WO2022185891A1 - Separation membrane - Google Patents

Separation membrane Download PDF

Info

Publication number
WO2022185891A1
WO2022185891A1 PCT/JP2022/005717 JP2022005717W WO2022185891A1 WO 2022185891 A1 WO2022185891 A1 WO 2022185891A1 JP 2022005717 W JP2022005717 W JP 2022005717W WO 2022185891 A1 WO2022185891 A1 WO 2022185891A1
Authority
WO
WIPO (PCT)
Prior art keywords
separation membrane
group
ionic liquid
separation
membrane according
Prior art date
Application number
PCT/JP2022/005717
Other languages
French (fr)
Japanese (ja)
Inventor
永恵 清水
賢輔 谷
太幹 岩崎
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2022185891A1 publication Critical patent/WO2022185891A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to separation membranes.
  • a membrane separation method has been developed as a method for separating acidic gases from mixed gases containing acidic gases such as carbon dioxide.
  • the membrane separation method can efficiently separate the acid gas while suppressing the operating cost, compared to the absorption method in which the acid gas contained in the mixed gas is absorbed by an absorbent and separated.
  • Separation membranes used in the membrane separation method include composite membranes in which a separation functional layer is formed on a porous support.
  • Patent Literature 1 discloses a composite membrane having a structure containing an ionic liquid as a separation functional layer.
  • an object of the present invention is to provide a separation membrane suitable for improving the permeation rate of acidic gases.
  • the present inventors have newly found that the molecular weight of the ionic liquid and the type of functional group contained in the ionic liquid, particularly the anionic functional group, affect the permeation rate of acidic gases in the separation membrane. Found it. Based on this knowledge, the present inventors further studied and found that the permeation rate of acidic gases can be improved by appropriately setting the molecular weight of the ionic liquid and the functional group of the anion, and completed the present invention. came to.
  • the present invention A separation membrane containing an ionic liquid,
  • the ionic liquid has a molecular weight of 220 or more,
  • a separation membrane is provided in which the anion contained in the ionic liquid has a cyano group.
  • a separation membrane suitable for improving the permeation rate of acidic gases can be provided.
  • FIG. 1 is a cross-sectional view of a separation membrane according to one embodiment of the present invention
  • FIG. 1 is a schematic cross-sectional view of a membrane separation device equipped with the separation membrane of the present invention
  • FIG. 3 is a perspective view schematically showing a modification of the membrane separation device provided with the separation membrane of the present invention.
  • the separation membrane 10 of this embodiment includes a separation functional layer 1 containing an ionic liquid L, and further includes an intermediate layer 2 and a porous support 3, for example.
  • a porous support 3 supports the separation functional layer 1 .
  • the intermediate layer 2 is arranged between the separation functional layer 1 and the porous support 3 and is in direct contact with the separation functional layer 1 and the porous support 3 respectively.
  • the separation functional layer 1 is a layer that preferentially permeates the acid gas contained in the mixed gas.
  • the separation functional layer 1 contains the ionic liquid L as described above.
  • An ionic liquid is a salt (ionic compound) that is liquid at 25°C.
  • the molecular weight of the ionic liquid L is 220 or more, preferably 225 or more.
  • the upper limit of the molecular weight of the ionic liquid L is not particularly limited, and is 250, for example.
  • the ionic liquid L contains cations and anions.
  • the anion contained in the ionic liquid L has a cyano group.
  • the number of cyano groups contained in the anion is not particularly limited, and is, for example, 1-4, preferably 3-4.
  • the anion having a cyano group is not particularly limited, and includes, for example, at least one selected from the group consisting of tetracyanoborate and tricyanometanide.
  • the molecular weight of the anion is not particularly limited as long as the molecular weight of the ionic liquid L is 220 or more.
  • the upper limit of the molecular weight of the anion is not particularly limited, and may be 200, 150, or 130, for example.
  • the cations contained in the ionic liquid L are not particularly limited as long as the ionic liquid L has a molecular weight of 220 or more, and include imidazolium ions, pyridinium ions, ammonium ions, phosphonium ions, and the like.
  • the ionic liquid L preferably contains imidazolium ions as cations.
  • the above ions exemplified as cations include, for example, substituents having 1 or more carbon atoms.
  • substituents having 1 or more carbon atoms include alkyl groups having 1 to 20 carbon atoms, cycloalkyl groups having 3 to 14 carbon atoms, aryl groups having 6 to 20 carbon atoms, and the like. , a cyano group, an amino group, an ether group, or the like (for example, a hydroxyalkyl group having 1 to 20 carbon atoms, etc.).
  • Ether groups include, for example, polyalkylene glycol groups such as polyethylene glycol.
  • alkyl groups having 1 to 20 carbon atoms include methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n- nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, n- nonadecyl group, n-eicosadecyl group, i-propyl group, sec-butyl group, i-butyl group, 1-methylbutyl group, 1-ethylpropyl group, 2-methylbutyl
  • the above alkyl group may be substituted with a cycloalkyl group.
  • the number of carbon atoms in the alkyl group substituted by the cycloalkyl group is, for example, 1 or more and 20 or less.
  • Alkyl groups substituted with cycloalkyl groups include cyclopropylmethyl groups, cyclobutylmethyl groups, cyclohexylmethyl groups, cyclohexylpropyl groups, and the like.
  • Cycloalkyl groups having 3 to 14 carbon atoms include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclododecyl, norbornyl, bornyl, and adamantyl groups. .
  • the cycloalkyl group may have 3 or more and 8 or less carbon atoms.
  • Examples of the aryl group having 6 to 20 carbon atoms include a phenyl group, toluyl group, xylyl group, mesityl group, anisyl group, naphthyl group, and benzyl group.
  • the ionic liquid L preferably contains an imidazolium ion represented by the following formula (1) as a cation.
  • R 1 to R 5 are each independently a hydrogen atom or the above-described substituent having 1 or more carbon atoms.
  • R 1 is preferably a substituent having 1 or more carbon atoms, more preferably an alkyl group having 1 to 20 carbon atoms, still more preferably an alkyl group having 2 to 10 carbon atoms, particularly preferably ethyl or n-butyl group.
  • R 3 is preferably a substituent having 1 or more carbon atoms, more preferably an alkyl group having 1 to 20 carbon atoms, still more preferably an alkyl group having 1 to 10 carbon atoms, particularly preferably methyl is the base.
  • Each of R 2 , R 4 and R 5 is preferably a hydrogen atom.
  • the molecular weight of the cation is not particularly limited as long as the molecular weight of the ionic liquid L is 220 or more, for example 100 or more, and may be 130 or more.
  • the upper limit of the molecular weight of the cation is not particularly limited, and may be 200 or 150, for example.
  • the ionic liquid L is 1-ethyl-3-methylimidazolium tetracyanoborate ([EMIM][B(CN) 4 ]) (molecular weight 226) and 1-butyl-3-methylimidazolium tricyanometanide ([BMIM ][C(CN) 3 ]) (molecular weight: 229). ) 4 ].
  • [BMIM][C(CN) 3 ] has a higher viscosity and is easier to handle than [EMIM][B(CN) 4 ].
  • [C(CN) 3 ] may be included.
  • the viscosity of the ionic liquid L at 25° C. is, for example, 50 mPa ⁇ s or less, preferably 30 mPa ⁇ s or less, and more preferably 20 mPa ⁇ s or less.
  • the lower limit of the viscosity of the ionic liquid at 25°C is not particularly limited, and is, for example, 1 mPa ⁇ s.
  • the viscosity of the ionic liquid can be measured under the following conditions using a commercially available viscosity/viscoelasticity measuring device (for example, Rheostress RS600 manufactured by Thermo HAAKE).
  • a commercially available viscosity/viscoelasticity measuring device for example, Rheostress RS600 manufactured by Thermo HAAKE.
  • Cone C60/Ti Measurement temperature: 25°C (room temperature)
  • Rotation speed 30 [s]
  • the ionic liquid L itself has a high permeation rate of acidic gas when formed into a film.
  • the permeation rate T0 of carbon dioxide permeating the membrane (liquid membrane) of the ionic liquid L is, for example, 600 GPU or more, preferably 650 GPU or more, more preferably 700 GPU or more, and still more preferably 750 GPU or more. be.
  • the upper limit of the transmission speed T0 is not particularly limited, and is, for example, 1500 GPU.
  • GPU means 10 ⁇ 6 ⁇ cm 3 (STP)/(sec ⁇ cm 2 ⁇ cmHg).
  • cm 3 (STP) means the volume of carbon dioxide at 1 atmosphere and 0°C.
  • the permeation rate T0 can be measured by the method described in Examples.
  • the content of the ionic liquid L in the separation functional layer 1 is, for example, 5 wt% or more, preferably 30 wt% or more, more preferably 50 wt% or more, and still more preferably 60 wt% or more. , particularly preferably 70 wt % or more, and particularly preferably 80 wt % or more.
  • the upper limit of the content of the ionic liquid L is not particularly limited, and is, for example, 95 wt%, and may be 90 wt%. When the content of the ionic liquid L is 95 wt % or less, there is a tendency that the self-sustainability of the separation membrane 10 can be easily ensured.
  • the separation functional layer 1 has a double network gel containing the ionic liquid L, for example.
  • a double network gel is a gel comprising two types of networks independent of each other, eg interpenetrating networks.
  • the double network gel includes, for example, a first network structure mainly composed of an inorganic material and a second network structure mainly composed of an organic material.
  • "mainly composed of” means that 50 wt% or more, further 70 wt% or more, particularly 90 wt% or more, especially 99 wt% or more is composed of the material.
  • the inorganic material contained in the first network structure includes, for example, inorganic particles, inorganic polymers, etc., and preferably contains inorganic particles.
  • the first network structure is composed of, for example, a network of inorganic particles.
  • a network of inorganic particles is formed, for example, by bonding a plurality of inorganic particles to each other via hydrogen bonding or the like.
  • the inorganic particles are not particularly limited as long as they can form a network by aggregation or the like, and examples thereof include particles of inorganic oxides such as silica, titania, zirconia, alumina, copper oxide, layered silicate, and zeolite. be done. From the viewpoint of cohesion, the inorganic particles preferably contain silica particles. As silica particles, fumed silica (for example, Aerosil 200, etc.), colloidal silica, and the like are preferable. The inorganic particles can be used singly or in combination of two or more. The inorganic particles may be subjected to various surface treatments such as dimethylsilyl treatment and trimethylsilyl treatment.
  • the specific surface area of the inorganic particles measured by the BET (Brunauer-Emmett-Teller) method is preferably 20 m 2 /g or more, more preferably 50 m 2 /g or more, from the viewpoint of the reinforcing effect.
  • This specific surface area is preferably 300 m 2 /g or less, more preferably 200 m 2 /g or less, from the viewpoint of the coating properties of the dispersion for producing the first network structure.
  • the primary particle diameter of the inorganic particles is preferably 1 nm or more, more preferably 5 nm or more.
  • the primary particle size of the inorganic particles is preferably 100 nm or less, more preferably 50 nm or less, from the viewpoint of the stability of the dispersion for producing the first network structure.
  • the primary particle size of the inorganic particles means the diameter of a circle having the same area as that of the primary particles of the inorganic particles calculated from an electron microscope image obtained by observation with a transmission electron microscope.
  • Inorganic polymers are formed, for example, by polymerization of inorganic monomers.
  • the inorganic monomer is not particularly limited, and examples thereof include mineral salts of metals such as Si, Ti, Zr, Al, Sn, Fe, Co, Ni, Cu, Zn, Pb, Ag, In, Sb, Pt, and Au. , organic acid salts, alkoxides, complexes (chelates) and the like, among which compounds containing Si (silicon-containing compounds) are preferred.
  • These inorganic monomers form inorganic substances (metal oxides, hydroxides, carbides, metals, etc.) by, for example, hydrolysis or thermal decomposition, and then initiate polymerization.
  • the inorganic monomer may be a partial hydrolyzate of the compounds mentioned above.
  • Silicon-containing compounds can form inorganic polymers, for example, by dehydration condensation polymerization.
  • the silicon-containing compound may be gaseous, liquid, or solid under normal temperature and normal pressure.
  • the silicon-containing compound is not particularly limited as long as it can form an inorganic polymer, and examples thereof include silicon oxide and silicate.
  • the silicon-containing compound may be a compound represented by the following formula (2). Si(R6) 4 -x (OR7) x ( 2 )
  • R 6 and R 7 are each independently a linear or branched alkyl group.
  • the number of carbon atoms in the alkyl group is, for example, 1-6, preferably 1-4, more preferably 1-2.
  • linear alkyl groups include methyl, ethyl, propyl, butyl, pentyl, and hexyl groups.
  • branched alkyl groups include isopropyl and isobutyl groups.
  • the compound represented by formula (2) examples include tetramethoxyorthosilicate, tetraethoxyorthosilicate (tetraethylorthosilicate), methyltriethoxyorthosilicate, methyltrimethoxyorthosilicate, octyltriethoxyorthosilicate, dimethyldi Ethoxyorthosilicate and the like can be mentioned, and one or more of these can be used in combination.
  • tetraethoxyorthosilicate (TEOS) is preferable from the viewpoint of three-dimensional cross-linking by condensation polymerization and expression of high cross-linking density.
  • the content of the first network structure in the separation functional layer 1 is not particularly limited, and is, for example, 1 to 5 wt%.
  • a method for producing the first network structure is not particularly limited, and a known method can be used.
  • the first network structure containing inorganic particles can be produced, for example, by the following method.
  • the resulting mixed solution may optionally contain a dispersion medium such as alcohol such as ethanol, propanol, butanol, or water.
  • This mixture is treated at a predetermined temperature (eg, 5 to 50° C., preferably 15 to 30° C.) for a predetermined time (eg, less than 5 minutes, preferably less than 1 minute).
  • a predetermined temperature eg, 5 to 50° C., preferably 15 to 30° C.
  • a predetermined time eg, less than 5 minutes, preferably less than 1 minute.
  • a first network structure containing an inorganic polymer formed from an inorganic monomer, particularly a silicon-containing compound, can be produced, for example, by the following method.
  • the ionic liquid L and an inorganic monomer are mixed.
  • the obtained mixed solution may contain a catalyst (for example, a dehydration condensation catalyst) for chemically bonding inorganic monomers together, a cross-linking aid, a dispersion medium, and the like, if necessary.
  • Catalysts include acid catalysts such as HCl. Examples of the dispersion medium include those described above.
  • the ratio of the mass of the catalyst to the mass of the inorganic monomer is not particularly limited, and is, for example, 0.01 to 20 wt%, preferably 0.05 to 10 wt%, more preferably 0.1 to 5 wt%.
  • the ratio of the mass of the cross-linking aid to the mass of the inorganic monomer is not particularly limited, and is, for example, 0.01 to 20 wt%, preferably 0.05 to 15 wt%, more preferably 0.1 to 10 wt%.
  • the mixture is treated at a predetermined temperature (eg, 5 to 100°C, preferably 15 to 60°C) for a predetermined time (eg, less than 5 minutes, preferably less than 1 minute).
  • a predetermined temperature eg, 5 to 100°C, preferably 15 to 60°C
  • a predetermined time eg, less than 5 minutes, preferably less than 1 minute.
  • the organic material contained in the second network structure includes, for example, a prepolymer crosslinked product (a polymer having a crosslinked structure, specifically a chemically crosslinked structure).
  • the second network structure may consist essentially of crosslinked prepolymers.
  • the weight average molecular weight (Mw) of this crosslinked product is, for example, 5,000 or more, preferably 10,000 or more, more preferably 20,000 or more, and even more preferably 40,000 or more.
  • the upper limit of the weight average molecular weight of the crosslinked product is not particularly limited, and is, for example, 5 million, preferably 2 million, more preferably 1.5 million. When the weight average molecular weight of the crosslinked product is 40000 or more, the mechanical strength of the separation functional layer 1 tends to be improved.
  • the weight average molecular weight of the crosslinked product is obtained by measuring the molecular weight distribution of the crosslinked product by, for example, a gel permeation chromatograph (GPC) equipped with a differential refractive index detector (RID). From the obtained chromatogram (chart), It can be calculated using a standard polystyrene calibration curve.
  • GPC gel permeation chromatograph
  • RID differential refractive index detector
  • a prepolymer has a polymer chain containing constituent units derived from monomers. This polymer chain is formed, for example, by radical polymerization of a monomer.
  • a plurality of polymer chains are crosslinked by crosslinked chains.
  • the polymer chain and the crosslinked chain are preferably linked by at least one bond selected from the group consisting of hydrazone bond, amide bond, imide bond, urethane bond, ether bond and ester bond.
  • the prepolymer may be a homopolymer, copolymer, or mixture thereof. Copolymers include random copolymers, block copolymers, alternating copolymers, graft copolymers, and the like.
  • the prepolymer may contain a (meth)acrylic polymer having a structural unit derived from a (meth)acrylate monomer as a main component.
  • (meth)acrylate means acrylate and/or methacrylate.
  • main component means a structural unit that is contained in the largest amount on a weight basis among all the structural units that constitute the prepolymer.
  • the prepolymer is preferably a polymer having cross-linking points capable of reacting with the cross-linking agent described below.
  • Cross-linking points are located at either the terminal, main chain or side chain of the prepolymer.
  • the cross-linking point is preferably located on the side chain of the prepolymer from the viewpoint of obtaining a highly three-dimensionally cross-linked product.
  • the prepolymer preferably has a functional group, especially a polar group, that functions as a cross-linking point.
  • a polar group means an atomic group containing atoms other than carbon and hydrogen, and typically means an atomic group containing at least one selected from the group consisting of N atoms and O atoms.
  • Polar groups include, for example, amino groups, amide groups, imide groups, morpholino groups, carboxyl groups, ester groups, hydroxyl groups, and ether groups.
  • the amino group includes not only a primary amino group but also a secondary amino group and a tertiary amino group substituted with an alkyl group or the like.
  • the amide group includes a (meth)acrylamide group, an acetamide group, a pyrrolidone group and the like.
  • the ether group includes polyalkyl ether groups such as polyethylene glycol group and polypropylene glycol group; epoxy group; vinyloxy group and the like.
  • the prepolymer preferably contains structural units derived from polar group-containing monomers, particularly polar group-containing (meth)acrylate monomers.
  • the polar group-containing monomer preferably contains, for example, at least one selected from the group consisting of amide group-containing monomers, imide group-containing monomers, amino group-containing monomers, epoxy group-containing monomers and vinyloxy group-containing monomers. More preferably, it contains at least one selected from the group consisting of monomers, imide group-containing monomers and vinyloxy group-containing monomers.
  • amide group-containing monomers examples include acrylamide, methacrylamide, N-vinylpyrrolidone, N,N-diallylacrylamide, N-methylacrylamide, N,N-dimethylacrylamide, N,N-dimethylmethacrylamide, N,N- diethylacrylamide, N,N-diethylmethacrylamide, N,N'-methylenebisacrylamide, N,N-dimethylaminopropylacrylamide, N,N-dimethylaminopropylmethacrylamide, diacetoneacrylamide and the like.
  • imide group-containing monomers examples include N-(meth)acryloyloxysuccinimide, N-(meth)acryloyloxymethylenesuccinimide, and N-(meth)acryloyloxyethylenesuccinimide.
  • amino group-containing monomers examples include aminoethyl (meth)acrylate, N,N-dimethylaminoethyl (meth)acrylate, and N,N-dimethylaminopropyl (meth)acrylate.
  • epoxy group-containing monomers examples include glycidyl (meth)acrylate, methylglycidyl (meth)acrylate, 3-ethyloxetan-3-yl (meth)acrylate, and allyl glycidyl ether.
  • vinyloxy group-containing monomers examples include 2-(2-vinyloxyethoxy)ethyl (meth)acrylate, 2-vinyloxyethyl (meth)acrylate, and 4-vinyloxypropyl (meth)acrylate.
  • the polar group-containing monomers may be used singly or in combination of two or more.
  • a prepolymer may be formed by copolymerizing methylacrylamide or dimethylacrylamide with N,N'-methylenebisacrylamide, diacetoneacrylamide (DAAm), N-acryloyloxysuccinimide (NSA), or the like.
  • the prepolymer may contain structural units derived from dimethylacrylamide and structural units derived from N-acryloyloxysuccinimide.
  • the prepolymer may contain a structural unit that functions as a cross-linking agent, such as a structural unit derived from a polyfunctional (meth)acrylate.
  • a prepolymer having this constitutional unit can be self-crosslinked.
  • a polyfunctional (meth)acrylate means a monomer having two or more (meth)acryloyl groups in one molecule.
  • Polyfunctional (meth)acrylates include, for example, trimethylolpropane tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, 1,2-ethylene glycol di(meth)acrylate, 1,6-hexanediol di(meth) Acrylate, dipentaerythritol hexaacrylate and the like.
  • the weight average molecular weight (Mw) of the prepolymer is preferably 2500 or more, more preferably 5000 or more, and even more preferably 10000 or more.
  • the upper limit of the weight average molecular weight of the prepolymer is not particularly limited, and is, for example, 2,500,000, preferably 1,000,000, more preferably 750,000.
  • the weight average molecular weight of the prepolymer can be determined by the method described above for crosslinked products.
  • a prepolymer is obtained, for example, by polymerizing a monomer having a functional group that functions as a cross-linking point in the presence of a polymerization initiator.
  • the polymerization of the monomer is preferably radical polymerization. Radical polymerization may be thermal polymerization or photopolymerization (for example, polymerization by ultraviolet irradiation).
  • an azo polymerization initiator As the polymerization initiator, an azo polymerization initiator, a peroxide initiator, a redox initiator obtained by combining a peroxide and a reducing agent, a substituted ethane initiator, or the like can be used.
  • various photopolymerization initiators can be used.
  • a photosensitizer such as 2-oxoglutarate may be used.
  • Azo polymerization initiators include 2,2′-azobisisobutyronitrile (AIBN), 2,2′-azobis-2-methylbutyronitrile, dimethyl-2,2′-azobis(2-methylbutyronitrile), pionate), 4,4′-azobis-4-cyanovaleric acid, azobisisovaleronitrile, 2,2′-azobis(2-amidinopropane) dihydrochloride, 2,2′-azobis[2-(5- methyl-2-imidazolin-2-yl)propane]dihydrochloride, 2,2'-azobis(2-methylpropionamidine) disulfate, 2,2'-azobis(N,N'-dimethyleneisobutyramidine) dihydro chloride and the like.
  • AIBN 2,2′-azobisisobutyronitrile
  • 2,2′-azobis-2-methylbutyronitrile dimethyl-2,2′-azobis(2-methylbutyronitrile), pionate
  • Persulfates such as potassium persulfate and ammonium persulfate; dibenzoyl peroxide, t-butyl permaleate, t-butyl hydroperoxide, di-t-butyl peroxide, t- Butyl peroxybenzoate, dicumyl peroxide, 1,1-bis(t-butylperoxy)-3,3,5-trimethylcyclohexane, 1,1-bis(t-butylperoxy)cyclododecane, hydrogen peroxide etc.
  • redox initiators examples include a combination of peroxide and ascorbic acid (such as a combination of aqueous hydrogen peroxide and ascorbic acid), a combination of peroxide and iron (II) salt (a combination of aqueous hydrogen peroxide and iron ( II) combinations with salts, etc.), combinations of persulfates and sodium hydrogen sulfite, and the like.
  • substituted ethane-based initiators include phenyl-substituted ethane.
  • Photopolymerization initiators include acetophenone, ketal, benzophenone, benzoin, benzoyl, xanthone, active halogen compounds (triazine, halomethyloxadiazole, coumarin), acridine, biimidazole, An oxime ester system and the like can be mentioned.
  • Acetophenone-based photopolymerization initiators include, for example, 2,2-diethoxyacetophenone, p-dimethylaminoacetophenone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, p-dimethylaminoacetophenone, 4 '-isopropyl-2-hydroxy-2-methyl-propiophenone, 1-hydroxy-cyclohexyl-phenyl-ketone, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-1-butanone, 2- tolyl-2-dimethylamino-1-(4-morpholinophenyl)-1-butanone, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholino-1-propanone and the like.
  • ketal-based photopolymerization initiators include benzyl dimethyl ketal and benzyl- ⁇ -methoxyethyl acetal.
  • benzophenone-based photopolymerization initiators include benzophenone, 4,4'-(bisdimethylamino)benzophenone, 4,4'-(bisdiethylamino)benzophenone, and 4,4'-dichlorobenzophenone.
  • Benzoin-based or benzoyl-based photopolymerization initiators include, for example, benzoin isopropyl ether, benzoin isobutyl ether, benzoin methyl ether, and methyl o-benzoyl benzoate.
  • xanthone-based photopolymerization initiators examples include diethylthioxanthone, diisopropylthioxanthone, monoisopropylthioxanthone, and chlorothioxanthone.
  • Triazine-based photopolymerization initiators include, for example, 2,4-bis(trichloromethyl)-6-p-methoxyphenyl-s-triazine, 2,4-bis(trichloromethyl)-6-p-methoxystyryl-s -triazine, 2,4-bis(trichloromethyl)-6-(1-p-dimethylaminophenyl)-1,3-butadienyl-s-triazine, 2,4-bis(trichloromethyl)-6-biphenyl-s -triazine, 2,4-bis(trichloromethyl)-6-(p-methylbiphenyl)-s-triazine, p-hydroxyethoxystyryl-2,6-di(trichloromethyl)-s-triazine, methoxystyryl-2 ,6-di(trichloromethyl)-s-triazine, 3,4-dimethoxystyryl
  • halomethyloxadiazole-based photopolymerization initiators include 2-trichloromethyl-5-styryl-1,3,4-oxodiazole, 2-trichloromethyl-5-(cyanostyryl)-1,3, 4-oxodiazole, 2-trichloromethyl-5-(naphth-1-yl)-1,3,4-oxodiazole, 2-trichloromethyl-5-(4-styryl)styryl-1,3,4 - oxodiazole and the like.
  • Coumarin-based photopolymerization initiators include, for example, 3-methyl-5-amino-((s-triazin-2-yl)amino)-3-phenylcoumarin, 3-chloro-5-diethylamino-((s-triazine -2-yl)amino)-3-phenylcoumarin, 3-butyl-5-dimethylamino-((s-triazin-2-yl)amino)-3-phenylcoumarin and the like.
  • acridine-based photopolymerization initiators examples include 9-phenylacridine and 1,7-bis(9-acridinyl)heptane.
  • Biimidazole-based photopolymerization initiators include, for example, 2-(o-chlorophenyl)-4,5-diphenylimidazolyl dimer, 2-(o-methoxyphenyl)-4,5-diphenylimidazolyl dimer, 2 lophine dimers such as -(2,4-dimethoxyphenyl)-4,5-diphenylimidazolyl dimer; 2-mercaptobenzimidazole; 2,2'-dibenzothiazolyl disulfide and the like.
  • oxime ester photopolymerization initiators examples include 1,2-octanedione, 1-[4-(phenylthio)-2-(O-benzoyloxime)], ethanone, 1-[9-ethyl-6-( 2-methylbenzoyl)-9H-carbazol-3-yl]-1-(O-acetyloxime) and the like.
  • the polymerization initiator can be used alone or in combination of two or more.
  • the polymerization initiator is preferably 2,2'-azobisisobutyronitrile.
  • the amount of the polymerization initiator to be blended is not particularly limited, and is, for example, 0.1 parts by mass or more, preferably 0.3 parts by mass or more, relative to 100 parts by mass of the monomer.
  • the amount of the polymerization initiator compounded is preferably 3 parts by mass or less, more preferably 2 parts by mass or less, relative to 100 parts by mass of the monomer.
  • the prepolymer synthesis may be performed in the presence of a solvent.
  • organic solvents are preferable, and examples include ketone organic solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone; ester organic solvents such as methyl acetate, ethyl acetate and butyl acetate; dimethylformamide, dimethyl sulfoxide, N-methyl- Polar solvents such as 2-pyrrolidone; alcohol-based organic solvents such as methyl alcohol, ethyl alcohol and isopropyl alcohol; aromatic hydrocarbon-based organic solvents such as toluene and xylene; aliphatic hydrocarbons such as n-hexane, cyclohexane and methylcyclohexane System/alicyclic hydrocarbon-based organic solvents; cellosolve-based organic solvents such as methyl cellosolve, ethyl cellosolve, and butyl cellosolve;
  • the method for synthesizing the prepolymer is not particularly limited, and solution polymerization, emulsion polymerization, bulk polymerization, suspension polymerization, atom transfer radical polymerization (ATRP: Atom Transfer Radical Polymerization), reversible addition-fragmentation chain transfer polymerization (Raft: Reversible Known methods such as Addition Fragmentation chain Transfer) can be used, but solution polymerization is preferred from the viewpoint of workability.
  • the prepolymer may be synthesized by photopolymerization in the presence of a solvent or by solventless photopolymerization, particularly UV polymerization.
  • ATRP initiators examples include tert-butyl 2-bromoisobutyrate, methyl 2-bromoisobutyrate, 2-bromoisobutyryl bromide, ethyl 2-bromoisobutyrate, 2-hydroxyethyl 2-bromoisobutyrate, ethylenebis(2- bromoisobutyrate), 1-tris(hydroxymethyl)ethane, and pentaerythritol tetrakis(2-bromoisobutyrate).
  • ATRP catalyst ligands include, for example, 2,2′-bipyridyl, 4,4′-dimethyl-2,2′-dipyridyl, 4,4′-di-tert-butyl-2,2′-dipyridyl, 4,4'-dinonyl-2,2'-dipyridyl, N-butyl-2-pyridylmethanimine, N-octyl-2-pyridylmethanimine, N-dodecyl-N-(2-pyridylmethylene)amine, N- octadecyl-N-(2-pyridylmethylene)amine, N,N,N',N'',N'-pentamethyldiethylenetriamine and the like.
  • metal salts for ATRP catalysts include copper (I) chloride, copper (II) chloride, copper (I) bromide, copper (II) bromide, titanium (II) chloride, titanium (III) chloride, titanium chloride (IV), titanium (IV) bromide, iron (II) chloride, and the like.
  • RAFT agents include, for example, cyanomethyl-dodecyltrithiocarbonate, 2-(dodecylthiocarbonothioylthio)-2-methylpropionic acid, 2-cyano-2-propyldodecyltrithiocarbonate and the like.
  • the polymerization temperature is, for example, 25-80°C, preferably 30-70°C, more preferably 40-60°C.
  • the polymerization temperature is preferably 10 to 60.degree. C., more preferably 20 to 50.degree. C., still more preferably 20 to 40.degree.
  • the polymerization time is, for example, 1 to 100 hours, preferably 20 to 80 hours, more preferably 30 to 70 hours, still more preferably 40 to 60 hours.
