WO2018079848A1 - Flavor enhancer - Google Patents

Flavor enhancer Download PDF

Info

Publication number
WO2018079848A1
WO2018079848A1 PCT/JP2017/039403 JP2017039403W WO2018079848A1 WO 2018079848 A1 WO2018079848 A1 WO 2018079848A1 JP 2017039403 W JP2017039403 W JP 2017039403W WO 2018079848 A1 WO2018079848 A1 WO 2018079848A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
food
flavor
taste
content
Prior art date
Application number
PCT/JP2017/039403
Other languages
French (fr)
Japanese (ja)
Inventor
柴田 雅之
廣塚 元彦
康生 松村
由佳子 林
由記子 水谷
Original Assignee
不二製油グループ本社株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 不二製油グループ本社株式会社 filed Critical 不二製油グループ本社株式会社
Priority to JP2018547229A priority Critical patent/JPWO2018079848A1/en
Publication of WO2018079848A1 publication Critical patent/WO2018079848A1/en
Priority to JP2022164360A priority patent/JP7428224B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof

Definitions

  • the present invention relates to a novel flavor enhancer and use thereof.
  • the taste of food and drink is said to be based on a balance of various factors such as taste, aroma and texture.
  • “tasting” is one of the most important factors that determine the quality of food and drink, and all five kinds of tastes expressed by sweet, salty, sour, bitter and umami are included in food and drink. It is widely recognized to include “taste”.
  • Patent Document 2 Conventionally, several methods for imparting “rich” and “rich taste” to foods and drinks have been reported, and heated products of gelatin, tropomyosin and sugar (Patent Document 2), imidazole peptides and sulfone group-containing compounds (patents) Document 3), a method of adding ingredients derived from natural product extracts such as onion extract (Patent Document 4) to food and drink, glutathione (Patent Document 5), and the like have been reported.
  • ⁇ -glutamyl peptides Patent Document 1 such as ⁇ -Glu-Val-Gly are used as components having a strong taste compared with these components as components having a rich taste from natural product extracts and the like.
  • a method of separating into a high concentration or chemically synthesizing and adding it to a food or drink has been reported.
  • JP 2011-115186 A Japanese Patent Laid-Open No. 10-276709 JP-A-8-289760 JP 2010-142147 A Japanese Unexamined Patent Publication No. 60-9465 JP-A-57-132896 Japanese Patent Laid-Open No. 2001-21880
  • the flavor of food and drink is not only the taste that you can feel in the taste buds of the tongue, but also the fragrance (flavor), which is an important factor for feeling deliciousness. There is a case where the balance of flavor is not suitable due to insufficient enhancement.
  • an object of the present invention is to provide a new flavor enhancer capable of imparting flavors of foods and drinks, particularly “richness”.
  • a flavor enhancer comprising the following components (A) and (B): (A) ⁇ -glutamyl peptide (B) Trisaccharide or higher oligosaccharide (2)
  • the component (A) is represented by the structure of ⁇ -Glu-Xn (1)
  • X is an amino acid or an amino acid derivative, Xn is a sequence in which n X are bonded, and n is an integer of 1 to 7. When n is 2 or more, X is a different kind of amino acid or amino acid derivative.
  • a flavor-enhanced food / beverage composition comprising adding the components (A) and (B) according to any one of (1) to (9) above to a food / beverage composition Manufacturing method, (11) The method for producing a food / beverage composition with enhanced flavor according to (10), wherein component (A) is added so that the content in the food / beverage composition is 0.1 to 1000 ppm, (12) The method for producing a food or beverage composition with enhanced flavor according to the above (10) or (11), wherein the component (B) is added so that the content in the food or beverage composition is 1 to 5000 ppm.
  • a method for enhancing the flavor of a food or drink composition comprising adding the components (A) and (B) according to any one of (1) to (9) to the food or drink composition, (14) A method for extracting the component (A) and / or (B) according to any one of (1) to (9) from beans, wherein the water content of the beans is a predetermined content relative to the beans. In a state where water is absorbed so as to become, the microwave heat treatment or the heat treatment exceeding 100 ° C. is performed, or the humid heat treatment exceeding 100 ° C.
  • the present invention it is possible to provide a “flavor enhancer” that can enhance the flavor of a food or drink, that is, can impart “rich”. Moreover, by adding the “flavor enhancer” provided by the present invention to foods and drinks, it is possible to produce foods and drinks with enhanced taste and aroma and richness.
  • the obtained food / beverage product is one in which the original flavor of the food / beverage product is utilized, and can be excellent in flavor balance.
  • FIG. 10 is a drawing-substituting photograph taken with a scanning electron microscope, in which the cell structure of soybean in test section T1 (unheated, water content 0%) of Test Example 8 is copied.
  • FIG. 9 is a drawing-substituting photograph using a scanning electron microscope showing the cell structure of test section T3 of Test Example 8 (autoclave heat treatment, water content 5%, 120 ° C. ⁇ 4 minutes).
  • FIG. 10 is a drawing-substituting photograph by a scanning electron microscope showing a cell structure of test section T7 of Test Example 8 (microwave heat treatment, water content 5%, 500 W ⁇ 30 seconds).
  • Test Example 10 is a drawing-substituting photograph taken with a scanning electron microscope, in which the cell structure of soybean in test section T1 (unheated, water content 0%) of Test Example 8 is copied.
  • FIG. 9 is a drawing-substituting photograph using a scanning electron microscope showing the cell structure of test section T3 of Test Example 8 (autoclav
  • the flavor enhancer of this invention is characterized by including the component (A) and component (B) shown below.
  • the quantity ratio (concentration, etc.) is a ratio based on weight unless otherwise specified. That is, for example, “%” indicates “% by weight (w / w)” unless otherwise specified, and “ppm” indicates “ppm (w / w)” unless otherwise specified.
  • the "concentration at the time of eating" of a certain component means the density
  • the “flavor enhancer” refers to an agent having an effect of enhancing the flavor.
  • “flavor” refers to a taste felt by combining “taste” and “fragrance”.
  • the flavor enhancer of the present invention has an effect of enhancing sweetness, salty taste, umami, etc., which tend to have a positive effect on human taste, and also enhances aroma. It is synonymous with “giving taste”, and enhancing the flavor is synonymous with “giving richness”. Therefore, the flavor enhancer of the present invention can also be referred to as a “richness-imparting agent”.
  • component (A) is a ⁇ -glutamyl peptide and is structurally represented by the structural formula of ⁇ -Glu-Xn.
  • component (A) is a ⁇ -glutamyl peptide and is structurally represented by the structural formula of ⁇ -Glu-Xn.
  • a ⁇ -glutamyl peptide having a taste enhancing action as a characteristic is preferred as a flavor enhancer. Whether or not the target ⁇ -glutamyl peptide has a taste enhancing action can be determined by a sensory evaluation method.
  • ⁇ - means that X is bonded via a carboxyl group at the ⁇ -position of glutamic acid.
  • Glu is glutamic acid.
  • X represents an amino acid or an amino acid derivative. The amino acid and amino acid derivative are not particularly limited, but are usually in the L form.
  • N represents an integer of 1 to 7
  • Xn represents a sequence in which n pieces of X are bonded. As long as it has taste characteristics as a common characteristic, the type of “X” and the number of “n” are not limited, but as a specific example, the number of “n” is selected in the range of 1 to 7. A range of 1-6, 1-5, 1-4, 1-3, or 1-2 can also be selected.
  • n when n is 2 or more, it indicates that there are a plurality of X.
  • X may be the same type of amino acid or amino acid derivative, or may be a combination of different types of amino acids or amino acid derivatives. Also good.
  • Component (A) may be one kind of ⁇ -glutamyl peptide or a combination of two or more kinds of ⁇ -glutamyl peptides.
  • one kind of ⁇ -Glu-Phe or a combination of ⁇ -Glu-Phe and ⁇ -Glu-Tyr may be used.
  • the ⁇ -glutamyl peptide in the present invention includes a free form, a salt thereof, or a mixture thereof.
  • amino acids corresponding to X specifically, neutral amino acids such as Gly, Ala, Val, Leu, Ile, Ser, Thr, Cys, Met, Asn, Gln, Pro, acidic amino acids such as Asp and Glu, Lys, Examples include basic amino acids such as Arg and His, aromatic amino acids such as Phe, Tyr and Trp, and ⁇ amino acids such as ⁇ -Ala and ⁇ amino acids such as ⁇ -aminobutyric acid.
  • amino acid derivatives corresponding to X include N- ⁇ -nitroarginine, S-allyl cysteine, S-methyl cysteine and the like.
  • X that binds to the carboxyl group at the ⁇ -position of N-terminal Glu includes Glu, Val, and the like. Gly and the like can be mentioned, but of course, it is not limited to these examples.
  • n 2 or more
  • the carboxyl group that binds to the C-terminal amino acid is in any of the ⁇ -position, ⁇ -position, and ⁇ -position. It may be in.
  • the carboxyl group that forms the peptide bond at the C-terminal side may be the ⁇ -position carboxyl group or the ⁇ -position carboxyl group. It may be a carboxyl group.
  • component (A) As a component (A), what was obtained from a commercial item, what was suitably manufactured and acquired, or what was concentrated by various methods from processed foods, such as a natural product, soy sauce, and cheese containing many components (A), is used. Also good.
  • the method for producing the component (A) is not particularly limited, and a known method can be used.
  • a known method for example, (1) a method of synthesizing a component (A) of a target sequence chemically, (2) a method of synthesizing a component (A) of a target sequence by enzymatic reaction, etc. Is mentioned.
  • the component (A) having the target sequence can be synthesized using a peptide synthesizer.
  • Examples of the method for chemically synthesizing the component (A) include a peptide solid phase synthesis method.
  • the component (A) is synthesized by enzymatic reaction
  • a method using ⁇ -glutamylcysteine synthase described in Patent Document 6 or a method using ⁇ -glutamyltranspeptidase described in Patent Document 7 is used. can do. Moreover, it can also manufacture as a kind of enzymatic reaction by culture
  • the component (A) When the component (A) is concentrated from a natural product, it can be extracted from the natural product using an aqueous solvent and fractionated or purified as necessary. In addition, embodiment for extracting a component (A) efficiently from a natural product is mentioned later.
  • the extract usually has a higher concentration of the component (A) than the natural product, that is, the component (A) is concentrated.
  • natural products containing a large amount of component (A) include beans such as soybean, lupine, pea, broad bean, mung bean, red bean and kidney bean, and onions such as onion and garlic, but as long as component (A) is included. It is not limited to these examples.
  • examples of the processed food containing the component (A) include aged cheese and soy sauce.
  • examples of the component (A) contained in soybean include ⁇ -Glu-Gly, ⁇ -Glu-Cys, ⁇ -Glu-Tyr, ⁇ -Glu-Phe, ⁇ -Glu-Pro, and ⁇ -Glu-Trp. , ⁇ -Glu-Leu, ⁇ -Glu-Ile and the like.
  • ⁇ -Glu-Tyr and ⁇ -Glu-Phe are mentioned as particularly high contents, but are not limited to these two types.
  • the component (A) As a method for producing the component (A), a purified product that has been synthesized or extracted by any of the above methods and then purified to a desired level may be used.
  • the component (A) may have a purity of 50% or more, 70% or more, 90% or more, or 95% or more.
  • component (A) data of ⁇ -Glu-Phe, ⁇ -Glu-Tyr and glutathione ( ⁇ -Glu-Cys-Gly) are shown as component (A).
  • the same flavor enhancer is not limited to these ⁇ -glutamyl peptides, and when a ⁇ -glutamyl peptide having characteristics common to these peptides, that is, a taste, is used as component (A), One skilled in the art can understand that it is obtained.
  • component (B) oligosaccharide of trisaccharide or more
  • component (B) is a trisaccharide or higher oligosaccharide.
  • Oligosaccharide is a general term for saccharide oligomers produced by glycosidic bonding of a plurality of monosaccharides. Usually, the upper limit of the number of bonds is 10 or less, and in the present invention, it is preferably 8 or less, more preferably 7 or less.
  • oligosaccharides include, for example, maltooligosaccharides, isomaltooligosaccharides, galactooligosaccharides, xylo-oligosaccharides, soybean oligosaccharides, beet oligosaccharides, cellooligosaccharides, nigero-oligosaccharides, dairy oligosaccharides, fructooligosaccharides, gentio-oligosaccharides, chitin oligosaccharides.
  • pectin oligosaccharide 1 or 2 or more selected from the group consisting of pectin oligosaccharide, inuro oligosaccharide, levan oligosaccharide, manno oligosaccharide, chitooligosaccharide and palatinose oligosaccharide.
  • the present invention is not limited to these oligosaccharides, and other oligosaccharides exhibiting similar effects can be used.
  • the component (B) in this invention may exist in a natural product, or may be produced
  • a relatively low sweetness of the oligosaccharide is preferable because the flavor enhancing effect is enhanced.
  • the sweetness level (relative value) of the oligosaccharide is preferably 40 or less, more preferably 35 or less, or 30 or less. Also, 5 or more, or 10 or more oligosaccharides are more preferable than oligosaccharides whose sweetness level is too close to 0.
  • An oligosaccharide within such a range can be appropriately selected, and examples thereof include fructooligosaccharide (about 30), galactooligosaccharide (about 30), isomaltoligosaccharide (about 40), xylooligosaccharide (about 35), raffinose (about 20) and the like.
  • fructooligosaccharide about 30
  • galactooligosaccharide about 30
  • isomaltoligosaccharide about 40
  • xylooligosaccharide about 35
  • raffinose about 20
  • the sweetness is defined as the sweetness of the mixture.
  • “Sweetness” can be determined according to the method described in “Basic Knowledge of Sweetness”: Kenji Maebashi, Journal of the Japan Brewing Institute, 106 (12), p.818-825 (2011), p.819. it can.
  • sucrose is used as a standard substance and the sweetness level of a 5% sucrose aqueous solution is set to 100
  • the temperature of the aqueous solution at the time of sensory evaluation shall be normal temperature (20 degreeC).
  • components (B) present in natural products raffinose, stachyose, bell bass course, panose, kestose, etc. are known, and these are contained in beans such as soybeans and peas, beets, onions, etc. It can be extracted from them and used. Moreover, the commercial item of this oligosaccharide can also be used.
  • component (A) and component (B) coexist in a natural product these components may be concentrated in the same fraction, or each fraction may be mixed after concentrating in separate fractions. May be.
  • embodiment for extracting a component (B) efficiently from a natural product is mentioned later.
  • Examples of the component (B) produced using an enzyme include maltotriose, maltotetraose, maltopentaose, maltohexaose produced by decomposing starch with amylase, and cellulosic produced by differentiating cellulose with cellulase. Examples include tetraose and cellotriose.
  • the said component (B) can also use a commercial item.
  • the above-mentioned commercially available component (B) produced using an enzyme is a mixture of oligosaccharides having various constituent sugars, the number of linkages, and the binding mode, and includes a large amount of monosaccharides and disaccharides.
  • the component (B) in the present invention is a trisaccharide or higher oligosaccharide as described above, when using an oligosaccharide produced using these enzymes, a pure fraction excluding a monosaccharide or a disaccharide is used. Only as a component.
  • the present invention can enhance the “taste” of food and drink by the combined use of component (A) and component (B).
  • the effect of enhancing the “taste” of food and drink by the combined use of the component (A) and the component (B) is also referred to as “taste enhancing effect”.
  • the flavor enhancer of this invention may consist only of the said component (A) and (B), and may also contain another component as a component (C).
  • the component (C) is not particularly limited as long as it can be orally administered.
  • the component (C) may be a single component, or two or more components.
  • component (C) for example, inorganic salts such as sodium chloride, potassium chloride and calcium chloride; organic acids such as acetic acid and citric acid and salts thereof; amino acids such as glutamic acid and glycine and salts thereof; inosinic acid and guanylic acid Nucleic acids and salts thereof; dietary fiber, pH buffer, fragrance, edible oil, ethanol, water and the like.
  • inorganic salts such as sodium chloride, potassium chloride and calcium chloride
  • organic acids such as acetic acid and citric acid and salts thereof
  • amino acids such as glutamic acid and glycine and salts thereof
  • inosinic acid and guanylic acid Nucleic acids and salts thereof
  • dietary fiber pH buffer, fragrance, edible oil, ethanol, water and the like.
  • the form of the flavor enhancer of the present invention is not particularly limited.
  • the flavor enhancer of the present invention may be in any form such as liquid, powder, granule, paste, cube, etc., and an appropriate auxiliary material for maintaining the quality of such form can be added.
  • the content and content ratio of each component in the flavor enhancer of the present invention are not particularly limited as long as a taste enhancing effect is obtained, and various kinds of components, eating concentration, use amount of the flavor enhancer of the present invention, etc. It can set suitably according to conditions.
  • total content of component (A) and component (B) in the flavor enhancer of the present invention is not particularly limited, but the lower limit is, for example, 1 ppm (0.0001 %) Or more, 10 ppm (0.001%) or more, 100 ppm (0.01%) or more, or 1000 ppm (0.1%) or more. Moreover, an upper limit can be 100% or less, 99.9% or less, 50% or less, 10% or less, or 1% or less.
  • the weight ratio of the content of the component (B) to the content of the component (A) is, for example, a lower limit of 0.001 or more, 0.005 or more, 0.01 or more, 0.1 or more, 1 It can be more than or 10 or more.
  • an upper limit can be 50000 or less, 10000 or less, 5000 or less, 1000 or less, or 500 or less. More preferably, the weight ratio can be, for example, 0.001 to 50,000, and further preferably 0.1 to 500.
  • each component shall be calculated by converting the mass of the salt into the mass of an equimolar free body when each component forms a salt.
  • the content of each component contained in the flavor enhancer of the present invention can be set so as to satisfy, for example, the total content and content ratio of each component exemplified above.
  • the flavor enhancer of the present invention may generally be in a form in which components (A) and (B) are mixed in one package, but is not limited thereto as long as the effects of the present invention are exhibited.
  • the components (A) and (B) may be separately packaged and added to the food or drink at the time of use.
  • the amount added is not particularly limited as long as a taste enhancing effect is obtained. It can be set as appropriate according to various conditions such as the content of each component in the flavor enhancer of the present invention and the intake mode of the food and beverage composition.
  • the flavor enhancer of the present invention can be added in an amount of 1 ppm (0.0001%) to 50%, and 10 ppm (0.001%) to 10% can be added to the food / beverage composition or the raw material composition thereof. it can.
  • Another aspect of the present invention is a method for producing a food / beverage product composition with enhanced taste, wherein the component (A) and the component (B) are added to the food / beverage product composition.
  • Food flavor composition enhancement method Another aspect of the present invention is a method for enhancing the flavor of a food / beverage composition comprising adding components (A) and (B) to the food / beverage composition.
  • the components (A) and (B) may be added to the food or beverage composition as the aforementioned flavor enhancer, or the components (A) and ( B) may be added to the food or beverage composition as an independent raw material.
  • the type of the food / beverage product composition of the present invention is not particularly limited, and various compositions capable of eating and drinking are widely included.
  • the composition in this invention means the thing artificially prepared from the edible raw material without including a natural product.
  • the addition time of the flavor enhancer of this invention or a component (A) and a component (B) may be performed in any step of the manufacturing process of a food-drinks composition, and each component may be added in another step.
  • the flavor enhancer or the component (A) and the component (B) of the present invention may be added to the raw material of the food / beverage product composition, or may be added to an intermediate product during production, and the finished food / beverage product It may be added to the composition.
  • the flavor enhancer of the present invention, or component (A) and component (B) may be added only once, or may be added in two or more divided portions.
  • the method of the present invention may further include adding a component (C). Also when adding a component (C), it can carry out similarly to addition of the flavor enhancer of this invention, or a component (A) and a component (B).
  • the addition amount and addition ratio of each component to the food / beverage product composition can be appropriately set according to various conditions such as the types of these components and the food / beverage food intake mode of the present invention.
  • the component (A) is, for example, 0.01 ppm or more, 0.1 ppm or more, 1 ppm or more as the content of the component (A) in the food / beverage composition or the raw material composition. Or 5 ppm or more. Moreover, it can be added so that it may become 1000 ppm or less, 200 ppm or less, 100 ppm or less, 50 ppm or less, or 20 ppm or less. More preferably, it can be added so as to be 0.1 ppm to 100 ppm, and more preferably 1 ppm to 50 ppm.
  • the component (B) is contained in the food / beverage composition or the raw material blend thereof, for example, 1 ppm or more, 10 ppm or more, 20 ppm or more, 50 ppm or more as the content of the component (B) in the food / beverage composition. It can be added to be 100 ppm or more. Moreover, it can be added so that it may become 5000 ppm or less, 1000 ppm or less, 500 ppm or less, 300 ppm or less, 200 ppm or less, or 150 ppm or less. More preferably, it can be added so as to be 1 ppm to 500 ppm, more preferably 10 ppm to 300 ppm.
  • the weight ratio of the added amount of the component (B) to the added amount of the component (A) may be in accordance with the ratio described in the flavor enhancer of the present invention.
  • the presence or absence of a flavor enhancing action by the combined use of ⁇ -glutamyl peptide and oligosaccharide can be determined by a sensory evaluation method. That is, as described in the following examples, if the intensity of the scent in the mouth 10 seconds later is higher than the control sample from the intensity of the scent in the mouth immediately after each sample is included in the mouth (after 0 seconds), When it is determined that the “scent” has increased, and at the same time, the sensory evaluation method also has a taste enhancing action, it can be determined that it has a flavor enhancing action.
  • water-soluble components such as component (A) and component (B), which are active ingredients of the flavor enhancer of the present invention, are extracted from natural products with an aqueous solvent, and the extract, concentrate and simple substance are extracted. A detached product can also be used.
  • the present inventors extracted water-soluble components such as component (A) and component (B) from natural products under various conditions, and examined the concentrations thereof, so that component (A) and component (B) were extracted. An efficient and simple extraction method was found. Below, the specific aspect is described.
  • the method for efficiently extracting the water-soluble components (A) and (B) from the natural product according to the present invention includes selecting beans as natural products, preheating the beans in a predetermined moisture range, In this method, beans after heat treatment are extracted with an aqueous solvent.
  • the beans are subjected to microwave heat treatment or a heat treatment exceeding 100 ° C. in a state in which the water content of the beans is absorbed so that the water content becomes a predetermined content, or the water content of the beans is a predetermined content.
  • a humidification heat treatment exceeding 100 ° C. is performed, and the water-soluble components (A) and / or (B) are extracted from the beans after the heat treatment with an aqueous solvent.
  • the water-soluble component contained in the cells can be efficiently extracted because the cell structure of the beans can be rapidly changed in a short time.
  • Beans Beans are not particularly limited, and examples thereof include soybean, lupine, pea, broad bean, mung bean, red bean, kidney bean, peanut and the like. Beans that have been previously subjected to physical treatment such as molting, deembrying, pressure bias, slicing, crushing, pulverization, oil extraction, or chemical treatment such as degreasing with hexane may be used.
  • the predetermined water content in the beans is preferably 8 to 55 wt%, more preferably 9 to 50 wt%, 10 to 45 wt%, 10 to 40 wt%, 10 to 35 wt%.
  • the range of 10 to 30% by weight can be selected, and the lower limit can be selected from 11% by weight, 12% by weight, 13% by weight, 14% by weight or 15% by weight, and the upper limit can be selected from 25% by weight.
  • % By weight or 20% by weight can also be selected. If the water content in the beans is too small, the amount of the water-soluble component (A) or (B) extracted with the aqueous solvent tends to decrease. Moreover, even if there is too much water content in beans, it becomes the same tendency.
  • the water-soluble component efficiently extracted from beans is not necessarily limited to component (A) or component (B), and other water-soluble components such as free amino acids such as glutamic acid are also included. Similarly, it can be extracted efficiently.
  • Heat treatment It is important that the heat treatment in this embodiment is performed in a state where the water content in the beans is at the predetermined content.
  • a heat treatment method microwave heating, dry heat heating, humidification heating, or the like can be used.
  • the heat treatment When the heat treatment is carried out by microwave heating, it can be carried out, for example, at 200 to 1000 W, preferably 400 to 800 W in a state in which the water content of the beans is absorbed in advance so as to have a predetermined content.
  • the heating time can be 10 seconds to 120 seconds, preferably 20 to 60 seconds.
  • the above heat treatment conditions can be changed as appropriate.
  • the beans are heated at a temperature exceeding 100 ° C., preferably 110 to 200 ° C., more preferably 110 to 180 ° C., in a state in which the water content of the beans is previously absorbed so as to have a predetermined content.
  • the heating time can be 30 to 300 minutes, preferably 90 to 250 minutes, more preferably 140 to 230 minutes.
  • the dry heat heating device include a device such as an oven or a thermostat that is heated without contact with water or water vapor by a gas or an infrared heater, and the heating efficiency varies depending on the type of the device. The conditions can be appropriately changed as long as the temperature is at least over 100 ° C.
  • the heat treatment When the heat treatment is performed by humidification heating, it may be performed in a state in which the water content of the beans is absorbed in advance so as to have a predetermined content.
  • the moisture content of the beans can be increased during the heating by steam when humidified heating is performed, so that the moisture content of the beans is kept at a predetermined content without water absorption beforehand. May be.
  • the heating temperature can be at least over 100 ° C., preferably 110 to 200 ° C., more preferably 110 to 180 ° C.
  • the heating time can be 1 to 30 minutes, preferably 3 to 20 minutes, more preferably 5 to 10 minutes.
  • Examples of the humidification heating device include an autoclave and the like. Since the heating efficiency varies depending on the type of the device, the above heat treatment conditions can be appropriately changed as long as the temperature is at least over 100 ° C.
  • the water-soluble component is extracted from the beans heat-treated in the above manner by an ordinary method using an aqueous solvent.
  • an aqueous solvent water, an aqueous ethanol solution, or the like can be used.
  • the extraction temperature is not particularly limited and can be selected from 10 to 100 ° C., but the higher the temperature, the better the extraction efficiency of the water-soluble component.
  • the amount of the aqueous solvent used for the extraction is not particularly limited, and the extraction can be performed by adding, for example, 2 to 10 times the aqueous solvent with respect to the weight of the beans.
  • the beans may be subjected to extraction as they are, or the beans may be appropriately pulverized in a wet or dry manner for extraction. After the extraction operation, insoluble components are removed by centrifugation or filtration to obtain a bean extract containing a water-soluble taste substance.
  • the obtained legume extract may be used as it is or after further fractionation, purification, and the like in the form of a stock solution, a concentrate, or a dried product in a state where the water-soluble components are more concentrated. it can.
  • the bean extract obtained by the extraction method of this embodiment contains a higher concentration of water-soluble components than the bean extract obtained without depending on the extraction method of this embodiment, the flavor enhancement of the present invention itself It can be used as an agent (including raw materials for foods and drinks for enhancing flavor), and it can also be used as an inexpensive source of the water-soluble component (A) and / or (B) that is a raw material for the flavor enhancer of the present invention. be able to.
  • Test Example 1 Examination of combined effect of ⁇ -Glu-Tyr and various oligosaccharides In this test example, the effect of enhancing the taste when ⁇ -Glu-Tyr and various oligosaccharides are used alone or in combination. The presence or absence was verified by the following test method. For ⁇ -Glu-Tyr, a reagent manufactured by BACHEM was used.
  • raffinose trisaccharide, sweetness of about 20%
  • stachyose tetrasaccharide, sweetness of about 30%
  • maltotriose trisaccharide, trisaccharide, manufactured by Santa Cruz Biotechnology
  • maltotetraose tetrasaccharide, sweetness of about 22%)
  • maltopentaose pentose, sweetness of about 20%
  • maltohexaose hexaose
  • ⁇ Test method> Preparation of Evaluation Sample A mixed sample of sodium glutamate (manufactured by Wako Pure Chemical Industries, Ltd.), inosine-5′-phosphate (manufactured by Sigma-Aldrich), and sodium chloride was added to a control sample having umami and salty taste (none Added). The concentration of each reagent was 0.02% sodium glutamate, 0.01% inosine-5′-phosphate, and 0.5% sodium chloride. To this control sample, ⁇ -Glu-Tyr and various sugars were added at a predetermined concentration to prepare a test sample.
  • the average value of the scoring results of the names was expressed as the taste intensity of each test section. And when the score of the test sample was high compared with the control sample, it was judged that the added component had a taste enhancing effect (kokumi imparting effect). The results are shown in Table 1-1 and Table 1-2.
  • the taste enhancing effect of tetrasaccharide pentasaccharide and hexasaccharide was stronger than that of trisaccharide. This generally indicates that the sweetness level decreases as the number of monosaccharide bonds increases, and thus it is suggested that the taste enhancing effect increases as the sweetness level decreases to a certain level.
  • the trisaccharides panose showed the same taste enhancing effect as the tetrasaccharide.
  • no taste enhancing effect was shown even if any kind was used in combination.
  • Test Example 2 Examination of addition concentration of oligosaccharides higher than trisaccharide
  • the same test method as in Test Example 1 was used, and saccharides higher than trisaccharide were used in combination with ⁇ -Glu-Tyr at various concentrations. Then, the taste enhancement effect was verified. The concentration of each component added and the results are as shown in Table 2.
  • Test Example 3 Examination of added concentration of ⁇ -Glu-Tyr
  • ⁇ -Glu-Tyr was used in combination with oligosaccharides of three or more sugars at various concentrations using the same test method as Test Example 1. We verified the taste enhancement effect in each case. The concentration of each component added and the results are as shown in Table 3.
  • Test Example 4 Combined effects of various ⁇ -glutamyl peptides and trisaccharide or higher oligosaccharides
  • the same test method as in Test Example 1 was used, and various ⁇ -glutamyl peptides and raffinose were used in combination. It verified about the taste enhancement effect.
  • ⁇ -glutamyl peptide in addition to ⁇ -Glu-Tyr, ⁇ -Glu-Phe (Watanabe Chemical Co., Ltd.), glutathione ⁇ -Glu-Cys-Gly (Wako Pure Chemical Industries, Ltd.) ) was used. All of these ⁇ -glutamyl peptides have a taste.
  • the addition concentration of each component and the results are as shown in Table 4.
  • ⁇ Test method> A commercially available solid chicken consomme soup (manufactured by Ajinomoto Co., Inc.) is prepared with 300 ml of hot water per cube, and this is used as a control sample. To this control sample, ⁇ -Glu-Tyr and raffinose were added at predetermined concentrations to prepare a test sample. The obtained test sample was subjected to sensory evaluation for taste in the same manner as in Test Example 1. In addition, sensory evaluation of the fragrance was carried out by the following method. The addition concentration of each component and the sensory evaluation results are as shown in Table 5.
  • Each panelist evaluated the intensity of the scent of “0 seconds later”, “5 seconds later”, and “10 seconds later” of the control sample as “50 mm”, “40 mm”, and “30 mm” on the scale.
  • the average value of the scoring results of the names was expressed by the scent intensity of each test section.
  • the added component is judged to have a fragrance enhancing effect, and when the enhancing effect is recognized for both taste and fragrance, It was judged that there was an enhancement effect (better effect).
  • Test Example 6 Comparison of trisaccharide or higher oligosaccharides with monosaccharides, disaccharides and polysaccharides
  • the taste enhancement effect when used in combination with ⁇ -Glu-Tyr is the same as in Test Example 1.
  • the method was used for comparative verification of trisaccharide or higher oligosaccharides with monosaccharides, disaccharides and polysaccharides.
  • Monosaccharide was glucose
  • disaccharide was sucrose
  • polysaccharide was pectin (both manufactured by Wako Pure Chemical Industries, Ltd.).
  • the addition concentrations and results of each component are as shown in Table 6.
  • raffinose and stachyose were commonly detected as main oligosaccharides from various bean extracts, and part of Verbasse was also detected.
  • ⁇ -glutamyl peptide in which an amino acid was bonded to the ⁇ -position of N-terminal glutamic acid was detected from four kinds of legume extracts excluding broad beans and peas.
  • ⁇ -Glu-Tyr ⁇ -Glu-Phe, ⁇ -Glu-Glu, ⁇ -Glu-Val and ⁇ -Glu-Leu contained in each extract, according to the conditions of Test Example 5
  • the flavor enhancing effect was confirmed, all of them had enhanced taste and aroma, and thus all had a flavor enhancing effect.
  • ⁇ -Glu-S-Methyl-cysteine ⁇ -Glu- ⁇ -Glu-S-Methyl-cysteine, ⁇ -Glu- ⁇ -Phe- ⁇ -Ala, ⁇ -Glu-Cys- having the same ⁇ -glutamyl structure ⁇ -Ala and the like are also considered to have a flavor enhancing effect regardless of the difference in strength.
  • soybean powder of T1 to T13 was added to 250 mL of room temperature water, and extracted using a stirrer “EXCEL AUTO HOMOGENIZER” (manufactured by Nippon Seiki Seisakusho Co., Ltd.) at 25 ° C. and kept at 8000 rpm ⁇ 10 minutes.
  • the obtained slurry was left in boiling water for 5 minutes and immediately after ice cooling. This slurry was centrifuged at 15000 rpm for 30 minutes, and the resulting supernatant was used as an extract.
  • NSI can be expressed as a ratio (% by weight) of water-soluble nitrogen (crude protein) in the total nitrogen amount based on a predetermined method, and is a value measured based on the following method. That is, 100 ml of water is added to 2.0 g of a sample, followed by stirring and extraction at 40 ° C. for 60 minutes, followed by centrifugation at 1400 ⁇ g for 10 minutes to obtain supernatant 1. 100 ml of water is added again to the remaining precipitate, followed by stirring and extraction at 40 ° C. for 60 minutes, and centrifugation at 1400 ⁇ g for 10 minutes to obtain supernatant 2. Supernatant 1 and supernatant 2 are combined, and water is further added to make 250 ml.
  • the nitrogen content of the filtrate is measured by Kjeldahl method.
  • the nitrogen content in the sample is measured by the Kjeldahl method, and the ratio of nitrogen recovered as filtrate (water-soluble nitrogen) to the total nitrogen in the sample is expressed as% by weight.
  • Table 9 shows the relative content value of each water-soluble component extracted from the heat-treated sample when the amount of each component extracted from the non-heat-treated sample (T1) is 1. .
  • Test Example 9 Change in Extraction of Water-Soluble Component under Various Water Conditions Test Example 8 suggests that the extraction amount of the water-soluble component increases by heating hydrolyzed soybean.
  • the relationship with the amount of extracted components after heating was investigated. Specifically, a predetermined amount was added to soybeans before heat treatment under the conditions described in Table 10, and MW treatment (500 W, 30 seconds) was performed. The obtained heated soybean was air-dried at room temperature, and when the water content became 10% or less, water-soluble components were extracted by the method described in Test Example 8, and quantitative analysis was performed. The results are shown in Table 10.

