WO2022186118A1 - Pressure-heated food packed in container and production method for same - Google Patents

Pressure-heated food packed in container and production method for same Download PDF

Info

Publication number
WO2022186118A1
WO2022186118A1 PCT/JP2022/008200 JP2022008200W WO2022186118A1 WO 2022186118 A1 WO2022186118 A1 WO 2022186118A1 JP 2022008200 W JP2022008200 W JP 2022008200W WO 2022186118 A1 WO2022186118 A1 WO 2022186118A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
mass
pressurized
packed
guanosine
Prior art date
Application number
PCT/JP2022/008200
Other languages
French (fr)
Japanese (ja)
Inventor
剛大 根岸
茂樹 里見
慎一 岩畑
優太 赤坂
絹子 宮崎
Original Assignee
ハウス食品株式会社
ハウス食品グループ本社株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ハウス食品株式会社, ハウス食品グループ本社株式会社 filed Critical ハウス食品株式会社
Priority to CN202280017949.5A priority Critical patent/CN116940246A/en
Priority to JP2023503808A priority patent/JPWO2022186118A1/ja
Publication of WO2022186118A1 publication Critical patent/WO2022186118A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B7/00Preservation or chemical ripening of fruit or vegetables
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L19/00Products from fruits or vegetables; Preparation or treatment thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L23/00Soups; Sauces; Preparation or treatment thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/20Synthetic spices, flavouring agents or condiments
    • A23L27/23Synthetic spices, flavouring agents or condiments containing nucleotides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/10General methods of cooking foods, e.g. by roasting or frying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D85/00Containers, packaging elements or packages, specially adapted for particular articles or materials
    • B65D85/50Containers, packaging elements or packages, specially adapted for particular articles or materials for living organisms, articles or materials sensitive to changes of environment or atmospheric conditions, e.g. land animals, birds, fish, water plants, non-aquatic plants, flower bulbs, cut flowers or foliage

Definitions

  • the present invention relates to pressurized and heated food packed in a container and a method for producing the same.
  • Patent Document 1 discloses a method for producing roasted onions with stable quality by heating onions having a moisture content of 80 to 30% to 80° C. or higher and then heating them at a temperature of 100° C. or higher in a container. Have been described.
  • caramelized onion or roasted onion is imparted by the Maillard reaction of carbohydrates and amino acids under heating conditions.
  • Other food compositions using the Maillard reaction include sauce-like or paste-like seasonings prepared by heating a raw material mixture containing vegetables, fruits, vegetable juices, fruit juices, etc., for example, tomato sauce. can.
  • An object of the present invention is to provide a new packaged food containing a food composition imparted with a favorable flavor and color by utilizing the Maillard reaction, and a method for producing the same.
  • the present inventors put a raw material mixture having a reducing sugar content of 1% by mass or more and an amino acid content of 0.6% by mass or more in a container, sealed it, pressurized and heated, and packed into a container.
  • the Maillard reaction proceeds in the container.
  • the present inventors also found that the amount of carbon dioxide gas generated as a result of the Maillard reaction during the production of container-packed, pressurized and heated food is small, and the gas is dissolved in the food, so the generation of gas is not a problem, but during storage Furthermore, as a result of the progress of the Maillard reaction, a new problem was found that gas generation progressed and the expansion of the container was recognized and became a problem.
  • a food composition having a reducing sugar content of 1% by mass or more and an amino acid content of 0.6% by mass or more; and a container that encloses the food composition and has an oxygen permeability of 0.1 mL/m 2 /day/MPa or more,
  • the container it is prepared by pressurizing and heating so that the maximum product temperature is 100 to 140 ° C. and the heating value is 33 to 80,
  • the heating value is a value obtained by integrating the value obtained by 10 ⁇ (A-120)/30 ⁇ with respect to the product temperature (A) [° C.] by the pressure heat treatment time [minute]. Pressurized and heated foods packed in containers.
  • the peak area ratio of ⁇ -aminobutyric acid to guanosine- 15 N 5 '-monophosphate is 0.105 or more, The peak area ratio of dimethylpyrazine to guanosine- 15 N 5 '-monophosphate is 2.4 or more, The peak area ratio of N-(1-deoxy-D-fructose-1-yl)-L-glutamic acid to guanosine - 15N55' -monophosphate is 0.9 or more, The peak area ratio of N-(1-deoxy-D-fructose-1-yl)-L-pyroglutamic acid to guanosine - 15N55' -monophosphate is 0.2 or more, The peak area ratio of succinic acid to guanosine- 15 N 5 '-monophosphate is 1.7 or more, The peak area ratio of succinic semialdehyde to guanosine- 15 N 5 '-monophosphate is 0.6 or
  • the heating value is a value obtained by integrating the value obtained by 10 ⁇ (A-120)/30 ⁇ with respect to the product temperature (A) [° C.] by the pressure heat treatment time [minute].
  • a method for producing a container-packed, pressurized and heated food (6) The method for producing a container-packed, pressurized and heated food according to (5), wherein the water content of the raw material mixture is 80% by mass or less.
  • the container-packed pressurized and heated food according to one or more embodiments of the present invention is imparted with a flavor such as richness and complex taste and a preferable color by the Maillard reaction, and the gas generated inside the container during storage is discharged out of the container. expansion is suppressed.
  • a flavor such as richness and complex taste and a preferable color by the Maillard reaction
  • GABA ⁇ -aminobutyric acid
  • the ratio of the peak area of succinic semialdehyde to the peak area of guanosine - 15N55' -monophosphate added as an internal standard in the LCMS analysis of pressurized and heated foods with different reducing sugar and amino acid contents are shown.
  • the container-packed pressurized and heated food according to the first embodiment of the present invention is a food composition having a reducing sugar content of 1% by mass or more and an amino acid content of 0.6% by mass or more; and a container that encloses the food composition and has an oxygen permeability of 0.1 mL/m 2 /day/MPa or more, In the container, it is prepared by pressurizing and heating so that the maximum product temperature is 100 to 140 ° C. and the heating value is 33 to 80, The heating value is a value obtained by integrating the value obtained by 10 ⁇ (A-120)/30 ⁇ with respect to the product temperature (A) [° C.] by the pressure heat treatment time [minute]. .
  • the pressurized and heated food stuffed in a container according to this embodiment is imparted with preferable flavor and color by the Maillard reaction proceeding in the container by pressurization and heating treatment under predetermined conditions.
  • the gas generated in the container during pressurized heating treatment or storage is discharged out of the container, the gas stays in the container to form air bubbles, thereby suppressing expansion of the container.
  • Container-packed pressurized and heated foods include sauce-like foods prepared by pressurizing and heating a raw material mixture containing reducing sugars and amino acids, such as vegetables, fruits, vegetable juices, fruit juices, and their concentrates, in a container. Alternatively, paste-like seasonings are preferred.
  • the container-packed pressurized and heated food may contain processed tomato products and/or processed onion products.
  • processed tomato products include tomato puree, tomato paste, diced tomato, concentrated tomato, tomato sauce, tomato juice, tomato mix juice, and tomato ketchup.
  • Tomato puree, tomato paste, diced tomato, and concentrated tomato are particularly preferred.
  • onion (onion) processed products include onion paste, onion slices, onion diced, and onion sauté.
  • Food compositions in container-packed pressurized and heated foods include, for example, onion seasonings called caramelized onions or roasted onions, tomato paste, tomato sauce, tomato onion sauce, fruit juice sauce (fruit juice of fruits such as apples and pineapples, or Sauce obtained by pressurizing and heating concentrated fruit juice in a container) and the like can be suitably exemplified.
  • reducing sugar examples include fructose and glucose.
  • the content of reducing sugars in the food composition may be 1% by mass or more. If the content of reducing sugar is less than 1% by mass, the Maillard reaction does not proceed in the container, making it difficult to impart preferable flavor and color. If the content of reducing sugars is less than 1% by mass, the problem of gas generation is also less likely to occur.
  • the content of reducing sugars in the food composition is preferably 2% by mass or more, more preferably 3% by mass or more, more preferably 4% by mass or more, more preferably 5% by mass or more, and more preferably 60% by mass. % or less.
  • the reducing sugar content can be measured by high performance liquid chromatography. Specific examples of the method for measuring the content of reducing sugar include the method described in Examples.
  • the amino acid is not particularly limited as long as it is an edible amino acid.
  • Amino acids may be in the form of edible salts.
  • the amino acid content in the food composition may be 0.6% by mass or more. If the amino acid content is less than 0.6% by mass, the Maillard reaction does not proceed in the container, making it difficult to impart a favorable flavor and color. If the amino acid content is less than 0.6% by mass, the problem of gas generation is also less likely to occur.
  • the amino acid content in the food composition is preferably 0.7% by mass or more, more preferably 0.8% by mass or more, more preferably 1% by mass or more, and more preferably 3.5% by mass or more. , more preferably 60% by mass or less.
  • Amino acid content can be measured by high-performance liquid chromatography. A specific example of the method for measuring the amino acid content is the method described in Examples.
  • the reducing sugars and amino acids in the food composition may be components derived from raw materials such as vegetables and fruits, or may be components added separately.
  • the food composition can contain other ingredients such as lipids, proteins, carbohydrates, nucleic acids, non-reducing sugars and water.
  • the water may be water derived from raw materials such as vegetables and fruits, or may be water separately blended.
  • the food composition may further contain food-acceptable additives.
  • the additives include spices, coloring agents, flavors, sweeteners, bittering agents, acidulants, umami seasonings, fermented seasonings, protein hydrolysates, preservatives, antifungal agents, antioxidants, emulsifiers, pH adjusters, lye water, thickening stabilizers, enzymes, manufacturing agents, nutritional enhancers, alum and the like.
  • the food composition preferably has a water content of 80% by mass or less, more preferably 78% by mass or less, and more preferably 76% by mass or less.
  • a water content 80% by mass or less, it is preferable because the Maillard reaction easily imparts flavor such as richness and complex taste and a preferable color.
  • the food composition preferably has a water activity (Aw) of 0.60 or more and less than 0.98, more preferably 0.73 or more and less than 0.96, more preferably 0.75 or more and less than 0.94. be.
  • Aw water activity
  • the Maillard reaction easily imparts flavor such as richness and complex taste and preferable color, which is preferable.
  • the container is not particularly limited as long as it has an oxygen permeability of 0.1 mL/m 2 /day/MPa or more.
  • it may be in the form of a pouch having pressure and heat resistance (hereinafter "pressure and heat resistant pouch"), pack, etc., and can be paper, can, coated paper, plastic such as PET or PTP, metal such as aluminum, glass, etc. can be used.
  • the container is preferably resistant to pressurized heat treatment such as retort treatment.
  • a raw material mixture having a reducing sugar content of 1% by mass or more and an amino acid content of 0.6% by mass or more is sealed in a container having an oxygen permeability of 0.1 mL/m 2 /day/MPa or more.
  • gas generated in the container during production and storage permeates the container and is discharged to the outside of the container, suppressing the formation of air bubbles in the container and expansion of the container.
  • the oxygen permeability of the container is more preferably 0.3 mL/m 2 /day/MPa or more, more preferably 0.5 mL/m 2 /day/MPa or more, more preferably 1.0 mL/m 2 /day/MPa. above, more preferably 10.0 mL/m 2 /day/MPa or more, more preferably 20.0 mL/m 2 /day/MPa or more, more preferably 30.0 mL/m 2 /day/MPa or more, and more It is preferably 100 mL/m 2 /day/MPa or less, more preferably 60 mL/m 2 /day/MPa or less.
  • PET containers examples include PET (polyester)/NY (nylon)/CPP (unstretched polypropylene), PET/NY/NY/CPP, PET/EVAL (trademark)/NY/CPP, aluminum deposition PET/NY/ It is preferable to have a material configuration such as CPP, transparent deposition PET/NY/CPP, etc.
  • the container-packed, pressurized and heated food is preferably a typical retort food.
  • the container-packed, pressurized and heated food that has been pressurized and heated together with the container can be distributed at room temperature.
  • the container-packed pressurized and heated food according to the second embodiment of the present invention is a food composition comprising reducing sugars and amino acids;
  • a container-packed pressurized and heated food comprising a container enclosing the food composition,
  • To 1 g of the food composition 0.1 mL of 0.14 mg/mL guanosine- 15 N 5 '-monophosphate sodium salt aqueous solution and 3 mL of ultrapure water were added as an internal standard solution, and liquid chromatography mass spectrometry (LCMS),
  • B) the peak area ratio of dimethylpyrazine to guanosine- 15 N 5 5'-monophosphate ( guanosine- 15 N 5 5'-monophosphate sodium salt
  • the pressurized and heated food having this characteristic has a particularly favorable flavor and color.
  • the peak area ratio of (A) is more preferably 0.11 or more, more preferably 0.15 or more, more preferably 0.30 or more, more preferably 0.60 or more, and the upper limit is not particularly limited. , for example, 10.0 or less, more preferably 5.0 or less.
  • the peak area ratio of (B) is more preferably 2.6 or more, more preferably 5.0 or more, more preferably 10.0 or more, more preferably 15.0 or more, and the upper limit is not particularly limited, For example, it is 100.0 or less, preferably 50.0 or less.
  • the peak area ratio of (C) is more preferably 1.0 or more, more preferably 5.0 or more, more preferably 10.0 or more, more preferably 50.0 or more, and the upper limit is not particularly limited, For example, it is 500.0 or less, preferably 200.0 or less, more preferably 150.0 or less.
  • the peak area ratio of (D) is more preferably 0.3 or more, more preferably 1.0 or more, more preferably 5.0 or more, more preferably 30.0 or more, and the upper limit is not particularly limited, For example, it is 500.0 or less, preferably 200.0 or less, more preferably 150.0 or less.
  • the peak area ratio of (E) is more preferably 2.2 or more, more preferably 3.0 or more, more preferably 10.0 or more, more preferably 20.0 or more, and the upper limit is not particularly limited, For example, it is 200.0 or less, preferably 100.0 or less, more preferably 50.0 or less.
  • the peak area ratio of (F) is more preferably 0.8 or more, more preferably 1.0 or more, more preferably 1.5 or more, more preferably 2.0 or more, more preferably 5.0 or more, and more It is preferably 7.0 or more, and although the upper limit is not particularly limited, it is, for example, 100.0 or less, preferably 50.0 or less, and more preferably 20.0 or less.
  • the peak area ratio of (G) is more preferably 10.0 or more, more preferably 12.0 or more, more preferably 20.0 or more, more preferably 30.0 or more, more preferably 90.0 or more.
  • the upper limit is not particularly limited, it is, for example, 500.0 or less, preferably 300.0 or less, and more preferably 200.0 or less.
  • the above peak area ratio was obtained from the LCMS mass spectrum data of the food composition to which the internal standard substance guanosine- 15 N 5 5' - monophosphate was added.
  • 15 N 5 5′-monophosphate sodium salt 15 N 5 5′-monophosphate sodium salt
  • GABA ⁇ -aminobutyric acid
  • dimethylpyrazine N-(1-deoxy-D-fructose-1-yl)-L-glutamic acid (Fru-Glu), N -(1-Deoxy-D-fructose-1-yl)-L-pyroglutamic acid (Fru-pGlu), proton adducts (M+H) representing respectively succinic acid, succinic semialdehyde and/or ⁇ -ketoglutarate.