  • the polymerization time is, for example, 0.1 to 100 hours, preferably 1 to 70 hours, more preferably 5 to 40 hours, still more preferably 10 to 30 hours.
  • the wavelength of the ultraviolet light to be used is not particularly limited as long as the monomer can be radically polymerized. More preferably 300 to 400 nm.
  • the intensity of the ultraviolet rays is not particularly limited, it is, for example, 1 to 3000 mJ/(cm 2 ⁇ s), preferably 10 to 2000 mJ/(cm 2 ⁇ s), considering the polymerization time and safety.
  • a crosslinked product of a prepolymer can be formed, for example, by reacting the prepolymer with a crosslinking agent.
  • the prepolymer contains a structural unit that functions as a cross-linking agent
  • the cross-linked product of the prepolymer can be formed by reaction between the prepolymers.
  • the cross-linking agent can be appropriately selected according to the composition of the prepolymer.
  • cross-linking agents include polyfunctional (meth)acrylates, hydrazide-based cross-linking agents, amine-based cross-linking agents, isocyanate-based cross-linking agents, epoxy-based cross-linking agents, aziridine-based cross-linking agents, melamine-based cross-linking agents, metal chelate-based cross-linking agents, Examples include metal salt-based cross-linking agents, peroxide-based cross-linking agents, oxazoline-based cross-linking agents, urea-based cross-linking agents, carbodiimide-based cross-linking agents, and coupling agent-based cross-linking agents (for example, silane coupling agents).
  • a cross-linking agent can be used 1 type or in combination of 2 or more types.
  • polyfunctional (meth)acrylates examples include those mentioned above for prepolymers.
  • hydrazide cross-linking agents examples include isophthalic acid dihydrazide, terephthalic acid dihydrazide, phthalic acid dihydrazide, 2,6-naphthalenedicarboxylic acid dihydrazide, naphthalene acid dihydrazide, oxalic acid dihydrazide, malonic acid dihydrazide, succinic acid dihydrazide, glutamic acid dihydrazide, and adipine.
  • amine cross-linking agents examples include hexamethylenediamine, 1,12-dodecanediamine, hexamethylenediamine carbamate, N,N-dicinnamylidene-1,6-hexanediamine, tetramethylenepentamine, and hexamethylenediamine cinnamaldehyde adducts.
  • Aromatic polyamines such as; 4,4-(p-phenylenediisopropylidene)dianiline, 2,2-bis[4-(4-aminophenoxy)phenyl]propane, 4,4-diaminobenzanilide, 4,4-bis(4-aminophenoxy )
  • Aromatic polyamines such as biphenyl, m-xylylenediamine, p-xylylenediamine, 1,3,5-benzenetriamine; Examples include diamines having polyether in the chain, and 1,12-dodecanediamine and diethylene glycol bis-3-aminopropyl ether are preferred.
  • isocyanate-based cross-linking agents examples include 1,6-hexamethylene diisocyanate, 1,4-tetramethylene diisocyanate, 2-methyl-1,5-pentane diisocyanate, 3-methyl-1,5-pentane diisocyanate, lysine diisocyanate, and the like.
  • Alicyclic polyisocyanates such as isophorone diisocyanate, cyclohexyl diisocyanate, hydrogenated tolylene diisocyanate, hydrogenated xylene diisocyanate, hydrogenated diphenylmethane diisocyanate, and hydrogenated tetramethylxylene diisocyanate; 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, 4,4'-diphenyl ether diisocyanate, 2-nitrodiphenyl-4,4'-diisocyanate, 2,2'-diphenyl Propane-4,4'-diisocyanate, 3,3'-dimethyldiphenylmethane-4,4'-diisocyanate, 4,4'-diphenylpropane diisocyanate, m-phenylene diis
  • isocyanate-based cross-linking agents include dimers and trimers of the exemplified isocyanate compounds, reaction products or polymers (e.g., dimers and trimers of diphenylmethane diisocyanate, reaction products of trimethylolpropane and tolylene diisocyanate products, reaction products of trimethylolpropane and hexamethylene diisocyanate, polymethylene polyphenyl isocyanate, polyether polyisocyanate, polyester polyisocyanate) and the like can also be used.
  • the isocyanate-based cross-linking agent a reaction product of trimethylolpropane and tolylene diisocyanate is preferred.
  • epoxy-based cross-linking agents include 1,3-bis(N,N-diglycidylaminomethyl)cyclohexane, N,N,N',N'-tetraglycidyl-m-xylylenediamine, diglycidylaniline, 1, 6-hexanediol diglycidyl ether, neopentyl glycol diglycidyl ether, ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, sorbitol polyglycidyl ether, glycerol polyglycidyl ether, penta erythritol polyglycidyl ether, polyglycerol polyglycidyl ether, sorbitan polyglycidyl ether, trimethylolpropane polyglycidyl ether, adipate diglycid
  • the content of the second network structure in the separation functional layer 1 is not particularly limited, and is, for example, 1 to 15 wt%.
  • the method for producing the second network structure is not particularly limited, and includes, for example, the following method.
  • the obtained mixed solution may contain the above-mentioned cross-linking agent, monomer, dispersion medium, etc., if necessary.
  • Monomers include, for example, the polar group-containing monomers described above for the prepolymer.
  • Dispersion media include those described above for the first network structure.
  • the amount of the cross-linking agent used in the mixed solution is, for example, 0.02 to 8 parts by mass, preferably 0.08 to 5 parts by mass, based on 100 parts by mass of the prepolymer and the monomer in total.
  • the mixture is treated at a predetermined temperature (eg, 5 to 100°C, preferably 15 to 60°C) for a predetermined time (eg, less than 5 minutes, preferably less than 1 minute).
  • a predetermined temperature eg, 5 to 100°C, preferably 15 to 60°C
  • a predetermined time eg, less than 5 minutes, preferably less than 1 minute.
  • the example of the organic material contained in the second network structure is not limited to the crosslinked prepolymer.
  • a monomer may be mixed with the ionic liquid L and polymerized to form the second network structure composed of a polymer of the monomer.
  • Monomers include, for example, those described above for the prepolymer.
  • Polymerization of the monomers can be carried out, for example, by solvent-free photopolymerization, in particular UV polymerization.
  • the production of the second network structure may be performed before the production of the first network structure, may be carried out after the production of the first network structure, or may be carried out simultaneously with the production of the first network structure.
  • an ionic liquid L, a material for producing a first network structure (inorganic particles, inorganic monomers, etc.), and a material for producing a second network structure (prepolymer, etc.) are mixed to obtain Both the first network structure and the second network structure may be produced by subjecting the mixture to a predetermined treatment.
  • the solid content concentration of the mixed liquid is, for example, 0.5 wt % or more, preferably 1.0 wt % or more, and more preferably 2.0 wt % or more, from the viewpoint of coatability.
  • the solid content concentration of the mixed liquid is, for example, 50 wt % or less, preferably 40 wt % or less, and more preferably 30 wt % or less, from the viewpoint of producing a thin separation function layer 1 .
  • the thickness of the separation functional layer 1 is, for example, 50 ⁇ m or less, preferably 25 ⁇ m or less, more preferably 15 ⁇ m or less.
  • the thickness of the separation functional layer 1 may be 10 ⁇ m or less, 5.0 ⁇ m or less, or 2.0 ⁇ m or less depending on the case.
  • the thickness of the separation functional layer 1 may be 0.05 ⁇ m or more, or may be 0.1 ⁇ m or more.
  • the intermediate layer 2 contains, for example, a resin and further contains nanoparticles dispersed in the resin (matrix).
  • the nanoparticles may be spaced apart from each other within the matrix or may be partially aggregated.
  • the intermediate layer 2 may not contain nanoparticles, and may be substantially composed of resin.
  • the material of the matrix is not particularly limited, and examples thereof include silicone resins such as polydimethylsiloxane; fluorine resins such as polytetrafluoroethylene; epoxy resins such as polyethylene oxide; polyimide resins; polyacetylene resins such as; and polyolefin resins such as polymethylpentene.
  • the matrix preferably contains a silicone resin.
  • the nanoparticles may contain inorganic materials or organic materials.
  • Inorganic materials included in nanoparticles include, for example, silica, titania, and alumina.
  • the nanoparticles preferably contain silica.
  • the nanoparticles may have surfaces modified with modifying groups containing carbon atoms. Nanoparticles having surfaces modified with this modifying group are excellent in dispersibility in a matrix.
  • the nanoparticles are for example silica nanoparticles which may have their surfaces modified by modifying groups.
  • the modifying group further comprises, for example, a silicon atom.
  • the surfaces modified with modifying groups are represented by the following formulas (I) to (III), for example.
  • R 8 to R 13 in formulas (I) to (III) are each independently a hydrocarbon group which may have a substituent.
  • the number of carbon atoms in the hydrocarbon group is not particularly limited as long as it is 1 or more.
  • the number of carbon atoms in the hydrocarbon group may be, for example, 25 or less, 20 or less, 10 or less, or 5 or less. In some cases, the hydrocarbon group may have more than 25 carbon atoms.
  • the hydrocarbon group may be a linear or branched chain hydrocarbon group, or an alicyclic or aromatic cyclic hydrocarbon group. In one preferred form, the hydrocarbon group is a linear or branched alkyl group having 1 to 8 carbon atoms.
  • a hydrocarbon group is, for example, a methyl group or an octyl group, preferably a methyl group.
  • Substituents of hydrocarbon groups include, for example, amino groups and acyloxy groups.
  • Examples of acyloxy groups include (meth)acryloyloxy groups.
  • the hydrocarbon group optionally having substituents described above for R 8 to R 13 in formulas (I) to (III) is represented by formula (IV) below.
  • a nanoparticle having a surface modified with a modifying group containing a hydrocarbon group represented by formula (IV) is suitable for improving the acidic gas permeation rate in the separation membrane 10 .
  • R 14 is an optionally substituted alkylene group having 1 to 5 carbon atoms.
  • the alkylene group may be linear or branched.
  • Examples of the alkylene group include methylene group, ethylene group, propane-1,3-diyl group, butane-1,4-diyl group and pentane-1,5-diyl group, preferably propane-1,3 - is a diyl group.
  • Examples of substituents for the alkylene group include an amido group and an aminoalkylene group.
  • R 15 is an optionally substituted C 1-20 alkyl group or aryl group.
  • Alkyl groups may be linear or branched.
  • Alkyl groups and aryl groups include, for example, those described above for ionic liquids.
  • Substituents for the alkyl group and aryl group include an amino group and a carboxyl group.
  • R 15 is, for example, a 3,5-diaminophenyl group.
  • the surface modified with a modifying group is preferably represented by the following formula (V).
  • Modifying groups are not limited to the structures shown in formulas (I)-(III).
  • the modifying group may contain a polymer chain having a polyamide structure or a polydimethylsiloxane structure in place of R 8 -R 13 in formulas (I) - (III).
  • the polymer chain is directly attached to a silicon atom.
  • the shape of the polymer chain includes, for example, linear, dendrimer, and hyperbranched.
  • the method of modifying the surface of nanoparticles with modifying groups is not particularly limited.
  • the surface of nanoparticles can be modified by reacting hydroxyl groups present on the surface of the nanoparticles with a known silane coupling agent.
  • the modifying group contains a polyamide structure
  • the surface of the nanoparticles can be modified, for example, by the method disclosed in JP-A-2010-222228.
  • the average particle size of the nanoparticles is not particularly limited as long as it is on the order of nanometers ( ⁇ 1000 nm), and is, for example, 100 nm or less, preferably 50 nm or less, and more preferably 20 nm or less.
  • the lower limit of the average particle size of nanoparticles is, for example, 1 nm.
  • the average particle size of nanoparticles can be specified, for example, by the following method. First, a cross section of the intermediate layer 2 is observed with a transmission electron microscope. In the obtained electron microscope image, the area of specific nanoparticles is calculated by image processing. The diameter of a circle having the same area as the calculated area is taken as the particle size (particle diameter) of that particular nanoparticle.
  • the particle size of an arbitrary number (at least 50) of nanoparticles is calculated, and the average value of the calculated values is regarded as the average particle size of the nanoparticles.
  • the shape of the nanoparticles is not particularly limited, and may be spherical, ellipsoidal, scaly, or fibrous.
  • the content of nanoparticles in the intermediate layer 2 is, for example, 5 wt% or more, preferably 10 wt% or more, and more preferably 15 wt% or more.
  • the upper limit of the content of nanoparticles in the intermediate layer 2 is not particularly limited, and is, for example, 30 wt %.
  • the thickness of the intermediate layer 2 is not particularly limited, and is, for example, less than 50 ⁇ m, preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less.
  • the lower limit of the thickness of the intermediate layer 2 is not particularly limited, and is, for example, 1 ⁇ m.
  • the intermediate layer 2 is, for example, a layer having a thickness of less than 50 ⁇ m.
  • porous support 3 supports the separation functional layer 1 with the intermediate layer 2 interposed therebetween.
  • Porous support 3 includes, for example, nonwoven fabric; porous polytetrafluoroethylene; aromatic polyamide fiber; porous metal; sintered metal; porous ceramic; silicone; silicone rubber; permeation containing at least one selected from the group consisting of polyvinyl fluoride, polyvinylidene fluoride, polyurethane, polypropylene, polyethylene, polystyrene, polycarbonate, polysulfone, polyetheretherketone, polyacrylonitrile, polyimide and polyphenylene oxide open-celled or closed-celled metal foams; open-celled or closed-celled polymeric foams; silica; porous glass;
  • the porous support 3 may be a combination of two or more of these.
  • the porous support 3 has an average pore size of, for example, 0.01-0.4 ⁇ m.
  • the thickness of the porous support 3 is not particularly limited, and is, for example, 10 ⁇ m or more, preferably 20 ⁇ m or more, more preferably 50 ⁇ m or more.
  • the thickness of the porous support 3 is, for example, 300 ⁇ m or less, preferably 200 ⁇ m or less, more preferably 150 ⁇ m or less.
  • Separation membrane 10 can be produced, for example, by the following method. First, the ionic liquid L, a material (inorganic particles, inorganic monomers, etc.) for producing the first network structure, and a material (prepolymer, etc.) for producing the second network structure are mixed to obtain a mixed solution. .
  • this mixed solution is applied to a base material to obtain a coating film.
  • a method for applying the mixed liquid is not particularly limited, and for example, a spin coating method can be used.
  • the thickness of the separation functional layer 1 formed from the coating film can be adjusted by adjusting the rotational speed of the spin coater, the solid content concentration in the coating liquid, and the like.
  • the mixture may be applied to the substrate using an applicator, wire bar, or the like.
  • the substrate to which the coating liquid is applied is typically a laminate of the porous support 3 and the intermediate layer 2.
  • This laminate can be produced, for example, by the following method. First, a coating liquid containing a material for the intermediate layer 2 is prepared. Next, a coating liquid containing the material of the intermediate layer 2 is applied onto the porous support 3 to form a coating film.
  • a method for applying the coating liquid is not particularly limited, and for example, a spin coating method, a dip coating method, or the like can be used. The coating liquid may be applied using a wire bar or the like.
  • the coating film is dried to form the intermediate layer 2 .
  • the coating film can be dried, for example, under heating conditions. The heating temperature of the coating film is, for example, 50° C. or higher.
  • the heating time of the coating film is, for example, 1 minute or longer, and may be 5 minutes or longer.
  • the surface of the intermediate layer 2 may be subjected to an adhesion-facilitating treatment as necessary.
  • the adhesion-facilitating treatment includes surface treatment such as application of a primer, corona discharge treatment, and plasma treatment.
  • the separation membrane 10 is obtained by forming the separation functional layer 1 on the substrate.
  • the base material is not limited to the laminate of the porous support 3 and the intermediate layer 2, and may be a transfer film.
  • the separation membrane 10 can be produced by the following method. First, a coating film formed on a substrate is subjected to a predetermined treatment to produce the separation functional layer 1 . Next, the intermediate layer 2 is formed by applying a coating liquid containing the material of the intermediate layer 2 onto the separation function layer 1 and drying it. A laminate of the intermediate layer 2 and the separation functional layer 1 is transferred to the porous support 3 . Thereby, the separation membrane 10 is obtained.
  • the separation functional layer 1 contains the ionic liquid L described above. According to studies by the present inventors, the ionic liquid L tends to improve the permeation rate of the acidic gas in the separation membrane 10 . If the permeation rate of the acidic gas in the separation membrane 10 is improved, for example, the membrane area required for separating the mixed gas can be reduced.
  • the permeation rate T of carbon dioxide permeating through the separation membrane 10 is, for example, 480 GPU or higher, preferably 500 GPU or higher, more preferably 530 GPU or higher, and still more preferably 550 GPU or higher.
  • the upper limit of the transmission speed T is not particularly limited, and is, for example, 1000 GPU.
  • GPU means 10 ⁇ 6 ⁇ cm 3 (STP)/(sec ⁇ cm 2 ⁇ cmHg).
  • cm 3 (STP) means the volume of carbon dioxide at 1 atmosphere and 0°C.
  • the permeation speed T can be calculated by the following method. First, a mixed gas containing carbon dioxide and nitrogen is supplied to a space adjacent to one surface of the separation membrane 10 (for example, the main surface 11 of the separation membrane 10 on the side of the separation functional layer), and the other surface of the separation membrane 10 is supplied. A space adjacent to (for example, the main surface 12 of the separation membrane 10 on the porous support side) is decompressed. As a result, a permeated fluid that has passed through the separation membrane 10 is obtained. The weight of the permeate and the volume fraction of carbon dioxide and nitrogen in the permeate are measured. The permeation rate T can be calculated from the measurement results.
  • the concentration of carbon dioxide in the gas mixture is 50 vol% under standard conditions (0°C, 101 kPa).
  • the mixed gas supplied to the space adjacent to one side of the separation membrane 10 has a temperature of 30° C. and a pressure of 0.1 MPa.
  • the space adjacent to the other surface of the separation membrane 10 is decompressed so that the pressure in the space is 0.1 MPa lower than the atmospheric pressure in the measurement environment.
  • the separation coefficient ⁇ of carbon dioxide with respect to nitrogen of the separation membrane 10 is not particularly limited, and is, for example, 20 or more, preferably 25 or more, and more preferably 30 or more.
  • the upper limit of the separation factor ⁇ is not particularly limited, and is 100, for example.
  • Applications of the separation membrane 10 of the present embodiment include applications for separating acidic gases from mixed gases containing acidic gases.
  • the acid gas of the mixed gas includes carbon dioxide, hydrogen sulfide, carbonyl sulfide, sulfur oxides (SOx), hydrogen cyanide, nitrogen oxides (NOx), etc. Carbon dioxide is preferred.
  • the mixed gas contains other gases than acid gas. Other gases include, for example, hydrogen, non-polar gases such as nitrogen, and inert gases such as helium, preferably nitrogen.
  • the separation membrane 10 of this embodiment is suitable for separating carbon dioxide from a mixed gas containing carbon dioxide and nitrogen.
  • the application of the separation membrane 10 is not limited to the application of separating acidic gas from the mixed gas.
  • the membrane separation device 100 of this embodiment includes a separation membrane 10 and a tank 20 .
  • the tank 20 has a first chamber 21 and a second chamber 22 .
  • Separation membrane 10 is arranged inside tank 20 . Inside the tank 20 , the separation membrane 10 separates the first chamber 21 and the second chamber 22 . Separation membrane 10 extends from one of a pair of wall surfaces of tank 20 to the other.
  • the first chamber 21 has an entrance 21a and an exit 21b.
  • the second chamber 22 has an outlet 22a.
  • Each of the inlet 21a, the outlet 21b, and the outlet 22a is an opening formed in the wall surface of the tank 20, for example.
  • Membrane separation using the membrane separation device 100 is performed, for example, by the following method.
  • a mixed gas 30 containing acid gas is supplied to the first chamber 21 through the inlet 21a.
  • the concentration of the acid gas in the mixed gas 30 is not particularly limited, and is, for example, 0.01 vol% (100 ppm) or more, preferably 1 vol% or more, more preferably 10 vol% or more, and even more preferably, under standard conditions. is 30 vol% or more, particularly preferably 50 vol% or more.
  • the upper limit of the acid gas concentration in the mixed gas 30 is not particularly limited, and is, for example, 90 vol % under standard conditions.
  • the membrane separation device 100 may further include a pump (not shown) for pressurizing the mixed gas 30 .
  • the pressure of the mixed gas 30 supplied to the first chamber 21 is, for example, 0.1 MPa or higher, preferably 0.3 MPa or higher.
  • the pressure in the second chamber 22 may be reduced while the mixed gas 30 is supplied to the first chamber 21 .
  • the membrane separation device 100 may further include a pump (not shown) for reducing the pressure inside the second chamber 22 .
  • the second chamber 22 may be depressurized such that the space inside the second chamber 22 is, for example, 10 kPa or more, preferably 50 kPa or more, and more preferably 100 kPa or more less than the atmospheric pressure in the measurement environment.
  • a permeate fluid 35 having a higher acid gas content than the mixed gas 30 can be obtained on the other side of the separation membrane 10 . That is, the permeating fluid 35 is supplied to the second chamber 22 .
  • the permeating fluid 35 contains, for example, acid gas as a main component. However, the permeating fluid 35 may contain a small amount of gas other than the acid gas.
  • the permeated fluid 35 is discharged to the outside of the tank 20 through the outlet 22a.
  • the concentration of acid gas in the mixed gas 30 gradually decreases from the inlet 21a of the first chamber 21 toward the outlet 21b.
  • the mixed gas 30 (non-permeating fluid 36) processed in the first chamber 21 is discharged to the outside of the tank 20 through the outlet 21b.
  • the membrane separation device 100 of this embodiment is suitable for a flow-type (continuous) membrane separation method.
  • the membrane separation apparatus 100 of this embodiment may be used for a batch-type membrane separation method.
  • the membrane separation device 110 of this embodiment includes a central tube 41 and a laminate 42 .
  • a laminate 42 includes the separation membrane 10 .
  • the membrane separation device 110 is a spiral membrane element.
  • the central tube 41 has a cylindrical shape. A plurality of holes are formed on the surface of the central tube 41 to allow the permeating fluid 35 to flow into the central tube 41 .
  • materials for the central tube 41 include resins such as acrylonitrile-butadiene-styrene copolymer resin (ABS resin), polyphenylene ether resin (PPE resin), and polysulfone resin (PSF resin); and metals such as stainless steel and titanium. be done.
  • the inner diameter of the central tube 41 is, for example, in the range of 20-100 mm.
  • the laminate 42 further includes, in addition to the separation membrane 10, a feed-side channel material 43 and a permeate-side channel material 44.
  • the laminate 42 is wound around the central tube 41 .
  • the membrane separation device 110 may further include an exterior material (not shown).
  • a resin net made of polyphenylene sulfide (PPS) or ethylene-chlorotrifluoroethylene copolymer (ECTFE) can be used.
  • Membrane separation using the membrane separation device 110 is performed, for example, by the following method.
  • the permeated fluid 35 that permeates the separation membrane 10 of the laminate 42 moves inside the central tube 41 .
  • the permeating fluid 35 is discharged outside through the central tube 41 .
  • the mixed gas 30 (non-permeating fluid 36) processed by the membrane separation device 110 is discharged outside from the other end of the wound laminate 42. As shown in FIG. Thereby, the acid gas can be separated from the mixed gas 30 .
  • the solution after polymerization was transferred to an eggplant flask and treated with an evaporator at 60°C for 30 minutes or longer to remove 1,4-dioxane from the solution.
  • THF was added to the eggplant flask to dissolve the white solid.
  • the resulting solution was dropped drop by drop into hexane cooled to -10°C while stirring to obtain a precipitate.
  • a prepolymer (poly(DMAAm-co-NSA)) was obtained by treating the precipitate in a constant temperature bath at 30° C. under a vacuum atmosphere for 24 hours.
  • silica particles for forming the first network structure, the above prepolymer, diethylene glycol (3-aminopropyl) ether as a cross-linking agent for the prepolymer, 1-ethyl-3- as an ionic liquid Methylimidazolium bis(trifluoromethanesulfonyl)imide ([EMIM][TFSI]) and ethanol were mixed and stirred at room temperature for 1 minute. Thus, a mixed liquid (gel precursor solution) was obtained.
  • the obtained gel precursor solution was applied onto the laminate of the porous support and the intermediate layer.
  • the solution was applied using a spin coater under conditions of 2000 rpm and 40 seconds.
  • the resulting coating film was dried in a dryer at 60° C. for 5 minutes.
  • a first network structure composed of a network of silica particles and a second network structure composed of a crosslinked product of the prepolymer were formed to obtain a separation functional layer.
  • the content of the ionic liquid in the separation functional layer was 80 wt%.
  • the separation functional layer had a thickness of 2 ⁇ m.
  • a separation membrane of Comparative Example 1 was obtained by forming a separation functional layer on the laminate of the porous support and the intermediate layer.
  • Comparative Examples 2-3 and Examples 1-2 Separation membranes of Comparative Examples 2 and 3 and Examples 1 and 2 were obtained in the same manner as in Comparative Example 1, except that the type of ionic liquid was changed as shown in Table 1.
  • Comparative Example 5 A separation membrane of Comparative Example 5 was prepared in the same manner as in Comparative Example 1, except that a coating solution containing polyether block amide (Pebax manufactured by Arkema) was used instead of the gel precursor solution.
  • a coating solution containing polyether block amide (Pebax manufactured by Arkema) was used instead of the gel precursor solution.
  • Viscosity of ionic liquid The viscosities at 25° C. of the ionic liquids used in Comparative Examples 1-4 and Examples 1-2 were measured. The viscosity was measured using Rheostress RS600 manufactured by Thermo HAAKE under the conditions described above.
  • the permeation rate T0 of carbon dioxide was measured by the following method. First, an ionic liquid was dropped onto a PTFE porous membrane A (Merck Co., Ltd. Omnipore membrane filter, pore size 0.45 ⁇ m, thickness 65 ⁇ m, PTFE) placed on a PET release liner, followed by vacuum drying at 40°C. Machine dried for 1 hour. As a result, the porous PTFE membrane A was impregnated with the ionic liquid, and the porous PTFE membrane A impregnated with the ionic liquid was obtained.
  • PTFE porous membrane A Merck Co., Ltd. Omnipore membrane filter, pore size 0.45 ⁇ m, thickness 65 ⁇ m, PTFE
  • the PTFE porous membrane A impregnated with the ionic liquid was regarded as the ionic liquid membrane.
  • a PET release liner was placed on top of the ionic liquid film and pressed together using a rubber roller. Thereby, the thickness of the film of the ionic liquid was adjusted to be uniform.
  • a PTFE porous membrane B (Temish NTF1133 manufactured by Nitto Denko Corporation) was set in the metal cell. Furthermore, the ionic liquid membrane (the PTFE porous membrane A impregnated with the ionic liquid) was placed on the PTFE porous membrane B and sealed with an O-ring to prevent leakage. Next, the mixed gas was injected into the metal cell so that the main surface of the PTFE porous membrane A was in contact with the mixed gas.
  • the gas mixture consisted essentially of carbon dioxide and nitrogen. The concentration of carbon dioxide in the mixed gas was 50 vol% under standard conditions.
  • the temperature of the gas mixture injected into the metal cell was 30°C.
  • the pressure of the mixed gas was 0.1 MPa.
  • the separation coefficient ⁇ of carbon dioxide with respect to nitrogen (CO 2 /N 2 ) and the permeation rate T of carbon dioxide were measured for the separation membranes of Examples and Comparative Examples by the following methods.
  • the separation membrane was set in a metal cell and sealed with an O-ring to prevent leakage.
  • the mixed gas was injected into the metal cell so that the mixed gas was in contact with the main surface of the separation membrane on the side of the separation functional layer.
  • the gas mixture consisted essentially of carbon dioxide and nitrogen.
  • the concentration of carbon dioxide in the mixed gas was 50 vol% under standard conditions.
  • the gas mixture injected into the metal cell had a temperature of 30° C. and a pressure of 0.1 MPa.
  • the space in the metal cell adjacent to the main surface of the separation membrane on the porous support side was evacuated with a vacuum pump. At this time, the space was decompressed so that the pressure in the space was 0.1 MPa lower than the atmospheric pressure in the measurement environment. As a result, a permeated fluid was obtained from the main surface of the separation membrane on the porous support side.
  • the separation factor ⁇ and the carbon dioxide permeation rate T were calculated based on the obtained composition of the permeated fluid, the weight of the permeated fluid, and the like.
  • the separation membranes of Examples containing an ionic liquid having a molecular weight of 220 or more and having a cyano group as an anion have a higher acid gas (carbon dioxide) permeation rate than the separation membranes of Comparative Examples. Improved. Furthermore, as can be seen from the simulation results, the separation membranes of Examples were also suitable for reducing the membrane area required to separate mixed gases.
  • the separation membrane of the present embodiment is suitable for separating acidic gases from mixed gases containing acidic gases.
  • the separation membrane of this embodiment is suitable for separating carbon dioxide from off-gases of chemical plants or thermal power plants.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

