WO2022186361A1 - Curable resin composition and electronic component device - Google Patents

Curable resin composition and electronic component device Download PDF

Info

Publication number
WO2022186361A1
WO2022186361A1 PCT/JP2022/009257 JP2022009257W WO2022186361A1 WO 2022186361 A1 WO2022186361 A1 WO 2022186361A1 JP 2022009257 W JP2022009257 W JP 2022009257W WO 2022186361 A1 WO2022186361 A1 WO 2022186361A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
curable resin
epoxy
mass
group
Prior art date
Application number
PCT/JP2022/009257
Other languages
French (fr)
Japanese (ja)
Inventor
智雄 西山
東哲 姜
貴耶 山本
貴和 金
Original Assignee
昭和電工マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工マテリアルズ株式会社 filed Critical 昭和電工マテリアルズ株式会社
Priority to CN202280018109.0A priority Critical patent/CN117120543A/en
Priority to JP2023503962A priority patent/JPWO2022186361A1/ja
Publication of WO2022186361A1 publication Critical patent/WO2022186361A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape

Definitions

  • the present disclosure relates to curable resin compositions and electronic component devices.
  • these packages are mounted differently than pin insertion packages. That is, in the pin-insertion type package, the pins are inserted into the wiring board and then soldered from the rear surface of the wiring board, so the package is not directly exposed to high temperatures.
  • surface-mounted ICs are temporarily fixed to the surface of the wiring board and processed by a solder bath, a reflow device, or the like, so the package is directly exposed to the soldering temperature (reflow temperature).
  • reflow temperature soldering temperature
  • the package absorbs moisture
  • the absorbed moisture evaporates during reflow, and the generated vapor pressure acts as peeling stress, causing peeling between the sealing material and the supporting member such as the element or lead frame.
  • the occurrence of package cracks, poor electrical characteristics, and the like Therefore, there is a demand for the development of a sealing material that has excellent adhesiveness to a support member and, in turn, excellent solder heat resistance (reflow resistance).
  • a curable resin composition containing an epoxy resin, a curing agent, a curing accelerator, an inorganic filler, and an alkoxysilane polymer having a specific structure is disclosed in JP-A-2008-111101. proposed in Further, for the purpose of improving reflow resistance, for example, the surface of the lead frame is roughened before plating to improve adhesion to the encapsulant.
  • An object of the present invention is to provide an electronic component device having an element sealed with a resin composition.
  • a curable resin composition comprising an epoxy resin, a curing agent, and a linear polysiloxane compound having a structural unit having an epoxy group and an alkoxy group and having a degree of polymerization of 3 or more.
  • R 1 represents an epoxy-containing group
  • R 2 represents an alkoxy group having 1 to 10 carbon atoms.
  • R 1 represents an epoxy-containing group.
  • R 1 represents an epoxy-containing group.
  • R 4 and R 5 each independently represent an alkylene group having 1 to 10 carbon atoms, * represents the bonding position with Si.
  • R 4 and R 5 each independently represent an alkylene group having 1 to 10 carbon atoms, * represents the bonding position with Si.
  • R 1 represents an epoxy-containing group
  • each R 6 independently represents an alkoxy group having 1 to 10 carbon atoms or a hydroxyl group
  • each R 7 independently represents an alkoxy group having 1 to 10 carbon atoms
  • n represents an integer of 1 or more, However, at least one R 6 represents an alkoxy group having 1 to 10 carbon atoms.
  • n is a number from 1-10.
  • the phenol-based curing agent contains an aralkyl-type phenol resin.
  • the number of structural units contained in the linear polysiloxane compound is 15 or less.
  • An electronic component device comprising an element and a cured product of the curable resin composition according to any one of ⁇ 1> to ⁇ 12> for sealing the element.
  • the lead frame has a plated layer containing at least one of Au, Pd and Ni on at least part of the surface.
  • a curable resin composition having excellent adhesion to a non-roughened lead frame and excellent reflow resistance, and an element sealed with this curable resin composition It is possible to provide an electronic component device comprising
  • the numerical range indicated using “-" includes the numerical values before and after "-" as the minimum and maximum values, respectively.
  • the upper limit or lower limit of one numerical range may be replaced with the upper or lower limit of another numerical range described step by step.
  • the upper or lower limits of the numerical ranges may be replaced with the values shown in Synthetic Examples.
  • each component may contain multiple types of applicable compounds. When there are multiple types of substances corresponding to each component in the composition, the content rate or content of each component is the total content rate or content of the multiple types of substances present in the composition unless otherwise specified. means quantity.
  • Particles corresponding to each component in the present disclosure may include a plurality of types.
  • the particle size of each component means a value for a mixture of the multiple types of particles present in the composition, unless otherwise specified.
  • the term "laminate" refers to stacking layers, and two or more layers may be bonded or two or more layers may be detachable.
  • the notation without describing substitution and unsubstitution includes not only those not having substituents but also those having substituents.
  • the number of structural units represents an integer value for a single molecule, but represents a rational number which is an average value for an aggregate of multiple types of molecules.
  • the number of carbon atoms means the total number of carbon atoms contained in a group as a whole, and when the group does not have a substituent, it represents the number of carbon atoms forming the skeleton of the group. When has a substituent, it represents the total sum of the number of carbon atoms forming the skeleton of the group plus the number of carbon atoms in the substituent.
  • a linear polysiloxane compound refers to a polysiloxane compound that has D units without T and Q units.
  • D units have silicon atoms bonded to 2 oxygen atoms
  • T units have silicon atoms bonded to 3 oxygen atoms
  • Q units have silicon atoms bonded to 4 oxygen atoms.
  • D structural formula
  • T structural formula
  • Q structural formula
  • polysiloxane compounds having T units or Q units are referred to as branched polysiloxane compounds.
  • epoxy-containing group means a group having an epoxy structure.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • degree of polymerization are measured using the following GPC measurement device under the following measurement conditions, and converted using a standard polystyrene calibration curve. is.
  • a calibration curve was prepared using a set of 5 samples (“PStQuick MP-H” and “PStQuick B”, manufactured by Tosoh Corporation) as standard polystyrene.
  • the molecular weight obtained from the chemical structure of the compound is adopted as the Mw, Mn or degree of polymerization of the compound.
  • GPC measuring device GPC device: High-speed GPC device "HCL-8320GPC", detector is differential refractometer or UV, column manufactured by Tosoh Corporation: column TSKgel SuperMultipore HZ-H (column length: 15 cm, column inner diameter: 4.6 mm), Tosoh stock Company made (measurement conditions) Solvent: Tetrahydrofuran (THF) Measurement temperature: 40°C Flow rate: 0.35 mL/min Sample concentration: 10 mg/THF5 mL Injection volume: 20 ⁇ L
  • the curable resin composition of the present disclosure includes an epoxy resin, a curing agent, and a linear polysiloxane compound having a structural unit having an epoxy group and an alkoxy group and having a degree of polymerization of 3 or more.
  • the curable resin composition of the present disclosure has excellent adhesion to non-roughened lead frames and has excellent reflow resistance.
  • the curable resin composition of the present disclosure contains a linear polysiloxane compound having at least three structural units having an epoxy group and an alkoxy group, so that the cured product of the curable resin composition and the support member Internal stress differences are reduced. As a result, the adhesiveness between the cured product of the curable resin composition and the supporting member is improved, and the curable resin composition of the present disclosure provides a non-roughened lead frame and a non-roughened lead made of copper or the like. It is presumed that it has excellent adhesiveness to the plating layer composed of gold, palladium, nickel, etc. formed on the frame surface, and thus has excellent reflow resistance.
  • the adhesion to the non-roughened lead frame and the adhesion to the plating layer formed on the surface of the non-roughened lead frame may be collectively referred to as the adhesion to the non-roughened lead frame.
  • the linear polysiloxane compound contained in the curable resin composition of the present disclosure includes epoxy resins, lead frame materials (copper, etc.), and plating layer materials (gold, palladium, nickel, etc.). It has excellent adhesion to As a result, it is presumed that the curable resin composition of the present disclosure has excellent adhesion to non-roughened lead frames, and thus has excellent reflow resistance.
  • a curable resin composition of the present disclosure comprises an epoxy resin.
  • the type of epoxy resin is not particularly limited as long as it has two or more epoxy groups in one molecule.
  • the linear polysiloxane compound is not included in the epoxy resin. Specific examples of epoxy resins are described below, but are not limited thereto.
  • At least one phenol selected from the group consisting of phenol compounds such as phenol, cresol, xylenol, resorcinol, catechol, bisphenol A and bisphenol F, and naphthol compounds such as ⁇ -naphthol, ⁇ -naphthol and dihydroxynaphthalene.
  • a novolak type epoxy resin phenol novolac type epoxy resin, ortho-cresol novolak-type epoxy resins, etc.
  • epoxidized triphenylmethane-type phenolic resins obtained by condensation or co-condensation of the above phenolic compounds and aromatic aldehyde compounds such as benzaldehyde and salicylaldehyde in the presence of an acidic catalyst.
  • a triphenylmethane type epoxy resin a copolymer type epoxy resin obtained by epoxidizing a novolak resin obtained by co-condensing the above phenol compound and naphthol compound with an aldehyde compound in the presence of an acidic catalyst; bisphenol A, bisphenol diphenylmethane-type epoxy resins that are diglycidyl ethers such as F; biphenyl-type epoxy resins that are diglycidyl ethers of alkyl-substituted or unsubstituted biphenols; stilbene-type epoxy resins that are diglycidyl ethers of stilbene-based phenol compounds; Sulfur atom-containing epoxy resins that are diglycidyl ethers; Epoxy resins that are glycidyl ethers of alcohols such as butanediol, polyethylene glycol and polypropylene glycol; Glycidyl polyvalent carboxylic acid compounds such as phthalic acid, isophthalic acid and
  • co-condensation resins of dicyclopentadiene and phenol compounds Dicyclopentadiene type epoxy resin which is obtained by epoxidizing the; vinylcyclohexene diepoxide obtained by epoxidizing the olefin bond in the molecule, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexane carboxylate, 2- (3,4-epoxy)cyclohexyl-5,5-spiro(3 ,4-epoxy)cyclohexane-m-dioxane and other alicyclic epoxy resins; para-xylylene-modified epoxy resins that are glycidyl ethers of para-xylylene-modified phenol resins; meta-xylylene-modified epoxy resins that are glycidyl ethers of meta-xylylene-modified phenol resins; terpene-modified phenol
  • the curable resin composition of the present disclosure preferably contains a copolymer type epoxy resin and a biphenyl type epoxy resin.
  • the biphenyl-type epoxy resin is not particularly limited as long as it is an epoxy resin having a biphenyl skeleton.
  • an epoxy resin represented by the following general formula (II) is preferred.
  • R 8 represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or an aromatic group having 4 to 18 carbon atoms, all of which may be the same or different.
  • n is the average value and represents a number from 0 to 10.
  • the stilbene-type epoxy resin is not particularly limited as long as it is an epoxy resin having a stilbene skeleton.
  • an epoxy resin represented by the following general formula (III) is preferred.
  • R 9 and R 10 each represent a hydrogen atom or a monovalent organic group having 1 to 18 carbon atoms, and may be the same or different.
  • n is the average value and represents a number from 0 to 10.
  • the diphenylmethane-type epoxy resin is not particularly limited as long as it is an epoxy resin having a diphenylmethane skeleton.
  • an epoxy resin represented by the following general formula (IV) is preferred.
  • R 11 and R 12 each represent a hydrogen atom or a monovalent organic group having 1 to 18 carbon atoms, and may be the same or different.
  • n is the average value and represents a number from 0 to 10.
  • the sulfur atom-containing type epoxy resin is not particularly limited as long as it is an epoxy resin containing sulfur atoms.
  • examples thereof include epoxy resins represented by the following general formula (V).
  • R 13 represents a hydrogen atom or a monovalent organic group having 1 to 18 carbon atoms, and all of them may be the same or different.
  • n is the average value and represents a number from 0 to 10.
  • the novolak type epoxy resin is not particularly limited as long as it is an epoxy resin obtained by epoxidizing a novolak type phenol resin.
  • R 14 represents a hydrogen atom or a monovalent organic group having 1 to 18 carbon atoms, and all of them may be the same or different.
  • R 15 represents a monovalent organic group having 1 to 18 carbon atoms, all of which may be the same or different.
  • i each independently represents an integer of 0 to 3;
  • n is the average value and represents a number from 0 to 10.
  • the dicyclopentadiene type epoxy resin is not particularly limited as long as it is an epoxy resin obtained by epoxidizing a compound having a dicyclopentadiene skeleton as a raw material.
  • R 16 represents a monovalent organic group having 1 to 18 carbon atoms, and all of them may be the same or different.
  • i each independently represents an integer of 0 to 3;
  • n is the average value and represents a number from 0 to 10.
  • the triphenylmethane-type epoxy resin is not particularly limited as long as it is an epoxy resin made from a compound having a triphenylmethane skeleton.
  • R 17 and R 18 each represent a monovalent organic group having 1 to 18 carbon atoms, and may be the same or different.
  • Each i independently represents an integer of 0 to 3
  • each k independently represents an integer of 0 to 4.
  • n is the average value and represents a number from 0 to 10.
  • the copolymer type epoxy resin obtained by epoxidizing a novolac resin obtained from a naphthol compound, a phenolic compound, and an aldehyde compound is not particularly limited as long as it is an epoxy resin made from a compound having a naphthol skeleton and a compound having a phenolic skeleton. .
  • R 19 to R 21 represent monovalent organic groups having 1 to 18 carbon atoms, and may be the same or different.
  • Each i independently represents an integer of 0 to 3
  • each j independently represents an integer of 0 to 2
  • each k independently represents an integer of 0 to 4.
  • l and m are average values, numbers from 0 to 10, and (l+m) shows numbers from 0 to 10.
  • the terminal of the epoxy resin represented by formula (IX) is either one of formula (IX-1) or (IX-2) below.
  • Definitions of R 19 to R 21 , i, j and k in formulas (IX-1) and (IX-2) are the same as definitions of R 19 to R 21 , i , j and k in formula (IX).
  • n is 1 (when linked via a methylene group) or 0 (when not linked via a methylene group).
  • the epoxy resin represented by the general formula (IX) includes a random copolymer having l structural units and m structural units at random, an alternating copolymer having alternating structural units, and a copolymer having regularly , a block copolymer having a block shape, and the like. Any one of these may be used alone, or two or more may be used in combination.
  • the copolymerized epoxy resin has a cresol-derived structural unit and a methoxynaphthalene-derived structural unit.
  • a resin is preferred (hereinafter referred to as a specific copolymer type epoxy resin).
  • the specific copolymerization type epoxy resin preferably has the following structural units. In the following structural units, each n is an average value, a number from 1 to 10, preferably a number from 2 to 8.
  • the aralkyl-type epoxy resin is composed of at least one selected from the group consisting of phenol compounds such as phenol and cresol, and naphthol compounds such as naphthol and dimethylnaphthol, and dimethoxyparaxylene, bis(methoxymethyl)biphenyl or derivatives thereof.
  • phenol compounds such as phenol and cresol
  • naphthol compounds such as naphthol and dimethylnaphthol
  • dimethoxyparaxylene bis(methoxymethyl)biphenyl or derivatives thereof.
  • a phenolic resin synthesized from at least one selected from the group consisting of phenol compounds such as phenol and cresol and naphthol compounds such as naphthol and dimethylnaphthol, and dimethoxyparaxylene, bis(methoxymethyl)biphenyl or derivatives thereof is preferably an epoxy resin obtained by glycidyl etherification, and more preferably an epoxy resin represented by the following general formulas (X) and (XI).
  • R 38 represents a hydrogen atom or a monovalent organic group having 1 to 18 carbon atoms, all of which may be the same or different.
  • R 37 , R 39 to R 41 each represent a monovalent organic group having 1 to 18 carbon atoms, and all of them may be the same or different.
  • i is each independently an integer of 0 to 3
  • j is each independently an integer of 0 to 2
  • k is each independently an integer of 0 to 4
  • l is each independently an integer of 0 to 4 show.
  • n is an average value, each independently a number from 0 to 10.
  • R 8 to R 21 and R 37 to R 41 in general formulas (II) to (XI) above “all of which may be the same or different” means, for example, 8 to R 41 in formula (II). It means that all 88 R 8 may be the same or different.
  • Other R 9 to R 21 and R 37 to R 41 also mean that the respective numbers contained in the formula may all be the same or different.
  • R 8 to R 21 and R 37 to R 41 may be the same or different.
  • all of R 9 and R 10 may be the same or different.
  • the monovalent organic group having 1 to 18 carbon atoms in general formulas (III) to (XI) is preferably an alkyl group or an aryl group.
  • n in the above general formulas (II) to (XI) is an average value, and each independently preferably ranges from 0 to 10. If n is 10 or less, the melt viscosity of the resin component does not become too high, and the viscosity of the curable resin composition during melt molding decreases, resulting in insufficient filling and deformation of the bonding wire (gold wire that connects the element and the lead). etc. tend to be suppressed. More preferably, n is set in the range of 0-4.
  • the epoxy equivalent of the epoxy resin is not particularly limited. From the viewpoint of the balance of various properties such as moldability, heat resistance and electrical reliability, the epoxy equivalent of the epoxy resin is preferably 40 g/eq to 1000 g/eq, more preferably 45 g/eq to 500 g/eq, and 50 g/eq. eq to 350 g/eq is more preferred. Let the epoxy equivalent of an epoxy resin be the value measured by the method according to JISK7236:2009.
  • the epoxy resin may be solid or liquid at 25°C. If the epoxy resin is solid at 25°C, the softening point or melting point of the epoxy resin is not particularly limited. From the viewpoint of the balance between moldability and heat resistance, the softening point or melting point of the epoxy resin is preferably 40°C to 180°C. Also, from the viewpoint of handleability during production of the curable resin composition, the softening point or melting point of the epoxy resin is preferably 50°C to 130°C. In the present disclosure, softening point refers to a value measured by the ring and ball method of JIS K 7234:1986. In the present disclosure, melting point refers to a value measured according to the visual observation method of JIS K 0064:1992.
  • the Mw of the epoxy resin is preferably 550-1050, more preferably 650-950.
  • the content of the epoxy resin in the curable resin composition is preferably 0.5% by mass to 60% by mass from the viewpoint of strength, fluidity, heat resistance, moldability, etc., and is preferably 2% by mass to 50% by mass. more preferably 3% by mass to 45% by mass.
  • the total mass of the epoxy resin contained in the curable resin composition is The content of the polymerizable epoxy resin is preferably 50% to 90% by mass, more preferably 55% to 80% by mass, and even more preferably 60% to 75% by mass.
  • the copolymerized epoxy resin contains a specific copolymerized epoxy resin
  • the specific copolymerization of the total mass of the copolymerized epoxy resin is preferably 50% by mass to 100% by mass, more preferably 60% by mass to 100% by mass, and even more preferably 70% by mass to 100% by mass.
  • the epoxy resin contains a biphenyl-type epoxy resin
  • the biphenyl-type epoxy resin relative to the total mass of the epoxy resin contained in the curable resin composition
  • the content of the epoxy resin is preferably 10% by mass to 50% by mass, more preferably 20% by mass to 45% by mass, even more preferably 25% by mass to 40% by mass.
  • the curable resin composition of the present disclosure contains a curing agent.
  • the type of curing agent is not particularly limited, and can be selected from those commonly used as components of curable resin compositions.
  • the curing agent may be used singly or in combination of two or more.
  • the curing agent is only required to have a structure capable of reacting with the epoxy resin contained in the curable resin composition and curing the curable resin composition. Even compounds that contribute little to the curing reaction of the curable resin composition are included in the curing agent.
  • curing agents examples include phenol-based curing agents, amine-based curing agents, acid anhydride-based curing agents, polymercaptan-based curing agents, polyaminoamide-based curing agents, isocyanate-based curing agents, and blocked isocyanate-based curing agents.
  • the curing agent is preferably a phenol-based curing agent or an amine-based curing agent.
  • the curing agent is preferably a phenol-based curing agent.
  • Phenol-based curing agents include, for example, phenol resins and polyhydric phenol compounds having two or more phenolic hydroxyl groups in one molecule.
  • polyhydric phenol compounds such as resorcin, catechol, bisphenol A, bisphenol F, substituted or unsubstituted biphenol; phenol, cresol, xylenol, resorcin, catechol, bisphenol A, bisphenol F, phenylphenol, aminophenol, etc.
  • At least one phenolic compound selected from the group consisting of phenol compounds and naphthol compounds such as ⁇ -naphthol, ⁇ -naphthol, and dihydroxynaphthalene, and aldehyde compounds such as formaldehyde, acetaldehyde, and propionaldehyde are condensed under an acidic catalyst or Novolac-type phenolic resin obtained by cocondensation;
  • Aralkyl-type phenolic resin such as phenol aralkyl resin and naphthol aralkyl resin synthesized from the above phenolic compound and dimethoxyparaxylene, bis(methoxymethyl)biphenyl, etc.; Para-xylylene and/or or meta-xylylene-modified phenolic resin; melamine-modified phenolic resin; terpene-modified phenolic resin; dicyclopentadiene-type phenolic resin and dicyclopentadiene-type naphthol
  • aralkyl-type phenolic resins are preferable among phenolic curing agents.
  • Aralkyl-type phenol resins include phenol aralkyl resins and naphthol aralkyl resins synthesized from phenolic compounds and dimethoxyparaxylene, bis(methoxymethyl)biphenyl, and the like.
  • the aralkyl-type phenolic resin may be further copolymerized with another phenolic resin.
  • Copolymerized aralkyl-type phenolic resins include copolymerized phenolic resins of triphenylmethane-type phenolic resin and aralkyl-type phenolic resin, copolymerized phenolic resins of salicylaldehyde-type phenolic resin and aralkyl-type phenolic resin, and novolac-type phenolic resin.
  • a copolymer type phenol resin of a resin and an aralkyl type phenol resin can be used.
  • the aralkyl-type phenolic resin is not particularly limited as long as it is a phenolic resin synthesized from at least one selected from the group consisting of phenolic compounds and naphthol compounds and dimethoxyparaxylene, bis(methoxymethyl)biphenyl or derivatives thereof.
  • phenol resins represented by the following general formulas (XII) to (XIV) are preferred.
  • R 23 represents a hydrogen atom or a monovalent organic group having 1 to 18 carbon atoms, all of which may be the same or different.
  • R 22 , R 24 , R 25 and R 28 each represent a monovalent organic group having 1 to 18 carbon atoms, and all of them may be the same or different.
  • R 26 and R 27 each represent a hydroxyl group or a monovalent organic group having 1 to 18 carbon atoms, and may be the same or different.
  • i is each independently an integer of 0 to 3
  • j is each independently an integer of 0 to 2
  • k is each independently an integer of 0 to 4
  • n is an average value, each independently a number from 0 to 10.
  • the aralkyl-type phenolic resin is preferably a phenolic resin represented by general formula (XIII). Both i and k are preferably 0 in general formula (XIII), from the viewpoint of the adhesiveness of the curable resin composition of the present disclosure to a non-roughened lead frame and from the viewpoint of heat resistance.
  • the dicyclopentadiene-type phenolic resin is not particularly limited as long as it is a phenolic resin obtained using a compound having a dicyclopentadiene skeleton as a raw material.
  • R 29 represents a monovalent organic group having 1 to 18 carbon atoms, and all of them may be the same or different.
  • i each independently represents an integer of 0 to 3;
  • n is the average value and represents a number from 0 to 10.
  • the triphenylmethane-type phenolic resin is not particularly limited as long as it is a phenolic resin obtained using an aromatic aldehyde compound as a raw material.
  • a phenol resin represented by the following general formula (XVI) is preferred.
  • R 30 and R 31 each represent a monovalent organic group having 1 to 18 carbon atoms and may be the same or different.
  • Each i is independently an integer of 0 to 3
  • each k is independently an integer of 0 to 4.
  • n is the average value and is a number from 0 to 10.
  • the copolymerized phenolic resin of triphenylmethane-type phenolic resin and aralkyl-type phenolic resin is not particularly limited as long as it is a copolymerized-type phenolic resin of phenolic resin obtained using a compound having a benzaldehyde skeleton as a raw material and aralkyl-type phenolic resin. .
  • a phenol resin represented by the following general formula (XVII) is preferred.
  • R 32 to R 34 each represent a monovalent organic group having 1 to 18 carbon atoms, and all of them may be the same or different.
  • Each i is independently an integer of 0 to 3
  • each k is independently an integer of 0 to 4
  • each q is independently an integer of 0 to 5.
  • Each l and m is an average value and each independently represents a number from 0 to 11. However, the sum of l and m is a number from 1 to 11.
  • the novolak-type phenolic resin is not particularly limited as long as it is a phenolic resin obtained by condensation or co-condensation of at least one phenolic compound selected from the group consisting of phenolic compounds and naphthol compounds and an aldehyde compound in the presence of an acidic catalyst.
  • a phenol resin represented by the following general formula (XVIII) is preferred.
  • R 35 represents a hydrogen atom or a monovalent organic group having 1 to 18 carbon atoms, all of which may be the same or different.
  • R 36 represents a monovalent organic group having 1 to 18 carbon atoms, all of which may be the same or different.
  • i each independently represents an integer of 0 to 3;
  • n is the average value and represents a number from 0 to 10.
  • R 22 to R 36 in the general formulas (XII) to (XVIII) means, for example, that all i R 22 in formula (XII) are the same However, it means that they may be different from each other.
  • Other R 23 to R 36 also mean that the respective numbers contained in the formula may all be the same or different from each other.
  • R 22 to R 36 may be the same or different.
  • all of R 22 and R 23 may be the same or different
  • all of R 30 and R 31 may be the same or different.
  • n in the general formulas (XII) to (XVIII) is preferably in the range of 0 to 10. If it is 10 or less, the melt viscosity of the resin component does not become too high, the viscosity of the curable resin composition during melt molding becomes low, and filling defects, deformation of the bonding wire (gold wire that connects the element and the lead), etc. less likely to occur.
  • the average n in one molecule is preferably set in the range of 0-4.
  • amine curing agents include aliphatic amine compounds such as diethylenetriamine, triethylenetetramine, n-propylamine, 2-hydroxyethylaminopropylamine, cyclohexylamine, 4,4′-diamino-dicyclohexylmethane, Aromatic amine compounds such as diethyltoluenediamine, 3,3'-diethyl-4,4'-diaminodiphenylmethane, dimethylthiotoluenediamine, 2-methylaniline, imidazole, 2-methylimidazole, 2-ethylimidazole, 2-isopropyl Examples include imidazole compounds such as imidazole, imidazoline compounds such as imidazoline, 2-methylimidazoline and 2-ethylimidazoline.
  • the functional group equivalent weight of the curing agent (hydroxyl group equivalent weight in the case of a phenol-based curing agent, and active hydrogen equivalent weight in the case of an amine-based curing agent) is not particularly limited. From the viewpoint of the balance of various properties such as moldability, heat resistance and electrical reliability, it is preferably 10 g/eq to 1000 g/eq, more preferably 30 g/eq to 500 g/eq.
  • the hydroxyl equivalent in the case of a phenol-based curing agent is a value calculated based on the hydroxyl value measured according to JIS K 0070:1992.
  • the active hydrogen equivalent in the case of an amine-based curing agent is a value calculated based on the amine value measured according to JIS K 7237:1995.
  • the curing agent is solid at 25°C, its softening point or melting point is not particularly limited. From the viewpoint of moldability and heat resistance, the softening point or melting point of the curing agent is preferably 40°C to 180°C. Also, from the viewpoint of handleability during production of the curable resin composition, the softening point or melting point of the curing agent is preferably 50°C to 130°C.