  • LCMS can be performed using the conditions described in Experiment 9.
  • the food composition preferably has a reducing sugar content of 1% by mass or more and an amino acid content of 0.6% by mass or more. More preferred aspects of the food composition are as described for the food composition in the container-packed, pressurized and heated food according to the first embodiment.
  • the container preferably has an oxygen permeability of 0.1 mL/m 2 /day/MPa or more.
  • a more preferred aspect of the container is as described for the container in the container-packed, pressurized and heated food product according to the first embodiment.
  • ⁇ Method for producing container-packed, pressurized and heated food preparing a raw material mixture having a reducing sugar content of 1% by mass or more and an amino acid content of 0.6% by mass or more; A step of storing and sealing the raw material mixture in a container having an oxygen permeability of 0.1 mL/m 2 /day/MPa or more; A step of pressurizing and heating the raw material mixture in the container so that the maximum product temperature is 100 to 140 ° C. and the heating value is 33 to 80,
  • the heating value is a value obtained by integrating the value obtained by 10 ⁇ (A-120)/30 ⁇ with respect to the product temperature (A) [° C.] by the pressure heat treatment time [minute]. .
  • the method of the present embodiment it is possible to produce a container-packed, pressurized and heated food product with an improved flavor due to the Maillard reaction in a container in which the raw material mixture is sealed.
  • the gas generated in the container during manufacturing and storage passes through the container and is discharged outside the container, formation of air bubbles in the container and expansion of the container are suppressed.
  • the container-packed, pressurized and heated food is heated in a sealed environment, so it is possible to obtain a flavor that would evaporate in an open environment.
  • the container-packed, pressurized and heated food produced by the method of the present embodiment can be distributed at room temperature.
  • the raw material mixture can be prepared as appropriate according to the desired final product.
  • Examples include raw material mixtures containing reducing sugars and amino acids, such as vegetables, fruits, vegetable juices, fruit juices, and concentrates thereof.
  • the raw material mixture may contain processed tomato and/or processed onion.
  • processed tomato products include tomato puree, tomato paste, diced tomato, concentrated tomato, tomato sauce, tomato juice, tomato mix juice, and tomato ketchup. Tomato puree, tomato paste, diced tomato, and concentrated tomato are particularly preferred.
  • onion (onion) processed products include onion paste, onion slices, onion diced, and onion sauté.
  • reducing sugars and amino acids in the raw material mixture are as described above for the food composition.
  • the reducing sugars and amino acids in the raw material mixture may be components derived from raw materials such as vegetables and fruits, or may be separately added components.
  • the raw material mixture can contain other ingredients such as lipids, proteins, carbohydrates, nucleic acids, non-reducing sugars, and water.
  • the water may be water derived from raw materials such as vegetables and fruits, or may be water separately blended.
  • the raw material mixture may further contain food-acceptable additives.
  • food-acceptable additives are as described above for food compositions.
  • the raw material mixture may at least partly contain something that has been pre-cooked before being stored in the container.
  • the water content of the raw material mixture is preferably 80% by mass or less, more preferably 78% by mass or less, and more preferably 76% by mass or less.
  • the water content is 80% by mass or less, it is preferable because the Maillard reaction easily imparts flavor such as richness and complex taste and a preferable color.
  • the water activity (Aw) of the raw material mixture is preferably 0.6 or more and less than 0.98, more preferably 0.73 or more and less than 0.96, and more preferably 0.75 or more and less than 0.94. .
  • the Maillard reaction easily imparts flavor such as richness and complex taste and preferable color, which is preferable.
  • the gas generated in the container during production and storage by the Maillard reaction is discharged outside the container by using a container having an oxygen permeability of 0.1 mL/m 2 /day/MPa or more. The formation of air bubbles within the container and expansion of the container are suppressed.
  • the container for containing and sealing the raw material mixture is as described above for the pressurized and heated packaged food.
  • the container containing the raw material mixture preferably has a capacity of 100 g or more, more preferably 200 g or more, more preferably 300 g or more, more preferably 500 g or more, more preferably 1 kg or more, more preferably 2 kg or more, more preferably 3 kg. That's it.
  • the thickness of the container containing the raw material mixture is preferably 10 mm or more, more preferably 12 mm or more, more preferably 15 mm or more, more preferably 17 mm or more, and more preferably 20 mm or more. When the capacity is less than 100 g or the thickness is less than 10 mm, the absolute amount of the Maillard reaction is small, so gas generation tends not to pose a big problem.
  • the method of this embodiment includes pressurizing and heating the raw material mixture in a container so that the maximum product temperature reaches 100 to 140° C. and the heating value reaches 33 to 80.
  • the "heating value” is a parameter indicating the amount of heating. The higher the heating temperature and the longer the heating time, the higher the heating value.
  • the reference temperature and Z value need to be fixed in order to compare the amount of heating under various heating conditions, the values differ depending on the object.
  • the Z value is 30°C and the reference temperature is 120°C.
  • the material temperature A (°C) of the raw material mixture in the container is measured N times (N is 2 or more) at a plurality of times including the start of the pressurized heat treatment. It can be considered that the product temperature A (°C) from the n-1th measurement point to the nth measurement point is kept constant at the nth measurement temperature (n is 2 or more and N or less). Using the relationship between the product temperature A (° C.) and the pressurized heat treatment time (minutes) thus obtained, the CV value can be integrated by the pressurized heat treatment time (minutes) to obtain the heating value.
  • the heating value can be calculated by measuring the product temperature at regular intervals, for example, every minute during the pressure heating process. For example, assume that the product temperature (°C) at 7 points of 1-minute intervals including the start point of the pressurized heat treatment for 6 minutes is the value shown in Table 1.
  • the product temperature A (° C.) from the n ⁇ 1th measurement point to the nth measurement point is considered to be held constant at the nth measurement temperature (n is 2 or more and 7 or less).
  • the heating value is the integrated value of the CV values from 0 to 6 minutes, which is calculated as 12.6.
  • the heating value should be 33-80. If the heating value is less than 33, the Maillard reaction does not proceed sufficiently, making it difficult to obtain a favorable flavor. If the heating value is more than 80, the Maillard reaction proceeds too much and a burnt taste is felt.
  • the heating value is preferably 50 or more, more preferably 60 or more, and preferably 70 or less, more preferably 65 or less.
  • the maximum product temperature in the pressurized heat treatment can be 100 to 140°C, preferably 110 to 130°C.
  • the pressurized heat treatment under the above conditions can be carried out in a retort processor or pressure cooker.
  • ⁇ Pressure-resistant heating pouch> As the pressure-resistant heating pouch, a pressure-resistant heating pouch having the following packaging material was used. Since the packaging materials 1 and 2 are translucent, the color of the composition inside and the generation of gas can be visually confirmed, but the packaging material 3 is opaque and cannot be visually confirmed.
  • Packaging material 1 pressure resistant heating pouch made of nylon film (PET12/NY25/CPP100) with an oxygen permeability of 30 mL/m 2 /day/MPa
  • Packaging material 2 pressure resistant heating pouch made of a transparent vapor deposition film (transparent vapor deposition PET12/NY15/CPP100) having an oxygen permeability of 0.3 mL/m 2 /day/MPa
  • Packaging material 3 gas impermeable packaging material: oxygen permeability Pressure-resistant heating pouch made of aluminum laminate film (PET12/NY15/AL7/CPP70) with 0 mL/m 2 /day/MPa
  • aqueous solution containing saccharides and amino acids was prepared as a model composition of food to be enclosed in a pressure-resistant heating pouch and subjected to heat and pressure treatment.
  • sugars fructose or glucose, which is a reducing sugar, and sucrose, which is a non-reducing sugar, were used.
  • Sodium glutamate, sodium aspartate, or glycine was used as an amino acid.
  • each composition 1,000 g was placed in a packaging material 2 (gas permeable packaging material), sealed to prevent air from entering as much as possible, and in a state of almost no thickness, and pressurized at 120° C. for 63 minutes so that the heating value was 63. A heat treatment was performed.
  • a packaging material 2 gas permeable packaging material
  • each composition 1,000 g was placed in a packaging material 2 (gas permeable packaging material), sealed to prevent air from entering as much as possible, and in a state of almost no thickness, and pressurized at 120° C. for 63 minutes so that the heating value was 63. A heat treatment was performed.
  • a packaging material 2 gas permeable packaging material
  • the model composition containing neither glucose nor glutamic acid was tasteless, and the model composition containing only 10% by mass of glucose had a slight sweetness, with no richness or complex taste.
  • the model compositions containing 10, 23, and 50% by mass of glucose and 5% by mass of sodium glutamate had richness and complex taste that cannot be obtained by simply mixing amino acids and sugars.
  • the fructose (reducing sugar) content is 0% by mass, 0.01% by mass, 0.1% by mass, 1% by mass, 5% by mass, 10% by mass, 23% by mass or 50% by mass, and the sodium glutamate content is 0 wt%, 0.5 wt%, 1 wt%, 2 wt%, 3 wt%, 4 wt%, 5 wt% or 50 wt% aqueous solutions were prepared as model compositions.
  • each composition 1,000 g was placed in a packaging material 2 (gas permeable packaging material), sealed to prevent air from entering as much as possible, and in a state of almost no thickness, and pressurized at 120° C. for 63 minutes so that the heating value was 63. A heat treatment was performed.
  • a packaging material 2 gas permeable packaging material
  • compositions containing 23% by mass of fructose and 1% by mass of sodium glutamate have a strong richness and complex taste compared to compositions with lower concentrations of fructose and sodium glutamate.
  • each composition 1,000 g was placed in a packaging material 2 (gas permeable packaging material), sealed to prevent air from entering as much as possible, and in a state of almost no thickness, and pressurized at 120° C. for 63 minutes so that the heating value was 63. A heat treatment was performed.
  • a packaging material 2 gas permeable packaging material
  • the evaluation of the model composition of the aqueous solution containing glycine or sodium aspartate was "3", browning was observed, and a small amount of gas generation was observed.
  • a model composition containing glycine as an amino acid produced gassing comparable to the model composition in Experiment 3 containing 23% by weight fructose and 5% by weight sodium glutamate.
  • the model composition containing sodium aspartate as the amino acid produced more gassing than the model composition in Experiment 3 containing 23% by weight fructose and 5% by weight sodium glutamate.
  • packaging material 1 gas permeable packaging material
  • packaging material 2 gas permeable packaging material
  • packaging material 3 gas impermeable packaging material
  • gas generation does not pose a problem immediately after the pressurized heat treatment, but as a result of the progress of the Maillard reaction during storage, the gas generation progresses further, and the container expanded to such an extent that it affected the quality of the product.
  • the model composition was browned in any packaging material.
  • heating value 63 and heating value 40 generated gas remained in the packaging material and formed bubbles.
  • the heating value was 32, no gas was generated and no air bubbles were formed in the packaging material.
  • the flavor in the case of the heating value of 63 and the heating value of 40, a richness and complex taste that cannot be felt in the unheated state were felt, and the degree of this was stronger in the heating value of 63. In the case of a heating value of 32, although a fragrant sugar aroma was felt, the flavor such as richness and complex taste obtained by strong heating was not felt.
  • ⁇ Tomato Onion Sauce> As an example of a food to be enclosed in a pressure-resistant heating pouch and subjected to heat and pressure treatment, a composition containing onion saute, which is a processed onion, and tomato paste, which is a processed tomato, was prepared.
  • Tomato onion sauce A was browned in both packaging materials. Air bubbles were formed in both the packaging materials 1 and 2, but expansion to the extent that the quality of the product was affected was not observed. As a result, by using the gas-permeable packaging materials 1 and 2, the gas generated during the pressurized heat treatment and the subsequent storage period permeates and is discharged outside the packaging material, and the bubbles inside the packaging material are discharged. This indicates that the formation of , and the expansion of the packaging material due to air bubbles is suppressed.
  • Example 8 Raw materials having the composition shown in Table 7 below were mixed and heated with stirring. When the temperature reached 95°C, the fire was extinguished, and tomato onion sauce B was prepared.
  • the tomato onion sauce B has a reducing sugar content of 8.5% by mass, an amino acid content of 5.1% by mass, a water content of 76% by mass, and a water activity (Aw) of 0.89.
  • Tomato onion sauce B was browned in both packaging materials. Air bubbles were formed in both the packaging materials 1 and 2, but expansion to the extent that the quality of the product was affected was not observed. As a result, by using the gas-permeable packaging materials 1 and 2, the gas generated during the pressurized heat treatment and the subsequent storage period permeates and is discharged outside the packaging material, and the bubbles inside the packaging material are discharged. This indicates that the formation of , and the expansion of the packaging material due to air bubbles is suppressed.
  • test solution An aqueous solution containing fructose and sodium glutamate (MSG) in the contents shown in Table 8 below was prepared as a model composition of a raw material mixture for a pressurized and heated food.
  • each composition 1000 g was placed in packaging material 1 (gas permeable packaging material), sealed to prevent air from entering as much as possible, and in a state of almost no thickness. A heat treatment was performed. The container-packed pressurized and heated food obtained by the pressurized and heated treatment was used as a sample to be analyzed.
  • packaging material 1 gas permeable packaging material
  • ⁇ -aminobutyric acid (GABA), dimethylpyrazine, N-( 1-deoxy-D-fructose-1-yl)-L-glutamic acid (Fru-Glu), N-(1-deoxy-D-fructose-1-yl)-L-pyroglutamic acid (Fru-pGlu), succinic acid , succinic semialdehyde, and ⁇ -ketoglutarate.
  • M+H proton adduct accurate masses
  • MH deprotonated product accurate masses
  • retention times in LC are shown in Table 10 below.
  • the reducing sugar content is 1% by mass or more
  • the amino acid content is 0.6% by mass or more
  • the heating value is 63.
  • the ratio of the peak areas of the seven components to the internal standard is less than 1% by mass of reducing sugars or less than 0.6% by mass of amino acids. It was confirmed to be significantly higher than heated food. Similar results were also obtained with pressurized and heated foods after long-term storage.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Zoology (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Mechanical Engineering (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Evolutionary Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Seasonings (AREA)