The present invention provides a separation membrane which is suitable for improving the permeation rate of an acidic gas. A separation membrane 10 according to the present invention contains an ionic liquid. The molecular weight of the ionic liquid is 220 or more. The anion contained in the ionic liquid has a cyano group. The viscosity of the ionic liquid at 25°C is, for example, 50 mPa·s or less.

Description

分離膜separation membrane
 本発明は、分離膜に関する。 The present invention relates to separation membranes.
 二酸化炭素などの酸性ガスを含む混合気体から酸性ガスを分離する方法として、膜分離法が開発されている。膜分離法は、混合気体に含まれる酸性ガスを吸収剤に吸収させて分離する吸収法と比べて、運転コストを抑えながら酸性ガスを効率的に分離することができる。 A membrane separation method has been developed as a method for separating acidic gases from mixed gases containing acidic gases such as carbon dioxide. The membrane separation method can efficiently separate the acid gas while suppressing the operating cost, compared to the absorption method in which the acid gas contained in the mixed gas is absorbed by an absorbent and separated.
 膜分離法に用いられる分離膜としては、分離機能層を多孔性支持体の上に形成した複合膜が挙げられる。例えば、特許文献1は、イオン液体を含む構造体を分離機能層として備えた複合膜を開示している。 Separation membranes used in the membrane separation method include composite membranes in which a separation functional layer is formed on a porous support. For example, Patent Literature 1 discloses a composite membrane having a structure containing an ionic liquid as a separation functional layer.
特開2020-37688号公報Japanese Patent Application Laid-Open No. 2020-37688
 従来の分離膜について、酸性ガスの透過速度をさらに向上させることが求められている。  Conventional separation membranes are required to further improve the permeation rate of acidic gases.
 そこで本発明は、酸性ガスの透過速度を向上させることに適した分離膜を提供することを目的とする。 Therefore, an object of the present invention is to provide a separation membrane suitable for improving the permeation rate of acidic gases.
 本発明者らは、鋭意検討の結果、イオン液体の分子量、及びイオン液体に含まれる官能基、特にアニオンの官能基、の種類が分離膜における酸性ガスの透過速度に影響を与えることを新たに見出した。本発明者らは、この知見に基づいてさらに検討を進め、イオン液体の分子量と、アニオンの官能基とを適切に設定することによって、酸性ガスの透過速度を向上できることを突き止め、本発明を完成するに至った。 As a result of intensive studies, the present inventors have newly found that the molecular weight of the ionic liquid and the type of functional group contained in the ionic liquid, particularly the anionic functional group, affect the permeation rate of acidic gases in the separation membrane. Found it. Based on this knowledge, the present inventors further studied and found that the permeation rate of acidic gases can be improved by appropriately setting the molecular weight of the ionic liquid and the functional group of the anion, and completed the present invention. came to.
 本発明は、
 イオン液体を含む分離膜であって、
 前記イオン液体の分子量が220以上であり、
 前記イオン液体に含まれるアニオンがシアノ基を有する、分離膜を提供する。
The present invention
A separation membrane containing an ionic liquid,
The ionic liquid has a molecular weight of 220 or more,
A separation membrane is provided in which the anion contained in the ionic liquid has a cyano group.
 本発明によれば、酸性ガスの透過速度を向上させることに適した分離膜を提供できる。 According to the present invention, a separation membrane suitable for improving the permeation rate of acidic gases can be provided.
本発明の一実施形態にかかる分離膜の断面図である。1 is a cross-sectional view of a separation membrane according to one embodiment of the present invention; FIG. 本発明の分離膜を備えた膜分離装置の概略断面図である。1 is a schematic cross-sectional view of a membrane separation device equipped with the separation membrane of the present invention; FIG. 本発明の分離膜を備えた膜分離装置の変形例を模式的に示す斜視図である。FIG. 3 is a perspective view schematically showing a modification of the membrane separation device provided with the separation membrane of the present invention.
 以下、本発明の詳細を説明するが、以下の説明は、本発明を特定の実施形態に制限する趣旨ではない。 Although the details of the present invention will be described below, the following description is not intended to limit the present invention to specific embodiments.
<分離膜の実施形態>
 図1に示すように、本実施形態の分離膜10は、イオン液体Lを含む分離機能層1を備え、例えば、中間層2及び多孔性支持体3をさらに備えている。多孔性支持体3は、分離機能層1を支持している。中間層2は、分離機能層1と多孔性支持体3との間に配置されており、分離機能層1及び多孔性支持体3のそれぞれに直接接している。
<Embodiment of Separation Membrane>
As shown in FIG. 1, the separation membrane 10 of this embodiment includes a separation functional layer 1 containing an ionic liquid L, and further includes an intermediate layer 2 and a porous support 3, for example. A porous support 3 supports the separation functional layer 1 . The intermediate layer 2 is arranged between the separation functional layer 1 and the porous support 3 and is in direct contact with the separation functional layer 1 and the porous support 3 respectively.
(分離機能層)
 分離機能層1は、混合気体に含まれる酸性ガスを優先的に透過させることができる層である。上述のとおり、分離機能層1は、イオン液体Lを含む。イオン液体は、25℃で液体の塩(イオン性化合物)である。イオン液体Lの分子量は、220以上であり、好ましくは225以上である。イオン液体Lの分子量の上限値は、特に限定されず、例えば250である。
(separation functional layer)
The separation functional layer 1 is a layer that preferentially permeates the acid gas contained in the mixed gas. The separation functional layer 1 contains the ionic liquid L as described above. An ionic liquid is a salt (ionic compound) that is liquid at 25°C. The molecular weight of the ionic liquid L is 220 or more, preferably 225 or more. The upper limit of the molecular weight of the ionic liquid L is not particularly limited, and is 250, for example.
 イオン液体Lは、カチオン及びアニオンを含む。イオン液体Lに含まれるアニオンは、シアノ基を有する。アニオンに含まれるシアノ基の数は、特に限定されず、例えば1~4であり、3~4であることが好ましい。シアノ基を有するアニオンは、特に限定されず、例えば、テトラシアノボレート及びトリシアノメタニドからなる群より選ばれる少なくとも1つを含む。アニオンの分子量は、イオン液体Lの分子量が220以上である限り、特に限定されず、例えば80以上であり、100以上であってもよい。アニオンの分子量の上限値は、特に限定されず、例えば200であり、150であってもよく、130であってもよい。 The ionic liquid L contains cations and anions. The anion contained in the ionic liquid L has a cyano group. The number of cyano groups contained in the anion is not particularly limited, and is, for example, 1-4, preferably 3-4. The anion having a cyano group is not particularly limited, and includes, for example, at least one selected from the group consisting of tetracyanoborate and tricyanometanide. The molecular weight of the anion is not particularly limited as long as the molecular weight of the ionic liquid L is 220 or more. The upper limit of the molecular weight of the anion is not particularly limited, and may be 200, 150, or 130, for example.
 イオン液体Lに含まれるカチオンとしては、イオン液体Lの分子量が220以上である限り、特に限定されず、イミダゾリウムイオン、ピリジニウムイオン、アンモニウムイオン、ホスホニウムイオンなどが挙げられる。イオン液体Lは、カチオンとして、イミダゾリウムイオンを含むことが好ましい。カチオンとして例示した上述のイオンは、例えば、炭素数1以上の置換基を含む。 The cations contained in the ionic liquid L are not particularly limited as long as the ionic liquid L has a molecular weight of 220 or more, and include imidazolium ions, pyridinium ions, ammonium ions, phosphonium ions, and the like. The ionic liquid L preferably contains imidazolium ions as cations. The above ions exemplified as cations include, for example, substituents having 1 or more carbon atoms.
 炭素数1以上の置換基としては、炭素数1以上20以下のアルキル基、炭素数3以上14以下のシクロアルキル基、炭素数6以上20以下のアリール基等が挙げられ、これらは更にヒドロキシル基、シアノ基、アミノ基、エーテル基等で置換されていてもよい(例えば、炭素数1以上20以下のヒドロキシアルキル基等)。エーテル基としては、例えば、ポリエチレングリコール等のポリアルキレングリコール基が挙げられる。 Examples of substituents having 1 or more carbon atoms include alkyl groups having 1 to 20 carbon atoms, cycloalkyl groups having 3 to 14 carbon atoms, aryl groups having 6 to 20 carbon atoms, and the like. , a cyano group, an amino group, an ether group, or the like (for example, a hydroxyalkyl group having 1 to 20 carbon atoms, etc.). Ether groups include, for example, polyalkylene glycol groups such as polyethylene glycol.
 炭素数1以上20以下のアルキル基としては、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、n-ノナデシル基、n-エイコサデシル基、i-プロピル基、sec-ブチル基、i-ブチル基、1-メチルブチル基、1-エチルプロピル基、2-メチルブチル基、i-ペンチル基、ネオペンチル基、1,2-ジメチルプロピル基、1,1-ジメチルプロピル基、t-ペンチル基、2-エチルヘキシル基、1,5-ジメチルヘキシル基等が挙げられる。 Examples of alkyl groups having 1 to 20 carbon atoms include methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n- nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, n- nonadecyl group, n-eicosadecyl group, i-propyl group, sec-butyl group, i-butyl group, 1-methylbutyl group, 1-ethylpropyl group, 2-methylbutyl group, i-pentyl group, neopentyl group, 1,2 -dimethylpropyl group, 1,1-dimethylpropyl group, t-pentyl group, 2-ethylhexyl group, 1,5-dimethylhexyl group and the like.
 上述のアルキル基は、シクロアルキル基によって置換されていてもよい。シクロアルキル基によって置換されたアルキル基の炭素数は、例えば、1以上20以下である。シクロアルキル基によって置換されたアルキル基としては、シクロプロピルメチル基、シクロブチルメチル基、シクロヘキシルメチル基、シクロヘキシルプロピル基等が挙げられる。 The above alkyl group may be substituted with a cycloalkyl group. The number of carbon atoms in the alkyl group substituted by the cycloalkyl group is, for example, 1 or more and 20 or less. Alkyl groups substituted with cycloalkyl groups include cyclopropylmethyl groups, cyclobutylmethyl groups, cyclohexylmethyl groups, cyclohexylpropyl groups, and the like.
 炭素数3以上14以下のシクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロドデシル基、ノルボルニル基、ボルニル基、アダマンチル基等が挙げられる。シクロアルキル基の炭素数は、3以上8以下であってもよい。 Cycloalkyl groups having 3 to 14 carbon atoms include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclododecyl, norbornyl, bornyl, and adamantyl groups. . The cycloalkyl group may have 3 or more and 8 or less carbon atoms.
 炭素数6以上20以下のアリール基としては、フェニル基、トルイル基、キシリル基、メシチル基、アニシル基、ナフチル基、ベンジル基等が挙げられる。 Examples of the aryl group having 6 to 20 carbon atoms include a phenyl group, toluyl group, xylyl group, mesityl group, anisyl group, naphthyl group, and benzyl group.
 本実施形態において、イオン液体Lは、カチオンとして、下記式(1)で表されるイミダゾリウムイオンを含むことが好ましい。
Figure JPOXMLDOC01-appb-C000001
In the present embodiment, the ionic liquid L preferably contains an imidazolium ion represented by the following formula (1) as a cation.
Figure JPOXMLDOC01-appb-C000001
 式(1)において、R1~R5は、それぞれ独立して、水素原子、又は上述した炭素数1以上の置換基である。R1は、好ましくは炭素数1以上の置換基であり、より好ましくは炭素数1以上20以下のアルキル基であり、さらに好ましくは炭素数2以上10以下のアルキル基であり、特に好ましくはエチル基又はn-ブチル基である。R3は、好ましくは炭素数1以上の置換基であり、より好ましくは炭素数1以上20以下のアルキル基であり、さらに好ましくは炭素数1以上10以下のアルキル基であり、特に好ましくはメチル基である。R2、R4及びR5のそれぞれは、水素原子であることが好ましい。 In formula (1), R 1 to R 5 are each independently a hydrogen atom or the above-described substituent having 1 or more carbon atoms. R 1 is preferably a substituent having 1 or more carbon atoms, more preferably an alkyl group having 1 to 20 carbon atoms, still more preferably an alkyl group having 2 to 10 carbon atoms, particularly preferably ethyl or n-butyl group. R 3 is preferably a substituent having 1 or more carbon atoms, more preferably an alkyl group having 1 to 20 carbon atoms, still more preferably an alkyl group having 1 to 10 carbon atoms, particularly preferably methyl is the base. Each of R 2 , R 4 and R 5 is preferably a hydrogen atom.
 カチオンの分子量は、イオン液体Lの分子量が220以上である限り、特に限定されず、例えば100以上であり、130以上であってもよい。カチオンの分子量の上限値は、特に限定されず、例えば200であり、150であってもよい。 The molecular weight of the cation is not particularly limited as long as the molecular weight of the ionic liquid L is 220 or more, for example 100 or more, and may be 130 or more. The upper limit of the molecular weight of the cation is not particularly limited, and may be 200 or 150, for example.
 イオン液体Lは、1-エチル-3-メチルイミダゾリウムテトラシアノボレート([EMIM][B(CN)4])(分子量226)及び1-ブチル-3-メチルイミダゾリウムトリシアノメタニド([BMIM][C(CN)3])(分子量229)からなる群より選ばれる少なくとも1つを含むことが好ましく、分離膜10における酸性ガスの透過速度を向上させる観点から、[EMIM][B(CN)4]を含むことがより好ましい。なお、[BMIM][C(CN)3]は、[EMIM][B(CN)4]と比べて粘度が高く、取り扱いが容易であるため、この観点から、イオン液体Lは、[BMIM][C(CN)3]を含んでいてもよい。 The ionic liquid L is 1-ethyl-3-methylimidazolium tetracyanoborate ([EMIM][B(CN) 4 ]) (molecular weight 226) and 1-butyl-3-methylimidazolium tricyanometanide ([BMIM ][C(CN) 3 ]) (molecular weight: 229). ) 4 ]. [BMIM][C(CN) 3 ] has a higher viscosity and is easier to handle than [EMIM][B(CN) 4 ]. [C(CN) 3 ] may be included.
 本発明者らの検討によると、イオン液体Lの粘度が低ければ低いほど、分離膜10における酸性ガスの透過速度が向上する傾向がある。25℃におけるイオン液体Lの粘度は、例えば50mPa・s以下であり、好ましくは30mPa・s以下であり、より好ましくは20mPa・s以下である。25℃におけるイオン液体の粘度の下限値は、特に限定されず、例えば1mPa・sである。イオン液体の粘度は、市販の粘度・粘弾性測定装置(例えば、Thermo HAAKE社製のレオストレスRS600)を用いて、以下の条件で測定することができる。
コーン:C60/Ti
測定温度:25℃(室温)
せん断速度γ(dγ/dt):1[1/s]
回転速度:30[s]
According to studies by the present inventors, there is a tendency that the lower the viscosity of the ionic liquid L, the higher the permeation rate of the acidic gas through the separation membrane 10 . The viscosity of the ionic liquid L at 25° C. is, for example, 50 mPa·s or less, preferably 30 mPa·s or less, and more preferably 20 mPa·s or less. The lower limit of the viscosity of the ionic liquid at 25°C is not particularly limited, and is, for example, 1 mPa·s. The viscosity of the ionic liquid can be measured under the following conditions using a commercially available viscosity/viscoelasticity measuring device (for example, Rheostress RS600 manufactured by Thermo HAAKE).
Cone: C60/Ti
Measurement temperature: 25°C (room temperature)
Shear rate γ (dγ/dt): 1 [1/s]
Rotation speed: 30 [s]
 イオン液体Lは、それ自体を膜状にしたときに、酸性ガスの透過速度が高いことが好ましい。一例として、イオン液体Lの膜(液膜)を透過する二酸化炭素の透過速度T0は、例えば600GPU以上であり、好ましくは650GPU以上であり、より好ましくは700GPU以上であり、さらに好ましくは750GPU以上である。透過速度T0の上限値は、特に限定されず、例えば1500GPUである。ただし、GPUは、10-6・cm3(STP)/(sec・cm2・cmHg)を意味する。cm3(STP)は、1気圧、0℃での二酸化炭素の体積を意味する。透過速度T0は、実施例に記載の方法によって測定できる。 It is preferable that the ionic liquid L itself has a high permeation rate of acidic gas when formed into a film. As an example, the permeation rate T0 of carbon dioxide permeating the membrane (liquid membrane) of the ionic liquid L is, for example, 600 GPU or more, preferably 650 GPU or more, more preferably 700 GPU or more, and still more preferably 750 GPU or more. be. The upper limit of the transmission speed T0 is not particularly limited, and is, for example, 1500 GPU. However, GPU means 10 −6 ·cm 3 (STP)/(sec·cm 2 ·cmHg). cm 3 (STP) means the volume of carbon dioxide at 1 atmosphere and 0°C. The permeation rate T0 can be measured by the method described in Examples.
 分離機能層1におけるイオン液体Lの含有率は、ガス分離性能の観点から、例えば5wt%以上であり、好ましくは30wt%以上であり、より好ましくは50wt%以上であり、さらに好ましくは60wt%以上であり、特に好ましくは70wt%以上であり、とりわけ好ましくは80wt%以上である。イオン液体Lの含有率が高ければ高いほど、分離膜10が高い分離性能を有する傾向がある。イオン液体Lの含有率の上限値は、特に限定されず、例えば95wt%であり、90wt%であってもよい。イオン液体Lの含有率が95wt%以下であることによって、分離膜10の自立性を容易に確保できる傾向がある。 From the viewpoint of gas separation performance, the content of the ionic liquid L in the separation functional layer 1 is, for example, 5 wt% or more, preferably 30 wt% or more, more preferably 50 wt% or more, and still more preferably 60 wt% or more. , particularly preferably 70 wt % or more, and particularly preferably 80 wt % or more. The higher the content of the ionic liquid L, the higher the separation performance of the separation membrane 10 tends to be. The upper limit of the content of the ionic liquid L is not particularly limited, and is, for example, 95 wt%, and may be 90 wt%. When the content of the ionic liquid L is 95 wt % or less, there is a tendency that the self-sustainability of the separation membrane 10 can be easily ensured.
[ダブルネットワークゲル]
 分離機能層1は、例えば、イオン液体Lを含むダブルネットワークゲルを有する。ダブルネットワークゲルは、互いに独立した2種類の網目構造、例えば相互侵入網目構造、を備えるゲルである。本実施形態において、ダブルネットワークゲルは、例えば、主として無機材料により構成された第1網目構造と、主として有機材料により構成された第2網目構造と、を含む。本明細書において、「主として構成された」は、50wt%以上、さらには70wt%以上、特に90wt%以上、とりわけ99wt%以上が当該材料により構成されていることを意味する。
[Double network gel]
The separation functional layer 1 has a double network gel containing the ionic liquid L, for example. A double network gel is a gel comprising two types of networks independent of each other, eg interpenetrating networks. In this embodiment, the double network gel includes, for example, a first network structure mainly composed of an inorganic material and a second network structure mainly composed of an organic material. As used herein, "mainly composed of" means that 50 wt% or more, further 70 wt% or more, particularly 90 wt% or more, especially 99 wt% or more is composed of the material.
[第1網目構造]
 第1網目構造に含まれる無機材料としては、例えば、無機粒子、無機ポリマー等が挙げられ、好ましくは無機粒子を含む。第1網目構造は、例えば、無機粒子のネットワークで構成されている。無機粒子のネットワークは、例えば、複数の無機粒子が水素結合等を介して互いに結合することによって形成される。
[First network structure]
The inorganic material contained in the first network structure includes, for example, inorganic particles, inorganic polymers, etc., and preferably contains inorganic particles. The first network structure is composed of, for example, a network of inorganic particles. A network of inorganic particles is formed, for example, by bonding a plurality of inorganic particles to each other via hydrogen bonding or the like.
 無機粒子としては、凝集などによりネットワークを形成可能なものであれば特に限定されず、例えば、シリカ、チタニア、ジルコニア、アルミナ、酸化銅、層状ケイ酸塩、ゼオライト等の無機酸化物の粒子が挙げられる。無機粒子は、凝集力の観点から、シリカ粒子を含むことが好ましい。シリカ粒子としては、フュームドシリカ(例えば、Aerosil 200等)、コロイダルシリカ等が好ましい。無機粒子は、1種又は2種以上を組み合わせて使用できる。無機粒子には、ジメチルシリル処理、トリメチルシリル処理等の各種表面処理が施されていてもよい。 The inorganic particles are not particularly limited as long as they can form a network by aggregation or the like, and examples thereof include particles of inorganic oxides such as silica, titania, zirconia, alumina, copper oxide, layered silicate, and zeolite. be done. From the viewpoint of cohesion, the inorganic particles preferably contain silica particles. As silica particles, fumed silica (for example, Aerosil 200, etc.), colloidal silica, and the like are preferable. The inorganic particles can be used singly or in combination of two or more. The inorganic particles may be subjected to various surface treatments such as dimethylsilyl treatment and trimethylsilyl treatment.
 BET(Brunauer-Emmett-Teller)法により測定された無機粒子の比表面積は、補強効果の観点から、20m2/g以上であることが好ましく、50m2/g以上であることがより好ましい。この比表面積は、第1網目構造を作製するための分散液の塗工性の観点から、300m2/g以下であることが好ましく、200m2/g以下であることがより好ましい。 The specific surface area of the inorganic particles measured by the BET (Brunauer-Emmett-Teller) method is preferably 20 m 2 /g or more, more preferably 50 m 2 /g or more, from the viewpoint of the reinforcing effect. This specific surface area is preferably 300 m 2 /g or less, more preferably 200 m 2 /g or less, from the viewpoint of the coating properties of the dispersion for producing the first network structure.
 無機粒子の一次粒子径は、補強効果の観点から、1nm以上であることが好ましく、5nm以上であることがより好ましい。無機粒子の一次粒子径は、第1網目構造を作製するための分散液の安定性の観点から、100nm以下であることが好ましく、50nm以下であることがより好ましい。無機粒子の一次粒子径は、透過型電子顕微鏡観察によって得られた電子顕微鏡像から算出された無機粒子の一次粒子の面積と同じ面積を有する円の直径を意味する。 From the viewpoint of the reinforcing effect, the primary particle diameter of the inorganic particles is preferably 1 nm or more, more preferably 5 nm or more. The primary particle size of the inorganic particles is preferably 100 nm or less, more preferably 50 nm or less, from the viewpoint of the stability of the dispersion for producing the first network structure. The primary particle size of the inorganic particles means the diameter of a circle having the same area as that of the primary particles of the inorganic particles calculated from an electron microscope image obtained by observation with a transmission electron microscope.
 無機ポリマーは、例えば、無機モノマーの重合により形成される。無機モノマーとしては、特に限定されず、例えば、Si、Ti、Zr、Al、Sn、Fe、Co、Ni、Cu、Zn、Pb、Ag、In、Sb、Pt、Auなどの金属の鉱酸塩、有機酸塩、アルコキシド、錯体(キレート)等が挙げられ、これらの中でもSiを含む化合物(ケイ素含有化合物)が好ましい。これらの無機モノマーは、例えば、加水分解、熱分解等によって、無機物(金属酸化物、水酸化物、炭化物、金属等)を形成してから重合を開始する。無機モノマーは、上述した化合物の部分加水分解物であってもよい。 Inorganic polymers are formed, for example, by polymerization of inorganic monomers. The inorganic monomer is not particularly limited, and examples thereof include mineral salts of metals such as Si, Ti, Zr, Al, Sn, Fe, Co, Ni, Cu, Zn, Pb, Ag, In, Sb, Pt, and Au. , organic acid salts, alkoxides, complexes (chelates) and the like, among which compounds containing Si (silicon-containing compounds) are preferred. These inorganic monomers form inorganic substances (metal oxides, hydroxides, carbides, metals, etc.) by, for example, hydrolysis or thermal decomposition, and then initiate polymerization. The inorganic monomer may be a partial hydrolyzate of the compounds mentioned above.
 ケイ素含有化合物は、例えば、脱水縮重合によって無機ポリマーを形成することができる。ケイ素含有化合物は、常温常圧下で、気体であってもよく、液体であってもよく、固体であってもよい。ケイ素含有化合物としては、無機ポリマーを形成可能あれば、特に限定されず、酸化ケイ素、シリケートなどが挙げられる。ケイ素含有化合物は、下記式(2)で表される化合物であってもよい。
Si(R64-x(OR7x  (2)
Silicon-containing compounds can form inorganic polymers, for example, by dehydration condensation polymerization. The silicon-containing compound may be gaseous, liquid, or solid under normal temperature and normal pressure. The silicon-containing compound is not particularly limited as long as it can form an inorganic polymer, and examples thereof include silicon oxide and silicate. The silicon-containing compound may be a compound represented by the following formula (2).
Si(R6) 4 -x (OR7) x ( 2 )
 式(2)において、xは、1~4の整数である。R6及びR7は、それぞれ独立して、直鎖状又は分岐鎖状のアルキル基である。R6及びR7において、アルキル基の炭素数は、例えば1~6であり、好ましくは1~4であり、より好ましくは1~2である。直鎖状のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等が挙げられる。分岐鎖状のアルキル基としては、例えば、イソプロピル基、イソブチル基等が挙げられる。 In formula (2), x is an integer of 1-4. R 6 and R 7 are each independently a linear or branched alkyl group. In R 6 and R 7 , the number of carbon atoms in the alkyl group is, for example, 1-6, preferably 1-4, more preferably 1-2. Examples of linear alkyl groups include methyl, ethyl, propyl, butyl, pentyl, and hexyl groups. Examples of branched alkyl groups include isopropyl and isobutyl groups.