  • the equivalent ratio of the phenolic hydroxyl group (active hydrogen) of the phenolic curing agent to the epoxy group of the epoxy resin in the curable resin composition is not particularly limited, but can be set to about 1, for example.
  • the content of the phenolic curing agent relative to the total mass of the curing agent is It is preferably 50% by mass to 100% by mass, more preferably 60% by mass to 100% by mass, even more preferably 70% by mass to 100% by mass.
  • the content of the aralkyl-type phenolic resin relative to the total mass of the phenolic curing agent is considered from the viewpoint of the adhesion of the curable resin composition of the present disclosure to a non-roughened lead frame.
  • the ratio is more preferably 60% to 100% by mass, even more preferably 70% to 100% by mass.
  • Linear polysiloxane compound A linear polysiloxane compound has a structural unit having an epoxy group and an alkoxy group, and has a degree of polymerization of 3 or more.
  • the structural units possessed by the linear polysiloxane compound may be structural units all having epoxy groups and alkoxy groups, or may be structural units partially having epoxy groups and alkoxy groups.
  • the structural units having an epoxy group and an alkoxy group may be randomly or alternately. It may be provided regularly, or may be provided in a block shape.
  • the degree of polymerization of the linear polysiloxane compound is preferably 15 or less, more preferably 10 or less. , 8 or less.
  • the structural unit having an epoxy group and an alkoxy group possessed by the linear polysiloxane compound is represented by the following general formula (1). preferably.
  • the structural unit represented by general formula (1) will be referred to as the "specific structural unit”
  • the linear polysiloxane compound having the specific structural unit will be referred to as the "specific polysiloxane compound”.
  • R 1 represents an epoxy-containing group.
  • R 1 in the specific structural units may be different groups or the same group.
  • the epoxy-containing group represented by R1 is preferably a group represented by the following general formula (3).
  • R 4 and R 5 each independently represent an alkylene group having 1 to 10 carbon atoms, preferably 1 to 5 carbon atoms, more preferably 1 to 3 carbon atoms.
  • * represents the bonding position with Si which a specific structural unit has.
  • R 2 represents an alkoxy group having 1 to 10 carbon atoms, preferably 1 to 5 carbon atoms, more preferably 1 to 3 carbon atoms.
  • R 2 in the specific structural units may be different groups or the same group.
  • the linear polysiloxane compound contains the specific polysiloxane compound
  • the ratio of the specific structural unit is preferably 5 mol % to 70 mol %, more preferably 10 mol % to 65 mol %, even more preferably 15 mol % to 60 mol %.
  • the specific polysiloxane compound preferably further has a structural unit represented by the following general formula (2).
  • a monomer that provides a structural unit represented by the following general formula (2) it tends to be possible to suppress the synthesis of a branched polysiloxane compound. .
  • R 1 represents an epoxy-containing group. Epoxy-containing groups are as described above.
  • the ratio of the structural unit represented by the general formula (2) to the total 100 mol% of the structural units possessed by the specific polysiloxane compound is preferably 5 mol% to 70 mol%, more preferably 10 mol% to 65 mol%. , 15 mol % to 60 mol %.
  • the linear polysiloxane compound is preferably a compound represented by the following general formula (4).
  • each R 6 independently represents an alkoxy group having 1 to 10 carbon atoms or a hydroxyl group. However, at least one R 6 is an alkoxy group having 1 to 10 carbon atoms. The alkoxy group having 1 to 10 carbon atoms is as described above.
  • each R 7 independently represents an alkoxy group having 1 to 10 carbon atoms.
  • n represents the number of structural units and is 1 or more. n is preferably 15 or less, more preferably 10 or less, and even more preferably 8 or less.
  • R 1 is as described above.
  • the content of hydroxyl groups with respect to the total 100 mol% of the alkoxy groups and hydroxyl groups represented by R 6 is preferably 2 mol% to 75 mol%, and 2 mol. % to 65 mol %, more preferably 5 mol % to 50 mol %.
  • the linear polysiloxane compound may be solid or liquid at 25° C. From the viewpoint of dispersibility of the linear polysiloxane in the curable resin composition of the present disclosure, , preferably liquid.
  • the softening point or melting point of the linear polysiloxane compound is not particularly limited. From the viewpoint of moldability and heat resistance, the softening point or melting point of the linear polysiloxane compound is preferably ⁇ 100° C. to 15° C., more preferably ⁇ 90° C. to 10° C., and ⁇ 80° C. °C to 5°C is more preferred.
  • the epoxy equivalent of the linear polysiloxane compound is not particularly limited. From the viewpoint of adhesion of the curable resin composition of the present disclosure to a non-roughened lead frame, the epoxy equivalent of the linear polysiloxane compound is preferably 100 g/eq to 300 g/eq, and 120 g/eq. It is more preferably eq to 280 g/eq, even more preferably 140 g/eq to 260 g/eq.
  • the content of the linear polysiloxane compound in the curable resin composition of the present disclosure is 0.05% by mass to 5% by mass. %, more preferably 0.1% by mass to 3% by mass, even more preferably 0.15% by mass to 1% by mass.
  • the linear polysiloxane compound contains a specific polysiloxane compound
  • the linear polysiloxane contained in the curable resin composition is preferably 50% by mass to 100% by mass, more preferably 60% by mass to 100% by mass, and 70% by mass to 100% by mass. is more preferable.
  • the linear polysiloxane compound may be synthesized using a conventionally known method, or a commercially available product may be used.
  • conventionally known methods include a method of hydrolyzing an alkoxy group possessed by an alkoxysilane compound to obtain a silanol compound having a hydroxyl group, followed by dehydration condensation of the hydroxyl groups possessed by two or more silanol compounds.
  • alkoxysilane compounds include ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ -glycidoxypropyldimethoxysilane, ⁇ -glycidoxypropyldiethoxysilane, ⁇ -glycid. xypropylmethyldimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, and the like.
  • the curable resin composition of the present disclosure may contain inorganic fillers.
  • the curable resin composition contains an inorganic filler, the hygroscopicity of the curable resin composition tends to decrease, and the strength in the cured state tends to improve.
  • the curable resin composition is used as a sealing material for semiconductor packages, it preferably contains an inorganic filler.
  • the inorganic material that constitutes the inorganic filler is not particularly limited.
  • specific examples of inorganic materials include spherical silica, crystalline silica, glass, alumina, calcium carbonate, zirconium silicate, calcium silicate, silicon nitride, aluminum nitride, boron nitride, aluminum nitride, boehmite, beryllia, magnesium oxide, Zirconia, zircon, forsterite, steatite, spinel, mullite, titania, talc, clay, mica, titanate and the like.
  • An inorganic filler composed of an inorganic material having a flame retardant effect may also be used.
  • Inorganic materials having a flame retardant effect include aluminum hydroxide, magnesium hydroxide, composite metal hydroxides such as composite hydroxides of magnesium and zinc, and zinc borate.
  • An inorganic filler may be used individually by 1 type, or may be used in combination of 2 or more types.
  • the shape of the inorganic filler is not particularly limited, and examples include powdery, spherical, and fibrous. From the viewpoints of fluidity during molding of the curable resin composition and resistance to mold wear, it is preferably spherical.
  • the average particle size of the inorganic filler is not particularly limited. From the viewpoint of the balance between the viscosity of the curable resin composition and the filling property, etc., the volume average particle size of the inorganic filler is preferably 0.1 ⁇ m to 50 ⁇ m, more preferably 0.3 ⁇ m to 30 ⁇ m. , 0.5 ⁇ m to 25 ⁇ m.
  • the volume-average particle size of the inorganic filler can be measured as the volume-average particle size (D50) with a particle size distribution analyzer using a laser diffraction scattering method.
  • the curable resin composition contains an inorganic filler
  • its content is not particularly limited. It is preferably 30% by mass to 90% by mass, more preferably 35% by mass to 80% by mass, and even more preferably 40% by mass to 70% by mass of the total curable resin composition.
  • the content of the inorganic filler is 30% by mass or more of the entire curable resin composition, the properties of the cured product, such as coefficient of thermal expansion, thermal conductivity and elastic modulus, tend to be further improved.
  • the content of the inorganic filler is 90% by mass or less of the entire curable resin composition, the increase in viscosity of the curable resin composition is suppressed, the fluidity is further improved, and the moldability tends to be better. It is in.
  • the curable resin composition of the present disclosure may contain a curing accelerator.
  • the type of curing accelerator is not particularly limited, and can be selected according to the type of epoxy resin, desired properties of the curable resin composition, and the like.
  • a hardening accelerator may be used individually by 1 type, or may be used in combination of 2 or more types. Specific examples of the curing accelerator are described below, but are not limited to these.
  • Curing accelerators include diazabicycloalkenes such as 1,5-diazabicyclo[4.3.0]nonene-5 (DBN) and 1,8-diazabicyclo[5.4.0]undecene-7 (DBU), Cyclic amidine compounds such as 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, and 2-heptadecylimidazole; derivatives of the cyclic amidine compounds; phenol novolak salts of the cyclic amidine compounds or derivatives thereof; maleic anhydride, 1,4-benzoquinone, 2,5-toluquinone, 1,4-naphthoquinone, 2,3-dimethylbenzoquinone, 2,6-dimethylbenzoquinone, 2,3-dimethoxy-5-methyl-1 ,4-benzoquinone, 2,3-dimethoxy-1,4-benzoquinone, phenyl-1,4-benzoquino
  • Cyclic amidinium compounds such as DBU tetraphenylborate salt, DBN tetraphenylborate salt, 2-ethyl-4-methylimidazole tetraphenylborate salt, N-methylmorpholine tetraphenylborate salt;
  • Tertiary amine compounds such as ethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris(dimethylaminomethyl)phenol; derivatives of the tertiary amine compounds; tetra-n-butylammonium acetate, tetra-n-phosphate
  • Ammonium salt compounds such as butylammonium, tetraethylammonium acetate, tetra-n-hexylammonium benzoate, tetrapropylammonium hydroxide; primary phosphines such as ethylphosphine and phenylphosphine
  • the content of the curing accelerator is preferably 0.1% by mass to 8% by mass with respect to 100 parts by mass of the total amount of the epoxy resin and the curing agent. , more preferably 0.3% by mass to 7% by mass, more preferably 0.5% by mass to 6% by mass.
  • the curable resin composition of the present disclosure may contain various additives such as coupling agents, stress relaxation agents, release agents, colorants, flame retardants, and ion exchangers.
  • the curable resin composition of the present disclosure may contain a siloxane compound having a structural unit having an epoxy group and an alkoxy group and having a degree of polymerization of 2.
  • the curable resin composition may contain various additives well known in the art as necessary, in addition to the additives exemplified below.
  • the curable resin composition of the present disclosure may contain a coupling agent.
  • the type of coupling agent is not particularly limited, and known coupling agents can be used. Examples of coupling agents include silane coupling agents and titanium coupling agents.
  • a coupling agent may be used individually by 1 type, or may use 2 or more types together.
  • the silane coupling agent is not particularly limited as long as it is a compound other than the linear polysiloxane compound described above. sidoxypropylmethyldiethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-(2-aminoethyl)amino propyltrimethoxysilane, 3-(2-aminoethyl)aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercapto propyltriethoxysilane, 3-ureidopropyltriethoxysilane, octenyltrimethoxysilane, gly
  • Titanium coupling agents include isopropyl triisostearoyl titanate, isopropyl tris(dioctylpyrophosphate) titanate, isopropyl tri(N-aminoethyl-aminoethyl) titanate, tetraoctylbis(ditridecylphosphite) titanate, tetra(2, 2-diallyloxymethyl-1-butyl)bis(ditridecylphosphite)titanate, bis(dioctylpyrophosphate)oxyacetate titanate, bis(dioctylpyrophosphate)ethylene titanate, isopropyltrioctanoyltitanate, isopropyldimethacrylisostearoyltitanate , isopropyltridodecylbenzenesulfonyltitanate, isopropylisostearoyldiacryl
  • the content of the coupling agent should be adjusted to the inorganic filler 100 contained in the curable resin composition from the viewpoint of the adhesiveness of the interface between the epoxy resin and the inorganic filler. It is preferably 0.001 to 10 parts by mass, more preferably 0.01 to 8 parts by mass, and 0.05 to 5 parts by mass based on the mass. More preferred.
  • the curable resin composition of the present disclosure may contain stress relaxation agents such as silicone oil and silicone rubber particles.
  • stress relaxation agents such as silicone oil and silicone rubber particles.
  • the stress relaxation agent include commonly used known stress relaxation agents (flexible agents).
  • stress relaxation agents include thermoplastic elastomers such as silicone, styrene, olefin, urethane, polyester, polyether, polyamide, and polybutadiene, natural rubber (NR), and acrylonitrile-butadiene.
  • NBR Non-acrylate-styrene-butadiene copolymer
  • MVS methyl methacrylate-silicone copolymer
  • methacrylate-butyl acrylate examples include rubber particles having a core-shell structure such as copolymers.
  • a stress relaxation agent may be used individually by 1 type, or may be used in combination of 2 or more types. Among them, a silicone-based stress relieving agent is preferable. Examples of silicone-based stress relieving agents include those having epoxy groups, those having amino groups, and those modified with polyethers.
  • the content is preferably 0.1 parts by mass to 30 parts by mass with respect to 100 parts by mass of the epoxy resin contained in the curable resin composition. It is more preferably 1 part by mass to 5 parts by mass.
  • the curable resin composition of the present disclosure may contain a mold release agent from the viewpoint of releasability from the mold when using a mold for molding.
  • the release agent is not particularly limited, and conventionally known agents can be used. Examples of release agents include carnauba wax, higher fatty acids such as montanic acid and stearic acid, higher fatty acid metal salts, ester waxes such as montanic acid esters, and polyolefin waxes such as oxidized polyethylene and non-oxidized polyethylene.
  • the release agent may be used singly or in combination of two or more.
  • the content of the release agent is 0.01 parts by mass to 15 parts by mass with respect to 100 parts by mass of the epoxy resin contained in the curable resin composition. preferably 0.1 parts by mass to 10 parts by mass.
  • the amount of the release agent is 0.01 parts by mass or more with respect to 100 parts by mass of the resin component, there is a tendency that sufficient releasability can be obtained.
  • it is 15 parts by mass or less, there is a tendency that better releasability can be obtained.
  • the curable resin composition of the present disclosure may contain a colorant.
  • coloring agents include known coloring agents such as carbon black, organic dyes, organic pigments, titanium oxide, red lead, and red iron oxide.
  • the content of the coloring agent can be appropriately selected according to the purpose and the like.
  • the colorants may be used singly or in combination of two or more.
  • the curable resin composition contains a colorant
  • its content is preferably 0.01% by mass to 5% by mass, more preferably 0.05% by mass to 3% by mass, and 0 More preferably, it is 0.01% by mass to 1% by mass.
  • the curable resin composition of the present disclosure may contain a flame retardant.
  • the flame retardant is not particularly limited, and conventionally known ones can be used. Flame retardants include organic or inorganic compounds containing halogen atoms, antimony atoms, nitrogen atoms or phosphorus atoms, metal hydroxides, and the like. A flame retardant may be used individually by 1 type, or may be used in combination of 2 or more types.
  • the curable resin composition of the present disclosure contains a flame retardant
  • its content is not particularly limited as long as it is sufficient to obtain the desired flame retardant effect.
  • the content of the flame retardant is preferably 1 part by mass to 300 parts by mass, more preferably 2 parts by mass to 150 parts by mass, based on 100 parts by mass of the epoxy resin contained in the curable resin composition.
  • the curable resin composition of the present disclosure may contain an ion exchanger.
  • an ion exchanger When the curable resin composition is used as a sealing material for a semiconductor package, it preferably contains an inorganic filler from the viewpoint of improving the moisture resistance and high-temperature storage characteristics of the electronic component device including the element to be sealed.
  • the ion exchanger is not particularly limited, and conventionally known ones can be used. Specific examples include hydrotalcite compounds and hydrous oxides of at least one element selected from the group consisting of magnesium, aluminum, titanium, zirconium and bismuth.
  • the ion exchangers may be used singly or in combination of two or more.
  • the ion exchanger includes hydrotalcite represented by the following general formula (A).
  • the curable resin composition of the present disclosure contains an ion exchanger
  • its content is not particularly limited as long as it is sufficient to capture ions such as halogen ions.
  • the content of the ion exchanger is preferably 0.1 to 30 parts by mass, more preferably 1 to 5 parts by mass with respect to 100 parts by mass of the epoxy resin contained in the curable resin composition. more preferred.
  • the linear expansion coefficient at 10 ° C. to 30 ° C. of the cured product of the curable resin composition is 7 ppm / ° C. to 15 ppm / ° C. preferably 7.3 ppm/°C to 14.5 ppm/°C, even more preferably 7.5 ppm/°C to 14 ppm/°C.
  • the coefficient of linear expansion is the slope of the tangential line when strain of a cured product is plotted against temperature by thermal mechanical analysis (TMA) based on JIS K 7197:2012.
  • TMA thermal mechanical analysis
  • the test load is 5 g
  • the temperature rise rate is 5° C./min.
  • the linear expansion coefficient can be measured using a thermomechanical analyzer (for example, TMA/SS6100) manufactured by Seiko Instruments Inc. or an equivalent device.
  • the cured product was obtained by molding the curable resin composition using a transfer molding machine under the conditions of a mold temperature of 175°C, a molding pressure of 6.9 MPa, and a curing time of 90 seconds, followed by post-curing at 175°C for 5 hours. It is produced by performing Moreover, the cured product has a rectangular shape with a short side of 5.1 mm, a long side of 20 mm, and a thickness of 2 mm.
  • the glass transition temperature (Tg) of the cured product of the curable resin composition is preferably 80° C. to 120° C., more preferably 85° C. to 115° C., and 90° C. to It is more preferably 110°C.
  • the glass transition temperature of the cured product is the temperature at the intersection of the tangent line at 10° C. to 30° C. and the tangent line at 200° C. to 220° C. obtained by measuring the coefficient of linear expansion.
  • the curing shrinkage of the curable resin composition is preferably 0.1% to 0.8%, and 0.1% to 0.8%. More preferably 15% to 0.75%, even more preferably 0.2% to 0.7%.
  • the cure shrinkage of the curable resin composition is measured as follows. A disk-shaped cured product (test piece) of the curable resin composition is molded by transfer molding using a mold whose dimensions have already been measured, and then the test piece is allowed to cool to 25°C. After cooling to 25°C, the specimen is heated in an oven heated to 175°C for 5 hours, and then allowed to cool to 25°C.
  • the average value of the diameters at the two points on the front and back of the test piece is Rm (mm)
  • the inner diameter at the two points of the mold corresponding to the front of the test piece and the inside diameter of the mold corresponding to the back of the test piece is defined as Rd (mm)
  • the curing shrinkage rate of the curable resin composition is obtained.
  • Cure shrinkage rate (%) (Rd - Rm) / Rd x 100
  • the elastic modulus of the cured product of the curable resin composition at 25° C. is preferably 25 GPa to 38 GPa, more preferably 26 GPa to 33 GPa.
  • the elastic modulus of the cured product of the curable resin composition at 260° C. is preferably 0.45 GPa to 0.70 GPa, more preferably 0.48 GPa to 0.67 GPa.
  • the elastic modulus of the curable resin composition was measured from 20° C. to 300° C. by a three-point bending method using a viscoelasticity measuring device (RSA III, manufactured by TA Instruments) at a span distance of 40 mm and a frequency of 1 Hz. Determined by increasing the temperature at °C/min.
  • the cured product prepared by the method described above has a rectangular shape with a short side of 5.1 mm, a long side of 20 mm and a thickness of 2 mm.
  • the method for producing the curable resin composition is not particularly limited.
  • a general method there can be mentioned a method of thoroughly mixing components in predetermined amounts with a mixer or the like, melt-kneading the mixture with a mixing roll, an extruder or the like, cooling, and pulverizing. More specifically, for example, predetermined amounts of the components described above are uniformly stirred and mixed, kneaded with a kneader, roll, extruder, or the like preheated to 70° C. to 140° C., cooled, and pulverized. can be mentioned.
  • the curable resin composition is preferably solid at 25°C.
  • the shape of the curable resin composition is not particularly limited, and examples thereof include powder, granules, tablets, and the like.
  • the curable resin composition is in the form of a tablet, it is preferable from the standpoint of handleability that the dimensions and mass are such that they meet the molding conditions of the package.
  • curable resin composition of the present disclosure is not particularly limited, and it can be used in various mounting techniques, for example, as a sealing material for electronic component devices.
  • the curable resin composition of the present disclosure is used for resin moldings for various modules, resin moldings for motors, vehicle-mounted resin moldings, sealing materials for protective materials for electronic circuits, etc.
  • the resin composition has good fluidity. And it can be used for various applications where it is desirable to have curability.
  • An electronic component device of the present disclosure includes an element and a cured product of the curable resin composition that seals the element.
  • the electronic component device can have a support member on which the element is mounted.
  • supporting members include lead frames, pre-wired tape carriers, wiring boards, glass, silicon wafers, organic substrates, and the like.
  • a lead frame is preferable from the viewpoint of adhesion to the cured product of the curable resin composition.
  • the lead frame may or may not have a roughened surface, but from the viewpoint of manufacturing cost, a non-roughened lead frame is preferable, and from the viewpoint of adhesiveness, a roughened lead frame is preferred. Planarized leadframes are preferred.
  • the roughening method is not particularly limited, and includes alkali treatment, silane coupling treatment, sand mat treatment, plasma treatment, corona discharge treatment and the like.
  • the lead frame can have a plated layer containing at least one of Au, Pd and Ni on at least part of the surface. Further, the plated layer may be a single layer or multiple layers.
  • the multi-layer plating layer a plating layer having a three-layer configuration in which a Ni plating layer, a Pd plating layer, and an Au plating layer are laminated from the lead frame side, or the like can be used.
  • the three-layer lead frame include a lead frame called PPF (Pre Plating Lead Frame), which is a copper lead frame plated with Ni--Pd--Au.
  • the thickness of the plating layer is not particularly limited, and is preferably 5 ⁇ m or less, more preferably 4 ⁇ m or less, and even more preferably 3 ⁇ m or less.
  • elements included in electronic component devices include active elements such as silicon chips, transistors, diodes, and thyristors, and passive elements such as capacitors, resistors, and coils.
  • Specific configurations of the electronic component device include, but are not limited to, the following configurations.
  • TCP Tape Carrier Package having a structure in which an element connected to a tape carrier using bumps is sealed with a curable resin composition
  • a COB (Chip On Board) module having a structure in which an element connected to wiring formed on a support member by wire bonding, flip chip bonding, soldering, or the like is sealed with
  • a curable resin composition is formed.
  • BGA Bit Grid Array
  • CSP Chip Size Package
  • MCP Multi Chip Package
  • SiP System in a Package
  • the method of sealing the element using the curable resin composition is not particularly limited, and known methods can be applied.
  • a sealing method for example, low-pressure transfer molding is generally used, but injection molding, compression molding, cast molding, or the like may also be used.
  • Examples 1 to 7 and Comparative Examples 1 to 6 After pre-mixing (dry blending) the materials of the formulation shown in Table 1, they are kneaded for about 15 minutes with a biaxial roll (roll surface temperature: about 80 ° C.), cooled, and pulverized to obtain a powdery curable resin composition. manufactured.
  • Epoxy resin A copolymer type epoxy resin having the following structural units, epoxy equivalent: 250 g/eq, melt viscosity at 150°C: 0.7 dPa s
  • Epoxy resin B biphenyl type epoxy resin, epoxy equivalent 220 g / eq to 250 g / eq
  • ⁇ Curing agent aralkyl-type phenolic resin, hydroxyl equivalent 175 g/eq
  • Linear polysiloxane compound linear polysiloxane represented by the following chemical formula (melting point: -70 ° C., epoxy equivalent 120 g / eq to 150 g / eq, where n represents a number of 3 to 6, R 6 each independently represents a methoxy group or a hydroxyl group, and the content of the hydroxyl group is 5 mol % to 50 mol % with respect to the total 100 mol % of the methoxy group and the hydroxyl group represented by R 6. )
  • Inorganic filler spherical silica particles with a volume average particle size of 19.9 ⁇ m
  • Curing accelerator 1,4-benzoquinone adduct of triphenylphosphine
  • Coupling agent A N-phenyl-3-aminopropyltrimethoxysilane
  • Coupling agent B 3-glycidoxypropyltrimethoxysilane
  • Coupling agent C 3-glycidoxypropylmethyldimethoxysilane
  • Stress relaxation agent branched polysiloxane compound, solid at 25° C.
  • Release agent Oxidized polyethylene wax/coloring agent: carbon black
  • CTE1 the slope of the tangent line in the range of 200° C. to 220° C. as CTE2.
  • the test load was 5 g and the heating rate was 5° C./min.
  • a TMA high-precision two-sample thermal analyzer (device name SS6100) manufactured by Seiko Instruments Inc. was used for the measurement of the coefficient of linear expansion.
  • Tg Glass transition temperature
  • the disk-shaped cured product (test piece) of the curable resin composition obtained in the above Examples and Comparative Examples was transferred by transfer molding at a mold temperature of 175 ° C. and a molding pressure of 6.9 MPa. , under the conditions of a curing time of 90 seconds, and then allowed to cool to 25°C. After cooling to 25°C, the test piece was heated in an oven heated to 175°C for 5 hours, and then allowed to cool to 25°C.
  • ⁇ Measurement of elastic modulus> Based on the above conditions, a cured product similar to the cured product used in measuring the coefficient of linear expansion was formed. Using a viscoelasticity measuring device (RSA III, manufactured by TA Instruments), the temperature was raised from 20 ° C. to 300 ° C. at a rate of 5 ° C./min by a three-point bending method under the conditions of a span distance of 40 mm and a frequency of 1 Hz. and 260° C., respectively.
  • RSA III viscoelasticity measuring device
  • ⁇ Adhesion evaluation> A column having a contact area of 3 mm ⁇ was formed on the surface of a copper alloy plate (Pd-PPF) from the curable resin compositions obtained in the above Examples and Comparative Examples under the above conditions. Thereafter, using a bond tester (Dage Japan Co., Ltd., Series 4000), the shear adhesive strength (MPa) was determined at a shear rate of 50 ⁇ m/s while maintaining the temperature of the copper alloy plate at 25°C. After heating the cured product under conditions of 85° C. and 60% RH for 168 hours, the shear adhesive strength (MPa) was determined at a shear rate of 50 ⁇ m/s while maintaining the temperature of the copper alloy plate at 260° C.
  • ⁇ Reflow resistance evaluation> A silicon chip (length 8 mm, width 10 mm, thickness 0.4 mm) sealed using a cured product of the curable resin composition formed under the above conditions is mounted. An 80-pin flat package (lead frame material: copper alloy (Pd-PPF)) was produced. The package was heated at 85° C. and 60% RH for 168 hours. After that, reflow treatment is performed at 260 ° C. for 10 seconds, and the presence or absence of cracks outside the package is visually checked, and the presence or absence of peeling inside the package is checked with an ultrasonic flaw detector (HYE-FOCUS, manufactured by Hitachi Construction Machinery Co., Ltd.). observed each. Reflow resistance was evaluated by summing the number of packages in which either cracks or peeling occurred with respect to the number of test packages (64).
  • the curable resin composition of the present disclosure has excellent adhesion to non-roughened lead frames and excellent reflow resistance. is found to be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is a curable resin composition containing: an epoxy resin; a curing agent; and a linear polysiloxane compound that has a structural unit having an epoxy group and an alkoxy group, and that also has a polymerization degree of 3 or more.