Abstract

The present invention addresses the problem of providing: a food packed in a container that includes a food composition which is imparted with a desired flavor and color with use of a Maillard reaction; and a production method for the same. The present invention relates to a pressure-heated food packed in a container comprising a food composition in which reducing sugar content is not less than 1 mass% and amino acid content is not less than 0.6 mass%, and a container which seals the food composition and which has an oxygen permeability of not less than 0.1 mL/m2/day/MPa, said pressure-heated food being prepared by performing a pressure-heating process such that, in the container, the maximum reached product temperature is 100-140°C, and a heating value is 33-80, said heating value being obtained by integrating, with the pressure-heating process time [minutes], the value found as 10\{(A-120)/30\} with respect to the product temperature (A) [°C]. The present invention also relates to a production method for the same.

Description

容器詰め加圧加熱食品及びその製造方法Container-packed pressurized and heated food and method for producing the same
 本発明は、容器詰め加圧加熱食品及びその製造方法に関する。 The present invention relates to pressurized and heated food packed in a container and a method for producing the same.
 タマネギを加熱すると、辛みが減少し、かつ甘み及び香ばしさが上昇して、特有の風味が生成されるため、加熱したタマネギは、飴色タマネギ又はローストオニオンなどとして、家庭用のみならず業務用の食品原料としても従来から利用されている。例えば、特許文献1には、水分含量が80~30%のオニオンを80℃以上に加熱し、次いで容器内で100℃以上の温度で加熱することにより品質の安定したローストオニオンを製造する方法が記載されている。 When onions are heated, their pungency is reduced, their sweetness and aroma are increased, and a unique flavor is produced. It has also been used as a raw material for food. For example, Patent Document 1 discloses a method for producing roasted onions with stable quality by heating onions having a moisture content of 80 to 30% to 80° C. or higher and then heating them at a temperature of 100° C. or higher in a container. Have been described.
 飴色タマネギ又はローストオニオンとよばれるタマネギ調味料の好ましい風味及び着色は、糖質とアミノ酸との加熱条件下でのメイラード反応により付与される。 The preferred flavor and color of the onion seasoning called caramelized onion or roasted onion is imparted by the Maillard reaction of carbohydrates and amino acids under heating conditions.
 メイラード反応を利用した他の食品組成物としては、野菜、果物、野菜汁、果汁等を含む原料混合物を加熱して調製されるソース状又はペースト状の調味料が挙げられ、例えばトマトソースが例示できる。 Other food compositions using the Maillard reaction include sauce-like or paste-like seasonings prepared by heating a raw material mixture containing vegetables, fruits, vegetable juices, fruit juices, etc., for example, tomato sauce. can.
特開昭63-167756号公報JP-A-63-167756
 メイラード反応を利用して好ましい風味及び色が付与された食品組成物を、容器詰め食品として提供する場合、加熱調理により調製し、容器に収容して密封し、更に加熱殺菌することが通常である。
 本発明は、メイラード反応を利用して好ましい風味及び色が付与された食品組成物を含む新たな容器詰め食品及びその製造方法を提供することを課題とする。
When a food composition to which a preferred flavor and color are imparted using the Maillard reaction is provided as a container-packed food, it is usually prepared by cooking, sealed in a container, and further heat-sterilized. .
An object of the present invention is to provide a new packaged food containing a food composition imparted with a favorable flavor and color by utilizing the Maillard reaction, and a method for producing the same.
 本発明者らは、還元糖の含有量が1質量%以上であり、アミノ酸の含有量が0.6質量%以上である原料混合物を容器に収容し密封して加圧加熱処理を行い容器詰め加圧加熱食品を製造する方法では、容器内でメイラード反応が進行することを見出した。本発明者らはまた、容器詰め加圧加熱食品の製造時にメイラード反応の結果発生する二酸化炭素ガスは少量であり、食品中にガスが溶解するためガスの発生は問題にならないものの、保存中にさらにメイラード反応が進んだ結果、ガスの発生が進行し、容器の膨張が認識され問題になるという新たな課題を見出した。 The present inventors put a raw material mixture having a reducing sugar content of 1% by mass or more and an amino acid content of 0.6% by mass or more in a container, sealed it, pressurized and heated, and packed into a container. In the method of producing pressurized and heated food, it was found that the Maillard reaction proceeds in the container. The present inventors also found that the amount of carbon dioxide gas generated as a result of the Maillard reaction during the production of container-packed, pressurized and heated food is small, and the gas is dissolved in the food, so the generation of gas is not a problem, but during storage Furthermore, as a result of the progress of the Maillard reaction, a new problem was found that gas generation progressed and the expansion of the container was recognized and became a problem.
 本発明者らは、この新たな課題を解決すべく更に鋭意検討した結果、以下の発明を完成するに至った。
(1)還元糖の含有量が1質量%以上であり、アミノ酸の含有量が0.6質量%以上である食品組成物と、
 前記食品組成物を封入する、酸素透過度が0.1mL/m/day/MPa以上である容器と
を含み、
 前記容器中において、最高到達品温が100~140℃、加熱価が33~80となるように加圧加熱処理して調製されており、
 前記加熱価が、品温(A)[℃]に対して10{(A-120)/30}で求められる値を加圧加熱処理時間[分]で積分した値である、
容器詰め加圧加熱食品。
(2)前記食品組成物の水分含量が80質量%以下である、(1)に記載の容器詰め加圧加熱食品。
(3)トマト加工物及び/又はオニオン加工物を含む、(1)又は(2)に記載の容器詰め加圧加熱食品。
(4)還元糖及びアミノ酸を含む食品組成物と、
 前記食品組成物を封入する容器と
を含む容器詰め加圧加熱食品であって、
 前記食品組成物1gに、内標準液として0.14mg/mLグアノシン-155’-一リン酸ナトリウム塩水溶液を0.1mL、超純水を3mL加え、液体クロマトグラフィー質量分析法で測定した場合に、
 グアノシン-155’-一リン酸に対するγ-アミノ酪酸のピーク面積比が0.105以上である、
 グアノシン-155’-一リン酸に対するジメチルピラジンのピーク面積比が2.4以上である、
 グアノシン-155’-一リン酸に対するN-(1-デオキシ-D-フルクトース-1-イル)-L-グルタミン酸のピーク面積比が0.9以上である、
 グアノシン-155’-一リン酸に対するN-(1-デオキシ-D-フルクトース-1-イル)-L-ピログルタミン酸のピーク面積比が0.2以上である、
 グアノシン-155’-一リン酸に対するコハク酸のピーク面積比が1.7以上である、
 グアノシン-155’-一リン酸に対するコハク酸セミアルデヒドのピーク面積比が0.6以上である、及び、
 グアノシン-155’-一リン酸に対するα-ケトグルタル酸のピーク面積比が9.5以上である、
のうちいずれか1以上を満足する、容器詰め加圧加熱食品。
(5)還元糖の含有量が1質量%以上であり、アミノ酸の含有量が0.6質量%以上である原料混合物を調製する工程、
 前記原料混合物を、酸素透過度が0.1mL/m/day/MPa以上である容器に収容し密封する工程、及び、
 前記容器中での前記原料混合物を、最高到達品温が100~140℃、加熱価が33~80となるように加圧加熱処理する工程
を含み、
 前記加熱価が、品温(A)[℃]に対して10{(A-120)/30}で求められる値を加圧加熱処理時間[分]で積分した値である、
容器詰め加圧加熱食品の製造方法。
(6)前記原料混合物の水分含量が80質量%以下である、(5)に記載の容器詰め加圧加熱食品の製造方法。
(7)前記原料混合物にトマト加工物及び/又はオニオン加工物を含む、(5)又は(6)に記載の容器詰め加圧加熱食品の製造方法。
 本願は、2021年3月1日に出願された日本国特許出願2021-031544号及び2021年3月22日に出願された日本国特許出願2021-047830号の優先権を主張するものであり、当該特許出願の明細書に記載される内容を包含する。
As a result of further intensive studies aimed at solving this new problem, the inventors have completed the following invention.
(1) a food composition having a reducing sugar content of 1% by mass or more and an amino acid content of 0.6% by mass or more;
and a container that encloses the food composition and has an oxygen permeability of 0.1 mL/m 2 /day/MPa or more,
In the container, it is prepared by pressurizing and heating so that the maximum product temperature is 100 to 140 ° C. and the heating value is 33 to 80,
The heating value is a value obtained by integrating the value obtained by 10 {(A-120)/30} with respect to the product temperature (A) [° C.] by the pressure heat treatment time [minute].
Pressurized and heated foods packed in containers.
(2) The container-packed, pressurized and heated food according to (1), wherein the water content of the food composition is 80% by mass or less.
(3) The container-packed, pressurized and heated food according to (1) or (2), which contains a processed tomato and/or a processed onion.
(4) a food composition comprising reducing sugars and amino acids;
A container-packed pressurized and heated food comprising a container enclosing the food composition,
To 1 g of the food composition, 0.1 mL of 0.14 mg/mL guanosine- 15 N 5 '-monophosphate sodium salt aqueous solution and 3 mL of ultrapure water were added as an internal standard solution, and measurement was performed by liquid chromatography mass spectrometry. if
The peak area ratio of γ-aminobutyric acid to guanosine- 15 N 5 '-monophosphate is 0.105 or more,
The peak area ratio of dimethylpyrazine to guanosine- 15 N 5 '-monophosphate is 2.4 or more,
The peak area ratio of N-(1-deoxy-D-fructose-1-yl)-L-glutamic acid to guanosine - 15N55' -monophosphate is 0.9 or more,
The peak area ratio of N-(1-deoxy-D-fructose-1-yl)-L-pyroglutamic acid to guanosine - 15N55' -monophosphate is 0.2 or more,
The peak area ratio of succinic acid to guanosine- 15 N 5 '-monophosphate is 1.7 or more,
The peak area ratio of succinic semialdehyde to guanosine- 15 N 5 '-monophosphate is 0.6 or more, and
The peak area ratio of α-ketoglutarate to guanosine- 15 N 5 '-monophosphate is 9.5 or more,
A container-packed, pressurized and heated food that satisfies any one or more of
(5) preparing a raw material mixture having a reducing sugar content of 1% by mass or more and an amino acid content of 0.6% by mass or more;
A step of storing and sealing the raw material mixture in a container having an oxygen permeability of 0.1 mL/m 2 /day/MPa or more;
A step of pressurizing and heating the raw material mixture in the container so that the maximum product temperature is 100 to 140 ° C. and the heating value is 33 to 80,
The heating value is a value obtained by integrating the value obtained by 10 {(A-120)/30} with respect to the product temperature (A) [° C.] by the pressure heat treatment time [minute].
A method for producing a container-packed, pressurized and heated food.
(6) The method for producing a container-packed, pressurized and heated food according to (5), wherein the water content of the raw material mixture is 80% by mass or less.
(7) The method for producing a container-packed, pressurized and heated food according to (5) or (6), wherein the raw material mixture contains a processed tomato and/or a processed onion.
This application claims the priority of Japanese Patent Application No. 2021-031544 filed on March 1, 2021 and Japanese Patent Application No. 2021-047830 filed on March 22, 2021, Including the contents described in the specification of the patent application.
 本発明の一以上の実施形態に係る容器詰め加圧加熱食品は、メイラード反応によりコクや複雑味といった風味や好ましい色が付与され、保存中に容器内部で生じたガスが容器外へ排出され容器の膨張が抑制される。
 本発明の一以上の実施形態に係る容器詰め加圧加熱食品の製造方法によれば、上記の効果を奏する容器詰め加圧加熱食品を製造することができる。
The container-packed pressurized and heated food according to one or more embodiments of the present invention is imparted with a flavor such as richness and complex taste and a preferable color by the Maillard reaction, and the gas generated inside the container during storage is discharged out of the container. expansion is suppressed.
According to the method for producing a pressurized and heated food stuffed in a container according to one or more embodiments of the present invention, it is possible to produce a pressurized and heated food stuffed in a container that exhibits the above effects.
還元糖及びアミノ酸含有量が異なる加圧加熱食品のLCMS分析での、内部標準として添加したグアノシン-155’-一リン酸のピーク面積に対するγ-アミノ酪酸(GABA)のピーク面積の比(平均値(n=3)±標準偏差)を示す。Ratio of the peak area of γ-aminobutyric acid (GABA) to the peak area of guanosine- 15 N 5 5'-monophosphate added as an internal standard in LCMS analysis of pressurized and heated foods with different reducing sugar and amino acid contents. (Average (n=3) ± standard deviation) is shown. 還元糖及びアミノ酸含有量が異なる加圧加熱食品のLCMS分析での、内部標準として添加したグアノシン-155’-一リン酸のピーク面積に対するジメチルピラジンのピーク面積の比(平均値(n=3)±標準偏差)を示す。The ratio of the peak area of dimethylpyrazine to the peak area of guanosine- 15 N 5 5'-monophosphate added as an internal standard (mean value (n = 3) ± standard deviation). 還元糖及びアミノ酸含有量が異なる加圧加熱食品のLCMS分析での、内部標準として添加したグアノシン-155’-一リン酸のピーク面積に対するN-(1-デオキシ-D-フルクトース-1-イル)-L-グルタミン酸(Fru-Glu)のピーク面積の比(平均値(n=3)±標準偏差)を示す。N-(1-deoxy-D-fructose-1 vs. peak area of guanosine- 15 N 5 5′-monophosphate added as internal standard in LCMS analysis of pressurized and heated foods with different reducing sugar and amino acid contents. -yl)-L-glutamic acid (Fru-Glu) peak area ratio (mean value (n=3)±standard deviation). 還元糖及びアミノ酸含有量が異なる加圧加熱食品のLCMS分析での、内部標準として添加したグアノシン-155’-一リン酸のピーク面積に対するN-(1-デオキシ-D-フルクトース-1-イル)-L-ピログルタミン酸(Fru-pGlu)のピーク面積の比(平均値(n=3)±標準偏差)を示す。N-(1-deoxy-D-fructose-1 vs. peak area of guanosine- 15 N 5 5′-monophosphate added as internal standard in LCMS analysis of pressurized and heated foods with different reducing sugar and amino acid contents. -yl)-L-pyroglutamic acid (Fru-pGlu) peak area ratio (mean value (n=3)±standard deviation). 還元糖及びアミノ酸含有量が異なる加圧加熱食品のLCMS分析での、内部標準として添加したグアノシン-155’-一リン酸のピーク面積に対するコハク酸のピーク面積の比(平均値(n=3)±標準偏差)を示す。The ratio of the peak area of succinic acid to the peak area of guanosine- 15 N 5 5'-monophosphate added as an internal standard (mean value (n = 3) ± standard deviation). 還元糖及びアミノ酸含有量が異なる加圧加熱食品のLCMS分析での、内部標準として添加したグアノシン-155’-一リン酸のピーク面積に対するコハク酸セミアルデヒドのピーク面積の比(平均値(n=3)±標準偏差)を示す。The ratio of the peak area of succinic semialdehyde to the peak area of guanosine - 15N55' -monophosphate added as an internal standard in the LCMS analysis of pressurized and heated foods with different reducing sugar and amino acid contents (average value (n=3) ± standard deviation) are shown. 還元糖及びアミノ酸含有量が異なる加圧加熱食品のLCMS分析での、内部標準として添加したグアノシン-155’-一リン酸のピーク面積に対するα-ケトグルタル酸のピーク面積の比(平均値(n=3)±標準偏差)を示す。The ratio of the peak area of α-ketoglutarate to the peak area of guanosine- 15 N 5 '-monophosphate added as an internal standard (mean value (n=3) ± standard deviation) are shown.
 以下、本発明をさらに詳細に説明する。 The present invention will be described in further detail below.
<容器詰め加圧加熱食品>
 本発明の第一の実施形態に係る容器詰め加圧加熱食品は、
 還元糖の含有量が1質量%以上であり、アミノ酸の含有量が0.6質量%以上である食品組成物と、
 前記食品組成物を封入する、酸素透過度が0.1mL/m/day/MPa以上である容器と
を含み、
 前記容器中において、最高到達品温が100~140℃、加熱価が33~80となるように加圧加熱処理して調製されており、
 前記加熱価が、品温(A)[℃]に対して10{(A-120)/30}で求められる値を加圧加熱処理時間[分]で積分した値であること
を特徴とする。
<Container packed pressurized and heated food>
The container-packed pressurized and heated food according to the first embodiment of the present invention is
a food composition having a reducing sugar content of 1% by mass or more and an amino acid content of 0.6% by mass or more;
and a container that encloses the food composition and has an oxygen permeability of 0.1 mL/m 2 /day/MPa or more,
In the container, it is prepared by pressurizing and heating so that the maximum product temperature is 100 to 140 ° C. and the heating value is 33 to 80,
The heating value is a value obtained by integrating the value obtained by 10 {(A-120)/30} with respect to the product temperature (A) [° C.] by the pressure heat treatment time [minute]. .
 本実施形態に係る容器詰め加圧加熱食品は、所定の条件での加圧加熱処理により、容器内でメイラード反応が進行して好ましい風味と色が付与される。また加圧加熱処理中又は保存中に容器内で生じたガスは容器外へ排出されるため、容器内にガスが留まり気泡を形成し、容器が膨張することが抑制される。 The pressurized and heated food stuffed in a container according to this embodiment is imparted with preferable flavor and color by the Maillard reaction proceeding in the container by pressurization and heating treatment under predetermined conditions. In addition, since the gas generated in the container during pressurized heating treatment or storage is discharged out of the container, the gas stays in the container to form air bubbles, thereby suppressing expansion of the container.
 容器詰め加圧加熱食品としては、野菜、果物、野菜汁、果汁、それらの濃縮物等の、還元糖及びアミノ酸を含む原料混合物を、容器内で加圧加熱処理して調製される、ソース状又はペースト状の調味料が好ましい。 Container-packed pressurized and heated foods include sauce-like foods prepared by pressurizing and heating a raw material mixture containing reducing sugars and amino acids, such as vegetables, fruits, vegetable juices, fruit juices, and their concentrates, in a container. Alternatively, paste-like seasonings are preferred.
 容器詰め加圧加熱食品は、トマト加工物及び/又はオニオン加工物を含んでもよい。トマト加工物としては、トマトピューレ、トマトペースト、ダイストマト、濃縮トマト、トマトソース、トマトジュース、トマトミックスジュース、トマトケチャップ等が例示でき、トマトピューレ、トマトペースト、ダイストマト又は濃縮トマトが特に好ましい。オニオン(タマネギ)加工物としては、オニオンペースト、オニオンスライス、オニオンダイス、オニオンソテー等が例示できる。 The container-packed pressurized and heated food may contain processed tomato products and/or processed onion products. Examples of processed tomato products include tomato puree, tomato paste, diced tomato, concentrated tomato, tomato sauce, tomato juice, tomato mix juice, and tomato ketchup. Tomato puree, tomato paste, diced tomato, and concentrated tomato are particularly preferred. Examples of onion (onion) processed products include onion paste, onion slices, onion diced, and onion sauté.