 式(2)で表される化合物の具体例としては、テトラメトキシオルトシリケート、テトラエトキシオルトシリケート(テトラエチルオルトシリケート)、メチルトリエトキシオルトシリケート、メチルトリメトキシオルトシリケート、オクチルトリエトキシオルトシリケート、ジメチルジエトキシオルトシリケート等が挙げられ、これらのうち1種又は2種以上を混合して用いることができる。特に、縮重合により三次元的に架橋して、高い架橋密度を発現する観点から、テトラエトキシオルトシリケート(TEOS)が好ましい。 Specific examples of the compound represented by formula (2) include tetramethoxyorthosilicate, tetraethoxyorthosilicate (tetraethylorthosilicate), methyltriethoxyorthosilicate, methyltrimethoxyorthosilicate, octyltriethoxyorthosilicate, dimethyldi Ethoxyorthosilicate and the like can be mentioned, and one or more of these can be used in combination. In particular, tetraethoxyorthosilicate (TEOS) is preferable from the viewpoint of three-dimensional cross-linking by condensation polymerization and expression of high cross-linking density.
 分離機能層1における第1網目構造の含有率は、特に限定されず、例えば1~5wt%である。 The content of the first network structure in the separation functional layer 1 is not particularly limited, and is, for example, 1 to 5 wt%.
 第1網目構造を作製する方法は、特に限定されず、公知の方法を利用できる。無機粒子を含む第1網目構造は、例えば、次の方法によって作製することができる。まず、イオン液体Lと無機粒子とを混合する。得られた混合液は、必要に応じて、エタノール、プロパノール、ブタノール等のアルコールや水などの分散媒を含んでいてもよい。この混合液を所定の温度(例えば5~50℃、好ましくは15~30℃)で所定の時間(例えば5分未満、好ましくは1分未満)処理する。これにより、イオン液体Lの存在下で無機粒子のネットワークが形成され、第1網目構造を得ることができる。 A method for producing the first network structure is not particularly limited, and a known method can be used. The first network structure containing inorganic particles can be produced, for example, by the following method. First, the ionic liquid L and inorganic particles are mixed. The resulting mixed solution may optionally contain a dispersion medium such as alcohol such as ethanol, propanol, butanol, or water. This mixture is treated at a predetermined temperature (eg, 5 to 50° C., preferably 15 to 30° C.) for a predetermined time (eg, less than 5 minutes, preferably less than 1 minute). Thereby, a network of inorganic particles is formed in the presence of the ionic liquid L, and a first network structure can be obtained.
 無機モノマー、特にケイ素含有化合物、から形成された無機ポリマーを含む第1網目構造は、例えば、次の方法によって作製することができる。まず、イオン液体Lと無機モノマーとを混合する。得られた混合液は、必要に応じて、無機モノマー同士を化学的に結合させる触媒(例えば脱水縮合触媒)、架橋補助剤、分散媒などを含んでいてもよい。触媒としては、HClなどの酸触媒が挙げられる。分散媒としては、上述のものが挙げられる。 A first network structure containing an inorganic polymer formed from an inorganic monomer, particularly a silicon-containing compound, can be produced, for example, by the following method. First, the ionic liquid L and an inorganic monomer are mixed. The obtained mixed solution may contain a catalyst (for example, a dehydration condensation catalyst) for chemically bonding inorganic monomers together, a cross-linking aid, a dispersion medium, and the like, if necessary. Catalysts include acid catalysts such as HCl. Examples of the dispersion medium include those described above.
 混合液において、無機モノマーの質量に対する触媒の質量の比率は、特に限定されず、例えば0.01~20wt%、好ましくは0.05~10wt%、より好ましくは0.1~5wt%である。無機モノマーの質量に対する架橋補助剤の質量の比率は、特に限定されず、例えば0.01~20wt%、好ましくは0.05~15wt%、より好ましくは0.1~10wt%である。 In the mixed liquid, the ratio of the mass of the catalyst to the mass of the inorganic monomer is not particularly limited, and is, for example, 0.01 to 20 wt%, preferably 0.05 to 10 wt%, more preferably 0.1 to 5 wt%. The ratio of the mass of the cross-linking aid to the mass of the inorganic monomer is not particularly limited, and is, for example, 0.01 to 20 wt%, preferably 0.05 to 15 wt%, more preferably 0.1 to 10 wt%.
 次に、混合液を所定の温度(例えば5~100℃、好ましくは15~60℃)で所定の時間(例えば5分未満、好ましくは1分未満)処理する。これにより、イオン液体Lの存在下で無機モノマーから無機ポリマーが形成され、第1網目構造を得ることができる。 Next, the mixture is treated at a predetermined temperature (eg, 5 to 100°C, preferably 15 to 60°C) for a predetermined time (eg, less than 5 minutes, preferably less than 1 minute). Thereby, an inorganic polymer is formed from the inorganic monomer in the presence of the ionic liquid L, and the first network structure can be obtained.
[第2網目構造]
 第2網目構造に含まれる有機材料は、例えば、プレポリマーの架橋物(架橋構造、詳細には化学的架橋構造、を有するポリマー)を含む。第2網目構造は、実質的にプレポリマーの架橋物から構成されていてもよい。この架橋物の重量平均分子量(Mw)は、例えば5000以上であり、10000以上が好ましく、20000以上がより好ましく、40000以上がさらに好ましい。架橋物の重量平均分子量の上限値は、特に限定されず、例えば500万であり、200万が好ましく、150万がより好ましい。架橋物の重量平均分子量が40000以上である場合、分離機能層1の機械的強度が向上する傾向がある。架橋物の重量平均分子量は、例えば、示差屈折率検出器(RID)を備えたゲルパーミエーションクロマトグラフ(GPC)によって、架橋物の分子量分布を測定し、得られたクロマトグラム(チャート)から、標準ポリスチレンによる検量線を用いて算出することができる。
[Second network structure]
The organic material contained in the second network structure includes, for example, a prepolymer crosslinked product (a polymer having a crosslinked structure, specifically a chemically crosslinked structure). The second network structure may consist essentially of crosslinked prepolymers. The weight average molecular weight (Mw) of this crosslinked product is, for example, 5,000 or more, preferably 10,000 or more, more preferably 20,000 or more, and even more preferably 40,000 or more. The upper limit of the weight average molecular weight of the crosslinked product is not particularly limited, and is, for example, 5 million, preferably 2 million, more preferably 1.5 million. When the weight average molecular weight of the crosslinked product is 40000 or more, the mechanical strength of the separation functional layer 1 tends to be improved. The weight average molecular weight of the crosslinked product is obtained by measuring the molecular weight distribution of the crosslinked product by, for example, a gel permeation chromatograph (GPC) equipped with a differential refractive index detector (RID). From the obtained chromatogram (chart), It can be calculated using a standard polystyrene calibration curve.
[プレポリマー]
 プレポリマーは、モノマーに由来する構成単位を含むポリマー鎖を有する。このポリマー鎖は、例えば、モノマーがラジカル重合することによって形成されている。プレポリマーの架橋物では、複数のポリマー鎖が架橋鎖によって架橋されている。ポリマー鎖と架橋鎖とは、ヒドラゾン結合、アミド結合、イミド結合、ウレタン結合、エーテル結合及びエステル結合からなる群より選ばれる少なくとも1種の結合により結合されていることが好ましい。
[Prepolymer]
A prepolymer has a polymer chain containing constituent units derived from monomers. This polymer chain is formed, for example, by radical polymerization of a monomer. In the prepolymer crosslinked product, a plurality of polymer chains are crosslinked by crosslinked chains. The polymer chain and the crosslinked chain are preferably linked by at least one bond selected from the group consisting of hydrazone bond, amide bond, imide bond, urethane bond, ether bond and ester bond.
 プレポリマーは、単独重合体、共重合体、又はこれらの混合物であってもよい。共重合体としては、ランダム共重合体、ブロック共重合体、交互共重合体、グラフト共重合体などが挙げられる。一例として、プレポリマーは、(メタ)アクリレート系モノマーに由来する構成単位を主成分として有する(メタ)アクリル系ポリマーを含んでいてもよい。本明細書において、「(メタ)アクリレート」は、アクリレート及び/又はメタクリレートを意味する。「主成分」は、プレポリマーを構成する全構成単位のうち、重量基準で最も多く含まれる構成単位を意味する。 The prepolymer may be a homopolymer, copolymer, or mixture thereof. Copolymers include random copolymers, block copolymers, alternating copolymers, graft copolymers, and the like. As an example, the prepolymer may contain a (meth)acrylic polymer having a structural unit derived from a (meth)acrylate monomer as a main component. As used herein, "(meth)acrylate" means acrylate and/or methacrylate. The term "main component" means a structural unit that is contained in the largest amount on a weight basis among all the structural units that constitute the prepolymer.
 プレポリマーは、後述する架橋剤と反応可能な架橋点を有するポリマーであることが好ましい。架橋点は、プレポリマーの末端、主鎖及び側鎖のいずれかに位置する。架橋点は、高度に三次元的に架橋された架橋物が得られる観点から、プレポリマーの側鎖に位置することが好ましい。 The prepolymer is preferably a polymer having cross-linking points capable of reacting with the cross-linking agent described below. Cross-linking points are located at either the terminal, main chain or side chain of the prepolymer. The cross-linking point is preferably located on the side chain of the prepolymer from the viewpoint of obtaining a highly three-dimensionally cross-linked product.
 プレポリマーは、架橋点として機能する官能基、特に極性基、を有することが好ましい。極性基とは、炭素及び水素以外の原子を含む原子団を意味し、典型的には、N原子及びO原子からなる群より選ばれる少なくとも1つを含む原子団を意味する。プレポリマーが極性基を有することにより、高度に三次元的に架橋された架橋物を容易に得ることができる。極性基を有するプレポリマーの架橋物は、イオン液体を安定して保持できる傾向もある。 The prepolymer preferably has a functional group, especially a polar group, that functions as a cross-linking point. A polar group means an atomic group containing atoms other than carbon and hydrogen, and typically means an atomic group containing at least one selected from the group consisting of N atoms and O atoms. By having a polar group in the prepolymer, a highly three-dimensionally crosslinked product can be easily obtained. A crosslinked product of a prepolymer having a polar group also tends to be able to stably retain an ionic liquid.
 極性基としては、例えば、アミノ基、アミド基、イミド基、モルホリノ基、カルボキシル基、エステル基、ヒドロキシル基、エーテル基などが挙げられる。アミノ基は、1級アミノ基だけでなく、アルキル基等で置換された2級アミノ基や3級アミノ基を含む。アミド基としては、(メタ)アクリルアミド基、アセトアミド基、ピロリドン基などが挙げられる。エーテル基としては、ポリエチレングリコール基、ポリプロピレングリコール基等のポリアルキルエーテル基;エポキシ基;ビニロキシ基等が挙げられる。 Polar groups include, for example, amino groups, amide groups, imide groups, morpholino groups, carboxyl groups, ester groups, hydroxyl groups, and ether groups. The amino group includes not only a primary amino group but also a secondary amino group and a tertiary amino group substituted with an alkyl group or the like. The amide group includes a (meth)acrylamide group, an acetamide group, a pyrrolidone group and the like. The ether group includes polyalkyl ether groups such as polyethylene glycol group and polypropylene glycol group; epoxy group; vinyloxy group and the like.
 プレポリマーは、極性基含有モノマー、特に極性基含有(メタ)アクリレート系モノマー、に由来する構成単位を含むことが好ましい。極性基含有モノマーは、例えば、アミド基含有モノマー、イミド基含有モノマー、アミノ基含有モノマー、エポキシ基含有モノマー及びビニロキシ基含有モノマーからなる群より選ばれる少なくとも1種を含むことが好ましく、アミド基含有モノマー、イミド基含有モノマー及びビニロキシ基含有モノマーからなる群より選ばれる少なくとも1種を含むことがより好ましい。 The prepolymer preferably contains structural units derived from polar group-containing monomers, particularly polar group-containing (meth)acrylate monomers. The polar group-containing monomer preferably contains, for example, at least one selected from the group consisting of amide group-containing monomers, imide group-containing monomers, amino group-containing monomers, epoxy group-containing monomers and vinyloxy group-containing monomers. More preferably, it contains at least one selected from the group consisting of monomers, imide group-containing monomers and vinyloxy group-containing monomers.
 アミド基含有モノマーとしては、例えば、アクリルアミド、メタクリルアミド、N-ビニルピロリドン、N,N-ジアリルアクリルアミド、N-メチルアクリルアミド、N,N-ジメチルアクリルアミド、N,N-ジメチルメタクリルアミド、N,N-ジエチルアクリルアミド、N,N-ジエチルメタクリルアミド、N,N’-メチレンビスアクリルアミド、N,N-ジメチルアミノプロピルアクリルアミド、N,N-ジメチルアミノプロピルメタクリルアミド、ジアセトンアクリルアミド等が挙げられる。 Examples of amide group-containing monomers include acrylamide, methacrylamide, N-vinylpyrrolidone, N,N-diallylacrylamide, N-methylacrylamide, N,N-dimethylacrylamide, N,N-dimethylmethacrylamide, N,N- diethylacrylamide, N,N-diethylmethacrylamide, N,N'-methylenebisacrylamide, N,N-dimethylaminopropylacrylamide, N,N-dimethylaminopropylmethacrylamide, diacetoneacrylamide and the like.
 イミド基含有モノマーとしては、例えば、N-(メタ)アクリロイルオキシスクシンイミド、N-(メタ)アクリロイルオキシメチレンスクシンイミド、N-(メタ)アクリロイルオキシエチレンスクシンイミド等が挙げられる。 Examples of imide group-containing monomers include N-(meth)acryloyloxysuccinimide, N-(meth)acryloyloxymethylenesuccinimide, and N-(meth)acryloyloxyethylenesuccinimide.
 アミノ基含有モノマーとしては、例えば、アミノエチル(メタ)アクリレート、N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジメチルアミノプロピル(メタ)アクリレート等が挙げられる。 Examples of amino group-containing monomers include aminoethyl (meth)acrylate, N,N-dimethylaminoethyl (meth)acrylate, and N,N-dimethylaminopropyl (meth)acrylate.
 エポキシ基含有モノマーとしては、例えば、グリシジル(メタ)アクリレート、メチルグリシジル(メタ)アクリレート、3-エチルオキセタン-3-イル(メタ)アクリレート、アリルグリシジルエーテル等が挙げられる。 Examples of epoxy group-containing monomers include glycidyl (meth)acrylate, methylglycidyl (meth)acrylate, 3-ethyloxetan-3-yl (meth)acrylate, and allyl glycidyl ether.
 ビニロキシ基含有モノマーとしては、(メタ)アクリル酸2-(2-ビニロキシエトキシ)エチル、(メタ)アクリル酸2-ビニロキシエチル、(メタ)アクリル酸4-ビニロキシプロピル等が挙げられる。 Examples of vinyloxy group-containing monomers include 2-(2-vinyloxyethoxy)ethyl (meth)acrylate, 2-vinyloxyethyl (meth)acrylate, and 4-vinyloxypropyl (meth)acrylate.
 極性基含有モノマーは、単独で使用してもよく、2種以上を混合して使用してもよい。例えば、メチルアクリルアミドやジメチルアクリルアミドとともに、N,N’-メチレンビスアクリルアミド、ジアセトンアクリルアミド(DAAm)、N-アクリロイルオキシスクシンイミド(NSA)等を共重合させてプレポリマーを形成してもよい。一例として、プレポリマーは、ジメチルアクリルアミドに由来する構成単位、及び、N-アクリロイルオキシスクシンイミドに由来する構成単位を含んでいてもよい。 The polar group-containing monomers may be used singly or in combination of two or more. For example, a prepolymer may be formed by copolymerizing methylacrylamide or dimethylacrylamide with N,N'-methylenebisacrylamide, diacetoneacrylamide (DAAm), N-acryloyloxysuccinimide (NSA), or the like. As an example, the prepolymer may contain structural units derived from dimethylacrylamide and structural units derived from N-acryloyloxysuccinimide.
 プレポリマーは、架橋剤として機能する構成単位、例えば多官能(メタ)アクリレートに由来する構成単位、を含んでいてもよい。この構成単位を有するプレポリマーは、自己架橋することができる。多官能(メタ)アクリレートは、1分子内に2つ以上の(メタ)アクリロイル基を有するモノマーを意味する。多官能(メタ)アクリレートとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、1,2-エチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ジペンタエリスリトールヘキサアクリレート等が挙げられる。 The prepolymer may contain a structural unit that functions as a cross-linking agent, such as a structural unit derived from a polyfunctional (meth)acrylate. A prepolymer having this constitutional unit can be self-crosslinked. A polyfunctional (meth)acrylate means a monomer having two or more (meth)acryloyl groups in one molecule. Polyfunctional (meth)acrylates include, for example, trimethylolpropane tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, 1,2-ethylene glycol di(meth)acrylate, 1,6-hexanediol di(meth) Acrylate, dipentaerythritol hexaacrylate and the like.
 プレポリマーの重量平均分子量(Mw)は、分離機能層1の機械的強度の観点から、例えば2500以上が好ましく、5000以上がより好ましく、10000以上がさらに好ましい。プレポリマーの重量平均分子量の上限値は、特に限定されず、例えば250万であり、100万が好ましく、75万がより好ましい。プレポリマーの重量平均分子量は、架橋物について上述した方法によって特定することができる。 From the viewpoint of the mechanical strength of the separation functional layer 1, the weight average molecular weight (Mw) of the prepolymer is preferably 2500 or more, more preferably 5000 or more, and even more preferably 10000 or more. The upper limit of the weight average molecular weight of the prepolymer is not particularly limited, and is, for example, 2,500,000, preferably 1,000,000, more preferably 750,000. The weight average molecular weight of the prepolymer can be determined by the method described above for crosslinked products.
 プレポリマーは、例えば、架橋点として機能する官能基を有するモノマーを重合開始剤の存在下で重合させることによって得られる。モノマーの重合は、分離機能層1の柔軟性及び延伸性を向上させる観点から、ラジカル重合であることが好ましい。ラジカル重合は、熱重合であってもよく、光重合(例えば紫外線照射による重合)であってもよい。 A prepolymer is obtained, for example, by polymerizing a monomer having a functional group that functions as a cross-linking point in the presence of a polymerization initiator. From the viewpoint of improving the flexibility and stretchability of the separation functional layer 1, the polymerization of the monomer is preferably radical polymerization. Radical polymerization may be thermal polymerization or photopolymerization (for example, polymerization by ultraviolet irradiation).
 重合開始剤としては、アゾ系重合開始剤、過酸化物系開始剤、過酸化物と還元剤との組み合わせによるレドックス系開始剤、置換エタン系開始剤等を使用することができる。光重合を行う場合には、各種光重合開始剤を使用することができる。光重合では、2-オキソグルタル酸などの光増感剤を用いてもよい。 As the polymerization initiator, an azo polymerization initiator, a peroxide initiator, a redox initiator obtained by combining a peroxide and a reducing agent, a substituted ethane initiator, or the like can be used. When performing photopolymerization, various photopolymerization initiators can be used. In photopolymerization, a photosensitizer such as 2-oxoglutarate may be used.
 アゾ系重合開始剤としては、2,2’-アゾビスイソブチロニトリル(AIBN)、2,2’-アゾビス-2-メチルブチロニトリル、ジメチル-2,2’-アゾビス(2-メチルプロピオネート)、4,4’-アゾビス-4-シアノバレリアン酸、アゾビスイソバレロニトリル、2,2’-アゾビス(2-アミジノプロパン)ジヒドロクロライド、2,2’-アゾビス[2-(5-メチル-2-イミダゾリン-2-イル)プロパン]ジヒドロクロライド、2,2’-アゾビス(2-メチルプロピオンアミジン)二硫酸塩、2,2’-アゾビス(N,N’-ジメチレンイソブチルアミジン)ジヒドロクロライド等が挙げられる。 Azo polymerization initiators include 2,2′-azobisisobutyronitrile (AIBN), 2,2′-azobis-2-methylbutyronitrile, dimethyl-2,2′-azobis(2-methylbutyronitrile), pionate), 4,4′-azobis-4-cyanovaleric acid, azobisisovaleronitrile, 2,2′-azobis(2-amidinopropane) dihydrochloride, 2,2′-azobis[2-(5- methyl-2-imidazolin-2-yl)propane]dihydrochloride, 2,2'-azobis(2-methylpropionamidine) disulfate, 2,2'-azobis(N,N'-dimethyleneisobutyramidine) dihydro chloride and the like.
 過酸化物系開始剤としては、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩;ジベンゾイルパーオキサイド、t-ブチルパーマレエート、t-ブチルハイドロパーオキサイド、ジ-t-ブチルパーオキサイド、t-ブチルパーオキシベンゾエート、ジクミルパーオキサイド、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)シクロドデカン、過酸化水素等が挙げられる。 Persulfates such as potassium persulfate and ammonium persulfate; dibenzoyl peroxide, t-butyl permaleate, t-butyl hydroperoxide, di-t-butyl peroxide, t- Butyl peroxybenzoate, dicumyl peroxide, 1,1-bis(t-butylperoxy)-3,3,5-trimethylcyclohexane, 1,1-bis(t-butylperoxy)cyclododecane, hydrogen peroxide etc.
 レドックス系開始剤としては、過酸化物とアスコルビン酸との組み合わせ(過酸化水素水とアスコルビン酸との組み合わせ等)、過酸化物と鉄(II)塩との組み合わせ(過酸化水素水と鉄(II)塩との組み合わせ等)、過硫酸塩と亜硫酸水素ナトリウムとの組み合わせ等が挙げられる。 Examples of redox initiators include a combination of peroxide and ascorbic acid (such as a combination of aqueous hydrogen peroxide and ascorbic acid), a combination of peroxide and iron (II) salt (a combination of aqueous hydrogen peroxide and iron ( II) combinations with salts, etc.), combinations of persulfates and sodium hydrogen sulfite, and the like.
 置換エタン系開始剤としては、フェニル置換エタン等が挙げられる。 Examples of substituted ethane-based initiators include phenyl-substituted ethane.
 光重合開始剤としては、アセトフェノン系、ケタール系、ベンゾフェノン系、ベンゾイン系、ベンゾイル系、キサントン系、活性ハロゲン化合物(トリアジン系、ハロメチルオキサジアゾール系、クマリン系)、アクリジン系、ビイミダゾール系、オキシムエステル系等が挙げられる。 Photopolymerization initiators include acetophenone, ketal, benzophenone, benzoin, benzoyl, xanthone, active halogen compounds (triazine, halomethyloxadiazole, coumarin), acridine, biimidazole, An oxime ester system and the like can be mentioned.
 アセトフェノン系光重合開始剤としては、例えば、2,2-ジエトキシアセトフェノン、p-ジメチルアミノアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、p-ジメチルアミノアセトフェノン、4’-イソプロピル-2-ヒドロキシ-2-メチル-プロピオフェノン、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-1-ブタノン、2-トリル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-1-ブタノン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-1-プロパノンなどが挙げられる。 Acetophenone-based photopolymerization initiators include, for example, 2,2-diethoxyacetophenone, p-dimethylaminoacetophenone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, p-dimethylaminoacetophenone, 4 '-isopropyl-2-hydroxy-2-methyl-propiophenone, 1-hydroxy-cyclohexyl-phenyl-ketone, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-1-butanone, 2- tolyl-2-dimethylamino-1-(4-morpholinophenyl)-1-butanone, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholino-1-propanone and the like.
 ケタール系光重合開始剤としては、例えば、ベンジルジメチルケタール、ベンジル-β-メトキシエチルアセタールなどが挙げられる。 Examples of ketal-based photopolymerization initiators include benzyl dimethyl ketal and benzyl-β-methoxyethyl acetal.
 ベンゾフェノン系光重合開始剤としては、例えば、ベンゾフェノン、4,4’-(ビスジメチルアミノ)ベンゾフェノン、4,4’-(ビスジエチルアミノ)ベンゾフェノン、4,4’-ジクロロベンゾフェノンなどが挙げられる。 Examples of benzophenone-based photopolymerization initiators include benzophenone, 4,4'-(bisdimethylamino)benzophenone, 4,4'-(bisdiethylamino)benzophenone, and 4,4'-dichlorobenzophenone.
 ベンゾイン系又はベンゾイル系光重合開始剤としては、例えば、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾインメチルエーテル、メチルo-ベンゾイルベンゾエートなどが挙げられる。 Benzoin-based or benzoyl-based photopolymerization initiators include, for example, benzoin isopropyl ether, benzoin isobutyl ether, benzoin methyl ether, and methyl o-benzoyl benzoate.
 キサントン系光重合開始剤としては、例えば、ジエチルチオキサントン、ジイソプロピルチオキサントン、モノイソプロピルチオキサントン、クロロチオキサントンなどが挙げられる。 Examples of xanthone-based photopolymerization initiators include diethylthioxanthone, diisopropylthioxanthone, monoisopropylthioxanthone, and chlorothioxanthone.
 トリアジン系光重合開始剤としては、例えば、2,4-ビス(トリクロロメチル)-6-p-メトキシフェニル-s-トリアジン、2,4-ビス(トリクロロメチル)-6-p-メトキシスチリル-s-トリアジン、2,4-ビス(トリクロロメチル)-6-(1-p-ジメチルアミノフェニル)-1,3-ブタジエニル-s-トリアジン、2,4-ビス(トリクロロメチル)-6-ビフェニル-s-トリアジン、2,4-ビス(トリクロロメチル)-6-(p-メチルビフェニル)-s-トリアジン、p-ヒドロキシエトキシスチリル-2,6-ジ(トリクロロメチル)-s-トリアジン、メトキシスチリル-2,6-ジ(トリクロロメチル)-s-トリアジン、3,4-ジメトキシスチリル-2,6-ジ(トリクロロメチル)-s-トリアジン、4-ベンズオキソラン-2,6-ジ(トリクロロメチル)-s-トリアジン、4-(o-ブロモ-p-N,N-(ジエトキシカルボニルアミノ)-フェニル)-2,6-ジ(クロロメチル)-s-トリアジン、4-(p-N,N-ジエトキシカルボニルアミノ)-フェニル)-2,6-ジ(クロロメチル)-s-トリアジンなどが挙げられる。 Triazine-based photopolymerization initiators include, for example, 2,4-bis(trichloromethyl)-6-p-methoxyphenyl-s-triazine, 2,4-bis(trichloromethyl)-6-p-methoxystyryl-s -triazine, 2,4-bis(trichloromethyl)-6-(1-p-dimethylaminophenyl)-1,3-butadienyl-s-triazine, 2,4-bis(trichloromethyl)-6-biphenyl-s -triazine, 2,4-bis(trichloromethyl)-6-(p-methylbiphenyl)-s-triazine, p-hydroxyethoxystyryl-2,6-di(trichloromethyl)-s-triazine, methoxystyryl-2 ,6-di(trichloromethyl)-s-triazine, 3,4-dimethoxystyryl-2,6-di(trichloromethyl)-s-triazine, 4-benzoxolane-2,6-di(trichloromethyl)- s-triazine, 4-(o-bromo-pN,N-(diethoxycarbonylamino)-phenyl)-2,6-di(chloromethyl)-s-triazine, 4-(pN,N- diethoxycarbonylamino)-phenyl)-2,6-di(chloromethyl)-s-triazine and the like.
 ハロメチルオキサジアゾール系光重合開始剤としては、例えば、2-トリクロロメチル-5-スチリル-1,3,4-オキソジアゾール、2-トリクロロメチル-5-(シアノスチリル)-1,3,4-オキソジアゾール、2-トリクロロメチル-5-(ナフト-1-イル)-1,3,4-オキソジアゾール、2-トリクロロメチル-5-(4-スチリル)スチリル-1,3,4-オキソジアゾールなどが挙げられる。 Examples of halomethyloxadiazole-based photopolymerization initiators include 2-trichloromethyl-5-styryl-1,3,4-oxodiazole, 2-trichloromethyl-5-(cyanostyryl)-1,3, 4-oxodiazole, 2-trichloromethyl-5-(naphth-1-yl)-1,3,4-oxodiazole, 2-trichloromethyl-5-(4-styryl)styryl-1,3,4 - oxodiazole and the like.
