WO2022185926A1 - 排気浄化装置、排気浄化方法、及びプログラム - Google Patents

排気浄化装置、排気浄化方法、及びプログラム Download PDF

Info

Publication number
WO2022185926A1
WO2022185926A1 PCT/JP2022/006255 JP2022006255W WO2022185926A1 WO 2022185926 A1 WO2022185926 A1 WO 2022185926A1 JP 2022006255 W JP2022006255 W JP 2022006255W WO 2022185926 A1 WO2022185926 A1 WO 2022185926A1
Authority
WO
WIPO (PCT)
Prior art keywords
reduction catalyst
mixture ratio
selective reduction
exhaust
exhaust gas
Prior art date
Application number
PCT/JP2022/006255
Other languages
English (en)
French (fr)
Inventor
本間隆行
竹内正
小池誠
鈴置哲典
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Priority to CN202280018302.4A priority Critical patent/CN116981835A/zh
Priority to AU2022231500A priority patent/AU2022231500A1/en
Publication of WO2022185926A1 publication Critical patent/WO2022185926A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust purification device, an exhaust purification method, and a program.
  • ammonia When ammonia is completely combusted, all ammonia is converted into nitrogen and water. However, when ammonia is actually burned in an ammonia engine, incomplete combustion components are present, and exhaust gas containing, for example, unreacted ammonia, nitrogen oxides such as NO, etc., is emitted from the ammonia engine. Therefore, it is desired to purify unreacted ammonia, nitrogen oxides such as NO, etc. contained in the exhaust gas using a catalyst or the like.
  • an exhaust gas purification device that purifies exhaust gas from an internal combustion engine that obtains driving force by burning ammonia, and that is capable of suppressing the emission of ammonia.
  • an exhaust purification device capable of suppressing the emission of ammonia a catalyst having a three-way catalyst function and an ammonia adsorption function provided in a main flow path through which exhaust gas from an ammonia-fueled internal combustion engine flows; a control unit that changes the mixture ratio of the exhaust gas upstream of the catalyst from stoichiometric to lean according to information related to at least one of the desorption of ammonia from the catalyst and the activation temperature of the catalyst; has been proposed (see, for example, Patent Literature 1).
  • an oxidation-reduction catalyst having an oxidation action and a reduction action provided in a main flow path through which exhaust gas from an internal combustion engine using ammonia as fuel flows, a selective reduction catalyst provided in the main flow path, and the selective reduction catalyst. and a temperature acquisition unit that acquires the temperature of the redox catalyst and the selective reduction catalyst when the temperature of the selective reduction catalyst acquired by the temperature acquisition unit exceeds the activation temperature of the selective reduction catalyst.
  • a control unit for changing the mixture ratio of exhaust gas on the upstream side from stoichiometric to lean has been proposed (see, for example, Patent Document 2).
  • the mixture ratio of the exhaust gas is detected at one point on the downstream side of the internal combustion engine, so the functions of the redox catalyst and the selective reduction catalyst cannot be fully utilized. state is likely to occur.
  • the mixture ratio of exhaust gas on the upstream side of the catalyst is changed from stoichiometric to lean. If the degree of change is inappropriate when control is performed, the selective reduction catalyst may cause the air-fuel mixture concentration to fall below the stoichiometric ratio, resulting in insufficient purification of the exhaust gas. Therefore, there is room for improvement in the control in an exhaust purification system that purifies exhaust gas from an internal combustion engine using the exhaust gas mixture ratio.
  • the present disclosure relates to an exhaust purification device, an exhaust purification method, and a program capable of suppressing emissions of unburned ammonia and nitrogen oxides in an ammonia-fueled internal combustion engine.
  • a first aspect of the present disclosure includes: a redox catalyst having an oxidizing action and a reducing action, provided in a main flow path through which exhaust gas from an internal combustion engine that obtains driving force by combustion of ammonia flows; a selective reduction catalyst that is provided downstream of the oxidation-reduction catalyst in the main flow path and that adsorbs ammonia that has passed through the oxidation-reduction catalyst; a temperature acquisition unit that acquires the temperature of a portion related to the temperature of the selective reduction catalyst; a mixture ratio acquisition unit that acquires an exhaust mixture ratio that indicates the relationship between ammonia and oxygen on the upstream and downstream sides of the selective reduction catalyst; When the temperature acquired by the temperature acquisition unit is equal to or higher than a temperature corresponding to a predetermined temperature indicating activation of the selective reduction catalyst, based on the mixture ratio of the exhaust gas acquired by the mixture ratio acquisition unit, the When the mixture ratio of the exhaust gas on the downstream side of the selective reduction catalyst is larger than the mixture ratio of the exhaust gas on the upstream side of the selective reduction
  • An exhaust purification device comprising:
  • a second aspect of the present disclosure provides, in the exhaust purification device of the first aspect, The control unit When the difference between the exhaust mixture ratio on the upstream side of the selective reduction catalyst and the exhaust mixture ratio on the downstream side of the selective reduction catalyst falls within a predetermined range, the exhaust mixture ratio on the upstream side of the selective reduction catalyst A third control is performed to change from lean to stoichiometric.
  • a third aspect of the present disclosure is the exhaust purification device of the second aspect,
  • the control unit When the difference is out of a predetermined range after a predetermined time has passed since the start of the first control or the second control, control is performed to notify information indicating an abnormality.
  • a fourth aspect of the present disclosure is the exhaust purification device of the second aspect, The control unit The first control, the second control, and the third control are performed at least once when the internal combustion engine is started.
  • a fifth aspect of the present disclosure is An exhaust purification method for purifying exhaust gas from an internal combustion engine that obtains a driving force by burning ammonia using an oxidation-reduction catalyst and a selective reduction catalyst, a step of acquiring the temperature of a portion related to the temperature of the selective reduction catalyst; a step of acquiring an exhaust mixture ratio indicating the relationship between ammonia and oxygen on the upstream side and downstream side of the selective reduction catalyst; When the acquired temperature is equal to or higher than a temperature corresponding to a predetermined temperature indicating activation of the selective reduction catalyst, the mixture ratio of the exhaust gas upstream of the selective reduction catalyst is determined based on the acquired mixture ratio of the exhaust gas.
  • the mixture ratio of exhaust gas on the downstream side of the selective reduction catalyst is changed from stoichiometric.
  • the exhaust on the downstream side of the selective reduction catalyst performing a second control to change the mixture ratio of the exhaust gas upstream of the oxidation-reduction catalyst so that the mixture ratio of the exhaust gas becomes leaner than the stoichiometric ratio;
  • a sixth aspect of the present disclosure is A program stored in a computer-readable medium for causing a computer to execute an exhaust purification process for purifying exhaust gas from an internal combustion engine that obtains a driving force by burning ammonia using an oxidation-reduction catalyst and a selective reduction catalyst, the program comprising: obtaining the temperature of a portion related to the temperature of the selective reduction catalyst; Acquiring an exhaust mixture ratio indicating the relationship between ammonia and oxygen on the upstream and downstream sides of the selective reduction catalyst; When the acquired temperature is equal to or higher than a temperature corresponding to a predetermined temperature indicating activation of the selective reduction catalyst, the mixture ratio of the exhaust gas upstream of the selective reduction catalyst is determined based on the acquired mixture ratio of the exhaust gas.
  • the mixture ratio of exhaust gas on the downstream side of the selective reduction catalyst is changed from stoichiometric.
  • the exhaust on the downstream side of the selective reduction catalyst performing a second control for changing the mixture ratio of the exhaust gas upstream of the oxidation-reduction catalyst so that the mixture ratio of is leaner than stoichiometric; is a program for causing the computer to execute an exhaust purification process including
  • FIG. 1 is a schematic configuration diagram of an exhaust purification device according to an embodiment of the present disclosure
  • FIG. 4 is a flow chart for explaining the operation flow of the exhaust gas purification device according to the embodiment of the present disclosure
  • FIG. 4 is a diagram showing characteristics related to the temperature of the selective reduction catalyst and characteristics related to the mixing ratio of the exhaust upstream and downstream of the selective reduction catalyst in the exhaust gas purification apparatus of the embodiment of the present disclosure
  • FIG. 3 is a diagram showing the relationship between ammonia (NH 3 ) concentration, nitrogen oxide (NO x ) concentration, and hydrogen (H 2 ) concentration in exhaust gas at a first portion in an exhaust passage of an internal combustion engine.
  • NH 3 ammonia
  • NO x nitrogen oxide
  • H 2 hydrogen
  • FIG. 4 is a diagram showing the relationship between ammonia (NH 3 ) concentration, nitrogen oxide (NO x ) concentration, and hydrogen (H 2 ) concentration in the exhaust gas at a second portion in the exhaust passage of the internal combustion engine.
  • FIG. 4 is a diagram showing the relationship between the nitrogen oxide (NO x ) concentration and the hydrogen (H 2 ) concentration in the exhaust gas at a third portion in the exhaust passage of the internal combustion engine;
  • 1 is a schematic configuration diagram of an exhaust purification device including a notification unit according to an embodiment of the present disclosure;
  • FIG. 1 is a schematic configuration diagram of an exhaust purification device of the present disclosure.
  • FIG. 1 is a schematic diagram of an engine system 1 as one embodiment of the present disclosure.
  • the engine system 1 is mounted on a vehicle, for example, and generates driving force for driving the vehicle.
  • the engine system 1 includes a combustion device 20 that generates driving force, and an exhaust purification device 10 that purifies harmful substances such as ammonia (NH 3 ) and nitrogen oxides (NO x ) in the exhaust from the combustion device 20.
  • NH 3 ammonia
  • NO x nitrogen oxides
  • the combustion device 20 includes a combustion state control section 21 and an internal combustion engine 22.
  • An example of the internal combustion engine 22 is an ammonia engine that burns ammonia gas to obtain driving force.
  • ammonia gas is simply called “ammonia”.
  • the combustion state control unit 21 adjusts the throttle (not shown) to change the air flow rate to the internal combustion engine 22, and adjusts the fuel supply valve (not shown) to change the fuel supply amount to the internal combustion engine 22. .
  • the combustion state control unit 21 changes the mass ratio (mixture ratio) of air and fuel in the internal combustion engine 22 and in the exhaust gas discharged from the internal combustion engine 22 to rich, stoichiometric, and lean states. and control.
  • the rich state means a mixture ratio where ⁇ >1
  • the lean state means a mixture ratio in which ⁇ 1.
  • is also called "equivalence ratio”.
  • the combustion state control section 21 is implemented by, for example, an Electronic Control Unit (ECU).
  • ECU Electronic Control Unit
  • the exhaust purification device 10 of the present embodiment uses an oxidation-reduction catalyst and a selective reduction catalyst to purify harmful substances in the exhaust.
  • a three-way catalyst is exemplified as an example of a redox catalyst
  • a selective catalytic reduction catalyst is exemplified as an example of a selective reduction catalyst that functions as an adsorption catalyst.
  • a catalyst other than the three-way catalyst can be used as long as the catalyst has an oxidation action and a reduction action.
  • the oxidation-reduction catalyst can be a catalyst in which ceramics, titanium oxide, or the like is used as a carrier, and noble metals such as platinum, rhodium, and palladium are supported as active catalyst components.
  • a catalyst other than the SCR catalyst can be used as long as the catalyst has an ammonia adsorption action.
  • a catalyst in which ceramics, titanium oxide, or the like is used as a carrier and zeolite is supported as an active catalyst component can be used as the selective reduction catalyst.
  • the side of the exhaust purification device 10 closer to the internal combustion engine 22 is called “upstream side”, and the side farther from the internal combustion engine 22 is called “downstream side”.
  • the left side corresponds to the upstream side
  • the right side corresponds to the downstream side.
  • the exhaust purification device 10 includes a control unit 11 that controls each part of the exhaust purification device 10, an exhaust pipe 19 extending from an internal combustion engine 22, a three-way catalyst 12 provided on the exhaust pipe 19, an SCR catalyst 13, A first mixture ratio acquisition unit 14 , a second mixture ratio acquisition unit 15 , and a temperature acquisition unit 16 are provided.
  • the control unit 11 receives signals representing the obtained values obtained from the first mixing ratio obtaining unit 14, the second mixing ratio obtaining unit 15, and the temperature obtaining unit 16.
  • the control unit 11 executes control ( FIG. 2 ), which will be described later, using the received acquired values, and switches the mixture ratio of the internal combustion engine 22 to mix the exhaust gas upstream of the three-way catalyst 12 and the SCR catalyst 13 . Switch ratio.
  • the control unit 11 is implemented by an ECU, for example.