 容器詰め加圧加熱食品における食品組成物としては、例えば、飴色タマネギ又はローストオニオンとよばれるタマネギ調味料や、トマトペースト、トマトソース、トマトオニオンソース、果汁ソース(リンゴ、パイナップル等の果物の果汁又は濃縮果汁を容器内で加圧加熱処理して得られるソース)等が好適に例示できる。 Food compositions in container-packed pressurized and heated foods include, for example, onion seasonings called caramelized onions or roasted onions, tomato paste, tomato sauce, tomato onion sauce, fruit juice sauce (fruit juice of fruits such as apples and pineapples, or Sauce obtained by pressurizing and heating concentrated fruit juice in a container) and the like can be suitably exemplified.
 還元糖としては、果糖、ブドウ糖等が例示できる。食品組成物中の還元糖の含有量は1質量%以上であればよい。還元糖の含有量が1質量%未満の場合、容器中でのメイラード反応が進行せず好ましい風味及び色が付与されにくい。還元糖の含有量が1質量%未満の場合はまた、ガスが発生するという課題が生じる可能性が低い。食品組成物中の還元糖の含有量は、好ましくは2質量%以上、より好ましくは3質量%以上、より好ましくは4質量%以上、より好ましくは5質量%以上であり、より好ましくは60質量%以下である。還元糖の含有量の測定は高速液体クロマトグラフ法により行うことができる。還元糖の含有量の測定方法の具体例としては、実施例に記載の方法が挙げられる。 Examples of reducing sugar include fructose and glucose. The content of reducing sugars in the food composition may be 1% by mass or more. If the content of reducing sugar is less than 1% by mass, the Maillard reaction does not proceed in the container, making it difficult to impart preferable flavor and color. If the content of reducing sugars is less than 1% by mass, the problem of gas generation is also less likely to occur. The content of reducing sugars in the food composition is preferably 2% by mass or more, more preferably 3% by mass or more, more preferably 4% by mass or more, more preferably 5% by mass or more, and more preferably 60% by mass. % or less. The reducing sugar content can be measured by high performance liquid chromatography. Specific examples of the method for measuring the content of reducing sugar include the method described in Examples.
 アミノ酸としては、食用可能なアミノ酸であればよく特に限定されない。アミノ酸は食用可能な塩の形態であってもよい。前記食品組成物中のアミノ酸の含有量は0.6質量%以上であればよい。アミノ酸の含有量が0.6質量%未満の場合、容器中でのメイラード反応が進行せず好ましい風味及び色が付与されにくい。アミノ酸の含有量が0.6質量%未満の場合はまた、ガスが発生するという課題が生じる可能性が低い。前記食品組成物中のアミノ酸の含有量は、好ましくは0.7質量%以上、より好ましくは0.8質量%以上、より好ましくは1質量%以上、より好ましくは3.5質量%以上であり、より好ましくは60質量%以下である。アミノ酸の含有量の測定は高速液体クロマトグラフ法により行うことができる。アミノ酸の含有量の測定方法の具体例としては、実施例に記載の方法が挙げられる。 The amino acid is not particularly limited as long as it is an edible amino acid. Amino acids may be in the form of edible salts. The amino acid content in the food composition may be 0.6% by mass or more. If the amino acid content is less than 0.6% by mass, the Maillard reaction does not proceed in the container, making it difficult to impart a favorable flavor and color. If the amino acid content is less than 0.6% by mass, the problem of gas generation is also less likely to occur. The amino acid content in the food composition is preferably 0.7% by mass or more, more preferably 0.8% by mass or more, more preferably 1% by mass or more, and more preferably 3.5% by mass or more. , more preferably 60% by mass or less. Amino acid content can be measured by high-performance liquid chromatography. A specific example of the method for measuring the amino acid content is the method described in Examples.
 食品組成物中の還元糖及びアミノ酸は、野菜、果実等の原料に由来する成分であってもよいし、別途添加された成分であってもよい。 The reducing sugars and amino acids in the food composition may be components derived from raw materials such as vegetables and fruits, or may be components added separately.
 食品組成物は、脂質、タンパク質、炭水化物、核酸、非還元糖、水等の他の成分を含むことができる。水は、野菜、果実等の原料に由来する水であってもよいし、別途配合された水であってもよい。 The food composition can contain other ingredients such as lipids, proteins, carbohydrates, nucleic acids, non-reducing sugars and water. The water may be water derived from raw materials such as vegetables and fruits, or may be water separately blended.
 食品組成物は、食品として許容される添加剤を更に含んでもよい。前記添加剤としては、例えば、香辛料、着色料、香料、甘味料、苦味料、酸味料、うま味調味料、発酵調味料、タンパク加水分解物、保存料、防カビ剤、酸化防止剤、乳化剤、pH調整剤、かんすい、増粘安定剤、酵素、製造用剤、栄養強化剤、みょうばんなどが挙げられる。 The food composition may further contain food-acceptable additives. Examples of the additives include spices, coloring agents, flavors, sweeteners, bittering agents, acidulants, umami seasonings, fermented seasonings, protein hydrolysates, preservatives, antifungal agents, antioxidants, emulsifiers, pH adjusters, lye water, thickening stabilizers, enzymes, manufacturing agents, nutritional enhancers, alum and the like.
 食品組成物は、好ましくは水分含量が80質量%以下であり、より好ましくは78質量%以下であり、より好ましくは76質量%以下である。水分含量が80質量%以下である場合、メイラード反応によりコクや複雑味といった風味や好ましい色が付与され易いため好ましい。 The food composition preferably has a water content of 80% by mass or less, more preferably 78% by mass or less, and more preferably 76% by mass or less. When the water content is 80% by mass or less, it is preferable because the Maillard reaction easily imparts flavor such as richness and complex taste and a preferable color.
 食品組成物は、水分活性(Aw)が好ましくは0.60以上0.98未満であり、より好ましくは0.73以上0.96未満であり、より好ましくは0.75以上0.94未満である。水分活性(Aw)が0.98未満である場合、メイラード反応によりコクや複雑味といった風味や好ましい色が付与され易いため好ましい。 The food composition preferably has a water activity (Aw) of 0.60 or more and less than 0.98, more preferably 0.73 or more and less than 0.96, more preferably 0.75 or more and less than 0.94. be. When the water activity (Aw) is less than 0.98, the Maillard reaction easily imparts flavor such as richness and complex taste and preferable color, which is preferable.
 容器は、酸素透過度が0.1mL/m/day/MPa以上である容器であれば特に限定されない。例えば、加圧加熱耐性を有するパウチ(以下「耐加圧加熱パウチ」)、パック等の形態であってよく、紙、缶、コーティング紙、PETやPTP等のプラスチック、アルミ等の金属、ガラス等を素材とするものを使用することができる。レトルト処理等の加圧加熱処理に耐性を有する容器であることが好ましい。 The container is not particularly limited as long as it has an oxygen permeability of 0.1 mL/m 2 /day/MPa or more. For example, it may be in the form of a pouch having pressure and heat resistance (hereinafter "pressure and heat resistant pouch"), pack, etc., and can be paper, can, coated paper, plastic such as PET or PTP, metal such as aluminum, glass, etc. can be used. The container is preferably resistant to pressurized heat treatment such as retort treatment.
 酸素透過度が0.1mL/m/day/MPa以上の容器中に、還元糖の含有量が1質量%以上であり、アミノ酸の含有量が0.6質量%以上である原料混合物を密封し、最高到達品温が100~140℃、加熱価が33~80となるように加圧加熱処理して得られる容器詰め加圧加熱食品では、製造中及び保存中に容器内で発生するガスが容器を透過して容器外に排出されるため、容器内での気泡の形成及び容器の膨張が抑制される。容器の酸素透過度は、より好ましくは0.3mL/m/day/MPa以上、より好ましくは0.5mL/m/day/MPa以上、より好ましくは1.0mL/m/day/MPa以上、より好ましくは10.0mL/m/day/MPa以上、より好ましくは20.0mL/m/day/MPa以上、より好ましくは30.0mL/m/day/MPa以上であり、より好ましくは100mL/m/day/MPa以下、より好ましくは60mL/m/day/MPa以下である。このような容器としては、PET(ポリエステル)/NY(ナイロン)/CPP(無延伸ポリプロプレン)、PET/NY/NY/CPP、PET/エバール(商標)/NY/CPP、アルミ蒸着PET/NY/CPP、透明蒸着PET/NY/CPP、などの材質構成であることが好ましく、具体的には、PET12/NY15/CPP100、PET12/NY25/CPP100、PET12/NY15/NY15/CPP100、PET12/エバール(商標)12/NY15/CPP100、アルミ蒸着PET12/NY15/CPP100、透明蒸着PET12/NY15/CPP100、であることが好ましい。 A raw material mixture having a reducing sugar content of 1% by mass or more and an amino acid content of 0.6% by mass or more is sealed in a container having an oxygen permeability of 0.1 mL/m 2 /day/MPa or more. However, in container-packed pressurized and heated foods obtained by pressurizing and heating so that the maximum product temperature is 100 to 140 ° C. and the heating value is 33 to 80, gas generated in the container during production and storage permeates the container and is discharged to the outside of the container, suppressing the formation of air bubbles in the container and expansion of the container. The oxygen permeability of the container is more preferably 0.3 mL/m 2 /day/MPa or more, more preferably 0.5 mL/m 2 /day/MPa or more, more preferably 1.0 mL/m 2 /day/MPa. above, more preferably 10.0 mL/m 2 /day/MPa or more, more preferably 20.0 mL/m 2 /day/MPa or more, more preferably 30.0 mL/m 2 /day/MPa or more, and more It is preferably 100 mL/m 2 /day/MPa or less, more preferably 60 mL/m 2 /day/MPa or less. Examples of such containers include PET (polyester)/NY (nylon)/CPP (unstretched polypropylene), PET/NY/NY/CPP, PET/EVAL (trademark)/NY/CPP, aluminum deposition PET/NY/ It is preferable to have a material configuration such as CPP, transparent deposition PET/NY/CPP, etc. Specifically, PET12/NY15/CPP100, PET12/NY25/CPP100, PET12/NY15/NY15/CPP100, PET12/EVAL (trademark) ) 12/NY15/CPP100, aluminum deposition PET12/NY15/CPP100, and transparent deposition PET12/NY15/CPP100.
 容器詰め加圧加熱食品は、好ましくは、典型的にはレトルト食品である。容器ごと加圧加熱処理された容器詰め加圧加熱食品は、常温流通が可能である。 The container-packed, pressurized and heated food is preferably a typical retort food. The container-packed, pressurized and heated food that has been pressurized and heated together with the container can be distributed at room temperature.
 本発明の第二の実施形態に係る容器詰め加圧加熱食品は、
 還元糖及びアミノ酸を含む食品組成物と、
 前記食品組成物を封入する容器と
を含む容器詰め加圧加熱食品であって、
 当該食品組成物1gに、内部標準液として、0.14mg/mLグアノシン-155’-一リン酸ナトリウム塩水溶液を0.1mL、超純水を3mL加え、液体クロマトグラフィー質量分析法(LCMS)で測定した場合に、
 (A)グアノシン-155’-一リン酸(=グアノシン-15 5’-一リン酸ナトリウム塩)に対するγ-アミノ酪酸(GABA)のピーク面積比が0.105以上である、
 (B)グアノシン-155’-一リン酸(=グアノシン-15 5’-一リン酸ナトリウム塩)に対するジメチルピラジンのピーク面積比が2.4以上である、
 (C)グアノシン-155’-一リン酸(=グアノシン-15 5’-一リン酸ナトリウム塩)に対するN-(1-デオキシ-D-フルクトース-1-イル)-L-グルタミン酸(Fru-Glu)のピーク面積比が0.9以上である、
 (D)グアノシン-155’-一リン酸(=グアノシン-15 5’-一リン酸ナトリウム塩)に対するN-(1-デオキシ-D-フルクトース-1-イル)-L-ピログルタミン酸(Fru-pGlu)のピーク面積比が0.2以上である、
 (E)グアノシン-155’-一リン酸(=グアノシン-15 5’-一リン酸ナトリウム塩)に対するコハク酸のピーク面積比が1.7以上である、
 (F)グアノシン-155’-一リン酸(=グアノシン-15 5’-一リン酸ナトリウム塩)に対するコハク酸セミアルデヒドのピーク面積比が0.6以上である、及び、
 (G)グアノシン-155’-一リン酸(=グアノシン-15 5’-一リン酸ナトリウム塩)に対するα-ケトグルタル酸のピーク面積比が9.5以上である、
のうちいずれか1以上を満足し、より好ましくは2以上を満足し、より好ましくは3以上を満足し、より好ましくは4以上を満足し、より好ましくは5以上を満足し、より好ましくは6以上を満足し、最も好ましくは全てを満足する。
The container-packed pressurized and heated food according to the second embodiment of the present invention is
a food composition comprising reducing sugars and amino acids;
A container-packed pressurized and heated food comprising a container enclosing the food composition,
To 1 g of the food composition, 0.1 mL of 0.14 mg/mL guanosine- 15 N 5 '-monophosphate sodium salt aqueous solution and 3 mL of ultrapure water were added as an internal standard solution, and liquid chromatography mass spectrometry ( LCMS),
(A) the peak area ratio of γ-aminobutyric acid (GABA) to guanosine- 15 N 5 5'-monophosphate (= guanosine- 15 N 5 5'-monophosphate sodium salt) is 0.105 or more;
(B) the peak area ratio of dimethylpyrazine to guanosine- 15 N 5 5'-monophosphate (= guanosine- 15 N 5 5'-monophosphate sodium salt) is 2.4 or more;
(C) N-(1-deoxy-D-fructose-1-yl)-L-glutamic acid to guanosine- 15 N 5 5'-monophosphate (= guanosine- 15 N 5 5'-monophosphate sodium salt) (Fru-Glu) peak area ratio is 0.9 or more,
(D) N-(1-deoxy-D-fructose-1-yl)-L-pyro to guanosine- 15 N 5 5'-monophosphate (= guanosine- 15 N 5 5'-monophosphate sodium salt) The peak area ratio of glutamic acid (Fru-pGlu) is 0.2 or more,
(E) the peak area ratio of succinic acid to guanosine- 15 N 5 5'-monophosphate (= guanosine- 15 N 5 5'-monophosphate sodium salt) is 1.7 or more;
(F) the peak area ratio of succinic semialdehyde to guanosine- 15 N 5 5'-monophosphate (= guanosine- 15 N 5 5'-monophosphate sodium salt) is 0.6 or more, and
(G) the peak area ratio of α-ketoglutaric acid to guanosine- 15 N 5 5'-monophosphate (= guanosine- 15 N 5 5'-monophosphate sodium salt) is 9.5 or more;
satisfies any one or more, more preferably 2 or more, more preferably 3 or more, more preferably 4 or more, more preferably 5 or more, more preferably 6 It satisfies the above, and most preferably satisfies all of them.
 この特徴を有する加圧加熱食品は好ましい風味及び色が特に良好である。 The pressurized and heated food having this characteristic has a particularly favorable flavor and color.
 前記(A)のピーク面積比はより好ましくは0.11以上、より好ましくは0.15以上、より好ましくは0.30以上、より好ましくは0.60以上、であり、上限は特に限定されないが、例えば10.0以下、より好ましくは5.0以下である。 The peak area ratio of (A) is more preferably 0.11 or more, more preferably 0.15 or more, more preferably 0.30 or more, more preferably 0.60 or more, and the upper limit is not particularly limited. , for example, 10.0 or less, more preferably 5.0 or less.
 前記(B)のピーク面積比はより好ましくは2.6以上、より好ましくは5.0以上、より好ましくは10.0以上、より好ましくは15.0以上であり、上限は特に限定されないが、例えば100.0以下、好ましくは50.0以下である。 The peak area ratio of (B) is more preferably 2.6 or more, more preferably 5.0 or more, more preferably 10.0 or more, more preferably 15.0 or more, and the upper limit is not particularly limited, For example, it is 100.0 or less, preferably 50.0 or less.
 前記(C)のピーク面積比はより好ましくは1.0以上、より好ましくは5.0以上、より好ましくは10.0以上、より好ましくは50.0以上であり、上限は特に限定されないが、例えば500.0以下、好ましくは200.0以下、より好ましくは150.0以下である。 The peak area ratio of (C) is more preferably 1.0 or more, more preferably 5.0 or more, more preferably 10.0 or more, more preferably 50.0 or more, and the upper limit is not particularly limited, For example, it is 500.0 or less, preferably 200.0 or less, more preferably 150.0 or less.
 前記(D)のピーク面積比はより好ましくは0.3以上、より好ましくは1.0以上、より好ましくは5.0以上、より好ましくは30.0以上であり、上限は特に限定されないが、例えば500.0以下、好ましくは200.0以下、より好ましくは150.0以下である。 The peak area ratio of (D) is more preferably 0.3 or more, more preferably 1.0 or more, more preferably 5.0 or more, more preferably 30.0 or more, and the upper limit is not particularly limited, For example, it is 500.0 or less, preferably 200.0 or less, more preferably 150.0 or less.
 前記(E)のピーク面積比はより好ましくは2.2以上、より好ましくは3.0以上、より好ましくは10.0以上、より好ましくは20.0以上であり、上限は特に限定されないが、例えば200.0以下、好ましくは100.0以下、より好ましくは50.0以下である。 The peak area ratio of (E) is more preferably 2.2 or more, more preferably 3.0 or more, more preferably 10.0 or more, more preferably 20.0 or more, and the upper limit is not particularly limited, For example, it is 200.0 or less, preferably 100.0 or less, more preferably 50.0 or less.
 前記(F)のピーク面積比はより好ましくは0.8以上、より好ましくは1.0以上、より好ましくは1.5以上、より好ましくは2.0以上、より好ましくは5.0以上、より好ましくは7.0以上であり、上限は特に限定されないが、例えば100.0以下、好ましくは50.0以下、より好ましくは20.0以下である。 The peak area ratio of (F) is more preferably 0.8 or more, more preferably 1.0 or more, more preferably 1.5 or more, more preferably 2.0 or more, more preferably 5.0 or more, and more It is preferably 7.0 or more, and although the upper limit is not particularly limited, it is, for example, 100.0 or less, preferably 50.0 or less, and more preferably 20.0 or less.
 前記(G)のピーク面積比はより好ましくは10.0以上、より好ましくは12.0以上、より好ましくは20.0以上、より好ましくは30.0以上、より好ましくは90.0以上であり、上限は特に限定されないが、例えば500.0以下、好ましくは300.0以下、より好ましくは200.0以下である。 The peak area ratio of (G) is more preferably 10.0 or more, more preferably 12.0 or more, more preferably 20.0 or more, more preferably 30.0 or more, more preferably 90.0 or more. Although the upper limit is not particularly limited, it is, for example, 500.0 or less, preferably 300.0 or less, and more preferably 200.0 or less.
 上記のピーク面積比は、内部標準物質グアノシン-155’-一リン酸を添加した食品組成物のLCMSによる質量スペクトルデータから、グアノシン-155’-一リン酸(=グアノシン-155’-一リン酸ナトリウム塩)、γ-アミノ酪酸(GABA)、ジメチルピラジン、N-(1-デオキシ-D-フルクトース-1-イル)-L-グルタミン酸(Fru-Glu)、N-(1-デオキシ-D-フルクトース-1-イル)-L-ピログルタミン酸(Fru-pGlu)、コハク酸、コハク酸セミアルデヒド及び/又はα-ケトグルタル酸のそれぞれを代表するプロトン付加体(M+H)(ポジティブモードの場合)又は脱プロトン化体精密質量(M-H)(ネガティブモードの場合)の質量電荷比のイオン強度を時間の関数として表した抽出イオンクロマトグラム(横軸:時間、縦軸:イオン強度)でのピーク面積を求め、グアノシン-155’-一リン酸のピーク面積を1とした場合の各成分のピーク面積の比を表したものである。各成分を代表するプロトン付加体(M+H)の質量電荷比(=プロトン付加体精密質量)又は脱プロトン化体(M-H)の質量電荷比(=脱プロトン化体精密質量)の数値及びピーク面積比の算出方法は実験9に記載した通りである。 The above peak area ratio was obtained from the LCMS mass spectrum data of the food composition to which the internal standard substance guanosine- 15 N 5 5' - monophosphate was added. 15 N 5 5′-monophosphate sodium salt), γ-aminobutyric acid (GABA), dimethylpyrazine, N-(1-deoxy-D-fructose-1-yl)-L-glutamic acid (Fru-Glu), N -(1-Deoxy-D-fructose-1-yl)-L-pyroglutamic acid (Fru-pGlu), proton adducts (M+H) representing respectively succinic acid, succinic semialdehyde and/or α-ketoglutarate. Extracted ion chromatograms (horizontal axis: time, vertical axis : ionic strength ). Numerical values and peaks of the mass-to-charge ratio (= proton adduct accurate mass) or the deprotonated product (MH) (= deprotonated product accurate mass) representing each component The method for calculating the area ratio is as described in Experiment 9.
 LCMSは、具体的には、実験9に記載の条件を用いて実施することができる。 Specifically, LCMS can be performed using the conditions described in Experiment 9.