 クマリン系光重合開始剤としては、例えば、3-メチル-5-アミノ-((s-トリアジン-2-イル)アミノ)-3-フェニルクマリン、3-クロロ-5-ジエチルアミノ-((s-トリアジン-2-イル)アミノ)-3-フェニルクマリン、3-ブチル-5-ジメチルアミノ-((s-トリアジン-2-イル)アミノ)-3-フェニルクマリンなどが挙げられる。 Coumarin-based photopolymerization initiators include, for example, 3-methyl-5-amino-((s-triazin-2-yl)amino)-3-phenylcoumarin, 3-chloro-5-diethylamino-((s-triazine -2-yl)amino)-3-phenylcoumarin, 3-butyl-5-dimethylamino-((s-triazin-2-yl)amino)-3-phenylcoumarin and the like.
 アクリジン系光重合開始剤としては、例えば、9-フェニルアクリジン、1,7-ビス(9-アクリジニル)ヘプタンなどが挙げられる。 Examples of acridine-based photopolymerization initiators include 9-phenylacridine and 1,7-bis(9-acridinyl)heptane.
 ビイミダゾール系光重合開始剤としては、例えば、2-(o-クロロフェニル)-4,5-ジフェニルイミダゾリル二量体、2-(o-メトキシフェニル)-4,5-ジフェニルイミダゾリル二量体、2-(2,4-ジメトキシフェニル)-4,5-ジフェニルイミダゾリル二量体などのロフィンダイマー;2-メルカプトベンズイミダゾール;2,2’-ジベンゾチアゾリルジスルフィドなどが挙げられる。 Biimidazole-based photopolymerization initiators include, for example, 2-(o-chlorophenyl)-4,5-diphenylimidazolyl dimer, 2-(o-methoxyphenyl)-4,5-diphenylimidazolyl dimer, 2 lophine dimers such as -(2,4-dimethoxyphenyl)-4,5-diphenylimidazolyl dimer; 2-mercaptobenzimidazole; 2,2'-dibenzothiazolyl disulfide and the like.
 オキシムエステル系光重合開始剤としては、例えば、1,2-オクタンジオン,1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)などが挙げられる。 Examples of oxime ester photopolymerization initiators include 1,2-octanedione, 1-[4-(phenylthio)-2-(O-benzoyloxime)], ethanone, 1-[9-ethyl-6-( 2-methylbenzoyl)-9H-carbazol-3-yl]-1-(O-acetyloxime) and the like.
 重合開始剤は、1種又は2種以上を組み合わせて使用することができる。重合開始剤は、好ましくは2,2’-アゾビスイソブチロニトリルである。重合開始剤の配合量は、特に限定されず、モノマー100質量部に対して、例えば0.1質量部以上であり、0.3質量部以上が好ましい。重合開始剤の配合量は、モノマー100質量部に対して、3質量部以下が好ましく、2質量部以下がより好ましい。 The polymerization initiator can be used alone or in combination of two or more. The polymerization initiator is preferably 2,2'-azobisisobutyronitrile. The amount of the polymerization initiator to be blended is not particularly limited, and is, for example, 0.1 parts by mass or more, preferably 0.3 parts by mass or more, relative to 100 parts by mass of the monomer. The amount of the polymerization initiator compounded is preferably 3 parts by mass or less, more preferably 2 parts by mass or less, relative to 100 parts by mass of the monomer.
 プレポリマーの合成は、溶媒の存在下で行ってもよい。溶媒としては、有機溶媒が好ましく、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン系有機溶剤;酢酸メチル、酢酸エチル、酢酸ブチルなどのエステル系有機溶剤;ジメチルホルムアミド、ジメチルスルホキシド、N-メチル-2-ピロリドンなどの極性溶剤;メチルアルコール、エチルアルコール、イソプロピルアルコールなどのアルコール系有機溶剤;トルエン、キシレンなどの芳香族炭化水素系有機溶剤;n-ヘキサン、シクロヘキサン、メチルシクロヘキサンなどの脂肪族炭化水素系/脂環族炭化水素系有機溶剤;メチルセロソルブ、エチルセロソルブ、ブチルセロソルブなどのセロソルブ系有機溶剤;テトラヒドロフラン、ジオキサンなどのエーテル系有機溶剤;n-ブチルカルビトール、iso-アミルカルビトールなどのカルビトール系有機溶剤などが挙げられる。有機溶媒は、1種又は2種以上を組み合わせて使用することができる。 The prepolymer synthesis may be performed in the presence of a solvent. As the solvent, organic solvents are preferable, and examples include ketone organic solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone; ester organic solvents such as methyl acetate, ethyl acetate and butyl acetate; dimethylformamide, dimethyl sulfoxide, N-methyl- Polar solvents such as 2-pyrrolidone; alcohol-based organic solvents such as methyl alcohol, ethyl alcohol and isopropyl alcohol; aromatic hydrocarbon-based organic solvents such as toluene and xylene; aliphatic hydrocarbons such as n-hexane, cyclohexane and methylcyclohexane System/alicyclic hydrocarbon-based organic solvents; cellosolve-based organic solvents such as methyl cellosolve, ethyl cellosolve, and butyl cellosolve; ether-based organic solvents such as tetrahydrofuran and dioxane; carbitols such as n-butyl carbitol and iso-amyl carbitol and organic solvents. An organic solvent can be used 1 type or in combination of 2 or more types.
 プレポリマーの合成方法としては、特に限定されず、溶液重合、乳化重合、塊状重合、懸濁重合、原子移動ラジカル重合(ATRP:Atom Transfer Radical Polymerization)、可逆的付加開裂連鎖移動重合(Raft:Reversible Addition Fragmentation chain Transfer)などの公知の方法を利用できるが、作業性の観点から、溶液重合が好ましい。一例として、プレポリマーは、溶剤存在下での光重合によって合成してもよく、無溶剤での光重合、特にUV重合、によって合成してもよい。 The method for synthesizing the prepolymer is not particularly limited, and solution polymerization, emulsion polymerization, bulk polymerization, suspension polymerization, atom transfer radical polymerization (ATRP: Atom Transfer Radical Polymerization), reversible addition-fragmentation chain transfer polymerization (Raft: Reversible Known methods such as Addition Fragmentation chain Transfer) can be used, but solution polymerization is preferred from the viewpoint of workability. As an example, the prepolymer may be synthesized by photopolymerization in the presence of a solvent or by solventless photopolymerization, particularly UV polymerization.
 ATRP開始剤としては、例えば、2-ブロモイソ酪酸tert-ブチル、2-ブロモイソ酪酸メチル、2-ブロモイソブチリルブロミド、2-ブロモイソ酪酸エチル、2-ブロモイソ酪酸2-ヒドロキシエチル、エチレンビス(2-ブロモイソブチラート)、1-トリス(ヒドロキシメチル)エタン、ペンタエリスリトールテトラキス(2-ブロモイソブチラート)等のハロゲン化アルキルが挙げられる。 Examples of ATRP initiators include tert-butyl 2-bromoisobutyrate, methyl 2-bromoisobutyrate, 2-bromoisobutyryl bromide, ethyl 2-bromoisobutyrate, 2-hydroxyethyl 2-bromoisobutyrate, ethylenebis(2- bromoisobutyrate), 1-tris(hydroxymethyl)ethane, and pentaerythritol tetrakis(2-bromoisobutyrate).
 ATRP触媒用配位子としては、例えば、2,2’-ビピリジル、4,4’-ジメチル-2,2’-ジピリジル、4,4’-ジ-tert-ブチル-2,2’-ジピリジル、4,4’-ジノニル-2,2’-ジピリジル、N-ブチル-2-ピリジルメタンイミン、N-オクチル-2-ピリジルメタンイミン、N-ドデシル-N-(2-ピリジルメチレン)アミン、N-オクタデシル-N-(2-ピリジルメチレン)アミン、N,N,N’,N’’,N’’-ペンタメチルジエチレントリアミン等が挙げられる。 ATRP catalyst ligands include, for example, 2,2′-bipyridyl, 4,4′-dimethyl-2,2′-dipyridyl, 4,4′-di-tert-butyl-2,2′-dipyridyl, 4,4'-dinonyl-2,2'-dipyridyl, N-butyl-2-pyridylmethanimine, N-octyl-2-pyridylmethanimine, N-dodecyl-N-(2-pyridylmethylene)amine, N- octadecyl-N-(2-pyridylmethylene)amine, N,N,N',N'',N''-pentamethyldiethylenetriamine and the like.
 ATRP触媒用金属塩としては、例えば、塩化銅(I)、塩化銅(II)、臭化銅(I)、臭化銅(II)、塩化チタン(II)、塩化チタン(III)、塩化チタン(IV)、臭化チタン(IV)、塩化鉄(II)等が挙げられる。 Examples of metal salts for ATRP catalysts include copper (I) chloride, copper (II) chloride, copper (I) bromide, copper (II) bromide, titanium (II) chloride, titanium (III) chloride, titanium chloride (IV), titanium (IV) bromide, iron (II) chloride, and the like.
 RAFT剤としては、例えば、シアノメチル-ドデシルトリチオ炭酸、2-(ドデシルチオカルボノチオイルチオ)-2-メチルプロピオン酸、2-シアノ-2-プロピルドデシルトリチオ炭酸等が挙げられる。 RAFT agents include, for example, cyanomethyl-dodecyltrithiocarbonate, 2-(dodecylthiocarbonothioylthio)-2-methylpropionic acid, 2-cyano-2-propyldodecyltrithiocarbonate and the like.
 熱重合によってプレポリマーを合成する場合、重合温度は、例えば25~80℃であり、好ましくは30~70℃、より好ましくは40~60℃である。光重合によってプレポリマーを合成する場合、重合温度は、好ましくは10~60℃であり、より好ましくは20~50℃、さらに好ましくは20~40℃である。 When the prepolymer is synthesized by thermal polymerization, the polymerization temperature is, for example, 25-80°C, preferably 30-70°C, more preferably 40-60°C. When the prepolymer is synthesized by photopolymerization, the polymerization temperature is preferably 10 to 60.degree. C., more preferably 20 to 50.degree. C., still more preferably 20 to 40.degree.
 熱重合によってプレポリマーを合成する場合、重合時間は、例えば1~100時間、好ましくは20~80時間、より好ましくは30~70時間、さらに好ましくは40~60時間である。光重合によってプレポリマーを合成する場合、重合時間は、例えば0.1~100時間、好ましくは1~70時間、より好ましくは5~40時間、さらに好ましくは10~30時間である。 When the prepolymer is synthesized by thermal polymerization, the polymerization time is, for example, 1 to 100 hours, preferably 20 to 80 hours, more preferably 30 to 70 hours, still more preferably 40 to 60 hours. When the prepolymer is synthesized by photopolymerization, the polymerization time is, for example, 0.1 to 100 hours, preferably 1 to 70 hours, more preferably 5 to 40 hours, still more preferably 10 to 30 hours.
 光重合によってプレポリマーを合成する場合、利用する紫外線の波長は、モノマーがラジカル重合することが可能であれば特に限定されず、例えば200~550nmの波長域から選択でき、好ましくは250~500nm、より好ましくは300~400nmである。紫外線の強度は、特に限定されないが、重合時間や安全性を考慮すると、例えば1~3000mJ/(cm2・s)であり、好ましくは10~2000mJ/(cm2・s)である。 When synthesizing a prepolymer by photopolymerization, the wavelength of the ultraviolet light to be used is not particularly limited as long as the monomer can be radically polymerized. More preferably 300 to 400 nm. Although the intensity of the ultraviolet rays is not particularly limited, it is, for example, 1 to 3000 mJ/(cm 2 ·s), preferably 10 to 2000 mJ/(cm 2 ·s), considering the polymerization time and safety.
[架橋剤]
 プレポリマーの架橋物は、例えば、プレポリマーと架橋剤との反応によって形成することができる。ただし、プレポリマーが架橋剤として機能する構成単位を含む場合、プレポリマーの架橋物は、プレポリマー同士の反応によって形成することができる。架橋剤は、プレポリマーの組成などに応じて適宜選択することができる。架橋剤としては、例えば、多官能(メタ)アクリレート、ヒドラジド系架橋剤、アミン系架橋剤、イソシアネート系架橋剤、エポキシ系架橋剤、アジリジン系架橋剤、メラミン系架橋剤、金属キレート系架橋剤、金属塩系架橋剤、過酸化物系架橋剤、オキサゾリン系架橋剤、尿素系架橋剤、カルボジイミド系架橋剤、カップリング剤系架橋剤(例えばシランカップリング剤)等が挙げられる。架橋剤は、1種又は2種以上を組み合わせて使用することができる。
[Crosslinking agent]
A crosslinked product of a prepolymer can be formed, for example, by reacting the prepolymer with a crosslinking agent. However, when the prepolymer contains a structural unit that functions as a cross-linking agent, the cross-linked product of the prepolymer can be formed by reaction between the prepolymers. The cross-linking agent can be appropriately selected according to the composition of the prepolymer. Examples of cross-linking agents include polyfunctional (meth)acrylates, hydrazide-based cross-linking agents, amine-based cross-linking agents, isocyanate-based cross-linking agents, epoxy-based cross-linking agents, aziridine-based cross-linking agents, melamine-based cross-linking agents, metal chelate-based cross-linking agents, Examples include metal salt-based cross-linking agents, peroxide-based cross-linking agents, oxazoline-based cross-linking agents, urea-based cross-linking agents, carbodiimide-based cross-linking agents, and coupling agent-based cross-linking agents (for example, silane coupling agents). A cross-linking agent can be used 1 type or in combination of 2 or more types.
 多官能(メタ)アクリレートとしては、プレポリマーについて上述したものが挙げられる。 Examples of polyfunctional (meth)acrylates include those mentioned above for prepolymers.
 ヒドラジド系架橋剤としては、例えば、イソフタル酸ジヒドラジド、テレフタル酸ジヒドラジド、フタル酸ジヒドラジド、2,6-ナフタレンジカルボン酸ジヒドラジド、ナフタレン酸ジヒドラジド、シュウ酸ジヒドラジド、マロン酸ジヒドラジド、コハク酸ジヒドラジド、グルタミン酸ジヒドラジド、アジピン酸ジヒドラジド、ピメリン酸ジヒドラジド、スベリン酸ジヒドラジド、アゼライン酸ジヒドラジド、セバシン酸ジヒドラジド、ブラッシル酸ジヒドラジド、ドデカン二酸ジヒドラジド、アセトンジカルボン酸ジヒドラジド、フマル酸ジヒドラジド、マレイン酸ジヒドラジド、イタコン酸ジヒドラジド、トリメリット酸ジヒドラジド、1,3,5-ベンゼントリカルボン酸ジヒドラジド、アコニット酸ジヒドラジド、ピロメリット酸ジヒドラジドなどの多価ヒドラジド類が挙げられ、アジピン酸ジヒドラジドが好ましい。 Examples of hydrazide cross-linking agents include isophthalic acid dihydrazide, terephthalic acid dihydrazide, phthalic acid dihydrazide, 2,6-naphthalenedicarboxylic acid dihydrazide, naphthalene acid dihydrazide, oxalic acid dihydrazide, malonic acid dihydrazide, succinic acid dihydrazide, glutamic acid dihydrazide, and adipine. acid dihydrazide, pimelic acid dihydrazide, suberic acid dihydrazide, azelaic acid dihydrazide, sebacic acid dihydrazide, brassylic acid dihydrazide, dodecanedioic acid dihydrazide, acetonedicarboxylic acid dihydrazide, fumaric acid dihydrazide, maleic acid dihydrazide, itaconic acid dihydrazide, trimellitic acid dihydrazide, Polyvalent hydrazides such as 1,3,5-benzenetricarboxylic acid dihydrazide, aconitic acid dihydrazide, and pyromellitic acid dihydrazide can be mentioned, and adipic acid dihydrazide is preferred.
 アミン系架橋剤としては、例えば、ヘキサメチレンジアミン、1,12-ドデカンジアミン、ヘキサメチレンジアミンカルバメート、N,N-ジシンナミリデン-1,6-ヘキサンジアミン、テトラメチレンペンタミン、ヘキサメチレンジアミンシンナムアルデヒド付加物などの脂肪族多価アミン類;4,4-メチレンジアニリン、m-フェニレンジアミン、4,4-ジアミノジフェニルエーテル、3,4-ジアミノジフェニルエーテル、4,4-(m-フェニレンジイソプロピリデン)ジアニリン、4,4-(p-フェニレンジイソプロピリデン)ジアニリン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、4,4-ジアミノベンズアニリド、4,4-ビス(4-アミノフェノキシ) ビフェニル、m-キシリレンジアミン、p-キシリレンジアミン、1,3,5-ベンゼントリアミンなどの芳香族多価アミン類;ポリエチレングリコールジアミン、ポリプロピレングリコールジアミン、ジエチレングリコールビス3-アミノプロピルエーテルなどの主鎖にポリエーテルを有するジアミン類等が挙げられ、1,12-ドデカンジアミン、ジエチレングリコールビス3-アミノプロピルエーテルが好ましい。 Examples of amine cross-linking agents include hexamethylenediamine, 1,12-dodecanediamine, hexamethylenediamine carbamate, N,N-dicinnamylidene-1,6-hexanediamine, tetramethylenepentamine, and hexamethylenediamine cinnamaldehyde adducts. aliphatic polyvalent amines such as; 4,4-(p-phenylenediisopropylidene)dianiline, 2,2-bis[4-(4-aminophenoxy)phenyl]propane, 4,4-diaminobenzanilide, 4,4-bis(4-aminophenoxy ) Aromatic polyamines such as biphenyl, m-xylylenediamine, p-xylylenediamine, 1,3,5-benzenetriamine; Examples include diamines having polyether in the chain, and 1,12-dodecanediamine and diethylene glycol bis-3-aminopropyl ether are preferred.
 イソシアネート系架橋剤としては、例えば、1,6-ヘキサメチレンジイソシアネート、1,4-テトラメチレンジイソシアネート、2-メチル-1,5-ペンタンジイソシアネート、3-メチル-1,5-ペンタンジイソシアネート、リジンジイソシアネート等の脂肪族ポリイソシアネート;イソホロンジイソシアネート、シクロヘキシルジイソシアネート、水素添加トリレンジイソシアネート、水素添加キシレンジイソシアネート、水素添加ジフェニルメタンジイソシアネート、水素添加テトラメチルキシレンジイソシアネート等の脂環族ポリイソシアネート;2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルエーテルジイソシアネート、2-ニトロジフェニル-4,4’-ジイソシアネート、2,2’-ジフェニルプロパン-4,4’-ジイソシアネート、3,3’-ジメチルジフェニルメタン-4,4’-ジイソシアネート、4,4’-ジフェニルプロパンジイソシアネート、m-フェニレンジイソシアネート、p-フェニレンジイソシアネート、ナフチレン-1,4-ジイソシアネート、ナフチレン-1,5-ジイソシアネート、3,3’-ジメトキシジフェニル-4,4’-ジイソシアネート、キシリレン-1,4-ジイソシアネート、キシリレン-1,3-ジイソシアネート等の芳香族ポリイソシアネート等が挙げられる。 Examples of isocyanate-based cross-linking agents include 1,6-hexamethylene diisocyanate, 1,4-tetramethylene diisocyanate, 2-methyl-1,5-pentane diisocyanate, 3-methyl-1,5-pentane diisocyanate, lysine diisocyanate, and the like. Alicyclic polyisocyanates such as isophorone diisocyanate, cyclohexyl diisocyanate, hydrogenated tolylene diisocyanate, hydrogenated xylene diisocyanate, hydrogenated diphenylmethane diisocyanate, and hydrogenated tetramethylxylene diisocyanate; 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, 4,4'-diphenyl ether diisocyanate, 2-nitrodiphenyl-4,4'-diisocyanate, 2,2'-diphenyl Propane-4,4'-diisocyanate, 3,3'-dimethyldiphenylmethane-4,4'-diisocyanate, 4,4'-diphenylpropane diisocyanate, m-phenylene diisocyanate, p-phenylene diisocyanate, naphthylene-1,4-diisocyanate , naphthylene-1,5-diisocyanate, 3,3′-dimethoxydiphenyl-4,4′-diisocyanate, xylylene-1,4-diisocyanate and xylylene-1,3-diisocyanate.
 イソシアネート系架橋剤としては、例示したイソシアネート系化合物の二重体や三量体、反応生成物又は重合物(例えば、ジフェニルメタンジイソシアネートの二重体や三量体、トリメチロールプロパンとトリレンジイソシアネートとの反応生成物、トリメチロールプロパンとヘキサメチレンジイソシアネートとの反応生成物、ポリメチレンポリフェニルイソシアネート、ポリエーテルポリイソシアネート、ポリエステルポリイソシアネート)等も用いることができる。イソシアネート系架橋剤としては、トリメチロールプロパンとトリレンジイソシアネートとの反応生成物が好ましい。 Examples of isocyanate-based cross-linking agents include dimers and trimers of the exemplified isocyanate compounds, reaction products or polymers (e.g., dimers and trimers of diphenylmethane diisocyanate, reaction products of trimethylolpropane and tolylene diisocyanate products, reaction products of trimethylolpropane and hexamethylene diisocyanate, polymethylene polyphenyl isocyanate, polyether polyisocyanate, polyester polyisocyanate) and the like can also be used. As the isocyanate-based cross-linking agent, a reaction product of trimethylolpropane and tolylene diisocyanate is preferred.
 エポキシ系架橋剤としては、例えば、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’-テトラグリシジル-m-キシレンジアミン、ジグリシジルアニリン、1,6-ヘキサンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ソルビトールポリグリシジルエーテル、グリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ソルビタンポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、アジピン酸ジグリシジルエステル、o-フタル酸ジグリシジルエステル、トリグリシジル-トリス(2-ヒドロキシエチル)イソシアヌレート、レゾルシンジグリシジルエーテル、ビスフェノールSジグリシジルエーテル、1,3-ビス(N,N-ジグリシジルアミノメチル)ベンゼン、1,3-ビス(N,N-ジグリシジルアミノメチル)トルエン、1,3,5-トリグリシジルイソシアヌル酸、N,N,N’,N’-テトラグリシジル-m-キシリレンジアミン、グリセリントリグリシジルエーテル、トリメチロールプロパングリシジルエーテル等の1分子内に2つ以上又は3つ以上のエポキシ基を有するエポキシ系化合物が挙げられ、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサンが好ましい。 Examples of epoxy-based cross-linking agents include 1,3-bis(N,N-diglycidylaminomethyl)cyclohexane, N,N,N',N'-tetraglycidyl-m-xylylenediamine, diglycidylaniline, 1, 6-hexanediol diglycidyl ether, neopentyl glycol diglycidyl ether, ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, sorbitol polyglycidyl ether, glycerol polyglycidyl ether, penta erythritol polyglycidyl ether, polyglycerol polyglycidyl ether, sorbitan polyglycidyl ether, trimethylolpropane polyglycidyl ether, adipate diglycidyl ester, o-phthalate diglycidyl ester, triglycidyl-tris(2-hydroxyethyl)isocyanurate, Resorcinol diglycidyl ether, bisphenol S diglycidyl ether, 1,3-bis(N,N-diglycidylaminomethyl)benzene, 1,3-bis(N,N-diglycidylaminomethyl)toluene, 1,3,5 - 2 or more or 3 or more epoxies in one molecule such as triglycidyl isocyanuric acid, N,N,N',N'-tetraglycidyl-m-xylylenediamine, glycerin triglycidyl ether, trimethylolpropane glycidyl ether Epoxy compounds having groups are mentioned, and 1,3-bis(N,N-diglycidylaminomethyl)cyclohexane is preferred.
 分離機能層1における第2網目構造の含有率は、特に限定されず、例えば1~15wt%である。 The content of the second network structure in the separation functional layer 1 is not particularly limited, and is, for example, 1 to 15 wt%.
 第2網目構造を作製する方法は、特に限定されず、例えば次の方法が挙げられる。まず、イオン液体L及びプレポリマーを混合する。得られた混合液は、必要に応じて、上記の架橋剤、モノマー、分散媒などを含んでいてもよい。モノマーとしては、例えば、プレポリマーについて上述した極性基含有モノマーが挙げられる。分散媒としては、第1網目構造について上述したものが挙げられる。 The method for producing the second network structure is not particularly limited, and includes, for example, the following method. First, the ionic liquid L and the prepolymer are mixed. The obtained mixed solution may contain the above-mentioned cross-linking agent, monomer, dispersion medium, etc., if necessary. Monomers include, for example, the polar group-containing monomers described above for the prepolymer. Dispersion media include those described above for the first network structure.
 混合液における架橋剤の使用量は、プレポリマー及びモノマーの合計100質量部に対して、例えば0.02~8質量部であり、好ましくは0.08~5質量部である。 The amount of the cross-linking agent used in the mixed solution is, for example, 0.02 to 8 parts by mass, preferably 0.08 to 5 parts by mass, based on 100 parts by mass of the prepolymer and the monomer in total.
 次に、混合液を所定の温度(例えば5~100℃、好ましくは15~60℃)で所定の時間(例えば5分未満、好ましくは1分未満)処理する。これにより、イオン液体Lの存在下でプレポリマーの架橋物が形成され、第2網目構造を得ることができる。 Next, the mixture is treated at a predetermined temperature (eg, 5 to 100°C, preferably 15 to 60°C) for a predetermined time (eg, less than 5 minutes, preferably less than 1 minute). Thereby, a crosslinked product of the prepolymer is formed in the presence of the ionic liquid L, and a second network structure can be obtained.
 なお、第2網目構造に含まれる有機材料の例は、プレポリマーの架橋物に限定されない。例えば、プレポリマーに代えてモノマーをイオン液体Lと混合し、当該モノマーを重合させることによって、モノマーの重合体で構成された第2網目構造を作製してもよい。モノマーとしては、例えば、プレポリマーについて上述したものが挙げられる。モノマーの重合は、例えば、無溶剤での光重合、特にUV重合、によって行うことができる。 The example of the organic material contained in the second network structure is not limited to the crosslinked prepolymer. For example, instead of the prepolymer, a monomer may be mixed with the ionic liquid L and polymerized to form the second network structure composed of a polymer of the monomer. Monomers include, for example, those described above for the prepolymer. Polymerization of the monomers can be carried out, for example, by solvent-free photopolymerization, in particular UV polymerization.
 第2網目構造の作製は、第1網目構造の作製前に行ってもよく、第1網目構造の作製後に行ってもよく、第1網目構造の作製と同時に行ってもよい。一例として、イオン液体L、第1網目構造を作製するための材料(無機粒子、無機モノマーなど)、及び、第2網目構造を作製するための材料(プレポリマーなど)を混合し、得られた混合液に対して所定の処理を行うことによって、第1網目構造及び第2網目構造の両方を作製してもよい。この場合、混合液の固形分濃度は、塗工性の観点から、例えば0.5wt%以上であり、好ましくは1.0wt%以上であり、より好ましくは2.0wt%以上である。混合液の固形分濃度は、薄い分離機能層1を作製できる観点から、例えば50wt%以下であり、好ましくは40wt%以下であり、より好ましくは30wt%以下である。 The production of the second network structure may be performed before the production of the first network structure, may be carried out after the production of the first network structure, or may be carried out simultaneously with the production of the first network structure. As an example, an ionic liquid L, a material for producing a first network structure (inorganic particles, inorganic monomers, etc.), and a material for producing a second network structure (prepolymer, etc.) are mixed to obtain Both the first network structure and the second network structure may be produced by subjecting the mixture to a predetermined treatment. In this case, the solid content concentration of the mixed liquid is, for example, 0.5 wt % or more, preferably 1.0 wt % or more, and more preferably 2.0 wt % or more, from the viewpoint of coatability. The solid content concentration of the mixed liquid is, for example, 50 wt % or less, preferably 40 wt % or less, and more preferably 30 wt % or less, from the viewpoint of producing a thin separation function layer 1 .
[分離機能層の物性]
 分離機能層1の厚さは、例えば50μm以下であり、好ましくは25μm以下であり、より好ましくは15μm以下である。分離機能層1の厚さは、場合によっては、10μm以下であってもよく、5.0μm以下であってもよく、2.0μm以下であってもよい。分離機能層1の厚さは、0.05μm以上であってもよく、0.1μm以上であってもよい。
[Physical properties of separation functional layer]
The thickness of the separation functional layer 1 is, for example, 50 μm or less, preferably 25 μm or less, more preferably 15 μm or less. The thickness of the separation functional layer 1 may be 10 μm or less, 5.0 μm or less, or 2.0 μm or less depending on the case. The thickness of the separation functional layer 1 may be 0.05 μm or more, or may be 0.1 μm or more.
(中間層)
 中間層2は、例えば、樹脂を含み、樹脂(マトリクス)に分散したナノ粒子をさらに含む。ナノ粒子は、マトリクス内で互いに離間していてもよく、部分的に凝集していてもよい。ただし、中間層2は、ナノ粒子を含んでいなくてもよく、実質的に樹脂から構成されていてもよい。
(middle layer)