Landscapes

  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Seasonings (AREA)
  • Beans For Foods Or Fodder (AREA)
  • Seeds, Soups, And Other Foods (AREA)

Abstract

The purpose of the present invention is to provide a novel flavor enhancer capable of enhancing the flavors, especially the "savory taste" of a food product. Provided are: a flavor enhancer including (A) γ-glutamine peptide and (B) a tri- or higher oligosaccharide; a method for producing a food product composition having enhanced flavor, the method being characterized in that said (A) and (B) are added to the food product composition; and a method for enhancing the flavor of a food product composition, the method being characterized in that said components (A) and (B) are added to the food product composition.

Description

風味増強剤Flavor enhancer
 本発明は、新規な風味増強剤及びその利用に関するものである。 The present invention relates to a novel flavor enhancer and use thereof.
 一般的に飲食品の美味しさは、呈味,香り,テクスチャー等様々な要素のバランスによって成り立っているといわれている。中でも、「呈味」は飲食品の品質を確定する最も重要な要素の一つであり、甘味、塩味、酸味、苦味、うま味で表される5つの基本味を含め、飲食品が有するすべての「味」を包含することが広く認知されている。 In general, the taste of food and drink is said to be based on a balance of various factors such as taste, aroma and texture. Above all, “tasting” is one of the most important factors that determine the quality of food and drink, and all five kinds of tastes expressed by sweet, salty, sour, bitter and umami are included in food and drink. It is widely recognized to include “taste”.
 一方で、上記5基本味だけでは表すことができない飲食品の特性の一つとして、「コク」の使用頻度が近年高まっている。「コク」とは、「味、香り、食感に関する多くの刺激(濃厚感、複雑さ、厚み)で生ずるものであり、それらがある程度バランスよく与えられ、持続性や広がりがある時に感じられる味わい」(非特許文献1)と定義されている。この定義中の「味」は、別途「コク味」として、「5基本味だけではなく、厚み、ひろがり、持続性、まとまりなどの基本味の周辺の味をも増強した味」(特許文献1)と定義されており、コク味を付与することは、すなわち「呈味」を増強することと同義であると考えられる。 On the other hand, as one of the characteristics of foods and drinks that cannot be expressed only with the above five basic tastes, the frequency of use of “rich” has been increasing recently. “Body” means “a lot of stimuli related to taste, aroma, and texture (thickness, complexity, thickness). (Non-Patent Document 1). “Taste” in this definition is separately “kokumi” as “taste that enhances not only the five basic tastes, but also the taste around the basic tastes such as thickness, spread, sustainability, and unity” (Patent Document 1) ), And imparting a rich taste is considered to be synonymous with enhancing the “taste”.
 従来、飲食品に対して「コク」や「コク味」を付与する方法はいくつか報告されており、ゼラチン及びトロポミオシン及び糖の加熱物(特許文献2)、イミダゾールペプチド及びスルホン基含有化合物(特許文献3)、タマネギエキス(特許文献4)等の天然物の抽出物に由来する成分を飲食品に添加する方法と、グルタチオン(特許文献5)等が報告されている。
 また、これらの成分に比べてコク味付与効果が強い成分として、γ-Glu-Val-Gly等のγ-グルタミルペプチド(特許文献1)を、天然物の抽出物等からコク味を有する成分として高濃度に分離、または化学的に合成し、飲食品に添加する方法が報告されている。
Conventionally, several methods for imparting “rich” and “rich taste” to foods and drinks have been reported, and heated products of gelatin, tropomyosin and sugar (Patent Document 2), imidazole peptides and sulfone group-containing compounds (patents) Document 3), a method of adding ingredients derived from natural product extracts such as onion extract (Patent Document 4) to food and drink, glutathione (Patent Document 5), and the like have been reported.
In addition, γ-glutamyl peptides (Patent Document 1) such as γ-Glu-Val-Gly are used as components having a strong taste compared with these components as components having a rich taste from natural product extracts and the like. A method of separating into a high concentration or chemically synthesizing and adding it to a food or drink has been reported.
特開2011-115186号公報JP 2011-115186 A 特開平10-276709号公報Japanese Patent Laid-Open No. 10-276709 特開平8-289760号公報JP-A-8-289760 特開2010-142147号公報JP 2010-142147 A 特開昭60-9465号公報Japanese Unexamined Patent Publication No. 60-9465 特開昭57-132896号公報JP-A-57-132896 特開2001-211880号公報Japanese Patent Laid-Open No. 2001-21880
 このように、各種呈味増強成分の開発が試みられているが、天然物の抽出物由来成分の場合、簡便かつ安価に製造できる呈味増強成分の開発が困難である。
 また特許文献1及び5に示されるγ-グルタミルペプチドは、アミノ酸の選択によって差はあるものの、コク味と共に苦味や収斂味も感じられる場合がある。そのため、単に量的にコク味を付与するだけでは、飲食品の種類や添加量によっては呈味バランスが合わず、飲食品本来の呈味を活かせない場合がある。
Thus, development of various taste enhancing components has been attempted, but in the case of a component derived from a natural product extract, it is difficult to develop a taste enhancing component that can be easily and inexpensively produced.
In addition, the γ-glutamyl peptides shown in Patent Documents 1 and 5 may have a bitter taste or an astringent taste as well as a rich taste, although there are differences depending on the selection of amino acids. For this reason, simply adding the rich taste quantitatively does not match the taste balance depending on the type and amount of food and drink, and the original taste of the food and drink may not be utilized.
 またさらに、飲食品の風味は舌の味蕾(みらい)で感じる呈味と共に、香り(フレーバー)もおいしさを感じるための重要な要素であり、単に量的にコク味を付与するだけでは、香りの増強が不十分で風味のバランスが合わない場合がある。 Furthermore, the flavor of food and drink is not only the taste that you can feel in the taste buds of the tongue, but also the fragrance (flavor), which is an important factor for feeling deliciousness. There is a case where the balance of flavor is not suitable due to insufficient enhancement.
 そこで、より簡便に製造することができ、かつ飲食品に添加したときに、呈味を増強できると共に、香りも増強することによって、全体として飲食品の風味を増強、すなわち「コク」を付与することができる、量的にも質的にも優れた風味増強剤の開発が望まれる。
 すなわち本発明は、飲食品の風味、特に「コク」を付与できる新たな風味増強剤を提供することを目的とするものである。
Therefore, it can be more easily manufactured and, when added to a food or drink, enhances the taste and enhances the flavor of the food or drink as a whole, that is, imparts a rich body by enhancing the aroma. Therefore, it is desired to develop a flavor enhancer that is excellent in quantity and quality.
That is, an object of the present invention is to provide a new flavor enhancer capable of imparting flavors of foods and drinks, particularly “richness”.
 本発明者らは、上記の課題に対して鋭意研究を重ねた結果、特定の糖類と、γ-グルタミルペプチドを併用して飲食品に添加することにより、前記課題を解決できることを見出し、本発明を完成させた。 As a result of intensive studies on the above problems, the present inventors have found that the above problems can be solved by adding a specific saccharide and a γ-glutamyl peptide to a food or drink in combination. Was completed.
 すなわち、本発明は以下のような構成を包含する。
(1)下記成分(A)及び(B)を含む、風味増強剤、
 (A)γ-グルタミルペプチド
 (B)三糖以上のオリゴ糖
(2)成分(A)が、γ-Glu-Xnの構造で表されるものである、前記(1)記載の風味増強剤(なお、Xはアミノ酸又はアミノ酸誘導体、XnはXがn個結合した配列を表し、nは1~7の整数とする。また、nが2以上の場合、Xは異なる種類のアミノ酸又はアミノ酸誘導体であってもよい。)、
(3)成分(A)中のXnのnが1~4の整数である、前記(2)記載の風味増強剤、
(4)成分(B)の単糖の結合数が3~10である、前記(1)~(3)の何れか1項記載の風味増強剤、
(5)成分(B)の単糖の結合数が3~7である、前記(1)~(3)の何れか1項記載の風味増強剤、
(6)砂糖の甘味度を100とした場合における、成分(B)の甘味度が40以下である、前記(1)~(5)の何れか1項記載の風味増強剤、
(7)成分(A)の含量に対する成分(B)の含量の重量比率が、0.001~50000である、前記(1)~(6)の何れか1項記載の風味増強剤、
(8)成分(A)中のXnのnが1~3の整数である、前記(2)、(4)~(7)の何れか1項記載の風味増強剤、
(9)成分(A)中のXnのnが1又は2の整数である、前記(2)、(4)~(7)の何れか1項記載の風味増強剤、
(10)前記(1)~(9)の何れか1項記載の成分(A)及び(B)を飲食品組成物中に添加することを特徴とする、風味が増強された飲食品組成物の製造方法、
(11)成分(A)が、飲食品組成物中の含量として0.1~1000ppmとなるように添加される、前記(10)記載の風味が増強された飲食品組成物の製造方法、
(12)成分(B)が、飲食品組成物中の含量として1~5000ppmとなるように添加される、前記(10)又は(11)記載の風味が増強された飲食品組成物の製造方法、
(13)前記(1)~(9)の何れか1項記載の成分(A)及び(B)を飲食品組成物に添加することを特徴とする、飲食品組成物の風味増強方法、
(14)前記(1)~(9)の何れか1項記載の成分(A)及び/又は(B)の、豆類からの抽出方法であって、豆類に対して、豆類の水分が所定含量となるように吸水させた状態で、マイクロ波加熱処理もしくは100℃を超える加熱処理を行うか、又は、豆類の水分が所定含量となるように、100℃を超える加湿加熱処理を行い、該加熱処理後の豆類から水性溶媒で該成分(A)及び/又は(B)を抽出することを特徴とし、該所定含量が8~55重量%である、抽出方法。
That is, the present invention includes the following configurations.
(1) A flavor enhancer comprising the following components (A) and (B):
(A) γ-glutamyl peptide (B) Trisaccharide or higher oligosaccharide (2) The component (A) is represented by the structure of γ-Glu-Xn (1) X is an amino acid or an amino acid derivative, Xn is a sequence in which n X are bonded, and n is an integer of 1 to 7. When n is 2 or more, X is a different kind of amino acid or amino acid derivative. May be)
(3) The flavor enhancer according to (2), wherein n in Xn in component (A) is an integer of 1 to 4,
(4) The flavor enhancer according to any one of (1) to (3), wherein the number of monosaccharide bonds in component (B) is 3 to 10,
(5) The flavor enhancer according to any one of the above (1) to (3), wherein the number of monosaccharide bonds in component (B) is 3 to 7,
(6) The flavor enhancer according to any one of (1) to (5) above, wherein the sweetness of component (B) is 40 or less when the sweetness of sugar is 100,
(7) The flavor enhancer according to any one of (1) to (6), wherein the weight ratio of the content of component (B) to the content of component (A) is 0.001 to 50000,
(8) The flavor enhancer according to any one of (2), (4) to (7), wherein n of Xn in component (A) is an integer of 1 to 3,
(9) The flavor enhancer according to any one of (2), (4) to (7), wherein n in Xn in component (A) is an integer of 1 or 2.
(10) A flavor-enhanced food / beverage composition comprising adding the components (A) and (B) according to any one of (1) to (9) above to a food / beverage composition Manufacturing method,
(11) The method for producing a food / beverage composition with enhanced flavor according to (10), wherein component (A) is added so that the content in the food / beverage composition is 0.1 to 1000 ppm,
(12) The method for producing a food or beverage composition with enhanced flavor according to the above (10) or (11), wherein the component (B) is added so that the content in the food or beverage composition is 1 to 5000 ppm. ,
(13) A method for enhancing the flavor of a food or drink composition, comprising adding the components (A) and (B) according to any one of (1) to (9) to the food or drink composition,
(14) A method for extracting the component (A) and / or (B) according to any one of (1) to (9) from beans, wherein the water content of the beans is a predetermined content relative to the beans. In a state where water is absorbed so as to become, the microwave heat treatment or the heat treatment exceeding 100 ° C. is performed, or the humid heat treatment exceeding 100 ° C. is performed so that the moisture content of the beans becomes a predetermined content, and the heating An extraction method, wherein the component (A) and / or (B) is extracted from the treated beans with an aqueous solvent, and the predetermined content is 8 to 55% by weight.
 本発明により、飲食品の風味を増強し、すなわち「コク」を付与できる「風味増強剤」を提供することができる。また、本発明により提供される「風味増強剤」を飲食品に添加することにより、呈味と香りを共に増強し、コクがを付与された飲食品を製造することができる。得られた飲食品はその飲食品が持つ本来の風味が活かされたもので、風味のバランスにも優れたものとなりうる。 According to the present invention, it is possible to provide a “flavor enhancer” that can enhance the flavor of a food or drink, that is, can impart “rich”. Moreover, by adding the “flavor enhancer” provided by the present invention to foods and drinks, it is possible to produce foods and drinks with enhanced taste and aroma and richness. The obtained food / beverage product is one in which the original flavor of the food / beverage product is utilized, and can be excellent in flavor balance.
試験例8の試験区T1(未加熱、加水率0%)の大豆の細胞構造を写した走査型電子顕微鏡による図面代用写真である。(試験例10)FIG. 10 is a drawing-substituting photograph taken with a scanning electron microscope, in which the cell structure of soybean in test section T1 (unheated, water content 0%) of Test Example 8 is copied. (Test Example 10) 試験例8の試験区T3(オートクレーブ加熱処理、加水率5%、120℃×4分)の細胞構造を写した走査型電子顕微鏡による図面代用写真である。(試験例10)FIG. 9 is a drawing-substituting photograph using a scanning electron microscope showing the cell structure of test section T3 of Test Example 8 (autoclave heat treatment, water content 5%, 120 ° C. × 4 minutes). (Test Example 10) 試験例8の試験区T7(マイクロ波加熱処理、加水率5%、500W×30秒)の細胞構造を写した走査型電子顕微鏡による図面代用写真である。(試験例10)FIG. 10 is a drawing-substituting photograph by a scanning electron microscope showing a cell structure of test section T7 of Test Example 8 (microwave heat treatment, water content 5%, 500 W × 30 seconds). (Test Example 10)
 本発明の風味増強剤は、下記に示す成分(A)及び成分(B)を含むことを特徴とする。以下、本発明について詳細に説明する。
 なお、発明において、量比(濃度等)は、特記しない限り重量を基準とする比率である。すなわち、例えば「%」は特記しない限り「重量%(w/w)」を、「ppm」は特記しない限り「ppm(w/w)」を示す。また、本発明において、ある成分の「喫食時の濃度」とは、当該成分を含有する飲食品を喫食する際の、当該飲食品における当該成分の濃度をいう。
The flavor enhancer of this invention is characterized by including the component (A) and component (B) shown below. Hereinafter, the present invention will be described in detail.
In the present invention, the quantity ratio (concentration, etc.) is a ratio based on weight unless otherwise specified. That is, for example, “%” indicates “% by weight (w / w)” unless otherwise specified, and “ppm” indicates “ppm (w / w)” unless otherwise specified. Moreover, in this invention, the "concentration at the time of eating" of a certain component means the density | concentration of the said component in the said food / beverage products at the time of eating the food / beverage products containing the said component.
(風味増強剤)
 本発明において「風味増強剤」とは、風味を増強する作用のある剤をいう。ここで本発明において「風味」とは「呈味」と「香り」が合わさって感じる味をいう。本発明の風味増強剤は、呈味として特に人の嗜好性にプラスに作用しやすい甘味、塩味又はうま味などを増強すると共に、香りも増強する作用があり、呈味を増強することは「コク味を付与する」ことと同義であり、風味を増強することは「コクを付与する」ことと同義である。よって、本発明の風味増強剤は、「コク付与剤」と称することもできる。
(Flavor enhancer)
In the present invention, the “flavor enhancer” refers to an agent having an effect of enhancing the flavor. Here, in the present invention, “flavor” refers to a taste felt by combining “taste” and “fragrance”. The flavor enhancer of the present invention has an effect of enhancing sweetness, salty taste, umami, etc., which tend to have a positive effect on human taste, and also enhances aroma. It is synonymous with “giving taste”, and enhancing the flavor is synonymous with “giving richness”. Therefore, the flavor enhancer of the present invention can also be referred to as a “richness-imparting agent”.
(成分(A):γ-グルタミルペプチド)
 本発明において、成分(A)はγ-グルタミルペプチドであり、構造的にはγ-Glu-Xnの構造式で表される。
 本発明ではγ-グルタミルペプチドの中でも、特性として呈味増強作用を有するγ-グルタミルペプチドが風味増強剤として好ましい。対象とするγ-グルタミルペプチドが呈味増強作用を有するか否かは、官能評価法によって判定することができる。すなわち、下記実施例に記載の通り、各サンプルを口に含んだ直後(0秒後)の「呈味」の強さ(先味)から10秒後にかけての「呈味」の強さ(後味)がコントロールサンプルに比べて高ければ、呈味増強効果を有すると判定することができる。
(Component (A): γ-glutamyl peptide)
In the present invention, component (A) is a γ-glutamyl peptide and is structurally represented by the structural formula of γ-Glu-Xn.
In the present invention, among γ-glutamyl peptides, a γ-glutamyl peptide having a taste enhancing action as a characteristic is preferred as a flavor enhancer. Whether or not the target γ-glutamyl peptide has a taste enhancing action can be determined by a sensory evaluation method. That is, as described in the Examples below, the strength of “taste” (sampling) immediately after each sample was put in the mouth (after 0 seconds) to the strength of “taste” (aftertaste) after 10 seconds. ) Is higher than the control sample, it can be determined that it has a taste enhancing effect.
 ここで「γ-」とは、グルタミン酸のγ位のカルボキシル基を介してXが結合していることを意味する。「Glu」はグルタミン酸である。「X」はアミノ酸またはアミノ酸誘導体を表す。該アミノ酸及びアミノ酸誘導体は、特に限定されないが通常はL体である。「n」は1~7の整数を表し、「Xn」はXがn個結合した配列を表す。
 共通する特性として呈味性を有するものであれば、「X」の種類や「n」の数は限定されるものではないが、具体例として「n」の数は1~7の範囲を選択することができ、1~6、1~5、1~4、1~3、あるいは1~2の範囲を選択することもできる。
Here, “γ-” means that X is bonded via a carboxyl group at the γ-position of glutamic acid. “Glu” is glutamic acid. “X” represents an amino acid or an amino acid derivative. The amino acid and amino acid derivative are not particularly limited, but are usually in the L form. “N” represents an integer of 1 to 7, and “Xn” represents a sequence in which n pieces of X are bonded.
As long as it has taste characteristics as a common characteristic, the type of “X” and the number of “n” are not limited, but as a specific example, the number of “n” is selected in the range of 1 to 7. A range of 1-6, 1-5, 1-4, 1-3, or 1-2 can also be selected.
 なお、nが2以上の場合はXが複数存在することを示すが、この場合のXは同種類のアミノ酸又はアミノ酸誘導体であってもよいし、異なる種類のアミノ酸又はアミノ酸誘導体の組合せであってもよい。例えばγ-Glu-Gly-Glyだけでなくγ-Glu-Gly-Valやγ-Glu-Glu-Tyrなどでも良い。また成分(A)としては、一種類のγ-グルタミルペプチドでもよいし、二種類以上のγ-グルタミルペプチドの組合せであってもよい。例えばγ-Glu-Pheの一種類でも良いし、γ-Glu-Pheとγ-Glu-Tyrの組合せなどでもよい。 In addition, when n is 2 or more, it indicates that there are a plurality of X. In this case, X may be the same type of amino acid or amino acid derivative, or may be a combination of different types of amino acids or amino acid derivatives. Also good. For example, not only γ-Glu-Gly-Gly but also γ-Glu-Gly-Val or γ-Glu-Glu-Tyr may be used. Component (A) may be one kind of γ-glutamyl peptide or a combination of two or more kinds of γ-glutamyl peptides. For example, one kind of γ-Glu-Phe or a combination of γ-Glu-Phe and γ-Glu-Tyr may be used.
