WO2022186033A1 - Robot hand provided with articulated finger - Google Patents

Robot hand provided with articulated finger Download PDF

Info

Publication number
WO2022186033A1
WO2022186033A1 PCT/JP2022/007540 JP2022007540W WO2022186033A1 WO 2022186033 A1 WO2022186033 A1 WO 2022186033A1 JP 2022007540 W JP2022007540 W JP 2022007540W WO 2022186033 A1 WO2022186033 A1 WO 2022186033A1
Authority
WO
WIPO (PCT)
Prior art keywords
joint
elastic body
finger
force
robot hand
Prior art date
Application number
PCT/JP2022/007540
Other languages
French (fr)
Japanese (ja)
Inventor
一晶 田中
Original Assignee
国立大学法人京都工芸繊維大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都工芸繊維大学 filed Critical 国立大学法人京都工芸繊維大学
Priority to JP2023503753A priority Critical patent/JPWO2022186033A1/ja
Publication of WO2022186033A1 publication Critical patent/WO2022186033A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/54Artificial arms or hands or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/08Gripping heads and other end effectors having finger members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/08Gripping heads and other end effectors having finger members
    • B25J15/10Gripping heads and other end effectors having finger members with three or more finger members

Definitions

  • the present invention relates to a robot hand, particularly a robot hand with articulated fingers.
  • robot hands Equipment called manipulators and robot hands with articulated fingers (hereinafter collectively referred to as robot hands) have been developed and used at manufacturing sites.
  • robot hands imitating human hands have been proposed for use in artificial hands and, in recent years, as remote communication tools.
  • the robot hand of Patent Document 1 is provided with a clutch/brake for each pulley, and controls the bending of each joint by controlling the opening and closing of each clutch/brake.
  • the robot hand of Patent Document 2 is individually provided with motors that supply driving force to each joint, and these are individually controlled.
  • these robot hands have complicated controls and structures, and are difficult to miniaturize.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a robot hand having a multi-joint finger that can bend or extend a plurality of finger joints in a prescribed order with a simple configuration. is to provide
  • the articulated finger includes at least a first finger, a second finger, and a third finger, wherein the second finger is connected to the vicinity of the fingertip side end of the first finger so as to be rotatable around a first rotation axis, and is a first joint capable of bending/extending.
  • the third finger is rotatably connected to the vicinity of the fingertip side end of the second finger about a second rotation axis to form a second joint capable of bending/extending, a bending force acting portion that applies a bending force to a first joint and the second joint; and a first elastic member that is provided in the vicinity of the first joint and produces an extension force that resists the bending force acting on the first joint. and a second elastic body provided in the vicinity of the second joint and generating an extension force that resists the bending force acting on the second joint, wherein the extension force of the second elastic body is It is smaller than the extension force of the first elastic body.
  • the extension force of the second elastic body placed near the second joint is smaller than the extension force of the first elastic body placed near the first joint, the flexion force acting portion is applied to each joint.
  • the second joint bends more easily than the first joint. Therefore, by setting the joint to be bent first as the second joint and the joint to be bent later as the first joint, the joints can be bent in a prescribed order. Even if there are three or more joints, the joints can be bent in a prescribed order by similarly setting the extension force of the elastic body.
  • the first elastic body and the second elastic body are springs, and the spring constant of the second elastic body is greater than the spring constant of the first elastic body. is also small.
  • the first elastic body and the second elastic body are springs such as coil springs and leaf springs
  • the magnitude of the extension force can be set as the spring constant of the elastic body (spring).
  • the first elastic body is fixed to the first finger portion and the second finger portion so as to straddle the first joint
  • a single coil spring that is fixed to the second finger and the third finger so as to straddle the second joint and constitutes the second elastic body, wherein the number of turns of the second elastic body is the first. Less than the number of turns of the elastic body.
  • the spring constant of the elastic body can be set as the number of turns.
  • the first elastic body and the second elastic body are compression coil springs provided on the palm side, and the bending force application portion is a wire, or
  • the first elastic body and the second elastic body are extension coil springs provided on the back side of the hand, and have a wire for applying an extension force to the first joint and the second joint, and the wire is inserted through the coil spring. ing.
  • a wire is provided that applies a bending force or an extension force to the joints of the multi-articulated finger.
  • Such a wire must be attached so as not to get caught on other members or surrounding objects during use.
  • the wire since the wire is inserted through the coil spring as the elastic body, it is possible to prevent the wire from being caught without using other members, and the configuration can be simplified.
  • a covering elastic body is provided to cover the articulated finger, and the first elastic body and the second elastic body respectively correspond to the first joint and the second joint.
  • the elastic force of the second elastic body is smaller than the elastic force of the first elastic body, which is part of the covering elastic body located nearby.
  • the robot hand is covered with an elastic coating such as silicone rubber in order to make the tactile feel of the robot hand closer to that of a human hand.
  • the covering elastic bodies are the first elastic body and the second elastic body, and the configuration is simple.
  • the extension force of the first elastic body and the second elastic body can be changed by changing the elastic force of the portion of the covering elastic body located near the first joint and the second joint.
  • the elastic force can be changed by changing the hardness or thickness of that portion of the covering elastic body.
  • FIG. 4 is an exploded perspective view of the forefinger of the robot hand in an extended state; (a) Perspective view of the index finger of the robot hand, (b) III-III sectional view of the index finger of the robot hand.
  • FIG. 4 is a side cross-sectional view showing a bending motion of the index finger; 2 is a side cross-sectional view of the index finger of the robot hand in Example 1.
  • FIG. 11 is a side cross-sectional view of the index finger of the robot hand in Example 2;
  • FIG. 12 is a side cross-sectional view of the index finger of the robot hand in Example 3;
  • FIG. 12 is a side cross-sectional view of the index finger of the robot hand in Example 4; It is an enlarged view near the bent joint.
  • FIG. 1 is a perspective view of a robot hand having articulated fingers (hereinafter abbreviated as robot hand H) according to the present embodiment.
  • the robot hand H imitates a human hand and has five articulated fingers F1, F2, F3, F4, and F5 corresponding to the thumb, index finger, middle finger, ring finger, and little finger. .
  • finger F when there is no need to distinguish between them, they are referred to as finger F.
  • thumb F1 or the like when distinguishing, it may be described as a thumb F1 or the like.
  • the robot hand H in this embodiment imitates a human right hand, and thus has five fingers F.
  • the number of fingers F can be changed as appropriate depending on the application.
  • the number of joints can be changed as appropriate.
  • Fig. 1 shows the robot hand H with its palm facing upward. Fingers other than the thumb F1 have a metacarpal bone 11, a proximal phalanx 12, a middle phalanx 13 and a distal phalanx 14. As shown in FIG. The metacarpal bone 11 and the proximal phalanx 12 are arranged adjacent to each other in the longitudinal direction, and are rotatably connected at the adjacent portions. This connecting portion is the MP joint 21 . The proximal phalanx 12 and the middle phalanx 13 are similarly connected to form a PIP joint 22 , and the middle phalanx 13 and the distal phalanx 14 are also connected to form a DIP joint 23 .
  • the thumb F1 has substantially the same structure, but does not include the middle phalanx 13, and the proximal phalanx 12 and the distal phalanx 14 are connected to form an IP joint 24. As shown in FIG. By making the joints of each finger F rotatable in this manner, the finger F can be flexed/extended.
  • the metacarpal bones 11 of the index finger F2, middle finger F3, ring finger F4, and little finger F5 are inserted through and fixed to the base member 3 located near the wrist. Specifically, in plan view, the adjacent metacarpal bones 11 are not parallel to each other, but are fixed at an angle that opens the fingertips.
  • the metacarpal bone 11 of the thumb F1 is fixed to the end of the base member 3 on the index finger F2 side via the thumb support member 31 .
  • FIG. 2 is an exploded perspective view of the index finger F2 in an extended state.
  • the structure of each finger F is basically the same although there are differences in size and the thumb F1 described above. Therefore, the structure of the index finger F2 will be described here.
  • the index finger F2 has a metacarpal bone 11, a proximal phalanx 12, a middle phalanx 13, and a distal phalanx 14, like a human finger.
  • the metacarpal bone 11 is composed of an elongated substantially rectangular metacarpal plate 11a and pressing members 11c arranged on both side surfaces of the metacarpal plate 11a on the wrist side.
  • the proximal phalanx 12 includes an elongated, substantially rectangular plate-shaped proximal phalanx inner plate 12a, pressing members 12c arranged on both side surfaces of the proximal phalanx inner plate 12a, and outer side surfaces of the respective pressing members 12c. and a plate-like proximal phalanx outer plate 12b.
  • the middle phalanx 13 has an elongated substantially rectangular middle phalanx inner plate 13a, pressing members 13c arranged on both side surfaces of the middle phalanx inner plate 13a, and outer side surfaces of each pressing member 13c. and a plate-shaped middle phalanx outer plate 13b to be placed.
  • the distal phalanx 14 is composed of a distal phalanx inner plate 14a and plate-like distal phalanx outer plates 14b arranged on both sides of the distal phalanx inner plate 14a.
  • the wrist-side end of the metacarpal plate 11 a is inserted through the insertion hole 3 a of the base member 3 .
  • the fixing member 4 is screwed to the metacarpal plate 11a in the inserted state from the front and rear in the insertion direction and the thickness direction of the metacarpal plate 11a.
  • the first finger plate 11 a is fixed to the base member 3 . 1 and 2, screws are omitted.
  • a proximal phalanx inner plate 12a is arranged at the end of the metacarpal plate 11a on the fingertip side, followed by a middle phalanx inner plate 13a and a distal phalanx inner plate 14a in order so that their axes are aligned.
  • a pair of pressing members 11c, 12c, and 13c are arranged on both sides of the metacarpal plate 11a, the proximal phalanx inner plate 12a, and the middle phalanx inner plate 13a.
  • the length of the pressing member 11c is about the same as that of the fixing member 4, and is fixed by being sandwiched between the fixing members 4 on the fingertip side of the metacarpal plate 11a.
  • the length of the pressing member 12c is slightly shorter than the length of the proximal phalanx inner plate 12a, and the pressing member 12c is arranged so that the wrist-side end of the pressing member 12c and the wrist-side end of the proximal phalanx inner plate 12a coincide. .
  • the length of the pressing member 13c is slightly shorter than the length of the middle phalanx inner plate 13a, and the wrist-side end of the pressing member 13c and the wrist-side end of the middle phalanx inner plate 13a are aligned. are placed.
  • a proximal phalanx outer plate 12b is arranged on the outer surface of each pressing member 12c, and the proximal phalanx outer plate 12b is screwed to the proximal phalanx inner plate 12a together with the pressing member 12c.
  • a support shaft (not shown) is inserted through the shaft hole 12bh closest to the wrist of the outer plate 12b of the proximal phalanx, and the support shaft is inserted into the hole 11ah closest to the fingertip of the metacarpal plate 11a. (not shown).
  • the proximal phalanx 12 is connected to the metacarpal 11 so as to be rotatable about the rotation axis A1. Also, this rotatable connection forms an MP joint 21 capable of flexion/extension.
  • the middle phalanx 13 also has a middle phalanx outer plate 13b arranged on the outer surface of each pressing member 13c. screwed.
  • a support shaft (not shown) is inserted through the shaft hole 13bh closest to the wrist of the outer plate 13b of the middle phalanx. not shown).
  • This pivotable connection also forms a PIP joint 22 capable of flexion/extension.
  • a support shaft (not shown) is inserted through the shaft hole 14bh closest to the wrist of the outer plate 14b of the distal phalanx. (not shown).
  • the distal phalanx 14 is connected to the middle phalanx 13 so as to be rotatable about the rotation axis A3.
  • This pivotable connection forms a DIP joint 23 capable of flexion/extension movement.
  • FIG. 3(a) is a perspective view of the index finger F2
  • FIG. 3(b) is a cross-sectional view taken along line III-III in FIG.
  • the pressing member 12 c has a substantially U-shaped cross section and includes a side plate 51 , an upper plate 52 and a lower plate 53 .
  • a gap is formed between the upper inner surface 52a of the superior plate 52 and the upper surface of the proximal phalanx inner plate 12a to form a passage P.
  • a gap (path P) is similarly formed between the lower inner surface 53a of the lower plate 53 and the lower surface of the proximal phalanx inner plate 12a.
  • the middle phalanx 13 also has a passage P formed vertically.
  • the finger F of the robot hand H according to the present invention has elastic bodies that apply different extension forces to each joint position. Therefore, when a bending force acts on each joint, the magnitude of bending or stretching of each joint differs due to the difference in the stretching force, and the order of bending or stretching differs.
  • FIGS. 4(a) to 4(d) are side cross-sectional views showing the bending motion of the index finger F2 in chronological order.
  • the cross-sectional position is the front side of the metacarpal plate 11a in the drawing, which is indicated by IV-IV in FIG. 3(a).