  • the exhaust pipe 19 forms a main flow path through which exhaust from the internal combustion engine 22 flows. Exhaust from the internal combustion engine 22 passes through the main flow path in the exhaust pipe 19, passes through the three-way catalyst 12 and the SCR catalyst 13, and is released to the outside air.
  • the three-way catalyst 12 is arranged on the most upstream side of the main flow path, in other words, on the upstream side of the SCR catalyst 13 .
  • the three-way catalyst 12 can purify ammonia, NO x , and hydrogen (H 2 ) in the exhaust gas, when the mixture ratio deviates from a predetermined range near stoichiometry, the purification performance of these deteriorates. It has the characteristic of
  • the exhaust purification device 10 can include a sensor (not shown) that measures the oxygen (O 2 ) concentration (that is, the mixture ratio) of the exhaust gas (exhaust gas) from the internal combustion engine 22 upstream of the three-way catalyst 12 .
  • the control unit 11 can obtain the mixture ratio from the sensor.
  • a sensor that acquires the mixture ratio on the upstream side of the three-way catalyst 12 may acquire a measurement signal measured by an oxygen sensor or an ammonia sensor provided in the exhaust pipe 19, for example.
  • the exhaust purification device 10 can include a sensor (not shown) that measures the temperature inside the three-way catalyst 12 (so-called bed temperature).
  • the sensor may measure the temperature near the inlet and outlet of the three-way catalyst 12 instead of the bed temperature of the three-way catalyst 12 .
  • the SCR catalyst 13 is arranged on the most downstream side of the main flow path, in other words, on the downstream side of the three-way catalyst 12 .
  • the SCR catalyst 13 can purify NO x in exhaust gas using ammonia as a reducing agent.
  • the temperature acquisition unit 16 is a sensor that measures the temperature related to the temperature of the SCR catalyst 13, and measures the temperature inside the SCR catalyst 13 (so-called bed temperature) in the present embodiment. Instead of the bed temperature of the SCR catalyst 13 , the temperature acquiring unit 16 may measure the temperature of a portion around the SCR catalyst 13 , for example, the temperature near the entrance of the SCR catalyst 13 .
  • the temperature acquisition unit 16 is an example of the "temperature acquisition unit" of the present disclosure.
  • the first mixture ratio acquisition unit 14 and the second mixture ratio acquisition unit 15 acquire the oxygen (O 2 ) concentration (that is, the mixture ratio) of the exhaust (exhaust gas) from the internal combustion engine 22 in the vicinity of the inlet/outlet of the SCR catalyst 13 . That is, the first mixture ratio acquisition unit 14 is provided in the vicinity of the inlet of the SCR catalyst 13, and oxygen in the exhaust (exhaust gas) from the internal combustion engine 22 on the downstream side of the three-way catalyst 12 and on the upstream side of the SCR catalyst 13. Obtain the (O 2 ) concentration (ie mixing ratio).
  • the first mixture ratio acquisition unit 14 can be realized by acquiring a measurement signal measured by an oxygen sensor or an ammonia sensor provided in the exhaust pipe 19, for example.
  • the second mixture ratio acquisition unit 15 is provided on the downstream side of the SCR catalyst 13 (for example, near the exit), and measures the oxygen (O 2 ) concentration ( namely mixing ratio).
  • the second mixture ratio acquisition unit 15 can also be realized by acquiring a measurement signal measured by an oxygen sensor or an ammonia sensor provided in the exhaust pipe 19, for example.
  • the first mixture ratio acquisition unit 14 and the second mixture ratio acquisition unit 15 are examples of the “mixture ratio acquisition unit” of the present disclosure.
  • the first mixture ratio acquisition unit 14 is an example of a "mixture ratio acquisition unit” when acquiring the mixture ratio on the upstream side of the selective reduction catalyst
  • the second mixture ratio acquisition unit 15 is an example of a "mixture ratio acquisition unit” on the downstream side of the selective reduction catalyst. It is an example of a "mixing ratio acquisition part" when acquiring a mixing ratio.
  • the oxygen (O 2 ) concentration of the exhaust (exhaust gas) from the internal combustion engine 22, that is, the mixture ratio of the exhaust in the exhaust pipe 19 can be regarded as the degree of excess or deficiency of air containing oxygen (O 2 ).
  • an excess air ratio ⁇ which indicates the degree of excess air relative to stoichiometry, is applied as the degree of excess or deficiency of air relative to stoichiometry.
  • the mixture ratio of the exhaust gas obtained by the first mixture ratio obtaining unit 14 is defined as the excess air ratio ⁇ 1
  • the mixture ratio of the exhaust gas obtained by the second mixture ratio obtaining unit 15 is defined as the excess air ratio ⁇ 2.
  • FIG. 2 is a flow chart showing an example of a control procedure in the control unit 11.
  • the control in FIG. 2 monitors the state of the exhaust purification device 10 and is related to the adsorption of ammonia in the SCR catalyst 13 .
  • the control shown in FIG. 2 is executed when the internal combustion engine 22 is started. Note that the control shown in FIG. 2 is not limited to execution when the internal combustion engine 22 is started. For example, it may be executed periodically, or may be executed when a start condition is determined in advance and the start condition is met.
  • a computer-readable medium storage unit (not shown) for causing a computer to execute an exhaust purification process for purifying the exhaust gas from the internal combustion engine 22 that obtains driving force by burning ammonia. It is an example of a "program" of the present disclosure.
  • step S100 the control unit 11 sets an initial value when starting control.
  • the counter value M and the discrimination index N i are set as the initial values.
  • a counter value M indicates the number of repetitions of this control.
  • the discrimination index Ni is an index that indicates the behavior of the SCR catalyst 13 .
  • the states of "adsorption of SCR catalyst 13", “regeneration of SCR catalyst 13”, and “completion of regeneration of SCR catalyst 13” are applied as the behavior of the SCR catalyst 13 indicated by the discrimination index Ni .
  • the discrimination index N0 indicates the state of "adsorption of the SCR catalyst 13" in which ammonia is adsorbed on the SCR catalyst 13, and is set to "1" in the case of the state of "adsorption of the SCR catalyst 13", otherwise it is reset. (“0” is set).
  • the determination index N1 is set to " 1 " in the "regeneration of the SCR catalyst 13" state in which the adsorbed ammonia is consumed and the adsorption capacity of the SCR catalyst 13 is restored, and is reset ("0 ” is set).
  • the discrimination index N2 is set to "1" when the regeneration of the SCR catalyst 13 is completed and "regeneration of the SCR catalyst 13 is completed", and is reset (set to "0") otherwise.
  • step S100 When the initial values are set in step S100, the control unit 11 shifts the process to step S102.
  • step S102 the control unit 11 obtains the temperature of the SCR catalyst 13 from the temperature obtaining unit 16, and determines whether the obtained temperature Tc of the SCR catalyst 13 is equal to or higher than the set temperature Ta of the SCR catalyst 13.
  • the starting temperature of the catalytic reaction in the SCR catalyst 13 is set in advance as the set temperature Ta.
  • the activation temperature is used as an example of the starting temperature of the catalytic reaction in the SCR catalyst 13 .
  • This “activation temperature” means the lower limit temperature at which the reduction reaction of NO x with ammonia is activated in the SCR catalyst 13 , and is predetermined and stored in a storage section (not shown) within the control section 11 .
  • step S102 While monitoring the temperature of the SCR catalyst 13, the control unit 11 repeats the negative determination until the temperature Tc of the SCR catalyst 13 becomes equal to or higher than the set temperature (activation temperature) Ta.
  • the control unit 11 makes an affirmative determination in step S102, and proceeds to step S104.
  • the set temperature Ta is set to a value equal to or higher than the activation temperature, which is an example of the reaction start temperature of the SCR catalyst 13, but the set temperature Ta is not limited to the activation temperature of the SCR catalyst 13.
  • the set temperature Ta may be any temperature that can determine the start of the reaction of the SCR catalyst 13, such as the temperature of the cooling water of the internal combustion engine 22, the site around the SCR catalyst 13 (for example, the vicinity of the inlet and outlet of the SCR catalyst 13), and the model Other temperatures, such as values corresponding to the temperatures derived based on the prediction formula by .
  • the temperature of the SCR catalyst 13 such as the bed temperature of the SCR catalyst 13 may be estimated from the obtained temperature using a known estimation method.
  • step S102 it is determined whether or not the temperature Tc of the SCR catalyst 13 is equal to or higher than the set temperature Ta (Tc ⁇ Ta).
  • the control unit 11 may determine whether or not the temperature of the three-way catalyst 12 is equal to or higher than a predetermined reaction start temperature. This determination effectively functions immediately after the internal combustion engine 22 is started. That is, when the temperature of the three-way catalyst 12 is equal to or higher than the predetermined reaction start temperature, an affirmative determination may be made in step S102 and the process may proceed to step S104.
  • step S102 it may be determined whether or not the temperature of the SCR catalyst 13 has reached or exceeded the set temperature Ta after the temperature of the three-way catalyst 12 has reached or exceeded a predetermined reaction start temperature. Further, it may be determined whether the temperatures of the three-way catalyst 12 and the SCR catalyst 13 are equal to or higher than their respective activation temperatures.
  • the control unit 11 determines whether or not the termination condition is satisfied. In this embodiment, it is determined whether or not the end condition is satisfied by determining whether or not the counter value M is less than a predetermined maximum value Mmax. When the counter value M is less than the maximum value M max (M ⁇ M max ), the control unit 11 makes a negative determination in step S104 and terminates this processing routine. On the other hand, when the counter value M is equal to or greater than the maximum value M max (M ⁇ M max ), the control unit 11 makes an affirmative determination in step S104, and proceeds to step S106. It should be noted that the maximum value M max can be set to any value according to the operating conditions of the internal combustion engine 22 .
  • This termination condition is effective when it is desired to remove ammonia adsorbed on the SCR catalyst 13 when the internal combustion engine 22 is started.
  • a counter value of 3 or more is set as the termination condition for the maximum value Mmax.
  • setting a predetermined small counter value such as 3 or 4 as the maximum value M max is effective when the internal combustion engine 22 stops immediately after starting and is restarted after a predetermined time. Specifically, after starting the internal combustion engine 22, the internal combustion engine 22 is stopped when the temperature of the three-way catalyst 12 does not reach the activation temperature of the three-way catalyst 12 and exhaust gas remains in the SCR catalyst 13. This is effective when it is desired to remove the ammonia when the internal combustion engine 22 is restarted after that. That is, this termination condition is effective when it is desired to remove ammonia adsorbed on the SCR catalyst 13 when the internal combustion engine 22 is restarted.
  • the maximum value M max is not limited to the counter value described above, and it is also possible to set a counter value greater than the above counter value as the end condition.
  • This termination condition is effective in detecting and removing ammonia adsorbed in the SCR catalyst 13 when the internal combustion engine 22 is continuously under a high load state higher than the normal load state.
  • An example of the high load state is an acceleration state of a moving object such as a vehicle equipped with the internal combustion engine 22 .
  • the control unit 11 may detect that the moving body is accelerating and make a negative determination in step S104 during the acceleration of the moving body.
  • step S106 the control unit 11 determines whether or not the SCR catalyst 13 is in an adsorption state by determining N 0 ⁇ 1. If N 0 ⁇ 1, affirmative determination is made in step S106, and the process proceeds to step S108. On the other hand, if N 0 ⁇ 1, the determination in step S106 is negative, skipping step S108 and proceeding to step S110.
  • step S108 the control unit 11 performs control to change the mixture ratio of the internal combustion engine 22 from stoichiometric to lean. Specifically, the control unit 11 transmits an instruction signal to the combustion state control unit 21 to change the mixture ratio of the internal combustion engine 22 to lean. Upon receiving the instruction signal, the combustion state control unit 21 changes the amount of air and fuel supplied to the internal combustion engine 22 to change the mixture ratio of the internal combustion engine 22 from stoichiometric to lean. As a result, the mixture ratio of the exhaust gas on the upstream side of the three-way catalyst 12 is also changed from stoichiometric to lean. Therefore, the excess air ratio ⁇ 1 acquired by the first mixture ratio acquisition unit 14 is the excess air ratio ⁇ 1 ( ⁇ 1>1) indicating lean, which is excess air.
  • the temperature of the three-way catalyst 12 gradually rises due to the high-temperature exhaust gas (exhaust gas) from the internal combustion engine 22. It passes through the catalyst 12 and flows into the SCR catalyst 13 . That is, ammonia that has passed through the three-way catalyst 12 without purification flows into the SCR catalyst 13 on the downstream side. The ammonia that has flowed into the SCR catalyst 13 is adsorbed by the SCR catalyst 13, and outflow of ammonia from the SCR catalyst 13 is prevented. Therefore, the amount of ammonia flowing out from the SCR catalyst 13 changes depending on the excess air ratio ⁇ 1 on the upstream side of the SCR catalyst 13 and the behavior of the SCR catalyst 13 .
  • the control unit 11 adjusts the mixture ratio of the internal combustion engine 22 so that ammonia is appropriately processed in the SCR catalyst 13 from the relationship between the excess air ratio ⁇ 1 on the upstream side of the SCR catalyst 13 and the excess air ratio ⁇ 2 on the downstream side of the SCR catalyst 13. .