 また、本発明における上記γ-グルタミルぺプチドは、特記しない限り、いずれも遊離体、もしくはその塩、またはそれらの混合物を包含する。 In addition, unless otherwise specified, the γ-glutamyl peptide in the present invention includes a free form, a salt thereof, or a mixture thereof.
 Xに相当するアミノ酸として、具体的にはGly、Ala、Val、Leu、Ile、Ser、Thr、Cys、Met、Asn、Gln、Pro等の中性アミノ酸、Asp、Glu等の酸性アミノ酸、Lys、Arg、His等の塩基性アミノ酸、Phe、Tyr、Trp等の芳香族アミノ酸等が挙げられ、β-Alaなどのβアミノ酸や、γ-アミノ酪酸などのγアミノ酸等でもよい。また、Xに相当するアミノ酸誘導体として、N-γ-ニトロアルギニン、S-アリルシステイン、S-メチルシステイン等が挙げられる。具体的な例としてn=2(γ-グルタミルトリペプチド)のとき、N末端のGluのγ位のカルボキシル基に結合するXとして、Glu、Valなどが挙げられ、C末端のXとして、GluやGlyなどが挙げられるが、無論これらの例に限定されるものではない。またnが2以上の場合、N末端のGluとC末端のアミノ酸との間に結合するXとしては、C末端のアミノ酸と結合するカルボキシル基が、α位、β位、γ位のいずれの位置にあるものであってもよい。例えばN末端のGluのγ位のカルボキシル基に結合するXがさらにGluである場合は、そのGluがC末端側のペプチド結合を形成するカルボキシル基はα位のカルボキシル基でも良いし、γ位のカルボキシル基でもよい。 As amino acids corresponding to X, specifically, neutral amino acids such as Gly, Ala, Val, Leu, Ile, Ser, Thr, Cys, Met, Asn, Gln, Pro, acidic amino acids such as Asp and Glu, Lys, Examples include basic amino acids such as Arg and His, aromatic amino acids such as Phe, Tyr and Trp, and β amino acids such as β-Ala and γ amino acids such as γ-aminobutyric acid. Examples of amino acid derivatives corresponding to X include N-γ-nitroarginine, S-allyl cysteine, S-methyl cysteine and the like. As a specific example, when n = 2 (γ-glutamyl tripeptide), X that binds to the carboxyl group at the γ-position of N-terminal Glu includes Glu, Val, and the like. Gly and the like can be mentioned, but of course, it is not limited to these examples. In addition, when n is 2 or more, as X bound between the N-terminal Glu and the C-terminal amino acid, the carboxyl group that binds to the C-terminal amino acid is in any of the α-position, β-position, and γ-position. It may be in. For example, when X that binds to the carboxyl group at the γ-position of the N-terminal Glu is further Glu, the carboxyl group that forms the peptide bond at the C-terminal side may be the α-position carboxyl group or the γ-position carboxyl group. It may be a carboxyl group.
 成分(A)としては、市販品から入手したもの、適宜製造して取得したもの、または成分(A)を多く含む天然物や醤油、チーズ等の加工食品から各種方法で濃縮したものを用いても良い。 As a component (A), what was obtained from a commercial item, what was suitably manufactured and acquired, or what was concentrated by various methods from processed foods, such as a natural product, soy sauce, and cheese containing many components (A), is used. Also good.
 成分(A)を製造する方法は特に制限されず、公知の方法を利用できる。公知の方法としては、例えば(1)化学的に目的とする配列の成分(A)を合成する方法や、(2)酵素的な反応により目的とする配列の成分(A)を合成する方法等が挙げられる。 The method for producing the component (A) is not particularly limited, and a known method can be used. As a known method, for example, (1) a method of synthesizing a component (A) of a target sequence chemically, (2) a method of synthesizing a component (A) of a target sequence by enzymatic reaction, etc. Is mentioned.
 化学的に成分(A)を合成する場合、ペプチド合成機を用いて目的とする配列の成分(A)を合成することができる。化学的に成分(A)を合成する方法としては、例えばペプチド固相合成法が挙げられる。 When chemically synthesizing the component (A), the component (A) having the target sequence can be synthesized using a peptide synthesizer. Examples of the method for chemically synthesizing the component (A) include a peptide solid phase synthesis method.
 酵素的な反応により成分(A)を合成する場合は、例えば、特許文献6に記載のγ-グルタミルシステインシンターゼを用いる方法や、特許文献7に記載のγ-グルタミルトランスペプチダーゼを用いる方法などを利用することができる。また、酵素的な反応の一種として、成分(A)の生産能を有する微生物を培養し、培養液または菌体から目的の成分(A)を回収することで製造することもできる。 When the component (A) is synthesized by enzymatic reaction, for example, a method using γ-glutamylcysteine synthase described in Patent Document 6 or a method using γ-glutamyltranspeptidase described in Patent Document 7 is used. can do. Moreover, it can also manufacture as a kind of enzymatic reaction by culture | cultivating the microorganisms which have the production ability of a component (A), and collect | recovering the target components (A) from a culture solution or a microbial cell.
 成分(A)を天然物から濃縮する場合は、例えば該天然物から水性溶媒を用いて抽出し、必要により分画や精製することができる。なお、天然物から成分(A)を効率的に抽出するための実施形態については後述する。該抽出物は天然物よりも成分(A)の濃度が通常高くなっており、すなわち成分(A)が濃縮される。成分(A)を多く含む天然物としては、例えば大豆、ルピン、エンドウ、ソラマメ、緑豆、小豆、インゲンマメ等の豆類、タマネギやニンニク等のネギ類が挙げられるが、成分(A)が含まれる限りこれらの例示に限定されるものではない。成分(A)を加工食品から濃縮する場合、これを含む加工食品としては、熟成したチーズ、醤油等が挙げられる。例えば大豆中に含まれる成分(A)の例としては、γ-Glu-Gly、γ-Glu-Cys、γ-Glu-Tyr、γ-Glu-Phe、γ-Glu-Pro、γ-Glu-Trp、γ-Glu-Leu、γ-Glu-Ile等が挙げられる。この中で特に含量が多いものとして、γ-Glu-Tyr、γ-Glu-Pheが挙げられるが、これら2種の使用に限定されない。 When the component (A) is concentrated from a natural product, it can be extracted from the natural product using an aqueous solvent and fractionated or purified as necessary. In addition, embodiment for extracting a component (A) efficiently from a natural product is mentioned later. The extract usually has a higher concentration of the component (A) than the natural product, that is, the component (A) is concentrated. Examples of natural products containing a large amount of component (A) include beans such as soybean, lupine, pea, broad bean, mung bean, red bean and kidney bean, and onions such as onion and garlic, but as long as component (A) is included. It is not limited to these examples. When the component (A) is concentrated from the processed food, examples of the processed food containing the component (A) include aged cheese and soy sauce. For example, examples of the component (A) contained in soybean include γ-Glu-Gly, γ-Glu-Cys, γ-Glu-Tyr, γ-Glu-Phe, γ-Glu-Pro, and γ-Glu-Trp. , Γ-Glu-Leu, γ-Glu-Ile and the like. Among these, γ-Glu-Tyr and γ-Glu-Phe are mentioned as particularly high contents, but are not limited to these two types.
 成分(A)を製造する方法としては、上記何れかの方法で合成または抽出した後に、所望の程度に精製された精製品を用いても良い。例えば、成分(A)としては、純度が50%以上、70%以上、90%以上、または95%以上のものを用いても良い。 As a method for producing the component (A), a purified product that has been synthesized or extracted by any of the above methods and then purified to a desired level may be used. For example, the component (A) may have a purity of 50% or more, 70% or more, 90% or more, or 95% or more.
 本発明の以下の実施例では成分(A)として、γ-Glu-Phe、γ-Glu-Tyrおよびグルタチオン(γ-Glu-Cys-Gly)のデータを示しているが、本発明の技術思想はこれらのγ-グルタミルペプチドのみに限定されるものではなく、これらのペプチドと共通する特性、すなわち呈味性を有するγ-グルタミルペプチドを成分(A)として用いた場合も、同様の風味増強剤が得られることを当業者は理解できる。 In the following examples of the present invention, data of γ-Glu-Phe, γ-Glu-Tyr and glutathione (γ-Glu-Cys-Gly) are shown as component (A). The same flavor enhancer is not limited to these γ-glutamyl peptides, and when a γ-glutamyl peptide having characteristics common to these peptides, that is, a taste, is used as component (A), One skilled in the art can understand that it is obtained.
(成分(B):三糖以上のオリゴ糖)
 本発明において、成分(B)は三糖以上のオリゴ糖である。オリゴ糖は、複数の単糖がグリコシド結合することで生じる糖類オリゴマーの総称である。通常は結合数の上限は10以下であり、本発明においては好ましくは8以下、より好ましくは7以下である。
(Component (B): oligosaccharide of trisaccharide or more)
In the present invention, component (B) is a trisaccharide or higher oligosaccharide. Oligosaccharide is a general term for saccharide oligomers produced by glycosidic bonding of a plurality of monosaccharides. Usually, the upper limit of the number of bonds is 10 or less, and in the present invention, it is preferably 8 or less, more preferably 7 or less.
 オリゴ糖の種類としては、例えば、マルトオリゴ糖、イソマルトオリゴ糖、ガラクトオリゴ糖、キシロオリゴ糖、大豆オリゴ糖、ビートオリゴ糖、セロオリゴ糖、ニゲロオリゴ糖、乳果オリゴ糖、フラクトオリゴ糖、ゲンチオオリゴ糖、キチンオリゴ糖、ペクチンオリゴ糖、イヌロオリゴ糖、レバンオリゴ糖、マンノオリゴ糖、キトオリゴ糖及びパラチノースオリゴ糖からなる群より選択される1又は2以上が挙げられる。 The types of oligosaccharides include, for example, maltooligosaccharides, isomaltooligosaccharides, galactooligosaccharides, xylo-oligosaccharides, soybean oligosaccharides, beet oligosaccharides, cellooligosaccharides, nigero-oligosaccharides, dairy oligosaccharides, fructooligosaccharides, gentio-oligosaccharides, chitin oligosaccharides. 1 or 2 or more selected from the group consisting of pectin oligosaccharide, inuro oligosaccharide, levan oligosaccharide, manno oligosaccharide, chitooligosaccharide and palatinose oligosaccharide.
 より具体的には、マルトトリオース、ラフィノース、マンニノトリオース、セロトリオース、3-ガラクトシルラクトース、1-ケストース、ゲンチオトリオース、ネオケストース、ガラクトトリオース、6-O-グルコシルマルトース、パノース、6-ケストース、ウンベリフェロース、ゲンチアノース、3-β‐ゲンチオビオシルグルコース、4‐β‐ラミナリビオシルグルコース、3‐β‐セロビオシルグルコース、ソホロトリオース、スタキオース、セロテトラオース、マルトテトラオース、イソリコノース、リコノース、セサモース、ビフルコース、ネオビフルコース、3‐β‐グルコシルセロトリオース、3‐β‐セロビオシルセロビオース、ニストース、マルトペンタオース、ベルバスコース、マルトヘキサオース及びマルトヘプタオースからなる群より選択される1または2以上が挙げられる。
 もちろんこれらのオリゴ糖に限られるものではなく、同様の作用効果を示す他のオリゴ糖を用いることができる。なお、本発明における成分(B)は、天然物中に存在するものであってもよく、または微生物や酵素、酸やアルカリ等の化学薬品を用いて生成したものでもよい。
More specifically, maltotriose, raffinose, manninotriose, cellotriose, 3-galactosyl lactose, 1-kestose, gentiotriose, neokestose, galactotriose, 6-O-glucosyl maltose, panose, 6- Kestose, umbelliferose, gentianose, 3-β-gentiobiosyl glucose, 4-β-laminaribiosyl glucose, 3-β-cellobiosyl glucose, sophorotriose, stachyose, cellotetraose, maltotetraose, isoriconose, Lyconose, sesamooth, biflucose, neobiflucose, 3-β-glucosyl cellotriose, 3-β-cellobiosyl cellobiose, nystose, maltopentaose, verbuscose, maltohexaose and maltohep 1 or 2 or more selected from the group consisting of taoses.
Of course, the present invention is not limited to these oligosaccharides, and other oligosaccharides exhibiting similar effects can be used. In addition, the component (B) in this invention may exist in a natural product, or may be produced | generated using chemicals, such as microorganisms, an enzyme, an acid, and an alkali.
 該オリゴ糖の甘味度は比較的低い方が風味増強効果が高くなるため好ましい。具体的には砂糖の甘味度を100とした場合における、該オリゴ糖の甘味度(相対値)が40以下であるのが好ましく、35以下、あるいは30以下がより好ましい。また甘味度が0に近く低すぎるオリゴ糖よりも、5以上、あるいは10以上のオリゴ糖がより好ましい。
 かかる範囲のオリゴ糖は適宜選択できるが、例えばフラクトオリゴ糖(約30)、ガラクトオリゴ糖(約30)、イソマルトオリゴ糖(約40)、キシロオリゴ糖(約35)、ラフィノース(約20)などである。
 ただし、上記に示したオリゴ糖の甘味度は一例であり、オリゴ糖の混合物は製品の種類によって甘味度に差があるため、例えばフラクトオリゴ糖の各製品の中から甘味度が好ましい製品を選択できる。
 なお、単一のオリゴ糖ではなく、市販品のフラクトオリゴ糖や水あめなどの三糖以上を含むオリゴ糖混合物を用いる場合、甘味度は混合物としての甘味度とする。
A relatively low sweetness of the oligosaccharide is preferable because the flavor enhancing effect is enhanced. Specifically, when the sweetness level of sugar is 100, the sweetness level (relative value) of the oligosaccharide is preferably 40 or less, more preferably 35 or less, or 30 or less. Also, 5 or more, or 10 or more oligosaccharides are more preferable than oligosaccharides whose sweetness level is too close to 0.
An oligosaccharide within such a range can be appropriately selected, and examples thereof include fructooligosaccharide (about 30), galactooligosaccharide (about 30), isomaltoligosaccharide (about 40), xylooligosaccharide (about 35), raffinose (about 20) and the like.
However, since the sweetness of the oligosaccharides shown above is an example, and the mixture of oligosaccharides has a difference in sweetness depending on the type of product, for example, a product with a preferable sweetness can be selected from each of the fructooligosaccharide products. .
In addition, when using an oligosaccharide mixture containing not less than a single oligosaccharide but a trisaccharide or more such as a commercially available fructooligosaccharide or syrup, the sweetness is defined as the sweetness of the mixture.
 「甘味度」は、『甘味の基礎知識』:前橋健二、日本醸造協会誌、106(12)、p.818-825(2011)のp.819に記載されている方法に準じて求めることができる。本発明ではスクロースを標準物質として使用し、5%スクロース水溶液の甘味度を100としたときに、対象物質の水溶液がこれと同等の甘味強度を示す濃度を官能評価により決定し、当該濃度の比率を求める。すなわち、当該濃度をX%として「甘味度(%)=5/X×100」と算出する。なお、官能評価時の水溶液の温度は常温(20℃)とする。 “Sweetness” can be determined according to the method described in “Basic Knowledge of Sweetness”: Kenji Maebashi, Journal of the Japan Brewing Institute, 106 (12), p.818-825 (2011), p.819. it can. In the present invention, when sucrose is used as a standard substance and the sweetness level of a 5% sucrose aqueous solution is set to 100, the concentration at which the aqueous solution of the target substance shows the same sweetness intensity is determined by sensory evaluation, and the ratio of the concentration Ask for. That is, the sweetness level (%) = 5 / X × 100 is calculated with the concentration as X%. In addition, the temperature of the aqueous solution at the time of sensory evaluation shall be normal temperature (20 degreeC).
 天然物に存在する成分(B)としては、ラフィノース、スタキオース、ベルバスコース、パノース、ケストース等が知られており、これらは大豆やエンドウ等の豆類やビート、タマネギ等に含まれているため、それらから抽出して使用することができる。また、該オリゴ糖の市販品を使用することもできる。また天然物中に成分(A)と成分(B)が共存する場合は、これら両成分を同じ画分に濃縮してもよいし、又は別々の画分に濃縮した後に各画分を混合してもよい。なお、天然物から成分(B)を効率的に抽出するための実施形態については後述する。 As components (B) present in natural products, raffinose, stachyose, bell bass course, panose, kestose, etc. are known, and these are contained in beans such as soybeans and peas, beets, onions, etc. It can be extracted from them and used. Moreover, the commercial item of this oligosaccharide can also be used. In addition, when component (A) and component (B) coexist in a natural product, these components may be concentrated in the same fraction, or each fraction may be mixed after concentrating in separate fractions. May be. In addition, embodiment for extracting a component (B) efficiently from a natural product is mentioned later.
 酵素を用いて製造される成分(B)としては、デンプンをアミラーゼによって分解することで生じるマルトトリオース、マルトテトラオース、マルトペンタオース、マルトヘキサオースや、セルロースをセルラーゼによって分化することで生じるセロテトラオースやセロトリオース等が挙げられる。また、当該成分(B)は市販品を使用することもできる。 Examples of the component (B) produced using an enzyme include maltotriose, maltotetraose, maltopentaose, maltohexaose produced by decomposing starch with amylase, and cellulosic produced by differentiating cellulose with cellulase. Examples include tetraose and cellotriose. Moreover, the said component (B) can also use a commercial item.
 一般に、酵素を用いて製造された上記市販の成分(B)は、様々な構成糖、結合数、結合様式のオリゴ糖の混合物であり、単糖や二糖も多く含まれる。本発明における成分(B)は、前述のように三糖以上のオリゴ糖であるため、これらの酵素を用いて製造されたオリゴ糖を使用する場合は、単糖や二糖を除いた純分のみを成分として算出するものとする。 Generally, the above-mentioned commercially available component (B) produced using an enzyme is a mixture of oligosaccharides having various constituent sugars, the number of linkages, and the binding mode, and includes a large amount of monosaccharides and disaccharides. Since the component (B) in the present invention is a trisaccharide or higher oligosaccharide as described above, when using an oligosaccharide produced using these enzymes, a pure fraction excluding a monosaccharide or a disaccharide is used. Only as a component.
 本発明は、成分(A)と成分(B)の併用により、飲食品の「呈味」を増強することができる。成分(A)と成分(B)の併用により、飲食品の「呈味」が増強される効果を「呈味増強効果」ともいう。 The present invention can enhance the “taste” of food and drink by the combined use of component (A) and component (B). The effect of enhancing the “taste” of food and drink by the combined use of the component (A) and the component (B) is also referred to as “taste enhancing effect”.
(成分(C):他の成分)
 本発明の風味増強剤は、上記成分(A)及び(B)のみからなるものであってもよく、さらに成分(C)として他の成分を含むものであってもよい。成分(C)は、経口可能なものであれば特に制限されない。また成分(C)は、1種の成分であってもよいし、2種またはそれ以上の成分であっても良い。
(Ingredient (C): Other ingredients)
The flavor enhancer of this invention may consist only of the said component (A) and (B), and may also contain another component as a component (C). The component (C) is not particularly limited as long as it can be orally administered. In addition, the component (C) may be a single component, or two or more components.
 成分(C)として、例えば、塩化ナトリウム、塩化カリウム、塩化カルシウム等の無機塩類;酢酸、クエン酸等の有機酸類及びその塩;グルタミン酸、グリシン等のアミノ酸類及びその塩;イノシン酸、グアニル酸等の核酸類及びその塩;食物繊維、pH緩衝剤、香料、食用油、エタノール、水等が挙げられる。 As component (C), for example, inorganic salts such as sodium chloride, potassium chloride and calcium chloride; organic acids such as acetic acid and citric acid and salts thereof; amino acids such as glutamic acid and glycine and salts thereof; inosinic acid and guanylic acid Nucleic acids and salts thereof; dietary fiber, pH buffer, fragrance, edible oil, ethanol, water and the like.
 本発明の風味増強剤の形態は特に制限されない。本発明の風味増強剤は、例えば、液状、粉末状、顆粒状、ペースト状、キューブ状等のいかなる形態であってもよく、かかる形態の品質を維持するための適当な副原料を添加できる。 The form of the flavor enhancer of the present invention is not particularly limited. The flavor enhancer of the present invention may be in any form such as liquid, powder, granule, paste, cube, etc., and an appropriate auxiliary material for maintaining the quality of such form can be added.