  • Side cross-sectional views in the following examples are also at the same cross-sectional position. Note that the elastic body is not shown in FIG. 4 because it will be described in the following examples.
  • wires W1 and W2 are provided on the back side of the hand (upper side in the figure) and the palm side (lower side in the figure).
  • the wires W1 and W2 are passed through the passage P shown in FIG. 3 from the wrist side toward the fingertips, one end of which is fixed to the distal phalanx 14, and the other end of which is connected to an actuator or the like (not shown).
  • a tensile force (rightward force in the figure) acts on the wire W1 by an actuator or the like, the finger F tries to extend.
  • a tensile force (rightward force in the figure) acts on the wire rod W2 (an example of the bending force applying portion in the present invention)
  • the finger F tends to bend toward the palm side.
  • wires W1 and W2 are inserted through the passage P, even if they become loose, they are less likely to get caught on other members or surrounding objects.
  • wires W1 and W2 wires, fishing lines, and the like can be used as long as they can transmit the tensile force from the actuator or the like.
  • the finger F is apparently bent in the order of the DIP joint 23, the PIP joint 22, and the MP joint 21, as shown in this figure.
  • the bending order of the joints can be changed as appropriate, and it is also possible to bend the MP joint 21, the PIP joint 22, and the DIP joint 23 in this order.
  • FIG. 5(a) is a side sectional view of the index finger F2 in this embodiment.
  • the palm side is downward.
  • springs 61, 62 and 63 are provided on the palm sides of the MP joint 21, PIP joint 22 and DIP joint 23, respectively.
  • the spring 61 is a compression coil spring, and is arranged so as to be sandwiched between the end face of the holding member 11c on the fingertip side and the end face of the holding member 12c on the wrist side. exerting force.
  • the spring 62 is also a compression coil spring, and is arranged so as to be sandwiched between the end face of the pressing member 12c on the fingertip side and the end face of the pressing member 13c on the wrist side.
  • the spring 63 is also a compression coil spring, and is arranged so as to be sandwiched between the fingertip-side end surface of the pressing member 13c and the wrist-side end surface of the distal phalanx inner plate 14a, and biases the DIP joint 23 in the extension direction. is acting.
  • the wire rod W2 is inserted through the passage P and the springs 61, 62, 63. Therefore, the wire rod W2 is hardly exposed to the outside and is less likely to get caught on other members or the like.
  • the spring constants of the springs 61, 62, and 63 are k1, k2, and k3, respectively, k1>k2>k3. Therefore, when a tensile force is applied to the wire rod W2, the spring 63 is most likely to contract and the spring 61 is most difficult to contract with the same force. Thereby, the DIP joint 23, the PIP joint 22, and the MP joint 21 can be bent in this order.
  • compression coil springs are used as the springs 61, 62, and 63, leaf springs may be used.
  • the springs 61, 62, 63 can be a single spring 6, as shown in FIG. 5(b).
  • the spring 6 is provided from the end face of the pressing member 11c on the fingertip side to the end face of the distal phalanx inner plate 14a on the wrist side. The spring 6 is inserted through the passage P at the proximal phalanx 12 and middle phalanx 13 portions.
  • the springs 6 are fixed at both ends of each joint, and springs 61, 62, and 63 are formed between the fixed portions. That is, the portion from the fixed position on the metacarpal bone 11 to the fixed position on the proximal phalanx 12 is the spring 61, the portion from the fixed position on the proximal phalanx 12 to the fixed position on the middle phalanx 13 is the spring 62, The spring 63 corresponds to the fixed position at the middle phalanx 13 to the fixed position at the distal phalanx 14 .
  • the number of turns of the springs 61, 62, and 63 are varied so that the spring constants of the springs 61, 62, and 63 are fixed as described above. A change in the number of turns can be realized by changing the fixing interval or extending the fixed portion.
  • the springs 61, 62, 63 With different spring constants in the joint portion on the palm side, it is possible to bend the joints in order from the joints where the springs with the smaller spring constants are arranged. Moreover, even if a very large tensile force acts on the wire rod W2, the springs 61, 62, and 63 prevent bending beyond a certain level, so that an accident such as crushing the object can be prevented. can.
  • the order of the joints to be extended is determined by the difference in the magnitude of the spring constant.
  • the MP joint 21, the PIP joint 22, and the DIP joint 23, to which the spring 61 having the largest spring constant is arranged are extended in this order. That is, not only the flexion order but also the extension order can be controlled by the magnitude of the spring constant of the elastic body arranged at each joint.
  • the proximal phalanx 12 is the second finger
  • the middle phalanx 13 is the third finger
  • the MP joint 21 is the first joint
  • the PIP joint 22 corresponds to the second joint
  • the rotation axis A1 corresponds to the first rotation axis
  • the rotation axis A2 corresponds to the second rotation axis
  • the spring 61 corresponds to the first elastic body
  • the spring 62 corresponds to the second elastic body.
  • the proximal phalanx 12 can also be viewed as the first finger in the present invention, in which case the middle phalanx 13 is the second finger, the distal phalanx 14 is the third finger, and the PIP joint 21 is the first finger.
  • the DIP joint 23 corresponds to the second joint
  • the rotation axis A2 corresponds to the first rotation axis
  • the rotation axis A3 corresponds to the second rotation axis
  • the spring 62 corresponds to the first elastic body
  • the spring 63 corresponds to the second elastic body.
  • FIG. 6(a) is a side sectional view of the index finger F2 in this embodiment.
  • springs 61, 62, 63 (examples of the first elastic body and the second elastic body in the present invention) are attached to the back side of the MP joint 21, the PIP joint 22, and the DIP joint 23, respectively. are provided.
  • the arrangement of the springs 61, 62, 63 is the same as in Example 1 except for the difference between the back side of the hand and the palm side.
  • the springs 61, 62, and 63 in this embodiment are tension coil springs, and exert a tensile force on each joint of the finger F in the extension direction.
  • the wire rod W1 is passed through the springs 61, 62 and 63. As shown in FIG. The wire W1 needs to be loosened when the finger F is bent, but by passing through the springs 61, 62, 63, it is less likely to get caught on other members.
  • the spring constants of the springs 61, 62, and 63 are k1, k2, and k3, respectively, the springs 61, 62, and 63 that satisfy k1>k2>k3 are used. Therefore, when a tensile force is applied to the wire rod W2, the DIP joint 23, the PIP joint 22, and the MP joint 21 are bent in this order as described above.
  • compression coil springs are used as the springs 61, 62, and 63, leaf springs may be used.
  • the springs 61, 62, 63 can be a single spring 6 as shown in FIG. 6(b).
  • the springs 61, 62, and 63 apply biasing force or tensile force in the direction of extending the joint, it is possible to adopt a configuration in which the wire rod W1 is not provided. Further, when the wire rod W1 is provided, when the tensile force of the wire rod W2 is released, the joints are displaced to the extended state by the action of the springs 61, 62, and 63. Therefore, the wire rod W1 may be used as a support for the tension of the wire rod W1. do not need to be maintained.
  • FIG. 7 is a side sectional view of the index finger F2 in this embodiment.
  • the robot hand H is covered with a covering elastic body 7 that imitates the muscles, skin, etc. of a human hand in order to approximate the tactile sensation of a human hand.
  • a covering elastic body 7 a material such as rubber, silicon rubber, urethane gel, etc., which is elastically deformed while generating an appropriate repulsive force when the finger F is bent can be used.
  • the repulsive force is the force that resists tensile force on the back side of the hand, and the force that resists compressive force on the palm side.
  • the repulsive force acting on each joint is varied to control the bending order of the joints.
  • concave portions 71, 72, and 73 are formed on the palm sides of the MP joint 21, the PIP joint 22, and the DIP joint 23 of the covering elastic body 7, respectively, so that the thickness of each joint portion of the covering elastic body 7 is reduced. making it different. Specifically, by making the recessed portion 73 the largest and the recessed portion 71 the smallest, the thickness of the covering elastic body 7 near the DIP joint 23 is made the thinnest, and the thickness of the covering elastic body 7 near the MP joint 21 is made the thickest. ing.
  • the repulsive force near the concave portion 73 is the smallest, and the repulsive force near the concave portion 71 is the largest.
  • the DIP joint 23 having the largest concave portion starts to bend first, followed by the PIP joint 22 and the MP joint 21 in that order.
  • the method of differentiating the repulsive force is not limited to this, and can be changed, such as partially changing the hardness of the covering elastic body 7, as long as the object of the present invention is achieved.
  • the springs 61, 62, 63 in the first and second embodiments can be used together.
  • the repulsive force of the covering elastic body 7 should be set in consideration of the spring coefficients of the springs 61, 62 and 63.
  • FIG. 8 is a side sectional view showing the bending motion of the index finger F2 in this embodiment.
  • the index finger F2 in this embodiment is provided with a wire rod W3 that applies tensile force to the proximal phalanx 12. As shown in FIG. One end of the wire W3 is fixed to the proximal phalanx 12 near the metacarpal bone 11 near the back of the hand, and the other end is connected to an actuator or the like (not shown). Note that other configurations such as the first elastic body and the second elastic body are not shown in FIG. 8 because any of the above-described embodiments can be used.
  • the DIP joint 23 which is the easiest to bend, first bends (FIG. 8(a)), and then the PIP joint 23 bends (FIG. 8A).
  • the joint 22 bends (FIG. 8(b)).
  • the MP joint 21 bends in the above embodiment, but in the present embodiment, the tensile force of the wire rod W3 inhibits bending of the MP joint 21, so only the DIP joint 23 and the PIP joint 22 are bent. Continue bending (FIGS. 8(c)-(e)).
  • the tensile force of W3 it is also possible to bend the MP joint 21 from the time when the DIP joint 23 and the PIP joint 22 reach the predetermined bending positions.
  • the bending of the MP joint 21 can be controlled independently of the bending of other joints.
  • the finger F of the robot hand H controls the bending order of the joints by the difference in the elastic force of the elastic bodies (the first elastic body and the second elastic body) provided at each joint. be able to. Further, when springs are used as the first elastic body and the second elastic body, they can be used as passages for wires that apply a tensile force to the finger F. FIG. In that case, it is possible to prevent the wire from getting caught on other members or surrounding objects.
  • the wire rods W1 and W2 may become bent after repeated use.
  • the tendency of the wire to bend is more likely to occur as the wire is bent more during use. That is, the wire rod W2 arranged on the palm side is more prone to bending than the wire rod W1 arranged on the back side of the hand.
  • the above-described embodiments also show how to solve this problem.
  • the springs 61, 62, and 63 which are passageways for the wire rod W2, are only fixed at both ends of the springs 61, 62, and 63 at each joint portion, and the intermediate portions thereof are exposed. These springs can be displaced inward when the joint is flexed by the action of the force. Due to this displacement of the spring, the curvature of the wire rod W2 is slightly reduced, and it is possible to reduce the tendency to bend.
  • FIG. 9 is a cross-sectional view near the PIP joint 22 in a bent state, showing changes in the curvature of the spring.
  • the spring 62 is hatched for easy identification.
  • FIG. 9(a) shows a state in which the spring 62 is fixed to the front end of the pressing member 12c and the rear end of the pressing member 13c.
  • FIG. 9(b) shows a state in which the spring 62 is fixed to the front end of the pressing member 12c and the fingertip side end surface of the concave portion formed at the rear end of the pressing member 13c.
  • FIG. 9(c) shows a state in which the spring 62 is fixed to the wrist-side end surface of the recess formed at the front end of the pressing member 12c and the fingertip-side end surface of the recess formed at the rear end of the pressing member 13c.
  • the longer the length from the fixed position on the wrist side of the spring to the fixed position on the fingertip side the smaller the curvature of the spring 62 and the curvature of the wire rod W2 passing through it. is also smaller.
  • the robot hand H according to the present invention can easily perform finger picking, which was difficult with conventional robot hands.
  • the thumb F1 is flexed and the distal phalanx 14 is pressed by the thumb F1 so as not to extend, the thumb F1 is shifted, and each joint is vigorously moved by the restoring force of the spring 61 and the like. Extends and becomes a finger-picking motion.
  • the finger F is displaced from the extended state to the bent state, but it may be displaced from the bent state to the extended state. Even in this case, the extension order of the joints can be controlled by varying the elastic force acting on each joint, as in the above-described embodiment.
  • the springs 61, 62 and 63 are provided at the MP joint 21, the PIP joint 22 and the DIP joint 23. It can also be configured without For example, the configuration may be such that the spring 63 of the DIP joint 23 in the first and second embodiments is not provided.
  • the present invention can be used not only for conventionally known applications such as manufacturing sites and artificial hands, but also for remote communication systems.
  • a remote communication system for example, the robot hand H and the monitor according to the present invention are installed at the first point where the first user is, and the movement of the hand such as a data glove is detected at the second point where the second user is.
  • Install sensors and cameras that can The image captured by the camera at the second location is displayed on the monitor at the first location, and the first user can visually recognize the second user.
  • the sensor senses the motion of the second user to hold the hand at the second point
  • the information is reflected in the motion of the robot hand H at the first point
  • the robot hand H grasps the first user's hand. Flex the joint of the finger F.
  • F Finger (articulated finger)