  • the ratio of air (oxygen) and ammonia (hydrogen) changes before and after the SCR catalyst 13.
  • a difference in excess air ratio ⁇ occurs before and after the SCR catalyst 13 .
  • the excess air ratios ⁇ before and after the SCR catalyst 13 have a relationship of ⁇ 2> ⁇ 1.
  • step S110 When the control unit 11 determines in step S110 that the excess air ratio ⁇ 2 is larger than the excess air ratio ⁇ 1 ( ⁇ 2> ⁇ 1), the process proceeds to step S112 assuming the state of "adsorption of the SCR catalyst 13".
  • step S112 the control unit 11 performs control such that the excess air ratio ⁇ 1 becomes excess air ( ⁇ 1 ⁇ 1). Specifically, the control unit 11 transmits an instruction signal to the combustion state control unit 21 to change the mixture ratio of the internal combustion engine 22 to lean. Upon receiving the instruction signal, the combustion state control unit 21 adjusts the mixture ratio of the internal combustion engine 22 so that the excess air ratio ⁇ 1 becomes excess air ( ⁇ 1 ⁇ 1) by changing the amount of air and fuel supplied to the internal combustion engine 22.
  • step S114 the determination index N 0 is set to 1, and the process proceeds to step S124.
  • the processing of step S112 is an example of processing according to the "first control" of the present disclosure.
  • the excess air ratio ⁇ 1 is ⁇ 1>1, unpurified nitrogen oxides remain, but ammonia and hydrogen are oxidized.
  • the difference between the excess air ratio ⁇ 1 and the excess air ratio ⁇ 2 may be within a predetermined range including zero. This predetermined range can be determined from the amount or rate of incompletely combusted components defined as purified exhaust (exhaust gas).
  • the exhaust contains a large amount of oxygen. Therefore, although the oxidation of ammonia and hydrogen by the three-way catalyst 12 is maintained, part of the nitrogen oxide remains unpurified, and the nitrogen oxide containing oxygen flows into the SCR catalyst 13 .
  • the nitrogen oxides and the ammonia adsorbed on the SCR catalyst 13 are converted into nitrogen and water based on the SCR reaction of the following formulas (1) to (3). Since ammonia is added to the gas composition flowing into the SCR catalyst 13 during this reaction, the excess air ratio ⁇ has a relationship of ⁇ 1> ⁇ 2.
  • step S110 When the control unit 11 determines in step S110 that the excess air ratio ⁇ 2 is smaller than the excess air ratio ⁇ 1 ( ⁇ 1> ⁇ 2), the state is "regeneration of the SCR catalyst 13" and the process proceeds to step S116.
  • step S116 the control unit 11 controls the excess air ratio ⁇ 2 to become excess air ( ⁇ 2 ⁇ 1) so that the SCR catalyst 13 does not run short of oxygen and nitrogen oxides. Specifically, the control unit 11 transmits an instruction signal to the combustion state control unit 21, and adjusts the mixture ratio of the internal combustion engine 22 from stoichiometric to lean so that the excess air ratio ⁇ 2 becomes excess air ( ⁇ 2 ⁇ 1). change to Then, in step S118, the determination index N1 is set to 1, and the process proceeds to step S124.
  • the processing of step S116 is an example of processing by the "second control" of the present disclosure.
  • the catalytic reaction of the three-way catalyst 12 reduces the outflow of ammonia from the three-way catalyst 12, and the regeneration of the SCR catalyst 13 reduces the amount of ammonia flowing into the SCR catalyst 13, and finally eliminates it.
  • step S122 when the states of "adsorption of SCR catalyst 13" and “regeneration of SCR catalyst 13" are passed (N 0 ⁇ N 1 >0), the state of "completion of regeneration of SCR catalyst 13" is established. , the determination index N 2 is set to 1, and the process proceeds to step S124. Otherwise, the process proceeds to step S124 as it is (while maintaining the determination index N 2 ).
  • the processing of step S120 is an example of processing by the "third control" of the present disclosure.
  • step S120 the adsorption of the SCR catalyst 13, that is, the process when the excess air ratio ⁇ 1 and the excess air ratio ⁇ 2 match as a result of the adsorption of ammonia, and the regeneration of the SCR catalyst 13, that is, the regeneration of the SCR catalyst. and processing when the excess air ratio ⁇ 1 and the excess air ratio ⁇ 2 match as a result of
  • step S124 the control unit 11 determines whether or not N 0 ⁇ N 1 ⁇ N 2 >0, thereby performing “adsorption of the SCR catalyst 13”, “regeneration of the SCR catalyst 13”, and “regeneration of the SCR catalyst 13”. It is determined whether or not the control in each state of "completion" has been completed. That is, when the internal combustion engine 22 is started, it is determined whether or not the SCR catalyst 13 has undergone a series of controls including adsorption, regeneration, and completion of regeneration once.
  • control is preferably executed when the temperature of the SCR catalyst 13 reaches the reaction start temperature after the temperature of the three-way catalyst 12 rises above the reaction start temperature.
  • temperature of the SCR catalyst 13 reaches the activation temperature before the temperature of the three-way catalyst 12 reaches the activation temperature.
  • both the ammonia that has flowed into the SCR catalyst 13 and the adsorbed ammonia are oxidized, and the SCR catalyst 13 is regenerated.
  • the excess air ratio ⁇ changes from ⁇ 2> ⁇ 1 to ⁇ 1> ⁇ 2.
  • the exhaust emission control device 10 described above works effectively when the internal combustion engine 22 is started, for example, during the warm-up process after the start. Further, the exhaust emission control device of the present disclosure is not limited to when the internal combustion engine 22 is started, and is effective even while the internal combustion engine 22 is operating. For example, when the load of the internal combustion engine 22 changes abruptly, the control of the fuel-air mixture ratio cannot keep up with the abruptly changing load of the internal combustion engine 22, and unpurified ammonia is released from the three-way catalyst 12. Even if the ammonia flows out, it is possible to determine the adsorption of ammonia to the SCR catalyst 13 and regenerate it by the control described above.
  • control unit 11 when the difference between the excess air ratio ⁇ 1 and the excess air ratio ⁇ 2 is outside a prescribed range after the lapse of a prescribed period of time from the start of the first control or the second control, the control unit 11 notifies information indicating an abnormality. control should be performed.
  • a notification unit 30 for notifying warning information may be provided, and the control unit 11 may control the notification unit 30 .
  • Information indicating an abnormality in the catalyst system is applied to the warning information.
  • the information indicating the abnormality of the catalyst system is information indicating that there is a possibility that the difference in the excess air ratio ( ⁇ 1 ⁇ > ⁇ 2) has continuously occurred and the abnormality of the catalyst system has occurred.
  • step S110 it is determined whether or not the time during which the difference in the excess air ratio ( ⁇ 1 ⁇ > ⁇ 2) has exceeded the duration, and if the duration exceeds the duration, What is necessary is just to add the control which alert
  • Duration time measures the time during which a difference occurs in the excess air ratio after the start of control. Further, the duration is not limited to the time after the start of control, and may be measured from the time when a difference occurs in the excess air ratio.
  • 3 to 6 are diagrams showing changes in the state of each part related to the SCR catalyst 13 after the internal combustion engine 22 is started.
  • FIG. 3 is a diagram showing temporal changes in the temperature of the SCR catalyst 13 and the excess air ratios upstream and downstream of the SCR catalyst 13 after the internal combustion engine 22 is started.
  • FIG. 3 shows the change over time of the excess air ratio near the inlet/outlet of the SCR catalyst 13 in the exhaust (exhaust gas) from the internal combustion engine 22 as the excess air ratio.
  • the solid line indicates the change in the temperature of the SCR catalyst 13 over time.
  • the change over time in the excess air ratio ⁇ 1 at position B (FIG. 1) on the upstream side of the SCR catalyst 13 is indicated by a dashed line
  • the change over time on the position C (FIG. 1) on the downstream side of the SCR catalyst 13 is shown.
  • the change over time of the excess air ratio ⁇ 2 is indicated by a chain double-dashed line.
  • FIG. 4 to 6 are graphs showing temporal changes in the gas concentration of the exhaust (exhaust gas) from the internal combustion engine 22 at different positions in the exhaust pipe 19.
  • FIG. 4 shows the ammonia concentration (NH 3 ), NO x concentration (NO x ), and hydrogen concentration (H 2 ) as the gas concentration of the exhaust (exhaust gas) flowing into the SCR catalyst 13 over time. Show change.
  • FIG. 4 is a diagram showing changes over time in the gas concentration of exhaust (exhaust gas) at position A (FIG. 1) on the upstream side of the three-way catalyst 12 near the outlet of the internal combustion engine 22.
  • FIG. 5 is a graph showing changes over time in the gas concentration at position B (FIG.
  • FIG. 6 is a diagram showing changes over time in the gas concentration at position C (FIG. 1) on the downstream side of the SCR catalyst 13, which is near the exit of the SCR catalyst 13.
  • the solid line indicates the change in ammonia concentration (NH 3 ) over time
  • the dashed-dotted line indicates the change in NO x concentration (NO x ) over time
  • the dotted line indicates the change over time of the NO x concentration (NO x ) at position B.
  • the exhaust gas (exhaust gas) from the internal combustion engine 22 contains water vapor, nitrogen, as well as incomplete combustion components such as unburned ammonia, hydrogen, and nitrogen oxides.
  • ammonia has a pungent odor even at low concentrations, and when the concentration is high, there is a high risk of harming the human body.
  • the exhaust purification device 10 of the present disclosure adjusts the air flow rate and the fuel supply amount to the internal combustion engine 22 to reduce the emission of at least ammonia in the exhaust gas.
  • the ammonia concentration (NH 3 ) increases near the outlet of the internal combustion engine 22 (position A) due to the large amount of unburned ammonia in the internal combustion engine 22. Rapidly increase. Thereafter, combustion in the internal combustion engine 22 stabilizes, and the ammonia concentration (NH 3 ) gradually decreases.
  • the ammonia that has passed through the three-way catalyst 12 is adsorbed by the SCR catalyst 13, thereby changing the balance of the gas composition.
  • side air excess ratio ⁇ 2 increases ( ⁇ 1 ⁇ 2).
  • the excess air ratio ⁇ in the SCR catalyst 13 is ⁇ 1> ⁇ 2, the excess air ratio ⁇ 2 is set to excess air ( ⁇ 2 ⁇ 1) so that oxygen and nitrogen oxides are not insufficient in the SCR catalyst 13. Then, in the SCR catalyst 13, the adsorbed ammonia is consumed, and regeneration of the SCR catalyst 13 progresses until the adsorption capacity of the SCR catalyst 13 returns to the capacity before adsorption in the SCR catalyst 13.
  • the SCR catalyst 13 when the SCR catalyst 13 reaches or exceeds the set temperature (activation temperature) Ta, the mixture ratio of the exhaust gas on the upstream side of the three-way catalyst 12 and the SCR catalyst 13 is stoichiometric so that the excess air ratio ⁇ 2 becomes excess air. to lean. As a result, the SCR catalyst 13 is in a state of regeneration, and the ammonia adsorbed by the SCR catalyst 13 can undergo a reduction reaction with NOx in the exhaust gas. Ammonia can be removed.
  • combustion in the internal combustion engine 22 is stable (FIG. 3)
  • concentration of ammonia from the internal combustion engine 22 is substantially constant. be.
  • the oxidation reaction of ammonia and the reduction reaction of NO x progress in the three-way catalyst 12, and the ammonia and NO x in the exhaust that have flowed into the three-way catalyst 12 are purified in the three-way catalyst 12 and discharged. not.
  • the three-way catalyst 12 oxidizes the ammonia in the exhaust gas.
  • the three-way catalyst 12 can reduce the NOx in the exhaust gas, thereby suppressing the emission of ammonia (FIG. 6).
  • the SCR catalyst in the SCR catalyst 13 is determined from the magnitude relationship of the excess air ratios upstream and downstream of the SCR catalyst 13. 13 adsorption and regeneration of the SCR catalyst 13 can be determined. Therefore, by controlling the mixture ratio according to the determined state, purification of the exhaust gas from the internal combustion engine 22 can be performed efficiently and reliably. In addition, by determining the state of completion of regeneration of the SCR catalyst 13 from the magnitude relationship of the excess air ratios on the upstream side and the downstream side of the SCR catalyst 13, further , exhaust gas purification can be carried out efficiently and reliably.
  • the three-way catalyst 12 is arranged on the upstream side of the main flow path, so that the temperature of the three-way catalyst 12 is easily increased, and the temperature of the three-way catalyst 12 reaches the set temperature (activation (Temperature) Ta can be shortened. Further, the saturated adsorption amount of ammonia in the SCR catalyst 13 has a characteristic that it decreases as the temperature of the catalyst rises. According to the exhaust purification device 10 of the present embodiment, since the SCR catalyst 13 is arranged on the downstream side of the main flow path, the temperature of the SCR catalyst 13 is made difficult to rise, and the saturated adsorption amount of ammonia in the SCR catalyst 13 is reduced. can be suppressed.
  • the engine system may include other devices not shown (for example, a device for monitoring the state of a three-way catalyst or an SCR catalyst, etc.).
  • NSR catalyst NOx Storage Reduction catalyst
  • DOC catalyst Diesel Oxidation Catalyst
  • DPF Diesel particulate filter
  • Reference Signs List 1 engine system 10 exhaust purification device 11 control unit 12 three-way catalyst 13 SCR catalyst 14 first mixture ratio acquisition unit 15 second mixture ratio acquisition unit 16 temperature acquisition unit 19 exhaust pipe 20 combustion device 21 combustion state control unit 22 internal combustion engine ⁇ , ⁇ 1, ⁇ 2 Excess air ratio A Position B Position C Position M Counter value M max maximum value Ni (N 0 , N 1 , N 2 ) Discrimination index Ta Set temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Treating Waste Gases (AREA)