Description

硬化性樹脂組成物及び電子部品装置Curable resin composition and electronic component device
 本開示は、硬化性樹脂組成物及び電子部品装置に関する。 The present disclosure relates to curable resin compositions and electronic component devices.
 近年、半導体素子の高密度実装化が進んでいる。これに伴い、樹脂封止型半導体装置は従来のピン挿入型のパッケージから面実装型のパッケージが主流になっている。面実装型のIC(Integrated Circuit)、LSI(Large Scale Integration)等は、実装密度を高くし、実装高さを低くするために薄型且つ小型のパッケージになっている。そのため、素子のパッケージに対する占有面積が大きくなり、パッケージの厚さは非常に薄くなってきている。 In recent years, high-density mounting of semiconductor elements is progressing. Along with this, resin-encapsulated semiconductor devices are shifting from conventional pin-insertion type packages to surface-mount type packages. Surface-mounted ICs (Integrated Circuits), LSIs (Large Scale Integration), and the like have thin and small packages in order to increase the mounting density and reduce the mounting height. As a result, the area occupied by the device with respect to the package has increased, and the thickness of the package has become extremely thin.
 さらに、これらのパッケージはピン挿入型パッケージとは実装方法が異なっている。すなわち、ピン挿入型パッケージはピンを配線板に挿入した後、配線板の裏面からはんだ付けを行うため、パッケージが直接高温に曝されることはなかった。
 しかし、面実装型ICは配線板表面に仮止めを行い、はんだバス、リフロー装置等で処理されるため、直接はんだ付け温度(リフロー温度)にパッケージが曝される。この結果、パッケージが吸湿している場合、リフロー時に吸湿水分が気化して、発生した蒸気圧が剥離応力として働き、素子、リードフレーム等の支持部材と封止材との間における剥離が発生し、パッケージクラックの発生、電気的特性不良等の原因となる。そのため、支持部材との接着性に優れ、ひいてははんだ耐熱性(耐リフロー性)に優れる封止材料の開発が望まれている。
In addition, these packages are mounted differently than pin insertion packages. That is, in the pin-insertion type package, the pins are inserted into the wiring board and then soldered from the rear surface of the wiring board, so the package is not directly exposed to high temperatures.
However, surface-mounted ICs are temporarily fixed to the surface of the wiring board and processed by a solder bath, a reflow device, or the like, so the package is directly exposed to the soldering temperature (reflow temperature). As a result, when the package absorbs moisture, the absorbed moisture evaporates during reflow, and the generated vapor pressure acts as peeling stress, causing peeling between the sealing material and the supporting member such as the element or lead frame. , the occurrence of package cracks, poor electrical characteristics, and the like. Therefore, there is a demand for the development of a sealing material that has excellent adhesiveness to a support member and, in turn, excellent solder heat resistance (reflow resistance).
 優れた耐リフロー性を有する封止材料として、エポキシ樹脂、硬化剤、硬化促進剤、無機充填材及び特定の構造を有するアルコキシシラン重合体を含む硬化性樹脂組成物が特開2008-111101号公報において提案されている。
 また、耐リフロー性の改良を目的として、例えば、めっき処理の前にリードフレーム表面を粗面化し、封止材との接着性を改良することが行われている。
As a sealing material having excellent reflow resistance, a curable resin composition containing an epoxy resin, a curing agent, a curing accelerator, an inorganic filler, and an alkoxysilane polymer having a specific structure is disclosed in JP-A-2008-111101. proposed in
Further, for the purpose of improving reflow resistance, for example, the surface of the lead frame is roughened before plating to improve adhesion to the encapsulant.
 しかしながら、製造効率及び製造コストの観点から、非粗面化リードフレームに対し、優れた接着性を有する封止材料の開発が望まれており、特開2008-111101号公報において開示される硬化性樹脂組成物にはさらなる改良の余地があった。
 本開示は上記状況に鑑みてなされたものであり、非粗面化リードフレームに対して優れた接着性を有し、優れた耐リフロー性を有する、硬化性樹脂組成物、及び、この硬化性樹脂組成物により封止される素子を備える電子部品装置を提供しようとするものである。
However, from the viewpoint of manufacturing efficiency and manufacturing cost, the development of a sealing material having excellent adhesion to non-roughened lead frames is desired. The resin composition has room for further improvement.
The present disclosure has been made in view of the above circumstances, and provides a curable resin composition having excellent adhesion to a non-roughened lead frame and excellent reflow resistance, and its curability. An object of the present invention is to provide an electronic component device having an element sealed with a resin composition.
<1> エポキシ樹脂と、硬化剤と、エポキシ基及びアルコキシ基を有する構造単位を有し、且つ重合度が3以上である直鎖状ポリシロキサン化合物とを含む、硬化性樹脂組成物。
<2> 構造単位が、下記一般式(1)で表される、<1>に記載の硬化性樹脂組成物。
<1> A curable resin composition comprising an epoxy resin, a curing agent, and a linear polysiloxane compound having a structural unit having an epoxy group and an alkoxy group and having a degree of polymerization of 3 or more.
<2> The curable resin composition according to <1>, wherein the structural unit is represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000006

 
Figure JPOXMLDOC01-appb-C000006

 
 一般式(1)中、
 Rは、エポキシ含有基を表し、
 Rは、炭素数1~10のアルコキシ基を表す。
<3> 直鎖状ポリシロキサン化合物が、下記一般式(2)で表される構造単位をさらに有する、<2>に記載の硬化性樹脂組成物。
In general formula (1),
R 1 represents an epoxy-containing group,
R 2 represents an alkoxy group having 1 to 10 carbon atoms.
<3> The curable resin composition according to <2>, wherein the linear polysiloxane compound further has a structural unit represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000007

 
Figure JPOXMLDOC01-appb-C000007

 
 一般式(2)中、
 Rは、エポキシ含有基を表す。
<4> エポキシ含有基が、下記一般式(3)で表される、<2>又は<3>に記載の硬化性樹脂組成物。
In general formula (2),
R 1 represents an epoxy-containing group.
<4> The curable resin composition according to <2> or <3>, wherein the epoxy-containing group is represented by the following general formula (3).
Figure JPOXMLDOC01-appb-C000008

 
Figure JPOXMLDOC01-appb-C000008

 
 一般式(3)中、
 R及びRは、各々独立に、炭素数1~10のアルキレン基を表し、
 *は、Siとの結合位置を表す。
<5> 直鎖状ポリシロキサン化合物が、下記一般式(4)で表される化合物である、<1>~<4>のいずれか1つに記載の硬化性樹脂組成物。
In general formula (3),
R 4 and R 5 each independently represent an alkylene group having 1 to 10 carbon atoms,
* represents the bonding position with Si.
<5> The curable resin composition according to any one of <1> to <4>, wherein the linear polysiloxane compound is a compound represented by the following general formula (4).
Figure JPOXMLDOC01-appb-C000009

 
Figure JPOXMLDOC01-appb-C000009

 
 一般式(4)中、
 Rは、エポキシ含有基を表し、
 Rは、各々独立に、炭素数1~10のアルコキシ基又は水酸基を表し、
 Rは、各々独立に、炭素数1~10のアルコキシ基を表し、
 nは、1以上の整数を表し、
 但し、少なくとも1つのRは、炭素数1~10のアルコキシ基を表す。
<6> エポキシ樹脂が、クレゾール由来の構造単位と、メトキシナフタレン由来の構造単位とを有する共重合型エポキシ樹脂を含む、<1>~<5>のいずれか1つに記載の硬化性樹脂組成物。
<7> 共重合型エポキシ樹脂が、下記構造単位を有する、<6>に記載の硬化性樹脂組成物。
In general formula (4),
R 1 represents an epoxy-containing group,
each R 6 independently represents an alkoxy group having 1 to 10 carbon atoms or a hydroxyl group;
each R 7 independently represents an alkoxy group having 1 to 10 carbon atoms,
n represents an integer of 1 or more,
However, at least one R 6 represents an alkoxy group having 1 to 10 carbon atoms.
<6> The curable resin composition according to any one of <1> to <5>, wherein the epoxy resin comprises a copolymerized epoxy resin having a structural unit derived from cresol and a structural unit derived from methoxynaphthalene. thing.
<7> The curable resin composition according to <6>, wherein the copolymerizable epoxy resin has the following structural unit.
Figure JPOXMLDOC01-appb-C000010

 
Figure JPOXMLDOC01-appb-C000010

 
 式中、nは、1~10の数である。
<8> 硬化剤が、フェノール系硬化剤を含む、<1>~<7>のいずれか1つに記載の硬化性樹脂組成物。
<9> フェノール系硬化剤が、アラルキル型フェノール樹脂を含む、<8>に記載の硬化性樹脂組成物。
<10> 直鎖状ポリシロキサン化合物が、25℃において液体である、<1>~<9>のいずれか1つに記載の硬化性樹脂組成物。
<11> 直鎖状ポリシロキサン化合物に含まれる構造単位の数が15以下である、<1>~<10>のいずれか1つに記載の硬化性樹脂組成物。
<12> 硬化性樹脂組成物の全質量に対する直鎖状ポリシロキサン化合物の含有率が、0.05質量%~5質量%である、<1>~<11>のいずれか1つに記載の硬化性樹脂組成物。
<13> 素子と、素子を封止する<1>~<12>のいずれか1つに記載の硬化性樹脂組成物の硬化物と、を備える電子部品装置。
<14> 素子を一方の面に搭載するリードフレームを備える、<13>に記載の電子部品装置。
<15> リードフレームが、Au、Pd及びNiの少なくとも1つを含むめっき層を表面の少なくとも一部に備える、<14>に記載の電子部品装置。
wherein n is a number from 1-10.
<8> The curable resin composition according to any one of <1> to <7>, wherein the curing agent contains a phenol-based curing agent.
<9> The curable resin composition according to <8>, wherein the phenol-based curing agent contains an aralkyl-type phenol resin.
<10> The curable resin composition according to any one of <1> to <9>, wherein the linear polysiloxane compound is liquid at 25°C.
<11> The curable resin composition according to any one of <1> to <10>, wherein the number of structural units contained in the linear polysiloxane compound is 15 or less.
<12> Any one of <1> to <11>, wherein the content of the linear polysiloxane compound relative to the total mass of the curable resin composition is 0.05% by mass to 5% by mass. A curable resin composition.
<13> An electronic component device comprising an element and a cured product of the curable resin composition according to any one of <1> to <12> for sealing the element.
<14> The electronic component device according to <13>, comprising a lead frame for mounting the element on one surface.
<15> The electronic component device according to <14>, wherein the lead frame has a plated layer containing at least one of Au, Pd and Ni on at least part of the surface.
 本開示によれば、非粗面化リードフレームに対して優れた接着性を有し、優れた耐リフロー性を有する硬化性樹脂組成物、及び、この硬化性樹脂組成物により封止される素子を備える電子部品装置を提供することができる。 According to the present disclosure, a curable resin composition having excellent adhesion to a non-roughened lead frame and excellent reflow resistance, and an element sealed with this curable resin composition It is possible to provide an electronic component device comprising
 以下、本開示を実施するための形態について詳細に説明する。但し、本開示は以下の実施形態に限定されない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明表した場合を除き、必須ではない。数値及びその範囲についても同様であり、本開示を制限するものではない。 A detailed description will be given below of the embodiment for implementing the present disclosure. However, the present disclosure is not limited to the following embodiments. In the following embodiments, the constituent elements (including element steps and the like) are not essential unless otherwise specified. The same applies to numerical values and their ranges, which do not limit the present disclosure.
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、合成例に示されている値に置き換えてもよい。
 本開示において各成分は該当する化合物を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において各成分に該当する粒子は複数種含んでいてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本開示において「積層」との語は、層を積み重ねることを表し、二以上の層が結合されていてもよく、二以上の層が着脱可能であってもよい。
 本開示の基(原子団)の表記において、置換及び非置換を記していない表記は、置換基を有さないものと共に置換基を有するものをも包含するものである。
 本開示において構造単位数は、単一の分子については整数値を表すが、複数種の分子の集合体としては平均値である有理数を表す。
 本開示において、炭素数とは、ある基全体に含まれる炭素原子の総数を意味し、該基が置換基を有さない場合は当該基の骨格を形成する炭素原子の数を表し、該基が置換基を有する場合は当該基の骨格を形成する炭素原子の数に置換基中の炭素原子の数を加えた総数を表す。
 本開示において、直鎖状ポリシロキサン化合物とは、T単位及びQ単位を有さず、D単位を有するポリシロキサン化合物を指す。
 D単位は2個の酸素原子と結合したケイ素原子を有し、T単位は3個の酸素原子と結合したケイ素原子を有し、Q単位は4個の酸素原子と結合したケイ素原子を有し、それぞれ以下のような構造式(D)、構造式(T)及び構造式(Q)で表される。
 本開示においては、T単位又はQ単位を有するポリシロキサン化合物を分岐鎖状ポリシロキサン化合物という。
In the present disclosure, the numerical range indicated using "-" includes the numerical values before and after "-" as the minimum and maximum values, respectively.
In the numerical ranges described step by step in the present disclosure, the upper limit or lower limit of one numerical range may be replaced with the upper or lower limit of another numerical range described step by step. . In addition, in the numerical ranges described in the present disclosure, the upper or lower limits of the numerical ranges may be replaced with the values shown in Synthetic Examples.
In the present disclosure, each component may contain multiple types of applicable compounds. When there are multiple types of substances corresponding to each component in the composition, the content rate or content of each component is the total content rate or content of the multiple types of substances present in the composition unless otherwise specified. means quantity.
Particles corresponding to each component in the present disclosure may include a plurality of types. When multiple types of particles corresponding to each component are present in the composition, the particle size of each component means a value for a mixture of the multiple types of particles present in the composition, unless otherwise specified.
In the present disclosure, the term "laminate" refers to stacking layers, and two or more layers may be bonded or two or more layers may be detachable.
In the notation of a group (atomic group) of the present disclosure, the notation without describing substitution and unsubstitution includes not only those not having substituents but also those having substituents.
In the present disclosure, the number of structural units represents an integer value for a single molecule, but represents a rational number which is an average value for an aggregate of multiple types of molecules.
In the present disclosure, the number of carbon atoms means the total number of carbon atoms contained in a group as a whole, and when the group does not have a substituent, it represents the number of carbon atoms forming the skeleton of the group. When has a substituent, it represents the total sum of the number of carbon atoms forming the skeleton of the group plus the number of carbon atoms in the substituent.
In the present disclosure, a linear polysiloxane compound refers to a polysiloxane compound that has D units without T and Q units.
D units have silicon atoms bonded to 2 oxygen atoms, T units have silicon atoms bonded to 3 oxygen atoms, and Q units have silicon atoms bonded to 4 oxygen atoms. , which are represented by the following structural formula (D), structural formula (T), and structural formula (Q), respectively.
In the present disclosure, polysiloxane compounds having T units or Q units are referred to as branched polysiloxane compounds.
Figure JPOXMLDOC01-appb-C000011

 
Figure JPOXMLDOC01-appb-C000011

 
 本開示において、「エポキシ含有基」とは、エポキシ構造を有する基を意味する。
 本開示において、重量平均分子量(Mw)、数平均分子量(Mn)及び重合度は、下記測定条件において、下記GPC測定装置を使用して測定し、標準ポリスチレンの検量線を使用して換算した値である。また、検量線の作成は、標準ポリスチレンとして5サンプルセット(「PStQuick MP-H」及び「PStQuick B」、東ソー株式会社製)を用いた。
 但し、分子量が小さいためにGPCでは正確なMw、Mn又は重合度を測定できない化合物については、化合物の化学構造から求められる分子量を、その化合物のMw、Mn又は重合度として採用する。
(GPC測定装置)
GPC装置 :高速GPC装置「HCL-8320GPC」、検出器は示差屈折計又はUV、東ソー株式会社製
カラム   :カラムTSKgel SuperMultipore HZ-H(カラム長さ:15cm、カラム内径:4.6mm)、東ソー株式会社製
(測定条件)
溶媒    :テトラヒドロフラン(THF)
測定温度  :40℃
流量    :0.35mL/分
試料濃度  :10mg/THF5mL
注入量   :20μL
In the present disclosure, "epoxy-containing group" means a group having an epoxy structure.
In the present disclosure, the weight average molecular weight (Mw), number average molecular weight (Mn) and degree of polymerization are measured using the following GPC measurement device under the following measurement conditions, and converted using a standard polystyrene calibration curve. is. In addition, a calibration curve was prepared using a set of 5 samples (“PStQuick MP-H” and “PStQuick B”, manufactured by Tosoh Corporation) as standard polystyrene.
However, for compounds that cannot be accurately measured for Mw, Mn or degree of polymerization by GPC due to their small molecular weight, the molecular weight obtained from the chemical structure of the compound is adopted as the Mw, Mn or degree of polymerization of the compound.
(GPC measuring device)
GPC device: High-speed GPC device "HCL-8320GPC", detector is differential refractometer or UV, column manufactured by Tosoh Corporation: column TSKgel SuperMultipore HZ-H (column length: 15 cm, column inner diameter: 4.6 mm), Tosoh stock Company made (measurement conditions)
Solvent: Tetrahydrofuran (THF)
Measurement temperature: 40°C
Flow rate: 0.35 mL/min Sample concentration: 10 mg/THF5 mL
Injection volume: 20 μL
<硬化性樹脂組成物>
 本開示の硬化性樹脂組成物は、エポキシ樹脂と、硬化剤と、エポキシ基及びアルコキシ基を有する構造単位を有し、且つ重合度が3以上である直鎖状ポリシロキサン化合物とを含む。
<Curable resin composition>
The curable resin composition of the present disclosure includes an epoxy resin, a curing agent, and a linear polysiloxane compound having a structural unit having an epoxy group and an alkoxy group and having a degree of polymerization of 3 or more.
 本開示の硬化性樹脂組成物は、非粗面化リードフレームに対して優れた接着性を有し、優れた耐リフロー性を有する。 The curable resin composition of the present disclosure has excellent adhesion to non-roughened lead frames and has excellent reflow resistance.
 本開示の硬化性樹脂組成物により上記効果が奏される理由は明らかではないが以下のように推察される。
 本開示の硬化性樹脂組成物が、エポキシ基及びアルコキシ基を有する構造単位を少なくとも3つ有する直鎖状ポリシロキサン化合物を含むことにより、硬化性樹脂組成物の硬化物と支持部材との間の内部応力差が低減される。その結果、硬化性樹脂組成物の硬化物と支持部材との接着性が向上し、本開示の硬化性樹脂組成物は、銅等から構成される非粗面化リードフレーム及び非粗面化リードフレーム表面に形成される金、パラジウム、ニッケル等から構成されるめっき層に対して優れた接着性を有し、ひいては優れた耐リフロー性を有すると推察される。以下、非粗面化リードフレームに対する接着性及び非粗面化リードフレーム表面に形成されるめっき層に対する接着性を、まとめて非粗面化リードフレームに対する接着性という場合がある。
 また、本開示の硬化性樹脂組成物に含まれる上記直鎖状ポリシロキサン化合物は、エポキシ樹脂、リードフレームを構成する材料(銅等)及びめっき層を構成する材料(金、パラジウム、ニッケル等)に対し、優れた接着性を有する。その結果、本開示の硬化性樹脂組成物は、非粗面化リードフレームに対して優れた接着性を有し、ひいては優れた耐リフロー性を有すると推察される。
The reason why the curable resin composition of the present disclosure achieves the above effects is not clear, but is presumed as follows.
The curable resin composition of the present disclosure contains a linear polysiloxane compound having at least three structural units having an epoxy group and an alkoxy group, so that the cured product of the curable resin composition and the support member Internal stress differences are reduced. As a result, the adhesiveness between the cured product of the curable resin composition and the supporting member is improved, and the curable resin composition of the present disclosure provides a non-roughened lead frame and a non-roughened lead made of copper or the like. It is presumed that it has excellent adhesiveness to the plating layer composed of gold, palladium, nickel, etc. formed on the frame surface, and thus has excellent reflow resistance. Hereinafter, the adhesion to the non-roughened lead frame and the adhesion to the plating layer formed on the surface of the non-roughened lead frame may be collectively referred to as the adhesion to the non-roughened lead frame.
In addition, the linear polysiloxane compound contained in the curable resin composition of the present disclosure includes epoxy resins, lead frame materials (copper, etc.), and plating layer materials (gold, palladium, nickel, etc.). It has excellent adhesion to As a result, it is presumed that the curable resin composition of the present disclosure has excellent adhesion to non-roughened lead frames, and thus has excellent reflow resistance.
 以下、硬化性樹脂組成物が含みうる各種材料について説明する。 Various materials that can be included in the curable resin composition are described below.
(エポキシ樹脂)
 本開示の硬化性樹脂組成物は、エポキシ樹脂を含む。エポキシ樹脂は1分子中に2個以上のエポキシ基を有するものであればその種類は特に制限されない。なお、本開示において、上記直鎖状ポリシロキサン化合物は、エポキシ樹脂には含めないものとする。
 エポキシ樹脂の具体例を以下に記載するが、これらに限定されるものではない。
(Epoxy resin)
A curable resin composition of the present disclosure comprises an epoxy resin. The type of epoxy resin is not particularly limited as long as it has two or more epoxy groups in one molecule. In addition, in the present disclosure, the linear polysiloxane compound is not included in the epoxy resin.
Specific examples of epoxy resins are described below, but are not limited thereto.
 具体的には、フェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF等のフェノール化合物及びα-ナフトール、β-ナフトール、ジヒドロキシナフタレン等のナフトール化合物からなる群より選ばれる少なくとも1種のフェノール性化合物と、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド等の脂肪族アルデヒド化合物とを酸性触媒下で縮合又は共縮合させて得られるノボラック樹脂をエポキシ化したものであるノボラック型エポキシ樹脂(フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂等);上記フェノール性化合物と、ベンズアルデヒド、サリチルアルデヒド等の芳香族アルデヒド化合物とを酸性触媒下で縮合又は共縮合させて得られるトリフェニルメタン型フェノール樹脂をエポキシ化したものであるトリフェニルメタン型エポキシ樹脂;上記フェノール化合物及びナフトール化合物と、アルデヒド化合物とを酸性触媒下で共縮合させて得られるノボラック樹脂をエポキシ化したものである共重合型エポキシ樹脂;ビスフェノールA、ビスフェノールF等のジグリシジルエーテルであるジフェニルメタン型エポキシ樹脂;アルキル置換又は非置換のビフェノールのジグリシジルエーテルであるビフェニル型エポキシ樹脂;スチルベン系フェノール化合物のジグリシジルエーテルであるスチルベン型エポキシ樹脂;ビスフェノールS等のジグリシジルエーテルである硫黄原子含有型エポキシ樹脂;ブタンジオール、ポリエチレングリコール、ポリプロピレングリコール等のアルコール類のグリシジルエーテルであるエポキシ樹脂;フタル酸、イソフタル酸、テトラヒドロフタル酸等の多価カルボン酸化合物のグリシジルエステルであるグリシジルエステル型エポキシ樹脂;アニリン、ジアミノジフェニルメタン、イソシアヌル酸等の窒素原子に結合した活性水素をグリシジル基で置換したものであるグリシジルアミン型エポキシ樹脂;ジシクロペンタジエンとフェノール化合物の共縮合樹脂をエポキシ化したものであるジシクロペンタジエン型エポキシ樹脂;分子内のオレフィン結合をエポキシ化したものであるビニルシクロヘキセンジエポキシド、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、2-(3,4-エポキシ)シクロヘキシル-5,5-スピロ(3,4-エポキシ)シクロヘキサン-m-ジオキサン等の脂環型エポキシ樹脂;パラキシリレン変性フェノール樹脂のグリシジルエーテルであるパラキシリレン変性エポキシ樹脂;メタキシリレン変性フェノール樹脂のグリシジルエーテルであるメタキシリレン変性エポキシ樹脂;テルペン変性フェノール樹脂のグリシジルエーテルであるテルペン変性エポキシ樹脂;ジシクロペンタジエン変性フェノール樹脂のグリシジルエーテルであるジシクロペンタジエン変性エポキシ樹脂;シクロペンタジエン変性フェノール樹脂のグリシジルエーテルであるシクロペンタジエン変性エポキシ樹脂;多環芳香環変性フェノール樹脂のグリシジルエーテルである多環芳香環変性エポキシ樹脂;ナフタレン環含有フェノール樹脂のグリシジルエーテルであるナフタレン型エポキシ樹脂;ハロゲン化フェノールノボラック型エポキシ樹脂;ハイドロキノン型エポキシ樹脂;トリメチロールプロパン型エポキシ樹脂;オレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族エポキシ樹脂;フェノールアラルキル樹脂、ナフトールアラルキル樹脂等のアラルキル型フェノール樹脂をエポキシ化したものであるアラルキル型エポキシ樹脂;などが挙げられる。さらにはアミノフェノールのグリシジルエーテルであるアミノフェノール型エポキシ樹脂等もエポキシ樹脂として挙げられる。これらのエポキシ樹脂は、1種類を単独で用いても2種類以上を組み合わせて用いてもよい。 Specifically, at least one phenol selected from the group consisting of phenol compounds such as phenol, cresol, xylenol, resorcinol, catechol, bisphenol A and bisphenol F, and naphthol compounds such as α-naphthol, β-naphthol and dihydroxynaphthalene. A novolak type epoxy resin (phenol novolac type epoxy resin, ortho-cresol novolak-type epoxy resins, etc.); epoxidized triphenylmethane-type phenolic resins obtained by condensation or co-condensation of the above phenolic compounds and aromatic aldehyde compounds such as benzaldehyde and salicylaldehyde in the presence of an acidic catalyst. A triphenylmethane type epoxy resin; a copolymer type epoxy resin obtained by epoxidizing a novolak resin obtained by co-condensing the above phenol compound and naphthol compound with an aldehyde compound in the presence of an acidic catalyst; bisphenol A, bisphenol diphenylmethane-type epoxy resins that are diglycidyl ethers such as F; biphenyl-type epoxy resins that are diglycidyl ethers of alkyl-substituted or unsubstituted biphenols; stilbene-type epoxy resins that are diglycidyl ethers of stilbene-based phenol compounds; Sulfur atom-containing epoxy resins that are diglycidyl ethers; Epoxy resins that are glycidyl ethers of alcohols such as butanediol, polyethylene glycol and polypropylene glycol; Glycidyl polyvalent carboxylic acid compounds such as phthalic acid, isophthalic acid and tetrahydrophthalic acid Glycidyl ester-type epoxy resins that are esters; glycidylamine-type epoxy resins in which active hydrogens bonded to nitrogen atoms of aniline, diaminodiphenylmethane, isocyanuric acid, etc. are substituted with glycidyl groups; co-condensation resins of dicyclopentadiene and phenol compounds Dicyclopentadiene type epoxy resin which is obtained by epoxidizing the; vinylcyclohexene diepoxide obtained by epoxidizing the olefin bond in the molecule, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexane carboxylate, 2- (3,4-epoxy)cyclohexyl-5,5-spiro(3 ,4-epoxy)cyclohexane-m-dioxane and other alicyclic epoxy resins; para-xylylene-modified epoxy resins that are glycidyl ethers of para-xylylene-modified phenol resins; meta-xylylene-modified epoxy resins that are glycidyl ethers of meta-xylylene-modified phenol resins; terpene-modified phenol resins a terpene-modified epoxy resin that is a glycidyl ether of dicyclopentadiene-modified phenol resin; a dicyclopentadiene-modified epoxy resin that is a glycidyl ether of a cyclopentadiene-modified phenol resin; Polycyclic aromatic ring-modified epoxy resins that are glycidyl ethers of resins; naphthalene type epoxy resins that are glycidyl ethers of naphthalene ring-containing phenol resins; halogenated phenol novolac type epoxy resins; hydroquinone type epoxy resins; trimethylolpropane type epoxy resins; linear aliphatic epoxy resin obtained by oxidizing the bond with peracid such as peracetic acid; aralkyl-type epoxy resin obtained by epoxidizing aralkyl-type phenol resin such as phenol aralkyl resin and naphthol aralkyl resin; . Further examples of epoxy resins include aminophenol-type epoxy resins, which are glycidyl ethers of aminophenol. These epoxy resins may be used singly or in combination of two or more.
 上記エポキシ樹脂の中でも、本開示の硬化性樹脂組成物の非粗面化リードフレームに対する接着性の観点及び耐熱性と流動性とのバランスの観点からは、共重合型エポキシ樹脂又はビフェニル型エポキシ樹脂が好ましい。本開示の硬化性樹脂組成物は、共重合型エポキシ樹脂及びビフェニル型エポキシ樹脂を含むことが好ましい。 Among the above epoxy resins, from the viewpoint of adhesion of the curable resin composition of the present disclosure to a non-roughened lead frame and from the viewpoint of the balance between heat resistance and fluidity, a copolymer type epoxy resin or a biphenyl type epoxy resin is preferred. The curable resin composition of the present disclosure preferably contains a copolymer type epoxy resin and a biphenyl type epoxy resin.
 ビフェニル型エポキシ樹脂は、ビフェニル骨格を有するエポキシ樹脂であれば特に限定されない。例えば、下記一般式(II)で表されるエポキシ樹脂が好ましい。 The biphenyl-type epoxy resin is not particularly limited as long as it is an epoxy resin having a biphenyl skeleton. For example, an epoxy resin represented by the following general formula (II) is preferred.
Figure JPOXMLDOC01-appb-C000012