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Transplantation (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Biomedical Technology (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Manipulator (AREA)

Abstract

An articulated finger F of a robot hand H is provided with a first finger part 11, a second finger part 12, and a third finger part 13. The second finger part 12 is connected to the first finger part 11 so as to be able to rotate about a first rotation axis, a bendable/extendable first joint 21 is formed, the third finger part 13 aid connected to the second finger part so as to be able to rotate about a second rotation axis, and a bendable/extendable second joint 22 is formed. A bending force action part W2 that causes a bending force to act on the first joint 21 and the second joint 22, a first elastic body 5 provided in the vicinity of the first joint 21 that generates an extension force that resists the bending force acting on the first joint 21, and a second elastic body 62 provided in the vicinity of the second joint 22 that generates an extension force that resists the bending force acting on the second joint are provided, and the extension force of the second elastic body 62 is smaller than the extension force of the first elastic body 61.

Description

多関節指を備えたロボットハンドRobot hand with articulated fingers
 本発明は、ロボットハンド、特に、多関節指を備えたロボットハンドに関する。 The present invention relates to a robot hand, particularly a robot hand with articulated fingers.
 多関節指を備えたマニピュレータやロボットハンド等(以下、ロボットハンドと総称する)と呼ばれる機器が開発され、製造現場等で使用されている。特に、人間の手を模したロボットハンドは、義手への使用や、近年では遠隔コミュニケーションツールとしての使用も提案されている。 Equipment called manipulators and robot hands with articulated fingers (hereinafter collectively referred to as robot hands) have been developed and used at manufacturing sites. In particular, robot hands imitating human hands have been proposed for use in artificial hands and, in recent years, as remote communication tools.
 一般的に、このようなロボットハンドは、関節を伸展させた状態を初期状態として、アクチュエータ等の駆動力によって各々の関節を屈曲状態に変位させている。各関節への駆動力の伝達方法は様々なものが提案されており、各々の関節にプーリーを設け、プーリーに巻きつけたワイヤーによって駆動力を伝達するもの(例えば、特許文献1)、各々の関節に対して個別の駆動力を伝達するもの(例えば、特許文献2)、各々の指部材に通された線材によって駆動力を伝達するもの(例えば、特許文献3)、リンク機構によって駆動力を伝達するもの(特許文献4)等がある。 In general, such a robot hand assumes a state in which the joints are extended as an initial state, and each joint is displaced to a bent state by a driving force such as an actuator. Various methods for transmitting the driving force to each joint have been proposed, including a method in which each joint is provided with a pulley and a wire wound around the pulley to transmit the driving force (for example, Patent Document 1); One that transmits individual driving force to joints (for example, Patent Document 2), one that transmits driving force by a wire passed through each finger member (for example, Patent Document 3), and one that transmits driving force by a link mechanism. There is a device for transmission (Patent Document 4) and the like.
特開平7-096485号公報JP-A-7-096485 特開2012-016784号公報JP 2012-016784 A 特開2019-076786号公報JP 2019-076786 A 特開2019-093457号公報JP 2019-093457 A
 上述のロボットハンドによれば、駆動力が各々の指部材や関節に伝達され、関節が屈曲状態に変位するため、製造工程において対象物を挟持する等が可能となっている。しかしながら、ロボットハンドを義手やコミュニケーションツールとして使用する場合のように、使用目的によっては、指の関節の屈曲の順序を自由に制御したり、人間の指関節と近い動きとなるよう制御したりすることが望まれる場合がある。 According to the above-mentioned robot hand, since the driving force is transmitted to each finger member and joint, and the joint is displaced into a bent state, it is possible to clamp an object in the manufacturing process. However, depending on the purpose of use, such as when using a robot hand as a prosthetic hand or as a communication tool, it is necessary to freely control the order of flexion of the finger joints, or to control the movements so that they resemble human finger joints. may be desired.
 このような課題を解決するために、特許文献1のロボットハンドでは、各々のプーリーにクラッチ/ブレーキを設け、各々のクラッチ/ブレーキの開閉を制御することによって各々の関節の屈曲を制御している。また、特許文献2のロボットハンドでは、各々の関節に駆動力を供給するモーターを個別に備えており、それらを個別に制御している。しかしながら、これらのロボットハンドでは制御や構造が複雑になり、また、小型化が困難となる。 In order to solve such problems, the robot hand of Patent Document 1 is provided with a clutch/brake for each pulley, and controls the bending of each joint by controlling the opening and closing of each clutch/brake. . In addition, the robot hand of Patent Document 2 is individually provided with motors that supply driving force to each joint, and these are individually controlled. However, these robot hands have complicated controls and structures, and are difficult to miniaturize.
 一方、特許文献3のロボットハンドでは、各々の関節に作用する回転モーメントの大きさを異ならせている。このような構成のために、線材が牽引されて関節に屈曲方向の力が作用すると、回転モーメントの大きな関節から順に屈曲状態に変位する。これにより、複数の関節を規定した順に屈曲状態に変位させることができる。 On the other hand, in the robot hand of Patent Document 3, the magnitude of the rotational moment acting on each joint is made different. Due to such a configuration, when the wire rod is pulled and a force acts on the joints in the bending direction, the joints are displaced into the bent state in descending order of the rotational moment. As a result, the plurality of joints can be displaced to the bent state in the specified order.
 しかしながら、ロボットハンドの手のひらの方向によっては、各々の関節に作用する回転モーメントの大きさが理論値とは異なるため、複数の関節を所望の順に屈曲させることができないおそれがある。 However, depending on the direction of the palm of the robot hand, the magnitude of the rotational moment acting on each joint differs from the theoretical value, so there is a possibility that multiple joints cannot be bent in the desired order.
 本発明は上記課題に鑑みてなされたものであり、その目的は、多関節指を有するロボットハンドにおいて、簡易な構成で、複数の指関節を規定の順序で屈曲または伸展させることができるロボットハンドを提供することにある。 SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object of the present invention is to provide a robot hand having a multi-joint finger that can bend or extend a plurality of finger joints in a prescribed order with a simple configuration. is to provide
 上記課題を解決するために、本発明に係る、多関節指を備えたロボットハンドの好適な実施形態の一つでは、前記多関節指は、少なくとも第1指部と、第2指部と、第3指部と、を備え、前記第2指部は第1回動軸周りに回動可能に前記第1指部の指先側端部近傍に接続されて、屈曲/伸展可能な第1関節を形成し、前記第3指部は第2回動軸周りに回動可能に前記第2指部の指先側端部近傍に接続されて、屈曲/伸展可能な第2関節を形成し、前記第1関節および前記第2関節に屈曲力を作用させる屈曲力作用部と、前記第1関節近傍に設けられ、前記第1関節に作用する前記屈曲力に抗する伸展力を生じさせる第1弾性体と、前記第2関節近傍に設けられ、前記第2関節に作用する前記屈曲力に抗する伸展力を生じさせる第2弾性体と、を備え、前記第2弾性体の前記伸展力は、前記第1弾性体の伸展力よりも小さい。 In order to solve the above-described problems, in one preferred embodiment of the robot hand having an articulated finger according to the present invention, the articulated finger includes at least a first finger, a second finger, and a third finger, wherein the second finger is connected to the vicinity of the fingertip side end of the first finger so as to be rotatable around a first rotation axis, and is a first joint capable of bending/extending. and the third finger is rotatably connected to the vicinity of the fingertip side end of the second finger about a second rotation axis to form a second joint capable of bending/extending, a bending force acting portion that applies a bending force to a first joint and the second joint; and a first elastic member that is provided in the vicinity of the first joint and produces an extension force that resists the bending force acting on the first joint. and a second elastic body provided in the vicinity of the second joint and generating an extension force that resists the bending force acting on the second joint, wherein the extension force of the second elastic body is It is smaller than the extension force of the first elastic body.
 この構成では、第2関節近傍に配置された第2弾性体の伸展力が第1関節近傍に配置された第1弾性体の伸展力よりも小さいため、屈曲力作用部が各々の関節に対して屈曲力を作用させると、第2関節が第1関節よりも屈曲しやすくなっている。そのため、先に屈曲させたい関節を第2関節とし、後に屈曲させたい関節を第1関節とすれば、規定の順序で関節を屈曲させることができる。なお、関節が3つ以上になっても同様に弾性体の伸展力を設定することによって、規定の順序で関節を屈曲させることができる。 In this configuration, since the extension force of the second elastic body placed near the second joint is smaller than the extension force of the first elastic body placed near the first joint, the flexion force acting portion is applied to each joint. When a bending force is applied by pressing the second joint, the second joint bends more easily than the first joint. Therefore, by setting the joint to be bent first as the second joint and the joint to be bent later as the first joint, the joints can be bent in a prescribed order. Even if there are three or more joints, the joints can be bent in a prescribed order by similarly setting the extension force of the elastic body.
 本発明に係るロボットハンドの好適な実施形態の一つでは、前記第1弾性体および前記第2弾性体はバネであり、前記第2弾性体のバネ定数が前記第1弾性体のバネ定数よりも小さい。 In one preferred embodiment of the robot hand according to the present invention, the first elastic body and the second elastic body are springs, and the spring constant of the second elastic body is greater than the spring constant of the first elastic body. is also small.
 この構成では、第1弾性体および第2弾性体がコイルバネや板バネ等のバネであるため、簡易な構成とすることができる。この場合、伸展力の大きさは弾性体(バネ)のバネ定数として設定することができる。 In this configuration, since the first elastic body and the second elastic body are springs such as coil springs and leaf springs, the configuration can be simplified. In this case, the magnitude of the extension force can be set as the spring constant of the elastic body (spring).
 本発明に係るロボットハンドの好適な実施形態の一つでは、前記第1関節を跨ぐように前記第1指部と前記第2指部とに固定されて前記第1弾性体を構成するとともに、前記第2関節を跨ぐように前記第2指部と前記第3指部とに固定されて前記第2弾性体を構成する単一のコイルバネを備え、前記第2弾性体の巻数が前記第1弾性体の巻数よりも少ない。 In one preferred embodiment of the robot hand according to the present invention, the first elastic body is fixed to the first finger portion and the second finger portion so as to straddle the first joint, and A single coil spring that is fixed to the second finger and the third finger so as to straddle the second joint and constitutes the second elastic body, wherein the number of turns of the second elastic body is the first. Less than the number of turns of the elastic body.
 この構成では、単一のコイルバネの一部分を第1弾性体および第2弾性体とすることができるため、簡易な構成とすることができる。この場合には、弾性体(バネ)のバネ定数は巻数として設定することができる。 With this configuration, a part of the single coil spring can be used as the first elastic body and the second elastic body, so the configuration can be simplified. In this case, the spring constant of the elastic body (spring) can be set as the number of turns.
 本発明に係るロボットハンドの好適な実施形態の一つでは、前記第1弾性体および前記第2弾性体は手のひら側に設けられた圧縮コイルバネであるとともに屈曲力作用部は線材である、または、前記第1弾性体および前記第2弾性体は手の甲側に設けられた引張コイルバネであるとともに前記第1関節および前記第2関節に伸展力を作用させる線材を備え、前記線材は前記コイルバネに挿通されている。 In one preferred embodiment of the robot hand according to the present invention, the first elastic body and the second elastic body are compression coil springs provided on the palm side, and the bending force application portion is a wire, or The first elastic body and the second elastic body are extension coil springs provided on the back side of the hand, and have a wire for applying an extension force to the first joint and the second joint, and the wire is inserted through the coil spring. ing.
 この構成では、多関節指の関節に対して屈曲力または伸展力を作用させる線材が備えられている。このような線材は、使用時に他の部材や周囲の物に引っかからないように取り付ける必要がある。この構成では、線材は弾性体としてのコイルバネに挿通されているため、他の部材を用いずに引っかかり等を防止することができ、簡易な構成とすることができる。 In this configuration, a wire is provided that applies a bending force or an extension force to the joints of the multi-articulated finger. Such a wire must be attached so as not to get caught on other members or surrounding objects during use. In this configuration, since the wire is inserted through the coil spring as the elastic body, it is possible to prevent the wire from being caught without using other members, and the configuration can be simplified.
 本発明に係るロボットハンドの好適な実施形態の一つでは、前記多関節指を覆う被覆弾性体を備え、前記第1弾性体および前記第2弾性体はそれぞれ前記第1関節および前記第2関節近傍に位置する前記被覆弾性体の一部分であり、前記第2弾性体の弾性力は前記第1弾性体の弾性力よりも小さい。 In one preferred embodiment of the robot hand according to the present invention, a covering elastic body is provided to cover the articulated finger, and the first elastic body and the second elastic body respectively correspond to the first joint and the second joint. The elastic force of the second elastic body is smaller than the elastic force of the first elastic body, which is part of the covering elastic body located nearby.
 使用目的によっては、ロボットハンドの触感を人間の手に近づけるために、ロボットハンドをシリコンゴム等の被覆弾性体で被覆することが行われる。この構成では、その被覆弾性体を第1弾性体および第2弾性体とし、簡易な構成としている。この場合、第1弾性体および第2弾性体の伸展力の大きさは、被覆弾性体のうち、第1関節および第2関節近傍に位置する部分の弾性力を変更すればよい。弾性力の変更は、被覆弾性体のその部分の硬度を変更したり、厚みを変更したりすることで実現することができる。 Depending on the purpose of use, the robot hand is covered with an elastic coating such as silicone rubber in order to make the tactile feel of the robot hand closer to that of a human hand. In this configuration, the covering elastic bodies are the first elastic body and the second elastic body, and the configuration is simple. In this case, the extension force of the first elastic body and the second elastic body can be changed by changing the elastic force of the portion of the covering elastic body located near the first joint and the second joint. The elastic force can be changed by changing the hardness or thickness of that portion of the covering elastic body.