The intermediate layer 2 contains, for example, a resin and further contains nanoparticles dispersed in the resin (matrix). The nanoparticles may be spaced apart from each other within the matrix or may be partially aggregated. However, the intermediate layer 2 may not contain nanoparticles, and may be substantially composed of resin.
 マトリクスの材料は、特に限定されず、例えば、ポリジメチルシロキサンなどのシリコーン樹脂;ポリテトラフルオロエチレンなどのフッ素樹脂;ポリエチレンオキシドなどのエポキシ樹脂;ポリイミド樹脂;ポリスルホン樹脂;ポリトリメチルシリルプロピン、ポリジフェニルアセチレンなどのポリアセチレン樹脂;ポリメチルペンテンなどのポリオレフィン樹脂が挙げられる。マトリクスは、シリコーン樹脂を含むことが好ましい。 The material of the matrix is not particularly limited, and examples thereof include silicone resins such as polydimethylsiloxane; fluorine resins such as polytetrafluoroethylene; epoxy resins such as polyethylene oxide; polyimide resins; polyacetylene resins such as; and polyolefin resins such as polymethylpentene. The matrix preferably contains a silicone resin.
 ナノ粒子は、無機材料を含んでいてもよく、有機材料を含んでいてもよい。ナノ粒子に含まれる無機材料としては、例えば、シリカ、チタニア及びアルミナが挙げられる。ナノ粒子は、シリカを含むことが好ましい。 The nanoparticles may contain inorganic materials or organic materials. Inorganic materials included in nanoparticles include, for example, silica, titania, and alumina. The nanoparticles preferably contain silica.
 ナノ粒子は、炭素原子を含む修飾基によって修飾された表面を有していてもよい。この修飾基によって修飾された表面を有するナノ粒子は、マトリクス中での分散性に優れている。ナノ粒子は、例えば、修飾基によって修飾された表面を有していてもよいシリカナノ粒子である。修飾基は、例えば、ケイ素原子をさらに含む。ナノ粒子において、修飾基によって修飾された表面は、例えば、以下の式(I)~(III)で表される。
Figure JPOXMLDOC01-appb-C000002
The nanoparticles may have surfaces modified with modifying groups containing carbon atoms. Nanoparticles having surfaces modified with this modifying group are excellent in dispersibility in a matrix. The nanoparticles are for example silica nanoparticles which may have their surfaces modified by modifying groups. The modifying group further comprises, for example, a silicon atom. In nanoparticles, the surfaces modified with modifying groups are represented by the following formulas (I) to (III), for example.
Figure JPOXMLDOC01-appb-C000002
 式(I)~(III)のR8~R13は、互いに独立して、置換基を有していてもよい炭化水素基である。炭化水素基の炭素数は、1以上であれば特に限定されない。炭化水素基の炭素数は、例えば25以下であってもよく、20以下であってもよく、10以下であってもよく、5以下であってもよい。場合によっては、炭化水素基の炭素数は、25より大きくてもよい。炭化水素基は、直鎖状又は分岐鎖状の鎖式炭化水素基であってもよく、脂環式又は芳香環式の環式炭化水素基であってもよい。好ましい一形態では、炭化水素基は、炭素数1~8の直鎖状又は分岐鎖状のアルキル基である。炭化水素基は、例えばメチル基又はオクチル基であり、好ましくはメチル基である。炭化水素基の置換基としては、例えば、アミノ基及びアシルオキシ基が挙げられる。アシルオキシ基としては、例えば、(メタ)アクリロイルオキシ基が挙げられる。 R 8 to R 13 in formulas (I) to (III) are each independently a hydrocarbon group which may have a substituent. The number of carbon atoms in the hydrocarbon group is not particularly limited as long as it is 1 or more. The number of carbon atoms in the hydrocarbon group may be, for example, 25 or less, 20 or less, 10 or less, or 5 or less. In some cases, the hydrocarbon group may have more than 25 carbon atoms. The hydrocarbon group may be a linear or branched chain hydrocarbon group, or an alicyclic or aromatic cyclic hydrocarbon group. In one preferred form, the hydrocarbon group is a linear or branched alkyl group having 1 to 8 carbon atoms. A hydrocarbon group is, for example, a methyl group or an octyl group, preferably a methyl group. Substituents of hydrocarbon groups include, for example, amino groups and acyloxy groups. Examples of acyloxy groups include (meth)acryloyloxy groups.
 別の好ましい一形態では、式(I)~(III)のR8~R13について上述した置換基を有していてもよい炭化水素基は、下記式(IV)で表される。式(IV)で表される炭化水素基を含む修飾基によって修飾された表面を有するナノ粒子は、分離膜10における酸性ガスの透過速度を向上させることに適している。
Figure JPOXMLDOC01-appb-C000003
In another preferred form, the hydrocarbon group optionally having substituents described above for R 8 to R 13 in formulas (I) to (III) is represented by formula (IV) below. A nanoparticle having a surface modified with a modifying group containing a hydrocarbon group represented by formula (IV) is suitable for improving the acidic gas permeation rate in the separation membrane 10 .
Figure JPOXMLDOC01-appb-C000003
 式(IV)において、R14は、置換基を有していてもよい炭素数1~5のアルキレン基である。アルキレン基は、直鎖状であってもよく、分岐鎖状であってもよい。アルキレン基としては、例えば、メチレン基、エチレン基、プロパン-1,3-ジイル基、ブタン-1,4-ジイル基及びペンタン-1,5-ジイル基が挙げられ、好ましくはプロパン-1,3-ジイル基である。アルキレン基の置換基としては、アミド基、アミノアルキレン基などが挙げられる。 In formula (IV), R 14 is an optionally substituted alkylene group having 1 to 5 carbon atoms. The alkylene group may be linear or branched. Examples of the alkylene group include methylene group, ethylene group, propane-1,3-diyl group, butane-1,4-diyl group and pentane-1,5-diyl group, preferably propane-1,3 - is a diyl group. Examples of substituents for the alkylene group include an amido group and an aminoalkylene group.
 式(IV)において、R15は、置換基を有していてもよい炭素数1~20のアルキル基又はアリール基である。アルキル基は、直鎖状であってもよく、分岐鎖状であってもよい。アルキル基及びアリール基としては、例えば、イオン液体について上述したものが挙げられる。アルキル基及びアリール基の置換基としては、アミノ基、カルボキシル基などが挙げられる。R15は、例えば、3,5-ジアミノフェニル基である。 In formula (IV), R 15 is an optionally substituted C 1-20 alkyl group or aryl group. Alkyl groups may be linear or branched. Alkyl groups and aryl groups include, for example, those described above for ionic liquids. Substituents for the alkyl group and aryl group include an amino group and a carboxyl group. R 15 is, for example, a 3,5-diaminophenyl group.
 ナノ粒子において、修飾基によって修飾された表面は、下記式(V)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000004
In nanoparticles, the surface modified with a modifying group is preferably represented by the following formula (V).
Figure JPOXMLDOC01-appb-C000004
 修飾基は、式(I)~(III)に示された構造に限定されない。修飾基は、式(I)~(III)のR8~R13の代わりに、ポリアミド構造又はポリジメチルシロキサン構造を有するポリマー鎖を含んでいてもよい。修飾基において、例えば、このポリマー鎖がケイ素原子に直接結合している。このポリマー鎖の形状としては、例えば、直鎖状、デンドリマー状及びハイパーブランチ状が挙げられる。 Modifying groups are not limited to the structures shown in formulas (I)-(III). The modifying group may contain a polymer chain having a polyamide structure or a polydimethylsiloxane structure in place of R 8 -R 13 in formulas (I) - (III). In modifying groups, for example, the polymer chain is directly attached to a silicon atom. The shape of the polymer chain includes, for example, linear, dendrimer, and hyperbranched.
 ナノ粒子の表面を修飾基によって修飾する方法は、特に限定されない。例えば、ナノ粒子の表面に存在するヒドロキシル基と、公知のシランカップリング剤とを反応させることによってナノ粒子の表面を修飾することができる。修飾基がポリアミド構造を含む場合、例えば、特開2010-222228号に開示された方法によって、ナノ粒子の表面を修飾することができる。 The method of modifying the surface of nanoparticles with modifying groups is not particularly limited. For example, the surface of nanoparticles can be modified by reacting hydroxyl groups present on the surface of the nanoparticles with a known silane coupling agent. When the modifying group contains a polyamide structure, the surface of the nanoparticles can be modified, for example, by the method disclosed in JP-A-2010-222228.
 ナノ粒子の平均粒径は、ナノメートルオーダー(<1000nm)である限り、特に限定されず、例えば100nm以下であり、好ましくは50nm以下であり、より好ましくは20nm以下である。ナノ粒子の平均粒径の下限値は、例えば1nmである。ナノ粒子の平均粒径は、例えば、次の方法によって特定することができる。まず、中間層2の断面を透過電子顕微鏡で観察する。得られた電子顕微鏡像において、特定のナノ粒子の面積を画像処理によって算出する。算出された面積と同じ面積を有する円の直径をその特定のナノ粒子の粒径(粒子の直径)とみなす。任意の個数(少なくとも50個)のナノ粒子の粒径をそれぞれ算出し、算出値の平均値をナノ粒子の平均粒径とみなす。ナノ粒子の形状は、特に限定されず、球状であってもよく、楕円体状であってもよく、鱗片状であってもよく、繊維状であってもよい。 The average particle size of the nanoparticles is not particularly limited as long as it is on the order of nanometers (<1000 nm), and is, for example, 100 nm or less, preferably 50 nm or less, and more preferably 20 nm or less. The lower limit of the average particle size of nanoparticles is, for example, 1 nm. The average particle size of nanoparticles can be specified, for example, by the following method. First, a cross section of the intermediate layer 2 is observed with a transmission electron microscope. In the obtained electron microscope image, the area of specific nanoparticles is calculated by image processing. The diameter of a circle having the same area as the calculated area is taken as the particle size (particle diameter) of that particular nanoparticle. The particle size of an arbitrary number (at least 50) of nanoparticles is calculated, and the average value of the calculated values is regarded as the average particle size of the nanoparticles. The shape of the nanoparticles is not particularly limited, and may be spherical, ellipsoidal, scaly, or fibrous.
 中間層2におけるナノ粒子の含有率は、例えば5wt%以上であり、好ましくは10wt%以上であり、より好ましくは15wt%以上である。中間層2におけるナノ粒子の含有率の上限値は、特に限定されず、例えば30wt%である。 The content of nanoparticles in the intermediate layer 2 is, for example, 5 wt% or more, preferably 10 wt% or more, and more preferably 15 wt% or more. The upper limit of the content of nanoparticles in the intermediate layer 2 is not particularly limited, and is, for example, 30 wt %.
 中間層2の厚さは、特に限定されず、例えば50μm未満であり、好ましくは40μm以下であり、より好ましくは30μm以下である。中間層2の厚さの下限値は、特に限定されず、例えば1μmである。中間層2は、例えば、50μm未満の厚さを有する層である。 The thickness of the intermediate layer 2 is not particularly limited, and is, for example, less than 50 μm, preferably 40 μm or less, more preferably 30 μm or less. The lower limit of the thickness of the intermediate layer 2 is not particularly limited, and is, for example, 1 μm. The intermediate layer 2 is, for example, a layer having a thickness of less than 50 μm.
(多孔性支持体)
 多孔性支持体3は、中間層2を介して分離機能層1を支持する。多孔性支持体3としては、例えば、不織布;多孔質ポリテトラフルオロエチレン;芳香族ポリアミド繊維;多孔質金属;焼結金属;多孔質セラミック;多孔質ポリエステル;多孔質ナイロン;活性化炭素繊維;ラテックス;シリコーン;シリコーンゴム;ポリフッ化ビニル、ポリフッ化ビニリデン、ポリウレタン、ポリプロピレン、ポリエチレン、ポリスチレン、ポリカーボネート、ポリスルホン、ポリエーテルエーテルケトン、ポリアクリロニトリル、ポリイミド及びポリフェニレンオキシドからなる群より選ばれる少なくとも1つを含む透過性(多孔質)ポリマー;連続気泡又は独立気泡を有する金属発泡体;連続気泡又は独立気泡を有するポリマー発泡体;シリカ;多孔質ガラス;メッシュスクリーンなどが挙げられる。多孔性支持体3は、これらのうちの2種以上を組み合わせたものであってもよい。
(Porous support)
The porous support 3 supports the separation functional layer 1 with the intermediate layer 2 interposed therebetween. Porous support 3 includes, for example, nonwoven fabric; porous polytetrafluoroethylene; aromatic polyamide fiber; porous metal; sintered metal; porous ceramic; silicone; silicone rubber; permeation containing at least one selected from the group consisting of polyvinyl fluoride, polyvinylidene fluoride, polyurethane, polypropylene, polyethylene, polystyrene, polycarbonate, polysulfone, polyetheretherketone, polyacrylonitrile, polyimide and polyphenylene oxide open-celled or closed-celled metal foams; open-celled or closed-celled polymeric foams; silica; porous glass; The porous support 3 may be a combination of two or more of these.
 多孔性支持体3は、例えば0.01~0.4μmの平均孔径を有する。多孔性支持体3の厚さは、特に限定されず、例えば10μm以上であり、好ましくは20μm以上であり、より好ましくは50μm以上である。多孔性支持体3の厚さは、例えば300μm以下であり、好ましくは200μm以下であり、より好ましくは150μm以下である。 The porous support 3 has an average pore size of, for example, 0.01-0.4 μm. The thickness of the porous support 3 is not particularly limited, and is, for example, 10 μm or more, preferably 20 μm or more, more preferably 50 μm or more. The thickness of the porous support 3 is, for example, 300 μm or less, preferably 200 μm or less, more preferably 150 μm or less.
(分離膜の製造方法)
 分離膜10は、例えば、次の方法によって作製することができる。まず、イオン液体L、第1網目構造を作製するための材料(無機粒子、無機モノマーなど)、及び、第2網目構造を作製するための材料(プレポリマーなど)を混合し、混合液を得る。
(Separation membrane manufacturing method)
Separation membrane 10 can be produced, for example, by the following method. First, the ionic liquid L, a material (inorganic particles, inorganic monomers, etc.) for producing the first network structure, and a material (prepolymer, etc.) for producing the second network structure are mixed to obtain a mixed solution. .
 次に、この混合液を基材に塗布し、塗布膜を得る。混合液の塗布方法は、特に限定されず、例えばスピンコート法を利用できる。スピンコーターの回転数、塗布液における固形分濃度などを調節することによって、塗布膜から形成される分離機能層1の厚さを調節することができる。アプリケータやワイヤーバーなどを利用して、混合液を基材に塗布してもよい。 Next, this mixed solution is applied to a base material to obtain a coating film. A method for applying the mixed liquid is not particularly limited, and for example, a spin coating method can be used. The thickness of the separation functional layer 1 formed from the coating film can be adjusted by adjusting the rotational speed of the spin coater, the solid content concentration in the coating liquid, and the like. The mixture may be applied to the substrate using an applicator, wire bar, or the like.
 塗布液が塗布される基材は、典型的には、多孔性支持体3及び中間層2の積層体である。この積層体は、例えば、次の方法によって作製できる。まず、中間層2の材料を含む塗布液を調製する。次に、多孔性支持体3の上に、中間層2の材料を含む塗布液を塗布し、塗布膜を形成する。塗布液の塗布方法は、特に限定されず、例えば、スピンコート法、ディップコート法などを利用できる。ワイヤーバーなどを利用して塗布液を塗布してもよい。次に、塗布膜を乾燥し、中間層2を形成する。塗布膜の乾燥は、例えば、加熱条件下で行うことができる。塗布膜の加熱温度は、例えば50℃以上である。塗布膜の加熱時間は、例えば1分以上であり、5分以上であってもよい。さらに、中間層2の表面には、必要に応じて易接着処理を施してもよい。易接着処理としては、下塗り剤の塗布、コロナ放電処理、プラズマ処理などの表面処理が挙げられる。 The substrate to which the coating liquid is applied is typically a laminate of the porous support 3 and the intermediate layer 2. This laminate can be produced, for example, by the following method. First, a coating liquid containing a material for the intermediate layer 2 is prepared. Next, a coating liquid containing the material of the intermediate layer 2 is applied onto the porous support 3 to form a coating film. A method for applying the coating liquid is not particularly limited, and for example, a spin coating method, a dip coating method, or the like can be used. The coating liquid may be applied using a wire bar or the like. Next, the coating film is dried to form the intermediate layer 2 . The coating film can be dried, for example, under heating conditions. The heating temperature of the coating film is, for example, 50° C. or higher. The heating time of the coating film is, for example, 1 minute or longer, and may be 5 minutes or longer. Further, the surface of the intermediate layer 2 may be subjected to an adhesion-facilitating treatment as necessary. The adhesion-facilitating treatment includes surface treatment such as application of a primer, corona discharge treatment, and plasma treatment.
 次に、基材上に形成された塗布膜に対して所定の処理を行い、第1網目構造及び第2網目構造を作製する。これにより、イオン液体Lを含むダブルネットワークゲルが形成され、分離機能層1を得ることができる。基材が多孔性支持体3及び中間層2の積層体である場合、基材上に分離機能層1を作製することによって分離膜10が得られる。 Next, a predetermined treatment is performed on the coating film formed on the base material to produce a first network structure and a second network structure. Thereby, a double network gel containing the ionic liquid L is formed, and the separation functional layer 1 can be obtained. When the substrate is a laminate of the porous support 3 and the intermediate layer 2, the separation membrane 10 is obtained by forming the separation functional layer 1 on the substrate.
 基材は、多孔性支持体3及び中間層2の積層体に限定されず、転写フィルムであってもよい。基材が転写フィルムである場合、次の方法によって分離膜10を作製できる。まず、基材上に形成された塗布膜に対して所定の処理を行い、分離機能層1を作製する。次に、中間層2の材料を含む塗布液を分離機能層1の上に塗工して乾燥することによって、中間層2を形成する。中間層2及び分離機能層1の積層体を多孔性支持体3に転写する。これにより、分離膜10が得られる。 The base material is not limited to the laminate of the porous support 3 and the intermediate layer 2, and may be a transfer film. When the substrate is a transfer film, the separation membrane 10 can be produced by the following method. First, a coating film formed on a substrate is subjected to a predetermined treatment to produce the separation functional layer 1 . Next, the intermediate layer 2 is formed by applying a coating liquid containing the material of the intermediate layer 2 onto the separation function layer 1 and drying it. A laminate of the intermediate layer 2 and the separation functional layer 1 is transferred to the porous support 3 . Thereby, the separation membrane 10 is obtained.
(分離膜の特性)
 本実施形態の分離膜10において、分離機能層1は、上述したイオン液体Lを含んでいる。本発明者らの検討によれば、イオン液体Lは、分離膜10における酸性ガスの透過速度を向上させる傾向がある。分離膜10における酸性ガスの透過速度が向上すると、例えば、混合気体を分離するために必要な膜面積を低減できる。
(Characteristics of separation membrane)
In the separation membrane 10 of this embodiment, the separation functional layer 1 contains the ionic liquid L described above. According to studies by the present inventors, the ionic liquid L tends to improve the permeation rate of the acidic gas in the separation membrane 10 . If the permeation rate of the acidic gas in the separation membrane 10 is improved, for example, the membrane area required for separating the mixed gas can be reduced.
 一例として、分離膜10を透過する二酸化炭素の透過速度Tは、例えば480GPU以上であり、好ましくは500GPU以上であり、より好ましくは530GPU以上であり、さらに好ましくは550GPU以上である。透過速度Tの上限値は、特に限定されず、例えば1000GPUである。ただし、GPUは、10-6・cm3(STP)/(sec・cm2・cmHg)を意味する。cm3(STP)は、1気圧、0℃での二酸化炭素の体積を意味する。 As an example, the permeation rate T of carbon dioxide permeating through the separation membrane 10 is, for example, 480 GPU or higher, preferably 500 GPU or higher, more preferably 530 GPU or higher, and still more preferably 550 GPU or higher. The upper limit of the transmission speed T is not particularly limited, and is, for example, 1000 GPU. However, GPU means 10 −6 ·cm 3 (STP)/(sec·cm 2 ·cmHg). cm 3 (STP) means the volume of carbon dioxide at 1 atmosphere and 0°C.
 透過速度Tは、次の方法によって算出できる。まず、分離膜10の一方の面(例えば分離膜10の分離機能層側の主面11)に隣接する空間に、二酸化炭素及び窒素からなる混合気体を供給するとともに、分離膜10の他方の面(例えば分離膜10の多孔性支持体側の主面12)に隣接する空間を減圧する。これにより、分離膜10を透過した透過流体が得られる。透過流体の重量、並びに、透過流体における二酸化炭素の体積比率及び窒素の体積比率を測定する。測定結果から透過速度Tを算出できる。上記の操作において、混合気体における二酸化炭素の濃度は、標準状態(0℃、101kPa)で50vol%である。分離膜10の一方の面に隣接する空間に供給される混合気体は、温度が30℃であり、圧力が0.1MPaである。分離膜10の他方の面に隣接する空間は、空間内の圧力が測定環境における大気圧に対して0.1MPa小さくなるように減圧されている。 The permeation speed T can be calculated by the following method. First, a mixed gas containing carbon dioxide and nitrogen is supplied to a space adjacent to one surface of the separation membrane 10 (for example, the main surface 11 of the separation membrane 10 on the side of the separation functional layer), and the other surface of the separation membrane 10 is supplied. A space adjacent to (for example, the main surface 12 of the separation membrane 10 on the porous support side) is decompressed. As a result, a permeated fluid that has passed through the separation membrane 10 is obtained. The weight of the permeate and the volume fraction of carbon dioxide and nitrogen in the permeate are measured. The permeation rate T can be calculated from the measurement results. In the above operation, the concentration of carbon dioxide in the gas mixture is 50 vol% under standard conditions (0°C, 101 kPa). The mixed gas supplied to the space adjacent to one side of the separation membrane 10 has a temperature of 30° C. and a pressure of 0.1 MPa. The space adjacent to the other surface of the separation membrane 10 is decompressed so that the pressure in the space is 0.1 MPa lower than the atmospheric pressure in the measurement environment.
 上記の透過速度Tの測定条件において、分離膜10の窒素に対する二酸化炭素の分離係数αは、特に限定されず、例えば20以上であり、好ましくは25以上であり、より好ましくは30以上である。分離係数αの上限値は、特に限定されず、例えば100である。分離係数αは、以下の式から算出することができる。ただし、下記式において、XA及びXBは、それぞれ、混合気体における二酸化炭素の体積比率及び窒素の体積比率である。YA及びYBは、それぞれ、分離膜10を透過した透過流体における二酸化炭素の体積比率及び窒素の体積比率である。
分離係数α=(YA/YB)/(XA/XB
Under the conditions for measuring the permeation rate T described above, the separation coefficient α of carbon dioxide with respect to nitrogen of the separation membrane 10 is not particularly limited, and is, for example, 20 or more, preferably 25 or more, and more preferably 30 or more. The upper limit of the separation factor α is not particularly limited, and is 100, for example. The separation factor α can be calculated from the following formula. However, in the following formula, X A and X B are the volume ratio of carbon dioxide and the volume ratio of nitrogen in the mixed gas, respectively. Y A and Y B are the volume ratio of carbon dioxide and the volume ratio of nitrogen, respectively, in the permeated fluid that has passed through the separation membrane 10 .
Separation factor α = (Y A /Y B )/(X A /X B )
 本実施形態の分離膜10の用途としては、酸性ガスを含む混合気体から酸性ガスを分離する用途が挙げられる。混合気体の酸性ガスとしては、二酸化炭素、硫化水素、硫化カルボニル、硫黄酸化物(SOx)、シアン化水素、窒素酸化物(NOx)などが挙げられ、好ましくは二酸化炭素である。混合気体は、酸性ガス以外の他のガスを含んでいる。他のガスとしては、例えば、水素、窒素などの非極性ガス、及び、ヘリウムなどの不活性ガスが挙げられ、好ましくは窒素である。特に、本実施形態の分離膜10は、二酸化炭素及び窒素を含む混合気体から二酸化炭素を分離する用途に適している。ただし、分離膜10の用途は、上記の混合気体から酸性ガスを分離する用途に限定されない。 Applications of the separation membrane 10 of the present embodiment include applications for separating acidic gases from mixed gases containing acidic gases. The acid gas of the mixed gas includes carbon dioxide, hydrogen sulfide, carbonyl sulfide, sulfur oxides (SOx), hydrogen cyanide, nitrogen oxides (NOx), etc. Carbon dioxide is preferred. The mixed gas contains other gases than acid gas. Other gases include, for example, hydrogen, non-polar gases such as nitrogen, and inert gases such as helium, preferably nitrogen. In particular, the separation membrane 10 of this embodiment is suitable for separating carbon dioxide from a mixed gas containing carbon dioxide and nitrogen. However, the application of the separation membrane 10 is not limited to the application of separating acidic gas from the mixed gas.
<膜分離装置の実施形態>
 図2に示すとおり、本実施形態の膜分離装置100は、分離膜10及びタンク20を備えている。タンク20は、第1室21及び第2室22を備えている。分離膜10は、タンク20の内部に配置されている。タンク20の内部において、分離膜10は、第1室21と第2室22とを隔てている。分離膜10は、タンク20の1対の壁面の一方から他方まで延びている。
<Embodiment of Membrane Separator>
As shown in FIG. 2 , the membrane separation device 100 of this embodiment includes a separation membrane 10 and a tank 20 . The tank 20 has a first chamber 21 and a second chamber 22 . Separation membrane 10 is arranged inside tank 20 . Inside the tank 20 , the separation membrane 10 separates the first chamber 21 and the second chamber 22 . Separation membrane 10 extends from one of a pair of wall surfaces of tank 20 to the other.