 本発明の風味増強剤における各成分の含量や含有比率は、呈味増強効果が得られる限り、特に制限されず、各成分の種類、喫食濃度、本発明の風味増強剤の使用量等の諸条件に応じて適宜設定することができる。 The content and content ratio of each component in the flavor enhancer of the present invention are not particularly limited as long as a taste enhancing effect is obtained, and various kinds of components, eating concentration, use amount of the flavor enhancer of the present invention, etc. It can set suitably according to conditions.
 本発明の風味増強剤における成分(A)の含量及び成分(B)の含量の合計(以下、「各成分の総含量」という。)は、特に制限されないが、例えば下限を1ppm(0.0001%)以上、10ppm(0.001%)以上、100ppm(0.01%)以上、または1000ppm(0.1%)以上とすることができる。また上限を100%以下、99.9%以下、50%以下、10%以下、または1%以下とすることができる。 The total content of component (A) and component (B) in the flavor enhancer of the present invention (hereinafter referred to as “total content of each component”) is not particularly limited, but the lower limit is, for example, 1 ppm (0.0001 %) Or more, 10 ppm (0.001%) or more, 100 ppm (0.01%) or more, or 1000 ppm (0.1%) or more. Moreover, an upper limit can be 100% or less, 99.9% or less, 50% or less, 10% or less, or 1% or less.
 本発明の風味増強剤において、成分(A)の含量に対する成分(B)の含量の重量比率は、例えば下限を0.001以上、0.005以上、0.01以上、0.1以上、1以上又は10以上とすることができる。また上限を50000以下、10000以下、5000以下、1000以下、または500以下とすることができる。
 より好ましくは、該重量比率を、例えば0.001~50000とすることができ、さらに好ましくは0.1~500とすることができる。
In the flavor enhancer of the present invention, the weight ratio of the content of the component (B) to the content of the component (A) is, for example, a lower limit of 0.001 or more, 0.005 or more, 0.01 or more, 0.1 or more, 1 It can be more than or 10 or more. Moreover, an upper limit can be 50000 or less, 10000 or less, 5000 or less, 1000 or less, or 500 or less.
More preferably, the weight ratio can be, for example, 0.001 to 50,000, and further preferably 0.1 to 500.
 なお、各成分の含量は、各成分が塩を形成している場合は、塩の質量を等モルのフリー体の質量に換算して算出されるものとする。 In addition, the content of each component shall be calculated by converting the mass of the salt into the mass of an equimolar free body when each component forms a salt.
 本発明の風味増強剤に含まれる各成分の含量は、例えば、上記例示した各成分の総含量や含有比率を満たすように設定することができる。 The content of each component contained in the flavor enhancer of the present invention can be set so as to satisfy, for example, the total content and content ratio of each component exemplified above.
 本発明の風味増強剤は、一般的には一つの包装内に成分(A)及び(B)が混合された形態で良いが、本発明の効果が奏する限りこれに限定されない。例えば成分(A)及び(B)がそれぞれ別個に包装されて使用時に両方を飲食品に添加する形態のものでも良い。 The flavor enhancer of the present invention may generally be in a form in which components (A) and (B) are mixed in one package, but is not limited thereto as long as the effects of the present invention are exhibited. For example, the components (A) and (B) may be separately packaged and added to the food or drink at the time of use.
 本発明の風味増強剤を飲食品組成物に添加する場合、その添加量は呈味増強効果が得られる限り、特に制限されない。本発明の風味増強剤における各成分の含量、飲食品組成物の摂取様態等の諸条件に応じて、適宜設定することができる。例えば、飲食品組成物またはその原料配合中に、本発明の風味増強剤を1ppm(0.0001%)~50%添加することができ、10ppm(0.001%)~10%添加することができる。 When adding the flavor enhancer of the present invention to a food or drink composition, the amount added is not particularly limited as long as a taste enhancing effect is obtained. It can be set as appropriate according to various conditions such as the content of each component in the flavor enhancer of the present invention and the intake mode of the food and beverage composition. For example, the flavor enhancer of the present invention can be added in an amount of 1 ppm (0.0001%) to 50%, and 10 ppm (0.001%) to 10% can be added to the food / beverage composition or the raw material composition thereof. it can.
(風味が増強された飲食品組成物の製造法)
 本発明の別の態様は、成分(A)及び成分(B)を飲食品組成物中に添加することを特徴とする、呈味が増強された飲食品組成物の製造方法である。
(Method for producing a food or beverage composition with enhanced flavor)
Another aspect of the present invention is a method for producing a food / beverage product composition with enhanced taste, wherein the component (A) and the component (B) are added to the food / beverage product composition.
(飲食品組成物の風味増強方法)
 本発明の別の態様は、成分(A)及び(B)を飲食品組成物に添加することを特徴とする、飲食品組成物の風味増強方法である。
(Food flavor composition enhancement method)
Another aspect of the present invention is a method for enhancing the flavor of a food / beverage composition comprising adding components (A) and (B) to the food / beverage composition.
 これらの製造方法と風味増強方法の態様においては、成分(A)及び(B)が前述の風味増強剤の形態として飲食品組成物中に添加される態様でも良いし、成分(A)及び(B)を独立した原料として飲食品組成物中に添加してもよい。 In the aspect of these production methods and flavor enhancement methods, the components (A) and (B) may be added to the food or beverage composition as the aforementioned flavor enhancer, or the components (A) and ( B) may be added to the food or beverage composition as an independent raw material.
 本発明の飲食品組成物の種類としては、特に制限されず、飲食が可能な種々の組成物が広く包含される。なお、本発明における組成物とは、天然物を含まず、食用原料から人工的に調製した物をいう。例えば、清涼飲料、果汁飲料、乳飲料、豆乳飲料、茶飲料、アルコール飲料、スープなどの飲料;ハム、ソーセージなどの食肉加工食品;かまぼこ、ちくわなどの水産加工食品;バター、マーガリン、発酵乳、粉乳などの乳製品;チョコレート、キャンディー、ガム、グミ、スナック菓子、クッキー、ホイップクリーム、ケーキ、プリン、ゼリー、饅頭、団子等の菓子もしくは菓子材料;ソース、マヨネーズ、ケチャップ、醤油、ポン酢等の調味料;パン、麺類等が挙げられる。 The type of the food / beverage product composition of the present invention is not particularly limited, and various compositions capable of eating and drinking are widely included. In addition, the composition in this invention means the thing artificially prepared from the edible raw material without including a natural product. For example, soft drinks, fruit juice drinks, milk drinks, soy milk drinks, tea drinks, alcoholic drinks, soup drinks; processed meat foods such as ham and sausage; fishery processed foods such as kamaboko and chikuwa; butter, margarine, fermented milk, Dairy products such as powdered milk; chocolate, candy, gum, gummi, snacks, cookies, whipped cream, cakes, pudding, jelly, buns, dumplings, etc .; condiments such as sauces, mayonnaise, ketchup, soy sauce, ponzu Bread, noodles and the like.
 本発明の風味増強剤または、成分(A)及び成分(B)の添加時期は、飲食品組成物の製造工程のいずれの段階で行ってもよく、各成分を別の段階で添加してもよい。すなわち、本発明の風味増強剤または、成分(A)及び成分(B)は、飲食品組成物の原料に添加されてもよく、製造途中の中間製品に添加されてもよく、完成した飲食品組成物に添加されてもよい。本発明の風味増強剤、または成分(A)及び成分(B)は、1回のみ添加されてもよく、2回またはそれ以上の回数に分けて添加されてもよい。 The addition time of the flavor enhancer of this invention or a component (A) and a component (B) may be performed in any step of the manufacturing process of a food-drinks composition, and each component may be added in another step. Good. That is, the flavor enhancer or the component (A) and the component (B) of the present invention may be added to the raw material of the food / beverage product composition, or may be added to an intermediate product during production, and the finished food / beverage product It may be added to the composition. The flavor enhancer of the present invention, or component (A) and component (B) may be added only once, or may be added in two or more divided portions.
 本発明の方法は、さらに、成分(C)を添加することを含んでいてもよい。成分(C)を添加する場合も、本発明の風味増強剤、または成分(A)及び成分(B)の添加と同様に行うことができる。 The method of the present invention may further include adding a component (C). Also when adding a component (C), it can carry out similarly to addition of the flavor enhancer of this invention, or a component (A) and a component (B).
 本発明の方法において飲食品組成物への各成分の添加量や添加比率は、これらの成分の種類や本発明の飲食品の摂取態様等の諸条件に応じて適宜設定することができる。 In the method of the present invention, the addition amount and addition ratio of each component to the food / beverage product composition can be appropriately set according to various conditions such as the types of these components and the food / beverage food intake mode of the present invention.
 本発明の方法において、成分(A)は、飲食品組成物またはその原料配合中に、例えば、飲食品組成物中の成分(A)の含量として0.01ppm以上、0.1ppm以上、1ppm以上、または5ppm以上となるように添加されることができる。また1000ppm以下、200ppm以下、100ppm以下、50ppm以下、または20ppm以下となるように添加されることができる。より好ましくは0.1ppm~100ppm、さらに好ましくは1ppm~50ppmとなるように添加されることができる。 In the method of the present invention, the component (A) is, for example, 0.01 ppm or more, 0.1 ppm or more, 1 ppm or more as the content of the component (A) in the food / beverage composition or the raw material composition. Or 5 ppm or more. Moreover, it can be added so that it may become 1000 ppm or less, 200 ppm or less, 100 ppm or less, 50 ppm or less, or 20 ppm or less. More preferably, it can be added so as to be 0.1 ppm to 100 ppm, and more preferably 1 ppm to 50 ppm.
 本発明の方法において、成分(B)は、飲食品組成物またはその原料配合中に、例えば、飲食品組成物中の成分(B)の含量として1ppm以上、10ppm以上、20ppm以上、50ppm以上または100ppm以上となるように添加されることができる。また5000ppm以下、1000ppm以下、500ppm以下、300ppm以下、200ppm以下、または150ppm以下となるように添加されることができる。より好ましくは1ppm~500ppm、さらに好ましくは10ppm~300ppmとなるように添加されることができる。 In the method of the present invention, the component (B) is contained in the food / beverage composition or the raw material blend thereof, for example, 1 ppm or more, 10 ppm or more, 20 ppm or more, 50 ppm or more as the content of the component (B) in the food / beverage composition. It can be added to be 100 ppm or more. Moreover, it can be added so that it may become 5000 ppm or less, 1000 ppm or less, 500 ppm or less, 300 ppm or less, 200 ppm or less, or 150 ppm or less. More preferably, it can be added so as to be 1 ppm to 500 ppm, more preferably 10 ppm to 300 ppm.
 本発明の方法において、成分(A)の添加量に対する成分(B)の添加量の重量比率は、本発明の風味増強剤において記載した比率に準じれば良い。 In the method of the present invention, the weight ratio of the added amount of the component (B) to the added amount of the component (A) may be in accordance with the ratio described in the flavor enhancer of the present invention.
(風味増強作用)
 本発明において、γ-グルタミルペプチドとオリゴ糖との併用による風味増強作用の有無は、官能評価法によって判定することができる。すなわち、下記実施例に記載の通り、各サンプルを口に含んだ直後(0秒後)の口中の香りの強さから10秒後にかけての口中の香りの強さがコントロールサンプルに比べて高ければ、「香り」が高まったと判断し、これと同時に前記した官能評価法により呈味増強作用も有している場合は、風味増強作用を有すると判定することができる。
(Flavor enhancing effect)
In the present invention, the presence or absence of a flavor enhancing action by the combined use of γ-glutamyl peptide and oligosaccharide can be determined by a sensory evaluation method. That is, as described in the following examples, if the intensity of the scent in the mouth 10 seconds later is higher than the control sample from the intensity of the scent in the mouth immediately after each sample is included in the mouth (after 0 seconds), When it is determined that the “scent” has increased, and at the same time, the sensory evaluation method also has a taste enhancing action, it can be determined that it has a flavor enhancing action.
(水溶性成分の天然物からの抽出)
 上述した通り、本発明の風味増強剤の有効成分である、成分(A)や成分(B)のような水溶性成分は、天然物から水性溶媒で抽出し、その抽出物、濃縮物や単離物を用いることもできる。ただしその場合、工業的には天然物から成分(A)や成分(B)のような水溶性成分を簡便かつ安価に、できるだけ多く抽出することが重要となってくる。
 そこで本発明者らは、天然物から成分(A)や成分(B)等の水溶性成分を様々な条件で抽出し、その濃度を検討する中で、成分(A)や成分(B)を効率的かつ簡便に抽出する方法を見出した。以下に、その具体的態様について述べる。
(Extraction of water-soluble components from natural products)
As described above, water-soluble components such as component (A) and component (B), which are active ingredients of the flavor enhancer of the present invention, are extracted from natural products with an aqueous solvent, and the extract, concentrate and simple substance are extracted. A detached product can also be used. However, in that case, it is important to extract as many water-soluble components as possible from natural products, such as component (A) and component (B), simply and inexpensively.
Therefore, the present inventors extracted water-soluble components such as component (A) and component (B) from natural products under various conditions, and examined the concentrations thereof, so that component (A) and component (B) were extracted. An efficient and simple extraction method was found. Below, the specific aspect is described.
 本発明の水溶性成分(A)、(B)の天然物からの効率的な抽出方法は、天然物として豆類を選択し、該豆類を所定の水分範囲において予め加熱処理を行ってから、該加熱処理後の豆類を水性溶媒で抽出する方法である。 The method for efficiently extracting the water-soluble components (A) and (B) from the natural product according to the present invention includes selecting beans as natural products, preheating the beans in a predetermined moisture range, In this method, beans after heat treatment are extracted with an aqueous solvent.
 より具体的には、豆類に対して、豆類の水分が所定含量となるように吸水させた状態で、マイクロ波加熱処理もしくは100℃を超える加熱処理を行うか、又は、豆類の水分が所定含量となるように、100℃を超える加湿加熱処理を行い、該加熱処理後の豆類から水性溶媒で水溶性成分(A)及び/又は(B)を抽出することを特徴とする抽出方法である。これにより、短時間で豆類の細胞構造を急激に変化させることができるためか、細胞中に含まれる該水溶性成分を効率よく抽出することができる。 More specifically, the beans are subjected to microwave heat treatment or a heat treatment exceeding 100 ° C. in a state in which the water content of the beans is absorbed so that the water content becomes a predetermined content, or the water content of the beans is a predetermined content. In such an extraction method, a humidification heat treatment exceeding 100 ° C. is performed, and the water-soluble components (A) and / or (B) are extracted from the beans after the heat treatment with an aqueous solvent. Thereby, the water-soluble component contained in the cells can be efficiently extracted because the cell structure of the beans can be rapidly changed in a short time.
○豆類
 豆類としては特に限定されず、大豆、ルピン、エンドウ、ソラマメ、緑豆、小豆、インゲンマメ、落花生等を挙げることができる。豆類は予め脱皮、脱胚、圧偏、スライス、粗砕、粉砕、搾油等の物理的処理や、ヘキサンによる脱脂等の化学的処理がされているものを用いても良い。
○ Beans Beans are not particularly limited, and examples thereof include soybean, lupine, pea, broad bean, mung bean, red bean, kidney bean, peanut and the like. Beans that have been previously subjected to physical treatment such as molting, deembrying, pressure bias, slicing, crushing, pulverization, oil extraction, or chemical treatment such as degreasing with hexane may be used.
○水分含量
 上記の豆類中の所定の水分含量は8~55重量%であることが好ましく、より好ましくは9~50重量%、10~45重量%、10~40重量%、10~35重量%、10~30重量%の範囲を選択することができ、下限値としては11重量%、12重量%、13重量%、14重量%又は15重量%を選択することもでき、上限値としては25重量%、又は20重量%を選択することもできる。豆類中の水分含量が少な過ぎると、水性溶媒で抽出される水溶性成分(A)又は(B)の量が少なくなる傾向となる。また豆類中の水分含量が多すぎても、同様の傾向となる。
○ Water content The predetermined water content in the beans is preferably 8 to 55 wt%, more preferably 9 to 50 wt%, 10 to 45 wt%, 10 to 40 wt%, 10 to 35 wt%. The range of 10 to 30% by weight can be selected, and the lower limit can be selected from 11% by weight, 12% by weight, 13% by weight, 14% by weight or 15% by weight, and the upper limit can be selected from 25% by weight. % By weight or 20% by weight can also be selected. If the water content in the beans is too small, the amount of the water-soluble component (A) or (B) extracted with the aqueous solvent tends to decrease. Moreover, even if there is too much water content in beans, it becomes the same tendency.
○水溶性成分
 本態様によれば、豆類から効率的に抽出される水溶性成分は、成分(A)や成分(B)に必ずしも限られず、グルタミン酸などの遊離アミノ酸など、他の水溶性成分も同様に効率的に抽出できる。
○ Water-soluble component According to this embodiment, the water-soluble component efficiently extracted from beans is not necessarily limited to component (A) or component (B), and other water-soluble components such as free amino acids such as glutamic acid are also included. Similarly, it can be extracted efficiently.
○加熱処理
 本態様における加熱処理は、豆類中の水分含量が上記所定含量にある状態で行われることが重要である。加熱処理の方式は、マイクロ波加熱、乾熱加熱、加湿加熱等を用いることができる。
○ Heat treatment It is important that the heat treatment in this embodiment is performed in a state where the water content in the beans is at the predetermined content. As a heat treatment method, microwave heating, dry heat heating, humidification heating, or the like can be used.
 加熱処理をマイクロ波加熱により行う場合は、豆類の水分が予め所定含量となるように吸水させた状態で、例えば200~1000W、好ましくは400~800Wで行うことができる。加熱時間は10秒~120秒、好ましくは20~60秒で行うことができる。ただし、マイクロ波加熱装置の機種によって加熱効率が異なるため、上記加熱処理条件は適宜変更することができる。 When the heat treatment is carried out by microwave heating, it can be carried out, for example, at 200 to 1000 W, preferably 400 to 800 W in a state in which the water content of the beans is absorbed in advance so as to have a predetermined content. The heating time can be 10 seconds to 120 seconds, preferably 20 to 60 seconds. However, since the heating efficiency varies depending on the model of the microwave heating apparatus, the above heat treatment conditions can be changed as appropriate.
 加熱処理を乾熱加熱により行う場合、豆類の水分が予め所定含量となるように吸水させた状態で、少なくとも100℃を超える温度、好ましくは110~200℃、より好ましくは110~180℃で加熱処理を行う。加熱時間は30~300分、好ましくは90~250分、より好ましくは140~230分とすることができる。乾熱加熱装置としては、ガスや赤外線ヒーター等によって水や水蒸気に接触させず加熱される、オーブンや恒温機等の装置を挙げることができ、装置の種類によって加熱効率が異なるため、上記加熱処理条件は少なくとも100℃を超える温度である限り、適宜変更することができる。 When the heat treatment is performed by dry heat, the beans are heated at a temperature exceeding 100 ° C., preferably 110 to 200 ° C., more preferably 110 to 180 ° C., in a state in which the water content of the beans is previously absorbed so as to have a predetermined content. Process. The heating time can be 30 to 300 minutes, preferably 90 to 250 minutes, more preferably 140 to 230 minutes. Examples of the dry heat heating device include a device such as an oven or a thermostat that is heated without contact with water or water vapor by a gas or an infrared heater, and the heating efficiency varies depending on the type of the device. The conditions can be appropriately changed as long as the temperature is at least over 100 ° C.