ロボットハンドの斜視図である。It is a perspective view of a robot hand. ロボットハンドの伸展状態の人差し指の分解斜視図である。FIG. 4 is an exploded perspective view of the forefinger of the robot hand in an extended state; (a)ロボットハンドの人差し指の斜視図、(b)ロボットハンドの人差し指のIII-III断面図である。(a) Perspective view of the index finger of the robot hand, (b) III-III sectional view of the index finger of the robot hand. 人差し指の屈曲動作を示す側断面図である。FIG. 4 is a side cross-sectional view showing a bending motion of the index finger; 実施例1におけるロボットハンドの人差し指の側断面図である。2 is a side cross-sectional view of the index finger of the robot hand in Example 1. FIG. 実施例2におけるロボットハンドの人差し指の側断面図である。FIG. 11 is a side cross-sectional view of the index finger of the robot hand in Example 2; 実施例3におけるロボットハンドの人差し指の側断面図である。FIG. 12 is a side cross-sectional view of the index finger of the robot hand in Example 3; 実施例4におけるロボットハンドの人差し指の側断面図である。FIG. 12 is a side cross-sectional view of the index finger of the robot hand in Example 4; 屈曲した関節近傍の拡大図である。It is an enlarged view near the bent joint.
 以下に図面を用いて、本発明に係るロボットハンドの実施形態を説明する。図1は、本実施形態における多関節指を備えたロボットハンド(以下、ロボットハンドHと略称する)の斜視図である。図に示すように、ロボットハンドHは人間の手を模しており、親指,人差し指,中指,薬指,小指に対応した5本の多関節指F1,F2,F3,F4,F5を備えている。以下の説明において、これらを区別する必要がない場合には、指Fと記載する。一方、区別する場合には、親指F1等と記載することがある。 An embodiment of a robot hand according to the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view of a robot hand having articulated fingers (hereinafter abbreviated as robot hand H) according to the present embodiment. As shown in the figure, the robot hand H imitates a human hand and has five articulated fingers F1, F2, F3, F4, and F5 corresponding to the thumb, index finger, middle finger, ring finger, and little finger. . In the following description, when there is no need to distinguish between them, they are referred to as finger F. On the other hand, when distinguishing, it may be described as a thumb F1 or the like.
 上述したように、本実施形態におけるロボットハンドHは、人間の右手を模したものであるため、5本の指Fを備えているが、用途によって指Fの本数は適宜変更することができる。また、関節の数も適宜変更可能である。 As described above, the robot hand H in this embodiment imitates a human right hand, and thus has five fingers F. However, the number of fingers F can be changed as appropriate depending on the application. Also, the number of joints can be changed as appropriate.
 図1は、手のひらを上に向けた状態のロボットハンドHを示している。親指F1以外の指は、中手骨11,基節骨12,中節骨13および末節骨14を備えている。中手骨11と基節骨12とは長手方向において隣接するように配置され、隣接部分において回動が可能なように接続されている。この接続部分がMP関節21である。基節骨12と中節骨13も同様にPIP関節22を形成するように接続され、中節骨13と末節骨14もDIP関節23を形成するように接続されている。親指F1もほぼ同様の構成であるが、中節骨13を備えておらず、基節骨12と末節骨14とがIP関節24を形成するように接続されている。このように、各指Fの関節を回動可能とすることにより、指Fの屈曲/伸展動作が可能となっている。 Fig. 1 shows the robot hand H with its palm facing upward. Fingers other than the thumb F1 have a metacarpal bone 11, a proximal phalanx 12, a middle phalanx 13 and a distal phalanx 14. As shown in FIG. The metacarpal bone 11 and the proximal phalanx 12 are arranged adjacent to each other in the longitudinal direction, and are rotatably connected at the adjacent portions. This connecting portion is the MP joint 21 . The proximal phalanx 12 and the middle phalanx 13 are similarly connected to form a PIP joint 22 , and the middle phalanx 13 and the distal phalanx 14 are also connected to form a DIP joint 23 . The thumb F1 has substantially the same structure, but does not include the middle phalanx 13, and the proximal phalanx 12 and the distal phalanx 14 are connected to form an IP joint 24. As shown in FIG. By making the joints of each finger F rotatable in this manner, the finger F can be flexed/extended.
 人差し指F2,中指F3,薬指F4,小指F5の中手骨11は、手首付近に位置する基部部材3に挿通固定されている。具体的には、平面視において、隣接する中手骨11どうしが平行になるのではなく、指先が開くような角度をつけて固定されている。親指F1の中手骨11は基部部材3の人差し指F2側の端部に、親指支持部材31を介して固定されている。 The metacarpal bones 11 of the index finger F2, middle finger F3, ring finger F4, and little finger F5 are inserted through and fixed to the base member 3 located near the wrist. Specifically, in plan view, the adjacent metacarpal bones 11 are not parallel to each other, but are fixed at an angle that opens the fingertips. The metacarpal bone 11 of the thumb F1 is fixed to the end of the base member 3 on the index finger F2 side via the thumb support member 31 .
 次に、図2を用いて本実施形態における指Fの構造を説明する。図2は、伸展状態の人差し指F2の分解斜視図である。上述したように、各指Fの構造は大きさや上述した親指F1の差異はあるものの基本的には同様の構成である。そのため、ここでは人差し指F2の構造を説明する。 Next, the structure of the finger F in this embodiment will be described using FIG. FIG. 2 is an exploded perspective view of the index finger F2 in an extended state. As described above, the structure of each finger F is basically the same although there are differences in size and the thumb F1 described above. Therefore, the structure of the index finger F2 will be described here.
 人差し指F2は、人間の指と同様に、中手骨11,基節骨12,中節骨13,末節骨14を備えている。中手骨11は、細長い略長方形板状の中手骨板11aと、中手骨板11aの手首側端部の両側面に配置される押さえ部材11cと、から構成されている。基節骨12は、細長い略長方形板状の基節骨内板12aと、基節骨内板12aの両側面に配置される押さえ部材12cと、各々の押さえ部材12cの外側面側に配置される板状の基節骨外板12bと、から構成されている。中節骨13も同様に、細長い略長方形板状の中節骨内板13aと、中節骨内板13aの両側面に配置される押さえ部材13cと、各々の押さえ部材13cの外側面側に配置される板状の中節骨外板13bと、から構成されている。末節骨14は、末節骨内板14aと、末節骨内板14aの両側面に配置される板状の末節骨外板14bと、から構成されている。 The index finger F2 has a metacarpal bone 11, a proximal phalanx 12, a middle phalanx 13, and a distal phalanx 14, like a human finger. The metacarpal bone 11 is composed of an elongated substantially rectangular metacarpal plate 11a and pressing members 11c arranged on both side surfaces of the metacarpal plate 11a on the wrist side. The proximal phalanx 12 includes an elongated, substantially rectangular plate-shaped proximal phalanx inner plate 12a, pressing members 12c arranged on both side surfaces of the proximal phalanx inner plate 12a, and outer side surfaces of the respective pressing members 12c. and a plate-like proximal phalanx outer plate 12b. Similarly, the middle phalanx 13 has an elongated substantially rectangular middle phalanx inner plate 13a, pressing members 13c arranged on both side surfaces of the middle phalanx inner plate 13a, and outer side surfaces of each pressing member 13c. and a plate-shaped middle phalanx outer plate 13b to be placed. The distal phalanx 14 is composed of a distal phalanx inner plate 14a and plate-like distal phalanx outer plates 14b arranged on both sides of the distal phalanx inner plate 14a.
 図1に示すように、中手骨板11aの手首側の端部は、基部部材3の挿通孔3aに挿通される。この挿通状態にある中手骨板11aに対して、挿通方向の前後と、中手骨板11aの厚み方向と、から固定部材4がネジ止めされる。これにより、第1指部板11aは基部部材3に固定される。なお、図1,2においてネジは省略している。 As shown in FIG. 1 , the wrist-side end of the metacarpal plate 11 a is inserted through the insertion hole 3 a of the base member 3 . The fixing member 4 is screwed to the metacarpal plate 11a in the inserted state from the front and rear in the insertion direction and the thickness direction of the metacarpal plate 11a. Thereby, the first finger plate 11 a is fixed to the base member 3 . 1 and 2, screws are omitted.
 中手骨板11aの指先側の端部には基節骨内板12aが配置され、以下順に中節骨内板13a,末節骨内板14aが各々の軸が揃うように配置されている。中手骨板11a,基節骨内板12a,中節骨内板13aの両側には、これらの各々を挟み込む一対の押さえ部材11c,12c,13cが配置されている。押さえ部材11cの長さは固定部材4と同程度であり、中手骨板11aの指先側の固定部材4によって挟み込まれて固定されている。押さえ部材12cの長さは基節骨内板12aの長さより少し短く、押さえ部材12cの手首側の端部と基節骨内板12aの手首側端部とが一致するように配置されている。押さえ部材13cも同様に、その長さは中節骨内板13aの長さより少し短く、押さえ部材13cの手首側の端部と中節骨内板13aの手首側端部とが一致するように配置されている。 A proximal phalanx inner plate 12a is arranged at the end of the metacarpal plate 11a on the fingertip side, followed by a middle phalanx inner plate 13a and a distal phalanx inner plate 14a in order so that their axes are aligned. A pair of pressing members 11c, 12c, and 13c are arranged on both sides of the metacarpal plate 11a, the proximal phalanx inner plate 12a, and the middle phalanx inner plate 13a. The length of the pressing member 11c is about the same as that of the fixing member 4, and is fixed by being sandwiched between the fixing members 4 on the fingertip side of the metacarpal plate 11a. The length of the pressing member 12c is slightly shorter than the length of the proximal phalanx inner plate 12a, and the pressing member 12c is arranged so that the wrist-side end of the pressing member 12c and the wrist-side end of the proximal phalanx inner plate 12a coincide. . Similarly, the length of the pressing member 13c is slightly shorter than the length of the middle phalanx inner plate 13a, and the wrist-side end of the pressing member 13c and the wrist-side end of the middle phalanx inner plate 13a are aligned. are placed.
 各々の押さえ部材12cの外側面には基節骨外板12bが配置されており、基節骨外板12bは押さえ部材12cとともに基節骨内板12aに対してネジ止めされている。基節骨外板12bの最も手首側の軸孔12bhには支持軸(図示せず)が挿通され、その支持軸は中手骨板11aの最も指先側の孔11ahに挿入されたベアリング(図示せず)によって支持されている。これにより、基節骨12は回動軸A1周りに回動可能なように中手骨11に接続される。また、この回動可能な接続により、屈曲/伸展が可能なMP関節21が形成される。 A proximal phalanx outer plate 12b is arranged on the outer surface of each pressing member 12c, and the proximal phalanx outer plate 12b is screwed to the proximal phalanx inner plate 12a together with the pressing member 12c. A support shaft (not shown) is inserted through the shaft hole 12bh closest to the wrist of the outer plate 12b of the proximal phalanx, and the support shaft is inserted into the hole 11ah closest to the fingertip of the metacarpal plate 11a. (not shown). Thereby, the proximal phalanx 12 is connected to the metacarpal 11 so as to be rotatable about the rotation axis A1. Also, this rotatable connection forms an MP joint 21 capable of flexion/extension.
 中節骨13も同様に、各々の押さえ部材13cの外側面には中節骨外板13bが配置されており、中節骨外板13bは押さえ部材13cとともに中節骨内板13aに対してネジ止めされている。中節骨外板13bの最も手首側の軸孔13bhには支持軸(図示せず)が挿通され、その支持軸は基節骨内板12aの最も指先側の孔12ahに挿入されたベアリング(図示せず)によって支持されている。これにより、中節骨13は回動軸A2周りに回動可能なように基節骨12に接続される。また、この回動可能な接続により、屈曲/伸展が可能なPIP関節22が形成される。 Similarly, the middle phalanx 13 also has a middle phalanx outer plate 13b arranged on the outer surface of each pressing member 13c. screwed. A support shaft (not shown) is inserted through the shaft hole 13bh closest to the wrist of the outer plate 13b of the middle phalanx. not shown). Thereby, the middle phalanx 13 is connected to the proximal phalanx 12 so as to be rotatable about the rotation axis A2. This pivotable connection also forms a PIP joint 22 capable of flexion/extension.
 末節骨外板14bの最も手首側の軸孔14bhには支持軸(図示せず)が挿通され、その支持軸は中節骨内板13aの最も指先側の孔13ahに挿入されたベアリング(図示せず)によって支持されている。これにより、末節骨14は回動軸A3周りに回動可能なように中節骨13に接続されている。この回動可能な接続により、屈曲/伸展動作が可能なDIP関節23が形成される。 A support shaft (not shown) is inserted through the shaft hole 14bh closest to the wrist of the outer plate 14b of the distal phalanx. (not shown). Thereby, the distal phalanx 14 is connected to the middle phalanx 13 so as to be rotatable about the rotation axis A3. This pivotable connection forms a DIP joint 23 capable of flexion/extension movement.
 図3(a)は人差し指F2の斜視図、図3(b)は図3(a)におけるIII-III断面図であり、人差し指F2の基節骨12の断面を表している。図に示すように、押さえ部材12cは断面形状が略コの字状であり、側板51,上板52,下板53を備えている。上板52の上内面52aと基節骨内板12aの上面との間には間隙が形成されており、通路Pを構成している。下板53の下内面53aと基節骨内板12aの下面との間にも同様に間隙(通路P)が形成されている。中節骨13も同様に上下に通路Pが形成されている。 FIG. 3(a) is a perspective view of the index finger F2, and FIG. 3(b) is a cross-sectional view taken along line III-III in FIG. As shown in the figure, the pressing member 12 c has a substantially U-shaped cross section and includes a side plate 51 , an upper plate 52 and a lower plate 53 . A gap is formed between the upper inner surface 52a of the superior plate 52 and the upper surface of the proximal phalanx inner plate 12a to form a passage P. As shown in FIG. A gap (path P) is similarly formed between the lower inner surface 53a of the lower plate 53 and the lower surface of the proximal phalanx inner plate 12a. Similarly, the middle phalanx 13 also has a passage P formed vertically.
 図1から3には表していないが、本発明に係るロボットハンドHの指Fは、各々の関節位置に異なる伸展力を作用させる弾性体を配置している。そのため、各関節に対して屈曲力が作用した際に、その伸展力の差異によって各々の関節の屈曲または伸展の大きさが異なり、屈曲または伸展する順序を異ならせている。 Although not shown in FIGS. 1 to 3, the finger F of the robot hand H according to the present invention has elastic bodies that apply different extension forces to each joint position. Therefore, when a bending force acts on each joint, the magnitude of bending or stretching of each joint differs due to the difference in the stretching force, and the order of bending or stretching differs.
 図4(a)から(d)は人差し指F2の屈曲動作を時系列で表した側断面図である。断面位置は中手骨板11aの図面手前側面であり、図3(a)にIV-IVで示している。以下の実施例における側断面図も同じ断面位置である。なお、弾性体については以下の実施例で説明するため、図4では表していない。 FIGS. 4(a) to 4(d) are side cross-sectional views showing the bending motion of the index finger F2 in chronological order. The cross-sectional position is the front side of the metacarpal plate 11a in the drawing, which is indicated by IV-IV in FIG. 3(a). Side cross-sectional views in the following examples are also at the same cross-sectional position. Note that the elastic body is not shown in FIG. 4 because it will be described in the following examples.