Abstract

酸化作用及び還元作用を有する酸化還元触媒と、酸化還元触媒より下流側に設けてアンモニアを吸着する選択還元触媒と、選択還元触媒の温度に関係する部位の温度を取得する温度取得部と、選択還元触媒の上流側及び下流側におけるアンモニアと酸素の関係を示す排気の混合比を取得する混合比取得部と、取得された温度が所定の温度以上の場合に、取得された排気の混合比に基づき、選択還元触媒の上流側排気の混合比より選択還元触媒の下流側排気の混合比が大きい場合は選択還元触媒の上流側排気の混合比を量論から希薄に変更させる第1制御を行い、選択還元触媒の上流側排気の混合比より選択還元触媒の下流側排気の混合比が小さい場合は選択還元触媒の下流側排気の混合比が量論から希薄に変更させる第2制御を行う制御部と、を備える排気浄化装置。

Description

排気浄化装置、排気浄化方法、及びプログラム
 本発明は、排気浄化装置、排気浄化方法、及びプログラムに関する。
 触媒を利用して、エンジンなどの内燃機関の排気に含まれる一酸化窒素(NO)、二酸化窒素(NO)等の窒素酸化物(NO)等の有害物質を浄化する技術が知られている。また、内燃機関として、アンモニアを燃料とするアンモニアエンジンが検討されている。アンモニアは炭素原子を含まないため、アンモニアエンジンでの燃焼により二酸化炭素が発生しないという利点がある。
 アンモニアが完全燃焼した場合、アンモニアは全て窒素と水に変換される。しかしながら、アンモニアエンジンにてアンモニアを実際に燃焼させた場合、不完全燃焼成分が存在し、例えば、未反応のアンモニア、NO等の窒素酸化物などを含む排気がアンモニアエンジンから排出される。そのため、触媒等を用いて排気に含まれる未反応のアンモニア、NO等の窒素酸化物などを浄化することが望まれる。
 例えば、アンモニアの燃焼により駆動力を得る内燃機関の排気を浄化する排気浄化装置であって、アンモニアの排出を抑制することが可能な排気浄化装置が提案されている。アンモニアの排出を抑制することが可能な排気浄化装置としては、アンモニアを燃料とする内燃機関からの排気が流通する主流路に設けられた、三元触媒機能及びアンモニア吸着機能を有する触媒と、前記触媒からのアンモニアの脱離と、前記触媒の活性化温度と、の少なくとも一方に関連する情報に応じて、前記触媒の上流側における排気の混合比を量論から希薄へと変更させる制御部と、を備える排気浄化装置が提案されている(例えば、特許文献1参照)。
 また、アンモニアを燃料とする内燃機関からの排気が流通する主流路に設けられた、酸化作用及び還元作用を有する酸化還元触媒と、前記主流路に設けられた選択還元触媒と、前記選択還元触媒の温度を取得する温度取得部と、前記温度取得部により取得された前記選択還元触媒の温度が、前記選択還元触媒の活性化温度を超えた場合に、前記酸化還元触媒及び前記選択還元触媒の上流側における排気の混合比を量論から希薄へと変更させる制御部と、を備える、排気浄化装置が提案されている(例えば、特許文献2参照)。
特開2019-167822号公報 特開2019-167823号公報
 特許文献1及び特許文献2の排気浄化装置では、内燃機関の下流側における一か所で排気の混合比を検出しているので、酸化還元触媒及び選択還元触媒の機能を十分に活用しきれない状態になる虞がある。例えば、排気が流通する主流路に、上流側に酸化還元触媒を設け、その下流側に選択還元触媒を設けた排気浄化装置では、触媒の上流側における排気の混合比を量論から希薄へと変更させる制御を行った場合、その程度が不適当な場合には、選択還元触媒で混合気濃度が量論比以下になり、排気の浄化が不十分になる可能性がある。従って、排気の混合比を用いて内燃機関の排気を浄化する排気浄化装置における制御には改善の余地がある。
 本開示は、アンモニアを燃料とする内燃機関における、未燃アンモニア及び窒素酸化物の排出を抑制することが可能な排気浄化装置、排気浄化方法、及びプログラムに関する。
 本開示は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の態様に記載の形態として実現することが可能である。
 本開示の第1態様は、
 アンモニアの燃焼により駆動力を得る内燃機関からの排気が流通する主流路に設けられた、酸化作用及び還元作用を有する酸化還元触媒と、
 前記主流路の前記酸化還元触媒より下流側に設けられ、かつ前記酸化還元触媒を通過したアンモニアを吸着する選択還元触媒と、
 前記選択還元触媒の温度に関係する部位の温度を取得する温度取得部と、
 前記選択還元触媒の上流側及び下流側におけるアンモニアと酸素との関係を示す排気の混合比を取得する混合比取得部と、
 前記温度取得部により取得された温度が前記選択還元触媒の活性化を示す所定の温度に対応する温度以上の場合に、前記混合比取得部により取得された前記排気の混合比に基づいて、前記選択還元触媒の上流側における排気の混合比より前記選択還元触媒の下流側における排気の混合比が大きい場合は、前記酸化還元触媒の上流側における排気の混合比を変更させて前記選択還元触媒の上流側における排気の混合比を量論から希薄に変更させる第1制御を行い、かつ前記選択還元触媒の上流側における排気の混合比より前記選択還元触媒の下流側における排気の混合比が小さい場合は、前記選択還元触媒の下流側における排気の混合比が量論から希薄になるように前記酸化還元触媒の上流側における排気の混合比を変更させる第2制御を行う制御部と、
 を備える、排気浄化装置である。
 本開示の第2態様は、第1態様の排気浄化装置において、
 前記制御部は、
 前記選択還元触媒の上流側における排気の混合比と前記選択還元触媒の下流側における排気の混合比との差分が所定範囲内になった場合に、前記選択還元触媒の上流側における排気の混合比を希薄から量論に変更させる第3制御を行う。
 本開示の第3態様は、第2態様の排気浄化装置において、
 前記制御部は、
 前記第1制御または前記第2制御を開始してから所定時間の経過後に前記差分が所定範囲外の場合に、異常を示す情報を報知する制御を行う。
 本開示の第4態様は、第2態様の排気浄化装置において、
 前記制御部は、
 前記内燃機関の始動時に、前記第1制御、前記第2制御、及び前記第3制御を少なくとも1回を行う。
 本開示の第5態様は、
 酸化還元触媒と選択還元触媒とを用いて、アンモニアの燃焼により駆動力を得る内燃機関の排気を浄化する排気浄化方法であって、
 前記選択還元触媒の温度に関係する部位の温度を取得する工程と、
 前記選択還元触媒の上流側及び下流側におけるアンモニアと酸素との関係を示す排気の混合比を取得する工程と、
 取得された温度が前記選択還元触媒の活性化を示す所定の温度に対応する温度以上の場合に、取得された前記排気の混合比に基づいて、前記選択還元触媒の上流側における排気の混合比より前記選択還元触媒の下流側における排気の混合比が大きい場合は、前記酸化還元触媒の上流側における排気の混合比を変更させて前記選択還元触媒の上流側における排気の混合比を量論から希薄に変更させる第1制御を行い、かつ前記選択還元触媒の上流側における排気の混合比より前記選択還元触媒の下流側における排気の混合比が小さい場合は、前記選択還元触媒の下流側における排気の混合比が量論から希薄になるように前記酸化還元触媒の上流側における排気の混合比を変更させる第2制御を行う工程と、
 を含む排気浄化方法である。
 本開示の第6態様は、
 コンピュータ可読媒体に記憶され、酸化還元触媒と選択還元触媒とを用いて、アンモニアの燃焼により駆動力を得る内燃機関の排気を浄化する排気浄化処理をコンピュータに実行させるためのプログラムであって、
 前記選択還元触媒の温度に関係する部位の温度を取得し、
 前記選択還元触媒の上流側及び下流側におけるアンモニアと酸素との関係を示す排気の混合比を取得し、
 取得された温度が前記選択還元触媒の活性化を示す所定の温度に対応する温度以上の場合に、取得された前記排気の混合比に基づいて、前記選択還元触媒の上流側における排気の混合比より前記選択還元触媒の下流側における排気の混合比が大きい場合は、前記酸化還元触媒の上流側における排気の混合比を変更させて前記選択還元触媒の上流側における排気の混合比を量論から希薄に変更させる第1制御を行い、かつ前記選択還元触媒の上流側における排気の混合比より前記選択還元触媒の下流側における排気の混合比が小さい場合は、前記選択還元触媒の下流側における排気の混合比が量論から希薄になるように前記酸化還元触媒の上流側における排気の混合比を変更させる第2制御を行う、
 ことを含む排気浄化処理を前記コンピュータに実行させるためのプログラムである。
 本開示によれば、アンモニアを燃料とする内燃機関における、未燃アンモニア及び窒素酸化物の排出を抑制することができる。
本開示の一実施形態の排気浄化装置の概略構成図である。 本開示の一実施形態の排気浄化装置の動作の流れを説明するためのフローチャートである。 本開示の一実施形態の排気浄化装置における選択還元触媒の温度に関する特性及び選択還元触媒の上流側と下流側とにおける排気の混合比に関する特性を示す図である。 内燃機関の排気流路における第1部位における排気ガス中のアンモニア(NH)濃度と、窒素酸化物(NO)濃度と、水素(H)濃度との関係を示す図である。 内燃機関の排気流路における第2部位における排気ガス中のアンモニア(NH)濃度と、窒素酸化物(NO)濃度と、水素(H)濃度との関係を示す図である。 内燃機関の排気流路における第3部位における排気ガス中の窒素酸化物(NO)濃度と、水素(H)濃度との関係を示す図である。 本開示の一実施形態の報知部を含む排気浄化装置の概略構成図である。
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合、原理的に明らかに必須であると考えられる場合等を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。本開示に示される数値及び数値範囲は一例であり、他の数値及び他の数値範囲に置き換えてもよい。
[排気浄化装置]
 以下、本開示の一実施形態の排気浄化装置について説明する。
 図1は、本開示の排気浄化装置の概略構成図である。
 図1は、本開示の一実施形態としてのエンジンシステム1の概略図である。エンジンシステム1は、例えば車両に搭載されて、車両を駆動させるための駆動力を生み出す。エンジンシステム1は、駆動力を生み出す燃焼装置20と、燃焼装置20からの排気中における有害物質、例えば、アンモニア(NH)、窒素酸化物(NO)等を浄化する排気浄化装置10とを備える。
 燃焼装置20は、燃焼状態制御部21と、内燃機関22とを備える。内燃機関22の一例には、アンモニアガスを燃焼させて駆動力を得るアンモニアエンジンが挙げられる。以降、アンモニアガスを単に「アンモニア」と呼ぶ。燃焼状態制御部21は、スロットル(図示省略)を調整して内燃機関22への空気流量を変更すると共に、燃料供給弁(図示省略)を調整して内燃機関22への燃料供給量を変更する。これにより、燃焼状態制御部21は、内燃機関22内、及び、内燃機関22から排出される排気中の空気と燃料の質量比(混合比)を、過濃、量論、希薄の各状態へと制御する。混合比について、「Φ=理論空燃比/実際の混合気の空燃比」としたとき、過濃状態はΦ>1となる混合比を意味し、量論状態はΦ=1となる混合比を意味し、希薄状態はΦ<1となる混合比を意味する。Φは「当量比」とも呼ばれる。燃焼状態制御部21は、例えば、電子制御ユニット(Electronic Control Unit(ECU))により実装される。