 
Figure JPOXMLDOC01-appb-C000012

 
 式(II)中、Rは水素原子、炭素数1~12のアルキル基又は炭素数4~18の芳香族基を示し、それぞれ全てが同一でも異なっていてもよい。nは平均値であり、0~10の数を示す。 In formula (II), R 8 represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or an aromatic group having 4 to 18 carbon atoms, all of which may be the same or different. n is the average value and represents a number from 0 to 10.
 スチルベン型エポキシ樹脂は、スチルベン骨格を有するエポキシ樹脂であれば特に限定されない。例えば、下記一般式(III)で表されるエポキシ樹脂が好ましい。 The stilbene-type epoxy resin is not particularly limited as long as it is an epoxy resin having a stilbene skeleton. For example, an epoxy resin represented by the following general formula (III) is preferred.
Figure JPOXMLDOC01-appb-C000013

 
Figure JPOXMLDOC01-appb-C000013

 
 式(III)中、R及びR10は水素原子又は炭素数1~18の1価の有機基を示し、それぞれ全てが同一でも異なっていてもよい。nは平均値であり、0~10の数を示す。 In formula (III), R 9 and R 10 each represent a hydrogen atom or a monovalent organic group having 1 to 18 carbon atoms, and may be the same or different. n is the average value and represents a number from 0 to 10.
 ジフェニルメタン型エポキシ樹脂は、ジフェニルメタン骨格を有するエポキシ樹脂であれば特に限定されない。例えば、下記一般式(IV)で表されるエポキシ樹脂が好ましい。 The diphenylmethane-type epoxy resin is not particularly limited as long as it is an epoxy resin having a diphenylmethane skeleton. For example, an epoxy resin represented by the following general formula (IV) is preferred.
Figure JPOXMLDOC01-appb-C000014

 
Figure JPOXMLDOC01-appb-C000014

 
 式(IV)中、R11及びR12は水素原子又は炭素数1~18の1価の有機基を示し、それぞれ全てが同一でも異なっていてもよい。nは平均値であり、0~10の数を示す。 In formula (IV), R 11 and R 12 each represent a hydrogen atom or a monovalent organic group having 1 to 18 carbon atoms, and may be the same or different. n is the average value and represents a number from 0 to 10.
 硫黄原子含有型エポキシ樹脂は、硫黄原子を含有するエポキシ樹脂であれば特に限定されない。例えば、下記一般式(V)で表されるエポキシ樹脂が挙げられる。 The sulfur atom-containing type epoxy resin is not particularly limited as long as it is an epoxy resin containing sulfur atoms. Examples thereof include epoxy resins represented by the following general formula (V).
Figure JPOXMLDOC01-appb-C000015

 
Figure JPOXMLDOC01-appb-C000015

 
 式(V)中、R13は水素原子又は炭素数1~18の1価の有機基を示し、それぞれ全てが同一でも異なっていてもよい。nは平均値であり、0~10の数を示す。 In formula (V), R 13 represents a hydrogen atom or a monovalent organic group having 1 to 18 carbon atoms, and all of them may be the same or different. n is the average value and represents a number from 0 to 10.
 ノボラック型エポキシ樹脂は、ノボラック型フェノール樹脂をエポキシ化して得られるエポキシ樹脂であれば、特に限定されない。 The novolak type epoxy resin is not particularly limited as long as it is an epoxy resin obtained by epoxidizing a novolak type phenol resin.
Figure JPOXMLDOC01-appb-C000016

 
Figure JPOXMLDOC01-appb-C000016

 
 式(VI)中、R14は水素原子又は炭素数1~18の1価の有機基を示し、それぞれ全てが同一でも異なっていてもよい。R15は炭素数1~18の1価の有機基を示し、それぞれ全てが同一でも異なっていてもよい。iは各々独立に0~3の整数を示す。nは平均値であり、0~10の数を示す。 In formula (VI), R 14 represents a hydrogen atom or a monovalent organic group having 1 to 18 carbon atoms, and all of them may be the same or different. R 15 represents a monovalent organic group having 1 to 18 carbon atoms, all of which may be the same or different. i each independently represents an integer of 0 to 3; n is the average value and represents a number from 0 to 10.
 ジシクロペンタジエン型エポキシ樹脂は、ジシクロペンタジエン骨格を有する化合物を原料としてエポキシ化して得られるエポキシ樹脂であれば特に限定されない。 The dicyclopentadiene type epoxy resin is not particularly limited as long as it is an epoxy resin obtained by epoxidizing a compound having a dicyclopentadiene skeleton as a raw material.
Figure JPOXMLDOC01-appb-C000017

 
Figure JPOXMLDOC01-appb-C000017

 
 式(VII)中、R16は炭素数1~18の1価の有機基を示し、それぞれ全てが同一でも異なっていてもよい。iは各々独立に0~3の整数を示す。nは平均値であり、0~10の数を示す。 In formula (VII), R 16 represents a monovalent organic group having 1 to 18 carbon atoms, and all of them may be the same or different. i each independently represents an integer of 0 to 3; n is the average value and represents a number from 0 to 10.
 トリフェニルメタン型エポキシ樹脂は、トリフェニルメタン骨格を持つ化合物を原料とするエポキシ樹脂であれば特に制限されない。 The triphenylmethane-type epoxy resin is not particularly limited as long as it is an epoxy resin made from a compound having a triphenylmethane skeleton.
Figure JPOXMLDOC01-appb-C000018

 
Figure JPOXMLDOC01-appb-C000018

 
 式(VIII)中、R17及びR18は炭素数1~18の1価の有機基を示し、それぞれ全てが同一でも異なっていてもよい。iは各々独立に0~3の整数、kは各々独立に0~4の整数を示す。nは平均値であり、0~10の数を示す。 In formula (VIII), R 17 and R 18 each represent a monovalent organic group having 1 to 18 carbon atoms, and may be the same or different. Each i independently represents an integer of 0 to 3, and each k independently represents an integer of 0 to 4. n is the average value and represents a number from 0 to 10.
 ナフトール化合物及びフェノール化合物と、アルデヒド化合物とから得られるノボラック樹脂をエポキシ化した共重合型エポキシ樹脂は、ナフトール骨格を有する化合物及びフェノール骨格を有する化合物を原料とするエポキシ樹脂であれば、特に限定されない。 The copolymer type epoxy resin obtained by epoxidizing a novolac resin obtained from a naphthol compound, a phenolic compound, and an aldehyde compound is not particularly limited as long as it is an epoxy resin made from a compound having a naphthol skeleton and a compound having a phenolic skeleton. .
Figure JPOXMLDOC01-appb-C000019

 
Figure JPOXMLDOC01-appb-C000019

 
 式(IX)中、R19~R21は炭素数1~18の1価の有機基を示し、それぞれ全てが同一でも異なっていてもよい。iは各々独立に0~3の整数、jは各々独立に0~2の整数、kは各々独立に0~4の整数を示す。l及びmはそれぞれ平均値であり、0~10の数であり、(l+m)は0~10の数を示す。式(IX)で表されるエポキシ樹脂の末端は、下記式(IX-1)又は(IX-2)のいずれか一方である。式(IX-1)及び(IX-2)において、R19~R21、i、j及びkの定義は式(IX)におけるR19~R21、i、j及びkの定義と同じである。nは1(メチレン基を介して結合する場合)又は0(メチレン基を介して結合しない場合)である。 In formula (IX), R 19 to R 21 represent monovalent organic groups having 1 to 18 carbon atoms, and may be the same or different. Each i independently represents an integer of 0 to 3, each j independently represents an integer of 0 to 2, and each k independently represents an integer of 0 to 4. l and m are average values, numbers from 0 to 10, and (l+m) shows numbers from 0 to 10. The terminal of the epoxy resin represented by formula (IX) is either one of formula (IX-1) or (IX-2) below. Definitions of R 19 to R 21 , i, j and k in formulas (IX-1) and (IX-2) are the same as definitions of R 19 to R 21 , i , j and k in formula (IX). . n is 1 (when linked via a methylene group) or 0 (when not linked via a methylene group).
Figure JPOXMLDOC01-appb-C000020

 
Figure JPOXMLDOC01-appb-C000020

 
 上記一般式(IX)で表されるエポキシ樹脂としては、l個の構造単位及びm個の構造単位をランダムに有するランダム共重合体、交互に有する交互共重合体、規則的に有する共重合体、ブロック状に有するブロック共重合体等が挙げられる。これらのいずれか1種類を単独で用いても2種類以上を組み合わせて用いてもよい。 The epoxy resin represented by the general formula (IX) includes a random copolymer having l structural units and m structural units at random, an alternating copolymer having alternating structural units, and a copolymer having regularly , a block copolymer having a block shape, and the like. Any one of these may be used alone, or two or more may be used in combination.
 本開示の硬化性樹脂組成物の非粗面化リードフレームに対する接着性の観点から、共重合型エポキシ樹脂としては、クレゾール由来の構造単位と、メトキシナフタレン由来の構造単位とを有する共重合型エポキシ樹脂が好ましい(以下、特定共重合型エポキシ樹脂という。)。
 特定共重合型エポキシ樹脂は、下記構造単位を有することが好ましい。
 下記構造単位では、nはそれぞれ平均値であり、1~10の数であり、2~8の数であることが好ましい。
From the viewpoint of the adhesion of the curable resin composition of the present disclosure to a non-roughened lead frame, the copolymerized epoxy resin has a cresol-derived structural unit and a methoxynaphthalene-derived structural unit. A resin is preferred (hereinafter referred to as a specific copolymer type epoxy resin).
The specific copolymerization type epoxy resin preferably has the following structural units.
In the following structural units, each n is an average value, a number from 1 to 10, preferably a number from 2 to 8.
Figure JPOXMLDOC01-appb-C000021

 
Figure JPOXMLDOC01-appb-C000021

 
 アラルキル型エポキシ樹脂は、フェノール、クレゾール等のフェノール化合物及びナフトール、ジメチルナフトール等のナフトール化合物からなる群より選ばれる少なくとも1種と、ジメトキシパラキシレン、ビス(メトキシメチル)ビフェニル又はこれらの誘導体と、から合成されるフェノール樹脂を原料とするエポキシ樹脂であれば、特に限定されない。例えば、フェノール、クレゾール等のフェノール化合物及びナフトール、ジメチルナフトール等のナフトール化合物からなる群より選ばれる少なくとも1種と、ジメトキシパラキシレン、ビス(メトキシメチル)ビフェニル又はこれらの誘導体とから合成されるフェノール樹脂をグリシジルエーテル化して得られるエポキシ樹脂が好ましく、下記一般式(X)及び(XI)で表されるエポキシ樹脂がより好ましい。 The aralkyl-type epoxy resin is composed of at least one selected from the group consisting of phenol compounds such as phenol and cresol, and naphthol compounds such as naphthol and dimethylnaphthol, and dimethoxyparaxylene, bis(methoxymethyl)biphenyl or derivatives thereof. There is no particular limitation as long as it is an epoxy resin made from a synthesized phenol resin. For example, a phenolic resin synthesized from at least one selected from the group consisting of phenol compounds such as phenol and cresol and naphthol compounds such as naphthol and dimethylnaphthol, and dimethoxyparaxylene, bis(methoxymethyl)biphenyl or derivatives thereof is preferably an epoxy resin obtained by glycidyl etherification, and more preferably an epoxy resin represented by the following general formulas (X) and (XI).
Figure JPOXMLDOC01-appb-C000022

 
Figure JPOXMLDOC01-appb-C000022

 
 式(X)及び(XI)において、R38は水素原子又は炭素数1~18の1価の有機基を示し、それぞれ全てが同一でも異なっていてもよい。R37、R39~R41は炭素数1~18の1価の有機基を示し、それぞれ全てが同一でも異なっていてもよい。iはそれぞれ独立に0~3の整数であり、jはそれぞれ独立に0~2の整数であり、kはそれぞれ独立に0~4の整数であり、lはそれぞれ独立に0~4の整数を示す。nは平均値であり、それぞれ独立に0~10の数である。 In formulas (X) and (XI), R 38 represents a hydrogen atom or a monovalent organic group having 1 to 18 carbon atoms, all of which may be the same or different. R 37 , R 39 to R 41 each represent a monovalent organic group having 1 to 18 carbon atoms, and all of them may be the same or different. i is each independently an integer of 0 to 3, j is each independently an integer of 0 to 2, k is each independently an integer of 0 to 4, l is each independently an integer of 0 to 4 show. n is an average value, each independently a number from 0 to 10.
 上記一般式(II)~(XI)中のR~R21及びR37~R41について、「それぞれ全てが同一でも異なっていてもよい」とは、例えば、式(II)中の8~88個のRの全てが同一でも異なっていてもよいことを意味している。他のR~R21及びR37~R41についても、式中に含まれるそれぞれの個数について全てが同一でも異なっていてもよいことを意味している。また、R~R21及びR37~R41はそれぞれが同一でも異なっていてもよい。例えば、RとR10の全てについて同一でも異なっていてもよい。
 また、一般式(III)~(XI)における炭素数1~18の1価の有機基はアルキル基又はアリール基であることが好ましい。
Regarding R 8 to R 21 and R 37 to R 41 in general formulas (II) to (XI) above, “all of which may be the same or different” means, for example, 8 to R 41 in formula (II). It means that all 88 R 8 may be the same or different. Other R 9 to R 21 and R 37 to R 41 also mean that the respective numbers contained in the formula may all be the same or different. Also, R 8 to R 21 and R 37 to R 41 may be the same or different. For example, all of R 9 and R 10 may be the same or different.
Further, the monovalent organic group having 1 to 18 carbon atoms in general formulas (III) to (XI) is preferably an alkyl group or an aryl group.
 上記一般式(II)~(XI)中のnは、平均値であり、それぞれ独立に0~10の範囲であることが好ましい。nが10以下であると樹脂成分の溶融粘度が高くなりすぎず、硬化性樹脂組成物の溶融成形時の粘度が低下し、充填不良、ボンディングワイヤ(素子とリードを接続する金線)の変形等の発生が抑制される傾向にある。nは0~4の範囲に設定されることがより好ましい。 n in the above general formulas (II) to (XI) is an average value, and each independently preferably ranges from 0 to 10. If n is 10 or less, the melt viscosity of the resin component does not become too high, and the viscosity of the curable resin composition during melt molding decreases, resulting in insufficient filling and deformation of the bonding wire (gold wire that connects the element and the lead). etc. tend to be suppressed. More preferably, n is set in the range of 0-4.
 エポキシ樹脂のエポキシ当量は特に制限されない。成形性、耐熱性及び電気的信頼性等の各種特性バランスの観点からは、エポキシ樹脂のエポキシ当量は、40g/eq~1000g/eqが好ましく、45g/eq~500g/eqがより好ましく、50g/eq~350g/eqがさらに好ましい。
 エポキシ樹脂のエポキシ当量は、JIS K 7236:2009に準じた方法で測定される値とする。
The epoxy equivalent of the epoxy resin is not particularly limited. From the viewpoint of the balance of various properties such as moldability, heat resistance and electrical reliability, the epoxy equivalent of the epoxy resin is preferably 40 g/eq to 1000 g/eq, more preferably 45 g/eq to 500 g/eq, and 50 g/eq. eq to 350 g/eq is more preferred.
Let the epoxy equivalent of an epoxy resin be the value measured by the method according to JISK7236:2009.
 エポキシ樹脂は、25℃において、固体であってもよく、液体であってもよい。25℃においてエポキシ樹脂が固体である場合、エポキシ樹脂の軟化点又は融点は特に制限されない。
 成形性と耐熱性とのバランスの観点からは、エポキシ樹脂の軟化点又は融点は、40℃~180℃であることが好ましい。また、硬化性樹脂組成物の製造の際の取扱い性の観点からは、エポキシ樹脂の軟化点又は融点は、50℃~130℃であることが好ましい。
 本開示において、軟化点は、JIS K 7234:1986の環球法により測定された値をいう。
 本開示において、融点は、JIS K 0064:1992の目視による方法に則って測定された値をいう。
The epoxy resin may be solid or liquid at 25°C. If the epoxy resin is solid at 25°C, the softening point or melting point of the epoxy resin is not particularly limited.
From the viewpoint of the balance between moldability and heat resistance, the softening point or melting point of the epoxy resin is preferably 40°C to 180°C. Also, from the viewpoint of handleability during production of the curable resin composition, the softening point or melting point of the epoxy resin is preferably 50°C to 130°C.
In the present disclosure, softening point refers to a value measured by the ring and ball method of JIS K 7234:1986.
In the present disclosure, melting point refers to a value measured according to the visual observation method of JIS K 0064:1992.
 成形性と耐熱性とのバランスの観点から、エポキシ樹脂のMwは、550~1050であることが好ましく、650~950であることがより好ましい。 From the viewpoint of the balance between moldability and heat resistance, the Mw of the epoxy resin is preferably 550-1050, more preferably 650-950.
 硬化性樹脂組成物におけるエポキシ樹脂の含有率は、強度、流動性、耐熱性、成形性等の観点から0.5質量%~60質量%であることが好ましく、2質量%~50質量%であることがより好ましく、3質量%~45質量%であることがさらに好ましい。 The content of the epoxy resin in the curable resin composition is preferably 0.5% by mass to 60% by mass from the viewpoint of strength, fluidity, heat resistance, moldability, etc., and is preferably 2% by mass to 50% by mass. more preferably 3% by mass to 45% by mass.
 エポキシ樹脂が、共重合型エポキシ樹脂を含む場合、本開示の硬化性樹脂組成物の非粗面化リードフレームに対する接着性の観点から、硬化性樹脂組成物に含まれるエポキシ樹脂の全質量に対する共重合型エポキシ樹脂の含有率は、50質量%~90質量%であることが好ましく、55質量%~80質量%であることがより好ましく、60質量%~75質量%であることがさらに好ましい。 When the epoxy resin contains a copolymerized epoxy resin, from the viewpoint of the adhesion of the curable resin composition of the present disclosure to a non-roughened lead frame, the total mass of the epoxy resin contained in the curable resin composition is The content of the polymerizable epoxy resin is preferably 50% to 90% by mass, more preferably 55% to 80% by mass, and even more preferably 60% to 75% by mass.
 共重合型エポキシ樹脂が特定共重合型エポキシ樹脂を含む場合、本開示の硬化性樹脂組成物の非粗面化リードフレームに対する接着性の観点から、共重合型エポキシ樹脂の全質量に対する特定共重合型エポキシ樹脂の含有率は、50質量%~100質量%であることが好ましく、60質量%~100質量%であることがより好ましく、70質量%~100質量%であることがさらに好ましい。 When the copolymerized epoxy resin contains a specific copolymerized epoxy resin, from the viewpoint of adhesion of the curable resin composition of the present disclosure to a non-roughened lead frame, the specific copolymerization of the total mass of the copolymerized epoxy resin The content of the type epoxy resin is preferably 50% by mass to 100% by mass, more preferably 60% by mass to 100% by mass, and even more preferably 70% by mass to 100% by mass.
 エポキシ樹脂が、ビフェニル型エポキシ樹脂を含む場合、本開示の硬化性樹脂組成物の非粗面化リードフレームに対する接着性の観点から、硬化性樹脂組成物に含まれるエポキシ樹脂の全質量に対するビフェニル型エポキシ樹脂の含有率は、10質量%~50質量%であることが好ましく、20質量%~45質量%であることがより好ましく、25質量%~40質量%であることがさらに好ましい。 When the epoxy resin contains a biphenyl-type epoxy resin, from the viewpoint of the adhesion of the curable resin composition of the present disclosure to a non-roughened lead frame, the biphenyl-type epoxy resin relative to the total mass of the epoxy resin contained in the curable resin composition The content of the epoxy resin is preferably 10% by mass to 50% by mass, more preferably 20% by mass to 45% by mass, even more preferably 25% by mass to 40% by mass.
(硬化剤)
 本開示の硬化性樹脂組成物は、硬化剤を含む。硬化剤の種類は特に制限されず、硬化性樹脂組成物の成分として一般に使用されているものから選択できる。硬化剤は、1種類を単独で用いても2種類以上を組み合わせて用いてもよい。
 なお、本開示において、硬化剤とは、硬化性樹脂組成物に含まれるエポキシ樹脂と反応し、硬化性樹脂組成物を硬化することができる構造を有していればよく、含有量が少なく、硬化性樹脂組成物の硬化反応における寄与が少ない化合物であっても、硬化剤に含まれるものとする。
(curing agent)
The curable resin composition of the present disclosure contains a curing agent. The type of curing agent is not particularly limited, and can be selected from those commonly used as components of curable resin compositions. The curing agent may be used singly or in combination of two or more.
In the present disclosure, the curing agent is only required to have a structure capable of reacting with the epoxy resin contained in the curable resin composition and curing the curable resin composition. Even compounds that contribute little to the curing reaction of the curable resin composition are included in the curing agent.
 硬化剤としては、フェノール系硬化剤、アミン系硬化剤、酸無水物系硬化剤、ポリメルカプタン系硬化剤、ポリアミノアミド系硬化剤、イソシアネート系硬化剤、ブロックイソシアネート系硬化剤等が挙げられる。
 これらの中でも、耐熱性の観点から、硬化剤はフェノール系硬化剤又はアミン系硬化剤が好ましい。また、本開示の硬化性樹脂組成物の非粗面化リードフレームに対する接着性の観点及び耐熱性の観点から、硬化剤はフェノール系硬化剤が好ましい。
Examples of curing agents include phenol-based curing agents, amine-based curing agents, acid anhydride-based curing agents, polymercaptan-based curing agents, polyaminoamide-based curing agents, isocyanate-based curing agents, and blocked isocyanate-based curing agents.
Among these, from the viewpoint of heat resistance, the curing agent is preferably a phenol-based curing agent or an amine-based curing agent. From the viewpoint of the adhesiveness of the curable resin composition of the present disclosure to a non-roughened lead frame and the viewpoint of heat resistance, the curing agent is preferably a phenol-based curing agent.
 フェノール系硬化剤としては、例えば、1分子中に2個以上のフェノール性水酸基を有するフェノール樹脂及び多価フェノール化合物が挙げられる。具体的には、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、置換又は非置換のビフェノール等の多価フェノール化合物;フェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、フェニルフェノール、アミノフェノール等のフェノール化合物及びα-ナフトール、β-ナフトール、ジヒドロキシナフタレン等のナフトール化合物からなる群より選ばれる少なくとも一種のフェノール性化合物と、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド等のアルデヒド化合物とを酸性触媒下で縮合又は共縮合させて得られるノボラック型フェノール樹脂;上記フェノール性化合物と、ジメトキシパラキシレン、ビス(メトキシメチル)ビフェニル等とから合成されるフェノールアラルキル樹脂、ナフトールアラルキル樹脂等のアラルキル型フェノール樹脂;パラキシリレン及び/又はメタキシリレン変性フェノール樹脂;メラミン変性フェノール樹脂;テルペン変性フェノール樹脂;上記フェノール性化合物と、ジシクロペンタジエンとから共重合により合成されるジシクロペンタジエン型フェノール樹脂及びジシクロペンタジエン型ナフトール樹脂;シクロペンタジエン変性フェノール樹脂;多環芳香環変性フェノール樹脂;ビフェニル型フェノール樹脂;上記フェノール性化合物と、ベンズアルデヒド、サリチルアルデヒド等の芳香族アルデヒド化合物とを酸性触媒下で縮合又は共縮合させて得られるトリフェニルメタン型フェノール樹脂;これら2種以上を共重合して得たフェノール樹脂などが挙げられる。これらのフェノール系硬化剤は、1種類を単独で用いても2種類以上を組み合わせて用いてもよい。 Phenol-based curing agents include, for example, phenol resins and polyhydric phenol compounds having two or more phenolic hydroxyl groups in one molecule. Specifically, polyhydric phenol compounds such as resorcin, catechol, bisphenol A, bisphenol F, substituted or unsubstituted biphenol; phenol, cresol, xylenol, resorcin, catechol, bisphenol A, bisphenol F, phenylphenol, aminophenol, etc. At least one phenolic compound selected from the group consisting of phenol compounds and naphthol compounds such as α-naphthol, β-naphthol, and dihydroxynaphthalene, and aldehyde compounds such as formaldehyde, acetaldehyde, and propionaldehyde are condensed under an acidic catalyst or Novolac-type phenolic resin obtained by cocondensation; Aralkyl-type phenolic resin such as phenol aralkyl resin and naphthol aralkyl resin synthesized from the above phenolic compound and dimethoxyparaxylene, bis(methoxymethyl)biphenyl, etc.; Para-xylylene and/or or meta-xylylene-modified phenolic resin; melamine-modified phenolic resin; terpene-modified phenolic resin; dicyclopentadiene-type phenolic resin and dicyclopentadiene-type naphthol resin synthesized by copolymerization from the above phenolic compound and dicyclopentadiene; cyclopentadiene-modified Phenolic resin; Polycyclic aromatic ring-modified phenolic resin; Biphenyl-type phenolic resin; Triphenylmethane type obtained by condensation or co-condensation of the above phenolic compound and an aromatic aldehyde compound such as benzaldehyde and salicylaldehyde in the presence of an acidic catalyst. Phenolic resin; Phenolic resins obtained by copolymerizing two or more of these can be mentioned. These phenol-based curing agents may be used singly or in combination of two or more.
 本開示の硬化性樹脂組成物の非粗面化リードフレームに対する接着性の観点及び耐熱性の観点から、フェノール系硬化剤の中でもアラルキル型フェノール樹脂が好ましい。 From the viewpoint of the adhesiveness of the curable resin composition of the present disclosure to a non-roughened lead frame and the viewpoint of heat resistance, aralkyl-type phenolic resins are preferable among phenolic curing agents.
 アラルキル型フェノール樹脂としては、フェノール性化合物と、ジメトキシパラキシレン、ビス(メトキシメチル)ビフェニル等とから合成されるフェノールアラルキル樹脂、ナフトールアラルキル樹脂等が挙げられる。アラルキル型フェノール樹脂は、さらに他のフェノール樹脂と共重合していてもよい。共重合したアラルキル型フェノール樹脂としては、トリフェニルメタン型フェノール樹脂とアラルキル型フェノール樹脂との共重合型フェノール樹脂、サリチルアルデヒド型フェノール樹脂とアラルキル型フェノール樹脂との共重合型フェノール樹脂、ノボラック型フェノール樹脂とアラルキル型フェノール樹脂との共重合型フェノール樹脂等が挙げられる。 Aralkyl-type phenol resins include phenol aralkyl resins and naphthol aralkyl resins synthesized from phenolic compounds and dimethoxyparaxylene, bis(methoxymethyl)biphenyl, and the like. The aralkyl-type phenolic resin may be further copolymerized with another phenolic resin. Copolymerized aralkyl-type phenolic resins include copolymerized phenolic resins of triphenylmethane-type phenolic resin and aralkyl-type phenolic resin, copolymerized phenolic resins of salicylaldehyde-type phenolic resin and aralkyl-type phenolic resin, and novolac-type phenolic resin. A copolymer type phenol resin of a resin and an aralkyl type phenol resin can be used.
 アラルキル型フェノール樹脂は、フェノール化合物及びナフトール化合物からなる群より選ばれる少なくとも1種と、ジメトキシパラキシレン、ビス(メトキシメチル)ビフェニル又はこれらの誘導体と、から合成されるフェノール樹脂であれば特に限定されない。例えば、下記一般式(XII)~(XIV)で表されるフェノール樹脂が好ましい。 The aralkyl-type phenolic resin is not particularly limited as long as it is a phenolic resin synthesized from at least one selected from the group consisting of phenolic compounds and naphthol compounds and dimethoxyparaxylene, bis(methoxymethyl)biphenyl or derivatives thereof. . For example, phenol resins represented by the following general formulas (XII) to (XIV) are preferred.
Figure JPOXMLDOC01-appb-C000023