 本実施形態に係る容器詰め加圧加熱食品において、前記食品組成物は、好ましくは、還元糖の含有量が1質量%以上であり、アミノ酸の含有量が0.6質量%以上である。前記食品組成物のより好ましい態様は、第一の実施形態に係る容器詰め加圧加熱食品における食品組成物に関して記載した通りである。 In the container-packed, pressurized and heated food product according to the present embodiment, the food composition preferably has a reducing sugar content of 1% by mass or more and an amino acid content of 0.6% by mass or more. More preferred aspects of the food composition are as described for the food composition in the container-packed, pressurized and heated food according to the first embodiment.
 本実施形態に係る容器詰め加圧加熱食品において、前記容器は、好ましくは、酸素透過度が0.1mL/m/day/MPa以上である。前記容器のより好ましい態様は、第一の実施形態に係る容器詰め加圧加熱食品における容器に関して記載した通りである。 In the pressurized and heated food stuffed in a container according to this embodiment, the container preferably has an oxygen permeability of 0.1 mL/m 2 /day/MPa or more. A more preferred aspect of the container is as described for the container in the container-packed, pressurized and heated food product according to the first embodiment.
<容器詰め加圧加熱食品の製造方法>
 還元糖の含有量が1質量%以上であり、アミノ酸の含有量が0.6質量%以上である原料混合物を調製する工程、
 前記原料混合物を、酸素透過度が0.1mL/m/day/MPa以上である容器に収容し密封する工程、及び、
 前記容器中での前記原料混合物を、最高到達品温が100~140℃、加熱価が33~80となるように加圧加熱処理する工程
を含み、
 前記加熱価が、品温(A)[℃]に対して10{(A-120)/30}で求められる値を加圧加熱処理時間[分]で積分した値である
ことを特徴とする。
<Method for producing container-packed, pressurized and heated food>
preparing a raw material mixture having a reducing sugar content of 1% by mass or more and an amino acid content of 0.6% by mass or more;
A step of storing and sealing the raw material mixture in a container having an oxygen permeability of 0.1 mL/m 2 /day/MPa or more;
A step of pressurizing and heating the raw material mixture in the container so that the maximum product temperature is 100 to 140 ° C. and the heating value is 33 to 80,
The heating value is a value obtained by integrating the value obtained by 10 {(A-120)/30} with respect to the product temperature (A) [° C.] by the pressure heat treatment time [minute]. .
 本実施形態の方法では、原料混合物を密封した容器内でのメイラード反応により風味が向上した容器詰め加圧加熱食品を製造することができる。また、製造中及び保存中に容器内で発生するガスが容器を透過して容器外に排出されるため、容器内での気泡の形成及び容器の膨張が抑制される。本実施形態の方法では、容器詰め加圧加熱食品が、密封環境下で加熱されるため、開放環境下では蒸発してしまうような風味も得ることができる。本実施形態の方法により製造された容器詰め加圧加熱食品は常温流通が可能である。 According to the method of the present embodiment, it is possible to produce a container-packed, pressurized and heated food product with an improved flavor due to the Maillard reaction in a container in which the raw material mixture is sealed. In addition, since the gas generated in the container during manufacturing and storage passes through the container and is discharged outside the container, formation of air bubbles in the container and expansion of the container are suppressed. In the method of the present embodiment, the container-packed, pressurized and heated food is heated in a sealed environment, so it is possible to obtain a flavor that would evaporate in an open environment. The container-packed, pressurized and heated food produced by the method of the present embodiment can be distributed at room temperature.
 原料混合物は、目的とする最終製品に応じて適宜調製することができる。例えば、野菜、果物、野菜汁、果汁、それらの濃縮物等の、還元糖及びアミノ酸を含む原料混合物が例示できる。 The raw material mixture can be prepared as appropriate according to the desired final product. Examples include raw material mixtures containing reducing sugars and amino acids, such as vegetables, fruits, vegetable juices, fruit juices, and concentrates thereof.
 また、原料混合物は、トマト加工物及び/又はオニオン加工物を含んでもよい。トマト加工物としては、トマトピューレ、トマトペースト、ダイストマト、濃縮トマト、トマトソース、トマトジュース、トマトミックスジュース、トマトケチャップ等が例示でき、トマトピューレ、トマトペースト、ダイストマト又は濃縮トマトが特に好ましい。オニオン(タマネギ)加工物としては、オニオンペースト、オニオンスライス、オニオンダイス、オニオンソテー等が例示できる。 In addition, the raw material mixture may contain processed tomato and/or processed onion. Examples of processed tomato products include tomato puree, tomato paste, diced tomato, concentrated tomato, tomato sauce, tomato juice, tomato mix juice, and tomato ketchup. Tomato puree, tomato paste, diced tomato, and concentrated tomato are particularly preferred. Examples of onion (onion) processed products include onion paste, onion slices, onion diced, and onion sauté.
 原料混合物における還元糖及びアミノ酸の種類及び含有量の具体例及び好ましい範囲は、食品組成物に関して上記した通りである。
 原料混合物中の還元糖及びアミノ酸は、野菜、果実等の原料に由来する成分であってもよいし、別途添加された成分であってもよい。
Specific examples and preferred ranges of the types and contents of reducing sugars and amino acids in the raw material mixture are as described above for the food composition.
The reducing sugars and amino acids in the raw material mixture may be components derived from raw materials such as vegetables and fruits, or may be separately added components.
 原料混合物は、脂質、タンパク質、炭水化物、核酸、非還元糖、水等の他の成分を含むことができる。水は、野菜、果実等の原料に由来する水であってもよいし、別途配合された水であってもよい。 The raw material mixture can contain other ingredients such as lipids, proteins, carbohydrates, nucleic acids, non-reducing sugars, and water. The water may be water derived from raw materials such as vegetables and fruits, or may be water separately blended.
 原料混合物は、食品として許容される添加剤を更に含んでもよい。前記添加剤の例は食品組成物に関して上記した通りである。 The raw material mixture may further contain food-acceptable additives. Examples of said additives are as described above for food compositions.
 原料混合物は、容器に収容する前に、予め調理したものを少なくとも一部に含んでいてもよい。 The raw material mixture may at least partly contain something that has been pre-cooked before being stored in the container.
 原料混合物は、好ましくは水分含量が80質量%以下であり、より好ましくは78質量%以下であり、より好ましくは76質量%以下である。水分含量が80質量%以下である場合、メイラード反応によりコクや複雑味といった風味や好ましい色が付与され易いため好ましい。 The water content of the raw material mixture is preferably 80% by mass or less, more preferably 78% by mass or less, and more preferably 76% by mass or less. When the water content is 80% by mass or less, it is preferable because the Maillard reaction easily imparts flavor such as richness and complex taste and a preferable color.
 原料混合物は、水分活性(Aw)が好ましくは0.6以上0.98未満であり、より好ましくは0.73以上0.96未満であり、より好ましくは0.75以上0.94未満である。水分活性(Aw)が0.98未満である場合、メイラード反応によりコクや複雑味といった風味や好ましい色が付与され易いため好ましい。 The water activity (Aw) of the raw material mixture is preferably 0.6 or more and less than 0.98, more preferably 0.73 or more and less than 0.96, and more preferably 0.75 or more and less than 0.94. . When the water activity (Aw) is less than 0.98, the Maillard reaction easily imparts flavor such as richness and complex taste and preferable color, which is preferable.
 還元糖の含有量が1質量%以上であり、アミノ酸の含有量が0.6質量%以上である原料混合物は、容器内での加圧加熱処理により生じるメイラード反応によって、好ましい風味と着色を呈するため好ましい。一方で、メイラード反応によって製造中及び保存中に容器内で発生するガスは、酸素透過度が0.1mL/m/day/MPa以上である容器を用いることにより容器外に排出されるため、容器内での気泡の形成及び容器の膨張が抑制される。 A raw material mixture having a reducing sugar content of 1% by mass or more and an amino acid content of 0.6% by mass or more exhibits a preferable flavor and color due to the Maillard reaction caused by the pressurized heat treatment in a container. Therefore, it is preferable. On the other hand, the gas generated in the container during production and storage by the Maillard reaction is discharged outside the container by using a container having an oxygen permeability of 0.1 mL/m 2 /day/MPa or more. The formation of air bubbles within the container and expansion of the container are suppressed.
 原料混合物を収容し密封するための容器は、容器詰め加圧加熱食品に関して上述した通りである。 The container for containing and sealing the raw material mixture is as described above for the pressurized and heated packaged food.
 原料混合物が収納された容器は、容量が好ましくは100g以上、より好ましくは200g以上、より好ましくは300g以上、より好ましくは500g以上、より好ましくは1kg以上、より好ましくは2kg以上、より好ましくは3kg以上である。また、原料混合物が収納された容器は、厚みが好ましくは10mm以上、より好ましくは12mm以上、より好ましくは15mm以上、より好ましくは17mm以上、より好ましくは20mm以上である。容量が100g未満である場合や厚みが10mm未満である場合は、メイラード反応にかかる絶対量が少ないためガスの発生は大きな問題とならない傾向がある。 The container containing the raw material mixture preferably has a capacity of 100 g or more, more preferably 200 g or more, more preferably 300 g or more, more preferably 500 g or more, more preferably 1 kg or more, more preferably 2 kg or more, more preferably 3 kg. That's it. The thickness of the container containing the raw material mixture is preferably 10 mm or more, more preferably 12 mm or more, more preferably 15 mm or more, more preferably 17 mm or more, and more preferably 20 mm or more. When the capacity is less than 100 g or the thickness is less than 10 mm, the absolute amount of the Maillard reaction is small, so gas generation tends not to pose a big problem.
 本実施形態の方法は、容器中での前記原料混合物を、最高到達品温が100~140℃、加熱価が33~80となるように加圧加熱処理することを含む。ここで「加熱価」とは、加熱量の大きさを示すパラメータである。加熱温度が高く、加熱時間が長い程、加熱価が大きくなる。様々な加熱条件での加熱量を比較するために基準温度とZ値は固定する必要があるが、その値は対象により異なる。具体的には、加熱価は、下記式によって表される値(以下、CV値という)を、加熱時間(分)で積分した値として求められる。
(式):CV値=10{(品温-基準温度)/Z値}
The method of this embodiment includes pressurizing and heating the raw material mixture in a container so that the maximum product temperature reaches 100 to 140° C. and the heating value reaches 33 to 80. Here, the "heating value" is a parameter indicating the amount of heating. The higher the heating temperature and the longer the heating time, the higher the heating value. Although the reference temperature and Z value need to be fixed in order to compare the amount of heating under various heating conditions, the values differ depending on the object. Specifically, the heating value is obtained by integrating a value represented by the following formula (hereinafter referred to as a CV value) by the heating time (minutes).
(Formula): CV value = 10 {(product temperature - reference temperature) / Z value}
 本明細書では、Z値を30℃とし、基準温度を120℃とする。 In this specification, the Z value is 30°C and the reference temperature is 120°C.
 容器中での前記原料混合物の品温A(℃)は、加圧加熱処理の開始時点を含む複数の時点でN回(Nは2以上)測定する。n-1回目の測定時点からn回目の測定時点のあいだの品温A(℃)は、n回目の測定温度に一定に保持されたとみなすことができる(nは2以上、N以下)。こうして得られた品温A(℃)と加圧加熱処理時間(分)との関係を用いて、CV値を加圧加熱処理時間(分)により積分し、加熱価を求めることができる。また、容器中での前記原料混合物の品温A(℃)が一定となるように加圧加熱処理を行う場合は、加圧加熱処理時間の全体を通じて品温A(℃)が一定であったとみなすことができ、CV値と加圧加熱処理時間(分)との積が加熱価である。 The material temperature A (°C) of the raw material mixture in the container is measured N times (N is 2 or more) at a plurality of times including the start of the pressurized heat treatment. It can be considered that the product temperature A (°C) from the n-1th measurement point to the nth measurement point is kept constant at the nth measurement temperature (n is 2 or more and N or less). Using the relationship between the product temperature A (° C.) and the pressurized heat treatment time (minutes) thus obtained, the CV value can be integrated by the pressurized heat treatment time (minutes) to obtain the heating value. In addition, when the pressurized heat treatment is performed so that the product temperature A (°C) of the raw material mixture in the container is constant, it is assumed that the product temperature A (°C) is constant throughout the pressurized heat treatment time. The product of the CV value and the pressurized heat treatment time (minutes) is the heating value.
 詳細には、加熱価は、加圧加熱処理中、品温を一定間隔で、例えば毎分、測定することにより、算出することができる。例えば、6分間の加圧加熱処理において、開始時点を含む1分間隔の7つの時点における品温(℃)が、表1に示される値であったとする。n-1回目の測定時点からn回目の測定時点の間の品温A(℃)は、n回目の測定温度に一定に保持されたとみなす(nは2以上、7以下)。 Specifically, the heating value can be calculated by measuring the product temperature at regular intervals, for example, every minute during the pressure heating process. For example, assume that the product temperature (°C) at 7 points of 1-minute intervals including the start point of the pressurized heat treatment for 6 minutes is the value shown in Table 1. The product temperature A (° C.) from the n−1th measurement point to the nth measurement point is considered to be held constant at the nth measurement temperature (n is 2 or more and 7 or less).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示される加圧加熱処理の場合、加熱価は、0~6分のCV値の積算値であり、12.6と計算される。 In the case of the pressurized heat treatment shown in Table 1, the heating value is the integrated value of the CV values from 0 to 6 minutes, which is calculated as 12.6.
 加熱価は33~80であればよい。加熱価が33未満である場合、メイラード反応が十分に進まず好ましい風味が得られにくい。加熱価が80超である場合、メイラード反応が進み過ぎ焦げたような味が感じられる。加熱価は、好ましくは50以上、より好ましくは60以上であり、好ましくは70以下、より好ましくは65以下である。 The heating value should be 33-80. If the heating value is less than 33, the Maillard reaction does not proceed sufficiently, making it difficult to obtain a favorable flavor. If the heating value is more than 80, the Maillard reaction proceeds too much and a burnt taste is felt. The heating value is preferably 50 or more, more preferably 60 or more, and preferably 70 or less, more preferably 65 or less.
 加圧加熱処理での最高到達品温は100~140℃、好ましくは110~130℃とすることができる。 The maximum product temperature in the pressurized heat treatment can be 100 to 140°C, preferably 110 to 130°C.
 上記条件での加圧加熱処理はレトルト処理装置や圧力釜中で実施することができる。 The pressurized heat treatment under the above conditions can be carried out in a retort processor or pressure cooker.
 以下、実施例により本発明を具体的に説明するが、本発明の範囲はこれら実施例に限定されるものではない。 The present invention will be specifically described below with reference to examples, but the scope of the present invention is not limited to these examples.
<耐加圧加熱パウチ>
 耐加圧加熱パウチとして以下の包材の耐加圧加熱パウチを用いた。なお、包材1,2は半透明のため内部の組成物の色、ガス発生が目視で確認ができるが、包材3は不透明のため内部が目視では確認できない。
 包材1(ガス透過性包材):酸素透過度が30mL/m/day/MPaのナイロンフィルム(PET12/NY25/CPP100)からなる耐加圧加熱パウチ
 包材2(ガス透過性包材):酸素透過度が0.3mL/m/day/MPaの透明蒸着フィルム(透明蒸着PET12/NY15/CPP100)からなる耐加圧加熱パウチ
 包材3(ガス不透過性包材):酸素透過度が0mL/m/day/MPaのアルミラミネートフィルム(PET12/NY15/AL7/CPP70)からなる耐加圧加熱パウチ
<Pressure-resistant heating pouch>
As the pressure-resistant heating pouch, a pressure-resistant heating pouch having the following packaging material was used. Since the packaging materials 1 and 2 are translucent, the color of the composition inside and the generation of gas can be visually confirmed, but the packaging material 3 is opaque and cannot be visually confirmed.
Packaging material 1 (gas permeable packaging material): Pressure resistant heating pouch made of nylon film (PET12/NY25/CPP100) with an oxygen permeability of 30 mL/m 2 /day/MPa Packaging material 2 (gas permeable packaging material) : Pressure resistant heating pouch made of a transparent vapor deposition film (transparent vapor deposition PET12/NY15/CPP100) having an oxygen permeability of 0.3 mL/m 2 /day/MPa Packaging material 3 (gas impermeable packaging material): oxygen permeability Pressure-resistant heating pouch made of aluminum laminate film (PET12/NY15/AL7/CPP70) with 0 mL/m 2 /day/MPa
<モデル組成物>
 耐加圧加熱パウチに封入して加熱加圧処理する食品のモデル組成物として、糖類と、アミノ酸とを含む水溶液を調製した。
 糖類として、還元糖である果糖又はブドウ糖、及び、非還元糖であるショ糖を用いた。 アミノ酸として、グルタミン酸ナトリウム、アスパラギン酸ナトリウム、又は、グリシンを用いた。
<Model composition>
An aqueous solution containing saccharides and amino acids was prepared as a model composition of food to be enclosed in a pressure-resistant heating pouch and subjected to heat and pressure treatment.
As sugars, fructose or glucose, which is a reducing sugar, and sucrose, which is a non-reducing sugar, were used. Sodium glutamate, sodium aspartate, or glycine was used as an amino acid.
<実験1>
 ショ糖(非還元糖)含有量が、0質量%、10質量%、23質量%、50質量%又は70質量%、グルタミン酸ナトリウム含有量が0質量%又は5質量%の水溶液をモデル組成物として用意した。
<Experiment 1>
An aqueous solution with a sucrose (non-reducing sugar) content of 0% by mass, 10% by mass, 23% by mass, 50% by mass or 70% by mass and a sodium glutamate content of 0% by mass or 5% by mass as a model composition prepared.
 各組成物1000gを包材2(ガス透過性包材)に収容し、空気ができるだけ入らないように密封しほとんど厚みのない状態で、加熱価63となるように、120℃で63分間加圧加熱処理を行った。 1,000 g of each composition was placed in a packaging material 2 (gas permeable packaging material), sealed to prevent air from entering as much as possible, and in a state of almost no thickness, and pressurized at 120° C. for 63 minutes so that the heating value was 63. A heat treatment was performed.
 加圧加熱処理後の内容物の褐変の有無、及び、包材内でのガス(気泡)の発生の有無を観察し、以下の4段階で評価した。また、モデル組成物を試食し、風味(コクや複雑味)を評価した。