 加熱処理を加湿加熱により行う場合、豆類の水分が予め所定含量となるように吸水させた状態で行っても良い。また、別の態様では、加湿加熱を行うと水蒸気によって加熱中に豆類の水分含量を上げることができるため、予め吸水させずに、豆類の水分が所定含量となるように、加湿加熱処理を行っても良い。加熱温度は少なくとも100℃を超える温度、好ましくは110~200℃、より好ましくは110~180℃とすることができる。また加熱時間は1~30分、好ましくは3~20分、より好ましくは5~10分とすることができる。加湿加熱装置としては、オートクレーブ等を挙げることができ、装置の種類によって加熱効率が異なるため、上記加熱処理条件は少なくとも100℃を超える温度である限り、適宜変更することができる。 When the heat treatment is performed by humidification heating, it may be performed in a state in which the water content of the beans is absorbed in advance so as to have a predetermined content. In another aspect, the moisture content of the beans can be increased during the heating by steam when humidified heating is performed, so that the moisture content of the beans is kept at a predetermined content without water absorption beforehand. May be. The heating temperature can be at least over 100 ° C., preferably 110 to 200 ° C., more preferably 110 to 180 ° C. The heating time can be 1 to 30 minutes, preferably 3 to 20 minutes, more preferably 5 to 10 minutes. Examples of the humidification heating device include an autoclave and the like. Since the heating efficiency varies depending on the type of the device, the above heat treatment conditions can be appropriately changed as long as the temperature is at least over 100 ° C.
 以上の態様により加熱処理された豆類を水性溶媒によって常法により水溶性成分を抽出する。水性溶媒としては、水やエタノール水溶液等を用いることができる。抽出温度は特に限定されず、10~100℃において選択できるが、より高温の方が水溶性成分の抽出効率が良くなる。抽出に用いる水性溶媒の量は特に限定されず、豆類の重量に対して例えば2~10倍の水性溶媒を加えて抽出できる。豆類はそのまま抽出に供しても良いし、適宜豆類を湿式又は乾式で粉砕して抽出に供しても良い。抽出操作後、遠心分離やろ過等により不溶性成分を除去し、水溶性呈味物質を含む豆類抽出液を得る。 The water-soluble component is extracted from the beans heat-treated in the above manner by an ordinary method using an aqueous solvent. As the aqueous solvent, water, an aqueous ethanol solution, or the like can be used. The extraction temperature is not particularly limited and can be selected from 10 to 100 ° C., but the higher the temperature, the better the extraction efficiency of the water-soluble component. The amount of the aqueous solvent used for the extraction is not particularly limited, and the extraction can be performed by adding, for example, 2 to 10 times the aqueous solvent with respect to the weight of the beans. The beans may be subjected to extraction as they are, or the beans may be appropriately pulverized in a wet or dry manner for extraction. After the extraction operation, insoluble components are removed by centrifugation or filtration to obtain a bean extract containing a water-soluble taste substance.
 得られた豆類抽出液は、そのままで、あるいはさらに分画、精製等を行い、水溶性成分がより濃縮された状態で、原液、濃縮液又は乾燥物などの形態で豆類抽出物とすることができる。本態様の抽出方法で得られる豆類抽出液は、本態様の抽出方法に寄らずに得られる豆類抽出液と比較して、高い濃度の水溶性成分を含むため、それ自体で本発明の風味増強剤(風味増強のための飲食品原料を含む)として用いることができ、また本発明の風味増強剤の原料である水溶性成分(A)及び/又は(B)の安価な供給源としても用いることができる。 The obtained legume extract may be used as it is or after further fractionation, purification, and the like in the form of a stock solution, a concentrate, or a dried product in a state where the water-soluble components are more concentrated. it can. Since the bean extract obtained by the extraction method of this embodiment contains a higher concentration of water-soluble components than the bean extract obtained without depending on the extraction method of this embodiment, the flavor enhancement of the present invention itself It can be used as an agent (including raw materials for foods and drinks for enhancing flavor), and it can also be used as an inexpensive source of the water-soluble component (A) and / or (B) that is a raw material for the flavor enhancer of the present invention. be able to.
 以下、実施例等により本発明の実施形態についてさらに具体的に記載する。 Hereinafter, the embodiments of the present invention will be described more specifically by way of examples.
(試験例1)γ-Glu-Tyrと各種オリゴ糖の併用効果の検討
 本試験例では、γ-Glu-Tyrと各種オリゴ糖を単独で使用した場合と併用した場合についての呈味増強効果の有無を、下記試験方法により検証した。γ-Glu-Tyrは、BACHEM社製の試薬を用いた。オリゴ糖として、和光純薬工業(株)製のラフィノース(三糖、甘味度約20%)およびスタキオース(四糖、甘味度約30%)、Santa Cruz Biotechnology社製のマルトトリオース(三糖、甘味度約33%)、マルトテトラオース(四糖、甘味度約22%)、マルトペンタオース(五糖、甘味度約20%)およびマルトヘキサオース(六糖、甘味度約20%)など、市販の製品を用いた。コントロールサンプルへの各成分の添加濃度は、γ-Glu-Tyrを20ppm、各オリゴ糖を200ppmとした。
(Test Example 1) Examination of combined effect of γ-Glu-Tyr and various oligosaccharides In this test example, the effect of enhancing the taste when γ-Glu-Tyr and various oligosaccharides are used alone or in combination. The presence or absence was verified by the following test method. For γ-Glu-Tyr, a reagent manufactured by BACHEM was used. As oligosaccharides, raffinose (trisaccharide, sweetness of about 20%) and stachyose (tetrasaccharide, sweetness of about 30%) manufactured by Wako Pure Chemical Industries, Ltd., maltotriose (trisaccharide, trisaccharide, manufactured by Santa Cruz Biotechnology) Sweetness of about 33%), maltotetraose (tetrasaccharide, sweetness of about 22%), maltopentaose (pentose, sweetness of about 20%) and maltohexaose (hexasaccharide, sweetness of about 20%) A commercial product was used. The concentration of each component added to the control sample was 20 ppm for γ-Glu-Tyr and 200 ppm for each oligosaccharide.
<試験方法>
○評価サンプルの調製
 グルタミン酸ナトリウム(和光純薬工業(株)製)、イノシン-5’-リン酸(Sigma-Aldrich社製)、及び塩化ナトリウムの混合水溶液を、うま味と塩味を有するコントロールサンプル(無添加)とした。各試薬の濃度は、グルタミン酸ナトリウム0.02%、イノシン-5’-リン酸0.01%、塩化ナトリウム0.5%とした。このコントロールサンプルに対して、γ-Glu-Tyrと各種糖類を所定の濃度で添加し、試験サンプルを調製した。
<Test method>
○ Preparation of Evaluation Sample A mixed sample of sodium glutamate (manufactured by Wako Pure Chemical Industries, Ltd.), inosine-5′-phosphate (manufactured by Sigma-Aldrich), and sodium chloride was added to a control sample having umami and salty taste (none Added). The concentration of each reagent was 0.02% sodium glutamate, 0.01% inosine-5′-phosphate, and 0.5% sodium chloride. To this control sample, γ-Glu-Tyr and various sugars were added at a predetermined concentration to prepare a test sample.
○官能評価(呈味)
 試験サンプルを口に含んだ直後(0秒後)、5秒後、10秒後の呈味の強さに関して、熟練したパネル3名に依頼し、以下の官能評価を実施した。
 呈味強度を測定するため、全長100mmのラベルドマグニチュードスケールを用いて評価した。すなわち、スケール下端からの距離(mm)を味強度とし、スケール下端から100mm(上端)に位置する部分を「想像出来うる限り最も強い味」として、各パネラーが感じた味強度をスケール上に記録させた。コントロールサンプルの「0秒後」、「5秒後」、「10秒後」の味の強さを、スケール上の「50mm」、「40mm」、「30mm」として各パネラーに評価させ、パネラー3名の採点結果の平均値を各試験区の呈味の強さとして表した。そして、コントロールサンプルに比べて試験サンプルの点数が高い場合に、添加した成分は呈味増強効果(コク味付与効果)があると判断した。
 結果を表1-1、表1-2に示した。
○ Sensory evaluation (tasting)
Immediately after the test sample was put in the mouth (after 0 seconds), after 5 seconds, after 10 seconds, three skilled panels were asked to perform the following sensory evaluation.
In order to measure the taste intensity, evaluation was performed using a labeled magnitude scale having a total length of 100 mm. That is, the distance (mm) from the lower end of the scale is set as the taste intensity, and the portion located 100 mm (upper end) from the lower end of the scale is set as “the strongest taste that can be imagined”, and the taste intensity felt by each panel is recorded on the scale. I let you. The control samples were evaluated as “50 mm”, “40 mm”, and “30 mm” on the scale with “0 seconds later”, “5 seconds later”, and “10 seconds later”. The average value of the scoring results of the names was expressed as the taste intensity of each test section. And when the score of the test sample was high compared with the control sample, it was judged that the added component had a taste enhancing effect (kokumi imparting effect).
The results are shown in Table 1-1 and Table 1-2.
(表1-1)
Figure JPOXMLDOC01-appb-I000001
(Table 1-1)
Figure JPOXMLDOC01-appb-I000001
(表1-2)
Figure JPOXMLDOC01-appb-I000002
(Table 1-2)
Figure JPOXMLDOC01-appb-I000002
 表1-1に示した通り、γ-Glu-Tyr単独をコントロールサンプルに添加すると、口に含んだ直後から呈味が強まり、10秒後まで効果が持続する傾向となり、呈味増強効果が認められた。これに対し、各種オリゴ糖単独をコントロールサンプルに添加した場合は、このような増強効果は認められなかった。むしろ二糖ではコントロールサンプルの呈味を阻害していた。
 ところが、表1-2に示した通り、γ-Glu-Tyrと、単独使用では効果を示さなかった上記オリゴ糖を併用すると、三糖以上ではγ-Glu-Tyrを単独で使用した場合よりも、顕著な呈味増強効果が認められた。また三糖以上のオリゴ糖の中では、三糖よりも四糖、五糖及び六糖の呈味増強効果がより強く認められた。これは一般に単糖の結合数が増えるほど甘味度が小さくなることから、一定程度までは甘味度が低いほど呈味増強効果が強くなることが示唆される。また三糖の中ではパノースが四糖並みの呈味増強効果を示した。一方、二糖の場合はいずれの種類を併用しても呈味増強効果を示さなかった。
As shown in Table 1-1, when γ-Glu-Tyr alone was added to the control sample, the taste became stronger immediately after it was put in the mouth, and the effect tended to continue until 10 seconds later. It was. On the other hand, when various oligosaccharides alone were added to the control sample, such an enhancement effect was not recognized. Rather, disaccharide inhibited the taste of the control sample.
However, as shown in Table 1-2, when γ-Glu-Tyr is used in combination with the above oligosaccharide, which was not effective when used alone, more than trisaccharide is used than when γ-Glu-Tyr is used alone. A remarkable taste enhancing effect was observed. Moreover, among oligosaccharides of trisaccharide or higher, the taste enhancing effect of tetrasaccharide, pentasaccharide and hexasaccharide was stronger than that of trisaccharide. This generally indicates that the sweetness level decreases as the number of monosaccharide bonds increases, and thus it is suggested that the taste enhancing effect increases as the sweetness level decreases to a certain level. Among the trisaccharides, panose showed the same taste enhancing effect as the tetrasaccharide. On the other hand, in the case of disaccharide, no taste enhancing effect was shown even if any kind was used in combination.
(試験例2)三糖以上のオリゴ糖の添加濃度の検討
 本試験例では、試験例1と同様の試験方法を用い、三糖以上の糖類を種々の濃度でγ-Glu-Tyrと併用し、呈味増強効果に関して検証を行った。各成分の添加濃度と結果は表2に示した通りである。
(Test Example 2) Examination of addition concentration of oligosaccharides higher than trisaccharide In this test example, the same test method as in Test Example 1 was used, and saccharides higher than trisaccharide were used in combination with γ-Glu-Tyr at various concentrations. Then, the taste enhancement effect was verified. The concentration of each component added and the results are as shown in Table 2.
(表2)
Figure JPOXMLDOC01-appb-I000003
(Table 2)
Figure JPOXMLDOC01-appb-I000003
 20ppmのγ-Glu-Tyrに対して、10~5000ppmの三糖以上のオリゴ糖を併用したところ、γ-Glu-Tyr単独での呈味よりも、さらに強い呈味が感じられた。最も強い呈味増強効果が得られたのは、γ-Glu-Tyr 20ppmと該オリゴ糖200ppmを併用したときであった。一方、該オリゴ糖だけをどれだけ添加しても、無添加に比べてほとんど呈味の変化を感じなかった。 When 20 to γ-Glu-Tyr was used in combination with an oligosaccharide of 10 to 5000 ppm of trisaccharide or more, a stronger taste was felt than the taste of γ-Glu-Tyr alone. The strongest taste enhancing effect was obtained when γ-Glu-Tyr 20 ppm and the oligosaccharide 200 ppm were used in combination. On the other hand, no matter how much the oligosaccharide was added, there was almost no change in taste as compared with no addition.
(試験例3)γ-Glu-Tyrの添加濃度の検討
 本試験例では、試験例1と同様の試験方法を用い、γ-Glu-Tyrを種々の濃度で三糖以上のオリゴ糖と併用した場合の呈味増強効果に関して検証を行った。各成分の添加濃度と結果は表3に示した通りである。
(Test Example 3) Examination of added concentration of γ-Glu-Tyr In this test example, γ-Glu-Tyr was used in combination with oligosaccharides of three or more sugars at various concentrations using the same test method as Test Example 1. We verified the taste enhancement effect in each case. The concentration of each component added and the results are as shown in Table 3.
(表3)
Figure JPOXMLDOC01-appb-I000004
(Table 3)
Figure JPOXMLDOC01-appb-I000004
 0.01~1000ppmのγ-Glu-Tyrに対して、50ppmの三糖以上のオリゴ糖を併用したところ、γ-Glu-Tyr単独での呈味よりも、さらに強い呈味が感じられた。最も強い呈味増強効果が得られたのは、γ-Glu-Tyr 20ppmと該オリゴ糖50ppmを併用したときであった。 When 0.01 to 1000 ppm of γ-Glu-Tyr was combined with an oligosaccharide of 50 ppm or more of a trisaccharide, a taste stronger than that of γ-Glu-Tyr alone was felt. The strongest taste enhancing effect was obtained when γ-Glu-Tyr 20 ppm and the oligosaccharide 50 ppm were used in combination.
(試験例4)各種γ-グルタミルペプチドと三糖以上のオリゴ糖との併用効果
 本実施例では、試験例1と同様の試験方法を用い、各種γ-グルタミルペプチドとラフィノースを併用した場合の呈味増強効果に関して検証した。γ-グルタミルペプチドとしては、γ-Glu-Tyrに加えて、γ-Glu-Phe(渡辺化学工業(株)製)、グルタチオンであるγ-Glu-Cys-Gly(和光純薬工業(株)製)を用いた。これらのγ-グルタミルペプチドは何れも呈味性を有するものである。各成分の添加濃度と結果は表4に示した通りである。
(Test Example 4) Combined effects of various γ-glutamyl peptides and trisaccharide or higher oligosaccharides In this example, the same test method as in Test Example 1 was used, and various γ-glutamyl peptides and raffinose were used in combination. It verified about the taste enhancement effect. As γ-glutamyl peptide, in addition to γ-Glu-Tyr, γ-Glu-Phe (Watanabe Chemical Co., Ltd.), glutathione γ-Glu-Cys-Gly (Wako Pure Chemical Industries, Ltd.) ) Was used. All of these γ-glutamyl peptides have a taste. The addition concentration of each component and the results are as shown in Table 4.
(表4)
Figure JPOXMLDOC01-appb-I000005
(Table 4)
Figure JPOXMLDOC01-appb-I000005
 γ-Glu-Pheまたはγ-Glu-Cys-Glyとラフィノースを併用した場合も、試験例1と同様にγ-Glu-Pheやγ-Glu-Cys-Gly単独での呈味よりも、さらに強い呈味が感じられた。 Even when γ-Glu-Phe or γ-Glu-Cys-Gly and raffinose are used in combination, as in Test Example 1, it is stronger than the taste of γ-Glu-Phe or γ-Glu-Cys-Gly alone. The taste was felt.
(試験例5)
 本試験例では、市販の粉末状スープ対して、γ-Glu-Tyrとラフィノースを併用して添加した場合の呈味増強効果に関して検証した。
(Test Example 5)
In this test example, the taste enhancement effect when γ-Glu-Tyr and raffinose were added in combination with a commercially available powdered soup was verified.
<試験方法>
 市販の固形チキンコンソメスープ(味の素(株)製)を1キューブあたり300mlのお湯で調製し、これをコントロールサンプルとする。このコントロールサンプルに対して、γ-Glu-Tyrとラフィノースを所定の濃度で添加し、試験サンプルを調製した。得られた試験サンプルを試験例1と同様の方法にて呈味についての官能評価を実施した。また併せて香りについての官能評価を下記の方法にて実施した。各成分の添加濃度と官能評価結果は表5に示した通りである。
<Test method>
A commercially available solid chicken consomme soup (manufactured by Ajinomoto Co., Inc.) is prepared with 300 ml of hot water per cube, and this is used as a control sample. To this control sample, γ-Glu-Tyr and raffinose were added at predetermined concentrations to prepare a test sample. The obtained test sample was subjected to sensory evaluation for taste in the same manner as in Test Example 1. In addition, sensory evaluation of the fragrance was carried out by the following method. The addition concentration of each component and the sensory evaluation results are as shown in Table 5.
○官能評価(香り)
 試験サンプルを口に含んだ直後(0秒後)、5秒後、10秒後の香りの強さに関して、熟練したパネル3名に依頼し、以下の官能評価を実施した。
 香り強度を測定するため、全長100mmのラベルドマグニチュードスケールを用いて評価した。すなわち、スケール下端からの距離(mm)を香り強度とし、スケール下端から100mm(上端)に位置する部分を「想像出来うる限り最も強い香り」として、各パネラーが感じた香り強度をスケール上に記録させた。コントロールサンプルの「0秒後」、「5秒後」、「10秒後」の香りの強さを、スケール上の「50mm」、「40mm」、「30mm」として各パネラーに評価させ、パネラー3名の採点結果の平均値を各試験区の香りの強さで表した。そして、コントロールサンプルに比べて試験サンプルの点数が高い場合に、添加した成分は香りの増強効果があると判断し、さらに、呈味と香りの両方について増強効果が認められた場合には、風味増強効果(コク付与効果)があると判断した。
○ Sensory evaluation (fragrance)
Immediately after the test sample was put in the mouth (after 0 seconds), after 5 seconds, after 10 seconds, three skilled panels were asked to perform the following sensory evaluation.
In order to measure the scent intensity, it was evaluated using a labeled magnitude scale having a total length of 100 mm. That is, the distance (mm) from the lower end of the scale is the scent intensity, and the portion located 100 mm (upper end) from the lower end of the scale is set as “the strongest scent that can be imagined”, and the scent intensity felt by each panel is recorded on the scale. I let you. Each panelist evaluated the intensity of the scent of “0 seconds later”, “5 seconds later”, and “10 seconds later” of the control sample as “50 mm”, “40 mm”, and “30 mm” on the scale. The average value of the scoring results of the names was expressed by the scent intensity of each test section. When the test sample score is higher than that of the control sample, the added component is judged to have a fragrance enhancing effect, and when the enhancing effect is recognized for both taste and fragrance, It was judged that there was an enhancement effect (better effect).
(表5)
Figure JPOXMLDOC01-appb-I000006
(Table 5)
Figure JPOXMLDOC01-appb-I000006