 
Figure JPOXMLDOC01-appb-C000023

 
 式(XII)~(XIV)において、R23は水素原子又は炭素数1~18の1価の有機基を示し、それぞれ全てが同一でも異なっていてもよい。R22、R24、R25及びR28は炭素数1~18の1価の有機基を示し、それぞれ全てが同一でも異なっていてもよい。R26及びR27は水酸基又は炭素数1~18の1価の有機基を示し、それぞれ全てが同一でも異なっていてもよい。iはそれぞれ独立に0~3の整数であり、jはそれぞれ独立に0~2の整数であり、kはそれぞれ独立に0~4の整数であり、pはそれぞれ独立に0~4の整数である。nは平均値であり、それぞれ独立に0~10の数である。 In formulas (XII) to (XIV), R 23 represents a hydrogen atom or a monovalent organic group having 1 to 18 carbon atoms, all of which may be the same or different. R 22 , R 24 , R 25 and R 28 each represent a monovalent organic group having 1 to 18 carbon atoms, and all of them may be the same or different. R 26 and R 27 each represent a hydroxyl group or a monovalent organic group having 1 to 18 carbon atoms, and may be the same or different. i is each independently an integer of 0 to 3, j is each independently an integer of 0 to 2, k is each independently an integer of 0 to 4, p is each independently an integer of 0 to 4 be. n is an average value, each independently a number from 0 to 10.
 本開示の硬化性樹脂組成物の非粗面化リードフレームに対する接着性の観点及び耐熱性の観点から、アラルキル型フェノール樹脂は、一般式(XIII)で表されるフェノール樹脂が好ましい。
 本開示の硬化性樹脂組成物の非粗面化リードフレームに対する接着性の観点及び耐熱性の観点から、また、一般式(XIII)中、i及びkは共に0であることが好ましい。
From the viewpoint of the adhesiveness of the curable resin composition of the present disclosure to a non-roughened lead frame and the viewpoint of heat resistance, the aralkyl-type phenolic resin is preferably a phenolic resin represented by general formula (XIII).
Both i and k are preferably 0 in general formula (XIII), from the viewpoint of the adhesiveness of the curable resin composition of the present disclosure to a non-roughened lead frame and from the viewpoint of heat resistance.
 ジシクロペンタジエン型フェノール樹脂は、ジシクロペンタジエン骨格を有する化合物を原料として得られるフェノール樹脂であれば特に限定されない。 The dicyclopentadiene-type phenolic resin is not particularly limited as long as it is a phenolic resin obtained using a compound having a dicyclopentadiene skeleton as a raw material.
Figure JPOXMLDOC01-appb-C000024

 
Figure JPOXMLDOC01-appb-C000024

 
 式(XV)中、R29は炭素数1~18の1価の有機基を示し、それぞれ全てが同一でも異なっていてもよい。iは各々独立に0~3の整数を示す。nは平均値であり、0~10の数を示す。 In formula (XV), R 29 represents a monovalent organic group having 1 to 18 carbon atoms, and all of them may be the same or different. i each independently represents an integer of 0 to 3; n is the average value and represents a number from 0 to 10.
 トリフェニルメタン型フェノール樹脂は、芳香族アルデヒド化合物を原料として得られるフェノール樹脂であれば特に限定されない。例えば、下記一般式(XVI)で表されるフェノール樹脂が好ましい。 The triphenylmethane-type phenolic resin is not particularly limited as long as it is a phenolic resin obtained using an aromatic aldehyde compound as a raw material. For example, a phenol resin represented by the following general formula (XVI) is preferred.
Figure JPOXMLDOC01-appb-C000025

 
Figure JPOXMLDOC01-appb-C000025

 
 式(XVI)中、R30及びR31は炭素数1~18の1価の有機基を示し、それぞれ全てが同一でも異なっていてもよい。iはそれぞれ独立に0~3の整数であり、kはそれぞれ独立に0~4の整数である。nは平均値であり、0~10の数である。 In formula (XVI), R 30 and R 31 each represent a monovalent organic group having 1 to 18 carbon atoms and may be the same or different. Each i is independently an integer of 0 to 3, and each k is independently an integer of 0 to 4. n is the average value and is a number from 0 to 10.
 トリフェニルメタン型フェノール樹脂とアラルキル型フェノール樹脂との共重合型フェノール樹脂は、ベンズアルデヒド骨格を有する化合物を原料として得られるフェノール樹脂とアラルキル型フェノール樹脂との共重合型フェノール樹脂であれば特に限定されない。例えば、下記一般式(XVII)で表されるフェノール樹脂が好ましい。 The copolymerized phenolic resin of triphenylmethane-type phenolic resin and aralkyl-type phenolic resin is not particularly limited as long as it is a copolymerized-type phenolic resin of phenolic resin obtained using a compound having a benzaldehyde skeleton as a raw material and aralkyl-type phenolic resin. . For example, a phenol resin represented by the following general formula (XVII) is preferred.
Figure JPOXMLDOC01-appb-C000026

 
Figure JPOXMLDOC01-appb-C000026

 
 式(XVII)中、R32~R34は炭素数1~18の1価の有機基を示し、それぞれ全てが同一でも異なっていてもよい。iはそれぞれ独立に0~3の整数であり、kはそれぞれ独立に0~4の整数であり、qはそれぞれ独立に0~5の整数である。l及びmはそれぞれ平均値であり、それぞれ独立に0~11の数である。ただし、lとmの合計は1~11の数である。 In formula (XVII), R 32 to R 34 each represent a monovalent organic group having 1 to 18 carbon atoms, and all of them may be the same or different. Each i is independently an integer of 0 to 3, each k is independently an integer of 0 to 4, and each q is independently an integer of 0 to 5. Each l and m is an average value and each independently represents a number from 0 to 11. However, the sum of l and m is a number from 1 to 11.
 ノボラック型フェノール樹脂は、フェノール化合物及びナフトール化合物からなる群より選ばれる少なくとも1種のフェノール性化合物と、アルデヒド化合物とを酸性触媒下で縮合又は共縮合させて得られるフェノール樹脂であれば特に限定されない。例えば、下記一般式(XVIII)で表されるフェノール樹脂が好ましい。 The novolak-type phenolic resin is not particularly limited as long as it is a phenolic resin obtained by condensation or co-condensation of at least one phenolic compound selected from the group consisting of phenolic compounds and naphthol compounds and an aldehyde compound in the presence of an acidic catalyst. . For example, a phenol resin represented by the following general formula (XVIII) is preferred.
Figure JPOXMLDOC01-appb-C000027

 
Figure JPOXMLDOC01-appb-C000027

 
 式(XVIII)中、R35は水素原子又は炭素数1~18の1価の有機基を示し、それぞれ全てが同一でも異なっていてもよい。R36は炭素数1~18の1価の有機基を示し、それぞれ全てが同一でも異なっていてもよい。iは各々独立に0~3の整数を示す。nは平均値であり、0~10の数を示す。 In formula (XVIII), R 35 represents a hydrogen atom or a monovalent organic group having 1 to 18 carbon atoms, all of which may be the same or different. R 36 represents a monovalent organic group having 1 to 18 carbon atoms, all of which may be the same or different. i each independently represents an integer of 0 to 3; n is the average value and represents a number from 0 to 10.
 上記一般式(XII)~(XVIII)におけるR22~R36について記載した「それぞれ全てが同一でも異なっていてもよい」は、例えば、式(XII)中のi個のR22の全てが同一でも相互に異なっていてもよいことを意味している。他のR23~R36についても、式中に含まれるそれぞれの個数について全てが同一でも相互に異なっていてもよいことを意味している。また、R22~R36は、それぞれが同一でも異なっていてもよい。例えば、R22及びR23の全てについて同一でも異なっていてもよく、R30及びR31の全てについて同一でも異なっていてもよい。 "All of which may be the same or different" described for R 22 to R 36 in the general formulas (XII) to (XVIII) means, for example, that all i R 22 in formula (XII) are the same However, it means that they may be different from each other. Other R 23 to R 36 also mean that the respective numbers contained in the formula may all be the same or different from each other. Also, R 22 to R 36 may be the same or different. For example, all of R 22 and R 23 may be the same or different, and all of R 30 and R 31 may be the same or different.
 上記一般式(XII)~(XVIII)におけるnは、0~10の範囲であることが好ましい。10以下であると樹脂成分の溶融粘度が高くなりすぎず、硬化性樹脂組成物の溶融成形時の粘度も低くなり、充填不良、ボンディングワイヤ(素子とリードを接続する金線)の変形等が発生し難くなる。1分子中の平均nは0~4の範囲に設定されることが好ましい。 n in the general formulas (XII) to (XVIII) is preferably in the range of 0 to 10. If it is 10 or less, the melt viscosity of the resin component does not become too high, the viscosity of the curable resin composition during melt molding becomes low, and filling defects, deformation of the bonding wire (gold wire that connects the element and the lead), etc. less likely to occur. The average n in one molecule is preferably set in the range of 0-4.
 アミン系硬化剤としては、具体的には、ジエチレントリアミン、トリエチレンテトラミン、n-プロピルアミン、2-ヒドロキシエチルアミノプロピルアミン、シクロヘキシルアミン、4,4’-ジアミノ-ジシクロヘキシルメタン等の脂肪族アミン化合物、ジエチルトルエンジアミン、3,3’-ジエチル-4,4’-ジアミノジフェニルメタン、ジメチルチオトルエンジアミン、2-メチルアニリン等の芳香族アミン化合物、イミダゾール、2-メチルイミダゾール、2-エチルイミダゾール、2-イソプロピルイミダゾール等のイミダゾール化合物、イミダゾリン、2-メチルイミダゾリン、2-エチルイミダゾリン等のイミダゾリン化合物などが挙げられる。 Specific examples of amine curing agents include aliphatic amine compounds such as diethylenetriamine, triethylenetetramine, n-propylamine, 2-hydroxyethylaminopropylamine, cyclohexylamine, 4,4′-diamino-dicyclohexylmethane, Aromatic amine compounds such as diethyltoluenediamine, 3,3'-diethyl-4,4'-diaminodiphenylmethane, dimethylthiotoluenediamine, 2-methylaniline, imidazole, 2-methylimidazole, 2-ethylimidazole, 2-isopropyl Examples include imidazole compounds such as imidazole, imidazoline compounds such as imidazoline, 2-methylimidazoline and 2-ethylimidazoline.
 硬化剤の官能基当量(フェノール系硬化剤の場合は水酸基当量、アミン系硬化剤の場合は活性水素当量)は、特に制限されない。成形性、耐熱性、電気的信頼性等の各種特性バランスの観点からは、10g/eq~1000g/eqであることが好ましく、30g/eq~500g/eqであることがより好ましい。
 フェノール系硬化剤の場合における水酸基当量は、JIS K 0070:1992に準拠して測定された水酸基価に基づいて算出された値をいう。また、アミン系硬化剤の場合における活性水素当量は、JIS K 7237:1995に準拠して測定されたアミン価に基づいて算出された値をいう。
The functional group equivalent weight of the curing agent (hydroxyl group equivalent weight in the case of a phenol-based curing agent, and active hydrogen equivalent weight in the case of an amine-based curing agent) is not particularly limited. From the viewpoint of the balance of various properties such as moldability, heat resistance and electrical reliability, it is preferably 10 g/eq to 1000 g/eq, more preferably 30 g/eq to 500 g/eq.
The hydroxyl equivalent in the case of a phenol-based curing agent is a value calculated based on the hydroxyl value measured according to JIS K 0070:1992. In addition, the active hydrogen equivalent in the case of an amine-based curing agent is a value calculated based on the amine value measured according to JIS K 7237:1995.
 25℃において硬化剤が固体である場合、その軟化点又は融点は、特に制限されない。成形性と耐熱性の観点からは、硬化剤の軟化点又は融点は、40℃~180℃であることが好ましい。また、硬化性樹脂組成物の製造時における取扱い性の観点からは、硬化剤の軟化点又は融点は、50℃~130℃であることが好ましい。 If the curing agent is solid at 25°C, its softening point or melting point is not particularly limited. From the viewpoint of moldability and heat resistance, the softening point or melting point of the curing agent is preferably 40°C to 180°C. Also, from the viewpoint of handleability during production of the curable resin composition, the softening point or melting point of the curing agent is preferably 50°C to 130°C.
 硬化剤がフェノール系硬化剤である場合、硬化性樹脂組成物におけるエポキシ樹脂のエポキシ基に対するフェノール系硬化剤のフェノール性水酸基(活性水素)の当量比(フェノール系硬化剤のフェノール性水酸基(活性水素)のモル数/エポキシ樹脂のエポキシ基のモル数)は、特に制限はないが、例えば、1程度とすることができる。 When the curing agent is a phenolic curing agent, the equivalent ratio of the phenolic hydroxyl group (active hydrogen) of the phenolic curing agent to the epoxy group of the epoxy resin in the curable resin composition (the phenolic hydroxyl group (active hydrogen) of the phenolic curing agent )/the number of moles of epoxy groups in the epoxy resin) is not particularly limited, but can be set to about 1, for example.
 硬化剤が、フェノール系硬化剤を含む場合、本開示の硬化性樹脂組成物の非粗面化リードフレームに対する接着性の観点からは、硬化剤の全質量に対するフェノール系硬化剤の含有率は、50質量%~100質量%であることが好ましく、60質量%~100質量%であることがより好ましく、70質量%~100質量%であることがさらに好ましい。 When the curing agent contains a phenolic curing agent, from the viewpoint of the adhesion of the curable resin composition of the present disclosure to a non-roughened lead frame, the content of the phenolic curing agent relative to the total mass of the curing agent is It is preferably 50% by mass to 100% by mass, more preferably 60% by mass to 100% by mass, even more preferably 70% by mass to 100% by mass.
 フェノール系硬化剤が、アラルキル型フェノール樹脂を含む場合、本開示の硬化性樹脂組成物の非粗面化リードフレームに対する接着性の観点から、フェノール系硬化剤の全質量に対するアラルキル型フェノール樹脂の含有率は、60質量%~100質量%であることがより好ましく、70質量%~100質量%であることがさらに好ましい。 When the phenolic curing agent contains an aralkyl-type phenolic resin, the content of the aralkyl-type phenolic resin relative to the total mass of the phenolic curing agent is considered from the viewpoint of the adhesion of the curable resin composition of the present disclosure to a non-roughened lead frame. The ratio is more preferably 60% to 100% by mass, even more preferably 70% to 100% by mass.
(直鎖状ポリシロキサン化合物)
 直鎖状ポリシロキサン化合物は、エポキシ基及びアルコキシ基を有する構造単位を有し、且つ重合度が3以上である。
 直鎖状ポリシロキサン化合物が有する構造単位は、その全てがエポキシ基及びアルコキシ基を有する構造単位であってもよく、一部がエポキシ基及びアルコキシ基を有する構造単位であってもよい。
 直鎖状ポリシロキサン化合物が有する構造単位の一部が、エポキシ基及びアルコキシ基を有する構造単位である場合、エポキシ基及びアルコキシ基を有する構造単位をランダムに有してもよく、交互に有してもよく、規則的に有してもよく、ブロック状に有してもよい。
(Linear polysiloxane compound)
A linear polysiloxane compound has a structural unit having an epoxy group and an alkoxy group, and has a degree of polymerization of 3 or more.
The structural units possessed by the linear polysiloxane compound may be structural units all having epoxy groups and alkoxy groups, or may be structural units partially having epoxy groups and alkoxy groups.
When some of the structural units of the linear polysiloxane compound are structural units having an epoxy group and an alkoxy group, the structural units having an epoxy group and an alkoxy group may be randomly or alternately. It may be provided regularly, or may be provided in a block shape.
 本開示の硬化性樹脂組成物中における直鎖状ポリシロキサン化合物の分散性の観点から、直鎖状ポリシロキサン化合物の重合度は、15以下であることが好ましく、10以下であることがより好ましく、8以下であることがさらに好ましい。 From the viewpoint of dispersibility of the linear polysiloxane compound in the curable resin composition of the present disclosure, the degree of polymerization of the linear polysiloxane compound is preferably 15 or less, more preferably 10 or less. , 8 or less.
 本開示の硬化性樹脂組成物の非粗面化リードフレームに対する接着性の観点から、直鎖状ポリシロキサン化合物が有するエポキシ基及びアルコキシ基を有する構造単位は、下記一般式(1)で表されることが好ましい。
 以下、一般式(1)で表される構造単位を「特定構造単位」といい、特定構造単位を有する直鎖状ポリシロキサン化合物を「特定ポリシロキサン化合物」という。
From the viewpoint of adhesion of the curable resin composition of the present disclosure to a non-roughened lead frame, the structural unit having an epoxy group and an alkoxy group possessed by the linear polysiloxane compound is represented by the following general formula (1). preferably.
Hereinafter, the structural unit represented by general formula (1) will be referred to as the "specific structural unit", and the linear polysiloxane compound having the specific structural unit will be referred to as the "specific polysiloxane compound".
Figure JPOXMLDOC01-appb-C000028

 
Figure JPOXMLDOC01-appb-C000028

 
 一般式(1)中、Rは、エポキシ含有基を表す。
 特定ポリシロキサン化合物が、特定構造単位を2つ以上有する場合、特定構造単位におけるRは、それぞれ異なる基であってもよく、同一の基であってもよい。
 本開示の硬化性樹脂組成物の非粗面化リードフレームに対する接着性の観点から、Rで表されるエポキシ含有基は、下記一般式(3)で表される基であることが好ましい。
In general formula (1), R 1 represents an epoxy-containing group.
When the specific polysiloxane compound has two or more specific structural units, R 1 in the specific structural units may be different groups or the same group.
From the viewpoint of adhesion of the curable resin composition of the present disclosure to a non-roughened lead frame, the epoxy-containing group represented by R1 is preferably a group represented by the following general formula (3).
Figure JPOXMLDOC01-appb-C000029