1:褐変無し且つガス発生無し
2:褐変するがガス発生無し
3:褐変有り且つガス発生少量(製品の品質へ影響がない程度)
4:褐変有り且つガス発生(製品の品質へ影響を及ぼす程度)
The presence or absence of browning of the contents after the pressurized heat treatment and the presence or absence of gas (bubbles) generated in the packaging material were observed, and evaluated according to the following four grades. In addition, the model composition was tasted to evaluate the flavor (body and complex taste).
1: No browning and no gas generation 2: Browning but no gas generation 3: Browning and a small amount of gas generation (no effect on product quality)
4: Browning and gas generation (degree of impact on product quality)
 結果を下記表2に示す。空欄は実施していない組成である。 The results are shown in Table 2 below. Blank columns are compositions that were not implemented.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 非還元糖であるショ糖を含むモデル組成物を加圧加熱処理した場合は、褐変は無し又は褐変し、包材内でのガス発生は無しであることが確認された。 When the model composition containing sucrose, which is a non-reducing sugar, was pressurized and heat-treated, it was confirmed that there was no browning or browning, and no gas was generated inside the packaging material.
 風味においては、ショ糖70質量%のみを含むモデル組成物と、ショ糖70質量%とグルタミン酸Na5質量%とを含むモデル組成物について風味の確認をしたところ、コクや複雑味はほとんど感じられなかった。 In terms of flavor, when confirming the flavor of a model composition containing only 70% by mass of sucrose and a model composition containing 70% by mass of sucrose and 5% by mass of sodium glutamate, almost no richness or complex taste was felt. rice field.
<実験2>
 ブドウ糖(還元糖)含有量が、0質量%、10質量%、23質量%又は50質量%、グルタミン酸ナトリウム含有量が0質量%又は5質量%の水溶液をモデル組成物として用意した。
<Experiment 2>
Aqueous solutions having a glucose (reducing sugar) content of 0% by mass, 10% by mass, 23% by mass or 50% by mass and a sodium glutamate content of 0% by mass or 5% by mass were prepared as model compositions.
 各組成物1000gを包材2(ガス透過性包材)に収容し、空気ができるだけ入らないように密封しほとんど厚みのない状態で、加熱価63となるように、120℃で63分間加圧加熱処理を行った。 1,000 g of each composition was placed in a packaging material 2 (gas permeable packaging material), sealed to prevent air from entering as much as possible, and in a state of almost no thickness, and pressurized at 120° C. for 63 minutes so that the heating value was 63. A heat treatment was performed.
 加圧加熱処理後の内容物の褐変の有無、及び、包材内でのガス(気泡)の発生の有無を観察し、また風味(コクや複雑味)を実験1と同様に評価した。 The presence or absence of browning of the contents after the pressure and heat treatment, and the presence or absence of gas (bubbles) generated in the packaging material were observed, and the flavor (richness and complexity) was evaluated in the same manner as in Experiment 1.
 結果を下記表3に示す。空欄は実施していない組成である。 The results are shown in Table 3 below. Blank columns are compositions that have not been implemented.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 還元糖であるブドウ糖のみを含むモデル組成物を加圧加熱処理した場合は褐変及び包材内でのガス発生は無しであった。しかし、ブドウ糖とグルタミン酸Naとを含むモデル組成物を加圧加熱処理した場合は褐変があり、包材内でのガス発生が少量みられた。 When the model composition containing only glucose, which is a reducing sugar, was pressurized and heated, there was no browning and no gas generation in the packaging material. However, when the model composition containing glucose and sodium glutamate was pressurized and heat-treated, browning occurred and a small amount of gas was generated in the packaging material.
 風味においては、ブドウ糖及びグルタミン酸のいずれも含まないモデル組成物は無味、ブドウ糖10質量%のみを含むモデル組成物はわずかな甘みを感じる程度で、コクや複雑味は感じられなかった。一方でブドウ糖をそれぞれ10、23、50質量%及びグルタミン酸Na5質量%を含むモデル組成物は、アミノ酸と糖を混合しただけでは得られないようなコクや複雑味が感じられた。 In terms of flavor, the model composition containing neither glucose nor glutamic acid was tasteless, and the model composition containing only 10% by mass of glucose had a slight sweetness, with no richness or complex taste. On the other hand, the model compositions containing 10, 23, and 50% by mass of glucose and 5% by mass of sodium glutamate had richness and complex taste that cannot be obtained by simply mixing amino acids and sugars.
<実験3>
 果糖(還元糖)含有量が、0質量%、0.01質量%、0.1質量%、1質量%、5質量%、10質量%、23質量%又は50質量%、グルタミン酸ナトリウム含有量が0質量%、0.5質量%、1質量%、2質量%、3質量%、4質量%、5質量%又は50質量%の水溶液をモデル組成物として用意した。
<Experiment 3>
The fructose (reducing sugar) content is 0% by mass, 0.01% by mass, 0.1% by mass, 1% by mass, 5% by mass, 10% by mass, 23% by mass or 50% by mass, and the sodium glutamate content is 0 wt%, 0.5 wt%, 1 wt%, 2 wt%, 3 wt%, 4 wt%, 5 wt% or 50 wt% aqueous solutions were prepared as model compositions.
 各組成物1000gを包材2(ガス透過性包材)に収容し、空気ができるだけ入らないように密封しほとんど厚みのない状態で、加熱価63となるように、120℃で63分間加圧加熱処理を行った。 1,000 g of each composition was placed in a packaging material 2 (gas permeable packaging material), sealed to prevent air from entering as much as possible, and in a state of almost no thickness, and pressurized at 120° C. for 63 minutes so that the heating value was 63. A heat treatment was performed.
 加圧加熱処理後の内容物の褐変の有無、及び、包材内でのガス(気泡)の発生の有無を観察し、また風味(コクや複雑味)を実験1と同様に評価した。 The presence or absence of browning of the contents after the pressure and heat treatment, and the presence or absence of gas (bubbles) generated in the packaging material were observed, and the flavor (richness and complexity) was evaluated in the same manner as in Experiment 1.
 結果を下記表4に示す。空欄は実施していない組成である。 The results are shown in Table 4 below. Blank columns are compositions that were not implemented.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 還元糖である果糖のみを含むモデル組成物を加圧加熱処理した場合は褐変及び包材内でのガス発生は無しであった。また果糖と0.5質量%のグルタミン酸Naとを含むモデル組成物でも褐変は無し又は褐変するがガス発生は無しであった。しかし、果糖と、0.5質量%を上回る量のグルタミン酸Naとを含むモデル組成物を加圧加熱処理した場合は褐変し、包材内でのガス発生が少量みられた。 When the model composition containing only fructose, which is a reducing sugar, was pressurized and heated, there was no browning and no gas generation in the packaging material. A model composition containing fructose and 0.5% by mass of sodium glutamate also showed no browning or browned but no gassing. However, when the model composition containing fructose and more than 0.5% by mass of sodium glutamate was heat-treated under pressure, it turned brown and a small amount of gas was generated in the packaging material.
 風味においては、23質量%の果糖と、1質量%のグルタミン酸Naとを含む組成物は、果糖及びグルタミン酸Naの濃度がそれ以下の濃度の組成物と比較して強いコクや複雑味を有していた。 In terms of flavor, a composition containing 23% by mass of fructose and 1% by mass of sodium glutamate has a strong richness and complex taste compared to compositions with lower concentrations of fructose and sodium glutamate. was
<実験4>
 果糖(還元糖)含有量が23質量%であり、アミノ酸として、295.7mMのグリシン、又は、アスパラギン酸ナトリウムを含む水溶液をモデル組成物として用意した。ここで、各アミノ酸のモル濃度である295.7mMは、5質量%のグルタミン酸ナトリウムのモル濃度と一致する。
<Experiment 4>
An aqueous solution containing 23% by mass of fructose (reducing sugar) and containing 295.7 mM of glycine or sodium aspartate as an amino acid was prepared as a model composition. Here, the molar concentration of each amino acid of 295.7 mM corresponds to the molar concentration of sodium glutamate of 5% by mass.
 各組成物1000gを包材2(ガス透過性包材)に収容し、空気ができるだけ入らないように密封しほとんど厚みのない状態で、加熱価63となるように、120℃で63分間加圧加熱処理を行った。 1,000 g of each composition was placed in a packaging material 2 (gas permeable packaging material), sealed to prevent air from entering as much as possible, and in a state of almost no thickness, and pressurized at 120° C. for 63 minutes so that the heating value was 63. A heat treatment was performed.
 加圧加熱処理後の内容物の褐変の有無、及び、包材内でのガス(気泡)の発生の有無を観察し、実験1と同じ基準で評価した。 The presence or absence of browning of the contents after the pressurized heat treatment and the presence or absence of gas (bubbles) generated in the packaging material were observed, and evaluated according to the same criteria as in Experiment 1.
 グリシン又はアスパラギン酸ナトリウムを含む水溶液のモデル組成物の評価は「3」であり、褐変がみられ、且つガス発生が少量みられた。アミノ酸としてグリシンを含むモデル組成物では、果糖23質量%とグルタミン酸ナトリウム5質量%を含む実験3でのモデル組成物と、同程度のガス発生が認められた。アミノ酸としてアスパラギン酸ナトリウムを含むモデル組成物では、果糖23質量%とグルタミン酸ナトリウム5質量%を含む実験3でのモデル組成物よりは多量のガス発生が認められた。 The evaluation of the model composition of the aqueous solution containing glycine or sodium aspartate was "3", browning was observed, and a small amount of gas generation was observed. A model composition containing glycine as an amino acid produced gassing comparable to the model composition in Experiment 3 containing 23% by weight fructose and 5% by weight sodium glutamate. The model composition containing sodium aspartate as the amino acid produced more gassing than the model composition in Experiment 3 containing 23% by weight fructose and 5% by weight sodium glutamate.
 風味においては、いずれの組成物においても未加熱状態では得られないようなコクや複雑味が感じられた。 In terms of flavor, I felt a richness and complex taste that could not be obtained in an unheated state in any of the compositions.
<実験5>
 果糖を23質量%、グルタミン酸ナトリウムを5質量%含む水溶液をモデル組成物として用意した。
<Experiment 5>
An aqueous solution containing 23% by mass of fructose and 5% by mass of sodium glutamate was prepared as a model composition.
 モデル組成物1000gを包材1(ガス透過性包材)、包材2(ガス透過性包材)、及び包材3(ガス不透過性包材)に収容し、空気ができるだけ入らないように密封しほとんど厚みのない状態で、加熱価63となるように、120℃で63分間加圧加熱処理を行った。 1000 g of the model composition was placed in packaging material 1 (gas permeable packaging material), packaging material 2 (gas permeable packaging material), and packaging material 3 (gas impermeable packaging material) so as to prevent air from entering as much as possible. In a sealed state with almost no thickness, pressure heat treatment was performed at 120° C. for 63 minutes so that the heating value was 63.
 加熱加圧直後、及び、40℃で1カ月保存後の、容器の膨張の状態を観察し、下記基準により評価した。
◎:容器の膨張がみられず、製品の品質への影響は無い。
〇:容器の膨張がわずかにあるが、製品の品質への影響は少ない。
×:容器の膨張がみられ、製品の品質へ影響を及ぼす。
Immediately after heating and pressurizing and after storage at 40° C. for one month, the state of expansion of the container was observed and evaluated according to the following criteria.
A: Expansion of the container is not observed, and there is no influence on the quality of the product.
Good: Slight expansion of the container, but little effect on product quality.
x: Expansion of the container is observed, affecting the quality of the product.
 結果を下記表5に示す。加圧加熱処理後はいずれの包材においても容器の膨張はみられなかった又はわずかにあったのに対して、40℃1カ月保存後では包材3において容器の膨張がみられた。 The results are shown in Table 5 below. After the pressure and heat treatment, no or slight expansion of the container was observed in any of the packaging materials.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 また、容器内部を確認したところ、包材1を用いた場合、発生したガスによる小さい気泡が、包材2を用いた場合、包材1に比べて大きな気泡が形成されていたが、製品の品質へ影響するほどの膨張ではなかった。この結果は、ガス透過性の包材1,2を用いることにより、加圧加熱処理中及びその後の保存期間中に発生したガスは包材外に透過して排出され、包材内での気泡の形成及び気泡による包材の膨張は抑制されることを示す。一方で、ガス不透過性の包材3を用いると、加圧加熱処理直後にはガスの発生は問題にならないものの、保存中にメイラード反応が進んだ結果、ガスの発生が更に進行し、容器が膨張し、製品の品質に影響するほどであった。 In addition, when the inside of the container was checked, small bubbles were formed by the generated gas when the packaging material 1 was used, and larger bubbles were formed when the packaging material 2 was used compared to the packaging material 1. The expansion was not so large as to affect the quality. As a result, by using the gas-permeable packaging materials 1 and 2, the gas generated during the pressurized heat treatment and during the subsequent storage period permeates and is discharged outside the packaging material, and the bubbles inside the packaging material are discharged. This indicates that the formation of , and the expansion of the packaging material due to air bubbles is suppressed. On the other hand, when the gas-impermeable packaging material 3 is used, gas generation does not pose a problem immediately after the pressurized heat treatment, but as a result of the progress of the Maillard reaction during storage, the gas generation progresses further, and the container expanded to such an extent that it affected the quality of the product.
<実験6>
 果糖を23質量%、グルタミン酸ナトリウムを5質量%含む水溶液をモデル組成物として用意した。
<Experiment 6>
An aqueous solution containing 23% by mass of fructose and 5% by mass of sodium glutamate was prepared as a model composition.
 モデル組成物1000gを包材1(ガス透過性包材)に収容し、空気ができるだけ入らないように密封しほとんど厚みのない状態で、加熱価63(120℃、63分間)、加熱価40(120℃、40分間)、又は、加熱価32(120℃、32分間)での加圧加熱処理を行った。 1000 g of the model composition was placed in packaging material 1 (gas permeable packaging material), sealed to prevent air from entering as much as possible, and in a state of almost no thickness, heating value 63 (120 ° C., 63 minutes), heating value 40 ( 120° C., 40 minutes) or a pressure heat treatment at a heating value of 32 (120° C., 32 minutes).
 いずれの包材内でもモデル組成物は褐変していた。加熱価63と加熱価40の場合、発生したガスが包材内に留まり気泡を形成した。一方、加熱価32の場合、ガスの発生はなく包材内に気泡は形成されなかった。 The model composition was browned in any packaging material. In the case of heating value 63 and heating value 40, generated gas remained in the packaging material and formed bubbles. On the other hand, when the heating value was 32, no gas was generated and no air bubbles were formed in the packaging material.
 風味においては、加熱価63及び加熱価40の場合、未加熱状態では感じられないコクや複雑味が感じられ、その程度は加熱価63の方が強かった。加熱価32の場合、糖の香ばしい香りは感じられるものの、コクや複雑味といった強い加熱によって得られる風味は感じられなかった。 Regarding the flavor, in the case of the heating value of 63 and the heating value of 40, a richness and complex taste that cannot be felt in the unheated state were felt, and the degree of this was stronger in the heating value of 63. In the case of a heating value of 32, although a fragrant sugar aroma was felt, the flavor such as richness and complex taste obtained by strong heating was not felt.
<トマトオニオンソース>
 耐加圧加熱パウチに封入して加熱加圧処理する食品の一例として、オニオン加工物であるオニオンソテー、トマト加工物であるトマトペーストを含む組成物を調製した。
<Tomato Onion Sauce>
As an example of a food to be enclosed in a pressure-resistant heating pouch and subjected to heat and pressure treatment, a composition containing onion saute, which is a processed onion, and tomato paste, which is a processed tomato, was prepared.
<実験7>
 下記表6の配合からなる原料を混合し、攪拌しながら加熱した。95℃に達した時点で消火し、トマトオニオンソースAを用意した。各成分の配合量の単位は明示しない限りグラムである。なお、トマトオニオンソースA(加熱前)の還元糖(オニオンソテー、トマトペースト由来を含む)は10.7質量%、アミノ酸(オニオンソテー、トマトペースト由来を含む)は6.4質量%、水分含量は69質量%、水分活性(Aw)は0.89である。
<Experiment 7>
Raw materials having the composition shown in Table 6 below were mixed and heated with stirring. When the temperature reached 95°C, the fire was extinguished, and tomato onion sauce A was prepared. The unit of the compounding amount of each component is gram unless otherwise specified. In addition, tomato onion sauce A (before heating) contains 10.7% by mass of reducing sugars (including sautéed onions and derived from tomato paste), 6.4% by mass of amino acids (including sautéed onions and derived from tomato paste), and water content. is 69% by mass, and the water activity (Aw) is 0.89.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 トマトオニオンソースA1000gを包材1(ガス透過性包材)又は包材2(ガス透過性包材)に収容し、空気ができるだけ入らないように密封しほとんど厚みのない状態で、加熱価63となるように、120℃で63分間加圧加熱処理を行った。 1000 g of tomato onion sauce A is housed in packaging material 1 (gas permeable packaging material) or packaging material 2 (gas permeable packaging material), sealed so as to prevent air from entering as much as possible, and in a state of almost no thickness, with a heating value of 63. A heat treatment under pressure was performed at 120° C. for 63 minutes.
 どちらの包材内でもトマトオニオンソースAは褐変していた。包材1、2ともに気泡を形成していたが製品の品質に影響を及ぼすほどの膨張は認められなかった。この結果は、ガス透過性の包材1、2を用いることにより、加圧加熱処理中及びその後の保存期間中に発生したガスは包材外に透過して排出され、包材内での気泡の形成及び気泡による包材の膨張は抑制されることを示す。 Tomato onion sauce A was browned in both packaging materials. Air bubbles were formed in both the packaging materials 1 and 2, but expansion to the extent that the quality of the product was affected was not observed. As a result, by using the gas-permeable packaging materials 1 and 2, the gas generated during the pressurized heat treatment and the subsequent storage period permeates and is discharged outside the packaging material, and the bubbles inside the packaging material are discharged. This indicates that the formation of , and the expansion of the packaging material due to air bubbles is suppressed.