 本実施形態の排気浄化装置10は、酸化還元触媒と、選択還元触媒とを用いて、排気中の有害物質を浄化する。以下の説明では、酸化還元触媒の一例として、三元触媒(Three-Way Catalyst)を例示し、吸着触媒として機能する選択還元触媒の一例としてSCR触媒(Selective Catalytic Reduction catalyst)を例示する。なお、酸化還元触媒としては、酸化作用及び還元作用を有する触媒である限りにおいて、三元触媒以外の触媒も利用できる。例えば、酸化還元触媒には、セラミックスや酸化チタン等を担体として用い、白金、ロジウム、パラジウム等の貴金属を活性触媒成分として担持した触媒を利用できる。選択還元触媒には、アンモニアの吸着作用を有する触媒である限りにおいて、SCR触媒以外の触媒も利用できる。例えば、選択還元触媒としては、セラミックスや酸化チタン等を担体として用い、ゼオライトを活性触媒成分として担持した触媒を利用できる。
 また、以下の説明では、排気浄化装置10のうち、内燃機関22に近い側を「上流側」と呼び、内燃機関22に遠い側を「下流側」と呼ぶ。図1の場合、左側が上流側に相当し、右側が下流側に相当する。
 排気浄化装置10は、排気浄化装置10の各部を制御する制御部11と、内燃機関22から伸びる排気管19と、排気管19上にそれぞれ設けられた三元触媒12と、SCR触媒13と、第1混合比取得部14と、第2混合比取得部15と、温度取得部16とを備える。
 制御部11は、第1混合比取得部14、第2混合比取得部15、及び温度取得部16から取得された各取得値を表す信号を受信する。制御部11は、受信した各取得値を用いて後述する制御(図2)を実行し、内燃機関22の混合比を切り替えることによって、三元触媒12及びSCR触媒13の上流側における排気の混合比を切り替える。制御部11は、例えば、ECUにより実装される。排気管19は、内燃機関22からの排気が流通する主流路を形成する。内燃機関22からの排気は、排気管19内の主流路を通って、三元触媒12と、SCR触媒13とを通過して外気に放出される。
 三元触媒12は、主流路において最上流側、換言すればSCR触媒13よりも上流側に配置されている。三元触媒12は、排気中のアンモニア、NO、水素(H)を浄化することができるものの、混合比が量論近傍の所定範囲から外れた場合には、これらの浄化性能が低下するという特性を持つ。
 なお、排気浄化装置10は、三元触媒12より上流側に、内燃機関22からの排気(排出ガス)の酸素(O)濃度(すなわち混合比)を測定する図示しないセンサを備えることができる。制御部11は、そのセンサにより混合比を取得することができる。三元触媒12より上流側において混合比を取得するセンサは、例えば、排気管19に設けられた酸素センサやアンモニアセンサによって測定された測定信号を取得すればよい。
 また、排気浄化装置10は、三元触媒12の触媒内の温度(所謂、床温)を測定する図示しないセンサを備えることができる。そのセンサは、三元触媒12の床温に代えて、三元触媒12の出入口近傍における温度を測定してもよい。
 SCR触媒13は、主流路において最下流側、換言すれば三元触媒12よりも下流側に配置されている。SCR触媒13は、アンモニアを還元剤として、排気中のNOを浄化することができる。温度取得部16は、SCR触媒13の温度に関係する温度を測定するセンサであり、本実施形態では、SCR触媒13の触媒内の温度(所謂、床温)を測定する。なお、温度取得部16は、SCR触媒13の床温に代えて、SCR触媒13の周辺の部位、例えばSCR触媒13の出入口近傍における温度を測定してもよい。温度取得部16は本開示の「温度取得部」の一例である。
 第1混合比取得部14及び第2混合比取得部15は、SCR触媒13の出入口近傍における内燃機関22からの排気(排出ガス)の酸素(O)濃度(すなわち混合比)を取得する。すなわち、第1混合比取得部14は、SCR触媒13の入口近傍に設けられ、三元触媒12より下流側でかつSCR触媒13より上流側における、内燃機関22からの排気(排出ガス)の酸素(O)濃度(すなわち混合比)を取得する。第1混合比取得部14は、例えば、排気管19に設けられた酸素センサやアンモニアセンサによって測定された測定信号を取得することで実現できる。第2混合比取得部15は、SCR触媒13の下流側(例えば出口近傍)に設けられ、SCR触媒13より下流側における、内燃機関22からの排気(排出ガス)の酸素(O)濃度(すなわち混合比)を取得する。第2混合比取得部15も、例えば、排気管19に設けられた酸素センサやアンモニアセンサによって測定された測定信号を取得することで実現できる。第1混合比取得部14、及び第2混合比取得部15は本開示の「混合比取得部」の一例である。また、第1混合比取得部14は選択還元触媒の上流側における混合比を取得する場合の「混合比取得部」の一例であり、第2混合比取得部15は選択還元触媒の下流側における混合比を取得する場合の「混合比取得部」の一例である。
 内燃機関22からの排気(排出ガス)の酸素(O)濃度、すなわち排気管19における排気の混合比は、酸素(O)を含む空気の過不足を示す度合いと捉えることができる。本開示では、量論からの空気の過不足を示す度合いとして、量論に対する空気過剰の度合いを示す空気過剰率λを適用する。以降の説明では、第1混合比取得部14で取得する排気の混合比を空気過剰率λ1とし、第2混合比取得部15で取得する排気の混合比を空気過剰率λ2として説明する。
 図2は、制御部11における制御手順の一例を示すフローチャートである。図2の制御は、排気浄化装置10の状態を監視すると共に、SCR触媒13におけるアンモニアの吸着に関係する制御である。内燃機関22が始動されることにより図2に示す制御が実行される。なお、図2に示す制御は、内燃機関22の始動時の実行に限定されるものではない。例えば、定期的に実行してもよく、予め開始条件を定めておき、開始条件に適合する場合に、実行してもよい。なお、図2に示す制御手順は、アンモニアの燃焼により駆動力を得る内燃機関22の排気を浄化する排気浄化処理をコンピュータに実行させるための、図示しないコンピュータ可読媒体(記憶部)に記憶された本開示の「プログラム」の一例である。
 ステップS100において制御部11は、制御を開始するときの初期値を設定する。本実施形態では、初期値として、カウンタ値M、及び判別指標N(i=0,1,2)の値が設定される。カウンタ値Mは、本制御の繰り返し回数を示す。判別指標Nは、SCR触媒13の挙動を示す指標である。
 本実施形態では、判別指標Nにより示されるSCR触媒13の挙動として、「SCR触媒13の吸着」、「SCR触媒13の再生」及び「SCR触媒13の再生完了」の状態を適用する。判別指標Nは、アンモニアがSCR触媒13に吸着される「SCR触媒13の吸着」の状態を示し、「SCR触媒13の吸着」の状態の場合に「1」がセットされ、それ以外ではリセット(「0」がセット)される。判別指標Nは、吸着されたアンモニアが消費されてSCR触媒13の吸着容量が復帰される「SCR触媒13の再生」の状態の場合に「1」がセットされ、それ以外ではリセット(「0」がセット)される。判別指標Nは、SCR触媒13の再生が完了した「SCR触媒13の再生完了」の状態の場合に「1」がセットされ、それ以外ではリセット(「0」がセット)される。ステップS100では、少なくとも1回の「SCR触媒13の吸着」、及び「SCR触媒13の再生」の状態を得るために、初期値として、M=0、N=1、N=0、N=0が設定される。
 ステップS100で初期値が設定されると、制御部11は、ステップS102に処理を移行する。
 制御部11は、ステップS102で、温度取得部16からSCR触媒13の温度を取得し、取得したSCR触媒13の温度Tcが、SCR触媒13の設定温度Ta以上の温度か否かを判定する。設定温度Taには、SCR触媒13における触媒反応の開始温度が予め設定される。本実施形態では、SCR触媒13における触媒反応の開始温度の一例として、活性化温度を適用する。この「活性化温度」とは、SCR触媒13において、アンモニアによるNOの還元反応が活発化する下限温度を意味し、予め定められて制御部11内の図示しない記憶部に記憶されている。制御部11は、SCR触媒13の温度を監視しつつ、SCR触媒13の温度Tcが設定温度(活性化温度)Ta以上の温度になるまで否定判定を繰り返す。SCR触媒13の温度Tcが設定温度(活性化温度)Ta以上の温度になると、制御部11は、ステップS102で肯定し、ステップS104へ処理を移行する。
 本開示では、設定温度TaはSCR触媒13の反応開始温度の一例である活性化温度以上の値を設定するが、設定温度TaをSCR触媒13の活性化温度に限定するものではない。例えば、設定温度Taは、SCR触媒13の反応開始を判定可能な温度であればよく、内燃機関22の冷却水温、SCR触媒13の周辺の部位等(例えばSCR触媒13の出入口近傍)、及びモデルによる予測式に基づいて導出された温度に対応する値等の他の温度でもよい。他の温度をSCR触媒13の温度として用いる場合、取得した温度からSCR触媒13の床温等のSCR触媒13の温度を、周知の推定方法を用いて推定すればよい。
 なお、上述したステップS102では、SCR触媒13の温度Tcが、設定温度Ta以上の温度(Tc≧Ta)か否かを判定したが、排気浄化装置10に備えた触媒の温度の判定でもよい。例えば、制御部11は、三元触媒12の温度が予め定められた反応開始温度以上か否かを判定してもよい。この判定は、内燃機関22の始動直後に有効に機能する。すなわち、三元触媒12の温度が予め定められた反応開始温度以上の場合にステップS102で肯定判定し、ステップS104へ処理を進めてもよい。また、ステップS102では、三元触媒12の温度が予め定められた反応開始温度以上になった後に、SCR触媒13の温度が設定温度Ta以上の温度になったか否かを判定してもよい。さらに、三元触媒12及びSCR触媒13の各温度がそれぞれの活性化温度以上か否かを判定してもよい。
 ステップS104では、制御部11は、終了条件が成立したか否かを判定する。本実施形態では、カウンタ値Mが予め定められた最大値Mmax未満か否かを判別することで、終了条件が成立したか否かを判定する。制御部11は、カウンタ値Mが最大値Mmax未満の場合(M<Mmax)、ステップS104で否定判定し、本処理ルーチンを終了する。一方、カウンタ値Mが最大値Mmax以上の場合(M≧Mmax)、制御部11は、ステップS104で肯定判定し、ステップS106へ処理を移行する。なお、最大値Mmaxは、内燃機関22の稼働状況に応じて任意の値を定めることが可能である。
 例えば、Mmax=2に定めた終了条件では、制御部11は、内燃機関22の始動時の処理を終了した場合(M=2)、終了条件が成立したと判定する。この終了条件は、内燃機関22の始動時においてSCR触媒13に吸着されたアンモニアを除去したい場合に有効である。
 また、最大値Mmaxは3以上のカウンタ値を終了条件に定めることも可能である。例えば、最大値Mmaxを3又は4等の予め定めた小さいカウンタ値を定めることで、内燃機関22が始動直後に停止してから所定時間後に再始動された場合に有効である。具体的には、内燃機関22を始動してから、三元触媒12の温度が三元触媒12の活性化温度に至らず、またSCR触媒13に排気ガスが残留した状態で内燃機関22を停止した後、内燃機関22を再始動したときに、アンモニアを除去したい場合に有効である。すなわち、この終了条件は、内燃機関22の再始動時においてSCR触媒13に吸着されたアンモニアを除去したい場合に有効である。
 さらに、最大値Mmaxは上述したカウンタ値に限定されず、上述したカウンタ値より大きいカウンタ値を終了条件に定めることも可能である。この終了条件は、内燃機関22が継続的に通常の負荷状態より高い高負荷状態の場合に、SCR触媒13に吸着されたアンモニアを検出し除去する場合に有効である。高負荷状態の一例としては、内燃機関22を搭載した車両等の移動体の加速状態が挙げられる。なお、移動体の加速中に、処理を継続するために、制御部11は、移動体が加速中であることを検出し、移動体の加速中に、ステップS104で否定判定してもよい。