 
Figure JPOXMLDOC01-appb-C000029

 
 一般式(3)中、R及びRは、各々独立に、炭素数1~10、好ましくは炭素数1~5、より好ましくは炭素数1~3のアルキレン基を表す。
 なお、一般式(3)中、*は、特定構造単位が有するSiとの結合位置を表す。
In general formula (3), R 4 and R 5 each independently represent an alkylene group having 1 to 10 carbon atoms, preferably 1 to 5 carbon atoms, more preferably 1 to 3 carbon atoms.
In addition, in general formula (3), * represents the bonding position with Si which a specific structural unit has.
 一般式(1)中、Rは、炭素数1~10、好ましくは炭素数1~5、より好ましくは炭素数1~3のアルコキシ基を表す。
 特定ポリシロキサン化合物が、特定構造単位を2つ以上有する場合、特定構造単位におけるRは、それぞれ異なる基であってもよく、同一の基であってもよい。
In general formula (1), R 2 represents an alkoxy group having 1 to 10 carbon atoms, preferably 1 to 5 carbon atoms, more preferably 1 to 3 carbon atoms.
When the specific polysiloxane compound has two or more specific structural units, R 2 in the specific structural units may be different groups or the same group.
 直鎖状ポリシロキサン化合物が特定ポリシロキサン化合物を含む場合、本開示の硬化性樹脂組成物の非粗面化リードフレームに対する接着性の観点から、特定ポリシロキサン化合物が有する構造単位の合計100mol%に対する特定構造単位の割合は、5mol%~70mol%であることが好ましく、10mol%~65mol%であることがより好ましく、15mol%~60mol%であることがさらに好ましい。 When the linear polysiloxane compound contains the specific polysiloxane compound, from the viewpoint of the adhesion of the curable resin composition of the present disclosure to the non-roughened lead frame, the total 100 mol% of the structural units possessed by the specific polysiloxane compound The ratio of the specific structural unit is preferably 5 mol % to 70 mol %, more preferably 10 mol % to 65 mol %, even more preferably 15 mol % to 60 mol %.
 特定ポリシロキサン化合物は、下記一般式(2)で表される構造単位をさらに有することが好ましい。特定ポリシロキサン化合物の合成において、下記一般式(2)で表される構造単位をもたらすモノマーを使用することにより、分岐鎖状のポリシロキサン化合物が合成されることを抑制することができる傾向にある。 The specific polysiloxane compound preferably further has a structural unit represented by the following general formula (2). In the synthesis of the specific polysiloxane compound, by using a monomer that provides a structural unit represented by the following general formula (2), it tends to be possible to suppress the synthesis of a branched polysiloxane compound. .
Figure JPOXMLDOC01-appb-C000030

 
Figure JPOXMLDOC01-appb-C000030

 
 一般式(2)中、Rは、エポキシ含有基を表す。エポキシ含有基は上記した通りである。 In general formula (2), R 1 represents an epoxy-containing group. Epoxy-containing groups are as described above.
 直鎖状ポリシロキサン化合物が一般式(2)で表される構造単位を有する特定ポリシロキサン化合物を含む場合、本開示の硬化性樹脂組成物の非粗面化リードフレームに対する接着性の観点から、特定ポリシロキサン化合物が有する構造単位の合計100mol%に対する一般式(2)で表される構造単位の割合は、5mol%~70mol%であることが好ましく、10mol%~65mol%であることがより好ましく、15mol%~60mol%であることがさらに好ましい。 When the linear polysiloxane compound contains a specific polysiloxane compound having a structural unit represented by general formula (2), from the viewpoint of adhesion of the curable resin composition of the present disclosure to a non-roughened lead frame, The ratio of the structural unit represented by the general formula (2) to the total 100 mol% of the structural units possessed by the specific polysiloxane compound is preferably 5 mol% to 70 mol%, more preferably 10 mol% to 65 mol%. , 15 mol % to 60 mol %.
 直鎖状ポリシロキサン化合物は、下記一般式(4)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000031

 
The linear polysiloxane compound is preferably a compound represented by the following general formula (4).
Figure JPOXMLDOC01-appb-C000031