 本実施形態では、手の甲側(図中上側)および手のひら側(図中下側)に線材W1およびW2を設けている。線材W1,W2は手首側から指先に向けて図3に示す通路Pに挿通され、その一端は末節骨14に固定され、もう一端は図示しないアクチュエータ等に接続されている。アクチュエータ等によって線材W1に対して引張力(図中右方向の力)が作用すると、指Fは伸展しようとする。一方、線材W2(本発明における屈曲力作用部の例)に対して引張力(図中右方向の力)が作用すると、指Fは手のひら側に屈曲しようとする。指Fを屈曲させる際には、線材W1に対する引張力は緩めるか解除する必要がある。上述したように、線材W1,W2を通路Pに挿通しているため、これらが弛んだ場合であっても、他の部材や周囲の物に引っかかりにくくなっている。なお、線材W1,W2としてはワイヤー、釣り糸等のアクチュエータ等からの引張力を伝達可能なものであれば使用することができる。 In this embodiment, wires W1 and W2 are provided on the back side of the hand (upper side in the figure) and the palm side (lower side in the figure). The wires W1 and W2 are passed through the passage P shown in FIG. 3 from the wrist side toward the fingertips, one end of which is fixed to the distal phalanx 14, and the other end of which is connected to an actuator or the like (not shown). When a tensile force (rightward force in the figure) acts on the wire W1 by an actuator or the like, the finger F tries to extend. On the other hand, when a tensile force (rightward force in the figure) acts on the wire rod W2 (an example of the bending force applying portion in the present invention), the finger F tends to bend toward the palm side. When bending the finger F, it is necessary to loosen or release the tensile force on the wire rod W1. As described above, since the wires W1 and W2 are inserted through the passage P, even if they become loose, they are less likely to get caught on other members or surrounding objects. As the wires W1 and W2, wires, fishing lines, and the like can be used as long as they can transmit the tensile force from the actuator or the like.
 上述したように、線材W1を緩め、線材W2に引張力を作用させると、この図に示すように、指Fは見かけ上DIP関節23,PIP関節22,MP関節21の順に屈曲していく。当然ながら、関節の屈曲順序は適宜変更可能であり、MP関節21,PIP関節22,DIP関節23の順に屈曲させることも可能である。 As described above, when the wire rod W1 is loosened and a tensile force is applied to the wire rod W2, the finger F is apparently bent in the order of the DIP joint 23, the PIP joint 22, and the MP joint 21, as shown in this figure. Of course, the bending order of the joints can be changed as appropriate, and it is also possible to bend the MP joint 21, the PIP joint 22, and the DIP joint 23 in this order.
 図5(a)は、本実施例における人差し指F2の側断面図である。本実施例以下の側断面図では、手のひら側が下となっている。図に示すように、MP関節21,PIP関節22,DIP関節23の手のひら側にそれぞれバネ61,62,63(本発明における第1弾性体、第2弾性体の例)を設けている。具体的には、バネ61は圧縮コイルバネであり、押さえ部材11cの指先側の端面と押さえ部材12cの手首側の端面とに挟まれるように配置され、MP関節21に対して伸展方向への付勢力を作用させている。バネ62も圧縮コイルバネであり、押さえ部材12cの指先側の端面と押さえ部材13cの手首側の端面とに挟まれるように配置され、PIP関節22に対して伸展方向への付勢力を作用させている。また、バネ63も圧縮コイルバネであり、押さえ部材13cの指先側の端面と末節骨内板14aの手首側の端面とに挟まれるように配置され、DIP関節23に対して伸展方向への付勢力を作用させている。 FIG. 5(a) is a side sectional view of the index finger F2 in this embodiment. In side sectional views of this embodiment and the following, the palm side is downward. As shown in the figure, springs 61, 62 and 63 (examples of the first and second elastic bodies in the present invention) are provided on the palm sides of the MP joint 21, PIP joint 22 and DIP joint 23, respectively. Specifically, the spring 61 is a compression coil spring, and is arranged so as to be sandwiched between the end face of the holding member 11c on the fingertip side and the end face of the holding member 12c on the wrist side. exerting force. The spring 62 is also a compression coil spring, and is arranged so as to be sandwiched between the end face of the pressing member 12c on the fingertip side and the end face of the pressing member 13c on the wrist side. there is The spring 63 is also a compression coil spring, and is arranged so as to be sandwiched between the fingertip-side end surface of the pressing member 13c and the wrist-side end surface of the distal phalanx inner plate 14a, and biases the DIP joint 23 in the extension direction. is acting.
 線材W2は通路Pおよびバネ61,62,63に挿通されている。そのため、線材W2はほとんど外部に露出しておらず、他の部材等に引っかかりにくくなっている。 The wire rod W2 is inserted through the passage P and the springs 61, 62, 63. Therefore, the wire rod W2 is hardly exposed to the outside and is less likely to get caught on other members or the like.
 バネ61,62,63のバネ定数をそれぞれk1,k2,k3をとすると、k1>k2>k3となっている。そのため、線材W2に対して引張力を作用させると、同じ力に対してバネ63が最も縮みやすく、バネ61が最も縮みにくくなっている。これにより、DIP関節23,PIP関節22,MP関節21の順に屈曲させることができる。 Assuming that the spring constants of the springs 61, 62, and 63 are k1, k2, and k3, respectively, k1>k2>k3. Therefore, when a tensile force is applied to the wire rod W2, the spring 63 is most likely to contract and the spring 61 is most difficult to contract with the same force. Thereby, the DIP joint 23, the PIP joint 22, and the MP joint 21 can be bent in this order.
 なお、バネ61,62,63として圧縮コイルバネを用いたが板バネであっても構わない。 Although compression coil springs are used as the springs 61, 62, and 63, leaf springs may be used.
 この実施例の変形例として、図5(b)に示すように、バネ61,62,63を単一のバネ6とすることができる。この変形例では、バネ6は押さえ部材11cの指先側の端面から末節骨内板14aの手首側の端面にわたって設けられている。なお、バネ6は基節骨12および中節骨13部分では通路Pに挿通されている。 As a modification of this embodiment, the springs 61, 62, 63 can be a single spring 6, as shown in FIG. 5(b). In this modified example, the spring 6 is provided from the end face of the pressing member 11c on the fingertip side to the end face of the distal phalanx inner plate 14a on the wrist side. The spring 6 is inserted through the passage P at the proximal phalanx 12 and middle phalanx 13 portions.
 この変形例では、バネ6は各関節の両端で固定されており、その固定された間の部分がバネ61,62,63となっている。すなわち、中手骨11での固定位置から基節骨12での固定位置までの部分がバネ61、基節骨12での固定位置から中節骨13での固定位置までの部分がバネ62、中節骨13での固定位置から末節骨14での固定位置までがバネ63に相当する。このとき、バネ61,62,63のバネ定数が上述の関係となるように、巻数を異ならせて固定している。巻数の変更は、固定する間隔を変更したり、固定される部分を伸ばしておいたり等により実現することができる。 In this modified example, the springs 6 are fixed at both ends of each joint, and springs 61, 62, and 63 are formed between the fixed portions. That is, the portion from the fixed position on the metacarpal bone 11 to the fixed position on the proximal phalanx 12 is the spring 61, the portion from the fixed position on the proximal phalanx 12 to the fixed position on the middle phalanx 13 is the spring 62, The spring 63 corresponds to the fixed position at the middle phalanx 13 to the fixed position at the distal phalanx 14 . At this time, the number of turns of the springs 61, 62, and 63 are varied so that the spring constants of the springs 61, 62, and 63 are fixed as described above. A change in the number of turns can be realized by changing the fixing interval or extending the fixed portion.
 このように、バネ定数が異なるバネ61,62,63を手のひら側の関節部分に配置することによって、バネ定数が小さいバネが配置された関節から順に屈曲させることができる。また、線材W2に対して非常に大きな引張力が作用した場合であっても、バネ61,62,63が一定以上の屈曲を阻害するため、対象物を握り潰すような事故を防止することができる。 In this way, by arranging the springs 61, 62, 63 with different spring constants in the joint portion on the palm side, it is possible to bend the joints in order from the joints where the springs with the smaller spring constants are arranged. Moreover, even if a very large tensile force acts on the wire rod W2, the springs 61, 62, and 63 prevent bending beyond a certain level, so that an accident such as crushing the object can be prevented. can.
 また、各関節を屈曲させた状態で線材W2を緩めると、バネ61,62,63が弾性復帰し、各関節が伸展状態に変位する。このとき、バネ定数の大きさの違いによって、伸展する関節の順が決まる。具体的には、バネ定数が最も大きいバネ61が配されたMP関節21、PIP関節22,DIP関節23の順に伸展する。すなわち、各関節に配された弾性体のバネ定数の大きさによって、屈曲順だけでなく伸展順も制御することができる。 Also, when the wire rod W2 is loosened while each joint is bent, the springs 61, 62, and 63 are elastically restored, and each joint is displaced to the extended state. At this time, the order of the joints to be extended is determined by the difference in the magnitude of the spring constant. Specifically, the MP joint 21, the PIP joint 22, and the DIP joint 23, to which the spring 61 having the largest spring constant is arranged, are extended in this order. That is, not only the flexion order but also the extension order can be controlled by the magnitude of the spring constant of the elastic body arranged at each joint.
 中手骨11を本発明における第1指部と見た場合には、基節骨12が第2指部、中節骨13が第3指部、MP関節21が第1関節、PIP関節22が第2関節、回動軸A1が第1回動軸、回動軸A2が第2回動軸、バネ61が第1弾性体、バネ62が第2弾性体に相当する。また、基節骨12を本発明における第1指部として見ることもでき、その場合には、中節骨13が第2指部、末節骨14が第3指部、PIP関節21が第1関節、DIP関節23が第2関節、回動軸A2が第1回同軸、回動軸A3が第2回動軸、バネ62が第1弾性体、バネ63が第2弾性体に相当する。以下の実施例も同様である。 When the metacarpal bone 11 is viewed as the first finger in the present invention, the proximal phalanx 12 is the second finger, the middle phalanx 13 is the third finger, the MP joint 21 is the first joint, and the PIP joint 22 corresponds to the second joint, the rotation axis A1 corresponds to the first rotation axis, the rotation axis A2 corresponds to the second rotation axis, the spring 61 corresponds to the first elastic body, and the spring 62 corresponds to the second elastic body. The proximal phalanx 12 can also be viewed as the first finger in the present invention, in which case the middle phalanx 13 is the second finger, the distal phalanx 14 is the third finger, and the PIP joint 21 is the first finger. The DIP joint 23 corresponds to the second joint, the rotation axis A2 corresponds to the first rotation axis, the rotation axis A3 corresponds to the second rotation axis, the spring 62 corresponds to the first elastic body, and the spring 63 corresponds to the second elastic body. The same applies to the following examples.
 図6(a)は、本実施例における人差し指F2の側断面図である。本実施例では、図に示すように、MP関節21,PIP関節22,DIP関節23の手の甲側にそれぞれバネ61,62,63(本発明における第1弾性体、第2弾性体の例)を設けている。バネ61,62,63の配置は、手の甲側か手のひら側かの差異を除いて実施例1と同様である。ただし、本実施例におけるバネ61,62,63は引張コイルバネであり、指Fの各々の関節に対して伸展方向への引張力を作用させている。線材W1はバネ61,62,63に挿通されている。線材W1は指Fを屈曲させる際に緩める必要があるが、バネ61,62,63に挿通することによって、他の部材等に引っかかりにくくなっている。 FIG. 6(a) is a side sectional view of the index finger F2 in this embodiment. In this embodiment, as shown in the figure, springs 61, 62, 63 (examples of the first elastic body and the second elastic body in the present invention) are attached to the back side of the MP joint 21, the PIP joint 22, and the DIP joint 23, respectively. are provided. The arrangement of the springs 61, 62, 63 is the same as in Example 1 except for the difference between the back side of the hand and the palm side. However, the springs 61, 62, and 63 in this embodiment are tension coil springs, and exert a tensile force on each joint of the finger F in the extension direction. The wire rod W1 is passed through the springs 61, 62 and 63. As shown in FIG. The wire W1 needs to be loosened when the finger F is bent, but by passing through the springs 61, 62, 63, it is less likely to get caught on other members.
 バネ61,62,63のバネ定数をそれぞれk1,k2,k3をとすると、k1>k2>k3となるバネ61,62,63を用いている。そのため、線材W2に対して引張力を作用させると、上述したように、DIP関節23,PIP関節22,MP関節21の順に屈曲していく。 Assuming that the spring constants of the springs 61, 62, and 63 are k1, k2, and k3, respectively, the springs 61, 62, and 63 that satisfy k1>k2>k3 are used. Therefore, when a tensile force is applied to the wire rod W2, the DIP joint 23, the PIP joint 22, and the MP joint 21 are bent in this order as described above.
 なお、バネ61,62,63として圧縮コイルバネを用いたが板バネであっても構わない。 Although compression coil springs are used as the springs 61, 62, and 63, leaf springs may be used.
 実施例1の変形例と同様に、この実施例の変形例として、図6(b)に示すように、バネ61,62,63を単一のバネ6とすることができる。 As in the modified example of the first embodiment, as a modified example of this embodiment, the springs 61, 62, 63 can be a single spring 6 as shown in FIG. 6(b).
 このように、バネ定数が異なるバネ61,62,63を手の甲側の関節部分に配置することによって、バネ定数が小さいバネが配置された関節から順に屈曲させることができる。 By arranging the springs 61, 62, 63 with different spring constants at the joints on the back side of the hand in this way, the joints with the springs with the smaller spring constants can be bent in order.
 実施例1,2の場合には、バネ61,62,63は関節を伸展させる方向に付勢力または引張力を作用させているため、線材W1を設けない構成とすることもできる。また、線材W1を設けた場合、線材W2の引張力を解除するとバネ61,62,63の作用によって各関節は伸展状態に変位するため、線材W1はその補助として利用できればよく、線材W1の張力を維持しておく必要がない。 In the case of Embodiments 1 and 2, since the springs 61, 62, and 63 apply biasing force or tensile force in the direction of extending the joint, it is possible to adopt a configuration in which the wire rod W1 is not provided. Further, when the wire rod W1 is provided, when the tensile force of the wire rod W2 is released, the joints are displaced to the extended state by the action of the springs 61, 62, and 63. Therefore, the wire rod W1 may be used as a support for the tension of the wire rod W1. do not need to be maintained.
 図7は、本実施例における人差し指F2の側断面図である。本実施例では、人間の手の触感に近づけるために、ロボットハンドHは人間の手の筋肉や皮膚等を模した被覆弾性体7で覆われている。被覆弾性体7としてはゴム、シリコンゴム、ウレタンゲル等、指Fの屈曲に際して適度な反発力を生じながら弾性変形する素材を用いることができる。なお、反発力とは、手の甲側であれば引張力に抵抗する力、手のひら側であれば圧縮力に抵抗する力である。 FIG. 7 is a side sectional view of the index finger F2 in this embodiment. In this embodiment, the robot hand H is covered with a covering elastic body 7 that imitates the muscles, skin, etc. of a human hand in order to approximate the tactile sensation of a human hand. As the covering elastic body 7, a material such as rubber, silicon rubber, urethane gel, etc., which is elastically deformed while generating an appropriate repulsive force when the finger F is bent can be used. The repulsive force is the force that resists tensile force on the back side of the hand, and the force that resists compressive force on the palm side.