 制御部11は、ステップS106で、N≧1を判別することで、SCR触媒13の吸着の状態か否かを判定する。N≧1の場合は、ステップS106で肯定し、ステップS108へ処理を移行する。一方、N<1の場合は、ステップS106で否定し、ステップS108をスキップしてステップS110へ処理を移行する。
 ステップS108では、制御部11は、内燃機関22の混合比を量論から希薄へと変更する制御を行う。具体的には、制御部11は、内燃機関22の混合比を希薄へと変更する旨の指示信号を燃焼状態制御部21へと送信する。指示信号を受信した燃焼状態制御部21は、内燃機関22に対する空気及び燃料供給量を変更することで、内燃機関22の混合比を量論から希薄へと変更する。これにより、三元触媒12の上流側における排気の混合比も、量論から希薄に変更される。よって、第1混合比取得部14で取得される空気過剰率λ1は空気が過剰であるリーンを示す空気過剰率λ1(λ1>1)となる。
 ところで、三元触媒12の温度は、内燃機関22からの高温の排気(排出ガス)によって徐々に上昇し、三元触媒12において触媒反応が開始する温度までに流入した不完全燃焼成分は三元触媒12を通過してSCR触媒13に流入する。すなわち、三元触媒12を未浄化で通過したアンモニアは下流側のSCR触媒13に流入する。このSCR触媒13に流入されたアンモニアはSCR触媒13において吸着され、SCR触媒13からのアンモニアの流出が防止される。従って、SCR触媒13から流出するアンモニアの流出量は、SCR触媒13の上流側の空気過剰率λ1、及びSCR触媒13の挙動により変化する。
 制御部11は、SCR触媒13の上流側の空気過剰率λ1と下流側の空気過剰率λ2との関係からSCR触媒13においてアンモニアが適切に処理されるように内燃機関22の混合比を調整する。詳細には、ステップS110において制御部11は、空気過剰率λ1、λ2を取得し、空気過剰率λ1、λ2の両者の大小関係を判定する。すなわち、ステップS110では、λ1<λ2、λ1>λ2、及びλ1=λ2の何れの大小関係であるかを判定する。
 SCR触媒13に流入されたアンモニアがSCR触媒13に吸着される状態である「SCR触媒13の吸着」の状態では、SCR触媒13の前後で空気(酸素)とアンモニア(水素)との比が変化し、SCR触媒13の前後で空気過剰率λの差が生じる。具体的には、SCR触媒13の前後の空気過剰率λは、λ2>λ1の関係になる。
 制御部11は、ステップS110で、空気過剰率λ1より空気過剰率λ2が大きい(λ2>λ1)と判定した場合、「SCR触媒13の吸着」の状態として、ステップS112へ処理を移行する。ステップS112では、制御部11は、空気過剰率λ1が空気過剰になるように(λ1≧1)制御する。具体的には、制御部11は、内燃機関22の混合比を希薄へと変更する旨の指示信号を燃焼状態制御部21へと送信する。指示信号を受信した燃焼状態制御部21は、内燃機関22に対する空気及び燃料供給量を変更することで、空気過剰率λ1が空気過剰になるように(λ1≧1)内燃機関22の混合比を量論から希薄へと変更する。そして、ステップS114で、判別指標N=1に設定し、ステップS124へ処理を移行する。ステップS112の処理は本開示の「第1制御」による処理の一例である。
 ステップS112の処理において空気過剰率λ1がλ1=1のときは触媒による酸化還元反応により不完全燃焼成分がほぼゼロまで減少する。空気過剰率λ1がλ1>1のときは未浄化の窒素酸化物が残存するが、アンモニアと水素とは酸化される。なお、空気過剰率λ1を制御する時期は、SCR触媒13に流入するアンモニアを少なくするために、空気過剰率λ1がλ1<1の期間がゼロ、又は短いことが望ましい。
 そして、SCR触媒13に流入する不完全燃焼成分がほぼゼロまで減少してアンモニアが無くなることにより、SCR触媒13の前後の空気過剰率λの差は無くなりλ2=λ1となる。λ2=λ1であることは、三元触媒12によるアンモニア浄化が十分にできていることになる。また、SCR触媒13に吸着されたアンモニアは脱離温度まで吸着したまま保持される。
 なお、上記では、空気過剰率λ1がλ1=1のときに酸化還元反応により不完全燃焼成分がほぼゼロまで減少するとしたが、本開示は酸化還元反応により不完全燃焼成分がほぼゼロまで減少することに限定されるものではない。例えば、空気過剰率λ1と空気過剰率λ2との差分は、ゼロを含む所定範囲であってもよい。この所定範囲は、浄化された排気(排気ガス)として定められる不完全燃焼成分の量や率から定めることができる。
 一方、空気過剰率λ1の値が1より大きい(λ1>1)場合は排気中(排気ガス中)に酸素が多く含まれる。よって、三元触媒12によるアンモニア及び水素の酸化は維持されるが、窒素酸化物の一部は未浄化で残存し、酸素を含む窒素酸化物がSCR触媒13に流入する。SCR触媒13では、窒素酸化物とSCR触媒13に吸着したアンモニアが次に示す(1)式から(3)式のSCR反応に基づいて窒素と水に変換される。この反応中にはSCR触媒13に流入するガス組成にアンモニアが加わることになるので、空気過剰率λはλ1>λ2の関係になる。
 4NO+4NH+O → 4N+6HO   (1)
 NO+NO+2NH → 2N+3HO   (2)
 2NO+2NH → N+NO+3HO  (3)
 制御部11は、ステップS110で、空気過剰率λ1より空気過剰率λ2が小さい(λ1>λ2)と判定した場合、「SCR触媒13の再生」の状態として、ステップS116へ処理を移行する。ステップS116では、制御部11は、SCR触媒13において酸素及び窒素酸化物の不足が生じないように、空気過剰率λ2が空気過剰になるように(λ2≧1)制御する。具体的には、制御部11は、指示信号を燃焼状態制御部21へと送信し、空気過剰率λ2が空気過剰になるように(λ2≧1)内燃機関22の混合比を量論から希薄へと変更する。そして、ステップS118で、判別指標N1=1に設定し、ステップS124へ処理を移行する。ステップS116の処理は本開示の「第2制御」による処理の一例である。
 なお、SCR触媒13において、吸着されたアンモニアが消費されるとSCR触媒13の吸着容量がSCR触媒13における吸着前の容量に戻るので、上述した処理における状態は、「SCR触媒13の再生」の状態を示している。
 また、選択還元触媒である吸着触媒として上述したSCR触媒13ではλ2>1が望ましいが、吸着触媒に貴金属担持ゼオライトを用いる場合はλ2=1に設定することが望ましい。
 上述したように、三元触媒12の触媒反応によって三元触媒12からのアンモニアの流出が減少し、SCR触媒13の再生によってSCR触媒13に流入するアンモニアが減少し、最終的には無くなることにより、SCR触媒13の上流側及び下流側の空気過剰率λの差が減少し、最終的には無くなる(λ2=λ1)。すなわち、アンモニアの浄化が十分に行われたSCR触媒13内のアンモニアが無くなる状態では、SCR触媒13に流入する排気(排気ガス)と流出する排気(排気ガス)の組成は同じになり、λ1=λ2となる。これによって、空気過剰率λがλ1=λ2となる状態は、SCR触媒13の再生完了の状態と判断できる。
 なお、上記では、SCR触媒13に流入するアンモニアが減少することで上流側及び下流側の空気過剰率λの差が無くなる(λ2=λ1)場合を説明したが、上流側の空気過剰率λ1と下流側の空気過剰率λ2とが一致することに限定されない。例えば、予め定めた所定範囲内の場合に上流側の空気過剰率λ1と下流側の空気過剰率λ2とが一致(λ2=λ1)するとしてもよい。
 制御部11は、ステップS110で、空気過剰率λ1と空気過剰率λ2とが一致する(λ1=λ2)と判定した場合、ステップS120へ処理を移行する。ステップS120では、制御部11は、SCR触媒13の再生完了の状態に対応して、空気過剰率λ1が空気の過不足がない状態を示す所定値になるように(λ1=1)制御する。具体的には、制御部11は、指示信号を燃焼状態制御部21へと送信し、空気過剰率λ1が所定値になるように(λ1=1)、内燃機関22の混合比を変更する。そして、ステップS122で、「SCR触媒13の吸着」及び「SCR触媒13の再生」の状態を経由した場合には(N・N>0)、「SCR触媒13の再生完了」の状態として、判別指標N=1に設定してステップS124へ処理を移行し、それ以外の場合はそのまま(判別指標Nを維持して)ステップS124へ処理を移行する。ステップS120の処理は本開示の「第3制御」による処理の一例である。
 なお、上記ステップS120では、SCR触媒13の吸着、すなわちアンモニアが吸着された結果、空気過剰率λ1と空気過剰率λ2とが一致する場合の処理と、SCR触媒13の再生、すなわちSCR触媒が再生された結果、空気過剰率λ1と空気過剰率λ2とが一致する場合の処理とを含む
 ステップS124では、制御部11は、N・N・N>0か否かを判別することで、「SCR触媒13の吸着」、「SCR触媒13の再生」及び「SCR触媒13の再生完了」の各状態による制御が完了したか否かを判定する。すなわち、内燃機関22の始動時にSCR触媒13について吸着、再生及び再生完了による一連の制御を1回完了したか否かを判定する。
 SCR触媒13について吸着、再生及び再生完了による一連の制御が未完である場合(N・N・N=0)、制御部11はステップS124で否定判定し、ステップS102へ処理を戻す。一方、ステップS124で肯定判定された場合(N・N・N>0)、ステップS126で、判別指標Nをリセット(N=0、N=0、N=0)し、次のステップS128で、カウンタ値Mをインクリメント(M=M+1)した後にステップS102へ処理を戻す。
 なお、上述した制御は、三元触媒12の温度が反応開始温度以上に上昇した後に、SCR触媒13の温度が反応開始温度に到達する場合に実行されることが好ましい。しかし、三元触媒12の温度が活性化温度の到達前に、SCR触媒13の温度が活性化温度に到達したときにも適用可能である。この場合、SCR触媒13に流入したアンモニアと吸着したアンモニアとの両方が酸化され、SCR触媒13が再生される。この場合には空気過剰率λは、λ2>λ1の状態からλ1>λ2の状態に変化する。
 上述した排気浄化装置10は、内燃機関22の始動時、例えば始動から暖気過程において有効に作用する。また、本開示の排気浄化装置は、内燃機関22の始動時に限定されず、内燃機関22の動作中においても有効に作用する。例えば、内燃機関22の負荷が急激に変化する場合等において、急激に変化する内燃機関22の負荷に対して燃料-空気混合比の制御が追随せず、三元触媒12から未浄化のアンモニアが流出する場合でも上述した制御によって、SCR触媒13へのアンモニアの吸着を判定し、再生することが可能である。
 なお、排気浄化装置10に発生する異常を検出することは有効であり、また、発生した異常はユーザに報知することが有効である。上述したように、空気過剰率λ1と空気過剰率λ2とが一致する(λ1=λ2)ことにより三元触媒12によるアンモニア浄化の開始時期を判断できるが、継続的に差が発生している場合(λ1<>λ2)、触媒システムに異常が発生している虞がある。この触媒システムの異常は、触媒システムの異常検知のための継続時間を予め定めておき、その継続時間を超えた場合に触媒システムの異常として検出することが可能である。そして、検出された異常を報知すればよい。すなわち、制御部11は、第1制御または第2制御を開始してから所定時間の経過後に空気過剰率λ1と空気過剰率λ2との差分が所定範囲外の場合に、異常を示す情報を報知する制御を行えばよい。
 例えば、図7に示すように、警告情報を報知する報知部30を備え、制御部11が報知部30を制御すればよい。警告情報には、例えば、触媒システムの異常を示す情報が適用される。触媒システムの異常を示す情報は、空気過剰率の差(λ1<>λ2)が継続的に発生して触媒システムの異常が発生した虞があることを示す情報である。上述した制御では、例えば、ステップS110の判定において、空気過剰率に差が発生(λ1<>λ2)している時間が継続時間を超えたか否かを判定し、継続時間を超えた場合に、触媒システムの異常として警告情報を報知する制御を追加すればよい。この報知は、排気浄化装置10の診断に利用可能である。継続時間は、制御を開始してから空気過剰率に差が発生している時間を計測する。また、継続時間は制御を開始してからに限定されず、空気過剰率に差が発生した時点から計測してもよい。
