液处理效果比较(格式) Table 4 Comparison of different initial TOC wastewater treatment effects (format)
处理时间( min ) Processing time ( min ) TOC=85 ppm
去除率( % )
TOC=85 ppm
Removal rate (%)
处理时间( min ) Processing time ( min ) TOC=1550 ppm
去除率( % )
TOC=1550 ppm
Removal rate (%)
0 0 0 0 0 0 0 0
15 15 40.47 40.47 30 30 15.54 15.54
30 30 63.49 63.49 60 60 24.09 24.09
45 45 78.74 78.74 120 120 45.86 45.86
60 60 88.84 88.84 180 180 60.56 60.56
90 90 94.68 94.68 240 240 73.20 73.20
- - - - 300 300 86.46 86.46
- - - - 360 360 91.35 91.35
表 4 说明了电产生 H2O2 协同 O3 氧化不仅对低 TOC 废水溶液有效去除,对高浓度 TOC 废水溶液也能高效去除。Table 4 shows that the electricity generation of H 2 O 2 synergy with O 3 oxidation not only effectively removes low TOC wastewater solution, but also efficiently removes high concentration TOC wastewater solution.
实施例 5 : 对不同初始 pH 对有机物的去除比较 Example 5: Comparison of organic matter removal at different initial pHs
实验条件:气体扩散阴极 6 面积: 20 cm2 Experimental conditions: gas diffusion cathode 6 area: 20 cm 2
惰性阳极 5 面积: 1 cm2 Inert anode 5 Area: 1 cm 2
直流电源: 100 mA DC power supply: 100 mA
电解质: 0.05 M Na2SO4 溶液Electrolyte: 0.05 M Na 2 SO 4 solution
O3 浓度: 60.82 mg/LO 3 concentration: 60.82 mg/L
曝气流速: 0.4 L/min Aeration flow rate: 0.4 L/min
废水溶液 初始 TOC 值: 85 ppm Wastewater solution Initial TOC value: 85 ppm
废水溶液 初始 pH 值: 3.02 、 8.18 、 10 Wastewater solution initial pH: 3.02, 8.18, 10
注:被处理溶液为 Orange II 水溶液 Note: The treated solution is an Orange II aqueous solution.
表 5 不同初始 pH 值对降解结果的影响 Table 5 Effect of different initial pH values on degradation results
处理时间( min ) Processing time ( min ) 去除率( % ) Removal rate (%) 去除率( % ) Removal rate (%) 去除率( % ) Removal rate (%)
3.02 3.02 8.18 8.18 10 10
0 0 0 0 0 0 0 0
15 15 46.3 46.3 40.47 40.47 37.73 37.73
30 30 62.0 62.0 63.49 63.49 70.32 70.32
45 45 73.5 73.5 78.74 78.74 84.57 84.57
60 60 84.63 84.63 88.84 88.84 81.46 81.46
90 90 94.0 94.0 94.68 94.68 83.44 83.44
表 5 说明了在不同 pH 下,电产生 H2O2 协同 O3 氧化都能有效的降解溶液中 Orange II ; pH 较高时略有下降,这是由于在 pH 较高时 O3 发生了部分分解,降低了产生 •OH 的效率。Table 5 shows that at different pHs, the electrogenerated H 2 O 2 synergized with O 3 oxidation can effectively degrade the Orange II solution; the pH is slightly lower at higher pH, because O 3 occurs at a higher pH. Decomposition reduces the efficiency of producing •OH.

Claims (6)