<実験8>
 下記表7の配合からなる原料を混合し、攪拌しながら加熱した。95℃に達した時点で消火し、トマトオニオンソースBを用意した。なお、トマトオニオンソースBの還元糖は8.5質量%、アミノ酸は5.1質量%、水分含量は76質量%、水分活性(Aw)は0.89である。
<Experiment 8>
Raw materials having the composition shown in Table 7 below were mixed and heated with stirring. When the temperature reached 95°C, the fire was extinguished, and tomato onion sauce B was prepared. The tomato onion sauce B has a reducing sugar content of 8.5% by mass, an amino acid content of 5.1% by mass, a water content of 76% by mass, and a water activity (Aw) of 0.89.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 トマトオニオンソースB1000gを包材1(ガス透過性包材)又は包材2(ガス透過性包材)に収容し、実験7同様に加圧加熱処理を行った。  1000 g of tomato onion sauce B was placed in packaging material 1 (gas-permeable packaging material) or packaging material 2 (gas-permeable packaging material), and pressurized and heated in the same manner as in Experiment 7.
 どちらの包材内でもトマトオニオンソースBは褐変していた。包材1、2ともに気泡を形成していたが製品の品質に影響を及ぼすほどの膨張は認められなかった。この結果は、ガス透過性の包材1、2を用いることにより、加圧加熱処理中及びその後の保存期間中に発生したガスは包材外に透過して排出され、包材内での気泡の形成及び気泡による包材の膨張は抑制されることを示す。 Tomato onion sauce B was browned in both packaging materials. Air bubbles were formed in both the packaging materials 1 and 2, but expansion to the extent that the quality of the product was affected was not observed. As a result, by using the gas-permeable packaging materials 1 and 2, the gas generated during the pressurized heat treatment and the subsequent storage period permeates and is discharged outside the packaging material, and the bubbles inside the packaging material are discharged. This indicates that the formation of , and the expansion of the packaging material due to air bubbles is suppressed.
 風味においては、どちらの包材内でも、未加熱状態では感じられないコクや複雑味が感じられた。 In terms of flavor, I could feel the richness and complexity in both packaging materials that I could not feel in the unheated state.
 実験7及び8におけるトマトオニオンソース試料中の水分含量、水分活性、アミノ酸含有量、還元糖含有量の測定方法を以下に説明する。 The methods for measuring the water content, water activity, amino acid content, and reducing sugar content in the tomato onion sauce samples in Experiments 7 and 8 are described below.
(1.水分含量測定方法)
 はかり容器に精製ケイ砂20gを入れる。ガラス棒を入れ、所定の温度で1時間乾燥後、1時間放冷して、質量を測定し恒量(W0)を求めた。ここに適量の試料を採取し質量を測定した(W1)。次いで、ガラス棒で試料をよく混和した。水浴上でかき混ぜながらサラサラの状態になるまで予備乾燥を行った。その後、はかり容器の蓋をとって105℃の乾燥器中に入れ、16時間乾燥後に乾燥器中ですばやく容器に蓋をした。デシケーターに移して室温に達するまで放冷して、質量をはかった(W2)。
 得られたW0、W1、W2の数値を用いて下記の計算式により水分含量を求めた。
水分(g/100g)=(W1-W2)/(W1-W0)×100
(1. Moisture content measurement method)
Put 20 g of refined silica sand in a weighing container. A glass rod was placed in the mixture, dried at a predetermined temperature for 1 hour, allowed to cool for 1 hour, and weighed to obtain a constant weight (W0). An appropriate amount of sample was taken here and the mass was measured (W1). The sample was then mixed well with a glass rod. Pre-drying was performed while stirring on a water bath until it became dry. After that, the weighing container was uncovered and placed in a dryer at 105° C. After drying for 16 hours, the container was quickly covered in the dryer. It was transferred to a desiccator, allowed to cool to room temperature, and weighed (W2).
Using the values of W0, W1 and W2 thus obtained, the water content was calculated according to the following formula.
Moisture (g/100g) = (W1-W2)/(W1-W0) x 100
(2.水分活性測定方法)
 試料を25℃に調温した。調温した試料の水分活性をLabMaster-aw(Novasina AG社)にて測定した。
(2. Water activity measurement method)
The sample was thermostated at 25°C. The water activity of the temperature-controlled sample was measured with LabMaster-aw (Novasina AG).
(3.アミノ酸含有量の測定方法)
 試料中のアミノ酸含有量の測定は以下の手順で行った。
(3. Method for measuring amino acid content)
The amino acid content in the sample was measured by the following procedure.
(3.1.標準溶液の調製方法)
 H型アミノ酸混合標準溶液(2.5μmol/ml)を超純水で50倍に希釈した。
(3.1. Preparation method of standard solution)
An H-type amino acid mixed standard solution (2.5 μmol/ml) was diluted 50-fold with ultrapure water.
(3.2.試料液の調製方法)
 試料をビーカーに精秤し、蒸留水20mlを加えた。これをスターラーで攪拌しながらエタノール60mlを徐々に添加した。その後、75%エタノールで洗浄しながら100mlに定容した。遠心分離(3000rpm、10分間)したのち濾過をした。上澄み液を1.5mlサンプルチューブに0.45μmフィルターで通し、試料液とした。
(3.2. Method for preparing sample solution)
A sample was accurately weighed in a beaker, and 20 ml of distilled water was added. While stirring this with a stirrer, 60 ml of ethanol was gradually added. Then, the volume was adjusted to 100 ml while washing with 75% ethanol. After centrifugation (3000 rpm, 10 minutes), filtration was carried out. The supernatant was passed through a 1.5 ml sample tube through a 0.45 μm filter to obtain a sample solution.
(3.3.誘導体化)
 0.6mlサンプルチューブにマイクロピペットで各試料液(標準溶液)を60μL採った。AccQ・FlourBorateBuffer(WATERS社)を180μL加え、ボルテックスで攪拌した。さらに、AccQ・FlourReagent(WATERS社)を60μL加え、直ちに10秒間攪拌した。これを1分間静置し反応させ、HPLCによる分析を行った。
(3.3. Derivatization)
60 μL of each sample solution (standard solution) was taken into a 0.6 ml sample tube with a micropipette. 180 μL of AccQ-FlourBorateBuffer (WATERS) was added and stirred with a vortex. Further, 60 μL of AccQ·FlourReagent (WATERS) was added and immediately stirred for 10 seconds. This was allowed to stand for 1 minute to react and analyzed by HPLC.
(3.4.HPLC分析)
 高速液体クロマトグラフ法分析はAccQ・Tagキット(WATERS社)を用いて次に示す条件で行った。
使用カラム:AccQ・Tagアミノ酸分析カラム
検出器:蛍光検出器
検出波長:励起波長250nm 蛍光波長395nm
カラム温度:37℃
移動相:濃縮液(キット付属):蒸留水=1:10
流量:1.0ml/min
注入量:10μL
測定時間:100分
(3.4. HPLC analysis)
High-performance liquid chromatography analysis was performed using an AccQ-Tag kit (WATERS) under the following conditions.
Column used: AccQ-Tag amino acid analysis column Detector: fluorescence detector Detection wavelength: excitation wavelength 250 nm fluorescence wavelength 395 nm
Column temperature: 37°C
Mobile phase: concentrate (included in kit): distilled water = 1:10
Flow rate: 1.0ml/min
Injection volume: 10 μL
Measurement time: 100 minutes
(4.還元糖含有量の測定方法)
 試料中の還元糖含有量の測定は以下の手順で行った。
(4. Method for measuring reducing sugar content)
The reducing sugar content in the sample was measured by the following procedure.
(4.1.標準溶液の調製法)
 各糖の標準品を精秤し、超純水で0.005%~0.5%となるように溶解し検量線用標準溶液とした。
(4.1. Method for preparing standard solution)
A standard product of each sugar was precisely weighed and dissolved in ultrapure water to a concentration of 0.005% to 0.5% to prepare a standard solution for calibration curve.
(4.2.試料液の調製法)
 試料2gを秤量し、30mlのイオン交換水を加えた。これを攪拌分散させ、エタノール45mlを徐々に加え30分間超音波抽出を行った。その後60%エタノールで洗浄しながら100mlメスフラスコに移し、定容した。15分間静置しタンパク質等を沈殿させたのち、ろ紙でろ過した。イオン交換樹脂(陰イオン交換樹脂:アンバーライトIRA67、陽イオン交換樹脂:アンバーライトIR120B(H)-HG)を充填したカラムにろ液を通した。ろ液を通した後、60%エタノール30mlを通した。減圧乾固させ、超純水で溶解後、0.45μmフィルター(φ17mm)に通し、これを試験溶液としHPLCによる分析を行った。
(4.2. Preparation method of sample solution)
2 g of the sample was weighed and 30 ml of deionized water was added. This was stirred and dispersed, and 45 ml of ethanol was gradually added and subjected to ultrasonic extraction for 30 minutes. After that, while washing with 60% ethanol, it was transferred to a 100 ml volumetric flask and adjusted to a constant volume. After allowing to stand for 15 minutes to precipitate proteins and the like, the mixture was filtered with filter paper. The filtrate was passed through a column packed with ion exchange resins (anion exchange resin: Amberlite IRA67, cation exchange resin: Amberlite IR120B(H)-HG). After the filtrate was passed through, 30 ml of 60% ethanol was passed through. It was made to dry under reduced pressure, dissolved in ultrapure water, passed through a 0.45 μm filter (φ17 mm), and used as a test solution for analysis by HPLC.
(4.3.HPLC分析)
 高速液体クロマトグラフ法分析条件は次に示すとおりである。
使用カラム:HILICpak VG-50 4E 5μm(φ4.6×250mm)
検出器:Corona Veo(Drying tube温度:High(50℃))
オーブン:60℃
移動相:アセトニトリル:メタノール:超純水=86:5:9
流量:1.0ml/min
注入量:5μL
測定時間:60分
(4.3. HPLC analysis)
The high-performance liquid chromatography analysis conditions are as follows.
Column used: HILICpak VG-50 4E 5 μm (φ4.6×250 mm)
Detector: Corona Veo (Drying tube temperature: High (50°C))
Oven: 60°C
Mobile phase: acetonitrile: methanol: ultrapure water = 86:5:9
Flow rate: 1.0ml/min
Injection volume: 5 μL
Measurement time: 60 minutes
<実験9>
 加圧加熱食品の液体クロマトグラフィー質量分析法(LCMS)による分析
<Experiment 9>
Analysis of Pressurized Heated Food by Liquid Chromatography-Mass Spectrometry (LCMS)
(1)検液調製
 下記表8に示す含有量の果糖及びグルタミン酸ナトリウム(MSG)を含む水溶液を、加圧加熱食品の原料混合物のモデル組成物として用意した。
(1) Preparation of test solution An aqueous solution containing fructose and sodium glutamate (MSG) in the contents shown in Table 8 below was prepared as a model composition of a raw material mixture for a pressurized and heated food.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 各組成物1000gを包材1(ガス透過性包材)に収容し、空気ができるだけ入らないように密封しほとんど厚みのない状態で、加熱価63となるように、120℃で63分間加圧加熱処理を行った。加圧加熱処理により得られた容器詰め加圧加熱食品を分析対象試料とした。 1000 g of each composition was placed in packaging material 1 (gas permeable packaging material), sealed to prevent air from entering as much as possible, and in a state of almost no thickness. A heat treatment was performed. The container-packed pressurized and heated food obtained by the pressurized and heated treatment was used as a sample to be analyzed.
 10mL容試験管に、上記の分析対象試料の1つを採取した。採取量は1.00gとした。試料採取後の試験管に内部標準液として、0.14mg/mLグアノシン-155’-一リン酸ナトリウム塩(太陽日酸)水溶液を0.1mL、超純水を3mL加えた。試験管を振とう器で室温、5分間撹拌した後、メタノールを7mL加えた。試験管を振とう器で室温、10分間撹拌した後、溶液0.5mLを限外濾過フィルター(Amicon Ultra 0.5mL Centrifugal Filters 3K,メルク)に移した。限外濾過フィルターを室温、15,000rpm×15分間遠心後、フィルターからの溶出液に対し、70%(v/v)メタノール水溶液を1mL加え、15秒間ボルテックスした。0.2μmフィルターに負荷後の溶液をLCMS検体とした(n=3)。このLCMS検体には、分析対象試料あたり14ppmの内部標準グアノシン-155’-一リン酸ナトリウム塩を含む。 One of the above samples to be analyzed was collected in a 10 mL test tube. The amount collected was 1.00 g. After sample collection, 0.1 mL of 0.14 mg/mL guanosine- 15 N 5 5'-monophosphate sodium salt (Taiyo Nitsan) aqueous solution and 3 mL of ultrapure water were added as internal standard solutions to the test tube after sample collection. After stirring the test tube with a shaker at room temperature for 5 minutes, 7 mL of methanol was added. After stirring the tube on a shaker for 10 minutes at room temperature, 0.5 mL of the solution was transferred to an ultrafiltration filter (Amicon Ultra 0.5 mL Centrifugal Filters 3K, Merck). After centrifuging the ultrafiltration filter at room temperature at 15,000 rpm for 15 minutes, 1 mL of 70% (v/v) aqueous methanol solution was added to the eluate from the filter and vortexed for 15 seconds. The LCMS sample was the solution after loading on a 0.2 μm filter (n=3). This LCMS sample contains 14 ppm internal standard guanosine- 15 N 5 5'-monophosphate sodium salt per sample analyzed.
(2)LCMS分析条件
 LC-orbitrap-MS(サーモフィッシャーサイエンティフィック)の分析条件を下記に示す。
分析カラム:
 Discovery HS F5,5μm、250mm×4.6mm(SIGMA-ALDRICH)
LC条件:
 カラム温度:40℃、注入量:3μL、モード:ESIポジティブ、ネガティブ(スイッチング)
 流速:0.3mL/分
 移動相:
  A液:0.1%ギ酸水溶液(ギ酸、富士フイルム和光純薬)
  B液:アセトニトリル(LCMSグレード、富士フイルム和光純薬)
 移動相組成(分析時間85分間):
Figure JPOXMLDOC01-appb-T000009
MS条件:
 イオン源温度:225℃、MSスキャン:m/z 67~1,005
(2) LCMS analysis conditions The analysis conditions for LC-orbitrap-MS (Thermo Fisher Scientific) are shown below.
Analytical column:
Discovery HS F5, 5 μm, 250 mm×4.6 mm (SIGMA-ALDRICH)
LC conditions:
Column temperature: 40°C, injection volume: 3 µL, mode: ESI positive, negative (switching)
Flow rate: 0.3 mL/min Mobile phase:
A solution: 0.1% formic acid aqueous solution (formic acid, FUJIFILM Wako Pure Chemical Industries)
B liquid: acetonitrile (LCMS grade, Fujifilm Wako Pure Chemical Industries)
Mobile phase composition (analysis time 85 minutes):
Figure JPOXMLDOC01-appb-T000009
MS conditions:
Ion source temperature: 225° C., MS scan: m/z 67-1,005
(3)LCMSデータの解析
 LCMSトータルイオンクロマトグラムから、各成分のプロトン付加体精密質量(M+H)(ポジティブモードの場合)又は脱プロトン化体精密質量(M-H)(ネガティブモードの場合)をイオンクロマトグラム抽出し、それぞれのピークの面積を算出した。
(3) Analysis of LCMS data From the LCMS total ion chromatogram, the proton adduct accurate mass (M + H) (in positive mode) or deprotonated form accurate mass (M - H) (in negative mode) of each component is calculated. An ion chromatogram was extracted and the area of each peak was calculated.
 ピーク面積を測定した成分は、グアノシン-15 5’-一リン酸(=グアノシン-155’-一リン酸ナトリウム塩)、γ-アミノ酪酸(GABA)、ジメチルピラジン、N-(1-デオキシ-D-フルクトース-1-イル)-L-グルタミン酸(Fru-Glu)、N-(1-デオキシ-D-フルクトース-1-イル)-L-ピログルタミン酸(Fru-pGlu)、コハク酸、コハク酸セミアルデヒド、α-ケトグルタル酸である。それぞれのモノアイソトピック質量、プロトン付加体精密質量(M+H)、脱プロトン化体精密質量(M-H)、LCでの保持時間を下記表10に示す。 The components for which peak areas were measured are guanosine- 15 N 5 5'-monophosphate (= guanosine- 15 N 5 5'-monophosphate sodium salt), γ-aminobutyric acid (GABA), dimethylpyrazine, N-( 1-deoxy-D-fructose-1-yl)-L-glutamic acid (Fru-Glu), N-(1-deoxy-D-fructose-1-yl)-L-pyroglutamic acid (Fru-pGlu), succinic acid , succinic semialdehyde, and α-ketoglutarate. The respective monoisotopic masses, proton adduct accurate masses (M+H), deprotonated product accurate masses (MH), and retention times in LC are shown in Table 10 below.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 LCMSトータルイオンクロマトグラムから、各成分のプロトン付加体精密質量(M+H)又は脱プロトン化体精密質量(M-H)を抽出し、ピーク面積を得た。各検体中の成分は、ピーク面積の対内部標準比(=各成分のピーク面積/内部標準のピーク面積)として算出し、比較した。 From the LCMS total ion chromatogram, the proton adduct accurate mass (M+H) or deprotonated accurate mass (M−H) of each component was extracted to obtain the peak area. The component in each sample was calculated as a ratio of peak area to internal standard (=peak area of each component/peak area of internal standard) and compared.
(4)結果
 各分析対象試料のγ-アミノ酪酸(GABA)、ジメチルピラジン、N-(1-デオキシ-D-フルクトース-1-イル)-L-グルタミン酸(Fru-Glu)、N-(1-デオキシ-D-フルクトース-1-イル)-L-ピログルタミン酸(Fru-pGlu)、コハク酸、コハク酸セミアルデヒド、α-ケトグルタル酸のピーク面積の対内部標準比の平均値(n=3)及び標準偏差(エラーバー)を図1~7に示す。図1~7においてMSGはグルタミン酸ナトリウムを指す。
(4) Results γ-aminobutyric acid (GABA), dimethylpyrazine, N-(1-deoxy-D-fructose-1-yl)-L-glutamic acid (Fru-Glu), N-(1- Deoxy-D-fructose-1-yl)-L-pyroglutamic acid (Fru-pGlu), succinic acid, succinic semialdehyde, α-ketoglutarate average peak area to internal standard ratio (n = 3) and Standard deviations (error bars) are shown in Figures 1-7. MSG in FIGS. 1-7 refers to monosodium glutamate.
<実験10>
 実験9で調製した、果糖含有量8.0質量%/グルタミン酸ナトリウム含有量5.0質量%の容器詰め加圧加熱食品を40℃約11か月で保存したものについて、同様にLCMS分析を行った。
<Experiment 10>
LCMS analysis was performed in the same manner on the container-packed, pressurized and heated food containing 8.0% by mass of fructose and 5.0% by mass of sodium glutamate prepared in Experiment 9 and stored at 40°C for about 11 months. rice field.
 分析対象試料のγ-アミノ酪酸(GABA)、ジメチルピラジン、N-(1-デオキシ-D-フルクトース-1-イル)-L-グルタミン酸(Fru-Glu)、N-(1-デオキシ-D-フルクトース-1-イル)-L-ピログルタミン酸(Fru-pGlu)、コハク酸、コハク酸セミアルデヒド、α-ケトグルタル酸のピーク面積の対内部標準比の平均値(n=3)はそれぞれ、6.3±0.3、41±2.1、33±1.0、197±1.0、94±2.4、1.6±0.1、13±1.2であった。 γ-Aminobutyric acid (GABA), dimethylpyrazine, N-(1-deoxy-D-fructose-1-yl)-L-glutamic acid (Fru-Glu), N-(1-deoxy-D-fructose in the sample to be analyzed -1-yl)-L-pyroglutamic acid (Fru-pGlu), succinic acid, succinic semialdehyde, and α-ketoglutaric acid, the average ratio of the peak areas to the internal standard (n = 3) was 6.3. ±0.3, 41±2.1, 33±1.0, 197±1.0, 94±2.4, 1.6±0.1, 13±1.2.
 上記実験9及び10の結果に示されるように、還元糖の含有量が1質量%以上であり、アミノ酸の含有量が0.6質量%以上であり、加熱価63となるように加圧加熱処理して調製された加圧加熱食品では、前記7成分のピーク面積の対内部標準比が、還元糖の含有量が1質量%未満又はアミノ酸の含有量が0.6質量%未満の加圧加熱食品よりも顕著に高いことが確認された。また、長期保存後の加圧加熱食品においても同様の結果が得られた。 As shown in the results of Experiments 9 and 10, the reducing sugar content is 1% by mass or more, the amino acid content is 0.6% by mass or more, and the heating value is 63. In the pressurized and heated food prepared by the treatment, the ratio of the peak areas of the seven components to the internal standard is less than 1% by mass of reducing sugars or less than 0.6% by mass of amino acids. It was confirmed to be significantly higher than heated food. Similar results were also obtained with pressurized and heated foods after long-term storage.
 本発明は、容器詰め加圧加熱食品の製造分野において利用できる。
 