 本実施例では、被覆弾性体7の各関節部分の手のひら側の厚みを異ならせることにより、各々の関節に作用する反発力を異ならせ、関節の屈曲順を制御している。本実施例では、被覆弾性体7のMP関節21,PIP関節22,DIP関節23の手のひら側に、それぞれ凹部71,72,73を形成することにより、被覆弾性体7の各関節部分の厚みを異ならせている。具体的には、凹部73を最も大きく、凹部71を最も小さくすることにより、DIP関節23近傍の被覆弾性体7の厚みを最も薄く、MP関節21近傍の被覆弾性体7の厚みを最も厚くしている。これにより、凹部73近傍の反発力が最も小さく、凹部71近傍の反発力が最も大きくなっている。このような人差し指F2において、線材W2に引張力を作用させると、凹部が最も大きいDIP関節23が最初に屈曲を開始し、PIP関節22,MP関節21の順に屈曲していく。 In this embodiment, by varying the thickness of the palm side of each joint portion of the covering elastic body 7, the repulsive force acting on each joint is varied to control the bending order of the joints. In this embodiment, concave portions 71, 72, and 73 are formed on the palm sides of the MP joint 21, the PIP joint 22, and the DIP joint 23 of the covering elastic body 7, respectively, so that the thickness of each joint portion of the covering elastic body 7 is reduced. making it different. Specifically, by making the recessed portion 73 the largest and the recessed portion 71 the smallest, the thickness of the covering elastic body 7 near the DIP joint 23 is made the thinnest, and the thickness of the covering elastic body 7 near the MP joint 21 is made the thickest. ing. As a result, the repulsive force near the concave portion 73 is the smallest, and the repulsive force near the concave portion 71 is the largest. In such an index finger F2, when a tensile force is applied to the wire rod W2, the DIP joint 23 having the largest concave portion starts to bend first, followed by the PIP joint 22 and the MP joint 21 in that order.
 当然ながら、反発力の異ならせ方はこれに限定されるものでなく、被覆弾性体7の硬度を部分的に変更する等、本発明の目的を達する限りにおいて変更可能である。また、実施例1,2におけるバネ61,62,63を併用することも可能である。その場合には、バネ61,62,63のバネ係数を考慮して被覆弾性体7の反発力を設定すればよい。 Of course, the method of differentiating the repulsive force is not limited to this, and can be changed, such as partially changing the hardness of the covering elastic body 7, as long as the object of the present invention is achieved. Also, the springs 61, 62, 63 in the first and second embodiments can be used together. In that case, the repulsive force of the covering elastic body 7 should be set in consideration of the spring coefficients of the springs 61, 62 and 63. FIG.
 本実施例では、MP関節21の伸展状態を維持し、PIP関節22およびDIP関節23のみを屈曲させることができる。図8は本実施例における人差し指F2の屈曲動作を示す側断面図である。本実施例における人差し指F2には、基節骨12に引張力を与える線材W3が備えられている。線材W3の一端は基節骨12の手の甲近傍の中手骨11寄りに固定され、もう一端は図示しないアクチュエータ等に接続されている。なお、第1弾性体、第2弾性体等のその他の構成は上述の実施例のいずれかを使用することができるため、図8には示していない。 In this embodiment, the extension state of the MP joint 21 can be maintained, and only the PIP joint 22 and the DIP joint 23 can be bent. FIG. 8 is a side sectional view showing the bending motion of the index finger F2 in this embodiment. The index finger F2 in this embodiment is provided with a wire rod W3 that applies tensile force to the proximal phalanx 12. As shown in FIG. One end of the wire W3 is fixed to the proximal phalanx 12 near the metacarpal bone 11 near the back of the hand, and the other end is connected to an actuator or the like (not shown). Note that other configurations such as the first elastic body and the second elastic body are not shown in FIG. 8 because any of the above-described embodiments can be used.
 このような構成の人差し指Fに対して、線材W3に引張力を与えた状態で線材W2を引っ張ると、先ず、最も屈曲しやすいDIP関節23が屈曲し(図8(a))、次にPIP関節22が屈曲する(図8(b))。さらに線材W2を引っ張ると、上述の実施例ではMP関節21が屈曲するが、本実施例では線材W3の引張力によってMP関節21の屈曲が阻害されるため、DIP関節23およびPIP関節22のみが屈曲を続ける(図8(c)~(e))。なお、W3の引張力を制御することにより、DIP関節23およびPIP関節22が所定の屈曲位置となった時点からMP関節21を屈曲させることもできる。 When the wire rod W2 is pulled with a tension force applied to the wire rod W3 with respect to the index finger F having such a structure, the DIP joint 23, which is the easiest to bend, first bends (FIG. 8(a)), and then the PIP joint 23 bends (FIG. 8A). The joint 22 bends (FIG. 8(b)). When the wire rod W2 is further pulled, the MP joint 21 bends in the above embodiment, but in the present embodiment, the tensile force of the wire rod W3 inhibits bending of the MP joint 21, so only the DIP joint 23 and the PIP joint 22 are bent. Continue bending (FIGS. 8(c)-(e)). By controlling the tensile force of W3, it is also possible to bend the MP joint 21 from the time when the DIP joint 23 and the PIP joint 22 reach the predetermined bending positions.
 このように、本実施例の構成では、MP関節21の屈曲を他の関節の屈曲と独立させて制御することができる。 Thus, in the configuration of this embodiment, the bending of the MP joint 21 can be controlled independently of the bending of other joints.
 上述したように、本発明に係るロボットハンドHの指Fは、各関節部分に設けられた弾性体(第1弾性体、第2弾性体)の弾性力の差異によって関節の屈曲順を制御することができる。また、第1弾性体、第2弾性体としてバネを用いた場合には、指Fに引張力を作用させる線材の通路として用いることができる。その場合には、線材が他の部材や周囲の物に引っかかることを防止することができる。 As described above, the finger F of the robot hand H according to the present invention controls the bending order of the joints by the difference in the elastic force of the elastic bodies (the first elastic body and the second elastic body) provided at each joint. be able to. Further, when springs are used as the first elastic body and the second elastic body, they can be used as passages for wires that apply a tensile force to the finger F. FIG. In that case, it is possible to prevent the wire from getting caught on other members or surrounding objects.
 なお、線材W1や線材W2として金属製のワイヤーを用いた場合、使用を重ねると線材に曲がり癖が生じるおそれがある。この線材の曲がり癖は使用時に大きく曲がるほど生じやすくなる。すなわち、手の甲側に配された線材W1よりも手のひら側に配された線材W2の方が、曲がり癖が生じやすくなっている。上述の実施形態では、この課題の解決方法も示している。具体的には、各関節部分では線材W2の通路であるバネ61,62,63は、両端が固定されているのみであり、また、その中間部分は露出しているため、線材W2に引張力が作用して関節が屈曲する際にこれらのバネは内側に変位することができる。このバネの変位により、線材W2の曲率が少し小さくなり、曲がり癖が生じるのを軽減することができる。 It should be noted that when metal wires are used as the wire rods W1 and W2, the wire rods may become bent after repeated use. The tendency of the wire to bend is more likely to occur as the wire is bent more during use. That is, the wire rod W2 arranged on the palm side is more prone to bending than the wire rod W1 arranged on the back side of the hand. The above-described embodiments also show how to solve this problem. Specifically, the springs 61, 62, and 63, which are passageways for the wire rod W2, are only fixed at both ends of the springs 61, 62, and 63 at each joint portion, and the intermediate portions thereof are exposed. These springs can be displaced inward when the joint is flexed by the action of the force. Due to this displacement of the spring, the curvature of the wire rod W2 is slightly reduced, and it is possible to reduce the tendency to bend.
 この効果は、関節に設けられたバネの手首側の固定位置から指先側の固定位置までの長さに依存する。具体的には、バネの手首側の固定位置から指先側の固定位置までの長さが長いほど、線材W2の曲率を小さくすることができる。図9は屈曲状態のPIP関節22近傍の断面図であり、バネの曲率の変化を示している。なお、図9では、識別しやすくするため、バネ62にハッチングを付している。図9(a)は押さえ部材12c前端と押さえ部材13cの後端とにバネ62を固定した状態である。図9(b)は押さえ部材12cの前端と押さえ部材13cの後端に形成した凹部の指先側の端面とにバネ62を固定した状態である。図9(c)は押さえ部材12cの前端に形成した凹部の手首側の端面と押さえ部材13cの後端に設けた凹部の指先側の端面とにバネ62を固定した状態である。これらの図に示されているように、バネの手首側の固定位置から指先側の固定位置までの長さが長いほど、バネ62の曲率が小さくなり、その中を通っている線材W2の曲率も小さくなっている。 This effect depends on the length of the spring provided in the joint from the fixed position on the wrist side to the fixed position on the fingertip side. Specifically, the longer the length from the fixed position on the wrist side of the spring to the fixed position on the fingertip side, the smaller the curvature of the wire rod W2 can be. FIG. 9 is a cross-sectional view near the PIP joint 22 in a bent state, showing changes in the curvature of the spring. In addition, in FIG. 9, the spring 62 is hatched for easy identification. FIG. 9(a) shows a state in which the spring 62 is fixed to the front end of the pressing member 12c and the rear end of the pressing member 13c. FIG. 9(b) shows a state in which the spring 62 is fixed to the front end of the pressing member 12c and the fingertip side end surface of the concave portion formed at the rear end of the pressing member 13c. FIG. 9(c) shows a state in which the spring 62 is fixed to the wrist-side end surface of the recess formed at the front end of the pressing member 12c and the fingertip-side end surface of the recess formed at the rear end of the pressing member 13c. As shown in these figures, the longer the length from the fixed position on the wrist side of the spring to the fixed position on the fingertip side, the smaller the curvature of the spring 62 and the curvature of the wire rod W2 passing through it. is also smaller.
 また、本発明に係るロボットハンドHは従来のロボットハンドでは困難であった指弾きを容易に行うことができる。例えば、上述の実施例の人差し指F2の各関節を屈曲させ、伸展しないようにその末節骨14を親指F1で押さえた状態で親指F1をずらすと、バネ61等の復元力によって各関節が勢いよく伸展し、指弾き動作となる。 In addition, the robot hand H according to the present invention can easily perform finger picking, which was difficult with conventional robot hands. For example, when each joint of the forefinger F2 of the above-described embodiment is flexed and the distal phalanx 14 is pressed by the thumb F1 so as not to extend, the thumb F1 is shifted, and each joint is vigorously moved by the restoring force of the spring 61 and the like. Extends and becomes a finger-picking motion.
〔別実施形態〕
(1)上述の実施形態では、指Fを伸展状態から屈曲状態に変位させたが、屈曲状態から伸展状態に変位させても構わない。その場合にも上述の実施形態と同様に各関節に作用する弾性力を異ならせることによって関節の伸展順を制御することができる。
[Another embodiment]
(1) In the above embodiment, the finger F is displaced from the extended state to the bent state, but it may be displaced from the bent state to the extended state. Even in this case, the extension order of the joints can be controlled by varying the elastic force acting on each joint, as in the above-described embodiment.
(2)上述の実施例1,2では、MP関節21,PIP関節22,DIP関節23にバネ61,62,63を設けたが、最も早く曲がらせたい関節に弾性体(バネ等)を設けない構成とすることもできる。例えば、実施例1,2におけるDIP関節23のバネ63を設けない構成としても構わない。 (2) In the first and second embodiments described above, the springs 61, 62 and 63 are provided at the MP joint 21, the PIP joint 22 and the DIP joint 23. It can also be configured without For example, the configuration may be such that the spring 63 of the DIP joint 23 in the first and second embodiments is not provided.
(3)本発明の目的を達する限りにおいて、上述の実施例は適宜変更可能であり、また実施例どうしの組み合わせも可能である。 (3) As long as the objects of the present invention are achieved, the above-described embodiments can be modified as appropriate, and combinations of the embodiments are also possible.
 本発明は、製造現場や義手等の従来知られている用途だけでなく、遠隔コミュニケーションシステムにも用いることができる。このような遠隔コミュニケーションシステムでは、例えば、第1ユーザがいる第1地点に本発明に係るロボットハンドHとモニタを設置し、第2ユーザがいる第2地点にデータグローブ等の手の動きを感知できるセンサとカメラとを設置する。第2地点のカメラによって撮影された映像は第1地点のモニタに表示され、第1ユーザは第2ユーザを視認することができる。また、第2地点において、センサによって第2ユーザの手を握る動作を感知するとその情報は第1地点のロボットハンドHの動作に反映され、ロボットハンドHは第1ユーザの手を握るように各指Fの関節を屈曲させる。このような遠隔コミュニケーションシステムを用いることにより擬似的な身体の接触が可能となり、物理的に離れた場所にいるにも関わらず親近感を高めることができる。 The present invention can be used not only for conventionally known applications such as manufacturing sites and artificial hands, but also for remote communication systems. In such a remote communication system, for example, the robot hand H and the monitor according to the present invention are installed at the first point where the first user is, and the movement of the hand such as a data glove is detected at the second point where the second user is. Install sensors and cameras that can The image captured by the camera at the second location is displayed on the monitor at the first location, and the first user can visually recognize the second user. Further, when the sensor senses the motion of the second user to hold the hand at the second point, the information is reflected in the motion of the robot hand H at the first point, and the robot hand H grasps the first user's hand. Flex the joint of the finger F. By using such a remote communication system, it is possible to make a pseudo physical contact, and it is possible to enhance a sense of familiarity even though the two are physically separated from each other.
A1:回動軸
A2:回動軸
A3:回動軸
H:ロボットハンド
F:指(多関節指)
F1:親指(多関節指)
F2:人差し指(多関節指)
F3:中指(多関節指)
F4:薬指(多関節指)
F5:小指(多関節指)
W1:線材
W2:線材(屈曲力作用部)
11:中手骨
12:基節骨
13:中節骨 
14:末節骨
21:MP関節
22:PIP関節
23:DIP関節
24:IP関節
6:バネ(第1弾性体、第2弾性体)
61:バネ
62:バネ
63:バネ
7:被覆弾性体
A1: Rotation axis A2: Rotation axis A3: Rotation axis H: Robot hand F: Finger (articulated finger)
F1: thumb (multi-joint finger)
F2: index finger (multi-joint finger)
F3: middle finger (multi-joint finger)
F4: ring finger (multi-joint finger)
F5: little finger (multi-joint finger)
W1: wire rod W2: wire rod (bending force acting portion)
11: metacarpal bone 12: proximal phalanx 13: middle phalanx
14: Distal phalanx 21: MP joint 22: PIP joint 23: DIP joint 24: IP joint 6: Spring (first elastic body, second elastic body)
61: Spring 62: Spring 63: Spring 7: Covered elastic body