  1. 一种原位电产生 H2O2 协同 O3 氧化的废水处理装置,包括反应容器( 4 ),其特征在于:反应容器( 4 )的底部设有磁力搅拌器( 1 ),搅拌磁子( 2 )设在反应容器( 4 )内,反应容器( 4 )的内部设有不锈钢微孔曝气头( 3 )、惰性阳极( 5 )和气体扩散阴极( 6 ),搅拌磁子( 2 )、不锈钢微孔曝气头( 3 )、惰性阳极( 5 )和气体扩散阴极( 6 )浸没在废水溶液中,惰性阳极( 5 )和气体扩散阴极( 6 )竖直相对,反应容器( 4 )还设有通入 O3 的管路,惰性阳极( 5 )和气体扩散阴极( 6 )采用直流电源。The invention relates to a waste water treatment device for generating H 2 O 2 and O 3 oxidation in situ, comprising a reaction vessel ( 4 ), characterized in that: a magnetic stirrer ( 1 ) is arranged at the bottom of the reaction vessel ( 4 ), and the magnetic stirrer is stirred ( 2) disposed in the reaction vessel (4), the inside of the reaction vessel (4) is provided with a stainless steel microporous aeration head (3), an inert anode (5) and a gas diffusion cathode (6), agitating the magnetron (2), The stainless steel microporous aeration head (3), the inert anode (5) and the gas diffusion cathode (6) are immersed in the wastewater solution, the inert anode (5) and the gas diffusion cathode (6) are vertically opposed, and the reaction vessel (4) is also A line for the passage of O 3 is provided, and the inert anode ( 5 ) and the gas diffusion cathode ( 6 ) are powered by a direct current source.
  2. 根据权利要求 1 所述的一种原位电产生 H2O2 协同 O3 氧化的废水处理装置,其特征在于:阴极 O2 还原过程需要对废水溶液进行微孔曝气,所曝气体为 O2 与 O3 的混合气体,其中 O2 体积分数大于 95% ,所曝 O3 的量为 0-20 g/(h·L 废水 ) ,采用不锈钢微孔曝气,曝气流量范围为 0-0.5 L/min ,曝气同时伴随着 800-1200 rpm 的搅拌。The wastewater treatment apparatus for in situ electric generation of H 2 O 2 and O 3 oxidation according to claim 1, wherein the cathode O 2 reduction process requires microporous aeration of the wastewater solution, and the exposed gas is a mixed gas of O 2 and O 3 , wherein the O 2 volume fraction is greater than 95%, the amount of exposed O 3 is 0-20 g/(h·L wastewater), and the stainless steel microporous aeration is used, and the aeration flow rate is 0. -0.5 L/min, aeration accompanied by stirring at 800-1200 rpm.
  3. 根据权利要求 1 所述的一种原位电产生 H2O2 协同 O3 氧化的废水处理装置,其特征在于:所述的气体扩散阴极( 6 )采用 C-PTFE 气体扩散电极,在直流电场中,制得 C-PTFE 阴极表面在废水溶液中形成固液气三相界面,并于此三相界面处还原溶解的 O2 生成 H2O2 ,进而与通入的 O3 反应生成具有强氧化性的 •OH 。A wastewater treatment apparatus for in situ electrogenerated H 2 O 2 synergistic O 3 oxidation according to claim 1, wherein said gas diffusion cathode (6) employs a C-PTFE gas diffusion electrode in a DC electric field. The surface of the C-PTFE cathode is prepared to form a solid-liquid three-phase interface in the wastewater solution, and the dissolved O 2 is generated at the three-phase interface to generate H 2 O 2 , which is then reacted with the introduced O 3 to form a strong Oxidizing • OH.
  4. 根据权利要求 1 所述的一种原位电产生 H2O2 协同 O3 氧化的废水处理装置,其特征在于:所述直流电源为恒定电流的直流电源,通电时阴极电流密度范围为 0-60 mA/cm2The apparatus for treating H 2 O 2 in combination with O 3 oxidation in situ according to claim 1, wherein the DC power source is a constant current DC power source, and the cathode current density ranges from 0 to 0 when energized. 60 mA/cm 2 .
  5. 根据权利要求 1 所述的一种原位电产生 H2O2 协同 O3 氧化的废水处理装置,其特征在于:所述的废水的溶液初始 TOC 范围为 0-100000 ppm ;允许的 pH 范围为 2-12 。 The wastewater treatment apparatus for in situ electric generation of H 2 O 2 and O 3 oxidation according to claim 1, wherein the initial TOC range of the wastewater is 0-100,000 ppm; the allowable pH range is 2-12.
  6. 利用权利要求 1 所述一种原位电产生 H2O2 协同 O3 氧化的废水处理装置进行废水处理的方法,其特征在于:包括以下步骤: A method for treating wastewater by using a waste water treatment device for in situ electric generation of H 2 O 2 and O 3 oxidation according to claim 1, comprising the steps of:
    第一步,将准备好的惰性阳极( 5 )和气体扩散阴极( 6 )插入到被 废水溶液 中,并将之与直流电源连接,通电时阴极电流密度范围为 0-60 mA/cm2In the first step, the prepared inert anode (5) and the gas diffusion cathode (6) are inserted into the wastewater solution and connected to the DC power source, and the cathode current density ranges from 0 to 60 mA/cm 2 when energized;
    第二步,使用臭氧发生器向反应容器 4 中通过微孔曝气头 3 曝入 O3 ,所曝气体流速为 0-0.5 L/min ;In the second step, the ozone generator is used to expose O 3 to the reaction vessel 4 through the microporous aeration head 3 , and the exposed gas flow rate is 0-0.5 L/min;
    第三步,根据恒定电流、 O2 和 O3 混合气体流量,打开气瓶,接通直流电源,处理废水溶液。In the third step, according to the constant current, O 2 and O 3 mixed gas flow rate, the gas cylinder is opened, the DC power source is turned on, and the wastewater solution is treated.
PCT/CN2013/074737 2012-12-17 2013-04-25 Wastewater treatment device and method for in-situ electric generation of h2o2 cooperating with o3 oxidation WO2014094399A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2012105494723 2012-12-17
CN2012105494723A CN102976451A (en) 2012-12-17 2012-12-17 Wastewater treatment device and method for in-situ electric generation of H2O2 cooperating with O3 oxidation