 試験例1と同様にラフィノース単独では呈味増強効果はなかったが、γ-Glu-Tyrとラフィノースを市販スープに併用した場合も、γ-Glu-Tyr単独での呈味よりも、さらに強い呈味を増強する効果が認められた。また、γ-Glu-Tyrとラフィノースを実際の食品であるスープに併用した試験区では、呈味を単に増強するのみでなく、かつ香り(フレーバー)も増強されており、スープとしての風味のバランスにも優れ、全体として風味が増強され、すなわち「コク」が付与されていた。 As in Test Example 1, raffinose alone did not have a taste enhancing effect, but when γ-Glu-Tyr and raffinose were used in a commercial soup, the taste was stronger than that of γ-Glu-Tyr alone. The effect of enhancing the taste was recognized. In addition, in the test area where γ-Glu-Tyr and raffinose were used in combination with soup, which is an actual food, not only the taste is enhanced, but the aroma (flavor) is also enhanced, and the balance of flavor as a soup In addition, the flavor as a whole was enhanced, that is, “bodied” was given.
(試験例6)三糖以上のオリゴ糖と、単糖、二糖、多糖との比較
 本比較例では、γ-Glu-Tyrと併用した場合の呈味増強効果に関して、試験例1と同様の方法により、三糖以上のオリゴ糖と単糖、二糖、多糖との比較検証を行った。単糖はグルコース、二糖はスクロース、多糖はペクチン(いずれも和光純薬工業(株)製)を用いた。各成分の添加濃度と結果は表6に示した通りである。
(Test Example 6) Comparison of trisaccharide or higher oligosaccharides with monosaccharides, disaccharides and polysaccharides In this comparative example, the taste enhancement effect when used in combination with γ-Glu-Tyr is the same as in Test Example 1. The method was used for comparative verification of trisaccharide or higher oligosaccharides with monosaccharides, disaccharides and polysaccharides. Monosaccharide was glucose, disaccharide was sucrose, and polysaccharide was pectin (both manufactured by Wako Pure Chemical Industries, Ltd.). The addition concentrations and results of each component are as shown in Table 6.
(表6)
Figure JPOXMLDOC01-appb-I000007
(Table 6)
Figure JPOXMLDOC01-appb-I000007
 単糖、二糖、及び多糖をコントロールサンプルに添加した場合、コントロールサンプル単体の呈味の強さに比べて、単糖及び二糖では呈味が弱まり、多糖では同程度の呈味の強さを示した。
 γ-Glu-Tyrと単糖、二糖、及び多糖を併用した場合、三糖以上のオリゴ糖を併用した場合に認められた呈味増強効果がなく、γ-Glu-Tyrをコントロールサンプルに添加した場合と同程度の呈味の強さしか示さなかった。
When monosaccharides, disaccharides, and polysaccharides are added to the control sample, the taste of the monosaccharide and disaccharide is weaker than that of the control sample alone, and the same strength of taste is obtained with the polysaccharide. showed that.
When γ-Glu-Tyr is used in combination with monosaccharides, disaccharides, and polysaccharides, there is no taste enhancement effect observed when oligosaccharides of trisaccharide or higher are used in combination, and γ-Glu-Tyr is added to the control sample. It showed only the same strength of taste as the case.
 以上の試験例の結果より、γ-グルタミルペプチドと三糖以上のオリゴ糖を組み合わせて飲食品に添加することにより、γ-グルタミルペプチド以上の呈味増強効果と共に、香りの増強効果も得られること、すなわち風味増強効果(コク付与効果)が得られることが明らかとなった。 From the results of the above test examples, by adding γ-glutamyl peptide and trisaccharide or higher oligosaccharide to foods and drinks, it is possible to obtain a flavor enhancing effect as well as a taste enhancing effect higher than γ-glutamyl peptide. That is, it has been clarified that a flavor enhancing effect (a rich effect) can be obtained.
(試験例7) 各種豆類中に含まれる水溶性成分の検出
 7種類の豆類(大豆、ソラマメ、エンドウ、緑豆、アズキ、インゲンマメ)を粉砕して得られた粉砕物25mgに対して、2mLのアセトニトリル:水(1:1)混合溶液を加え、超音波処理を10分間行い、水溶性成分を抽出した。得られた処理液を10,000×g、10分間で遠心分離して不溶物を除去し、上清をアセトニトリル:水(1:1)混合溶液でさらに100倍希釈することにより、豆類抽出液を得た。これをHPLC-MSを用いて表7の条件で分析することにより、各種水溶性成分を検出した。分析結果を表8に示した。
(Test Example 7) Detection of water-soluble components contained in various beans 2 mL of acetonitrile for 25 mg of pulverized product obtained by pulverizing seven types of beans (soybean, broad bean, pea, mung bean, azuki bean, kidney bean) : Water (1: 1) mixed solution was added and sonication was performed for 10 minutes to extract water-soluble components. The obtained treatment solution is centrifuged at 10,000 × g for 10 minutes to remove insoluble matters, and the supernatant is further diluted 100 times with an acetonitrile: water (1: 1) mixed solution to obtain a bean extract. It was. By analyzing this using HPLC-MS under the conditions shown in Table 7, various water-soluble components were detected. The analysis results are shown in Table 8.
(表7)HPLC-MS分析条件
Figure JPOXMLDOC01-appb-I000008
(Table 7) HPLC-MS analysis conditions
Figure JPOXMLDOC01-appb-I000008
(表8)分析結果
Figure JPOXMLDOC01-appb-I000009
(Table 8) Analysis results
Figure JPOXMLDOC01-appb-I000009
 表8の通り、各種豆類の抽出液からは、主なオリゴ糖としてラフィノースとスタキオースが共通して検出され、一部ベルバスコースも検出された。また、ソラマメとエンドウを除く4種類の豆類抽出液からは、N末端のグルタミン酸のγ位にアミノ酸がペプチド結合したγ-グルタミルペプチドが検出された。
 次に、各抽出液に含まれていたγ-Glu-Tyr、γ-Glu-Phe、γ-Glu-Glu、γ-Glu-Valおよびγ-Glu-Leuについて、試験例5の条件に準じて風味増強効果を確認したところ、いずれも呈味と香りを増強していたことから、これらはいずれも風味増強効果を有していた。同様のγ-グルタミル構造を有するγ-Glu-S-Methyl-cysteine、γ-Glu-γ-Glu-S-Methyl-cysteine、γ-Glu-β-Phe-β-Ala、γ-Glu-Cys-β-Alaなども強度の差はあれ風味増強効果を有すると考えられる。
As shown in Table 8, raffinose and stachyose were commonly detected as main oligosaccharides from various bean extracts, and part of Verbasse was also detected. In addition, γ-glutamyl peptide in which an amino acid was bonded to the γ-position of N-terminal glutamic acid was detected from four kinds of legume extracts excluding broad beans and peas.
Next, for γ-Glu-Tyr, γ-Glu-Phe, γ-Glu-Glu, γ-Glu-Val and γ-Glu-Leu contained in each extract, according to the conditions of Test Example 5 When the flavor enhancing effect was confirmed, all of them had enhanced taste and aroma, and thus all had a flavor enhancing effect. Γ-Glu-S-Methyl-cysteine, γ-Glu-γ-Glu-S-Methyl-cysteine, γ-Glu-β-Phe-β-Ala, γ-Glu-Cys- having the same γ-glutamyl structure β-Ala and the like are also considered to have a flavor enhancing effect regardless of the difference in strength.
(試験例8) 各種加熱条件による水溶性成分の抽出量の変化
 湿熱加圧加熱(AC)、マイクロ波加熱(MW)、乾熱加熱(DH)の各処理を施した加熱大豆を作成し、各加熱大豆サンプルを原料として水溶性成分を抽出し、定量することにより、加熱条件と水溶性成分の抽出量の関係を調査した。
 なお、ACでは加熱処理時に大豆の重量の約5%相当の水が水蒸気により加水される(これを)ため、MW及びDHを行う大豆に関しては、加熱処理を施す前に、大豆重量あたり5%の水が加水されるように、霧吹きで大豆に対して水を噴霧し、3時間程度静置して水をなじませたものを加熱原料として用いた。
 具体的には、各加熱大豆は表9記載のT2~T13の条件で調製し、得られた各加熱大豆サンプルをミクロパウダー(ウエスト社製)を用いて粉末化した。
(Test Example 8) Change in extraction amount of water-soluble component due to various heating conditions Heated soybeans subjected to each treatment of wet heat pressure heating (AC), microwave heating (MW), and dry heat heating (DH) were prepared, By extracting and quantifying water-soluble components from each heated soybean sample, the relationship between the heating conditions and the amount of water-soluble components extracted was investigated.
In AC, water equivalent to about 5% of the weight of soybean during heat treatment is hydrolyzed by water vapor (this). Soybeans subjected to MW and DH are 5% per weight of soybean before heat treatment. The water was sprayed on the soybeans by spraying so that the water was hydrated, and the soybeans were allowed to stand for about 3 hours and used for heating.
Specifically, each heated soybean was prepared under the conditions of T2 to T13 shown in Table 9, and each obtained heated soybean sample was pulverized using micro powder (manufactured by West Co., Ltd.).
 次に、T1~T13の大豆粉50gを250mLの常温水に加え、攪拌機「EXCEL AUTO HOMOGENIZER」((株)日本精機製作所製)を用いて、25℃保温下で8000rpm×10分間抽出した。得られたスラリーは沸騰水中に5分間静置し、直後に氷冷した。本スラリーを15000rpmで30分間遠心分離し、得られた上清を抽出液とした。 Next, 50 g of soybean powder of T1 to T13 was added to 250 mL of room temperature water, and extracted using a stirrer “EXCEL AUTO HOMOGENIZER” (manufactured by Nippon Seiki Seisakusho Co., Ltd.) at 25 ° C. and kept at 8000 rpm × 10 minutes. The obtained slurry was left in boiling water for 5 minutes and immediately after ice cooling. This slurry was centrifuged at 15000 rpm for 30 minutes, and the resulting supernatant was used as an extract.
 また比較として、T14では豆乳と同じように大豆に5倍量の水を加えて、12時間浸漬させた。これを攪拌機「EXCEL AUTO HOMOGENIZER」((株)日本精機製作所製)を用いて、90℃で加温しつつ8000rpm×10分間熱水抽出し、スラリーを調製した。本スラリーを抽出直後に氷冷し、15000rpmで30分間遠心分離して得られた上清を抽出液とした。 For comparison, at T14, five times the amount of water was added to soybeans and soaked for 12 hours in the same manner as soy milk. This was extracted with hot water using a stirrer “EXCEL AUTO HOMOGENIZER” (manufactured by Nippon Seiki Seisakusho Co., Ltd.) at 90 ° C. for 8000 rpm × 10 minutes to prepare a slurry. The slurry was ice-cooled immediately after extraction, and the supernatant obtained by centrifuging at 15000 rpm for 30 minutes was used as the extract.
 これらの抽出液に関して、試験例7記載の方法でHPLC-MSを用いて分析し、各水溶性成分の標準試薬を用いて作成した検量線に従って、成分含量を定量し、各成分の抽出量を算出した。また参考までに各加熱大豆の水溶性窒素指数(NSI)を測定し、各加熱大豆の蛋白質の変性度合をみた。 About these extracts, it analyzed using HPLC-MS by the method of Test Example 7, quantified the component content according to the calibration curve created using the standard reagent of each water-soluble component, and extracted amount of each component was determined. Calculated. For reference, the water-soluble nitrogen index (NSI) of each heated soybean was measured, and the degree of protein modification of each heated soybean was observed.
 なお、NSIは所定の方法に基づき、全窒素量に占める水溶性窒素(粗蛋白)の比率(重量%)で表すことができ、以下の方法に基づいて測定された値とする。
 すなわち、試料2.0gに100mlの水を加え、40℃にて60分攪拌抽出し、1400×gにて10分間遠心分離し、上清1を得る。残った沈殿に再度100mlの水を加え、40℃にて60分攪拌抽出し、1400×gにて10分遠心分離し、上清2を得る。上清1および上清2を合わせ、さらに水を加えて250mlとする。No.5Aろ紙にてろ過したのち、ろ液の窒素含量をケルダール法にて測定する。同時に試料中の窒素含量をケルダール法にて測定し、ろ液として回収された窒素(水溶性窒素)の試料中の全窒 素に対する割合を重量%として表したものをNSIとする。
NSI can be expressed as a ratio (% by weight) of water-soluble nitrogen (crude protein) in the total nitrogen amount based on a predetermined method, and is a value measured based on the following method.
That is, 100 ml of water is added to 2.0 g of a sample, followed by stirring and extraction at 40 ° C. for 60 minutes, followed by centrifugation at 1400 × g for 10 minutes to obtain supernatant 1. 100 ml of water is added again to the remaining precipitate, followed by stirring and extraction at 40 ° C. for 60 minutes, and centrifugation at 1400 × g for 10 minutes to obtain supernatant 2. Supernatant 1 and supernatant 2 are combined, and water is further added to make 250 ml. After filtering with No. 5A filter paper, the nitrogen content of the filtrate is measured by Kjeldahl method. At the same time, the nitrogen content in the sample is measured by the Kjeldahl method, and the ratio of nitrogen recovered as filtrate (water-soluble nitrogen) to the total nitrogen in the sample is expressed as% by weight.
 結果を表9に示した。表9では、加熱処理を施していないサンプル(T1)から抽出された各成分抽出量を1とした場合の、加熱処理を施したサンプルから抽出された各水溶性成分の相対含量値を示した。 The results are shown in Table 9. Table 9 shows the relative content value of each water-soluble component extracted from the heat-treated sample when the amount of each component extracted from the non-heat-treated sample (T1) is 1. .
(表9)
Figure JPOXMLDOC01-appb-I000010
(Table 9)
Figure JPOXMLDOC01-appb-I000010
 表9の通り、抽出前の加熱方式の違いによって抽出される成分量に異なる傾向が認められ、抽出効率はMW>AC>DHの順に高く、MWではより多くの水溶性成分が抽出された。DHによっても未加熱に比べると多くの水溶性成分が抽出されたが、他の加熱方式に比べて抽出に時間を要した。この理由は、DHに比べてMWの方が、大豆の細胞構造が急激に、より大きく破壊され、その結果細胞中の水溶性成分がより抽出されやすくなっているためと考えられる。また、通常の豆乳を作成する際と同様に抽出時に水系下で加熱処理を行った場合は、抽出前に加熱処理を行った場合に比べて水溶性成分の抽出量が少なくなった。そのため、効率良く水溶性成分を抽出するためには、抽出前に予め大豆に対して所定の水分の存在下で加熱処理を行うことが重要だと考えられる。 As shown in Table 9, different tendencies were observed in the amount of components extracted depending on the heating method before extraction, the extraction efficiency was higher in the order of MW> AC> DH, and more water-soluble components were extracted in MW. Although many water-soluble components were extracted by DH as compared with unheated, it took more time for extraction than other heating methods. The reason for this is thought to be because the cell structure of soybean is more rapidly and greatly destroyed in MW than in DH, and as a result, water-soluble components in the cells are more easily extracted. In addition, when the heat treatment was performed in an aqueous system at the time of extraction as in the case of preparing normal soymilk, the amount of water-soluble components extracted was smaller than when the heat treatment was performed before extraction. Therefore, in order to extract a water-soluble component efficiently, it is thought that it is important to heat-process soybean previously in presence of a predetermined water | moisture content before extraction.
(試験例9) 各種水分条件による水溶性成分の抽出量の変化
 試験例8より、加水大豆を加熱することにより、水溶性成分の抽出量が増加することが示唆されたため、大豆に対する加水量と加熱後の成分抽出量との関係を調査した。
 具体的には、表10記載の条件で加熱処理前の大豆に所定量を加水し、MW処理(500W、30秒)を行った。得られた加熱大豆を室温で風乾し、水分含量が10%以下になった段階で、試験例8記載の方法で水溶性成分を抽出し、定量分析を行った。結果を表10に示した。
(Test Example 9) Change in Extraction of Water-Soluble Component under Various Water Conditions Test Example 8 suggests that the extraction amount of the water-soluble component increases by heating hydrolyzed soybean. The relationship with the amount of extracted components after heating was investigated.
Specifically, a predetermined amount was added to soybeans before heat treatment under the conditions described in Table 10, and MW treatment (500 W, 30 seconds) was performed. The obtained heated soybean was air-dried at room temperature, and when the water content became 10% or less, water-soluble components were extracted by the method described in Test Example 8, and quantitative analysis was performed. The results are shown in Table 10.
(表10)
Figure JPOXMLDOC01-appb-I000011
(Table 10)
Figure JPOXMLDOC01-appb-I000011
 大豆種子中の水分含量が低い(3~5%)処理区(T17、T18)では、MW処理を行っても未加熱区(T16)とほぼ変わらない程度の成分抽出量であった。これに対し、未加水区(T19)は若干抽出量が増加していた。一方で、水分含量が11.4%以上の加水大豆を加熱した場合(T20~T26)は、未加熱区(T16)に比べて抽出量が約1.4~2倍近くまで増加した。 In the treated sections (T17, T18) where the moisture content in the soybean seeds was low (3-5%), the amount of extracted components was almost the same as the unheated section (T16) even when the MW treatment was performed. On the other hand, the amount of extraction slightly increased in the non-hydrolyzed section (T19). On the other hand, when hydrolyzed soybeans with a water content of 11.4% or more were heated (T20 to T26), the amount of extraction increased to nearly 1.4 to 2 times that of the unheated section (T16).
(試験例10) 豆類の加熱処理に伴う細胞構造の変化
 試験例8のT1(未加熱、加水率0%)、T3(AC処理、加水率5%、120℃×4分)、T7(MW処理、加水率5%、500W×30秒)のサンプルについて、Cryoユニット付走査型電子顕微鏡(Cryo-SEM;SU8239、日立製)を用い、大豆の加水状態での加熱処理に伴う大豆細胞構造の変化を観察した。各大豆サンプルを試料ホルダーに挟み、スラッシュ窒素中で急速凍結し、Cryoユニット内で割断した。その後、-95℃で10分間水分を昇華させ、割断面をイオンスパッターを用いてコーティングした。このサンプルに関して、1.5kVの加速電圧で観察した。結果を図1~3に示した。
(Test Example 10) Change in cell structure accompanying heat treatment of beans T1 (unheated, water content 0%), T3 (AC treatment, water content 5%, 120 ° C x 4 minutes), T7 (MW) Treatment, water content of 5%, 500W x 30 seconds) using a scanning electron microscope with a Cryo unit (Cryo-SEM; SU8239, Hitachi) Changes were observed. Each soybean sample was sandwiched between sample holders, snap frozen in slush nitrogen, and cleaved in a Cryo unit. Thereafter, moisture was sublimated at −95 ° C. for 10 minutes, and the cut surface was coated by ion sputtering. This sample was observed at an acceleration voltage of 1.5 kV. The results are shown in FIGS.
 T1の未加熱大豆では、直線状の細胞壁(CW)から構成される細長い細胞が連続して存在する様子が観察された(図1)。細胞内組織として、オイルボディ(OB)やプロテインボディ(PB)が観察され、一般的な大豆種子細胞の特徴が確認された。T1の大豆をT3、T7の加熱大豆と同等の5%加水率にするために、観察前に加水し、その後風乾させたが、それに伴う細胞構造の変化は観察されなかった。 In the unheated soybean of T1, it was observed that elongated cells composed of linear cell walls (CW) were continuously present (FIG. 1). Oil bodies (OB) and protein bodies (PB) were observed as intracellular tissues, and the characteristics of general soybean seed cells were confirmed. In order to make the soybean of T1 5% water content equivalent to the heated soybean of T3 and T7, water was added before observation and then air-dried, but no change in cell structure was observed.
 T3ではCWが直線状の形状を示している部分もあるが、T1の未加熱大豆と比較すると、一部歪んだCWも観察された(図2)。またOBは粒状の構造が壊れて中身の油が溶出している様子が観察された。 In T3, there is a part where CW shows a linear shape, but partially distorted CW was also observed as compared with unheated soybean of T1 (FIG. 2). In addition, it was observed that the granular structure of OB was broken and the oil contained therein was eluted.
 T7では直線状のCWがほとんど観られず、図2と比べて大きく歪んだCWが数多く観察された(図3)。また、OBは粒状の構造が壊れて中身の油が溶出している様子も観察された。 At T7, almost no linear CW was observed, and many CWs greatly distorted compared to FIG. 2 were observed (FIG. 3). In addition, it was observed that the OB had a granular structure broken and the oil contained therein was eluted.
CW  細胞壁
OB  オイルボディ
PB  プロテインボディ
CW Cell wall OB Oil body PB Protein body