 図3から図6は、内燃機関22の始動後におけるSCR触媒13に関係する各部位の状態の変化について示す図である。
 図3は、内燃機関22の始動後におけるSCR触媒13の温度及びSCR触媒13の上流側及び下流側の空気過剰率の経時的変化を示す図である。図3では、空気過剰率として、内燃機関22からの排気(排気ガス)のうち、SCR触媒13の出入口付近の空気過剰率の経時的変化が示されている。図3では、SCR触媒13の温度の経時的変化を実線で示している。また、空気過剰率の経時的変化については、SCR触媒13の上流側である位置B(図1)における空気過剰率λ1の経時的変化を一点鎖線で示し、下流側である位置C(図1)における空気過剰率λ2の経時的変化を二点鎖線で示している。
 図4から図6は、排気管19の異なる位置における内燃機関22からの排気(排気ガス)のガス濃度の経時的変化を示す図である。詳細には、図4は、SCR触媒13へと流入する排気(排気ガス)のガス濃度として、アンモニア濃度(NH)、NO濃度(NO)、及び水素濃度(H)の経時的変化を示す。図4は、内燃機関22の出口付近である三元触媒12の上流側の位置A(図1)における排気(排気ガス)のガス濃度の経時的変化を示す図である。図5は、SCR触媒13の入口付近であるSCR触媒13の上流側の位置B(図1)におけるガス濃度の経時的変化を示す図である。図6は、SCR触媒13の出口付近であるSCR触媒13の下流側の位置C(図1)におけるガス濃度の経時的変化を示す図である。図4から図6では、アンモニア濃度(NH)の経時的変化を実線で示し、NO濃度(NO)の経時的変化を一点鎖線で示し、水素濃度(H)の経時的変化を二点鎖線で示している。なお、図6では、位置BにおけるNO濃度(NO)の経時的変化を点線で示した。
 次に、図3から図6を用いて、図2に示す制御を通じた各部位での状態の変化について経時的に説明する。
 まず、内燃機関22からの排気(排気ガス)には水蒸気、窒素のほか未燃のアンモニア、水素、窒素酸化物など不完全燃焼成分が含まれている。これらの中でアンモニアは低濃度でも刺激臭があり、濃度が高い場合は人体に障害を与える危険性が高いので、外部への流出抑制することが要求される。本開示の排気浄化装置10は、内燃機関22への空気流量及び燃料供給量を調節して排気ガス中の少なくともアンモニアの排出を低減する。
 内燃機関22が始動されると、内燃機関22からの高温の排気(排出ガス)によって三元触媒12の温度は徐々に上昇し、三元触媒12において触媒反応が開始する温度までに流入した不完全燃焼成分は三元触媒12を通過してSCR触媒13に流入する。この流入された排気(排出ガス)によってSCR触媒13の温度は徐々に上昇する。
 図4に示すように、内燃機関22が始動されると、内燃機関22における未燃アンモニア量が多いことに起因して、内燃機関22の出口付近(位置A)ではアンモニア濃度(NH)が急増する。その後、内燃機関22における燃焼が安定することで、アンモニア濃度(NH)は徐々に低下する。
 図5及び図6に示すように、三元触媒12を通過したアンモニアはSCR触媒13に吸着されることで、ガス組成のバランスが変化し、SCR触媒13の上流側の空気過剰率λ1より下流側の空気過剰率λ2が大きくなる(λ1<λ2)。また、三元触媒12の温度上昇に伴ってアンモニアが酸化され、SCR触媒13に流入するアンモニアが無くなるため、SCR触媒13の上流側及び下流側の空気過剰率λ1、λ2は空気の過不足がない状態(λ=1)に近づく。さらに、ここでは混合比を量論に制御しているため、図5及び図6に示すように、SCR触媒13の温度が設定温度(活性化温度)Taに到達するまでに、排気(排出ガス)中のアンモニア濃度(NH)、NO濃度(NO)、及び水素濃度(H)が略ゼロになる(λ2=λ1)。このようにλ2=λ1であることは、三元触媒12によるアンモニアの浄化が行われたことを示す。なお、三元触媒12において触媒反応が不十分な不完全燃焼成分は三元触媒12を通過してSCR触媒13に流入するが、アンモニアはSCR触媒13に吸着される。よって、アンモニアなどの排気中の有害物質を浄化できる。
 一方、SCR触媒13の温度が設定温度(活性化温度)Taに到達した時に(時刻t1)、図3に示すように、SCR触媒13の上流側の空気過剰率λ1を量論から希薄に制御する。これによって、窒素酸化物(NO)がSCR触媒13に流入するので、SCR触媒13におけるSCR反応によって、SCR触媒13に吸着されたアンモニアは上述したように窒素と水に変換される。SCR反応の進行中は、SCR触媒13に流入する排気(排気ガス)のガス組成にアンモニアが加わることになり、空気過剰率λ1、λ2は変化し、空気過剰率λ1と、空気過剰率λ2との差分が生じる。すなわち、SCR触媒13におけるSCR反応が進行することで、図3に示すように、SCR触媒13の上流側及び下流側の空気過剰率が逆転し、SCR触媒13の上流側の空気過剰率λ1より下流側の空気過剰率λ2が小さくなる(λ1>λ2)。
 SCR触媒13における空気過剰率λがλ1>λ2の場合、SCR触媒13において酸素及び窒素酸化物の不足が生じないように、空気過剰率λ2が空気過剰にされる(λ2≧1)。そして、SCR触媒13において、吸着されたアンモニアが消費され、SCR触媒13の吸着容量がSCR触媒13における吸着前の容量に戻る状態まで、SCR触媒13の再生が進行する。
 すなわち、SCR触媒13の下流側で空気過剰率λ2が空気過剰(混合比が量論から希薄)に変更されると(λ2≧1)、三元触媒12によるNOの還元が十分に進行せず、三元触媒12に流入した排気中のNOは、図5に示すように、三元触媒12から排出され、SCR触媒13に流入される。このとき、SCR触媒13の温度が設定温度(活性化温度)Ta以上であるため、SCR触媒13においてNOの還元反応が活発化する。このため、SCR触媒13では、蓄積されているアンモニアを還元剤として、排気中のNOを還元する還元作用が進行する。このSCR触媒13での還元作用によって、図6に示すように、SCR触媒13におけるNOは減少する。
 このように、SCR触媒13が設定温度(活性化温度)Ta以上になると、空気過剰率λ2が空気過剰になるように三元触媒12及びSCR触媒13の上流側における排気の混合比が量論から希薄へと変更される。これによって、SCR触媒13の再生の状態となり、SCR触媒13で吸着されているアンモニアと排気中のNOとを還元反応させることができ、アンモニアの排出を抑制できると共に、SCR触媒13に吸着されているアンモニアを除去することができる。
 上述したように、三元触媒12の触媒反応、及びSCR触媒13の吸着と再生とによってSCR触媒13に流入するアンモニアが減少することで、SCR触媒13の上流側及び下流側の空気過剰率λの差が減少し、最終的には無くなる(λ2=λ1)。このλ1=λ2となる状態であるSCR触媒13の再生完了の状態では(時刻t2)、内燃機関22における燃焼が安定しているため(図3)、内燃機関22からのアンモニア濃度はほぼ一定である。また、三元触媒12におけるアンモニアの酸化反応と、NOの還元反応とが進行し、三元触媒12に流入した排気中のアンモニアとNOとは、三元触媒12においてそれぞれ浄化され、排出されない。この結果、SCR触媒13にアンモニアが流入しないため、SCR触媒13における空気過剰率は、SCR触媒13の上流側及び下流側で変化しない(λ1=λ2)。そして、SCR触媒13の上流側における空気過剰率λ1が空気の過不足がない状態を示す所定値(λ1=1)になるように(混合比が希薄から量論に)変更される。
 このように、SCR触媒13の上流側における空気過剰率λ1が空気の過不足がない状態を示す所定値(λ1=1)に変更された後は、三元触媒12で排気中のアンモニアを酸化反応させると共に、三元触媒12で排気中のNOを還元反応させることができ、アンモニアの排出を抑制できる(図6)。
 なお、内燃機関22が停止され、三元触媒12及びSCR触媒13が例えば常温のように、活性化温度未満の温度に戻った後、再び内燃機関22が始動された後においても、SCR触媒13に蓄積されたアンモニアは除去されているため、上述した処理を繰り返し実施することができる。
 以上のように、上記実施形態の排気浄化装置10では、内燃機関22からの排気を浄化する場合に、SCR触媒13の上流側及び下流側の空気過剰率の大小関係からSCR触媒13におけるSCR触媒13の吸着、及びSCR触媒13の再生の状態を判定できる。よって、判定した状態に応じて混合比を制御することによって、内燃機関22からの排気の浄化を、効率的かつ確実に実行することができる。また、SCR触媒13の上流側及び下流側の空気過剰率の大小関係から、SCR触媒13の再生完了の状態も判定することで、SCR触媒13の吸着及びSCR触媒13の再生の状態判定からさらに、効率的かつ確実に排気の浄化を実行できる。
 また、上記実施形態の排気浄化装置10において、三元触媒12は主流路の上流側に配置されるため、三元触媒12の温度を上昇しやすくし、三元触媒12が設定温度(活性化温度)Taに到達するまでの時間を短縮できる。また、SCR触媒13におけるアンモニアの飽和吸着量は、触媒の温度が上昇するにつれて減少するという特性がある。本実施形態の排気浄化装置10によれば、SCR触媒13は主流路の下流側に配置されるため、SCR触媒13の温度を上昇しづらくし、SCR触媒13におけるアンモニアの飽和吸着量の減少を抑制できる。
<本実施形態の変形例>
 本発明は上記の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば次のような変形も可能である。
[変形例1]
 上記実施形態では、エンジンシステムの構成の一例を示した。しかし、エンジンシステムの構成は種々の変形が可能である。例えば、エンジンシステムは、図示しない他の装置(例えば、三元触媒やSCR触媒の状態を監視する装置等)を備えていてもよい。
[変形例2]
 排気浄化装置には、例えば、NO吸蔵還元触媒(NSR触媒:NOx Storage Reduction catalyst)、酸化触媒(DOC触媒:Diesel Oxidation Catalyst)、DPF(Diesel particulate filter)等、機能が異なる様々な触媒をさらに配置してもよい。これら各種触媒の配置は、任意に決定できる。
[変形例3]
 上記実施形態では、制御部による制御の一例を示した。しかし、制御部による制御は種々の変形が可能である。例えば、ステップS100からステップS128のうちの一部の手順は省略してもよく、他のステップを追加して実行してもよい。
 以上、実施形態、変形例に基づき本開示について説明してきたが、本開示の実施の形態は、本開示の理解を容易にするためのものであり、本開示を限定するものではない。本開示は、その趣旨並びに特許請求の範囲を逸脱することなく、変更、改良され得ると共に、本開示にはその等価物が含まれる。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することができる。
 1  エンジンシステム
 10  排気浄化装置
 11  制御部
 12  三元触媒
 13  SCR触媒
 14  第1混合比取得部
 15  第2混合比取得部
 16  温度取得部
 19  排気管
 20  燃焼装置
 21  燃焼状態制御部
 22  内燃機関
 λ、λ1、λ2  空気過剰率
 A  位置
 B  位置
 C  位置
 M  カウンタ値
 Mmax  最大値Ni(N、N、N)  判別指標
 Ta  設定温度