Publications (1)

Publication Number Publication Date
WO2014094399A1 true WO2014094399A1 (en) 2014-06-26

Family

ID=47850869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/074737 WO2014094399A1 (en) 2012-12-17 2013-04-25 Wastewater treatment device and method for in-situ electric generation of h2o2 cooperating with o3 oxidation

Country Status (2)

Country Link
CN (2) CN105439258A (en)
WO (1) WO2014094399A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018069212A (en) * 2016-11-04 2018-05-10 株式会社東芝 Water treatment apparatus, water treatment system and water treatment method

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105439258A (en) * 2012-12-17 2016-03-30 清华大学 Wastewater treatment method through generating H2O2 with in situ electricity to cooperate with O3 to oxidize
CN104129872B (en) * 2014-07-02 2016-02-24 清华大学 The control method of bromate growing amount in drinking water treatment process
CN104326530B (en) * 2014-11-06 2016-05-11 清华大学 The device and method of a kind of duct type electro-catalysis and ozone cooperative oxidation sewage treatment
CN104671361B (en) * 2015-02-11 2017-05-24 清华大学 Method for removing PPCPs micropollutants in secondary sedimentation tank wastewater
CN107244729B (en) * 2017-05-23 2021-01-26 清华大学 Method for controlling generation of halogen-containing by-products in drinking water treatment
CN107317040A (en) * 2017-06-22 2017-11-03 清华大学 The floatation type gas-diffusion electrode reacted for gas consumption and its preparation
CN107445256A (en) * 2017-09-08 2017-12-08 南开大学 A kind of continuous stream filtering type electrolysis ozone sterilizing method
CN107640861A (en) * 2017-10-09 2018-01-30 北京中科康仑环境科技研究院有限公司 A kind of ozone, electrochemistry and Fenton oxidation coupling combination advanced treatment system and its handling process
CN108275754A (en) * 2018-04-10 2018-07-13 佛山市万善环保科技有限公司 A kind of electromagnetic field couples electro-Fenton reaction device
CN109502705A (en) * 2018-12-04 2019-03-22 天津大学 A method of by electric flocculation and electric Fenton technology combination processing organic pollutant
CN111689571A (en) * 2019-03-11 2020-09-22 北京化工大学 Microbial electrochemical system and method for controlling hydrogen peroxide generation and elimination
CN110642340B (en) * 2019-09-30 2021-06-11 河海大学 Circulating flow type electric-assisted ozone water treatment equipment and method for treating water by using same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101531411A (en) * 2009-04-10 2009-09-16 同济大学 Method for electrochemically disinfecting gas diffusion electrode system
CN101734779A (en) * 2008-11-17 2010-06-16 杭州生源医疗保健技术开发有限公司 Method for preparing Fenton reagent on site for treating waste water
CN102633322A (en) * 2012-04-17 2012-08-15 西安建筑科技大学 Semi-coke waste water pretreatment method based on Electro-Fenton oxidization technology
CN102976451A (en) * 2012-12-17 2013-03-20 清华大学 Wastewater treatment device and method for in-situ electric generation of H2O2 cooperating with O3 oxidation