 本明細書で引用した全ての刊行物、特許及び特許出願をそのまま参考として本明細書に組み入れるものとする。
INDUSTRIAL APPLICABILITY The present invention can be used in the field of manufacturing pressurized and heated foods packed in containers.

All publications, patents and patent applications cited herein are hereby incorporated by reference in their entirety.

Claims (7)

  1.  還元糖の含有量が1質量%以上であり、アミノ酸の含有量が0.6質量%以上である食品組成物と、
     前記食品組成物を封入する、酸素透過度が0.1mL/m/day/MPa以上である容器と
    を含み、
     前記容器中において、最高到達品温が100~140℃、加熱価が33~80となるように加圧加熱処理して調製されており、
     前記加熱価が、品温(A)[℃]に対して10{(A-120)/30}で求められる値を加圧加熱処理時間[分]で積分した値である、
    容器詰め加圧加熱食品。
    a food composition having a reducing sugar content of 1% by mass or more and an amino acid content of 0.6% by mass or more;
    and a container that encloses the food composition and has an oxygen permeability of 0.1 mL/m 2 /day/MPa or more,
    In the container, it is prepared by pressurizing and heating so that the maximum product temperature is 100 to 140 ° C. and the heating value is 33 to 80,
    The heating value is a value obtained by integrating the value obtained by 10 {(A-120)/30} with respect to the product temperature (A) [° C.] by the pressure heat treatment time [minute].
    Pressurized and heated foods packed in containers.
  2.  前記食品組成物の水分含量が80質量%以下である、請求項1に記載の容器詰め加圧加熱食品。 The container-packed, pressurized and heated food according to claim 1, wherein the water content of the food composition is 80% by mass or less.
  3.  トマト加工物及び/又はオニオン加工物を含む、請求項1又は2に記載の容器詰め加圧加熱食品。 The container-packed, pressurized and heated food according to claim 1 or 2, which contains processed tomato and/or processed onion.
  4.  還元糖及びアミノ酸を含む食品組成物と、
     前記食品組成物を封入する容器と
    を含む容器詰め加圧加熱食品であって、
     前記食品組成物1gに、内標準液として0.14mg/mLグアノシン-155’-一リン酸ナトリウム塩水溶液を0.1mL、超純水を3mL加え、液体クロマトグラフィー質量分析法で測定した場合に、
     グアノシン-15 5’-一リン酸に対するγ-アミノ酪酸のピーク面積比が0.105以上である、
     グアノシン-15 5’-一リン酸に対するジメチルピラジンのピーク面積比が2.4以上である、
     グアノシン-15 5’-一リン酸に対するN-(1-デオキシ-D-フルクトース-1-イル)-L-グルタミン酸のピーク面積比が0.9以上である、
     グアノシン-15 5’-一リン酸に対するN-(1-デオキシ-D-フルクトース-1-イル)-L-ピログルタミン酸のピーク面積比が0.2以上である、
     グアノシン-15 5’-一リン酸に対するコハク酸のピーク面積比が1.7以上である、
     グアノシン-15 5’-一リン酸に対するコハク酸セミアルデヒドのピーク面積比が0.6以上である、及び、
     グアノシン-15 5’-一リン酸に対するα-ケトグルタル酸のピーク面積比が9.5以上である、
    のうちいずれか1以上を満足する、容器詰め加圧加熱食品。
    a food composition comprising reducing sugars and amino acids;
    A container-packed pressurized and heated food comprising a container enclosing the food composition,
    To 1 g of the food composition, 0.1 mL of 0.14 mg/mL guanosine- 15 N 5 '-monophosphate sodium salt aqueous solution and 3 mL of ultrapure water were added as an internal standard solution, and measurement was performed by liquid chromatography mass spectrometry. if
    The peak area ratio of γ-aminobutyric acid to guanosine- 15 N 5 '-monophosphate is 0.105 or more,
    The peak area ratio of dimethylpyrazine to guanosine- 15 N 5 '-monophosphate is 2.4 or more,
    The peak area ratio of N-(1-deoxy-D-fructose-1-yl)-L-glutamic acid to guanosine - 15N55' -monophosphate is 0.9 or more,
    The peak area ratio of N-(1-deoxy-D-fructose-1-yl)-L-pyroglutamic acid to guanosine - 15N55' -monophosphate is 0.2 or more,
    The peak area ratio of succinic acid to guanosine- 15 N 5 '-monophosphate is 1.7 or more,
    The peak area ratio of succinic semialdehyde to guanosine- 15 N 5 '-monophosphate is 0.6 or more, and
    The peak area ratio of α-ketoglutarate to guanosine- 15 N 5 '-monophosphate is 9.5 or more,
    A container-packed, pressurized and heated food that satisfies any one or more of
  5.  還元糖の含有量が1質量%以上であり、アミノ酸の含有量が0.6質量%以上である原料混合物を調製する工程、
     前記原料混合物を、酸素透過度が0.1mL/m/day/MPa以上である容器に収容し密封する工程、及び、
     前記容器中での前記原料混合物を、最高到達品温が100~140℃、加熱価が33~80となるように加圧加熱処理する工程
    を含み、
     前記加熱価が、品温(A)[℃]に対して10{(A-120)/30}で求められる値を加圧加熱処理時間[分]で積分した値である、
    容器詰め加圧加熱食品の製造方法。
    preparing a raw material mixture having a reducing sugar content of 1% by mass or more and an amino acid content of 0.6% by mass or more;
    A step of storing and sealing the raw material mixture in a container having an oxygen permeability of 0.1 mL/m 2 /day/MPa or more;
    A step of pressurizing and heating the raw material mixture in the container so that the maximum product temperature is 100 to 140 ° C. and the heating value is 33 to 80,
    The heating value is a value obtained by integrating the value obtained by 10 {(A-120)/30} with respect to the product temperature (A) [° C.] by the pressure heat treatment time [minute].
    A method for producing a container-packed, pressurized and heated food.
  6.  前記原料混合物の水分含量が80質量%以下である、請求項5に記載の容器詰め加圧加熱食品の製造方法。 The method for producing a container-packed, pressurized and heated food according to claim 5, wherein the water content of the raw material mixture is 80% by mass or less.
  7.  前記原料混合物にトマト加工物及び/又はオニオン加工物を含む、請求項5又は6に記載の容器詰め加圧加熱食品の製造方法。 The method for producing a container-packed, pressurized and heated food according to claim 5 or 6, wherein the raw material mixture contains a processed tomato and/or a processed onion.
PCT/JP2022/008200 2021-03-01 2022-02-28 Pressure-heated food packed in container and production method for same WO2022186118A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280017949.5A CN116940246A (en) 2021-03-01 2022-02-28 Packaged pressure-heated food and method for producing the same
JP2023503808A JPWO2022186118A1 (en) 2021-03-01 2022-02-28

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-031544 2021-03-01
JP2021031544 2021-03-01
JP2021047830 2021-03-22
JP2021-047830 2021-03-22

Publications (1)

Publication Number Publication Date
WO2022186118A1 true WO2022186118A1 (en) 2022-09-09

Family

ID=83153770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/008200 WO2022186118A1 (en) 2021-03-01 2022-02-28 Pressure-heated food packed in container and production method for same

Country Status (2)

Country Link
JP (1) JPWO2022186118A1 (en)
WO (1) WO2022186118A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH053776A (en) * 1990-10-15 1993-01-14 Mitsubishi Gas Chem Co Inc Food-packaged form for hot cooking
CN106036764A (en) * 2016-06-29 2016-10-26 安徽省农业科学院农产品加工研究所 Goose essence and preparation method thereof
JP2016221864A (en) * 2015-06-01 2016-12-28 凸版印刷株式会社 Gas barrier laminate
WO2021177204A1 (en) * 2020-03-02 2021-09-10 ハウス食品株式会社 Container-packed amber-colored onion seasoning and method for producing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH053776A (en) * 1990-10-15 1993-01-14 Mitsubishi Gas Chem Co Inc Food-packaged form for hot cooking
JP2016221864A (en) * 2015-06-01 2016-12-28 凸版印刷株式会社 Gas barrier laminate
CN106036764A (en) * 2016-06-29 2016-10-26 安徽省农业科学院农产品加工研究所 Goose essence and preparation method thereof
WO2021177204A1 (en) * 2020-03-02 2021-09-10 ハウス食品株式会社 Container-packed amber-colored onion seasoning and method for producing same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CARABASA-GIRIBET MERC�, IBARZ-RIBAS ALBERT: "Kinetics of colour development in aqueous fructose systems at high temperatures", JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, WILEY & SONS, CHICHESTER., GB, vol. 80, no. 14, 1 November 2000 (2000-11-01), GB , pages 2105 - 2113, XP055964205, ISSN: 0022-5142, DOI: 10.1002/1097-0010(200011)80:14<2105::AID-JSFA760>3.0.CO;2-G *

Also Published As

Publication number Publication date
JPWO2022186118A1 (en) 2022-09-09

Similar Documents

Publication Publication Date Title
AU2005280229B2 (en) Method for reducing acrylamide formation in thermally processed foods
US20110287155A1 (en) Method for producing flavor material
JP2008521439A (en) Methods for increasing the degradation of acrylamide
US3615600A (en) Meat flavor composition containing succinic acid
WO2018079848A1 (en) Flavor enhancer
ES2749148T3 (en) Flavoring composition for food products
JP4986732B2 (en) Seasoning
EP0181421B1 (en) Flavor enhancing seasonings and foods containing them
JP6181932B2 (en) Composition and seasoning used for enhancing sesame flavor, imparting sesame flavor, and / or nut flavor
JP4962481B2 (en) Onion extract, method for producing onion extract and food using the same
WO2022186118A1 (en) Pressure-heated food packed in container and production method for same
JP4579223B2 (en) Liquid seasoning
JP4965349B2 (en) Seasoning
KR20130035855A (en) Amino acid seasoning composition comprising l-glutamic acid and basic amino acid
JP6603050B2 (en) Method for producing packaged food and drink and method for suppressing quality deterioration of packaged food and drink
CN116940246A (en) Packaged pressure-heated food and method for producing the same
JP5290721B2 (en) Flavor improving method for bonito extract or seasoning containing bonito extract
JP6563205B2 (en) Soy sauce-like seasoning or soy sauce flavor improver containing low molecular weight esters
WO2021177204A1 (en) Container-packed amber-colored onion seasoning and method for producing same
JP7432213B2 (en) Food and beverages with improved taste and aroma
EP1827134B1 (en) Flavour enhancer
RU2171051C2 (en) Food composition &#34;rafael&#34;
JP2002101842A (en) Seasoning material, method for producing seasoning material and method for producing food using seasoning material
JP7250752B2 (en) Retort food containing tomato onion seasoning
JP5726437B2 (en) Container soup

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22763174

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023503808

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2301005250

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 202280017949.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22763174

Country of ref document: EP

Kind code of ref document: A1