Claims (5)

  1.  多関節指を備えたロボットハンドであって、
     前記多関節指は、少なくとも第1指部と、第2指部と、第3指部と、を備え、
     前記第2指部は第1回動軸周りに回動可能に前記第1指部の指先側端部近傍に接続されて、屈曲/伸展可能な第1関節を形成し、
     前記第3指部は第2回動軸周りに回動可能に前記第2指部の指先側端部近傍に接続されて、屈曲/伸展可能な第2関節を形成し、
     前記第1関節および前記第2関節に屈曲力を作用させる屈曲力作用部と、
     前記第1関節近傍に設けられ、前記第1関節に作用する前記屈曲力に抗する伸展力を生じさせる第1弾性体と、
     前記第2関節近傍に設けられ、前記第2関節に作用する前記屈曲力に抗する伸展力を生じさせる第2弾性体と、を備え、
     前記第2弾性体の前記伸展力は、前記第1弾性体の伸展力よりも小さいロボットハンド。
    A robot hand with articulated fingers,
    The articulated finger includes at least a first finger, a second finger, and a third finger,
    the second finger is connected to the vicinity of the fingertip side end of the first finger so as to be rotatable about a first rotation axis to form a bendable/extendable first joint;
    the third finger is connected to the vicinity of the fingertip side end of the second finger so as to be rotatable about a second rotation axis to form a bendable/extendable second joint;
    a bending force acting portion that applies a bending force to the first joint and the second joint;
    a first elastic body provided near the first joint and generating an extension force that resists the bending force acting on the first joint;
    a second elastic body provided near the second joint and generating an extension force that resists the bending force acting on the second joint;
    The extension force of the second elastic body is smaller than the extension force of the first elastic body.
  2.  前記第1弾性体および前記第2弾性体はバネであり、前記第2弾性体のバネ定数が前記第1弾性体のバネ定数よりも小さい請求項1記載のロボットハンド。 The robot hand according to claim 1, wherein the first elastic body and the second elastic body are springs, and the spring constant of the second elastic body is smaller than the spring constant of the first elastic body.
  3.  前記第1関節を跨ぐように前記第1指部と前記第2指部とに固定されて前記第1弾性体を構成するとともに、前記第2関節を跨ぐように前記第2指部と前記第3指部とに固定されて前記第2弾性体を構成する単一のコイルバネを備え、
     前記第2弾性体の巻数が前記第1弾性体の巻数よりも少ない請求項2記載のロボットハンド。
    It is fixed to the first finger and the second finger so as to straddle the first joint to constitute the first elastic body, and the second finger and the second finger to straddle the second joint. A single coil spring that is fixed to the three fingers and constitutes the second elastic body,
    3. The robot hand according to claim 2, wherein the number of turns of said second elastic body is smaller than the number of turns of said first elastic body.
  4.  前記第1弾性体および前記第2弾性体は手のひら側に設けられた圧縮コイルバネであるとともに屈曲力作用部は線材である、または、前記第1弾性体および前記第2弾性体は手の甲側に設けられた引張コイルバネであるとともに前記第1関節および前記第2関節に伸展力を作用させる線材を備え、
     前記線材は前記コイルバネに挿通されている請求項2または3記載のロボットハンド。
    The first elastic body and the second elastic body are compression coil springs provided on the palm side, and the bending force acting portion is a wire, or the first elastic body and the second elastic body are provided on the back side of the hand. A wire rod that is a tension coil spring and applies an extension force to the first joint and the second joint,
    4. The robot hand according to claim 2, wherein said wire is inserted through said coil spring.
  5.  前記多関節指を覆う被覆弾性体を備え、
     前記第1弾性体および前記第2弾性体はそれぞれ前記第1関節および前記第2関節近傍に位置する前記被覆弾性体の一部分であり、
     前記第2弾性体の反発力は前記第1弾性体の反発力よりも小さい請求項1のロボットハンド。
     