 第1室21は、入口21a及び出口21bを有する。第2室22は、出口22aを有する。入口21a、出口21b及び出口22aのそれぞれは、例えば、タンク20の壁面に形成された開口である。 The first chamber 21 has an entrance 21a and an exit 21b. The second chamber 22 has an outlet 22a. Each of the inlet 21a, the outlet 21b, and the outlet 22a is an opening formed in the wall surface of the tank 20, for example.
 膜分離装置100を用いた膜分離は、例えば、次の方法によって行われる。まず、入口21aを通じて、酸性ガスを含む混合気体30を第1室21に供給する。混合気体30における酸性ガスの濃度は、特に限定されず、標準状態で、例えば0.01vol%(100ppm)以上であり、好ましくは1vol%以上であり、より好ましくは10vol%以上であり、さらに好ましくは30vol%以上であり、特に好ましくは50vol%以上である。混合気体30における酸性ガスの濃度の上限値は、特に限定されず、標準状態で、例えば90vol%である。 Membrane separation using the membrane separation device 100 is performed, for example, by the following method. First, a mixed gas 30 containing acid gas is supplied to the first chamber 21 through the inlet 21a. The concentration of the acid gas in the mixed gas 30 is not particularly limited, and is, for example, 0.01 vol% (100 ppm) or more, preferably 1 vol% or more, more preferably 10 vol% or more, and even more preferably, under standard conditions. is 30 vol% or more, particularly preferably 50 vol% or more. The upper limit of the acid gas concentration in the mixed gas 30 is not particularly limited, and is, for example, 90 vol % under standard conditions.
 混合気体30の供給によって、第1室21内が昇圧されてもよい。膜分離装置100は、混合気体30を昇圧するためのポンプ(図示せず)をさらに備えていてもよい。第1室21に供給される混合気体30の圧力は、例えば0.1MPa以上、好ましくは0.3MPa以上である。 By supplying the mixed gas 30, the inside of the first chamber 21 may be pressurized. The membrane separation device 100 may further include a pump (not shown) for pressurizing the mixed gas 30 . The pressure of the mixed gas 30 supplied to the first chamber 21 is, for example, 0.1 MPa or higher, preferably 0.3 MPa or higher.
 第1室21に混合気体30を供給した状態で、第2室22内を減圧してもよい。膜分離装置100は、第2室22内を減圧するためのポンプ(図示せず)をさらに備えていてもよい。第2室22は、第2室22内の空間が測定環境における大気圧に対して、例えば10kPa以上、好ましくは50kPa以上、より好ましくは100kPa以上小さくなるように減圧されてもよい。 The pressure in the second chamber 22 may be reduced while the mixed gas 30 is supplied to the first chamber 21 . The membrane separation device 100 may further include a pump (not shown) for reducing the pressure inside the second chamber 22 . The second chamber 22 may be depressurized such that the space inside the second chamber 22 is, for example, 10 kPa or more, preferably 50 kPa or more, and more preferably 100 kPa or more less than the atmospheric pressure in the measurement environment.
 第1室21内に混合気体30が供給されることによって、分離膜10の他方の面側において混合気体30よりも酸性ガスの含有率が高い透過流体35を得ることができる。すなわち、透過流体35が第2室22に供給される。透過流体35は、例えば、酸性ガスを主成分として含んでいる。ただし、透過流体35は、酸性ガス以外の他のガスを少量含んでいてもよい。透過流体35は、出口22aを通じて、タンク20の外部に排出される。 By supplying the mixed gas 30 into the first chamber 21 , a permeate fluid 35 having a higher acid gas content than the mixed gas 30 can be obtained on the other side of the separation membrane 10 . That is, the permeating fluid 35 is supplied to the second chamber 22 . The permeating fluid 35 contains, for example, acid gas as a main component. However, the permeating fluid 35 may contain a small amount of gas other than the acid gas. The permeated fluid 35 is discharged to the outside of the tank 20 through the outlet 22a.
 混合気体30における酸性ガスの濃度は、第1室21の入口21aから出口21bに向かって徐々に低下する。第1室21で処理された混合気体30(非透過流体36)は、出口21bを通じて、タンク20の外部に排出される。 The concentration of acid gas in the mixed gas 30 gradually decreases from the inlet 21a of the first chamber 21 toward the outlet 21b. The mixed gas 30 (non-permeating fluid 36) processed in the first chamber 21 is discharged to the outside of the tank 20 through the outlet 21b.
 本実施形態の膜分離装置100は、流通式(連続式)の膜分離方法に適している。ただし、本実施形態の膜分離装置100は、バッチ式の膜分離方法に用いられてもよい。 The membrane separation device 100 of this embodiment is suitable for a flow-type (continuous) membrane separation method. However, the membrane separation apparatus 100 of this embodiment may be used for a batch-type membrane separation method.
<膜分離装置の変形例>
 図3に示すとおり、本実施形態の膜分離装置110は、中心管41及び積層体42を備えている。積層体42が分離膜10を含んでいる。膜分離装置110は、スパイラル型の膜エレメントである。
<Modification of Membrane Separator>
As shown in FIG. 3 , the membrane separation device 110 of this embodiment includes a central tube 41 and a laminate 42 . A laminate 42 includes the separation membrane 10 . The membrane separation device 110 is a spiral membrane element.
 中心管41は、円筒形状を有している。中心管41の表面には、中心管41の内部に透過流体35を流入させるための複数の孔が形成されている。中心管41の材料としては、例えば、アクリロニトリル・ブタジエン・スチレン共重合樹脂(ABS樹脂)、ポリフェニレンエーテル樹脂(PPE樹脂)、ポリサルフォン樹脂(PSF樹脂)などの樹脂;ステンレス鋼、チタンなどの金属が挙げられる。中心管41の内径は、例えば20~100mmの範囲にある。 The central tube 41 has a cylindrical shape. A plurality of holes are formed on the surface of the central tube 41 to allow the permeating fluid 35 to flow into the central tube 41 . Examples of materials for the central tube 41 include resins such as acrylonitrile-butadiene-styrene copolymer resin (ABS resin), polyphenylene ether resin (PPE resin), and polysulfone resin (PSF resin); and metals such as stainless steel and titanium. be done. The inner diameter of the central tube 41 is, for example, in the range of 20-100 mm.
 積層体42は、分離膜10の他に、供給側流路材43及び透過側流路材44をさらに含む。積層体42は、中心管41の周囲に巻回されている。膜分離装置110は、外装材(図示せず)をさらに備えていてもよい。 The laminate 42 further includes, in addition to the separation membrane 10, a feed-side channel material 43 and a permeate-side channel material 44. The laminate 42 is wound around the central tube 41 . The membrane separation device 110 may further include an exterior material (not shown).
 供給側流路材43及び透過側流路材44としては、例えばポリフェニレンサルファイド(PPS)又はエチレン-クロロトリフルオロエチレン共重合体(ECTFE)からなる樹脂製ネットを用いることができる。 As the feed side channel material 43 and the permeation side channel material 44, for example, a resin net made of polyphenylene sulfide (PPS) or ethylene-chlorotrifluoroethylene copolymer (ECTFE) can be used.
 膜分離装置110を用いた膜分離は、例えば、次の方法によって行われる。まず、巻回された積層体42の一端に混合気体30を供給する。積層体42の分離膜10を透過した透過流体35が中心管41の内部に移動する。透過流体35は、中心管41を通じて外部に排出される。膜分離装置110で処理された混合気体30(非透過流体36)は、巻回された積層体42の他端から外部に排出される。これにより、混合気体30から酸性ガスを分離することができる。 Membrane separation using the membrane separation device 110 is performed, for example, by the following method. First, the mixed gas 30 is supplied to one end of the wound laminate 42 . The permeated fluid 35 that permeates the separation membrane 10 of the laminate 42 moves inside the central tube 41 . The permeating fluid 35 is discharged outside through the central tube 41 . The mixed gas 30 (non-permeating fluid 36) processed by the membrane separation device 110 is discharged outside from the other end of the wound laminate 42. As shown in FIG. Thereby, the acid gas can be separated from the mixed gas 30 .
 以下に、実施例及び比較例により本発明をさらに詳細に説明するが、本発明はこれに限定されるものではない。 The present invention will be described in more detail below with examples and comparative examples, but the present invention is not limited to these.
(比較例1)
[プレポリマーの合成]
 まず、三ツ口フラスコに還流管を取り付け、合成装置を組み立てた。三方コックには、真空ポンプ及びN2ボンベをつないだ。真空引きを行うとともに、2分間に1回窒素を供給する動作を1セットとして、合計5セットの窒素置換を行った。窒素置換後、ガラスシリンジを用いて、1,4-ジオキサンを三ツ口フラスコ内に加えた。次に、バイアル瓶に、N,N-ジメチルアクリルアミド(DMAAm)(14.6g、147.28mmol)、N-アクリロイルオキシスクシンイミド(NSA)(1.32g、1.56mmol)及び2,2’-アゾビスイソブチロニトリル(AIBN)(0.256g、1.56mmol)をこの順に量り取り、数分攪拌した。DMAAmとNSAのモル比(DMAAm/NSA)は、95/5であった。シリンジを用いて、得られた混合物を三ツ口フラスコ内に加えた。三ツ口フラスコ内の溶液をスターラーで10分程攪拌した。次に、還流管を冷却装置に接続し、60℃に設定した油浴槽を用いて還流下で24時間重合を行った。
(Comparative example 1)
[Synthesis of prepolymer]
First, a reflux tube was attached to a three-necked flask to assemble a synthesizing apparatus. A vacuum pump and an N2 cylinder were connected to the three-way cock. A total of 5 sets of nitrogen replacement were performed, with one set of the operation of evacuating and supplying nitrogen once every 2 minutes. After purging with nitrogen, 1,4-dioxane was added into the three-necked flask using a glass syringe. A vial was then charged with N,N-dimethylacrylamide (DMAAm) (14.6 g, 147.28 mmol), N-acryloyloxysuccinimide (NSA) (1.32 g, 1.56 mmol) and 2,2'-azo. Bisisobutyronitrile (AIBN) (0.256 g, 1.56 mmol) was weighed out in this order and stirred for several minutes. The molar ratio of DMAAm and NSA (DMAAm/NSA) was 95/5. The resulting mixture was added into a three-necked flask using a syringe. The solution in the three-necked flask was stirred with a stirrer for about 10 minutes. Next, the reflux tube was connected to a cooling device, and polymerization was carried out for 24 hours under reflux using an oil bath set at 60°C.
 重合後の溶液をナスフラスコに移し、エバポレーターによる処理を60℃で30分以上行うことによって、溶液から1,4-ジオキサンを除去した。次に、ナスフラスコにTHFを加え、白色固体を溶解させた。次に、スポイトを用いて、得られた溶液を-10℃に冷却したヘキサンに一滴ずつ滴下しながら、攪拌を行うことによって沈殿物を得た。30℃の恒温槽を用いて、真空雰囲気下で24時間、沈殿物を処理することによって、プレポリマー(poly(DMAAm-co-NSA))を得た。 The solution after polymerization was transferred to an eggplant flask and treated with an evaporator at 60°C for 30 minutes or longer to remove 1,4-dioxane from the solution. Next, THF was added to the eggplant flask to dissolve the white solid. Next, using a dropper, the resulting solution was dropped drop by drop into hexane cooled to -10°C while stirring to obtain a precipitate. A prepolymer (poly(DMAAm-co-NSA)) was obtained by treating the precipitate in a constant temperature bath at 30° C. under a vacuum atmosphere for 24 hours.
[分離膜の作製]
 まず、シリコーン樹脂(モメンティブパフォーマンスマテリアルズ社製YSR3022)の6wt%ヘキサン溶液を多孔性支持体の上に塗布した。多孔性支持体としては、限外ろ過膜(日東電工株式会社製のNTU-3175M)を用いた。ヘキサン溶液の塗布は、スピンコーターを用いて500rpm、40秒の条件で行った。次に、得られた塗布膜を90℃で15分乾燥させた。これにより、多孔性支持体及び中間層の積層体を得た。中間層の厚さは2μmであった。
[Preparation of Separation Membrane]
First, a 6 wt % hexane solution of silicone resin (YSR3022 manufactured by Momentive Performance Materials) was applied onto the porous support. An ultrafiltration membrane (NTU-3175M manufactured by Nitto Denko Corporation) was used as the porous support. The hexane solution was applied using a spin coater under conditions of 500 rpm and 40 seconds. Next, the obtained coating film was dried at 90° C. for 15 minutes. Thus, a laminate of the porous support and the intermediate layer was obtained. The thickness of the intermediate layer was 2 μm.
 次に、第1網目構造を形成するためのシリカ粒子(Aerosil 200)、上記のプレポリマー、プレポリマーの架橋剤としてのジエチレングリコール(3-アミノプロピル)エーテル、イオン液体としての1-エチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド([EMIM][TFSI])、及び、エタノールを混合して、室温で1分間撹拌した。これにより、混合液(ゲル前駆体溶液)を得た。 Next, silica particles (Aerosil 200) for forming the first network structure, the above prepolymer, diethylene glycol (3-aminopropyl) ether as a cross-linking agent for the prepolymer, 1-ethyl-3- as an ionic liquid Methylimidazolium bis(trifluoromethanesulfonyl)imide ([EMIM][TFSI]) and ethanol were mixed and stirred at room temperature for 1 minute. Thus, a mixed liquid (gel precursor solution) was obtained.
 次に、多孔性支持体及び中間層の積層体の上に、得られたゲル前駆体溶液を塗布した。溶液の塗布は、スピンコーターを用いて、2000rpm、40秒の条件で行った。得られた塗布膜を60℃の乾燥機で5分間乾燥させた。これにより、シリカ粒子のネットワークで構成された第1網目構造と、プレポリマーの架橋物で構成された第2網目構造とが形成され、分離機能層が得られた。分離機能層におけるイオン液体の含有率は80wt%であった。分離機能層の厚さは2μmであった。多孔性支持体及び中間層の積層体の上に分離機能層を形成することにより、比較例1の分離膜を得た。 Next, the obtained gel precursor solution was applied onto the laminate of the porous support and the intermediate layer. The solution was applied using a spin coater under conditions of 2000 rpm and 40 seconds. The resulting coating film was dried in a dryer at 60° C. for 5 minutes. As a result, a first network structure composed of a network of silica particles and a second network structure composed of a crosslinked product of the prepolymer were formed to obtain a separation functional layer. The content of the ionic liquid in the separation functional layer was 80 wt%. The separation functional layer had a thickness of 2 μm. A separation membrane of Comparative Example 1 was obtained by forming a separation functional layer on the laminate of the porous support and the intermediate layer.
(比較例2~3及び実施例1~2)
 イオン液体の種類を表1に示すように変更したことを除き、比較例1と同じ方法によって比較例2~3及び実施例1~2の分離膜を得た。
(Comparative Examples 2-3 and Examples 1-2)
Separation membranes of Comparative Examples 2 and 3 and Examples 1 and 2 were obtained in the same manner as in Comparative Example 1, except that the type of ionic liquid was changed as shown in Table 1.
(比較例4)
 イオン液体として1-ブチル-3-メチルイミダゾリウムアセタート([BMIM][OAc])を用いたことを除き、比較例1と同じ方法によって分離機能層を作製することを試みた。しかし、[BMIM][OAc]を用いた場合、多孔性支持体及び中間層の積層体の上にゲル前駆体溶液を塗布したときに、得られた塗布膜からイオン液体が漏れ出てしまい、分離機能層を形成することができなかった。塗布膜からイオン液体が漏れ出たことは、プレポリマーとイオン液体との相溶性が不十分であったことに起因していると推察される。
(Comparative Example 4)
An attempt was made to produce a separation functional layer in the same manner as in Comparative Example 1, except that 1-butyl-3-methylimidazolium acetate ([BMIM][OAc]) was used as the ionic liquid. However, when [BMIM][OAc] is used, when the gel precursor solution is applied onto the laminate of the porous support and the intermediate layer, the ionic liquid leaks out from the resulting coating film. A separation functional layer could not be formed. It is speculated that the leakage of the ionic liquid from the coating film was caused by insufficient compatibility between the prepolymer and the ionic liquid.
(比較例5)
 ゲル前駆体溶液に代えて、ポリエーテルブロックアミド(アルケマ社製のPebax)を含む塗布液を用いたことを除いて、比較例1と同じ方法によって比較例5の分離膜を作製した。
(Comparative Example 5)
A separation membrane of Comparative Example 5 was prepared in the same manner as in Comparative Example 1, except that a coating solution containing polyether block amide (Pebax manufactured by Arkema) was used instead of the gel precursor solution.
[イオン液体の粘度]
 比較例1~4及び実施例1~2で用いたイオン液体の25℃での粘度を測定した。粘度の測定は、Thermo HAAKE社製のレオストレスRS600を用いて、上述した条件で行った。
[Viscosity of ionic liquid]
The viscosities at 25° C. of the ionic liquids used in Comparative Examples 1-4 and Examples 1-2 were measured. The viscosity was measured using Rheostress RS600 manufactured by Thermo HAAKE under the conditions described above.
[液膜の特性評価]
 比較例1~4及び実施例1~2で用いたイオン液体の膜(液膜)について、以下の方法によって二酸化炭素の透過速度T0を測定した。まず、PET製はく離ライナーの上に置いたPTFE多孔質膜A(Merck株式会社製のオムニポアメンブレンフィルター、ポアサイズ0.45μm、厚さ65μm、PTFE)にイオン液体を滴下し、40℃の真空乾燥機で1時間乾燥した。これにより、PTFE多孔質膜Aの内部にイオン液体が浸み込み、イオン液体を含浸させたPTFE多孔質膜Aが得られた。イオン液体を含浸させたPTFE多孔質膜Aをイオン液体の膜とみなした。次に、PET製はく離ライナーをイオン液体の膜の上に重ねて、ゴムローラーを用いてこれらを圧着した。これにより、イオン液体の膜の厚さを均一に調整した。
[Characteristic evaluation of liquid film]
For the ionic liquid membranes (liquid membranes) used in Comparative Examples 1-4 and Examples 1-2, the permeation rate T0 of carbon dioxide was measured by the following method. First, an ionic liquid was dropped onto a PTFE porous membrane A (Merck Co., Ltd. Omnipore membrane filter, pore size 0.45 μm, thickness 65 μm, PTFE) placed on a PET release liner, followed by vacuum drying at 40°C. Machine dried for 1 hour. As a result, the porous PTFE membrane A was impregnated with the ionic liquid, and the porous PTFE membrane A impregnated with the ionic liquid was obtained. The PTFE porous membrane A impregnated with the ionic liquid was regarded as the ionic liquid membrane. Next, a PET release liner was placed on top of the ionic liquid film and pressed together using a rubber roller. Thereby, the thickness of the film of the ionic liquid was adjusted to be uniform.
 次に、金属セル中にPTFE多孔質膜B(日東電工株式会社製のテミッシュNTF1133)をセットした。さらに、上記のイオン液体の膜(イオン液体を含浸させたPTFE多孔質膜A)をPTFE多孔質膜Bに重ね、リークが発生しないようにOリングでシールした。次に、PTFE多孔質膜Aの主面に混合気体が接触するように、金属セル内に混合気体を注入した。混合気体は、実質的に二酸化炭素及び窒素からなっていた。混合気体における二酸化炭素の濃度は、標準状態で50vol%であった。金属セル内に注入された混合気体の温度は、30℃であった。混合気体の圧力は、0.1MPaであった。金属セル内には、スウィープガスとして、流量10mL/minのArを導入した。これにより、PTFE多孔質膜Bの主面から透過流体が得られた。得られた透過流体の組成、透過流体の重量などに基づいて、二酸化炭素の透過速度T0を算出した。 Next, a PTFE porous membrane B (Temish NTF1133 manufactured by Nitto Denko Corporation) was set in the metal cell. Furthermore, the ionic liquid membrane (the PTFE porous membrane A impregnated with the ionic liquid) was placed on the PTFE porous membrane B and sealed with an O-ring to prevent leakage. Next, the mixed gas was injected into the metal cell so that the main surface of the PTFE porous membrane A was in contact with the mixed gas. The gas mixture consisted essentially of carbon dioxide and nitrogen. The concentration of carbon dioxide in the mixed gas was 50 vol% under standard conditions. The temperature of the gas mixture injected into the metal cell was 30°C. The pressure of the mixed gas was 0.1 MPa. Into the metal cell, Ar was introduced as a sweep gas at a flow rate of 10 mL/min. As a result, a permeating fluid was obtained from the main surface of the PTFE porous membrane B. The permeation rate T0 of carbon dioxide was calculated based on the obtained composition of the permeated fluid, the weight of the permeated fluid, and the like.
[分離膜の特性評価]
 次に、以下の方法によって、実施例及び比較例の分離膜について、窒素に対する二酸化炭素の分離係数α(CO2/N2)、及び二酸化炭素の透過速度Tを測定した。まず、分離膜を金属セル中にセットし、リークが発生しないようにOリングでシールした。次に、分離膜の分離機能層側の主面に混合気体が接触するように、金属セル内に混合気体を注入した。混合気体は、実質的に二酸化炭素及び窒素からなっていた。混合気体における二酸化炭素の濃度は、標準状態で50vol%であった。金属セル内に注入された混合気体は、温度が30℃であり、圧力が0.1MPaであった。次に、分離膜の多孔性支持体側の主面に隣接する金属セル内の空間を真空ポンプで減圧した。このとき、この空間は、空間内の圧力が測定環境における大気圧に対して0.1MPa小さくなるように減圧されていた。これにより、分離膜の多孔性支持体側の主面から透過流体が得られた。得られた透過流体の組成、透過流体の重量などに基づいて、分離係数α及び二酸化炭素の透過速度Tを算出した。
[Characteristics evaluation of separation membrane]
Next, the separation coefficient α of carbon dioxide with respect to nitrogen (CO 2 /N 2 ) and the permeation rate T of carbon dioxide were measured for the separation membranes of Examples and Comparative Examples by the following methods. First, the separation membrane was set in a metal cell and sealed with an O-ring to prevent leakage. Next, the mixed gas was injected into the metal cell so that the mixed gas was in contact with the main surface of the separation membrane on the side of the separation functional layer. The gas mixture consisted essentially of carbon dioxide and nitrogen. The concentration of carbon dioxide in the mixed gas was 50 vol% under standard conditions. The gas mixture injected into the metal cell had a temperature of 30° C. and a pressure of 0.1 MPa. Next, the space in the metal cell adjacent to the main surface of the separation membrane on the porous support side was evacuated with a vacuum pump. At this time, the space was decompressed so that the pressure in the space was 0.1 MPa lower than the atmospheric pressure in the measurement environment. As a result, a permeated fluid was obtained from the main surface of the separation membrane on the porous support side. The separation factor α and the carbon dioxide permeation rate T were calculated based on the obtained composition of the permeated fluid, the weight of the permeated fluid, and the like.
[シミュレーション]
 実施例及び比較例の分離膜を用いて、膜分離装置を運転したときのシミュレーションを行った。詳細には、膜分離装置の運転条件、膜分離装置で用いた分離膜の種類、混合気体の組成、透過流体の組成などを予め決定して、この場合に、膜分離装置を用いて混合気体を分離するために必要な分離膜の膜面積や消費エネルギーを計算した。計算には、Schlumberger社製のプロセスモデリングソフトSymmetryを用いた。シミュレーションでは、直列に配置した2つの膜分離装置を用いて、二酸化炭素及び窒素からなる混合気体を300t/年で処理することを想定した。混合気体における二酸化炭素の濃度を10wt%に設定し、透過流体における二酸化炭素の濃度を95wt%に設定した。二酸化炭素の回収率は95%に設定した。
[simulation]
Using the separation membranes of Examples and Comparative Examples, a simulation was performed when a membrane separation apparatus was operated. Specifically, the operating conditions of the membrane separation device, the type of separation membrane used in the membrane separation device, the composition of the mixed gas, the composition of the permeating fluid, etc. are determined in advance, and in this case, the mixed gas is used using the membrane separation device. We calculated the membrane area and energy consumption required to separate the Process modeling software Symmetry manufactured by Schlumberger was used for the calculation. In the simulation, it was assumed that 300 t/year of mixed gas consisting of carbon dioxide and nitrogen was treated using two membrane separators arranged in series. The concentration of carbon dioxide in the gas mixture was set at 10 wt% and the concentration of carbon dioxide in the permeate was set at 95 wt%. Carbon dioxide recovery was set at 95%.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1中の略称は以下のとおりである。
[EMIM][TFSI]:1-エチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド
[EMIM][C(CN)3]:1-エチル-3-メチルイミダゾリウムトリシアノメタニド
[EMIM][B(CN)4]:1-エチル-3-メチルイミダゾリウムテトラシアノボレート
[BMIM][C(CN)3]:1-ブチル-3-メチルイミダゾリウムトリシアノメタニド
[EMIM][BF4]:1-エチル-3-メチルイミダゾリウムテトラフルオロボレート
[BMIM][OAc]:1-ブチル-3-メチルイミダゾリウムアセタート
Abbreviations in Table 1 are as follows.
[EMIM] [TFSI]: 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [EMIM] [C(CN) 3 ]: 1-ethyl-3-methylimidazolium tricyanometanide [EMIM] [B(CN) 4 ]: 1-ethyl-3-methylimidazolium tetracyanoborate [BMIM] [C(CN) 3 ]: 1-butyl-3-methylimidazolium tricyanometanide [EMIM] [BF 4 ]: 1-ethyl-3-methylimidazolium tetrafluoroborate [BMIM] [OAc]: 1-butyl-3-methylimidazolium acetate
 表1からわかるとおり、分子量が220以上であり、かつアニオンがシアノ基を有するイオン液体を含む実施例の分離膜では、比較例の分離膜に比べて、酸性ガス(二酸化炭素)の透過速度が向上した。さらに、シミュレーションの結果からわかるとおり、実施例の分離膜は、混合気体を分離するために必要な膜面積を減少させることにも適していた。 As can be seen from Table 1, the separation membranes of Examples containing an ionic liquid having a molecular weight of 220 or more and having a cyano group as an anion have a higher acid gas (carbon dioxide) permeation rate than the separation membranes of Comparative Examples. Improved. Furthermore, as can be seen from the simulation results, the separation membranes of Examples were also suitable for reducing the membrane area required to separate mixed gases.
 本実施形態の分離膜は、酸性ガスを含む混合気体から酸性ガスを分離することに適している。特に、本実施形態の分離膜は、化学プラント又は火力発電のオフガスから二酸化炭素を分離することに適している。
 