Claims (14)

  1. 下記成分(A)及び(B)を含む、風味増強剤。
     (A)γ-グルタミルペプチド
     (B)三糖以上のオリゴ糖
    A flavor enhancer comprising the following components (A) and (B).
    (A) γ-glutamyl peptide (B) Oligosaccharide more than trisaccharide
  2. 成分(A)が、γ-Glu-Xnの構造で表されるものである、請求項1記載の風味増強剤(なお、Xはアミノ酸又はアミノ酸誘導体、XnはXがn個結合した配列を表し、nは1~7の整数とする。また、nが2以上の場合、Xは異なる種類のアミノ酸又はアミノ酸誘導体であってもよい。)。 The flavor enhancer according to claim 1, wherein the component (A) is represented by the structure of γ-Glu-Xn (where X is an amino acid or amino acid derivative, and Xn is a sequence in which n X are bound). , N is an integer of 1 to 7. When n is 2 or more, X may be a different type of amino acid or amino acid derivative.
  3. 成分(A)中のXnのnが1~4の整数である、請求項2記載の風味増強剤。 The flavor enhancer according to claim 2, wherein n of Xn in the component (A) is an integer of 1 to 4.
  4. 成分(B)の単糖の結合数が3~10である、請求項3記載の風味増強剤。 The flavor enhancer according to claim 3, wherein the number of monosaccharide bonds in component (B) is 3 to 10.
  5. 成分(B)の単糖の結合数が3~7である、請求項3記載の風味増強剤。 The flavor enhancer according to claim 3, wherein the number of monosaccharide bonds in component (B) is 3-7.
  6. 砂糖の甘味度を100とした場合における、成分(B)の甘味度が40以下である、請求項5記載の風味増強剤。 The flavor enhancer of Claim 5 whose sweetness degree of a component (B) is 40 or less when the sweetness degree of sugar is set to 100.
  7. 成分(A)の含量に対する成分(B)の含量の重量比率が、0.001~50000である、請求項6記載の風味増強剤。 The flavor enhancer according to claim 6, wherein the weight ratio of the content of component (B) to the content of component (A) is 0.001 to 50000.
  8. 成分(A)中のXnのnが1~3の整数である、請求項7記載の風味増強剤。 The flavor enhancer according to claim 7, wherein n of Xn in component (A) is an integer of 1 to 3.
  9. 成分(A)中のXnのnが1又は2の整数である、請求項7記載の風味増強剤。 The flavor enhancer of Claim 7 whose n of Xn in a component (A) is an integer of 1 or 2.
  10. 請求項1記載の成分(A)及び(B)を飲食品組成物中に添加することを特徴とする、風味が増強された飲食品組成物の製造方法。 The manufacturing method of the food-drinks composition with enhanced flavor characterized by adding component (A) and (B) of Claim 1 in food-drinks composition.
  11. 成分(A)が、飲食品組成物中の含量として0.1~1000ppmとなるように添加される、請求項10記載の風味が増強された飲食品組成物の製造方法。 The method for producing a food / beverage composition with enhanced flavor according to claim 10, wherein the component (A) is added so as to have a content of 0.1 to 1000 ppm in the food / beverage composition.
  12. 成分(B)が、飲食品組成物中の含量として1~5000ppmとなるように添加される、請求項11記載の風味が増強された飲食品組成物の製造方法。 The method for producing a food / beverage composition with enhanced flavor according to claim 11, wherein the component (B) is added so as to have a content of 1 to 5000 ppm in the food / beverage composition.
  13. 請求項1記載の成分(A)及び(B)を飲食品組成物に添加することを特徴とする、飲食品組成物の風味増強方法。 A method for enhancing a flavor of a food or beverage composition, comprising adding the components (A) and (B) according to claim 1 to the food or beverage composition.
  14. 請求項1記載の成分(A)及び/又は(B)の、豆類からの抽出方法であって、
    豆類に対して、
    豆類の水分が所定含量となるように吸水させた状態で、マイクロ波加熱処理もしくは100℃を超える加熱処理を行うか、又は、
    豆類の水分が所定含量となるように、100℃を超える加湿加熱処理を行い、
    該加熱処理後の豆類から水性溶媒で該成分(A)及び/又は(B)を抽出することを特徴とし、
    該所定含量が8~55重量%である、抽出方法。
    A method for extracting the components (A) and / or (B) according to claim 1 from beans,
    For legumes,
    In a state where water is absorbed so that the water content of the beans becomes a predetermined content, microwave heat treatment or heat treatment exceeding 100 ° C. is performed, or
    Perform humidification heat treatment exceeding 100 ° C so that the moisture content of the beans becomes a predetermined content,
    The component (A) and / or (B) is extracted from the beans after the heat treatment with an aqueous solvent,
    An extraction method wherein the predetermined content is 8 to 55% by weight.
PCT/JP2017/039403 2016-10-31 2017-10-31 Flavor enhancer WO2018079848A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018547229A JPWO2018079848A1 (en) 2016-10-31 2017-10-31 Flavor enhancer
JP2022164360A JP7428224B2 (en) 2016-10-31 2022-10-12 Flavor enhancer and method for extracting active ingredients that enhance the flavor of foods from beans