 一般式(4)中、Rは、各々独立に、炭素数1~10のアルコキシ基又は水酸基を表す。但し、少なくとも1つのRは、炭素数1~10のアルコキシ基である。炭素数1~10のアルコキシ基については上記した通りである。
 一般式(4)中、Rは、各々独立に、炭素数1~10のアルコキシ基を表す。
 一般式(4)中、nは、構造単位数を表し、1以上の数である。nは、15以下であることが好ましく、10以下であることがより好ましく、8以下であることがさらに好ましい。
 一般式(4)中、Rは、上記した通りである。
In general formula (4), each R 6 independently represents an alkoxy group having 1 to 10 carbon atoms or a hydroxyl group. However, at least one R 6 is an alkoxy group having 1 to 10 carbon atoms. The alkoxy group having 1 to 10 carbon atoms is as described above.
In general formula (4), each R 7 independently represents an alkoxy group having 1 to 10 carbon atoms.
In general formula (4), n represents the number of structural units and is 1 or more. n is preferably 15 or less, more preferably 10 or less, and even more preferably 8 or less.
In general formula (4), R 1 is as described above.
 一般式(4)で表される直鎖状ポリシロキサン化合物において、Rで表されるアルコキシ基及び水酸基の合計100mol%に対する水酸基の含有率は、2mol%~75mol%であることが好ましく、2mol%~65mol%であることがより好ましく、5mol%~50mol%であることがさらに好ましい。 In the linear polysiloxane compound represented by the general formula (4), the content of hydroxyl groups with respect to the total 100 mol% of the alkoxy groups and hydroxyl groups represented by R 6 is preferably 2 mol% to 75 mol%, and 2 mol. % to 65 mol %, more preferably 5 mol % to 50 mol %.
 上記直鎖状ポリシロキサン化合物は、25℃において、固体であってもよく、液体であってもよいが、本開示の硬化性樹脂組成物中における直鎖状ポリシロキサンの分散性の観点からは、液体であることが好ましい。
 25℃において直鎖状ポリシロキサン化合物が固体である場合、直鎖状ポリシロキサン化合物の軟化点又は融点は特に制限されない。成形性と耐熱性の観点からは、直鎖状ポリシロキサン化合物の軟化点又は融点は、-100℃~15℃であることが好ましく、-90℃~10℃であることがより好ましく、-80℃~5℃であることがさらに好ましい。
The linear polysiloxane compound may be solid or liquid at 25° C. From the viewpoint of dispersibility of the linear polysiloxane in the curable resin composition of the present disclosure, , preferably liquid.
When the linear polysiloxane compound is solid at 25°C, the softening point or melting point of the linear polysiloxane compound is not particularly limited. From the viewpoint of moldability and heat resistance, the softening point or melting point of the linear polysiloxane compound is preferably −100° C. to 15° C., more preferably −90° C. to 10° C., and −80° C. °C to 5°C is more preferred.
 上記直鎖状ポリシロキサン化合物のエポキシ当量は特に制限されない。本開示の硬化性樹脂組成物の非粗面化リードフレームに対する接着性の観点からは、上記直鎖状ポリシロキサン化合物のエポキシ当量は、100g/eq~300g/eqであることが好ましく、120g/eq~280g/eqであることがより好ましく、140g/eq~260g/eqであることがさらに好ましい。 The epoxy equivalent of the linear polysiloxane compound is not particularly limited. From the viewpoint of adhesion of the curable resin composition of the present disclosure to a non-roughened lead frame, the epoxy equivalent of the linear polysiloxane compound is preferably 100 g/eq to 300 g/eq, and 120 g/eq. It is more preferably eq to 280 g/eq, even more preferably 140 g/eq to 260 g/eq.
 本開示の硬化性樹脂組成物の非粗面化リードフレームに対する接着性の観点から、本開示の硬化性樹脂組成物における直鎖状ポリシロキサン化合物の含有率は、0.05質量%~5質量%であることが好ましく、0.1質量%~3質量%であることがより好ましく、0.15質量%~1質量%であることがさらに好ましい。 From the viewpoint of adhesion of the curable resin composition of the present disclosure to a non-roughened lead frame, the content of the linear polysiloxane compound in the curable resin composition of the present disclosure is 0.05% by mass to 5% by mass. %, more preferably 0.1% by mass to 3% by mass, even more preferably 0.15% by mass to 1% by mass.
 直鎖状ポリシロキサン化合物が特定ポリシロキサン化合物を含む場合、本開示の硬化性樹脂組成物の非粗面化リードフレームに対する接着性の観点から、硬化性樹脂組成物に含まれる直鎖状ポリシロキサン化合物の全質量に対する特定ポリシロキサン化合物の含有率は、50質量%~100質量%であることが好ましく、60質量%~100質量%であることがより好ましく、70質量%~100質量%であることがより好ましい。 When the linear polysiloxane compound contains a specific polysiloxane compound, from the viewpoint of the adhesion of the curable resin composition of the present disclosure to a non-roughened lead frame, the linear polysiloxane contained in the curable resin composition The content of the specific polysiloxane compound with respect to the total mass of the compounds is preferably 50% by mass to 100% by mass, more preferably 60% by mass to 100% by mass, and 70% by mass to 100% by mass. is more preferable.
 上記直鎖状ポリシロキサン化合物は、従来公知の方法を利用して合成してもよく、市販されるものを使用してもよい。
 従来公知の方法としては、アルコキシシラン化合物が有するアルコキシ基を加水分解し、水酸基を有するシラノール化合物とした後、2以上のシラノール化合物が有する水酸基同士を脱水縮合させる方法等が挙げられる。
The linear polysiloxane compound may be synthesized using a conventionally known method, or a commercially available product may be used.
Examples of conventionally known methods include a method of hydrolyzing an alkoxy group possessed by an alkoxysilane compound to obtain a silanol compound having a hydroxyl group, followed by dehydration condensation of the hydroxyl groups possessed by two or more silanol compounds.
 上記アルコキシシラン化合物としては、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルジメトキシシラン、γ-グリシドキシプロピルジエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン等が挙げられる。 Examples of the alkoxysilane compounds include γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropyldimethoxysilane, γ-glycidoxypropyldiethoxysilane, γ-glycid. xypropylmethyldimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, and the like.
(無機充填材)
 本開示の硬化性樹脂組成物は、無機充填材を含んでもよい。硬化性樹脂組成物が無機充填材を含むことで、硬化性樹脂組成物の吸湿性が低減し、硬化状態での強度が向上する傾向にある。硬化性樹脂組成物を半導体パッケージの封止材として用いる場合には、無機充填材を含有することが好ましい。
(Inorganic filler)
The curable resin composition of the present disclosure may contain inorganic fillers. When the curable resin composition contains an inorganic filler, the hygroscopicity of the curable resin composition tends to decrease, and the strength in the cured state tends to improve. When the curable resin composition is used as a sealing material for semiconductor packages, it preferably contains an inorganic filler.
 無機充填材を構成する無機材料は、特に制限されない。無機材料としては、具体的には、球状シリカ、結晶シリカ、ガラス、アルミナ、炭酸カルシウム、ケイ酸ジルコニウム、ケイ酸カルシウム、窒化珪素、窒化アルミニウム、窒化ホウ素、窒化アルミニウム、ベーマイト、ベリリア、酸化マグネシウム、ジルコニア、ジルコン、フォステライト、ステアタイト、スピネル、ムライト、チタニア、タルク、クレー、マイカ、チタン酸塩等が挙げられる。
 難燃効果を有する無機材料により構成される無機充填材を用いてもよい。難燃効果を有する無機材料としては、水酸化アルミニウム、水酸化マグネシウム、マグネシウムと亜鉛の複合水酸化物等の複合金属水酸化物、硼酸亜鉛などが挙げられる。
 無機充填材は1種類を単独で用いても2種類以上を組み合わせて用いてもよい。
The inorganic material that constitutes the inorganic filler is not particularly limited. Specific examples of inorganic materials include spherical silica, crystalline silica, glass, alumina, calcium carbonate, zirconium silicate, calcium silicate, silicon nitride, aluminum nitride, boron nitride, aluminum nitride, boehmite, beryllia, magnesium oxide, Zirconia, zircon, forsterite, steatite, spinel, mullite, titania, talc, clay, mica, titanate and the like.
An inorganic filler composed of an inorganic material having a flame retardant effect may also be used. Inorganic materials having a flame retardant effect include aluminum hydroxide, magnesium hydroxide, composite metal hydroxides such as composite hydroxides of magnesium and zinc, and zinc borate.
An inorganic filler may be used individually by 1 type, or may be used in combination of 2 or more types.
 無機充填材の形状は特に制限されず、例えば、粉状、球状、繊維状等が挙げられる。硬化性樹脂組成物の成形時の流動性及び金型摩耗性の点からは、球状であることが好ましい。 The shape of the inorganic filler is not particularly limited, and examples include powdery, spherical, and fibrous. From the viewpoints of fluidity during molding of the curable resin composition and resistance to mold wear, it is preferably spherical.
 無機充填材の平均粒子径は、特に制限されない。硬化性樹脂組成物の粘度、充填性等のバランスの観点からは、無機充填材の体積平均粒子径は、0.1μm~50μmであることが好ましく、0.3μm~30μmであることがより好ましく、0.5μm~25μmであることがさらに好ましい。
 無機充填材の体積平均粒子径は、レーザー回折散乱法粒度分布測定装置により、体積平均粒子径(D50)として測定することができる。
The average particle size of the inorganic filler is not particularly limited. From the viewpoint of the balance between the viscosity of the curable resin composition and the filling property, etc., the volume average particle size of the inorganic filler is preferably 0.1 μm to 50 μm, more preferably 0.3 μm to 30 μm. , 0.5 μm to 25 μm.
The volume-average particle size of the inorganic filler can be measured as the volume-average particle size (D50) with a particle size distribution analyzer using a laser diffraction scattering method.
 硬化性樹脂組成物が無機充填材を含有する場合、その含有率は特に制限されない。硬化性樹脂組成物全体の30質量%~90質量%であることが好ましく、35質量%~80質量%であることがより好ましく、40質量%~70質量%であることがさらに好ましい。
 無機充填材の含有率が硬化性樹脂組成物全体の30質量%以上であると、硬化物の熱膨張係数、熱伝導率、弾性率等の特性がより向上する傾向にある。
 無機充填材の含有率が硬化性樹脂組成物全体の90質量%以下であると、硬化性樹脂組成物の粘度の上昇が抑制され、流動性がより向上して成形性がより良好になる傾向にある。
When the curable resin composition contains an inorganic filler, its content is not particularly limited. It is preferably 30% by mass to 90% by mass, more preferably 35% by mass to 80% by mass, and even more preferably 40% by mass to 70% by mass of the total curable resin composition.
When the content of the inorganic filler is 30% by mass or more of the entire curable resin composition, the properties of the cured product, such as coefficient of thermal expansion, thermal conductivity and elastic modulus, tend to be further improved.
When the content of the inorganic filler is 90% by mass or less of the entire curable resin composition, the increase in viscosity of the curable resin composition is suppressed, the fluidity is further improved, and the moldability tends to be better. It is in.
(硬化促進剤)
 本開示の硬化性樹脂組成物は、硬化促進剤を含んでもよい。硬化促進剤の種類は特に制限されず、エポキシ樹脂の種類、硬化性樹脂組成物の所望の特性等に応じて選択できる。硬化促進剤は1種類を単独で用いても2種類以上を組み合わせて用いてもよい。硬化促進剤の具体例を以下に記載するが、これらに限定されるものではない。
 硬化促進剤としては、1,5-ジアザビシクロ[4.3.0]ノネン-5(DBN)、1,8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)等のジアザビシクロアルケン、2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、2-ヘプタデシルイミダゾール等の環状アミジン化合物;前記環状アミジン化合物の誘導体;前記環状アミジン化合物又はその誘導体のフェノールノボラック塩;これらの化合物に無水マレイン酸、1,4-ベンゾキノン、2,5-トルキノン、1,4-ナフトキノン、2,3-ジメチルベンゾキノン、2,6-ジメチルベンゾキノン、2,3-ジメトキシ-5-メチル-1,4-ベンゾキノン、2,3-ジメトキシ-1,4-ベンゾキノン、フェニル-1,4-ベンゾキノン等のキノン化合物、ジアゾフェニルメタンなどの、π結合をもつ化合物を付加してなる分子内分極を有する化合物;DBUのテトラフェニルボレート塩、DBNのテトラフェニルボレート塩、2-エチル-4-メチルイミダゾールのテトラフェニルボレート塩、N-メチルモルホリンのテトラフェニルボレート塩等の環状アミジニウム化合物;ピリジン、トリエチルアミン、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の三級アミン化合物;前記三級アミン化合物の誘導体;酢酸テトラ-n-ブチルアンモニウム、リン酸テトラ-n-ブチルアンモニウム、酢酸テトラエチルアンモニウム、安息香酸テトラ-n-ヘキシルアンモニウム、水酸化テトラプロピルアンモニウム等のアンモニウム塩化合物;エチルホスフィン、フェニルホスフィン等の1級ホスフィン、ジメチルホスフィン、ジフェニルホスフィン等の2級ホスフィン、トリフェニルホスフィン、ジフェニル(p-トリル)ホスフィン、トリス(アルキルフェニル)ホスフィン、トリス(アルコキシフェニル)ホスフィン、トリス(アルキルアルコキシフェニル)ホスフィン、トリス(ジアルキルフェニル)ホスフィン、トリス(トリアルキルフェニル)ホスフィン、トリス(テトラアルキルフェニル)ホスフィン、トリス(ジアルコキシフェニル)ホスフィン、トリス(トリアルコキシフェニル)ホスフィン、トリス(テトラアルコキシフェニル)ホスフィン、トリアルキルホスフィン、ジアルキルアリールホスフィン、アルキルジアリールホスフィン、トリナフチルホスフィン、トリス(ベンジル)ホスフィン等の3級ホスフィンなどの、有機ホスフィン;前記有機ホスフィンと有機ボロン類との錯体等のホスフィン化合物;前記有機ホスフィン又は前記ホスフィン化合物と無水マレイン酸、1,4-ベンゾキノン、2,5-トルキノン、1,4-ナフトキノン、2,3-ジメチルベンゾキノン、2,6-ジメチルベンゾキノン、2,3-ジメトキシ-5-メチル-1,4-ベンゾキノン、2,3-ジメトキシ-1,4-ベンゾキノン、フェニル-1,4-ベンゾキノン、アントラキノン等のキノン化合物、ジアゾフェニルメタンなどの、π結合をもつ化合物を付加してなる分子内分極を有する化合物;前記有機ホスフィン又は前記ホスフィン化合物と4-ブロモフェノール、3-ブロモフェノール、2-ブロモフェノール、4-クロロフェノール、3-クロロフェノール、2-クロロフェノール、4-ヨウ化フェノール、3-ヨウ化フェノール、2-ヨウ化フェノール、4-ブロモ-2-メチルフェノール、4-ブロモ-3-メチルフェノール、4-ブロモ-2,6-ジメチルフェノール、4-ブロモ-3,5-ジメチルフェノール、4-ブロモ-2,6-ジ-t-ブチルフェノール、4-クロロ-1-ナフトール、1-ブロモ-2-ナフトール、6-ブロモ-2-ナフトール、4-ブロモ-4’-ヒドロキシビフェニル等のハロゲン化フェノール化合物を反応させた後に、脱ハロゲン化水素の工程を経て得られる、分子内分極を有する化合物;テトラフェニルホスホニウム等のテトラ置換ホスホニウム、テトラフェニルホスホニウムテトラ-p-トリルボレート等のテトラ置換ホスホニウムのテトラフェニルボレート塩、テトラ置換ホスホニウムとフェノール化合物との塩などの、テトラ置換ホスホニウム化合物;ホスホベタイン化合物;ホスホニウム化合物とシラン化合物との付加反応物などが挙げられる。
 好適な硬化促進剤としては、トリフェニルホスフィン、トリフェニルホスフィンのキノン化合物付加物等が挙げられる。
(Curing accelerator)
The curable resin composition of the present disclosure may contain a curing accelerator. The type of curing accelerator is not particularly limited, and can be selected according to the type of epoxy resin, desired properties of the curable resin composition, and the like. A hardening accelerator may be used individually by 1 type, or may be used in combination of 2 or more types. Specific examples of the curing accelerator are described below, but are not limited to these.
Curing accelerators include diazabicycloalkenes such as 1,5-diazabicyclo[4.3.0]nonene-5 (DBN) and 1,8-diazabicyclo[5.4.0]undecene-7 (DBU), Cyclic amidine compounds such as 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, and 2-heptadecylimidazole; derivatives of the cyclic amidine compounds; phenol novolak salts of the cyclic amidine compounds or derivatives thereof; maleic anhydride, 1,4-benzoquinone, 2,5-toluquinone, 1,4-naphthoquinone, 2,3-dimethylbenzoquinone, 2,6-dimethylbenzoquinone, 2,3-dimethoxy-5-methyl-1 ,4-benzoquinone, 2,3-dimethoxy-1,4-benzoquinone, phenyl-1,4-benzoquinone and other quinone compounds, and diazophenylmethane and other compounds having π bonds, which have intramolecular polarization. Compound; Cyclic amidinium compounds such as DBU tetraphenylborate salt, DBN tetraphenylborate salt, 2-ethyl-4-methylimidazole tetraphenylborate salt, N-methylmorpholine tetraphenylborate salt; Tertiary amine compounds such as ethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris(dimethylaminomethyl)phenol; derivatives of the tertiary amine compounds; tetra-n-butylammonium acetate, tetra-n-phosphate Ammonium salt compounds such as butylammonium, tetraethylammonium acetate, tetra-n-hexylammonium benzoate, tetrapropylammonium hydroxide; primary phosphines such as ethylphosphine and phenylphosphine; secondary phosphines such as dimethylphosphine and diphenylphosphine; Phenylphosphine, diphenyl(p-tolyl)phosphine, tris(alkylphenyl)phosphine, tris(alkoxyphenyl)phosphine, tris(alkylalkoxyphenyl)phosphine, tris(dialkylphenyl)phosphine, tris(trialkylphenyl)phosphine, tris( tetraalkylphenyl)phosphine, tris(dialkoxyphenyl)phosphine, tris(trialkoxyphenyl)phosphine, tris(tetraalkoxyphenyl)phosphine, trialkylphosphine, dialky organic phosphines such as tertiary phosphines such as diarylphosphine, alkyldiarylphosphine, trinaphthylphosphine and tris(benzyl)phosphine; phosphine compounds such as complexes of the above organic phosphines and organic borons; the above organic phosphines or the above phosphine compounds and maleic anhydride, 1,4-benzoquinone, 2,5-toluquinone, 1,4-naphthoquinone, 2,3-dimethylbenzoquinone, 2,6-dimethylbenzoquinone, 2,3-dimethoxy-5-methyl-1,4 -benzoquinone, 2,3-dimethoxy-1,4-benzoquinone, phenyl-1,4-benzoquinone, quinone compounds such as anthraquinone, and compounds having a π bond such as diazophenylmethane, which have intramolecular polarization. Compound; the above organic phosphine or the above phosphine compound and 4-bromophenol, 3-bromophenol, 2-bromophenol, 4-chlorophenol, 3-chlorophenol, 2-chlorophenol, 4-iodidephenol, 3-iodide Phenol, 2-iodinated phenol, 4-bromo-2-methylphenol, 4-bromo-3-methylphenol, 4-bromo-2,6-dimethylphenol, 4-bromo-3,5-dimethylphenol, 4- Halogenated phenols such as bromo-2,6-di-t-butylphenol, 4-chloro-1-naphthol, 1-bromo-2-naphthol, 6-bromo-2-naphthol, 4-bromo-4'-hydroxybiphenyl Compounds with intramolecular polarization obtained through the step of dehydrohalogenation after reacting the compounds; tetra-substituted phosphoniums such as tetraphenylphosphonium, tetra- tetrasubstituted phosphonium compounds such as phenylborate salts and salts of tetrasubstituted phosphonium and phenolic compounds; phosphobetaine compounds; addition reaction products of phosphonium compounds and silane compounds;
Suitable curing accelerators include triphenylphosphine, quinone compound adducts of triphenylphosphine, and the like.
 硬化性樹脂組成物が硬化促進剤を含む場合、硬化促進剤の含有量は、エポキシ樹脂及び硬化剤の合計量100質量部に対して、0.1質量%~8質量%であることが好ましく、0.3質量%~7質量%であることがより好ましく、0.5質量%~6質量%であることがさらに好ましい。硬化促進剤の含有量を上記数値範囲内とすることにより、本開示の硬化性樹脂組成物の硬化速度が適切な数値となり、成形品の製造が容易となる。 When the curable resin composition contains a curing accelerator, the content of the curing accelerator is preferably 0.1% by mass to 8% by mass with respect to 100 parts by mass of the total amount of the epoxy resin and the curing agent. , more preferably 0.3% by mass to 7% by mass, more preferably 0.5% by mass to 6% by mass. By setting the content of the curing accelerator within the above numerical range, the curing speed of the curable resin composition of the present disclosure becomes an appropriate numerical value, and the production of molded articles becomes easy.
(各種添加材)
 本開示の硬化性樹脂組成物は、上述の成分に加えて、カップリング剤、応力緩和剤、離型剤、着色剤、難燃剤、イオン交換体等の各種添加材を含んでいてもよい。また、本開示の硬化性樹脂組成物は、エポキシ基及びアルコキシ基を有する構造単位を有し、且つ重合度が2である、シロキサン化合物を含んでいてもよい。硬化性樹脂組成物は、以下に例表する添加材以外にも必要に応じて当技術分野で周知の各種添加材を含んでいてもよい。
(Various additives)
In addition to the components described above, the curable resin composition of the present disclosure may contain various additives such as coupling agents, stress relaxation agents, release agents, colorants, flame retardants, and ion exchangers. Moreover, the curable resin composition of the present disclosure may contain a siloxane compound having a structural unit having an epoxy group and an alkoxy group and having a degree of polymerization of 2. The curable resin composition may contain various additives well known in the art as necessary, in addition to the additives exemplified below.
(カップリング剤)
 本開示の硬化性樹脂組成物は、カップリング剤を含んでもよい。カップリング剤の種類は特に制限されず、公知のカップリング剤を使用することができる。カップリング剤としては、シランカップリング剤、チタンカップリング剤等が挙げられる。カップリング剤は、1種類を単独で使用しても、2種類以上を併用してもよい。
(coupling agent)
The curable resin composition of the present disclosure may contain a coupling agent. The type of coupling agent is not particularly limited, and known coupling agents can be used. Examples of coupling agents include silane coupling agents and titanium coupling agents. A coupling agent may be used individually by 1 type, or may use 2 or more types together.
 シランカップリング剤は、上記直鎖状ポリシロキサン化合物以外の化合物であれば特に限定されるものではなく、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-(2-アミノエチル)アミノプロピルトリメトキシシラン、3-(2-アミノエチル)アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-ウレイドプロピルトリエトキシシラン、オクテニルトリメトキシシラン、グリシドキシオクチルトリメトキシシラン、メタクリロキシオクチルトリメトキシシラン等が挙げられる。 The silane coupling agent is not particularly limited as long as it is a compound other than the linear polysiloxane compound described above. sidoxypropylmethyldiethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-(2-aminoethyl)amino propyltrimethoxysilane, 3-(2-aminoethyl)aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercapto propyltriethoxysilane, 3-ureidopropyltriethoxysilane, octenyltrimethoxysilane, glycidoxyoctyltrimethoxysilane, methacryloxyoctyltrimethoxysilane and the like.
 チタンカップリング剤としては、イソプロピルトリイソステアロイルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、イソプロピルトリ(N-アミノエチル-アミノエチル)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジトリデシルホスファイト)チタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリクミルフェニルチタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート等が挙げられる。 Titanium coupling agents include isopropyl triisostearoyl titanate, isopropyl tris(dioctylpyrophosphate) titanate, isopropyl tri(N-aminoethyl-aminoethyl) titanate, tetraoctylbis(ditridecylphosphite) titanate, tetra(2, 2-diallyloxymethyl-1-butyl)bis(ditridecylphosphite)titanate, bis(dioctylpyrophosphate)oxyacetate titanate, bis(dioctylpyrophosphate)ethylene titanate, isopropyltrioctanoyltitanate, isopropyldimethacrylisostearoyltitanate , isopropyltridodecylbenzenesulfonyltitanate, isopropylisostearoyldiacryltitanate, isopropyltri(dioctylphosphate)titanate, isopropyltricumylphenyltitanate, tetraisopropylbis(dioctylphosphite)titanate and the like.
 硬化性樹脂組成物がカップリング剤を含有する場合、カップリング剤の含有量は、エポキシ樹脂と無機充填材との界面の接着性の観点から、硬化性樹脂組成物に含まれる無機充填材100質量部に対して、0.001質量部~10質量部であることが好ましく、0.01質量部~8質量部であることがより好ましく、0.05質量部~5質量部であることがさらに好ましい。 When the curable resin composition contains a coupling agent, the content of the coupling agent should be adjusted to the inorganic filler 100 contained in the curable resin composition from the viewpoint of the adhesiveness of the interface between the epoxy resin and the inorganic filler. It is preferably 0.001 to 10 parts by mass, more preferably 0.01 to 8 parts by mass, and 0.05 to 5 parts by mass based on the mass. More preferred.
(応力緩和剤)
 本開示の硬化性樹脂組成物は、シリコーンオイル、シリコーンゴム粒子等の応力緩和剤を含んでいてもよい。硬化性樹脂組成物が応力緩和剤を含むことにより、パッケージの反り変形及びパッケージクラックの発生をより低減させることができる。応力緩和剤としては、一般に使用されている公知の応力緩和剤(可とう剤)が挙げられる。具体的には、応力緩和剤としては、シリコーン系、スチレン系、オレフィン系、ウレタン系、ポリエステル系、ポリエーテル系、ポリアミド系、ポリブタジエン系等の熱可塑性エラストマー、天然ゴム(NR)、アクリロニトリル-ブタジエン共重合体(NBR)、アクリルゴム、ウレタンゴム、シリコーンパウダー等のゴム粒子、メタクリル酸メチル-スチレン-ブタジエン共重合体(MBS)、メタクリル酸メチル-シリコーン共重合体、メタクリル酸メチル-アクリル酸ブチル共重合体等のコア-シェル構造を有するゴム粒子などが挙げられる。応力緩和剤は、1種類を単独で用いても2種類以上を組み合わせて用いてもよい。中でも、シリコーン系応力緩和剤が好ましい。シリコーン系応力緩和剤としては、エポキシ基を有するもの、アミノ基を有するもの、これらをポリエーテル変性したもの等が挙げられる。
(Stress relaxation agent)
The curable resin composition of the present disclosure may contain stress relaxation agents such as silicone oil and silicone rubber particles. By including a stress relaxation agent in the curable resin composition, it is possible to further reduce the warpage deformation of the package and the occurrence of package cracks. Examples of the stress relaxation agent include commonly used known stress relaxation agents (flexible agents). Specifically, stress relaxation agents include thermoplastic elastomers such as silicone, styrene, olefin, urethane, polyester, polyether, polyamide, and polybutadiene, natural rubber (NR), and acrylonitrile-butadiene. Copolymer (NBR), acrylic rubber, urethane rubber, rubber particles such as silicone powder, methyl methacrylate-styrene-butadiene copolymer (MBS), methyl methacrylate-silicone copolymer, methyl methacrylate-butyl acrylate Examples include rubber particles having a core-shell structure such as copolymers. A stress relaxation agent may be used individually by 1 type, or may be used in combination of 2 or more types. Among them, a silicone-based stress relieving agent is preferable. Examples of silicone-based stress relieving agents include those having epoxy groups, those having amino groups, and those modified with polyethers.
 硬化性樹脂組成物が応力緩和剤を含有する場合、その含有量は、硬化性樹脂組成物に含まれるエポキシ樹脂100質量部に対して0.1質量部~30質量部であることが好ましく、1質量部~5質量部であることがより好ましい。 When the curable resin composition contains a stress relaxation agent, the content is preferably 0.1 parts by mass to 30 parts by mass with respect to 100 parts by mass of the epoxy resin contained in the curable resin composition. It is more preferably 1 part by mass to 5 parts by mass.
(離型剤)
 本開示の硬化性樹脂組成物は、成形時における金型を使用する場合、金型との離型性の観点から、離型剤を含んでいてもよい。離型剤は特に制限されず、従来公知のものを用いることができる。離型剤としては、カルナバワックス、モンタン酸、ステアリン酸等の高級脂肪酸、高級脂肪酸金属塩、モンタン酸エステル等のエステル系ワックス、酸化ポリエチレン、非酸化ポリエチレン等のポリオレフィン系ワックスなどが挙げられる。離型剤は、1種類を単独で用いても2種類以上を組み合わせて用いてもよい。
(Release agent)
The curable resin composition of the present disclosure may contain a mold release agent from the viewpoint of releasability from the mold when using a mold for molding. The release agent is not particularly limited, and conventionally known agents can be used. Examples of release agents include carnauba wax, higher fatty acids such as montanic acid and stearic acid, higher fatty acid metal salts, ester waxes such as montanic acid esters, and polyolefin waxes such as oxidized polyethylene and non-oxidized polyethylene. The release agent may be used singly or in combination of two or more.
 本開示の硬化性樹脂組成物が離型剤を含む場合、離型剤の含有量は、硬化性樹脂組成物に含まれるエポキシ樹脂100質量部に対して0.01質量部~15質量部であることが好ましく、0.1質量部~10質量部であることがより好ましい。離型剤の量が樹脂成分100質量部に対して0.01質量部以上であると、離型性が充分に得られる傾向にある。15質量部以下であると、より良好な離型性が得られる傾向にある。 When the curable resin composition of the present disclosure contains a release agent, the content of the release agent is 0.01 parts by mass to 15 parts by mass with respect to 100 parts by mass of the epoxy resin contained in the curable resin composition. preferably 0.1 parts by mass to 10 parts by mass. When the amount of the release agent is 0.01 parts by mass or more with respect to 100 parts by mass of the resin component, there is a tendency that sufficient releasability can be obtained. When it is 15 parts by mass or less, there is a tendency that better releasability can be obtained.
(着色剤)
 本開示の硬化性樹脂組成物は、着色剤を含んでいてもよい。着色剤としてはカーボンブラック、有機染料、有機顔料、酸化チタン、鉛丹、ベンガラ等の公知の着色剤を挙げることができる。着色剤の含有量は目的等に応じて適宜選択できる。着色剤は、1種類を単独で用いても2種類以上を組み合わせて用いてもよい。
(coloring agent)
The curable resin composition of the present disclosure may contain a colorant. Examples of coloring agents include known coloring agents such as carbon black, organic dyes, organic pigments, titanium oxide, red lead, and red iron oxide. The content of the coloring agent can be appropriately selected according to the purpose and the like. The colorants may be used singly or in combination of two or more.
 硬化性樹脂組成物が着色剤を含有する場合、その含有率は、0.01質量%~5質量%であることが好ましく、0.05質量%~3質量%であることがより好ましく、0.01質量%~1質量%であることがさらに好ましい。 When the curable resin composition contains a colorant, its content is preferably 0.01% by mass to 5% by mass, more preferably 0.05% by mass to 3% by mass, and 0 More preferably, it is 0.01% by mass to 1% by mass.
(難燃剤)
 本開示の硬化性樹脂組成物は、難燃剤を含んでいてもよい。難燃剤は特に制限されず、従来公知のものを用いることができる。難燃剤としては、ハロゲン原子、アンチモン原子、窒素原子又はリン原子を含む有機又は無機の化合物、金属水酸化物等が挙げられる。難燃剤は、1種類を単独で用いても2種類以上を組み合わせて用いてもよい。
(Flame retardants)
The curable resin composition of the present disclosure may contain a flame retardant. The flame retardant is not particularly limited, and conventionally known ones can be used. Flame retardants include organic or inorganic compounds containing halogen atoms, antimony atoms, nitrogen atoms or phosphorus atoms, metal hydroxides, and the like. A flame retardant may be used individually by 1 type, or may be used in combination of 2 or more types.
 本開示の硬化性樹脂組成物が難燃剤を含む場合、その含有量は、所望の難燃効果を得るのに充分な量であれば特に制限されない。難燃剤の含有量は、硬化性樹脂組成物に含まれるエポキシ樹脂100質量部に対して1質量部~300質量部であることが好ましく、2質量部~150質量部であることがより好ましい。 When the curable resin composition of the present disclosure contains a flame retardant, its content is not particularly limited as long as it is sufficient to obtain the desired flame retardant effect. The content of the flame retardant is preferably 1 part by mass to 300 parts by mass, more preferably 2 parts by mass to 150 parts by mass, based on 100 parts by mass of the epoxy resin contained in the curable resin composition.
(イオン交換体)
 本開示の硬化性樹脂組成物は、イオン交換体を含んでいてもよい。硬化性樹脂組成物を半導体パッケージの封止材として用いる場合には、封止される素子を備える電子部品装置の耐湿性及び高温放置特性を向上させる観点から、無機充填材を含有することが好ましい。
 イオン交換体は特に制限されず、従来公知のものを用いることができる。具体的には、ハイドロタルサイト化合物、並びに、マグネシウム、アルミニウム、チタン、ジルコニウム及びビスマスからなる群より選ばれる少なくとも1種の元素の含水酸化物が挙げられる。イオン交換体は、1種類を単独で用いても2種類以上を組み合わせて用いてもよい。具体的には、イオン交換体としては、下記一般式(A)で表されるハイドロタルサイトが挙げられる。
(Ion exchanger)
The curable resin composition of the present disclosure may contain an ion exchanger. When the curable resin composition is used as a sealing material for a semiconductor package, it preferably contains an inorganic filler from the viewpoint of improving the moisture resistance and high-temperature storage characteristics of the electronic component device including the element to be sealed. .
The ion exchanger is not particularly limited, and conventionally known ones can be used. Specific examples include hydrotalcite compounds and hydrous oxides of at least one element selected from the group consisting of magnesium, aluminum, titanium, zirconium and bismuth. The ion exchangers may be used singly or in combination of two or more. Specifically, the ion exchanger includes hydrotalcite represented by the following general formula (A).
 Mg(1-X)Al(OH)(COX/2・mHO・・・(A)
 (0<X≦0.5、mは正の数)
Mg (1-X) Al X (OH) 2 (CO 3 ) X/2 ·mH 2 O (A)
(0<X≤0.5, m is a positive number)
 本開示の硬化性樹脂組成物がイオン交換体を含む場合、その含有量は、ハロゲンイオン等のイオンを捕捉するのに充分な量であれば特に制限はない。イオン交換体の含有量は、硬化性樹脂組成物に含まれるエポキシ樹脂100質量部に対して0.1質量部~30質量部であることが好ましく、1質量部~5質量部であることがより好ましい。 When the curable resin composition of the present disclosure contains an ion exchanger, its content is not particularly limited as long as it is sufficient to capture ions such as halogen ions. The content of the ion exchanger is preferably 0.1 to 30 parts by mass, more preferably 1 to 5 parts by mass with respect to 100 parts by mass of the epoxy resin contained in the curable resin composition. more preferred.
(硬化性樹脂組成物の物性)
 本開示の硬化性樹脂組成物の非粗面化リードフレームに対する接着性の観点から、硬化性樹脂組成物の硬化物の10℃~30℃の線膨張率は、7ppm/℃~15ppm/℃であることが好ましく、7.3ppm/℃~14.5ppm/℃であることがより好ましく、7.5ppm/℃~14ppm/℃であることがさらに好ましい。
 本開示の硬化性樹脂組成物の非粗面化リードフレームに対する接着性の観点から、硬化性樹脂組成物の硬化物の200℃~220℃の線膨張率は、20ppm/℃~50ppm/℃であることが好ましく、24ppm/℃~37ppm/℃であることがより好ましく、28ppm/℃~35ppm/℃であることがさらに好ましい。
 本開示において、線膨張率とは、JIS K 7197:2012に基づいて熱機械分析法(TMA:Thermal Mechanical Analysis)により、硬化物の歪みを温度に対してプロットした場合の接線の傾きである。
 なお、試験荷重は5g、昇温速度は5℃/分として測定する。
 また、線膨張率は、セイコーインスルツメンツ株式会社製の熱機械的分析装置(例えば、TMA/SS6100)又は同程度の装置を使用し、測定することができる。
 なお、硬化物は、トランスファー成形機により、金型温度175℃、成形圧力6.9MPa、硬化時間90秒の条件で硬化性樹脂組成物を成形した後、175℃で5時間の条件で後硬化を行うことにより作製する。
 また、硬化物は、短辺5.1mm、長辺20mm、厚さ2mmの長方形形状を有する。
(Physical properties of curable resin composition)
From the viewpoint of the adhesion of the curable resin composition of the present disclosure to a non-roughened lead frame, the linear expansion coefficient at 10 ° C. to 30 ° C. of the cured product of the curable resin composition is 7 ppm / ° C. to 15 ppm / ° C. preferably 7.3 ppm/°C to 14.5 ppm/°C, even more preferably 7.5 ppm/°C to 14 ppm/°C.
From the viewpoint of the adhesion of the curable resin composition of the present disclosure to a non-roughened lead frame, the linear expansion coefficient at 200 ° C. to 220 ° C. of the cured product of the curable resin composition is 20 ppm / ° C. to 50 ppm / ° C. preferably 24 ppm/°C to 37 ppm/°C, and even more preferably 28 ppm/°C to 35 ppm/°C.
In the present disclosure, the coefficient of linear expansion is the slope of the tangential line when strain of a cured product is plotted against temperature by thermal mechanical analysis (TMA) based on JIS K 7197:2012.
The test load is 5 g, and the temperature rise rate is 5° C./min.
Also, the linear expansion coefficient can be measured using a thermomechanical analyzer (for example, TMA/SS6100) manufactured by Seiko Instruments Inc. or an equivalent device.
The cured product was obtained by molding the curable resin composition using a transfer molding machine under the conditions of a mold temperature of 175°C, a molding pressure of 6.9 MPa, and a curing time of 90 seconds, followed by post-curing at 175°C for 5 hours. It is produced by performing
Moreover, the cured product has a rectangular shape with a short side of 5.1 mm, a long side of 20 mm, and a thickness of 2 mm.
 耐熱性等の観点から、硬化性樹脂組成物の硬化物のガラス転移温度(Tg)は、80℃~120℃であることが好ましく、85℃~115℃であることがより好ましく、90℃~110℃であることがさらに好ましい。
 本開示において硬化物のガラス転移温度は、上記線膨張率の測定により得られた、10℃~30℃における接線と、200℃~220℃における接線との交点の温度とする。
From the viewpoint of heat resistance, etc., the glass transition temperature (Tg) of the cured product of the curable resin composition is preferably 80° C. to 120° C., more preferably 85° C. to 115° C., and 90° C. to It is more preferably 110°C.
In the present disclosure, the glass transition temperature of the cured product is the temperature at the intersection of the tangent line at 10° C. to 30° C. and the tangent line at 200° C. to 220° C. obtained by measuring the coefficient of linear expansion.
 本開示の硬化性樹脂組成物の非粗面化リードフレームに対する接着性の観点から、硬化性樹脂組成物の硬化収縮率は、0.1%~0.8%であることが好ましく、0.15%~0.75%であることがより好ましく、0.2%~0.7%であることがさらに好ましい。
 本開示において、硬化性樹脂組成物の硬化収縮率は以下のようにして測定する。
 寸法測定済みの金型を用いて、トランスファー成形により、円盤状の硬化性樹脂組成物の硬化物(試験片)を成形し、次いで25℃まで試験片を放冷する。
 25℃まで冷却した後、試験片を175℃に加熱したオーブンにより5時間加熱した後、25℃まで試験片を放冷する。
 冷却後、試験片の表及び裏のそれぞれ2点における直径の平均値をRm(mm)とし、試験片の表に対応する金型の2点における内径及び試験片の裏に対応する金型の2点における内径の平均値をRd(mm)とし、下記式に代入することにより、硬化性樹脂組成物の硬化収縮率を求める。
 硬化収縮率(%)=(Rd-Rm)/Rd×100
From the viewpoint of adhesion of the curable resin composition of the present disclosure to a non-roughened lead frame, the curing shrinkage of the curable resin composition is preferably 0.1% to 0.8%, and 0.1% to 0.8%. More preferably 15% to 0.75%, even more preferably 0.2% to 0.7%.
In the present disclosure, the cure shrinkage of the curable resin composition is measured as follows.
A disk-shaped cured product (test piece) of the curable resin composition is molded by transfer molding using a mold whose dimensions have already been measured, and then the test piece is allowed to cool to 25°C.
After cooling to 25°C, the specimen is heated in an oven heated to 175°C for 5 hours, and then allowed to cool to 25°C.
After cooling, the average value of the diameters at the two points on the front and back of the test piece is Rm (mm), and the inner diameter at the two points of the mold corresponding to the front of the test piece and the inside diameter of the mold corresponding to the back of the test piece The average value of the inner diameters at two points is defined as Rd (mm), and by substituting it into the following formula, the curing shrinkage rate of the curable resin composition is obtained.
Cure shrinkage rate (%) = (Rd - Rm) / Rd x 100
 硬化性樹脂組成物の硬化物の25℃における弾性率は、25GPa~38GPaであることが好ましく、26GPa~33GPaであることがより好ましい。
 硬化性樹脂組成物の硬化物の260℃における弾性率は、0.45GPa~0.70GPaであることが好ましく、0.48GPa~0.67GPaであることがより好ましい。
 硬化性樹脂組成物の弾性率は、粘弾性測定装置(TA Instruments社製、RSAIII)を用いて、スパン間距離40mm、周波数1Hzの条件下、3点曲げ法にて20℃から300℃まで5℃/分で昇温することにより求める。なお、硬化物は、上記した方法により作製した、硬化物は、短辺5.1mm、長辺20mm、厚さ2mmの長方形形状を有する硬化物を使用する。
The elastic modulus of the cured product of the curable resin composition at 25° C. is preferably 25 GPa to 38 GPa, more preferably 26 GPa to 33 GPa.
The elastic modulus of the cured product of the curable resin composition at 260° C. is preferably 0.45 GPa to 0.70 GPa, more preferably 0.48 GPa to 0.67 GPa.
The elastic modulus of the curable resin composition was measured from 20° C. to 300° C. by a three-point bending method using a viscoelasticity measuring device (RSA III, manufactured by TA Instruments) at a span distance of 40 mm and a frequency of 1 Hz. Determined by increasing the temperature at °C/min. The cured product prepared by the method described above has a rectangular shape with a short side of 5.1 mm, a long side of 20 mm and a thickness of 2 mm.
(硬化性樹脂組成物の製造方法)
 硬化性樹脂組成物の製造方法は、特に制限されない。一般的な手法としては、所定の配合量の成分をミキサー等によって十分混合した後、ミキシングロール、押出機等によって溶融混練し、冷却し、粉砕する方法を挙げることができる。より具体的には、例えば、上述した成分の所定量を均一に攪拌及び混合し、予め70℃~140℃に加熱してあるニーダー、ロール、エクストルーダー等で混練し、冷却し、粉砕する方法を挙げることができる。
(Method for producing curable resin composition)
The method for producing the curable resin composition is not particularly limited. As a general method, there can be mentioned a method of thoroughly mixing components in predetermined amounts with a mixer or the like, melt-kneading the mixture with a mixing roll, an extruder or the like, cooling, and pulverizing. More specifically, for example, predetermined amounts of the components described above are uniformly stirred and mixed, kneaded with a kneader, roll, extruder, or the like preheated to 70° C. to 140° C., cooled, and pulverized. can be mentioned.
 硬化性樹脂組成物は、25℃において固体であることが好ましい。25℃において硬化性樹脂組成物が固体である場合、硬化性樹脂組成物の形状は特に制限されず、粉状、粒状、タブレット状等が挙げられる。硬化性樹脂組成物がタブレット状である場合の寸法及び質量は、パッケージの成形条件に合うような寸法及び質量となるようにすることが取り扱い性の観点から好ましい。 The curable resin composition is preferably solid at 25°C. When the curable resin composition is solid at 25° C., the shape of the curable resin composition is not particularly limited, and examples thereof include powder, granules, tablets, and the like. When the curable resin composition is in the form of a tablet, it is preferable from the standpoint of handleability that the dimensions and mass are such that they meet the molding conditions of the package.
(硬化性樹脂組成物の用途)
 本開示の硬化性樹脂組成物の用途は特に制限されず、例えば電子部品装置の封止材として種々の実装技術に用いることができる。また、本開示の硬化性樹脂組成物は、各種モジュール用樹脂成形体、モーター用樹脂成形体、車載用樹脂成形体、電子回路用保護材用封止材等、樹脂組成物が良好な流動性及び硬化性を有することが望ましい種々の用途に用いることができる。
(Use of curable resin composition)
Applications of the curable resin composition of the present disclosure are not particularly limited, and it can be used in various mounting techniques, for example, as a sealing material for electronic component devices. In addition, the curable resin composition of the present disclosure is used for resin moldings for various modules, resin moldings for motors, vehicle-mounted resin moldings, sealing materials for protective materials for electronic circuits, etc. The resin composition has good fluidity. And it can be used for various applications where it is desirable to have curability.
<電子部品装置>
 本開示の電子部品装置は、素子と、素子を封止する上記硬化性樹脂組成物の硬化物とを備える。
<Electronic parts equipment>
An electronic component device of the present disclosure includes an element and a cured product of the curable resin composition that seals the element.
 電子部品装置は、素子を搭載する支持部材を備えることができる。
 支持部材としては、リードフレーム、配線済みのテープキャリア、配線板、ガラス、シリコンウエハ、有機基板等が挙げられる。上記支持部材の中でも、上記硬化性樹脂組成物の硬化物との接着性の観点からリードフレームが好ましい。
The electronic component device can have a support member on which the element is mounted.
Examples of supporting members include lead frames, pre-wired tape carriers, wiring boards, glass, silicon wafers, organic substrates, and the like. Among the supporting members, a lead frame is preferable from the viewpoint of adhesion to the cured product of the curable resin composition.
 リードフレームは、表面が粗面化されていてもよく、粗面化されていなくてもよいが、製造コストの観点からは、非粗面化リードフレームが好ましく、接着性の観点からは、粗面化リードフレームが好ましい。
 粗面化方法は、特に限定されるものではなく、アルカリ処理、シランカップリング処理、サンドマット処理、プラズマ処理、コロナ放電処理等が挙げられる。
The lead frame may or may not have a roughened surface, but from the viewpoint of manufacturing cost, a non-roughened lead frame is preferable, and from the viewpoint of adhesiveness, a roughened lead frame is preferred. Planarized leadframes are preferred.
The roughening method is not particularly limited, and includes alkali treatment, silane coupling treatment, sand mat treatment, plasma treatment, corona discharge treatment and the like.
 リードフレームは、Au、Pd及びNiの少なくとも1つを含むめっき層を表面の少なくとも一部に備えることができる。
 また、上記めっき層は、単層であっても、多層であってもよい。多層のめっき層としては、リードフレーム側から、Niめっき層、Pdめっき層及びAuめっき層が積層された3層構成のめっき層等が挙げられる。
 上記3層構成のリードフレームとしては、例えば、PPF(Pre Plating Lead Flame)と呼ばれる銅リードフレームにNi-Pd-Auめっきを施したリードフレームが挙げられる。
The lead frame can have a plated layer containing at least one of Au, Pd and Ni on at least part of the surface.
Further, the plated layer may be a single layer or multiple layers. As the multi-layer plating layer, a plating layer having a three-layer configuration in which a Ni plating layer, a Pd plating layer, and an Au plating layer are laminated from the lead frame side, or the like can be used.
Examples of the three-layer lead frame include a lead frame called PPF (Pre Plating Lead Frame), which is a copper lead frame plated with Ni--Pd--Au.
 めっき層の厚さは特に限定されるものではなく、5μm以下であることが好ましく、4μm以下であることがより好ましく、3μm以下であることがさらに好ましい。 The thickness of the plating layer is not particularly limited, and is preferably 5 μm or less, more preferably 4 μm or less, and even more preferably 3 μm or less.
 電子部品装置が備える素子としては、例えば、シリコンチップ、トランジスタ、ダイオード、サイリスタ等の能動素子、コンデンサ、抵抗体、コイル等の受動素子などが挙げられる。 Examples of elements included in electronic component devices include active elements such as silicon chips, transistors, diodes, and thyristors, and passive elements such as capacitors, resistors, and coils.
 電子部品装置の具体的な構成としては、以下の構成が挙げられるが、これらに限定されるものではない。
(1)リードフレーム上に素子を固定し、ボンディングパッド等の素子の端子部とリード部とをワイヤボンディング、バンプ等を用いて接続した後、硬化性樹脂組成物を用いて封止した構造を有するDIP(Dual Inline Package)、PLCC(Plastic Leaded Chip Carrier)、QFP(Quad Flat Package)、SOP(Small Outline Package)、SOJ(Small Outline J-lead Package)、TSOP(Thin Small Outline Package)、TQFP(Thin Quad Flat Package)等の一般的な樹脂封止型IC;
(2)テープキャリアにバンプを用いて接続した素子を、硬化性樹脂組成物を用いて封止した構造を有するTCP(Tape Carrier Package);
(3)支持部材上に形成した配線に、ワイヤボンディング、フリップチップボンディング、はんだ等を用いて接続した素子を、硬化性樹脂組成物を用いて封止した構造を有するCOB(Chip On Board)モジュール、ハイブリッドIC、マルチチップモジュール等;
(4)裏面に配線板接続用の端子を形成した支持部材の表面に素子を搭載し、バンプ又はワイヤボンディングを用いて素子と支持部材に形成された配線とを接続した後、硬化性樹脂組成物を用いて素子を封止した構造を有するBGA(Ball Grid Array)、CSP(Chip Size Package)、MCP(Multi Chip Package)、SiP(System in a Package)等
Specific configurations of the electronic component device include, but are not limited to, the following configurations.
(1) A structure in which an element is fixed on a lead frame, terminal portions of the element such as bonding pads and lead portions are connected using wire bonding, bumps, or the like, and then sealed using a curable resin composition.有するDIP(Dual Inline Package)、PLCC(Plastic Leaded Chip Carrier)、QFP(Quad Flat Package)、SOP(Small Outline Package)、SOJ(Small Outline J-lead Package)、TSOP(Thin Small Outline Package)、TQFP( general resin-encapsulated IC such as Thin Quad Flat Package;
(2) TCP (Tape Carrier Package) having a structure in which an element connected to a tape carrier using bumps is sealed with a curable resin composition;
(3) A COB (Chip On Board) module having a structure in which an element connected to wiring formed on a support member by wire bonding, flip chip bonding, soldering, or the like is sealed with a curable resin composition. , hybrid ICs, multi-chip modules, etc.;
(4) After mounting an element on the surface of a support member on which terminals for wiring board connection are formed on the back surface, and connecting the element and the wiring formed on the support member using bumps or wire bonding, a curable resin composition is formed. BGA (Ball Grid Array), CSP (Chip Size Package), MCP (Multi Chip Package), SiP (System in a Package), etc., having a structure in which elements are sealed using materials
 硬化性樹脂組成物を用いて素子を封止する方法は特に限定されず、公知の方法を適用することが可能である。封止方法としては、例えば、低圧トランスファー成形が一般的であるが、インジェクション成形、圧縮成形、注型等を用いてもよい。 The method of sealing the element using the curable resin composition is not particularly limited, and known methods can be applied. As a sealing method, for example, low-pressure transfer molding is generally used, but injection molding, compression molding, cast molding, or the like may also be used.
 以下に、本開示を実施例により具体的に説明するが、本開示はこれらの実施例に限定されるものではない。また、表中の数値は特に断りのない限り「質量部」を意味する。 Although the present disclosure will be specifically described below with reference to examples, the present disclosure is not limited to these examples. Numerical values in the table mean "mass parts" unless otherwise specified.
(実施例1~7及び比較例1~6)
 表1に示す配合の材料を予備混合(ドライブレンド)した後、二軸ロール(ロール表面温度:約80℃)で約15分間混練し、冷却し、粉砕して粉末状の硬化性樹脂組成物を製造した。
(Examples 1 to 7 and Comparative Examples 1 to 6)
After pre-mixing (dry blending) the materials of the formulation shown in Table 1, they are kneaded for about 15 minutes with a biaxial roll (roll surface temperature: about 80 ° C.), cooled, and pulverized to obtain a powdery curable resin composition. manufactured.
 表1中における材料の詳細は以下の通りである。 The details of the materials in Table 1 are as follows.
・エポキシ樹脂A:下記構造単位を有する共重合型エポキシ樹脂、エポキシ当量:250g/eq、150℃での溶融粘度:0.7dPa・s Epoxy resin A: copolymer type epoxy resin having the following structural units, epoxy equivalent: 250 g/eq, melt viscosity at 150°C: 0.7 dPa s
Figure JPOXMLDOC01-appb-C000032