    A covering elastic body covering the articulated finger is provided,
    the first elastic body and the second elastic body are parts of the covered elastic body positioned near the first joint and the second joint, respectively;
    2. The robot hand according to claim 1, wherein the repulsive force of said second elastic body is smaller than the repulsive force of said first elastic body.
PCT/JP2022/007540 2021-03-04 2022-02-24 Robot hand provided with articulated finger WO2022186033A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023503753A JPWO2022186033A1 (en) 2021-03-04 2022-02-24

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021033983 2021-03-04
JP2021-033983 2021-03-04

Publications (1)

Publication Number Publication Date
WO2022186033A1 true WO2022186033A1 (en) 2022-09-09

Family

ID=83155041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007540 WO2022186033A1 (en) 2021-03-04 2022-02-24 Robot hand provided with articulated finger

Country Status (2)

Country Link
JP (1) JPWO2022186033A1 (en)
WO (1) WO2022186033A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007216332A (en) * 2006-02-16 2007-08-30 Yaskawa Electric Corp Actuator, finger unit using it, and gripping hand
JP2008178968A (en) * 2006-12-25 2008-08-07 Yaskawa Electric Corp Robot hand
JP2009291853A (en) * 2008-06-03 2009-12-17 Yaskawa Electric Corp Hand for robot
JP2013039656A (en) * 2011-07-20 2013-02-28 Iwata Tekkosho:Kk Multi-fingered hand device
JP2014172116A (en) * 2013-03-07 2014-09-22 Seiko Epson Corp Holding member for robot hand, robot hand, method of producing holding member for robot hand, and robot device
JP2015142145A (en) * 2014-01-27 2015-08-03 日本電信電話株式会社 information transmission system and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007216332A (en) * 2006-02-16 2007-08-30 Yaskawa Electric Corp Actuator, finger unit using it, and gripping hand
JP2008178968A (en) * 2006-12-25 2008-08-07 Yaskawa Electric Corp Robot hand
JP2009291853A (en) * 2008-06-03 2009-12-17 Yaskawa Electric Corp Hand for robot
JP2013039656A (en) * 2011-07-20 2013-02-28 Iwata Tekkosho:Kk Multi-fingered hand device
JP2014172116A (en) * 2013-03-07 2014-09-22 Seiko Epson Corp Holding member for robot hand, robot hand, method of producing holding member for robot hand, and robot device
JP2015142145A (en) * 2014-01-27 2015-08-03 日本電信電話株式会社 information transmission system and method

Also Published As

Publication number Publication date
JPWO2022186033A1 (en) 2022-09-09

Similar Documents

Publication Publication Date Title
US6413229B1 (en) Force-feedback interface device for the hand
US10137362B2 (en) Exo-tendon motion capture glove device with haptic grip response
EP0981423B1 (en) Force-feedback interface device for the hand
US8667860B2 (en) Active gripper for haptic devices
US20180335842A1 (en) Haptic feedback glove
US20180335841A1 (en) Haptic feedback glove
JP7009072B2 (en) Finger mechanism and humanoid hand incorporating this finger mechanism
US20090025502A1 (en) Manipulator and robot
WO2019033001A1 (en) Dexterous hand exoskeleton
WO2020087844A1 (en) Flexible finger-wearable tactile pressure feedback device
WO1994012925A1 (en) A device for monitoring the configuration of a distal physiological unit for use, in particular, as an advanced interface for machines and computers
JP3624374B2 (en) Force display device
JP2004029999A (en) Tactile force display hand and its manufacturing method
KR102034937B1 (en) Finger motion assist apparatus
JP6767093B2 (en) Multi-finger hand device
WO2018212971A1 (en) Haptic feedback glove
WO2022186033A1 (en) Robot hand provided with articulated finger
KR101701695B1 (en) A wearable hand exoskeleton system
US20210072762A1 (en) Motion detecting device
EP3247986B1 (en) A force measurement mechanism
KR102036288B1 (en) Hand Rehabilitation System for Task-Oriented Therapy
WO2023228540A1 (en) Robot hand
JP2006000992A (en) Robot hand
WO2023105926A1 (en) Movable joint structure and robot hand comprising movable joint structure
WO2020105504A1 (en) Robot hand device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22763089

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023503753

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22763089

Country of ref document: EP

Kind code of ref document: A1