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016212462 2016-10-31
JP2016-212462 2016-10-31
JP2017-170776 2017-09-06
JP2017170776 2017-09-06

Publications (1)

Publication Number Publication Date
WO2018079848A1 true WO2018079848A1 (en) 2018-05-03

Family

ID=62025203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039403 WO2018079848A1 (en) 2016-10-31 2017-10-31 Flavor enhancer

Country Status (2)

Country Link
JP (2) JPWO2018079848A1 (en)
WO (1) WO2018079848A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019013122A1 (en) * 2017-07-13 2019-01-17 不二製油グループ本社株式会社 Peptide
WO2020149287A1 (en) * 2019-01-16 2020-07-23 不二製油グループ本社株式会社 Edible oil/fat composition and method for producing same
JP2020191818A (en) * 2019-05-28 2020-12-03 味の素株式会社 Enhancing agent for retronasal aroma
WO2021209345A1 (en) * 2020-04-17 2021-10-21 Firmenich Sa Amino acid derivatives and their use as flavor modifiers
WO2023286615A1 (en) * 2021-07-12 2023-01-19 味の素株式会社 Method for suppressing off-flavor of plant-protein-containing food

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003250486A (en) * 2002-03-01 2003-09-09 Amano Enzyme Inc Agent for improving taste of food and drink, food added with the agent and method for improving taste of food and drink
JP2011115186A (en) * 2005-11-09 2011-06-16 Ajinomoto Co Inc Kokumi-imparting agent
JP2011206030A (en) * 2010-03-31 2011-10-20 Calpis Co Ltd Taste quality improving and fruit juice feeling imparting agent
JP2014060987A (en) * 2012-09-24 2014-04-10 Adeka Corp Milk flavor enhancer and method for enhancing milk flavor
WO2015137317A1 (en) * 2014-03-11 2015-09-17 味の素株式会社 Flavor enhancing agent
JP2015188345A (en) * 2014-03-27 2015-11-02 Mcフードスペシャリティーズ株式会社 Flavor improving agent and production method thereof
JP2016168045A (en) * 2015-03-12 2016-09-23 味の素株式会社 Composition having body taste imparting function

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3253017B2 (en) 1998-08-12 2002-02-04 不二製油株式会社 Foods using processed soybean hypocotyls
CN103638089B (en) 2013-11-29 2016-01-27 广东省食品工业研究所 A kind of method utilizing microwave-compound enzyme coupled method to extract alpha-amylase inhibitor from Semen Phaseoli Vulgaris
CN104996954A (en) 2015-06-15 2015-10-28 青岛博之源生物技术有限公司 Microwave-assisted method for preparing peanut flavored substances by enzymolysis of peanut shells through cellulase
CN105941822A (en) 2016-04-29 2016-09-21 湖南和广生物科技有限公司 Peanut oil, peanut spice, peanut protein and preparation method thereof
CN107873943A (en) 2017-11-24 2018-04-06 山东亿尚同颜生物科技有限公司 A kind of production technology of Soybean Peptide

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003250486A (en) * 2002-03-01 2003-09-09 Amano Enzyme Inc Agent for improving taste of food and drink, food added with the agent and method for improving taste of food and drink
JP2011115186A (en) * 2005-11-09 2011-06-16 Ajinomoto Co Inc Kokumi-imparting agent
JP2011206030A (en) * 2010-03-31 2011-10-20 Calpis Co Ltd Taste quality improving and fruit juice feeling imparting agent
JP2014060987A (en) * 2012-09-24 2014-04-10 Adeka Corp Milk flavor enhancer and method for enhancing milk flavor
WO2015137317A1 (en) * 2014-03-11 2015-09-17 味の素株式会社 Flavor enhancing agent
JP2015188345A (en) * 2014-03-27 2015-11-02 Mcフードスペシャリティーズ株式会社 Flavor improving agent and production method thereof
JP2016168045A (en) * 2015-03-12 2016-09-23 味の素株式会社 Composition having body taste imparting function

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAMAMOTO, KEN: "Characteristics and use of nigerooligosaccharide", NEW FOOD INDUSTRY, vol. 40, 1998, pages 17 - 24 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019013122A1 (en) * 2017-07-13 2019-01-17 不二製油グループ本社株式会社 Peptide
US11659854B2 (en) 2017-07-13 2023-05-30 Fuji Oil Holdings Inc. Method for imparting body taste to food
WO2020149287A1 (en) * 2019-01-16 2020-07-23 不二製油グループ本社株式会社 Edible oil/fat composition and method for producing same
CN113316395A (en) * 2019-01-16 2021-08-27 不二制油集团控股株式会社 Edible oil and fat composition and method for producing same
JP2020191818A (en) * 2019-05-28 2020-12-03 味の素株式会社 Enhancing agent for retronasal aroma
WO2021209345A1 (en) * 2020-04-17 2021-10-21 Firmenich Sa Amino acid derivatives and their use as flavor modifiers
CN114096515A (en) * 2020-04-17 2022-02-25 弗门尼舍有限公司 Amino acid derivatives and their use as flavor modifiers
WO2023286615A1 (en) * 2021-07-12 2023-01-19 味の素株式会社 Method for suppressing off-flavor of plant-protein-containing food

Also Published As

Publication number Publication date
JPWO2018079848A1 (en) 2019-09-19
JP7428224B2 (en) 2024-02-06
JP2022179715A (en) 2022-12-02

Similar Documents

Publication Publication Date Title
JP7428224B2 (en) Flavor enhancer and method for extracting active ingredients that enhance the flavor of foods from beans
JP6080214B2 (en) Yeast extract with taste enhancing effect
JP6212316B2 (en) Method of masking off-flavor and odor of food and drink and food and drink obtained by the method
CN108024548B (en) Flavorants derived from yeast cell wall
BR112015017322B1 (en) FLAVORIZING COMPOSITION, METHOD OF INCREASE THE INTENSITY OF SALT CONTENT IN A FOOD PRODUCT AND METHOD OF INCREASE AN INTENSITY OF UMAMI IN A FOOD PRODUCT
JP2015523099A (en) Sweetener composition containing rebaudioside B
EP3378334A1 (en) Yeast cell wall derived flavour
US11324244B2 (en) Potato derived flavour enhancing composition and method for the manufacture thereof
CN104939263A (en) Nutrition beverages
JP2022010350A (en) Composition having rich-taste imparting function
TWI732029B (en) Yeast extract that enhances richness and smoothness
JP4693184B2 (en) Seasoning for dairy products and method for producing the same
JP2744595B2 (en) Flavor enhancer / improver for food and drink and method for enhancing or improving flavor of food and drink
JP2016178910A (en) Syrup composition
JP5446695B2 (en) FOOD MATERIAL HAVING THICK TIGHTENING EFFECT, PROCESS FOR PRODUCING THE SAME, AND METHOD FOR ENHANCED THAT OF FOOD OR CONDITION
JP2006219416A (en) Nigerose-containing molasses crystal, method for producing the same, crystal nigerose, method for producing the same and powder nigerose
JP6772511B2 (en) Composition having a richness-imparting function
JP2017143830A (en) Composition having richness imparting function
JP6981281B2 (en) Rich flavor-imparting composition
JP2023109516A (en) Use of fucose for polysaccharide-containing composition or protein-containing composition
WO2023232968A1 (en) Fat reduction in non-animal protein compositions
JP2020010682A (en) Soy sauce feeling promoter, soy sauce seasoning containing the same, or soy sauce seasoning-containing composition
JP2017184732A (en) Composition having body taste-imparting function
JP2021101654A (en) Seasoning flavor promoter and seasoning including the same
JP5385104B2 (en) How to improve the texture of white rice

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17863678

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018547229

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17863678

Country of ref document: EP

Kind code of ref document: A1