 
Figure JPOXMLDOC01-appb-C000032

 
・エポキシ樹脂B:ビフェニル型エポキシ樹脂、エポキシ当量220g/eq~250g/eq ・ Epoxy resin B: biphenyl type epoxy resin, epoxy equivalent 220 g / eq to 250 g / eq
・硬化剤:アラルキル型フェノール樹脂、水酸基当量175g/eq ・Curing agent: aralkyl-type phenolic resin, hydroxyl equivalent 175 g/eq
・直鎖状ポリシロキサン化合物:下記化学式で表される直鎖状ポリシロキサン(融点:-70℃、エポキシ当量120g/eq~150g/eq、式中、nは3~6の数を表し、Rは各々独立に、メトキシ基又は水酸基を表す。Rで表されるメトキシ基及び水酸基の合計100mol%に対する水酸基の含有率は、5mol%~50mol%である。) Linear polysiloxane compound: linear polysiloxane represented by the following chemical formula (melting point: -70 ° C., epoxy equivalent 120 g / eq to 150 g / eq, where n represents a number of 3 to 6, R 6 each independently represents a methoxy group or a hydroxyl group, and the content of the hydroxyl group is 5 mol % to 50 mol % with respect to the total 100 mol % of the methoxy group and the hydroxyl group represented by R 6. )
Figure JPOXMLDOC01-appb-C000033

 
 
Figure JPOXMLDOC01-appb-C000033

 
 
・無機充填材:体積平均粒径19.9μmの球状シリカ粒子
・硬化促進剤:トリフェニルホスフィンの1,4-ベンゾキノン付加物
・カップリング剤A:N-フェニル-3-アミノプロピルトリメトキシシラン
・カップリング剤B:3-グリシドキシプロピルトリメトキシシラン
・カップリング剤C:3-グリシドキシプロピルメチルジメトキシシラン
・応力緩和剤:分岐鎖状ポリシロキサン化合物、25℃において固体
・離型剤:酸化ポリエチレンワックス
・着色剤:カーボンブラック
・ Inorganic filler: spherical silica particles with a volume average particle size of 19.9 μm ・ Curing accelerator: 1,4-benzoquinone adduct of triphenylphosphine ・ Coupling agent A: N-phenyl-3-aminopropyltrimethoxysilane ・Coupling agent B: 3-glycidoxypropyltrimethoxysilane Coupling agent C: 3-glycidoxypropylmethyldimethoxysilane Stress relaxation agent: branched polysiloxane compound, solid at 25° C. Release agent: Oxidized polyethylene wax/coloring agent: carbon black
<<硬化性樹脂組成物の評価>>
 実施例及び比較例において製造した硬化性樹脂組成物の特性を次の特性試験により評価した。評価結果を表1に示す。
 なお、硬化性樹脂組成物を用いた硬化物の形成は、明記しない限りトランスファー成形機により、金型温度175℃、成形圧力6.9MPa、硬化時間90秒の条件で成形した後、175℃で5時間の条件で後硬化を行うことにより行った。
<<Evaluation of curable resin composition>>
The properties of the curable resin compositions produced in Examples and Comparative Examples were evaluated by the following property tests. Table 1 shows the evaluation results.
In addition, unless otherwise specified, the formation of a cured product using a curable resin composition is performed using a transfer molding machine under the conditions of a mold temperature of 175 ° C., a molding pressure of 6.9 MPa, and a curing time of 90 seconds. It was carried out by performing post-curing under the condition of 5 hours.
<線膨張率の測定>
 上記条件に基づいて、上記実施例及び比較例において得られた硬化性樹脂組成物の硬化物を形成した。硬化物は、短辺5.1mm、長辺20mm、厚さ2mmの長方形形状を有する硬化物とした。
 次いで、JIS K 7197:2012に基づいて熱機械分析法により、硬化物の歪みを温度に対してプロットした場合の接線の傾きを、10℃~30℃の範囲及び200℃~220℃の範囲のそれぞれにおいて求めた。10℃~30℃の範囲の接線の傾きをCTE1、200℃~220℃の範囲の接線の傾きをCTE2として表1に示す。
 なお、試験荷重は5g、昇温速度は5℃/分として測定した。
 また、線膨張率の測定には、セイコーインスルツメンツ株式会社製のTMA高精度二試料熱分析装置(装置名SS6100)を使用した。
<Measurement of coefficient of linear expansion>
Under the above conditions, cured products of the curable resin compositions obtained in the above Examples and Comparative Examples were formed. A cured product having a rectangular shape with a short side of 5.1 mm, a long side of 20 mm and a thickness of 2 mm was used.
Then, according to JIS K 7197: 2012, the slope of the tangent line when the strain of the cured product is plotted against temperature is measured in the range of 10 ° C. to 30 ° C. and in the range of 200 ° C. to 220 ° C. by thermal mechanical analysis. sought in each. Table 1 shows the slope of the tangent line in the range of 10° C. to 30° C. as CTE1 and the slope of the tangent line in the range of 200° C. to 220° C. as CTE2.
The test load was 5 g and the heating rate was 5° C./min.
A TMA high-precision two-sample thermal analyzer (device name SS6100) manufactured by Seiko Instruments Inc. was used for the measurement of the coefficient of linear expansion.
<硬化物のガラス転移温度(Tg)>
 上記線膨張率の測定により得られた、10℃~30℃における接線と、200℃~220℃における接線との交点の温度を硬化物のガラス転移温度とし、測定した。
<Glass transition temperature (Tg) of cured product>
The temperature at the intersection of the tangent line at 10° C. to 30° C. and the tangent line at 200° C. to 220° C. obtained by measuring the coefficient of linear expansion was taken as the glass transition temperature of the cured product.
<硬化収縮率の測定>
 寸法測定済みの金型を用いて、トランスファー成形により、上記実施例及び比較例において得られた硬化性樹脂組成物の円盤状硬化物(試験片)を金型温度175℃、成形圧力6.9MPa、硬化時間90秒の条件で成形し、次いで25℃まで試験片を放冷した。
 25℃まで冷却した後、試験片を175℃に加熱したオーブンにより5時間加熱した後、25℃まで試験片を放冷した。
 冷却後、試験片の表及び裏のそれぞれ2点における直径の平均値をRm(mm)とし、試験片の表に対応する金型の2点における内径及び試験片の裏に対応する金型の2点における内径の平均値をRd(mm)とし、下記式に代入することにより、硬化性樹脂組成物の硬化収縮率を求めた。
 硬化収縮率(%)=(Rd-Rm)/Rd×100
<Measurement of cure shrinkage>
Using a mold whose dimensions have already been measured, the disk-shaped cured product (test piece) of the curable resin composition obtained in the above Examples and Comparative Examples was transferred by transfer molding at a mold temperature of 175 ° C. and a molding pressure of 6.9 MPa. , under the conditions of a curing time of 90 seconds, and then allowed to cool to 25°C.
After cooling to 25°C, the test piece was heated in an oven heated to 175°C for 5 hours, and then allowed to cool to 25°C.
After cooling, the average value of the diameters at the two points on the front and back of the test piece is Rm (mm), and the inner diameter at the two points of the mold corresponding to the front of the test piece and the inside diameter of the mold corresponding to the back of the test piece The cure shrinkage rate of the curable resin composition was determined by substituting the average value of the inner diameters at two points as Rd (mm) into the following formula.
Cure shrinkage rate (%) = (Rd - Rm) / Rd x 100
<弾性率の測定>
 上記条件に基づいて、線膨張率の測定において使用した硬化物と同様の硬化物を形成した。
 粘弾性測定装置(TA Instruments社製、RSAIII)を用いて、スパン間距離40mm、周波数1Hzの条件下、3点曲げ法にて20℃から300℃まで5℃/分で昇温し、25℃及び260℃のそれぞれにおける弾性率を求めた。
<Measurement of elastic modulus>
Based on the above conditions, a cured product similar to the cured product used in measuring the coefficient of linear expansion was formed.
Using a viscoelasticity measuring device (RSA III, manufactured by TA Instruments), the temperature was raised from 20 ° C. to 300 ° C. at a rate of 5 ° C./min by a three-point bending method under the conditions of a span distance of 40 mm and a frequency of 1 Hz. and 260° C., respectively.
<接着性評価>
 上記実施例及び比較例において得られた硬化性樹脂組成物を、銅合金板(Pd-PPF)の表面に、上記条件に基づいて、接触面積が3mmφの円柱を作製した。
 その後、ボンドテスター(デイジ・ジャパン株式会社、シリーズ4000)を用い、銅合金板の温度を25℃に保ちながら、せん断速度50μm/sでせん断接着力(MPa)を求めた。
 上記硬化物を85℃、60%RHの条件で168時間加熱した後、銅合金板の温度を260℃に保ちながら、せん断速度50μm/sでせん断接着力(MPa)を求めた。
<Adhesion evaluation>
A column having a contact area of 3 mmφ was formed on the surface of a copper alloy plate (Pd-PPF) from the curable resin compositions obtained in the above Examples and Comparative Examples under the above conditions.
Thereafter, using a bond tester (Dage Japan Co., Ltd., Series 4000), the shear adhesive strength (MPa) was determined at a shear rate of 50 µm/s while maintaining the temperature of the copper alloy plate at 25°C.
After heating the cured product under conditions of 85° C. and 60% RH for 168 hours, the shear adhesive strength (MPa) was determined at a shear rate of 50 μm/s while maintaining the temperature of the copper alloy plate at 260° C.
<耐リフロー性評価>
 上記条件により形成した硬化性樹脂組成物の硬化物を用いて封止したシリコンチップ(縦8mm、横10mm、厚さ0.4mm)を搭載した外形寸法が縦20mm、横14mm、厚さ2mmの80ピンフラットパッケージ(リードフレーム材質:銅合金(Pd-PPF))を作製した。
 上記パッケージを85℃、60%RHの条件で168時間加熱した。
 その後、260℃において、10秒間のリフロー処理をそれぞれ行い、パッケージ外部のクラックの有無を目視で、パッケージ内部の剥離発生の有無を超音波探傷装置(日立建機株式会社製、HYE-FOCUS)でそれぞれ観察した。試験パッケージ数(64)に対する、クラック及び剥離のいずれかが発生したパッケージ数の総和で耐リフロー性を評価した。
<Reflow resistance evaluation>
A silicon chip (length 8 mm, width 10 mm, thickness 0.4 mm) sealed using a cured product of the curable resin composition formed under the above conditions is mounted. An 80-pin flat package (lead frame material: copper alloy (Pd-PPF)) was produced.
The package was heated at 85° C. and 60% RH for 168 hours.
After that, reflow treatment is performed at 260 ° C. for 10 seconds, and the presence or absence of cracks outside the package is visually checked, and the presence or absence of peeling inside the package is checked with an ultrasonic flaw detector (HYE-FOCUS, manufactured by Hitachi Construction Machinery Co., Ltd.). observed each. Reflow resistance was evaluated by summing the number of packages in which either cracks or peeling occurred with respect to the number of test packages (64).
<流動性評価(スパイラルフロー)>
 EMMI-1-66に準じたスパイラルフロー測定用金型を用いて、硬化性樹脂組成物を金型温度180℃、成形圧力6.9MPa、硬化時間90秒の条件で成形し、流動距離(cm)を求めた。
 
<Fluidity evaluation (spiral flow)>
Using a spiral flow measurement mold according to EMMI-1-66, the curable resin composition was molded under the conditions of a mold temperature of 180 ° C., a molding pressure of 6.9 MPa, and a curing time of 90 seconds, and the flow distance (cm ).
Figure JPOXMLDOC01-appb-T000034

 
 
Figure JPOXMLDOC01-appb-T000034

 
 
 表1から明らかなように、本開示の硬化性樹脂組成物によれば、非粗面化リードフレームに対して優れた接着性を有し、優れた耐リフロー性を有する、硬化性樹脂組成物が提供されることがわかる。 As is clear from Table 1, according to the curable resin composition of the present disclosure, the curable resin composition has excellent adhesion to non-roughened lead frames and excellent reflow resistance. is found to be provided.
 2021年3月5日に出願された日本国特許出願2021-035808号の開示は、その全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記載された場合と同程度に、本明細書に参照により取り込まれる。 The disclosure of Japanese Patent Application No. 2021-035808 filed on March 5, 2021 is incorporated herein by reference in its entirety. All publications, patent applications and technical standards mentioned herein are to the same extent as if each individual publication, patent application and technical standard were specifically and individually indicated to be incorporated by reference. incorporated herein by reference.

Claims (15)

  1.  エポキシ樹脂と、硬化剤と、エポキシ基及びアルコキシ基を有する構造単位を有し、且つ重合度が3以上である直鎖状ポリシロキサン化合物とを含む、硬化性樹脂組成物。 A curable resin composition containing an epoxy resin, a curing agent, and a linear polysiloxane compound having a structural unit having an epoxy group and an alkoxy group and having a degree of polymerization of 3 or more.
  2.  前記構造単位が、下記一般式(1)で表される、請求項1に記載の硬化性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001

     
     一般式(1)中、
     Rは、エポキシ含有基を表し、
     Rは、炭素数1~10のアルコキシ基を表す。
    The curable resin composition according to claim 1, wherein the structural unit is represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001


    In general formula (1),
    R 1 represents an epoxy-containing group,
    R 2 represents an alkoxy group having 1 to 10 carbon atoms.
  3.  前記直鎖状ポリシロキサン化合物が、下記一般式(2)で表される構造単位をさらに有する、請求項2に記載の硬化性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002

     
     一般式(2)中、
     Rは、エポキシ含有基を表す。
    The curable resin composition according to claim 2, wherein the linear polysiloxane compound further has a structural unit represented by the following general formula (2).
    Figure JPOXMLDOC01-appb-C000002


    In general formula (2),
    R 1 represents an epoxy-containing group.
  4.  前記エポキシ含有基が、下記一般式(3)で表される、請求項2又は請求項3に記載の硬化性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003

     
     一般式(3)中、
     R及びRは、各々独立に、炭素数1~10のアルキレン基を表し、
     *は、Siとの結合位置を表す。
    The curable resin composition according to claim 2 or 3, wherein the epoxy-containing group is represented by the following general formula (3).
    Figure JPOXMLDOC01-appb-C000003


    In general formula (3),
    R 4 and R 5 each independently represent an alkylene group having 1 to 10 carbon atoms,
    * represents the bonding position with Si.
  5.  前記直鎖状ポリシロキサン化合物が、下記一般式(4)で表される化合物である、請求項1~請求項4のいずれか一項に記載の硬化性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000004

     
     一般式(4)中、
     Rは、エポキシ含有基を表し、
     Rは、各々独立に、炭素数1~10のアルコキシ基又は水酸基を表し、
     Rは、各々独立に、炭素数1~10のアルコキシ基を表し、
     nは、1以上の整数を表し、
     但し、少なくとも1つのRは、炭素数1~10のアルコキシ基を表す。
    The curable resin composition according to any one of claims 1 to 4, wherein the linear polysiloxane compound is a compound represented by the following general formula (4).
    Figure JPOXMLDOC01-appb-C000004


    In general formula (4),
    R 1 represents an epoxy-containing group,
    each R 6 independently represents an alkoxy group having 1 to 10 carbon atoms or a hydroxyl group;
    each R 7 independently represents an alkoxy group having 1 to 10 carbon atoms,
    n represents an integer of 1 or more,
    However, at least one R 6 represents an alkoxy group having 1 to 10 carbon atoms.
  6.  前記エポキシ樹脂が、クレゾール由来の構造単位と、メトキシナフタレン由来の構造単位とを有する共重合型エポキシ樹脂を含む、請求項1~請求項5のいずれか一項に記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 5, wherein the epoxy resin comprises a copolymerized epoxy resin having a structural unit derived from cresol and a structural unit derived from methoxynaphthalene.
  7.  前記共重合型エポキシ樹脂が、下記構造単位を有する、請求項6に記載の硬化性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000005

     
     式中、nは、1~10の数である。
    7. The curable resin composition according to claim 6, wherein the copolymerizable epoxy resin has the following structural units.
    Figure JPOXMLDOC01-appb-C000005


    wherein n is a number from 1-10.
  8.  前記硬化剤が、フェノール系硬化剤を含む、請求項1~請求項7のいずれか一項に記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 7, wherein the curing agent contains a phenolic curing agent.
  9.  前記フェノール系硬化剤が、アラルキル型フェノール樹脂を含む、請求項8に記載の硬化性樹脂組成物。 The curable resin composition according to claim 8, wherein the phenolic curing agent contains an aralkyl-type phenolic resin.
  10.  前記直鎖状ポリシロキサン化合物が、25℃において液体である、請求項1~請求項9のいずれか一項に記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 9, wherein the linear polysiloxane compound is liquid at 25°C.
  11.  前記直鎖状ポリシロキサン化合物に含まれる前記構造単位の数が15以下である、請求項1~請求項10のいずれか一項に記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 10, wherein the number of structural units contained in the linear polysiloxane compound is 15 or less.
  12.  前記硬化性樹脂組成物の全質量に対する前記直鎖状ポリシロキサン化合物の含有率が、0.05質量%~5質量%である、請求項1~請求項11のいずれか一項に記載の硬化性樹脂組成物。 Curing according to any one of claims 1 to 11, wherein the content of the linear polysiloxane compound with respect to the total mass of the curable resin composition is 0.05% by mass to 5% by mass. elastic resin composition.
  13.  素子と、前記素子を封止する請求項1~請求項12のいずれか一項に記載の硬化性樹脂組成物の硬化物と、を備える電子部品装置。 An electronic component device comprising an element and a cured product of the curable resin composition according to any one of claims 1 to 12, which seals the element.
  14.  前記素子を一方の面に搭載するリードフレームを備える、請求項13に記載の電子部品装置。 14. The electronic component device according to claim 13, comprising a lead frame for mounting the element on one surface.
  15.  前記リードフレームが、Au、Pd及びNiの少なくとも1つを含むめっき層を表面の少なくとも一部に備える、請求項14に記載の電子部品装置。 The electronic component device according to claim 14, wherein the lead frame has a plated layer containing at least one of Au, Pd and Ni on at least part of the surface.
PCT/JP2022/009257 2021-03-05 2022-03-03 Curable resin composition and electronic component device WO2022186361A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280018109.0A CN117120543A (en) 2021-03-05 2022-03-03 Curable resin composition and electronic component device
JP2023503962A JPWO2022186361A1 (en) 2021-03-05 2022-03-03

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021035808 2021-03-05
JP2021-035808 2021-03-05

Publications (1)

Publication Number Publication Date
WO2022186361A1 true WO2022186361A1 (en) 2022-09-09

Family

ID=83155404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009257 WO2022186361A1 (en) 2021-03-05 2022-03-03 Curable resin composition and electronic component device

Country Status (4)

Country Link
JP (1) JPWO2022186361A1 (en)
CN (1) CN117120543A (en)
TW (1) TW202246410A (en)
WO (1) WO2022186361A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008111101A (en) * 2006-10-02 2008-05-15 Hitachi Chem Co Ltd Epoxy resin molding material for sealing and electronic component device
WO2008077915A1 (en) * 2006-12-27 2008-07-03 Varioptic Sol-gel sealants for liquid-based optical devices
US20170247607A1 (en) * 2014-12-10 2017-08-31 Halliburton Energy Services, Inc. Curable composition and resin for treatment of a subterranean formation
JP2020045425A (en) * 2018-09-19 2020-03-26 日立化成株式会社 Sealing epoxy resin composition and electronic part device
WO2020080370A1 (en) * 2018-10-18 2020-04-23 日立化成株式会社 Curable resin composition and electronic component device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008111101A (en) * 2006-10-02 2008-05-15 Hitachi Chem Co Ltd Epoxy resin molding material for sealing and electronic component device
WO2008077915A1 (en) * 2006-12-27 2008-07-03 Varioptic Sol-gel sealants for liquid-based optical devices
US20170247607A1 (en) * 2014-12-10 2017-08-31 Halliburton Energy Services, Inc. Curable composition and resin for treatment of a subterranean formation
JP2020045425A (en) * 2018-09-19 2020-03-26 日立化成株式会社 Sealing epoxy resin composition and electronic part device
WO2020080370A1 (en) * 2018-10-18 2020-04-23 日立化成株式会社 Curable resin composition and electronic component device

Also Published As

Publication number Publication date
JPWO2022186361A1 (en) 2022-09-09
TW202246410A (en) 2022-12-01
CN117120543A (en) 2023-11-24

Similar Documents

Publication Publication Date Title
TWI829708B (en) Curable resin composition and electronic device
KR100893022B1 (en) Curing accelerator, curable resin composition, and electronic part/device
JP7452028B2 (en) Encapsulating resin composition, electronic component device, and method for manufacturing electronic component device
TWI824034B (en) Curable resin composition and electronic component device
JP6176339B2 (en) Epoxy resin composition and electronic component device
TWI832910B (en) Additive for curable resin composition, curable resin composition and electronic component device
CN114599729A (en) Epoxy resin composition, electronic component device, and method for manufacturing electronic component device
JP7269579B2 (en) Epoxy resin composition and electronic component device
CN114008105A (en) Resin composition for sealing, electronic component device, and method for manufacturing electronic component device
WO2023120739A1 (en) Epoxy resin composition and electronic component device
JP2006233190A (en) Hardening accelerator, hardenable resin composition, and electronic component device
CN111094450A (en) Epoxy resin composition and electronic component device
WO2022186361A1 (en) Curable resin composition and electronic component device
JP2006233189A (en) Hardening accelerator, hardenable resin composition, and electronic component device
JP7487596B2 (en) Encapsulating resin composition, electronic component device, and method for producing electronic component device
JP7491223B2 (en) Encapsulating resin composition, electronic component device, and method for producing electronic component device
JP6291729B2 (en) Curing accelerator for epoxy resin, epoxy resin composition and electronic component device
WO2023032860A1 (en) Curable resin composition and electronic component device
WO2023032861A1 (en) Curable resin composition and electronic component device
JP2023023485A (en) Epoxy resin composition, cured product, and electronic component device
TW202235510A (en) Thermosetting resin composition and electronic component device
WO2023120738A1 (en) Sealing material composition and electronic component device
JP5395331B2 (en) Epoxy resin composition and electronic component device
WO2021220726A1 (en) Epoxy resin composition for sealing, electronic part device, and method for manufacturing same
JP2022107373A (en) Method for producing thermosetting resin composition, thermosetting resin composition, and electronic component device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22763412

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023503962

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22763412

Country of ref document: EP

Kind code of ref document: A1