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003126861A (en) * 2001-10-29 2003-05-07 Toshiba Corp Method and apparatus for water treatment
CN101020590B (en) * 2006-02-14 2010-08-11 北京国力源高分子科技研发中心 Process of treating refractory organic effluent with free radical

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101734779A (en) * 2008-11-17 2010-06-16 杭州生源医疗保健技术开发有限公司 Method for preparing Fenton reagent on site for treating waste water
CN101531411A (en) * 2009-04-10 2009-09-16 同济大学 Method for electrochemically disinfecting gas diffusion electrode system
CN102633322A (en) * 2012-04-17 2012-08-15 西安建筑科技大学 Semi-coke waste water pretreatment method based on Electro-Fenton oxidization technology
CN102976451A (en) * 2012-12-17 2013-03-20 清华大学 Wastewater treatment device and method for in-situ electric generation of H2O2 cooperating with O3 oxidation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHOU, QI ET AL.: "Oxidative Efficiency of the System of Electrolysis Coupled Ozonation", ENVIRONMENTAL SCIENCE, vol. 31, no. 9, September 2010 (2010-09-01), pages 2080 - 2084 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018069212A (en) * 2016-11-04 2018-05-10 株式会社東芝 Water treatment apparatus, water treatment system and water treatment method
WO2018083900A1 (en) * 2016-11-04 2018-05-11 株式会社東芝 Water treatment apparatus, water treatment system and water treatment method

Also Published As

Publication number Publication date
CN105439258A (en) 2016-03-30
CN102976451A (en) 2013-03-20

Similar Documents

Publication Publication Date Title
WO2014094399A1 (en) Wastewater treatment device and method for in-situ electric generation of h2o2 cooperating with o3 oxidation
CN106186456B (en) Electrochemical comprehensive treatment technology for high-concentration organic wastewater hard to degrade
WO2012088867A1 (en) Nano catalytic electrolysis and flocculation apparatus
CN100453472C (en) Method and apparatus for highly efficient removal of water organisms by utilizing photoelectric Fenton reaction
US3793173A (en) Wastewater treatment using electrolysis with activated carbon cathode
WO2013010388A1 (en) Apparatus for treating landfill leachate and treatment method therefor
CN105152429B (en) A kind of method for efficiently removing Industry Waste organic pollutants
WO2017088534A1 (en) Wastewater treatment device and method for treating wastewater by means of device
CN204873961U (en) Magnetism catalysis - electric fenton reaction device
WO2014185616A1 (en) Waste-water treatment device and method using dielectric barrier discharge plasma
CN105731604A (en) Advanced treatment method for electroplating wastewater
JP2003528714A (en) Water purification system and method
JP2004346390A (en) Method and device for generating gas by electrolysis
CN106630312B (en) Treatment system, treatment method and application of coking phenol-cyanogen wastewater
CN105502757A (en) Industrial treatment method of high-concentration arsenic-containing wastewater
JP4662327B2 (en) Wastewater treatment method and apparatus
CN106745675B (en) A kind of Bioelectrochemical device and working method handling antibiotic waste water
WO2013156003A1 (en) New nano catalyst electrolysis device
CN110921980B (en) Electrochemical enhanced ozone-biological activated carbon water treatment equipment and method for treating water by using same
CN106830209A (en) A kind of method for improving coking chemical waste water biodegradability
CN110642340B (en) Circulating flow type electric-assisted ozone water treatment equipment and method for treating water by using same
JP2005118695A (en) Method and apparatus for reducing biosludge
JPH09150159A (en) Cod-related component removing method for the component containing water
CN104787949A (en) Method and device for treating refuse leachate through photoelectric Fenton oxidation reaction based on modified gas diffusion electrode
CN104773883B (en) A kind of method of persistence organic pollutant in electric floating combined purifying water with light

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13865693

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13865693

Country of ref document: EP

Kind code of ref document: A1