Claims (6)

  1.  アンモニアの燃焼により駆動力を得る内燃機関からの排気が流通する主流路に設けられた、酸化作用及び還元作用を有する酸化還元触媒と、
     前記主流路の前記酸化還元触媒より下流側に設けられ、かつ前記酸化還元触媒を通過したアンモニアを吸着する選択還元触媒と、
     前記選択還元触媒の温度に関係する部位の温度を取得する温度取得部と、
     前記選択還元触媒の上流側及び下流側におけるアンモニアと酸素との関係を示す排気の混合比を取得する混合比取得部と、
     前記温度取得部により取得された温度が前記選択還元触媒の活性化を示す所定の温度に対応する温度以上の場合に、前記混合比取得部により取得された前記排気の混合比に基づいて、前記選択還元触媒の上流側における排気の混合比より前記選択還元触媒の下流側における排気の混合比が大きい場合は、前記酸化還元触媒の上流側における排気の混合比を変更させて前記選択還元触媒の上流側における排気の混合比を量論から希薄に変更させる第1制御を行い、かつ前記選択還元触媒の上流側における排気の混合比より前記選択還元触媒の下流側における排気の混合比が小さい場合は、前記選択還元触媒の下流側における排気の混合比が量論から希薄になるように前記酸化還元触媒の上流側における排気の混合比を変更させる第2制御を行う制御部と、
     を備える、排気浄化装置。
  2.  前記制御部は、
     前記選択還元触媒の上流側における排気の混合比と前記選択還元触媒の下流側における排気の混合比との差分が所定範囲内になった場合に、前記選択還元触媒の上流側における排気の混合比を希薄から量論に変更させる第3制御を行う、
     請求項1に記載の排気浄化装置。
  3.  前記制御部は、
     前記第1制御または前記第2制御を開始してから所定時間の経過後に前記差分が所定範囲外の場合に、異常を示す情報を報知する制御を行う、
     請求項2に記載の排気浄化装置。
  4.  前記制御部は、
     前記内燃機関の始動時に、前記第1制御、前記第2制御、及び前記第3制御を少なくとも1回を行う、
     請求項2に記載の排気浄化装置。
  5.  酸化還元触媒と選択還元触媒とを用いて、アンモニアの燃焼により駆動力を得る内燃機関の排気を浄化する排気浄化方法であって、
     前記選択還元触媒の温度に関係する部位の温度を取得する工程と、
     前記選択還元触媒の上流側及び下流側におけるアンモニアと酸素との関係を示す排気の混合比を取得する工程と、
     取得された温度が前記選択還元触媒の活性化を示す所定の温度に対応する温度以上の場合に、取得された前記排気の混合比に基づいて、前記選択還元触媒の上流側における排気の混合比より前記選択還元触媒の下流側における排気の混合比が大きい場合は、前記酸化還元触媒の上流側における排気の混合比を変更させて前記選択還元触媒の上流側における排気の混合比を量論から希薄に変更させる第1制御を行い、かつ前記選択還元触媒の上流側における排気の混合比より前記選択還元触媒の下流側における排気の混合比が小さい場合は、前記選択還元触媒の下流側における排気の混合比が量論から希薄になるように前記酸化還元触媒の上流側における排気の混合比を変更させる第2制御を行う工程と、
     を含む排気浄化方法。
  6.  コンピュータ可読媒体に記憶され、酸化還元触媒と選択還元触媒とを用いて、アンモニアの燃焼により駆動力を得る内燃機関の排気を浄化する排気浄化処理をコンピュータに実行させるためのプログラムであって、
     前記選択還元触媒の温度に関係する部位の温度を取得し、
     前記選択還元触媒の上流側及び下流側におけるアンモニアと酸素との関係を示す排気の混合比を取得し、
     取得された温度が前記選択還元触媒の活性化を示す所定の温度に対応する温度以上の場合に、取得された前記排気の混合比に基づいて、前記選択還元触媒の上流側における排気の混合比より前記選択還元触媒の下流側における排気の混合比が大きい場合は、前記酸化還元触媒の上流側における排気の混合比を変更させて前記選択還元触媒の上流側における排気の混合比を量論から希薄に変更させる第1制御を行い、かつ前記選択還元触媒の上流側における排気の混合比より前記選択還元触媒の下流側における排気の混合比が小さい場合は、前記選択還元触媒の下流側における排気の混合比が量論から希薄になるように前記酸化還元触媒の上流側における排気の混合比を変更させる第2制御を行う、
     ことを含む排気浄化処理を前記コンピュータに実行させるためのプログラム。
PCT/JP2022/006255 2021-03-05 2022-02-16 排気浄化装置、排気浄化方法、及びプログラム WO2022185926A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280018302.4A CN116981835A (zh) 2021-03-05 2022-02-16 排气净化装置、排气净化方法和程序
AU2022231500A AU2022231500A1 (en) 2021-03-05 2022-02-16 Exhaust gas purification apparatus, exhaust gas purification method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-035802 2021-03-05
JP2021035802A JP7444807B2 (ja) 2021-03-05 2021-03-05 排気浄化装置、排気浄化方法、及びプログラム

Publications (1)

Publication Number Publication Date
WO2022185926A1 true WO2022185926A1 (ja) 2022-09-09

Family

ID=83154056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006255 WO2022185926A1 (ja) 2021-03-05 2022-02-16 排気浄化装置、排気浄化方法、及びプログラム

Country Status (4)

Country Link
JP (1) JP7444807B2 (ja)
CN (1) CN116981835A (ja)
AU (1) AU2022231500A1 (ja)
WO (1) WO2022185926A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014211155A (ja) * 2013-04-19 2014-11-13 株式会社豊田中央研究所 内燃機関
JP2019167822A (ja) * 2018-03-21 2019-10-03 株式会社豊田中央研究所 アンモニアの燃焼により駆動力を得る内燃機関の排気浄化装置及び方法
JP2019167823A (ja) * 2018-03-21 2019-10-03 株式会社豊田中央研究所 アンモニアの燃焼により駆動力を得る内燃機関の排気浄化装置及び方法
JP2020090895A (ja) * 2018-12-03 2020-06-11 株式会社豊田中央研究所 排気浄化装置および内燃機関システム
JP2020090894A (ja) * 2018-12-03 2020-06-11 株式会社豊田中央研究所 排気浄化装置および内燃機関システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014211155A (ja) * 2013-04-19 2014-11-13 株式会社豊田中央研究所 内燃機関
JP2019167822A (ja) * 2018-03-21 2019-10-03 株式会社豊田中央研究所 アンモニアの燃焼により駆動力を得る内燃機関の排気浄化装置及び方法
JP2019167823A (ja) * 2018-03-21 2019-10-03 株式会社豊田中央研究所 アンモニアの燃焼により駆動力を得る内燃機関の排気浄化装置及び方法
JP2020090895A (ja) * 2018-12-03 2020-06-11 株式会社豊田中央研究所 排気浄化装置および内燃機関システム
JP2020090894A (ja) * 2018-12-03 2020-06-11 株式会社豊田中央研究所 排気浄化装置および内燃機関システム

Also Published As

Publication number Publication date
AU2022231500A1 (en) 2023-07-20
JP7444807B2 (ja) 2024-03-06
JP2022135774A (ja) 2022-09-15
CN116981835A (zh) 2023-10-31

Similar Documents

Publication Publication Date Title
WO2010079621A1 (ja) 触媒通過成分判定装置および内燃機関の排気浄化装置
JP2010112345A (ja) 排気浄化装置
WO2014087820A1 (ja) 異常診断装置
JP2006207512A (ja) 内燃機関の排気浄化装置及び排気浄化方法
KR20180068808A (ko) 배기가스 정화장치 및 제어 방법
JP2020045885A (ja) 触媒劣化診断システムおよび触媒劣化診断方法
KR20200102150A (ko) 자동차의 배기가스 정화장치 및 그 제어방법
JP2017015061A (ja) 排気浄化装置の劣化診断装置
JP2004116332A (ja) 内燃機関の排気浄化装置
JP6102908B2 (ja) 排気浄化装置の劣化診断装置
JP7035676B2 (ja) アンモニアの燃焼により駆動力を得る内燃機関の排気浄化装置及び方法
JP2010209783A (ja) 排気ガス浄化装置
WO2019172356A1 (ja) 排気浄化装置、車両および排気浄化制御装置
JP2007239698A (ja) 内燃機関の空燃比制御装置
JP2009264320A (ja) 内燃機関の排気ガス浄化装置
KR102440575B1 (ko) 배기가스 정화장치 및 그 제어 방법
JP6742060B2 (ja) アンモニアの燃焼により駆動力を得る内燃機関の排気浄化装置及び方法
WO2022185926A1 (ja) 排気浄化装置、排気浄化方法、及びプログラム
JP6988648B2 (ja) 内燃機関の排気浄化装置
JP2020106002A (ja) 診断装置及び内燃機関の排気浄化装置
JP4273797B2 (ja) 内燃機関の排気浄化装置
JP2018105146A (ja) 排気浄化装置の劣化診断装置
US10519840B2 (en) Abnormality diagnosis system for exhaust gas purification apparatus
US11193408B2 (en) Reactivation control apparatus and method
KR20200134576A (ko) 배기 시스템 및 이의 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22762982

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022231500

Country of ref document: AU

Date of ref document: 20220216

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280018302.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22762982

Country of ref document: EP

Kind code of ref document: A1