The separation membrane of the present embodiment is suitable for separating acidic gases from mixed gases containing acidic gases. In particular, the separation membrane of this embodiment is suitable for separating carbon dioxide from off-gases of chemical plants or thermal power plants.

Claims (15)

  1.  イオン液体を含む分離膜であって、
     前記イオン液体の分子量が220以上であり、
     前記イオン液体に含まれるアニオンがシアノ基を有する、分離膜。
    A separation membrane containing an ionic liquid,
    The ionic liquid has a molecular weight of 220 or more,
    A separation membrane, wherein the anion contained in the ionic liquid has a cyano group.
  2.  25℃における前記イオン液体の粘度が50mPa・s以下である、請求項1に記載の分離膜。 The separation membrane according to claim 1, wherein the ionic liquid has a viscosity of 50 mPa·s or less at 25°C.
  3.  前記アニオンは、テトラシアノボレート及びトリシアノメタニドからなる群より選ばれる少なくとも1つを含む、請求項1又は2に記載の分離膜。 The separation membrane according to claim 1 or 2, wherein the anion includes at least one selected from the group consisting of tetracyanoborate and tricyanometanide.
  4.  前記イオン液体がイミダゾリウムイオンを含む、請求項1~3のいずれか1項に記載の分離膜。 The separation membrane according to any one of claims 1 to 3, wherein the ionic liquid contains imidazolium ions.
  5.  前記イオン液体は、1-エチル-3-メチルイミダゾリウムテトラシアノボレート及び1-ブチル-3-メチルイミダゾリウムトリシアノメタニドからなる群より選ばれる少なくとも1つを含む、請求項1~4のいずれか1項に記載の分離膜。 Any one of claims 1 to 4, wherein the ionic liquid contains at least one selected from the group consisting of 1-ethyl-3-methylimidazolium tetracyanoborate and 1-butyl-3-methylimidazolium tricyanometanide. or the separation membrane according to item 1.
  6.  前記イオン液体を含むダブルネットワークゲルを有する、請求項1~5のいずれか1項に記載の分離膜。 The separation membrane according to any one of claims 1 to 5, which has a double network gel containing the ionic liquid.
  7.  前記ダブルネットワークゲルは、主として無機材料により構成された第1網目構造と、主として有機材料により構成された第2網目構造とをさらに含む、請求項6に記載の分離膜。 The separation membrane according to claim 6, wherein the double network gel further includes a first network structure mainly composed of an inorganic material and a second network structure mainly composed of an organic material.
  8.  前記無機材料は、無機粒子を含む、請求項7に記載の分離膜。 The separation membrane according to claim 7, wherein the inorganic material contains inorganic particles.
  9.  前記有機材料は、プレポリマーの架橋物を含む、請求項7又は8に記載の分離膜。 The separation membrane according to claim 7 or 8, wherein the organic material includes a prepolymer crosslinked product.
  10.  前記プレポリマーは、(メタ)アクリル系ポリマーを含む、請求項9に記載の分離膜。 The separation membrane according to claim 9, wherein the prepolymer contains a (meth)acrylic polymer.
  11.  前記イオン液体を含む分離機能層と、前記分離機能層を支持している多孔性支持体とを備えた、請求項1~10のいずれか1項に記載の分離膜。 The separation membrane according to any one of claims 1 to 10, comprising a separation functional layer containing the ionic liquid and a porous support supporting the separation functional layer.
  12.  前記分離機能層と前記多孔性支持体との間に配置された中間層をさらに備えた、請求項11に記載の分離膜。 The separation membrane according to claim 11, further comprising an intermediate layer arranged between the separation functional layer and the porous support.
  13.  前記分離機能層における前記イオン液体の含有率が80wt%以上である、請求項11又は12に記載の分離膜。 The separation membrane according to claim 11 or 12, wherein the content of the ionic liquid in the separation functional layer is 80 wt% or more.
  14.  前記分離膜の一方の面に隣接する空間に、二酸化炭素及び窒素からなる混合気体を供給するとともに、前記分離膜の他方の面に隣接する空間を減圧した場合に、前記分離膜を透過する二酸化炭素の透過速度が480GPU以上である、請求項1~13のいずれか1項に記載の分離膜。
     ここで、前記混合気体における前記二酸化炭素の濃度は、標準状態で50vol%であり、前記一方の面に隣接する空間に供給される前記混合気体は、温度が30℃であり、圧力が0.1MPaであり、前記他方の面に隣接する空間は、当該空間内の圧力が測定環境における大気圧に対して0.1MPa小さくなるように減圧されている。
    A gas mixture containing carbon dioxide and nitrogen is supplied to the space adjacent to one side of the separation membrane, and when the pressure in the space adjacent to the other side of the separation membrane is reduced, the carbon dioxide permeates the separation membrane. The separation membrane according to any one of claims 1 to 13, which has a carbon permeation rate of 480 GPU or more.
    Here, the concentration of carbon dioxide in the mixed gas is 50 vol % in the standard state, and the mixed gas supplied to the space adjacent to the one surface has a temperature of 30° C. and a pressure of 0.5. 1 MPa, and the space adjacent to the other surface is decompressed so that the pressure in the space is 0.1 MPa lower than the atmospheric pressure in the measurement environment.
  15.  二酸化炭素及び窒素を含む混合気体から二酸化炭素を分離するために用いられる、請求項1~14のいずれか1項に記載の分離膜。 The separation membrane according to any one of claims 1 to 14, which is used for separating carbon dioxide from a mixed gas containing carbon dioxide and nitrogen.
PCT/JP2022/005717 2021-03-02 2022-02-14 Separation membrane WO2022185891A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021032591 2021-03-02
JP2021-032591 2021-03-02

Publications (1)

Publication Number Publication Date
WO2022185891A1 true WO2022185891A1 (en) 2022-09-09

Family

ID=83154068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/005717 WO2022185891A1 (en) 2021-03-02 2022-02-14 Separation membrane

Country Status (1)

Country Link
WO (1) WO2022185891A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120186446A1 (en) * 2009-07-24 2012-07-26 The Regents Of The University Of Colorado, A Body Corporate Imidazolium-based room-temperature ionic liquids, polymers, monomers, and membranes incorporating same
US20190031835A1 (en) * 2015-12-04 2019-01-31 Colorado State University Research Foundation Thermoplastic elastomer hydrogels
JP2020163375A (en) * 2019-03-26 2020-10-08 日東電工株式会社 Separation membrane

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120186446A1 (en) * 2009-07-24 2012-07-26 The Regents Of The University Of Colorado, A Body Corporate Imidazolium-based room-temperature ionic liquids, polymers, monomers, and membranes incorporating same
US20190031835A1 (en) * 2015-12-04 2019-01-31 Colorado State University Research Foundation Thermoplastic elastomer hydrogels
JP2020163375A (en) * 2019-03-26 2020-10-08 日東電工株式会社 Separation membrane

Similar Documents

Publication Publication Date Title
CN112639026B (en) Method for producing structure containing ionic liquid, and structure containing ionic liquid
CN111094361B (en) Method for producing structure containing ionic liquid, and structure containing ionic liquid
KR102036227B1 (en) Polyamide-imide film and preparation method thereof
EP1769841B1 (en) Hydrophilic membrane and associated method
KR101951509B1 (en) Ion exchange compositions, methods for making and materials prepared therefrom
Hatakeyama et al. New protein-resistant coatings for water filtration membranes based on quaternary ammonium and phosphonium polymers
US20110127219A1 (en) Porous membranes made up of organopolysiloxane copolymers
JP7345247B2 (en) Method for producing poly(amide-imide) film and poly(amide-imide) film produced thereby
JP2011506749A (en) Anion exchange polymer, production method and substance produced therefrom
EP3820598A1 (en) Fluorinated polytriazole membrane materials for gas separation technology
TW201945068A (en) Graphene oxide membrane protective coating
US9212238B2 (en) Microparticle, addition agent and filtering membrane
WO2022185891A1 (en) Separation membrane
TWI642745B (en) Polymer composition, optical laminate, pressure-sensitive adhesive optical film and display device comprising the same
KR20220110736A (en) Adhesive material, adhesive sheet and flexible laminated member
WO2023119879A1 (en) Separation function layer, separation membrane, and membrane separation method
CN112023731B (en) Preparation method of high-flux low-pressure reverse osmosis membrane
WO2023032744A1 (en) Separation function layer, separation membrane, and production method for separation function layer
JP2004307722A (en) Emulsion-type electrically conductive polymer composition and manufacturing method thereof
JP6160862B2 (en) Amino acid ionic liquid-containing polymer gel and method for producing the same
CN115155331B (en) Preparation method and application of acryloyloxy-terminated PDMS (polydimethylsiloxane) prepared film composite film
Dvornic Wholly aromatic polyamide‐hydrazides. V. Preparation and properties of semipermeable membranes from poly [4‐(terephthaloylamino) benzoic acid hydrazide]
Li et al. Polymerized and Colloidal Ionic Liquids─ Syntheses and Applications
WO2015033899A1 (en) Star-shaped vinyl ether polymer
JPH0494725A (en) Composite semipermeable membrane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22762948

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22762948

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP