WO2022185469A1 - 工事検出装置、工事検出システム及び工事検出方法 - Google Patents

工事検出装置、工事検出システム及び工事検出方法 Download PDF

Info

Publication number
WO2022185469A1
WO2022185469A1 PCT/JP2021/008374 JP2021008374W WO2022185469A1 WO 2022185469 A1 WO2022185469 A1 WO 2022185469A1 JP 2021008374 W JP2021008374 W JP 2021008374W WO 2022185469 A1 WO2022185469 A1 WO 2022185469A1
Authority
WO
WIPO (PCT)
Prior art keywords
construction
deterioration
optical signal
optical fiber
fiber cable
Prior art date
Application number
PCT/JP2021/008374
Other languages
English (en)
French (fr)
Inventor
幸英 依田
忠行 岩野
洸遥 森
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to PCT/JP2021/008374 priority Critical patent/WO2022185469A1/ja
Priority to JP2023503276A priority patent/JPWO2022185469A1/ja
Priority to US18/279,142 priority patent/US20240125642A1/en
Publication of WO2022185469A1 publication Critical patent/WO2022185469A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • G01H9/004Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means using fibre optic sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0066Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by exciting or detecting vibration or acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0091Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by using electromagnetic excitation or detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass

Definitions

  • This disclosure relates to construction detection devices and the like.
  • Patent Literature 1 discloses an example of such technology. That is, in the technique described in Patent Document 1, a vibration sensor is installed in the ground. The occurrence of construction work on the ground is detected based on the vibration detected by the vibration sensor.
  • the present disclosure has been made to solve the above problems, and is intended to detect the occurrence of construction work around utility poles or steel towers with a simple configuration that does not require the installation of underground vibration sensors. aim.
  • One form of the construction detection device includes optical signal receiving means for receiving an optical signal from an optical fiber cable laid by an overhead system via a utility pole or steel tower, and the vibration pattern of the utility pole or steel tower indicated by the optical signal. construction detection means for detecting the occurrence of construction around the utility pole or steel tower.
  • the optical signal receiving means receives an optical signal from an optical fiber cable laid by an overhead system via a utility pole or a steel tower, and the construction detection means detects that the optical signal indicates Based on the vibration pattern of the utility pole or steel tower, it detects the occurrence of construction work around the utility pole or steel tower.
  • FIG. 1 is an explanatory diagram showing an installation example of an optical fiber cable laid by an overhead method via a plurality of utility poles.
  • FIG. 2 is a block diagram showing the essential parts of the construction detection system according to the second embodiment.
  • FIG. 3 is a block diagram showing the hardware configuration of the main part of the construction detection device according to the second embodiment.
  • FIG. 4 is a block diagram showing another hardware configuration of the main part of the construction detection device according to the second embodiment.
  • FIG. 5 is a block diagram showing another hardware configuration of the main part of the construction detection device according to the second embodiment.
  • FIG. 6 is a flow chart showing the operation of the construction detection device according to the second embodiment.
  • FIG. 7 is an explanatory diagram showing an example of utility pole information used by the construction detection unit.
  • FIG. 1 is an explanatory diagram showing an installation example of an optical fiber cable laid by an overhead method via a plurality of utility poles.
  • FIG. 2 is a block diagram showing the essential parts of the construction detection system according to the second embodiment.
  • FIG. 8A is an explanatory diagram showing an example of a frequency spectrum corresponding to a vibration pattern of a utility pole without construction work occurring in the surrounding area.
  • FIG. 8B is an explanatory diagram showing an example of a frequency spectrum corresponding to a vibration pattern of a utility pole around which construction work has occurred.
  • FIG. 9A is an explanatory diagram showing an example of a temporal waveform corresponding to a vibration pattern of a utility pole without construction work occurring in the surrounding area.
  • FIG. 9B is an explanatory diagram showing an example of a temporal waveform corresponding to a vibration pattern of a utility pole with construction work occurring in its surroundings.
  • FIG. 10 is an explanatory diagram showing an example of an image used for an alert.
  • FIG. 10 is an explanatory diagram showing an example of an image used for an alert.
  • FIG. 11 is an explanatory diagram showing an installation example of an optical fiber cable laid by an overhead method via a plurality of steel towers.
  • FIG. 12 is a block diagram showing essential parts of another construction detection system according to the second embodiment.
  • FIG. 13 is a block diagram showing the essential parts of another construction detection device according to the second embodiment.
  • FIG. 14 is a block diagram showing the essential parts of the construction detection system according to the third embodiment.
  • FIG. 15 is a flow chart showing the operation of the construction detection device according to the third embodiment.
  • FIG. 16A is an explanatory diagram showing an example of a frequency spectrum corresponding to a vibration pattern when the optical fiber cable is not degraded.
  • FIG. 16B is an explanatory diagram showing an example of the frequency spectrum corresponding to the vibration pattern when the optical fiber cable has deteriorated.
  • FIG. 17A is an explanatory diagram showing an example of a time waveform corresponding to a vibration pattern when the optical fiber cable is not deteriorated.
  • FIG. 17B is an explanatory diagram showing an example of a time waveform corresponding to a vibration pattern when the optical fiber cable has deteriorated.
  • FIG. 18 is an explanatory diagram showing an example of data used for machine learning.
  • FIG. 19 is an explanatory diagram showing an example of a learning device used for machine learning.
  • FIG. 20A is an explanatory diagram showing an example of a frequency spectrum corresponding to a vibration pattern at a past point in time.
  • FIG. 20B is an explanatory diagram showing an example of the frequency spectrum corresponding to the vibration pattern at another past time.
  • FIG. 20C is an explanatory diagram showing an example of the frequency spectrum corresponding to the vibration pattern at the current time.
  • FIG. 20D is an explanatory diagram showing an example of a frequency spectrum corresponding to a vibration pattern at a future point in time.
  • FIG. 21A is an explanatory diagram showing an installation example of an optical fiber cable laid by an overhead method via a construction detection device and a plurality of utility poles according to the first embodiment.
  • FIG. 21B is an explanatory diagram showing an installation example of an optical fiber cable laid by an aerial method via a construction detection device and a plurality of steel towers according to the first embodiment.
  • FIGS. 21A and 21B are explanatory diagrams showing the construction detection device according to the first embodiment. A construction detection device according to the first embodiment will be described with reference to FIGS. 21A and 21B.
  • the optical fiber cable 2 is laid by an aerial system via a plurality of utility poles 1.
  • the optical fiber cable 2 is laid by an aerial system via a plurality of steel towers 7 .
  • a construction detection device 5 is provided at one end of the optical fiber cable 2 .
  • the construction detection device 5 has the following functions.
  • the construction detection device 5 outputs an optical signal to the optical fiber cable 2 .
  • backscattered light is generated inside the optical fiber cable 2 .
  • the construction detection device 5 receives an optical signal corresponding to the generated backscattered light.
  • the construction detection device 5 receives the optical signal from the optical fiber cable 2 .
  • the received optical signal contains different patterns depending on the vibration of individual utility poles 1 or individual pylons 7 .
  • the construction detection device 5 uses the received optical signal to detect the occurrence of construction around each utility pole 1 or each steel tower 7 based on the pattern. Details of the construction detection device 5 will be described later in the second embodiment.
  • the purpose is to detect the occurrence of construction around the utility pole 1 or the steel tower 7 .
  • the occurrence of such construction work can be detected with a simple configuration that does not require installation of a vibration sensor in the ground.
  • FIG. 1 is an explanatory diagram showing an installation example of an optical fiber cable laid by an overhead method via a plurality of utility poles.
  • FIG. 2 is a block diagram showing the essential parts of the construction detection system according to the second embodiment. A construction detection system according to a second embodiment will be described with reference to FIGS. 1 and 2.
  • FIG. 1 is an explanatory diagram showing an installation example of an optical fiber cable laid by an overhead method via a plurality of utility poles.
  • FIG. 2 is a block diagram showing the essential parts of the construction detection system according to the second embodiment. A construction detection system according to a second embodiment will be described with reference to FIGS. 1 and 2.
  • FIG. 1 is an explanatory diagram showing an installation example of an optical fiber cable laid by an overhead method via a plurality of utility poles.
  • FIG. 2 is a block diagram showing the essential parts of the construction detection system according to the second embodiment. A construction detection system according to a second embodiment will be described with reference to FIGS. 1 and 2.
  • FIG. 1 is an explanatory
  • an optical fiber cable 2 is laid by an aerial system via N utility poles 1_1 to 1_N.
  • N is an integer of 2 or more.
  • N 3.
  • the utility poles 1_1 to 1_N are included in a power grid or distribution grid. In other words, the utility poles 1_1 to 1_N are for transmission or distribution.
  • the optical fiber cable 2 is for communication or sensing.
  • the optical fiber cable 2 may be provided inside the overhead ground wire. That is, the optical fiber cable 2 may use OPGW (Optical Fiber Composite Overhead Ground Wire).
  • the optical fiber cable 2 is used for communication by the optical communication device 3 (see FIG. 2).
  • the optical communication device 3 is configured by, for example, a terminal device for OPGW.
  • the optical communication device 3 is installed, for example, in a station building for OPGW.
  • the construction detection system 100 includes an optical fiber cable 2, a filter unit 4, a construction detection device 5 and an output device 6.
  • the construction detection device 5 includes an optical signal receiving section 11 , a construction detection section 12 and an output control section 13 .
  • the filter unit 4 is provided between the optical fiber cable 2 , the optical communication device 3 and the construction detection device 5 .
  • the filter unit 4 When the optical signal from the optical communication device 3 is input, the filter unit 4 outputs the input optical signal to the optical fiber cable 2 . Further, when the optical signal from the optical fiber cable 2 is input, the filter unit 4 separates the component corresponding to the backscattered light from the input signal light and outputs the component to the construction detector 5 .
  • the filter unit 4 is configured using a wavelength filter (more specifically, a 3-port wavelength division multiplexing filter). In such a wavelength filter, an optical signal (having a specific wavelength) input from the optical communication device 3 is output to the optical fiber cable 2 without being output to the construction detection device 5 .
  • components having other specific wavelengths including components corresponding to backscattered light
  • the filter unit 4 is realized.
  • the optical signal receiving unit 11 receives optical signals from the optical fiber cable 2 . More specifically, as described above, the filter unit 4 separates the component corresponding to the backscattered light, and the optical signal receiver 11 receives the optical signal including the separated component.
  • the construction detection unit 12 uses the optical signal received by the optical signal reception unit 11 to detect the occurrence of construction work around each utility pole 1 . As a result, areas where such construction work is occurring are detected. A specific example of the detection method by the construction detection unit 12 will be described later with reference to FIGS. 7 to 9B.
  • the output control unit 13 executes control to output an alert when the occurrence of construction work is detected by the construction detection unit 12 .
  • An output device 6 is used to output the alert.
  • the output device 6 includes, for example, at least one of a display device, an audio output device and a communication device.
  • the display device uses, for example, a display.
  • the audio output device uses, for example, a speaker.
  • a communication device for example, uses a dedicated transmitter and receiver.
  • the output control unit 13 executes control to display an alert image.
  • a display device of the output device 6 is used for displaying such an image.
  • the output control unit 13 executes control to output an alert sound.
  • An audio output device among the output devices 6 is used for outputting such audio.
  • the output control unit 13 executes control to transmit an alert signal.
  • a communication device in the output device 6 is used for transmitting such signals.
  • optical signal receiving section 11 may be referred to as “optical signal receiving means”.
  • construction detection unit 12 may be referred to as “construction detection means”.
  • output control unit 13 may be referred to as "output control means”.
  • FIG. 3 the hardware configuration of the main part of the construction detection device 5 will be described with reference to FIGS. 3 to 5.
  • the construction detection device 5 uses a computer 21.
  • FIG. The computer 21 may be installed in the same place as the optical communication device 3 (for example, a station building for OPGW). Alternatively, the computer 21 may be located elsewhere (eg, within a cloud network). Alternatively, some elements of the computer 21 (more specifically, the receiver 31) are provided at the same location, and the remaining elements of the computer 21 are provided at the other location. can be
  • the computer 21 comprises a receiver 31, a processor 32 and a memory 33.
  • the memory 33 stores a program for causing the computer 21 to function as the optical signal receiving section 11, the construction detecting section 12, and the output control section 13 (including a program for causing the receiver 31 to function as the optical signal receiving section 11).
  • the processor 32 reads and executes programs stored in the memory 33 . Thereby, the function F1 of the optical signal receiving unit 11, the function F2 of the construction detection unit 12, and the function F3 of the output control unit 13 are realized.
  • the computer 21 comprises a receiver 31 and a processing circuit 34, as shown in FIG.
  • the processing circuit 34 performs processing for causing the computer 21 to function as the optical signal receiving section 11, construction detecting section 12, and output control section 13 (including processing for causing the receiver 31 to function as the optical signal receiving section 11). Run. Thereby, functions F1 to F3 are realized.
  • the computer 21 comprises a receiver 31, a processor 32, a memory 33 and a processing circuit 34.
  • some of the functions F1 to F3 are implemented by the processor 32 and the memory 33, and the rest of the functions F1 to F3 are implemented by the processing circuit .
  • the processor 32 is composed of one or more processors.
  • the individual processors use, for example, CPUs (Central Processing Units), GPUs (Graphics Processing Units), microprocessors, microcontrollers, or DSPs (Digital Signal Processors).
  • CPUs Central Processing Units
  • GPUs Graphics Processing Units
  • microprocessors microcontrollers
  • DSPs Digital Signal Processors
  • the memory 33 is composed of one or more memories. Individual memories include, for example, RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read Only Memory), hard disk drive, solid state drive, solid state memory Flexible discs, compact discs, DVDs (Digital Versatile Discs), Blu-ray discs, MO (Magneto Optical) discs, or mini discs are used.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • flash memory EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read Only Memory), hard disk drive, solid state drive, solid state memory Flexible discs, compact discs, DVDs (Digital Versatile Discs), Blu-ray discs, MO (Magneto Optical) discs, or mini discs are used.
  • the processing circuit 34 is composed of one or more processing circuits. Individual processing circuits use, for example, ASIC (Application Specific Integrated Circuit), PLD (Programmable Logic Device), FPGA (Field Programmable Gate Array), SoC (System a Chip), or system LSI (Large Scale) is.
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • SoC System a Chip
  • system LSI Large Scale Scale
  • the processor 32 may include a dedicated processor corresponding to each of the functions F1-F3.
  • the memory 33 may include dedicated memory corresponding to each of the functions F1-F3.
  • the processing circuitry 34 may include dedicated processing circuitry corresponding to each of the functions F1-F3.
  • the optical signal receiving unit 11 receives an optical signal from the optical fiber cable 2 (step ST1).
  • the construction detection unit 12 uses the received optical signal to detect the occurrence of construction around each utility pole 1 (step ST2).
  • the output control unit 13 executes control to output an alert according to the detection result (step ST3). In other words, the output control unit 13 executes control to output an alert when it is detected that construction work is "presence" in step ST2.
  • the optical communication device 3 outputs a pulsed optical signal.
  • the output optical signal is input to the optical fiber cable 2 via the filter unit 4 .
  • backscattered light is generated inside the optical fiber cable 2 .
  • the optical signal received by the optical signal receiving section 11 is separated by the filter unit 4, and the component corresponding to the generated backscattered light (hereinafter referred to as "backscattered light component”) is include.
  • the optical signal received by the optical signal receiving unit 11 includes components corresponding to backscattered light generated at positions corresponding to individual utility poles 1 in the optical fiber cable 2 .
  • the received optical signal contains backscattered light components corresponding to individual utility poles 1 .
  • the timing at which such a backscattered light component is received depends on the distance between the position at which the corresponding utility pole 1 is installed and the position at which the construction detection device 5 is installed (more specifically, the position at which the receiver 31 is installed). It depends on D.
  • the distance D is the route distance along the optical fiber cable 2 .
  • the backscattered light component included in the optical signal received by the optical signal receiving unit 11 exhibits different patterns (hereinafter referred to as "vibration patterns") depending on the vibration of the corresponding utility pole 1.
  • the received optical signal contains vibration patterns corresponding to individual utility poles 1 . Detection of occurrence of construction work by the construction detection unit 12 is based on this vibration pattern.
  • the construction detection device 5 stores information about each utility pole 1 (hereinafter referred to as "pole information").
  • the utility pole information includes information indicating the distance D corresponding to each utility pole 1 (hereinafter referred to as “distance information”).
  • the utility pole information includes information (hereinafter referred to as “identification information”) that can identify individual utility poles 1 .
  • the identification information includes, for example, identifiers assigned to individual utility poles 1 .
  • FIG. 7 shows an example of utility pole information.
  • the construction detection device 5 acquires information indicating the timing at which the optical communication device 3 outputs the pulsed optical signal. Such information is acquired from the optical communication device 3, for example.
  • the construction detector 12 calculates the time difference between the timing indicated by the acquired information and the timing at which the optical signal receiver 11 receives the backscattered light component.
  • the construction detection unit 12 calculates the distance D' between the position where the backscattered light component is generated and the position where the receiver 31 is installed, based on the calculated time difference.
  • the distance D' is the path distance along the optical fiber cable 2 .
  • the construction detection unit 12 compares the calculated distance D' with individual distances D indicated by the distance information included in the utility pole information. Thereby, the construction detector 12 detects the backscattered light component corresponding to each utility pole 1 among the backscattered light components contained in the received optical signal. As a result, vibration patterns corresponding to individual utility poles 1 are detected. More specifically, a time waveform TW representing a vibration pattern corresponding to each utility pole 1 is detected.
  • the construction detection unit 12 performs Fast Fourier Transform (FFT) on the detected time waveform. Thereby, a frequency spectrum FS representing a vibration pattern corresponding to each utility pole 1 is calculated.
  • FFT Fast Fourier Transform
  • FIG. 8A shows an image of the frequency spectrum FS_1 showing the vibration pattern corresponding to the utility pole 1 with no construction work occurring in the surrounding area.
  • FIG. 8B shows an image of a frequency spectrum FS_2 showing a vibration pattern corresponding to a utility pole 1 with construction occurring around it.
  • P_1 in FIG. 8A indicates a peak in the frequency spectrum FS_1.
  • P_2 in FIG. 8B indicates a peak in the frequency spectrum FS_2.
  • the peak frequency in the frequency spectrum FS changes.
  • the peak frequency in frequency spectrum FS_2 (see FIG. 8B) is a different value from the peak frequency in frequency spectrum FS_1 (see FIG. 8A).
  • a reference value is set in the construction detection unit 12 to be compared with the peak frequency.
  • the reference value is set to a value equivalent to the peak frequency in the frequency spectrum FS representing the vibration pattern corresponding to the utility pole 1 without construction work occurring in the surrounding area.
  • the reference value is set to a value equivalent to the peak frequency in the frequency spectrum FS_1 shown in FIG. 8A.
  • the construction detection unit 12 detects the peak frequency in the calculated frequency spectrum FS.
  • the construction detection unit 12 compares the detected peak frequency with the set reference value. Thereby, the construction detection unit 12 determines whether or not there is construction around the corresponding utility pole 1 . In this way, the occurrence of construction work around individual utility poles 1 is detected.
  • the construction detection device 5 (more specifically, the storage area of the memory 33 or the processing circuit 34) stores information indicating the area including the position where each utility pole 1 is installed.
  • the construction detection unit 12 uses the stored information to detect an area including the position where the utility pole 1 that is determined to be undergoing construction is installed. In this way, areas where construction is occurring are detected.
  • the construction detection unit 12 detects backscattered light components corresponding to individual utility poles 1 by a detection method similar to the detection method described in the first specific example. As a result, vibration patterns corresponding to individual utility poles 1 are detected. More specifically, a time waveform TW representing a vibration pattern corresponding to each utility pole 1 is detected.
  • the time waveform TW corresponding to the vibration pattern when there is no construction work in the surroundings includes a non-periodically generated pulse waveform. It is based on environmental vibrations.
  • FIG. 9A shows an example of a time waveform TW_1 representing a vibration pattern corresponding to a utility pole 1 that has no construction work around it.
  • the time waveform TW corresponding to the vibration pattern when there is construction work in the surroundings includes a pulse-shaped waveform that occurs at regular intervals. This is based, for example, on vibrations generated by the operation of construction machinery.
  • FIG. 9B shows an example of a time waveform TW_2 representing a vibration pattern corresponding to the utility pole 1 having construction work occurring around it.
  • the construction detection unit 12 analyzes the detected time waveform TW to determine whether or not a pulse-shaped waveform that occurs at a constant cycle is included. When such a pulse-shaped waveform is included, the construction detection unit 12 determines that construction is occurring around the corresponding utility pole 1 . Otherwise, the construction detection unit 12 determines that there is no construction around the corresponding utility pole 1 . In this way, the occurrence of construction work around individual utility poles 1 is detected.
  • the construction detection unit 12 detects areas where construction is occurring.
  • a method for detecting such an area is the same as that described in the first specific example. Therefore, repetitive description is omitted.
  • FIG. 10 shows an example of image I for alerts.
  • the image I may include a map-like image showing the area where the fiber optic cable 2 is laid.
  • the color of the portion (X in the figure) corresponding to the utility pole 1 in which construction has occurred in the vicinity of the optical fiber cable 2 is displayed in a color different from the color of the other portions.
  • the user of the construction detection system 100 can visually recognize the position where the construction is occurring in the area.
  • optical fiber cables 2 for example, optical fiber cables 2 for OPGW
  • the configuration can be simplified compared to the technology described in Patent Document 1. That is, it is assumed that the technology described in Patent Document 1 is used to detect the occurrence of construction work around individual utility poles 1 . In this case, it is required to install the vibration sensor in the ground along the power grid or distribution network including the utility poles 1_1 to 1_N. On the other hand, by using the construction detection system 100, such a vibration sensor can be eliminated. Therefore, the work of installing such a vibration sensor (that is, large-scale installation work in advance) can be eliminated.
  • an optical communication device 3, a filter unit 4, and a construction detection device 5 are provided at one end of the optical fiber cable 2.
  • the optical communication device 3, the filter unit 4, and the construction detection device 5 may be provided at each end of the optical fiber cable 2.
  • the construction detection system 100 may use multiple optical fiber cables (not shown) instead of one optical fiber cable 2 .
  • a plurality of optical fiber cables are provided, for example, along different paths in a power grid or distribution grid including utility poles 1_1 to 1_N.
  • the optical signal receiver 11 receives optical signals from each of the plurality of optical fiber cables.
  • the construction detection unit 12 executes the same processing as the processing described in the first specific example or the second specific example for each of the plurality of optical fiber cables. Thus, the occurrence of construction around each of the utility poles 1_1 to 1_N is detected.
  • the construction detection device 5 may acquire information indicating construction notifications to municipalities (hereinafter referred to as "notification information").
  • the notification information includes, for example, the location where each construction work is scheduled to occur and the date and time when each construction work is scheduled to occur.
  • the construction detection device 5 may determine whether the construction work is included in the notification information when the construction detection unit 12 detects the construction work. Thereby, the construction detection device 5 may determine whether or not the construction is unauthorized construction. In other words, the construction detection device 5 may detect the occurrence of unauthorized construction.
  • the optical fiber cable 2 may be laid by an overhead method via M steel towers 7_1 to 7_M.
  • M is an integer of 2 or more.
  • M 3.
  • the towers 7_1 to 7_M are included in the power grid or distribution grid. In other words, the towers 7_1 to 7_M are for transmission or distribution.
  • the construction detection unit 12 detects the occurrence of construction around each steel tower 7 .
  • the detection method by the construction detection unit 12 in this case is the same as that described in the first specific example or the second specific example. Therefore, repetitive description is omitted.
  • the construction detection system 100 may include the optical fiber cable 2 and the construction detection device 5.
  • the main part of the construction detection system 100 may be configured by the optical fiber cable 2 and the construction detection device 5 .
  • the construction detection device 5 may have a function of outputting a pulsed optical signal to the optical fiber cable 2 .
  • the construction detection device 5 may include an optical signal receiving section 11 and a construction detection section 12.
  • the optical signal receiving unit 11 and the construction detecting unit 12 may constitute the main part of the construction detecting device 5 .
  • the output control section 13 may be provided in the output device 6 . Also in this case, the above effects can be obtained.
  • the optical signal receiving unit 11 receives the optical signal from the optical fiber cable 2 laid by an overhead method via the utility pole 1 or steel tower 7 .
  • the construction detection unit 12 detects the occurrence of construction around the utility pole 1 or the steel tower 7 based on the vibration pattern of the utility pole 1 or the steel tower 7 indicated by the optical signal. This makes it possible to detect the occurrence of construction work around individual utility poles 1 or individual steel towers 7 . In particular, the occurrence of such construction can be detected remotely. Moreover, since the vibration sensor used in the technology described in Patent Document 1 can be eliminated, the occurrence of such construction work can be detected with a simple configuration.
  • FIG. 14 is a block diagram showing the essential parts of the construction detection system according to the third embodiment.
  • a construction detection system according to the third embodiment will be described with reference to FIG.
  • blocks similar to those shown in FIG. 2 are denoted by the same reference numerals, and descriptions thereof are omitted.
  • the construction detection system 100a includes an optical fiber cable 2, a filter unit 4, a construction detection device 5a, and an output device 6.
  • the construction detection device 5a includes an optical signal receiving section 11, a construction detection section 12, an output control section 13a, and a deterioration detection section .
  • the deterioration detector 14 uses the optical signal received by the optical signal receiver 11 to detect deterioration of a portion of the optical fiber cable 2 corresponding to a predetermined point (hereinafter referred to as a “deterioration detection target portion”). do. More specifically, the deterioration detection unit 14 detects the presence or absence of deterioration at the deterioration detection target location, and also detects the degree of deterioration at the deterioration detection target location. Alternatively, the deterioration detection unit 14 detects a sign of deterioration at the deterioration detection target location. A specific example of the detection method by the deterioration detection unit 14 will be described later with reference to FIGS. 16A to 20D.
  • the output control unit 13a executes control similar to the control executed by the output control unit 13. That is, the output control unit 13a executes control to output an alert when the construction detection unit 12 detects the occurrence of construction.
  • the output control unit 13a performs control to output information indicating the result of detection by the deterioration detection unit 14 (hereinafter referred to as "detection result information").
  • An output device 6 is used to output the detection result information. That is, the output control unit 13a performs control to display an image including detection result information. A display device of the output device 6 is used for displaying such an image. Alternatively, the output control unit 13a executes control to output a sound corresponding to the detection result information. An audio output device among the output devices 6 is used for outputting such audio. Alternatively, the output control unit 13a executes control to transmit a signal corresponding to the detection result information. A communication device in the output device 6 is used for transmitting such signals.
  • the output control section 13a may be referred to as “output control means”.
  • the deterioration detection unit 14 may be referred to as “deterioration detection means”.
  • the hardware configuration of the main part of the construction detection device 5a is the same as that described with reference to FIGS. 3 to 5 in the second embodiment. Therefore, detailed description is omitted.
  • the function F1 of the optical signal receiving unit 11, the function F2 of the construction detection unit 12, the function F3a of the output control unit 13a, and the function F4 of the deterioration detection unit 14 are realized by the processor 32 and the memory 33. good.
  • the functions F1, F2, F3a, and F4 may be realized by the processing circuitry 34. FIG.
  • the processor 32 may include dedicated processors corresponding to each of the functions F1, F2, F3a, and F4.
  • the memory 33 may include dedicated memory corresponding to each of the functions F1, F2, F3a and F4.
  • Processing circuitry 34 may include dedicated processing circuitry corresponding to each of functions F1, F2, F3a, and F4.
  • FIG. 15 steps similar to those shown in FIG. 6 are given the same reference numerals.
  • the optical signal receiving unit 11 receives an optical signal from the optical fiber cable 2 (step ST1).
  • the deterioration detector 14 detects deterioration of the optical fiber cable 2 using the received optical signal (step ST4). More specifically, the deterioration detector 14 detects deterioration of the deterioration detection target portion of the optical fiber cable 2 .
  • the output control unit 13a performs control to output information indicating the result of the detection (that is, detection result information) (step ST3a).
  • step ST3a detection result information indicating that there is no deterioration is output.
  • step ST4a detection result information indicating that there is deterioration is output.
  • step ST4a detection result information indicating that there is deterioration and indicating the degree of deterioration (for example, one of two values) is output.
  • the deterioration detection unit 14 detects the presence or absence of deterioration at the deterioration detection target location, and also detects the degree of deterioration.
  • the construction detection device 5a (more specifically, the storage area of the memory 33 or the processing circuit 34) stores information indicating the distance D corresponding to the deterioration detection target location.
  • the deterioration detection unit 14 uses this information to detect the backscattered light component corresponding to the deterioration detection target location among the backscattered light components included in the optical signal received by the optical signal reception unit 11 .
  • the deterioration detection unit 14 detects features included in the detected backscattered light component. More specifically, the deterioration detector 14 detects the vibration pattern included in the detected backscattered light component. Detection of deterioration by the deterioration detection unit 14 is based on such characteristics.
  • the occurrence of deterioration in the deterioration detection target location changes the optical characteristics at the deterioration detection target location.
  • the attenuation time T in the time waveform TW indicating the vibration pattern changes.
  • the peak frequency in the frequency spectrum FS indicating the vibration pattern changes. Therefore, it is possible to detect the deterioration of the deterioration target location based on the vibration pattern.
  • the amount of change in the vibration pattern (for example, the amount of change in damping time T or the amount of change in peak frequency) varies depending on the degree of deterioration. More specifically, the larger the degree of deterioration, the larger the amount of change. Therefore, based on the vibration pattern, it is possible to detect the degree of deterioration at the deterioration detection target location.
  • the deterioration detection unit 14 executes FFT (Fast Fourier Transform) on the time waveform TW representing the detected vibration pattern. As a result, a frequency spectrum FS representing a vibration pattern corresponding to the degradation detection target location is calculated.
  • FFT Fast Fourier Transform
  • FIG. 16A shows an image of the frequency spectrum FS_3 showing the vibration pattern when there is no deterioration of the optical fiber cable 2 (more specifically, the deterioration detection target location).
  • FIG. 16B shows an image of the frequency spectrum FS_4 showing the vibration pattern with such deterioration.
  • P_3 in FIG. 16A indicates a peak in the frequency spectrum FS_3.
  • P_4 in FIG. 16B indicates a peak in the frequency spectrum FS_4.
  • the peak frequency in the frequency spectrum FS changes due to the occurrence of deterioration at the deterioration detection target location.
  • the peak frequency in frequency spectrum FS_4 (see FIG. 16B) is a different value from the peak frequency in frequency spectrum FS_3 (see FIG. 16A).
  • a reference value to be compared with the peak frequency is set in the deterioration detection unit 14 .
  • the reference value is set to a value equivalent to the peak frequency in the frequency spectrum FS indicating the vibration pattern when there is no deterioration at the deterioration detection target location.
  • the reference value is set to a value equivalent to the peak frequency in the frequency spectrum FS_3 shown in FIG. 16A.
  • the deterioration detection unit 14 detects the peak frequency in the calculated frequency spectrum FS.
  • the deterioration detection unit 14 compares the detected peak frequency with the set reference value. Thereby, the deterioration detection unit 14 determines the presence or absence of deterioration at the deterioration detection target location. In this manner, the presence or absence of deterioration at the deterioration detection target location is detected.
  • the amount of change in the peak frequency in the corresponding frequency spectrum FS differs depending on the degree of deterioration at the deterioration detection target location. Therefore, in the construction detection device 5a (more specifically, in the storage area of the memory 33 or the processing circuit 34), correspondences between values indicating the degree of deterioration (for example, values in two stages) and values indicating the amount of change in the peak frequency are stored. Information indicating the relationship is stored. The deterioration detection unit 14 calculates the amount of change in the detected peak frequency with respect to the set reference value. The deterioration detection unit 14 uses the stored information to determine the degree of deterioration corresponding to the calculated amount of change. As a result, the degree of deterioration at the deterioration detection target location is detected.
  • the deterioration detection unit 14 detects the presence or absence of deterioration at the deterioration detection target location, and also detects the degree of deterioration.
  • the deterioration detection unit 14 detects features included in the backscattered light component corresponding to the deterioration detection target location by a detection method similar to the detection method described in the first specific example. More specifically, the deterioration detector 14 detects the vibration pattern included in the backscattered light component.
  • the decay time T of the pulse has a different value depending on the presence or absence of deterioration at the deterioration detection target location.
  • the amount of change in the decay time T of the pulse has a different value depending on the degree of deterioration. This is as described in the first specific example.
  • FIG. 17A shows an image of a temporal waveform TW_3 showing a vibration pattern when there is no deterioration of the optical fiber cable 2 (more specifically, deterioration detection target location).
  • FIG. 17B shows an image of the time waveform TW_4 showing the vibration pattern when there is such deterioration.
  • T_3 in FIG. 17A indicates the decay time of the pulse in the time waveform TW_3.
  • T_4 in FIG. 17B indicates the decay time of the pulse in the time waveform TW_4.
  • a reference value to be compared with the decay time T is set in the deterioration detection unit 14 .
  • the reference value is set to a value equivalent to the attenuation time T in the time waveform TW representing the vibration pattern when there is no deterioration at the deterioration detection target location.
  • the reference value is set to a value equivalent to the attenuation time T_3 in the time waveform TW_3 shown in FIG. 17A.
  • the deterioration detection unit 14 calculates the decay time T of the pulse.
  • the deterioration detection unit 14 compares the calculated decay time T with the set reference value. Thereby, the deterioration detection unit 14 detects the presence or absence of deterioration at the deterioration detection target location.
  • a value indicating the degree of deterioration for example, a value in two stages
  • a value indicating the amount of change in the decay time T are stored.
  • Information indicating the correspondence is stored.
  • the deterioration detection unit 14 calculates the amount of change in the calculated attenuation time T with respect to the set reference value.
  • the deterioration detection unit 14 uses the stored information to determine the degree of deterioration corresponding to the calculated amount of change. As a result, the degree of deterioration at the deterioration detection target location is detected.
  • the deterioration detection unit 14 detects the presence or absence of deterioration at the deterioration detection target location, and also detects the degree of deterioration.
  • the third specific example uses a trained model generated by machine learning. More specifically, the third specific example uses a trained model generated by supervised learning. Such machine learning will be described below.
  • vibration data data indicating multiple vibration patterns (hereinafter referred to as "vibration data") are prepared as training input data used for machine learning. It includes vibration patterns corresponding to individual deterioration states at deterioration detection target locations.
  • data indicating the state of deterioration corresponding to each vibration pattern included in the vibration data is prepared as teacher data (that is, correct data) used for machine learning.
  • FIG. 18 shows an example of these data (initial training data).
  • a plurality of vibration data among the initial training data illustrated in FIG. 18 are input to a dedicated learning device (see FIG. 19).
  • the learning device generates a learned model by executing machine learning using these vibration data as training input data. For example, the learner accepts training input data indicative of individual vibration patterns.
  • the learning device performs machine learning on such training input data, and repeats learning processing until correct data is obtained with a predetermined accuracy. As a result, a learned pattern corresponding to the degradation detection target location is generated.
  • the learning device uses the input data, which is new vibration data, as the input data of the learned pattern to classify the presence or absence of deterioration and the degree of deterioration at the deterioration detection target location.
  • the learning device outputs information indicating the presence or absence of deterioration and the degree of deterioration at the deterioration detection target location.
  • FIG. 19 shows an example of machine learning learning processing and classification processing in a learning device. Thus, a trained model is generated.
  • SVM support vector machine
  • neural network For machine learning in the learner, various known techniques such as support vector machine (SVM) or neural network can be used. A detailed description of these techniques is omitted.
  • the deterioration detection unit 14 uses the optical signal received by the optical signal reception unit 11 to detect the vibration pattern corresponding to the deterioration detection target location (see the first specific example).
  • the deterioration detection unit 14 generates data indicating the detected vibration pattern.
  • the deterioration detection unit 14 is provided with the generated learned model.
  • the deterioration detection unit 14 inputs the generated data to the learned model.
  • the learned model outputs information indicating the presence or absence of deterioration and the degree of deterioration at the deterioration detection target location. As a result, the presence or absence of deterioration at the deterioration detection target location is detected, and the degree of deterioration is detected.
  • the deterioration detection unit 14 detects a sign of deterioration at a deterioration detection target location.
  • the deterioration detection unit 14 periodically detects the peak frequency according to the first specific example. As a result, for example, peak frequencies at a plurality of past points in time and peak frequencies at the present point in time are detected.
  • FIG. 20A shows an example of a frequency spectrum at a past point in time (eg, two years ago).
  • FIG. 20B shows an example of the frequency spectrum at another past time (eg, one year ago).
  • FIG. 20C shows an example of the frequency spectrum at the current time (eg, current year).
  • P_P_1 in FIG. 20A indicates a peak in the frequency spectrum.
  • P_P_2 in FIG. 20B indicates a peak in the frequency spectrum.
  • P_C in FIG. 20C indicates a peak in the frequency spectrum.
  • the deterioration detection unit 14 predicts peak frequencies at future points in time based on these peak frequencies. For such prediction, for example, the method of least squares is used.
  • FIG. 20D shows an example of the frequency spectrum at a future point in time (eg next year).
  • P_F in FIG. 20D indicates a peak in the frequency spectrum.
  • the deterioration detection unit 14 compares the predicted peak frequency with a reference value similar to the reference value in the first specific example. As a result, the deterioration detection unit 14 predicts the presence or absence of deterioration at a future point in time, and predicts the degree of deterioration at a future point in time, for the deterioration detection target location.
  • the deterioration detection unit 14 determines that there is a sign of deterioration in the deterioration detection target location.
  • the deterioration detection unit 14 determines that there is no sign of deterioration in the deterioration detection target location. In this manner, a sign of deterioration at the deterioration detection target location is detected.
  • the construction detection system 100a By using the construction detection system 100a, it is possible to detect the occurrence of construction work around each utility pole 1 or each steel tower 7, as well as the optical fiber cable 2 (more specifically, the deterioration detection target point ) can be detected. That is, it is possible to detect deterioration at a portion of the optical fiber cable 2 corresponding to an arbitrary point. At this time, remote detection can be realized. In addition, compared to the technology described in Patent Document 1, detection can be achieved with a simpler configuration.
  • the deterioration detection unit 14 may detect the deterioration of each of the plurality of deterioration detection target points corresponding to the distances D different from each other.
  • the construction detection system 100a can adopt various modifications similar to those described in the second embodiment.
  • the construction detection system 100a may not include the filter unit 4 and the output device 6, as in the example shown in FIG. That is, the main part of the construction detection system 100a may be configured by the optical fiber cable 2 and the construction detection device 5a.
  • the construction detection device 5a may not include the output control section 13a, as in the example shown in FIG. That is, the optical signal receiving section 11, the construction detecting section 12, and the deterioration detecting section 14 may constitute a main part of the construction detecting device 5a.
  • [Appendix] [Appendix 1] an optical signal receiving means for receiving an optical signal from an optical fiber cable laid overhead via a utility pole or steel tower; construction detection means for detecting the occurrence of construction work around the utility pole or the steel tower based on the vibration pattern of the utility pole or the steel tower indicated by the optical signal; A construction detection device comprising: [Appendix 2] The construction detection device according to appendix 1, further comprising output control means for executing control to output an alert when the occurrence of construction is detected by the construction detection means. [Appendix 3] The construction detection device according to appendix 1 or appendix 2, wherein the construction detection means detects an area where the construction is occurring. [Appendix 4] 3.
  • the construction detection device according to any one of appendices 1 to 3, further comprising deterioration detection means for detecting deterioration of the optical fiber cable based on characteristics included in the optical signal.
  • deterioration detection means for detecting deterioration of the optical fiber cable based on characteristics included in the optical signal.
  • Appendix 5 The construction detection device according to appendix 4, wherein the deterioration detection means detects the presence or absence of the deterioration and also detects the degree of the deterioration.
  • Appendix 7 the construction detection device according to any one of appendices 1 to 6; the optical fiber cable; construction detection system.
  • Appendix 9 The construction detection system according to appendix 7, wherein the optical fiber cable is for communication or sensing.
  • An optical signal receiving means receives an optical signal from an optical fiber cable laid by an overhead method via a utility pole or steel tower, A construction detection method, wherein a construction detection means detects occurrence of construction around the utility pole or the steel tower based on a vibration pattern of the utility pole or the steel tower indicated by the optical signal.
  • [Appendix 11] 11 The construction detection method according to appendix 10, wherein the output control means executes control to output an alert when the occurrence of the construction is detected by the construction detection means.
  • [Appendix 12] 12 The construction detection method according to appendix 10 or 11, wherein the construction detection means detects an area where the construction has occurred.
  • [Appendix 13] 13 The construction detection method according to any one of appendices 10 to 12, wherein the deterioration detection means detects deterioration of the optical fiber cable based on characteristics included in the optical signal.
  • [Appendix 14] 14 The construction detection method according to appendix 13, wherein the deterioration detection means detects the presence or absence of the deterioration and also detects the degree of the deterioration.
  • [Appendix 15] 14 The construction detection method according to appendix 13, wherein the deterioration detection means detects a sign of deterioration.
  • [Appendix 18] 18.
  • the recording medium described in . [Appendix 20] 20.
  • [Appendix 21] 19 The recording medium according to appendix 19, wherein the deterioration detecting means detects a sign of the deterioration.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

簡単な構成により電柱又は鉄塔の周囲における工事の発生を検出することを目的とする。工事検出装置(5)は、電柱(1)又は鉄塔(7)を介する架空方式により敷設された光ファイバケーブル(2)からの光信号を受信する光信号受信手段(11)と、光信号が示す電柱(1)又は鉄塔(7)の振動パターンに基づき、電柱(1)又は鉄塔(7)の周囲における工事の発生を検出する工事検出手段(12)と、を備える。

Description

工事検出装置、工事検出システム及び工事検出方法
 本開示は、工事検出装置等に関する。
 地上における電柱又は鉄塔の周囲にて工事が発生したとき、電柱又は鉄塔に敷設された架空電線が工事の影響を受けることがある。この結果、架空電線が破損することがある。
 これまでは、作業員が定期的に巡回をすることにより、架空電線が工事の影響を受けているか否かを確認していた。かかる確認の効率を良くする観点から、工事の発生に合わせて巡回をするのが好適である。
 ここで、地上における工事が行われる場合、原則、市町村に対する事前の届出がなされる。かかる届出がなされることにより、工事の発生場所及び工事の発生日時を事前に把握することができる。このため、工事の発生に合わせて巡回をすることができる。
 しかしながら、近年、かかる届出がなされない工事(いわゆる「無許可工事」)が多発している。無許可工事においては、工事の発生場所及び工事の発生日時を事前に把握することができない。このため、工事の発生に合わせて巡回をすることが困難である。
 そこで、届出の有無にかかわらず工事の発生を検出する技術が望まれている。特許文献1には、かかる技術の一例が開示されている。すなわち、特許文献1に記載の技術においては、地中に振動センサが設置される。かかる振動センサにより検出された振動に基づき、地上における工事の発生が検出される。
特開2001-59719号公報
 特許文献1に記載の技術においては、送電網又は配電網に沿うようにして地中に振動センサを設置することが要求される。このため、事前に大規模な設置作業が要求される問題があった。
 本開示は、上記のような課題を解決するためになされたものであり、地中における振動センサの設置を不要とした簡単な構成により、電柱又は鉄塔の周囲における工事の発生を検出することを目的とする。
 本開示に係る工事検出装置の一形態は、電柱又は鉄塔を介する架空方式により敷設された光ファイバケーブルからの光信号を受信する光信号受信手段と、光信号が示す電柱又は鉄塔の振動パターンに基づき、電柱又は鉄塔の周囲における工事の発生を検出する工事検出手段と、を備えるものである。
 本開示に係る工事検出方法の一形態は、光信号受信手段が、電柱又は鉄塔を介する架空方式により敷設された光ファイバケーブルからの光信号を受信して、工事検出手段が、光信号が示す電柱又は鉄塔の振動パターンに基づき、電柱又は鉄塔の周囲における工事の発生を検出するものである。
 本開示によれば、簡単な構成により電柱又は鉄塔の周囲における工事の発生を検出することができる。
図1は、複数本の電柱を介する架空方式により敷設された光ファイバケーブルの架設例を示す説明図である。 図2は、第2実施形態に係る工事検出システムの要部を示すブロック図である。 図3は、第2実施形態に係る工事検出装置の要部のハードウェア構成を示すブロック図である。 図4は、第2実施形態に係る工事検出装置の要部の他のハードウェア構成を示すブロック図である。 図5は、第2実施形態に係る工事検出装置の要部の他のハードウェア構成を示すブロック図である。 図6は、第2実施形態に係る工事検出装置の動作を示すフローチャートである。 図7は、工事検出部により用いられる電柱情報の例を示す説明図である。 図8Aは、周囲における工事の発生がない電柱の振動パターンに対応する周波数スペクトルの例を示す説明図である。 図8Bは、周囲における工事の発生がある電柱の振動パターンに対応する周波数スペクトルの例を示す説明図である。 図9Aは、周囲における工事の発生がない電柱の振動パターンに対応する時間波形の例を示す説明図である。 図9Bは、周囲における工事の発生がある電柱の振動パターンに対応する時間波形の例を示す説明図である。 図10は、アラートに用いられる画像の例を示す説明図である。 図11は、複数本の鉄塔を介する架空方式により敷設された光ファイバケーブルの架設例を示す説明図である。 図12は、第2実施形態に係る他の工事検出システムの要部を示すブロック図である。 図13は、第2実施形態に係る他の工事検出装置の要部を示すブロック図である。 図14は、第3実施形態に係る工事検出システムの要部を示すブロック図である。 図15は、第3実施形態に係る工事検出装置の動作を示すフローチャートである。 図16Aは、光ファイバケーブルの劣化がない場合における振動パターンに対応する周波数スペクトルの例を示す説明図である。 図16Bは、光ファイバケーブルの劣化がある場合における振動パターンに対応する周波数スペクトルの例を示す説明図である。 図17Aは、光ファイバケーブルの劣化がない場合における振動パターンに対応する時間波形の例を示す説明図である。 図17Bは、光ファイバケーブルの劣化がある場合における振動パターンに対応する時間波形の例を示す説明図である。 図18は、機械学習に用いられるデータの例を示す説明図である。 図19は、機械学習に用いられる学習器の例を示す説明図である。 図20Aは、過去の時点における振動パターンに対応する周波数スペクトルの例を示す説明図である。 図20Bは、他の過去の時点における振動パターンに対応する周波数スペクトルの例を示す説明図である。 図20Cは、現在の時点における振動パターンに対応する周波数スペクトルの例を示す説明図である。 図20Dは、未来の時点における振動パターンに対応する周波数スペクトルの例を示す説明図である。 図21Aは、第1実施形態に係る工事検出装置と複数本の電柱を介する架空方式により敷設された光ファイバケーブルの架設例を示す説明図である。 図21Bは、第1実施形態に係る工事検出装置と複数本の鉄塔を介する架空方式により敷設された光ファイバケーブルの架設例を示す説明図である。
 以下、本開示の実施形態について、図面を参照しながら説明する。
[第1実施形態]
 図21A及び図21Bの各々は、第1実施形態に係る工事検出装置を示す説明図である。図21A及び図21Bを参照して、第1実施形態に係る工事検出装置について説明する。
 図21Aに示す如く、複数本の電柱1を介する架空方式により、光ファイバケーブル2が敷設されている。または、図21Bに示す如く、複数本の鉄塔7を介する架空方式により、光ファイバケーブル2が敷設されている。光ファイバケーブル2の一端部に工事検出装置5が設けられている。工事検出装置5は、以下のような機能を有する。
 すなわち、工事検出装置5は、光ファイバケーブル2に光信号を出力する。これにより、光ファイバケーブル2の内部にて後方散乱光が発生する。工事検出装置5は、当該発生した後方散乱光に対応する光信号を受信する。換言すれば、工事検出装置5は、光ファイバケーブル2からの光信号を受信する。当該受信された光信号には、個々の電柱1又は個々の鉄塔7の振動に応じて異なるパターンが含まれる。工事検出装置5は、当該受信された光信号を用いて、かかるパターンに基づき、個々の電柱1又は個々の鉄塔7の周囲における工事の発生を検出する。工事検出装置5の詳細については、第2実施形態にて後述する。
 このように、工事検出装置5を用いることにより、電柱1又は鉄塔7の周囲における工事の発生を検出することを目的とする。特に、地中における振動センサの設置を不要とした簡単な構成により、かかる工事の発生を検出することができる。
[第2実施形態]
 図1は、複数本の電柱を介する架空方式により敷設された光ファイバケーブルの架設例を示す説明図である。図2は、第2実施形態に係る工事検出システムの要部を示すブロック図である。図1及び図2を参照して、第2実施形態に係る工事検出システムについて説明する。
 図1に示す如く、N本の電柱1_1~1_Nを介する架空方式により、光ファイバケーブル2が敷設されている。ここで、Nは、2以上の整数である。図1に示す例においては、N=3である。電柱1_1~1_Nは、送電網又は配電網に含まれる。換言すれば、電柱1_1~1_Nは、送電用又は配電用である。光ファイバケーブル2は、通信用又はセンシング用である。なお、光ファイバケーブル2は、架空地線の内部に設けられたものであっても良い。すなわち、光ファイバケーブル2は、OPGW(Optical Fiber Composite Overhead Ground Wire)を用いたものであっても良い。
 以下、光ファイバケーブル2が通信用である場合の例を中心に説明する。光ファイバケーブル2は、光通信装置3による通信に用いられる(図2参照)。光通信装置3は、例えば、OPGW用の端末装置により構成されている。光通信装置3は、例えば、OPGW用の局舎に設置されている。
 図2に示す如く、工事検出システム100は、光ファイバケーブル2、フィルタユニット4、工事検出装置5及び出力装置6を備える。工事検出装置5は、光信号受信部11、工事検出部12及び出力制御部13を備える。
 フィルタユニット4は、光ファイバケーブル2と光通信装置3と工事検出装置5との間に設けられている。フィルタユニット4は、光通信装置3からの光信号が入力されたとき、当該入力された光信号を光ファイバケーブル2に出力する。また、フィルタユニット4は、光ファイバケーブル2からの光信号が入力されたとき、当該入力された信号光のうちの後方散乱光に対応する成分を分離して、工事検出装置5に出力する。フィルタユニット4は、波長フィルタ(より具体的には3ポートの波長分割多重フィルタ)を用いて構成される。かかる波長フィルタにおいて、光通信装置3から入力された光信号(特定の波長を有する。)は、工事検出装置5に出力されることなく、光ファイバケーブル2に出力される。他方、光ファイバケーブル2から入力された光信号のうちの他の特定の波長を有する成分(後方散乱光に対応する成分を含む。)は、光通信装置3に出力されることなく、工事検出装置5に出力される。このようにして、フィルタユニット4の機能が実現される。
 光信号受信部11は、光ファイバケーブル2からの光信号を受信する。より具体的には、上記のとおり、後方散乱光に対応する成分がフィルタユニット4により分離されて、当該分離された成分を含む光信号が光信号受信部11により受信される。
 工事検出部12は、光信号受信部11により受信された光信号を用いて、個々の電柱1の周囲における工事の発生を検出する。これにより、かかる工事が発生しているエリアが検出される。工事検出部12による検出方法の具体例については、図7~図9Bを参照して後述する。
 出力制御部13は、工事検出部12により工事の発生が検出されたとき、アラートを出力する制御を実行する。アラートの出力には、出力装置6が用いられる。出力装置6は、例えば、表示装置、音声出力装置及び通信装置のうちの少なくとも一つを含む。表示装置は、例えば、ディスプレイを用いたものである。音声出力装置は、例えば、スピーカを用いたものである。通信装置は、例えば、専用の送信機及び受信機を用いたものである。
 すなわち、出力制御部13は、アラート用の画像を表示する制御を実行する。かかる画像の表示には、出力装置6のうちの表示装置が用いられる。または、出力制御部13は、アラート用の音声を出力する制御を実行する。かかる音声の出力には、出力装置6のうちの音声出力装置が用いられる。または、出力制御部13は、アラート用の信号を送信する制御を実行する。かかる信号の送信には、出力装置6のうちの通信装置が用いられる。アラート用の画像の具体例については、図10を参照して後述する。
 このようにして、工事検出システム100の要部が構成されている。
 以下、光信号受信部11を「光信号受信手段」ということがある。また、工事検出部12を「工事検出手段」ということがある。また、出力制御部13を「出力制御手段」ということがある。
 次に、図3~図5を参照して、工事検出装置5の要部のハードウェア構成について説明する。
 図3~図5の各々に示す如く、工事検出装置5は、コンピュータ21を用いたものである。コンピュータ21は、光通信装置3が設置された場所と同一の場所(例えばOPGW用の局舎)に設けられるものであっても良い。または、コンピュータ21は、他の場所(例えばクラウドネットワーク内)に設けられるものであっても良い。または、コンピュータ21のうちの一部の要素(より具体的には受信機31)が当該同一の場所に設けられるとともに、コンピュータ21のうちの残余の要素が当該他の場所に設けられるものであっても良い。
 図3に示す如く、コンピュータ21は、受信機31、プロセッサ32及びメモリ33を備える。メモリ33には、コンピュータ21を光信号受信部11、工事検出部12及び出力制御部13として機能させるためのプログラム(受信機31を光信号受信部11として機能させるためのプログラムを含む。)が記憶されている。プロセッサ32は、メモリ33に記憶されたプログラムを読み出して実行する。これにより、光信号受信部11の機能F1、工事検出部12の機能F2及び出力制御部13の機能F3が実現される。
 または、図4に示す如く、コンピュータ21は、受信機31及び処理回路34を備える。処理回路34は、コンピュータ21を光信号受信部11、工事検出部12及び出力制御部13として機能させるための処理(受信機31を光信号受信部11として機能させるための処理を含む。)を実行する。これにより、機能F1~F3が実現される。
 または、図5に示す如く、コンピュータ21は、受信機31、プロセッサ32、メモリ33及び処理回路34を備える。この場合、機能F1~F3のうちの一部の機能がプロセッサ32及びメモリ33により実現されるとともに、機能F1~F3のうちの残余の機能が処理回路34により実現される。
 プロセッサ32は、1個以上のプロセッサにより構成されている。個々のプロセッサは、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、マイクロプロセッサ、マイクロコントローラ又はDSP(Digital Signal Processor)を用いたものである。
 メモリ33は、1個以上のメモリにより構成されている。個々のメモリは、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)、ソリッドステートドライブ、ハードディスクドライブ、フレキシブルディスク、コンパクトディスク、DVD(Digital Versatile Disc)、ブルーレイディスク、MO(Magneto Optical)ディスク又はミニディスクを用いたものである。
 処理回路34は、1個以上の処理回路により構成されている。個々の処理回路は、例えば、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)、SoC(System on a Chip)又はシステムLSI(Large Scale Integration)を用いたものである。
 なお、プロセッサ32は、機能F1~F3の各々に対応する専用のプロセッサを含むものであっても良い。メモリ33は、機能F1~F3の各々に対応する専用のメモリを含むものであっても良い。処理回路34は、機能F1~F3の各々に対応する専用の処理回路を含むものであっても良い。
 次に、図6に示すフローチャートを参照して、工事検出装置5の動作について説明する。
 まず、光信号受信部11は、光ファイバケーブル2からの光信号を受信する(ステップST1)。次いで、工事検出部12は、当該受信された光信号を用いて、個々の電柱1の周囲における工事の発生を検出する(ステップST2)。次いで、出力制御部13は、かかる検出の結果に応じてアラートを出力する制御を実行する(ステップST3)。すなわち、出力制御部13は、ステップST2にて工事の発生が「ある」ことが検出された場合、アラートを出力する制御を実行する。
 次に、図7、図8A及び図8Bを参照して、工事検出部12による検出方法の第1具体例について説明する。
 まず、光通信装置3がパルス状の光信号を出力する。当該出力された光信号は、フィルタユニット4を介して光ファイバケーブル2に入力される。かかる光信号が入力されることにより、光ファイバケーブル2の内部にて後方散乱光が発生する。上記のとおり、光信号受信部11により受信される光信号は、フィルタユニット4により分離されたものであり、当該発生した後方散乱光に対応する成分(以下「後方散乱光成分」という。)を含む。
 このとき、光信号受信部11により受信される光信号は、光ファイバケーブル2のうちの個々の電柱1に対応する位置にて発生した後方散乱光に対応する成分を含む。換言すれば、当該受信される光信号は、個々の電柱1に対応する後方散乱光成分を含む。かかる後方散乱光成分が受信されるタイミングは、対応する電柱1が設置された位置と、工事検出装置5が設置された位置(より具体的には受信機31が設置された位置)との距離Dに応じて異なる。ここで、距離Dは、光ファイバケーブル2に沿う経路距離である。
 ここで、光信号受信部11により受信される光信号に含まれる後方散乱光成分は、対応する電柱1の振動に応じて異なるパターン(以下「振動パターン」という。)を示す。換言すれば、当該受信される光信号は、個々の電柱1に対応する振動パターンを含む。工事検出部12による工事の発生の検出は、かかる振動パターンに基づくものである。
 すなわち、個々の電柱1の周囲にて工事が発生していないときは、周囲における環境振動が地面を介して当該電柱1に伝達される。他方、個々の電柱1の周囲にて工事が発生しているときは、かかる工事により発生した振動(例えば建設機械の動作により発生した振動)が地面を介して当該電柱1に伝達される。このため、個々の電柱1について、周囲にて工事が発生しているときの振動パターンは、周囲にて工事が発生していないときの振動パターンに対して変化する。具体的には、例えば、振動パターンを示す時間波形TWにおける減衰時間Tが変化する。または、例えば、振動パターンを示す周波数スペクトルFSにおけるピーク周波数が変化する。このため、振動パターンに基づき、個々の電柱1の周囲における工事の発生を検出することができる。
 工事検出装置5(より具体的にはメモリ33又は処理回路34の記憶領域)には、個々の電柱1に関する情報(以下「電柱情報」という。)が記憶されている。電柱情報は、個々の電柱1に対応する距離Dを示す情報(以下「距離情報」という。)を含む。また、電柱情報は、個々の電柱1を識別可能な情報(以下「識別情報」という。)を含む。識別情報は、例えば、個々の電柱1に割り当てられた識別子を含む。図7は、電柱情報の例を示している。
 工事検出装置5は、光通信装置3がパルス状の光信号を出力したタイミングを示す情報を取得する。かかる情報は、例えば、光通信装置3から取得される。工事検出部12は、当該取得された情報が示すタイミングと、光信号受信部11により後方散乱光成分が受信されたタイミングとの時間差を算出する。工事検出部12は、当該算出された時間差に基づき、かかる後方散乱光成分が発生した位置と受信機31が設置された位置との距離D’を算出する。ここで、距離D’は、光ファイバケーブル2に沿う経路距離である。
 工事検出部12は、当該算出された距離D’を、電柱情報に含まれる距離情報が示す個々の距離Dと比較する。これにより、工事検出部12は、上記受信された光信号に含まれる後方散乱光成分のうち、個々の電柱1に対応する後方散乱光成分を検出する。この結果、個々の電柱1に対応する振動パターンが検出される。より具体的には、個々の電柱1に対応する振動パターンを示す時間波形TWが検出される。
 次いで、工事検出部12は、当該検出された時間波形に対する高速フーリエ変換(FFT:Fast Fourier Transform)を実行する。これにより、個々の電柱1に対応する振動パターンを示す周波数スペクトルFSが算出される。
 図8Aは、周囲における工事の発生がない電柱1に対応する振動パターンを示す周波数スペクトルFS_1のイメージを示している。他方、図8Bは、周囲における工事の発生がある電柱1に対応する振動パターンを示す周波数スペクトルFS_2のイメージを示している。図8AにおけるP_1は、周波数スペクトルFS_1におけるピークを示している。図8BにおけるP_2は、周波数スペクトルFS_2におけるピークを示している。
 上記のとおり、対応する電柱1の周囲における工事の発生により、周波数スペクトルFSにおけるピーク周波数が変化する。図8A及び図8Bに示す例において、周波数スペクトルFS_2におけるピーク周波数(図8B参照)は、周波数スペクトルFS_1におけるピーク周波数(図8A参照)と異なる値である。
 工事検出部12には、ピーク周波数に対する比較の対象となる基準値が設定されている。基準値は、周囲における工事の発生がない電柱1に対応する振動パターンを示す周波数スペクトルFSにおけるピーク周波数と同等の値に設定されている。具体的には、例えば、基準値は、図8Aに示す周波数スペクトルFS_1におけるピーク周波数と同等の値に設定されている。
 工事検出部12は、上記算出された周波数スペクトルFSにおけるピーク周波数を検出する。工事検出部12は、当該検出されたピーク周波数を、上記設定された基準値と比較する。これにより、工事検出部12は、対応する電柱1の周囲における工事の発生の有無を判定する。このようにして、個々の電柱1の周囲における工事の発生が検出される。
 また、工事検出装置5(より具体的にはメモリ33又は処理回路34の記憶領域)には、個々の電柱1が設置された位置を含むエリアを示す情報が記憶されている。工事検出部12は、当該記憶された情報を用いて、周囲における工事の発生があると判定された電柱1が設置された位置を含むエリアを検出する。このようにして、工事が発生しているエリアが検出される。
 次に、図9A及び図9Bを参照して、工事検出部12による検出方法の第2具体例について説明する。
 工事検出部12は、第1具体例にて説明した検出方法と同様の検出方法により、個々の電柱1に対応する後方散乱光成分を検出する。この結果、個々の電柱1に対応する振動パターンが検出される。より具体的には、個々の電柱1に対応する振動パターンを示す時間波形TWが検出される。
 通常、周囲における工事の発生がない場合における振動パターンに対応する時間波形TWは、非周期的に発生するパルス状の波形を含む。これは、環境振動に基づくものである。図9Aは、周囲における工事の発生がない電柱1に対応する振動パターンを示す時間波形TW_1の例を示している。
 これに対して、周囲における工事の発生がある場合における振動パターンに対応する時間波形TWは、一定周期に発生するパルス状の波形を含む。これは、例えば、建設機械の動作により発生した振動に基づくものである。図9Bは、周囲における工事の発生がある電柱1に対応する振動パターンを示す時間波形TW_2の例を示している。
 そこで、工事検出部12は、上記検出された時間波形TWを解析することにより、一定周期に発生するパルス状の波形が含まれるか否かを判定する。かかるパルス状の波形が含まれる場合、工事検出部12は、対応する電柱1の周囲における工事の発生があると判定する。そうでない場合、工事検出部12は、対応する電柱1の周囲における工事の発生がないと判定する。このようにして、個々の電柱1の周囲における工事の発生が検出される。
 次いで、工事検出部12は、工事が発生しているエリアを検出する。かかるエリアの検出方法は、第1具体例にて説明したものと同様である。このため、再度の説明は省略する。
 次に、図10を参照して、アラート用の画像の具体例について説明する。
 図10は、アラート用の画像Iの例を示している。図10に示す如く、画像Iは、光ファイバケーブル2が敷設された地域を示す地図状の画像を含むものであっても良い。また、画像Iにおいては、光ファイバケーブル2のうち、周囲における工事の発生がある電柱1に対応する部位(図中X)の色が、他の部位の色と異なる色により表示されている。これにより、工事検出システム100のユーザは、当該地域における当該工事が発生している位置を視覚的に認識することができる。
 次に、工事検出システム100を用いることによる効果について説明する。
 第一に、上記のとおり、個々の電柱1の周囲における工事の発生を検出することができる。このとき、いわゆる「リモート」による検出を実現することができる。すなわち、個々の電柱1の周囲における工事の発生を検出するにあたり、作業員による巡回を不要とすることができる。また、届出の有無にかかわらず、かかる工事の発生を検出することができる。
 第二に、個々の電柱1の周囲における工事の発生を検出するにあたり、既設の光ファイバケーブル2(例えばOPGW用の光ファイバケーブル2)を用いることができる。これにより、かかる工事の発生を検出するための専用の光ファイバケーブルを不要とすることができる。この結果、かかる光ファイバケーブルを敷設する作業を不要とすることができる。
 第三に、特許文献1に記載の技術に比して、構成を簡単にすることができる。すなわち、特許文献1に記載の技術が個々の電柱1の周囲における工事の発生の検出に用いられたものとする。この場合、電柱1_1~1_Nを含む送電網又は配電網に沿うようにして、地中に振動センサを設置することが要求される。これに対して、工事検出システム100を用いることにより、かかる振動センサを不要とすることができる。このため、かかる振動センサを設置する作業(すなわち事前の大規模な設置作業)も不要とすることができる。
 次に、工事検出システム100の変形例について説明する。
 図1及び図2に示す例においては、光ファイバケーブル2の片端部に光通信装置3、フィルタユニット4及び工事検出装置5が設けられている。これに対して、光ファイバケーブル2の両端部の各々に光通信装置3、フィルタユニット4及び工事検出装置5が設けられているものであっても良い。
 次に、工事検出システム100の他の変形例について説明する。
 工事検出システム100は、1本の光ファイバケーブル2に代えて、複数本の光ファイバケーブル(不図示)を用いるものであっても良い。複数本の光ファイバケーブルは、例えば、電柱1_1~1_Nを含む送電網又は配電網における互いに異なる経路に沿うように設けられている。この場合、光信号受信部11は、複数本の光ファイケーブルの各々からの光信号を受信する。工事検出部12は、複数本の光ファイバケーブルの各々について、第1具体例又は第2具体例にて説明した処理と同様の処理を実行する。これにより、電柱1_1~1_Nの各々の周囲における工事の発生が検出される。
 次に、工事検出システム100の他の変形例について説明する。
 工事検出装置5は、市町村に対する工事の届出を示す情報(以下「届出情報」という。)を取得するものであっても良い。届出情報は、例えば、個々の工事が発生する予定の場所、及び個々の工事が発生する予定の日時を含む。
 工事検出装置5は、工事検出部12により工事の発生が検出されたとき、かかる工事が届出情報に含まれるか否かを判定するものであっても良い。これにより、工事検出装置5は、かかる工事が無許可工事であるか否かを判定するものであっても良い。換言すれば、工事検出装置5は、無許可工事の発生を検出するものであっても良い。
 次に、図11を参照して、工事検出システム100の他の変形例について説明する。
 図11に示す如く、光ファイバケーブル2は、M本の鉄塔7_1~7_Mを介する架空方式により敷設されているものであっても良い。ここで、Mは、2以上の整数である。図11に示す例においては、M=3である。鉄塔7_1~7_Mは、送電網又は配電網に含まれる。換言すれば、鉄塔7_1~7_Mは、送電用又は配電用である。
 この場合、工事検出部12は、個々の鉄塔7の周囲における工事の発生を検出する。この場合における工事検出部12による検出方法は、第1具体例又は第2具体例にて説明したものと同様である。このため、再度の説明は省略する。
 次に、図12を参照して、工事検出システム100の他の変形例について説明する。
 図12に示す如く、工事検出システム100は、光ファイバケーブル2及び工事検出装置5を備えるものであっても良い。換言すれば、光ファイバケーブル2及び工事検出装置5により、工事検出システム100の要部が構成されているものであっても良い。この場合、工事検出装置5は、光ファイバケーブル2にパルス状の光信号を出力する機能を有するものであっても良い。
 次に、図13を参照して、工事検出装置5の変形例について説明する。
 図13に示す如く、工事検出装置5は、光信号受信部11及び工事検出部12を備えるものであっても良い。換言すれば、光信号受信部11及び工事検出部12により、工事検出装置5の要部が構成されているものであっても良い。この場合、出力制御部13は、出力装置6に設けられているものであっても良い。この場合においても、上記のような効果を奏することができる。
 すなわち、光信号受信部11は、電柱1又は鉄塔7を介する架空方式により敷設された光ファイバケーブル2からの光信号を受信する。工事検出部12は、光信号が示す電柱1又は鉄塔7の振動パターンに基づき、電柱1又は鉄塔7の周囲における工事の発生を検出する。これにより、個々の電柱1又は個々の鉄塔7の周囲における工事の発生を検出することができる。特に、リモートにより、かかる工事の発生を検出することができる。また、特許文献1に記載の技術において用いられていた振動センサを不要とすることができるため、簡単な構成により、かかる工事の発生を検出することができる。
[第3実施形態]
 図14は、第3実施形態に係る工事検出システムの要部を示すブロック図である。図14を参照して、第3実施形態に係る工事検出システムについて説明する。なお、図14において、図2に示すブロックと同様のブロックには同一符号を付して説明を省略する。
 図14に示す如く、工事検出システム100aは、光ファイバケーブル2、フィルタユニット4、工事検出装置5a及び出力装置6を備える。工事検出装置5aは、光信号受信部11、工事検出部12、出力制御部13a及び劣化検出部14を備える。
 劣化検出部14は、光信号受信部11により受信された光信号を用いて、光ファイバケーブル2のうちの所定の地点に対応する部位(以下「劣化検出対象箇所」という。)の劣化を検出する。より具体的には、劣化検出部14は、劣化検出対象箇所における劣化の有無を検出するとともに、劣化検出対象箇所における劣化の程度を検出する。または、劣化検出部14は、劣化検出対象箇所における劣化の予兆を検出する。劣化検出部14による検出方法の具体例については、図16A~図20Dを参照して後述する。
 出力制御部13aは、出力制御部13により実行される制御と同様の制御を実行する。すなわち、出力制御部13aは、工事検出部12により工事の発生が検出されたとき、アラートを出力する制御を実行する。
 これに加えて、出力制御部13aは、劣化検出部14による検出の結果を示す情報(以下「検出結果情報」という。)を出力する制御を実行する。検出結果情報の出力には、出力装置6が用いられる。すなわち、出力制御部13aは、検出結果情報を含む画像を表示する制御を実行する。かかる画像の表示には、出力装置6のうちの表示装置が用いられる。または、出力制御部13aは、検出結果情報に対応する音声を出力する制御を実行する。かかる音声の出力には、出力装置6のうちの音声出力装置が用いられる。または、出力制御部13aは、検出結果情報に対応する信号を送信する制御を実行する。かかる信号の送信には、出力装置6のうちの通信装置が用いられる。
 このようにして、工事検出システム100aの要部が構成されている。
 以下、出力制御部13aを「出力制御手段」ということがある。また、劣化検出部14を「劣化検出手段」ということがある。
 工事検出装置5aの要部のハードウェア構成は、第2実施形態にて図3~図5を参照して説明したものと同様である。このため、詳細な説明は省略する。
 すなわち、光信号受信部11の機能F1、工事検出部12の機能F2、出力制御部13aの機能F3a及び劣化検出部14の機能F4は、プロセッサ32及びメモリ33により実現されるものであっても良い。または、機能F1,F2,F3a,F4は、処理回路34により実現されるものであっても良い。
 ここで、プロセッサ32は、機能F1,F2,F3a,F4の各々に対応する専用のプロセッサを含むものであっても良い。メモリ33は、機能F1,F2,F3a,F4の各々に対応する専用のメモリを含むものであっても良い。処理回路34は、機能F1,F2,F3a,F4の各々に対応する専用の処理回路を含むものであっても良い。
 次に、図15に示すフローチャートを参照して、工事検出装置5aの動作について、光信号受信部11、出力制御部13a及び劣化検出部14の動作を中心に説明する。なお、図15において、図6に示すステップと同様のステップには同一符号を付している。
 まず、光信号受信部11は、光ファイバケーブル2からの光信号を受信する(ステップST1)。次いで、劣化検出部14は、当該受信された光信号を用いて、光ファイバケーブル2の劣化を検出する(ステップST4)。より具体的には、劣化検出部14は、光ファイバケーブル2のうちの劣化検出対象箇所の劣化を検出する。次いで、出力制御部13aは、かかる検出の結果を示す情報(すなわち検出結果情報)を出力する制御を実行する(ステップST3a)。
 例えば、ステップST4にて、劣化が「ない」ことが検出されたものとする。この場合、ステップST3aにて、劣化が「ない」ことを示す検出結果情報が出力される。または、例えば、ステップST4にて、劣化が「ある」ことが検出されて、かかる劣化の程度が検出されたものとする。この場合、ステップST3aにて、劣化の発生が「ある」ことを示し、かつ、かかる劣化の程度(例えば2段階の値のうちのいずれかの値)を示す検出結果情報が出力される。
 次に、図16A及び図16Bを参照して、劣化検出部14による検出方法の第1具体例について説明する。第1具体例において、劣化検出部14は、劣化検出対象箇所における劣化の有無を検出するとともに、かかる劣化の程度を検出する。
 工事検出装置5a(より具体的にはメモリ33又は処理回路34の記憶領域)には、劣化検出対象箇所に対応する距離Dを示す情報が記憶されている。劣化検出部14は、かかる情報を用いて、光信号受信部11により受信された光信号に含まれる後方散乱光成分のうちの劣化検出対象箇所に対応する後方散乱光成分を検出する。次いで、劣化検出部14は、当該検出された後方散乱光成分に含まれる特徴を検出する。より具体的には、劣化検出部14は、当該検出された後方散乱光成分に含まれる振動パターンを検出する。劣化検出部14による劣化の検出は、かかる特徴に基づくものである。
 すなわち、劣化検出対象箇所の劣化が発生することにより、劣化検出対象箇所における光学的特性が変化する。これにより、対応する後方散乱光成分に含まれる特徴が変化する。具体的には、例えば、振動パターンを示す時間波形TWにおける減衰時間Tが変化する。また、例えば、振動パターンを示す周波数スペクトルFSにおけるピーク周波数が変化する。このため、振動パターンに基づき、劣化対象箇所の劣化を検出することができる。
 また、このとき、振動パターンの変化量(例えば減衰時間Tの変化量又はピーク周波数の変化量)は、劣化の程度に応じて異なるものとなる。より具体的には、劣化の程度が大きいほど、変化量が大きい値となる。このため、振動パターンに基づき、劣化検出対象箇所における劣化の程度を検出することができる。
 劣化検出部14は、上記検出された振動パターンを示す時間波形TWに対するFFT(Fast Fourier Transform)を実行する。これにより、劣化検出対象箇所に対応する振動パターンを示す周波数スペクトルFSが算出される。
 図16Aは、光ファイバケーブル2(より具体的には劣化検出対象箇所)の劣化がない場合における振動パターンを示す周波数スペクトルFS_3のイメージを示している。他方、図16Bは、かかる劣化がある場合における振動パターンを示す周波数スペクトルFS_4のイメージを示している。図16AにおけるP_3は、周波数スペクトルFS_3におけるピークを示している。図16BにおけるP_4は、周波数スペクトルFS_4におけるピークを示している。
 上記のとおり、劣化検出対象箇所の劣化が発生することにより、周波数スペクトルFSにおけるピーク周波数が変化する。図16A及び図16Bに示す例において、周波数スペクトルFS_4におけるピーク周波数(図16B参照)は、周波数スペクトルFS_3におけるピーク周波数(図16A参照)と異なる値である。
 劣化検出部14には、ピーク周波数に対する比較の対象となる基準値が設定されている。基準値は、劣化検出対象箇所の劣化がない場合における振動パターンを示す周波数スペクトルFSにおけるピーク周波数と同等の値に設定されている。具体的には、例えば、基準値は、図16Aに示す周波数スペクトルFS_3におけるピーク周波数と同等の値に設定されている。
 劣化検出部14は、上記算出された周波数スペクトルFSにおけるピーク周波数を検出する。劣化検出部14は、当該検出されたピーク周波数を、上記設定された基準値と比較する。これにより、劣化検出部14は、劣化検出対象箇所における劣化の有無を判定する。このようにして、劣化検出対象箇所における劣化の有無が検出される。
 また、上記のとおり、劣化検出対象箇所における劣化の程度により、対応する周波数スペクトルFSにおけるピーク周波数の変化量が異なるものとなる。そこで、工事検出装置5a(より具体的にはメモリ33又は処理回路34の記憶領域)には、劣化の程度を示す値(例えば2段階の値)とピーク周波数の変化量を示す値との対応関係を示す情報が記憶されている。劣化検出部14は、上記設定された基準値に対する上記検出されたピーク周波数の変化量を算出する。劣化検出部14は、当該記憶された情報を用いて、当該算出された変化量に対応する劣化の程度を判定する。これにより、劣化検出対象箇所における劣化の程度が検出される。
 次に、図17A及び図17Bを参照して、劣化検出部14による検出方法の第2具体例について説明する。第2具体例において、劣化検出部14は、劣化検出対象箇所における劣化の有無を検出するとともに、かかる劣化の程度を検出する。
 劣化検出部14は、第1具体例にて説明した検出方法と同様の検出方法により、劣化検出対象箇所に対応する後方散乱光成分に含まれる特徴を検出する。より具体的には、劣化検出部14は、かかる後方散乱光成分に含まれる振動パターンを検出する。
 ここで、当該検出された振動パターンに対応する時間波形TWにパルス状の波形が含まれるとき、劣化検出対象箇所における劣化の有無に応じて、かかるパルスの減衰時間Tが異なる値となる。また、かかる劣化の程度に応じて、かかるパルスの減衰時間Tの変化量が異なる値となる。これは、第1具体例にて説明したとおりである。
 図17Aは、光ファイバケーブル2(より具体的には劣化検出対象箇所)の劣化がない場合における振動パターンを示す時間波形TW_3のイメージを示している。他方、図17Bは、かかる劣化がある場合における振動パターンを示す時間波形TW_4のイメージを示している。図17AにおけるT_3は、時間波形TW_3におけるパルスの減衰時間を示している。図17BにおけるT_4は、時間波形TW_4におけるパルスの減衰時間を示している。
 劣化検出部14には、減衰時間Tに対する比較の対象となる基準値が設定されている。基準値は、劣化検出対象箇所の劣化がない場合における振動パターンを示す時間波形TWにおける減衰時間Tと同等の値に設定されている。具体的には、例えば、基準値は、図17Aに示す時間波形TW_3における減衰時間T_3と同等の値に設定されている。
 劣化検出部14は、上記検出された振動パターンに対応する時間波形TWにパルス状の波形が含まれるとき、かかるパルスの減衰時間Tを算出する。劣化検出部14は、当該算出された減衰時間Tを、上記設定された基準値と比較する。これにより、劣化検出部14は、劣化検出対象箇所における劣化の有無を検出する。
 また、工事検出装置5a(より具体的にはメモリ33又は処理回路34の記憶領域)には、劣化の程度を示す値(例えば2段階の値)と減衰時間Tの変化量を示す値との対応関係を示す情報が記憶されている。劣化検出部14は、上記設定された基準値に対する上記算出された減衰時間Tの変化量を算出する。劣化検出部14は、当該記憶された情報を用いて、当該算出された変化量に対応する劣化の程度を判定する。これにより、劣化検出対象箇所における劣化の程度が検出される。
 次に、図18及び図19を参照して、劣化検出部14による検出方法の第3具体例について説明する。第3具体例において、劣化検出部14は、劣化検出対象箇所における劣化の有無を検出するとともに、かかる劣化の程度を検出する。
 第3具体例は、機械学習により生成された学習済みモデルを用いるものである。より具体的には、第3具体例は、教師あり学習により生成された学習済みモデルを用いるものである。以下、かかる機械学習について説明する。
 第一に、機械学習に用いられる訓練入力データとして、複数の振動パターンを示すデータ(以下「振動データ」という。)が用意される。劣化検出対象箇所における個々の劣化状態に対応する振動パターンを含む。第二に、機械学習に用いられる教師データ(すなわち正解データ)として、振動データに含まれる個々の振動パターンに対応する劣化状態を示すデータが用意される。図18は、これらのデータ(初期訓練データ)の例を示している。
 図18に例示される初期訓練データのうちの複数の振動データが専用の学習器に入力される(図19参照)。学習器は、これらの振動データを訓練入力データとして用いた機械学習を実行することにより、学習済みモデルを生成する。例えば、学習器は、個々の振動パターンを示す訓練入力データを受け付ける。学習器は、かかる訓練入力データに対して、機械学習を実行し、所定の精度で正解データが得られるまで、学習処理を繰り返す。この結果、劣化検出対象箇所に対応する学習済みパターンが生成される。次に、学習器は、新規の振動データである入力データを、学習済みパターンの入力データとして用いて、劣化検出対象箇所における劣化の有無及び劣化の程度を分類する。その結果、学習器は、劣化検出対象箇所における劣化の有無及び劣化の程度を示す情報を出力する。図19は、学習器における機械学習の学習処理と分類処理の例を示している。このようにして、学習済みモデルが生成される。
 なお、学習器における機械学習には、公知の種々の技術、例えば、サポートベクターマシン(SVM:Support Vector Machine)またはニューラルネットワークを用いることができる。これらの技術についての詳細な説明は省略する。
 劣化検出部14は、光信号受信部11により受信された光信号を用いて、劣化検出対象箇所に対応する振動パターンを検出する(第1具体例参照)。劣化検出部14は、当該検出された振動パターンを示すデータを生成する。ここで、劣化検出部14は、上記生成された学習済みモデルを備える。劣化検出部14は、当該生成されたデータを、かかる学習済みモデルに入力する。これに対して、かかる学習済みモデルは、劣化検出対象箇所における劣化の有無及び劣化の程度を示す情報を出力する。これにより、劣化検出対象箇所おける劣化の有無が検出されるとともに、かかる劣化の程度が検出される。
 次に、図20A~図20Dを参照して、劣化検出部14による検出方法の第4具体例について説明する。第4具体例において、劣化検出部14は、劣化検出対象箇所における劣化の予兆を検出する。
 劣化検出部14は、第1具体例によるピーク周波数の検出を定期的に実行する。これにより、例えば、複数個の過去の時点におけるピーク周波数、及び現在の時点におけるピーク周波数が検出されたものとする。図20Aは、過去の時点(例えば2年前)における周波数スペクトルの例を示している。図20Bは、他の過去の時点(例えば1年前)における周波数スペクトルの例を示している。図20Cは、現在の時点(例えば今年)における周波数スペクトルの例を示している。図20AにおけるP_P_1は、周波数スペクトルにおけるピークを示している。図20BにおけるP_P_2は、周波数スペクトルにおけるピークを示している。図20CにおけるP_Cは、周波数スペクトルにおけるピークを示している。
 劣化検出部14は、これらのピーク周波数に基づき、未来の時点におけるピーク周波数を予測する。かかる予測には、例えば、最小二乗法が用いられる。図20Dは、未来の時点(例えば来年)における周波数スペクトルの例を示している。図20DにおけるP_Fは、周波数スペクトルにおけるピークを示している。
 劣化検出部14は、当該予測されたピーク周波数を、第1具体例における基準値と同様の基準値と比較する。これにより、劣化検出部14は、劣化検出対象箇所について、未来の時点における劣化の有無を予測するとともに、未来の時点における劣化の程度を予測する。
 例えば、未来の時点における劣化があると予測されたものとする。この場合、劣化検出部14は、劣化検出対象箇所について、劣化の予兆があると判定する。他方、未来の時点における劣化がないと予測されたものとする。この場合、劣化検出部14は、劣化検出対象箇所について、劣化の予兆がないと判定する。このようにして、劣化検出対象箇所における劣化の予兆が検出される。
 次に、工事検出システム100aを用いることによる効果について説明する。
 工事検出システム100aを用いることにより、個々の電柱1又は個々の鉄塔7の周囲における工事の発生を検出することができるのはもちろんのこと、光ファイバケーブル2(より具体的には劣化検出対象地点)の劣化を検出することができる。すなわち、光ファイバケーブル2のうちの任意の地点に対応する部位における劣化を検出することができる。このとき、リモートによる検出を実現することができる。また、特許文献1に記載の技術に比して、簡単な構成による検出を実現することができる。
 次に、工事検出システム100aの変形例について説明する。
 劣化検出部14は、互いに異なる距離Dに対応する複数個の劣化検出対象地点について、当該複数個の劣化検出対象地点の各々の劣化を検出するものであっても良い。
 次に、工事検出システム100aの他の変形例について説明する。また、工事検出装置5aの変形例について説明する。
 工事検出システム100aは、第2実施形態にて説明したものと同様の種々の変形例を採用することができる。例えば、工事検出システム100aは、図12に示す例と同様に、フィルタユニット4及び出力装置6を含まないものであっても良い。すなわち、光ファイバケーブル2及び工事検出装置5aにより工事検出システム100aの要部が構成されているものであっても良い。
 工事検出装置5aは、第2実施形態にて説明したものと同様の種々の変形例を採用することができる。例えば、工事検出装置5aは、図13に示す例と同様に、出力制御部13aを含まないものであっても良い。すなわち、光信号受信部11、工事検出部12及び劣化検出部14により工事検出装置5aの要部が構成されているものであっても良い。
 以上、実施形態を参照して本開示を説明したが、本開示は上記実施形態に限定されるものではない。本開示の構成や詳細には、本開示のスコープ内で当業者が理解し得る様々な変更をすることができる。
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
[付記]
  [付記1]
 電柱又は鉄塔を介する架空方式により敷設された光ファイバケーブルからの光信号を受信する光信号受信手段と、
 前記光信号が示す前記電柱又は前記鉄塔の振動パターンに基づき、前記電柱又は前記鉄塔の周囲における工事の発生を検出する工事検出手段と、
 を備える工事検出装置。
  [付記2]
 前記工事検出手段により前記工事の発生が検出されたとき、アラートを出力する制御を実行する出力制御手段を備えることを特徴とする付記1に記載の工事検出装置。
  [付記3]
 前記工事検出手段は、前記工事が発生しているエリアを検出することを特徴とする付記1又は付記2に記載の工事検出装置。
  [付記4]
 前記光信号に含まれる特徴に基づき、前記光ファイバケーブルの劣化を検出する劣化検出手段を備えることを特徴とする付記1から付記3のうちのいずれか一つに記載の工事検出装置。
  [付記5]
 前記劣化検出手段は、前記劣化の有無を検出するとともに、前記劣化の程度を検出することを特徴とする付記4に記載の工事検出装置。
  [付記6]
 前記劣化検出手段は、前記劣化の予兆を検出することを特徴とする付記4に記載の工事検出装置。
  [付記7]
 付記1から付記6のうちのいずれか一つに記載の工事検出装置と、
 前記光ファイバケーブルと、
 を備える工事検出システム。
  [付記8]
 前記光ファイバケーブルは、架空地線の内部に設けられていることを特徴とする付記7に記載の工事検出システム。
  [付記9]
 前記光ファイバケーブルは、通信用又はセンシング用であることを特徴とする付記7に記載の工事検出システム。
  [付記10]
 光信号受信手段が、電柱又は鉄塔を介する架空方式により敷設された光ファイバケーブルからの光信号を受信して、
 工事検出手段が、前記光信号が示す前記電柱又は前記鉄塔の振動パターンに基づき、前記電柱又は前記鉄塔の周囲における工事の発生を検出する
 ことを特徴とする工事検出方法。
  [付記11]
 出力制御手段が、前記工事検出手段により前記工事の発生が検出されたとき、アラートを出力する制御を実行することを特徴とする付記10に記載の工事検出方法。
  [付記12]
 前記工事検出手段は、前記工事が発生したエリアを検出することを特徴とする付記10又は付記11に記載の工事検出方法。
  [付記13]
 劣化検出手段が、前記光信号に含まれる特徴に基づき、前記光ファイバケーブルの劣化を検出することを特徴とする付記10から付記12のうちのいずれか一つに記載の工事検出方法。
  [付記14]
 前記劣化検出手段は、前記劣化の有無を検出するとともに、前記劣化の程度を検出することを特徴とする付記13に記載の工事検出方法。
  [付記15]
 前記劣化検出手段は、前記劣化の予兆を検出することを特徴とする付記13に記載の工事検出方法。
  [付記16]
 コンピュータを、
 電柱又は鉄塔を介する架空方式により敷設された光ファイバケーブルからの光信号を受信する光信号受信手段と、
 前記光信号が示す前記電柱又は前記鉄塔の振動パターンに基づき、前記電柱又は前記鉄塔の周囲における工事の発生を検出する工事検出手段と、
 として機能させるためのプログラムを記録した記録媒体。
  [付記17]
 前記プログラムは、前記コンピュータを、前記工事検出手段により前記工事の発生が検出されたとき、アラートを出力する制御を実行する出力制御手段として機能させることを特徴とする付記16に記載の記録媒体。
  [付記18]
 前記工事検出手段は、前記工事が発生したエリアを検出することを特徴とする付記16又は付記17に記載の記録媒体。
  [付記19]
 前記プログラムは、前記コンピュータを、前記光信号に含まれる特徴に基づき、前記光ファイバケーブルの劣化を検出する劣化検出手段として機能させることを特徴とする付記16から付記18のうちのいずれか一つに記載の記録媒体。
  [付記20]
 前記劣化検出手段は、前記劣化の有無を検出するとともに、前記劣化の程度を検出することを特徴とする付記19に記載の記録媒体。
  [付記21]
 前記劣化検出手段は、前記劣化の予兆を検出することを特徴とする付記19に記載の記録媒体。
1 電柱
2 光ファイバケーブル
3 光通信装置
4 フィルタユニット
5,5a 工事検出装置
6 出力装置
7 鉄塔
11 光信号受信部
12 工事検出部
13,13a 出力制御部
14 劣化検出部
21 コンピュータ
31 受信機
32 プロセッサ
33 メモリ
34 処理回路
100,100a 工事検出システム

Claims (15)

  1.  電柱又は鉄塔を介する架空方式により敷設された光ファイバケーブルからの光信号を受信する光信号受信手段と、
     前記光信号が示す前記電柱又は前記鉄塔の振動パターンに基づき、前記電柱又は前記鉄塔の周囲における工事の発生を検出する工事検出手段と、
     を備える工事検出装置。
  2.  前記工事検出手段により前記工事の発生が検出されたとき、アラートを出力する制御を実行する出力制御手段を備えることを特徴とする請求項1に記載の工事検出装置。
  3.  前記工事検出手段は、前記工事が発生しているエリアを検出することを特徴とする請求項1又は請求項2に記載の工事検出装置。
  4.  前記光信号に含まれる特徴に基づき、前記光ファイバケーブルの劣化を検出する劣化検出手段を備えることを特徴とする請求項1から請求項3のうちのいずれか1項に記載の工事検出装置。
  5.  前記劣化検出手段は、前記劣化の有無を検出するとともに、前記劣化の程度を検出することを特徴とする請求項4に記載の工事検出装置。
  6.  前記劣化検出手段は、前記劣化の予兆を検出することを特徴とする請求項4に記載の工事検出装置。
  7.  請求項1から請求項6のうちのいずれか1項に記載の工事検出装置と、
     前記光ファイバケーブルと、
     を備える工事検出システム。
  8.  前記光ファイバケーブルは、架空地線の内部に設けられていることを特徴とする請求項7に記載の工事検出システム。
  9.  前記光ファイバケーブルは、通信用又はセンシング用であることを特徴とする請求項7に記載の工事検出システム。
  10.  光信号受信手段が、電柱又は鉄塔を介する架空方式により敷設された光ファイバケーブルからの光信号を受信して、
     工事検出手段が、前記光信号が示す前記電柱又は前記鉄塔の振動パターンに基づき、前記電柱又は前記鉄塔の周囲における工事の発生を検出する
     ことを特徴とする工事検出方法。
  11.  出力制御手段が、前記工事検出手段により前記工事の発生が検出されたとき、アラートを出力する制御を実行することを特徴とする請求項10に記載の工事検出方法。
  12.  前記工事検出手段は、前記工事が発生したエリアを検出することを特徴とする請求項10又は請求項11に記載の工事検出方法。
  13.  劣化検出手段が、前記光信号に含まれる特徴に基づき、前記光ファイバケーブルの劣化を検出することを特徴とする請求項10から請求項12のうちのいずれか1項に記載の工事検出方法。
  14.  前記劣化検出手段は、前記劣化の有無を検出するとともに、前記劣化の程度を検出することを特徴とする請求項13に記載の工事検出方法。
  15.  前記劣化検出手段は、前記劣化の予兆を検出することを特徴とする請求項13に記載の工事検出方法。
PCT/JP2021/008374 2021-03-04 2021-03-04 工事検出装置、工事検出システム及び工事検出方法 WO2022185469A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2021/008374 WO2022185469A1 (ja) 2021-03-04 2021-03-04 工事検出装置、工事検出システム及び工事検出方法
JP2023503276A JPWO2022185469A1 (ja) 2021-03-04 2021-03-04
US18/279,142 US20240125642A1 (en) 2021-03-04 2021-03-04 Engineering work detection device, engineering work detection system, and engineering work detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/008374 WO2022185469A1 (ja) 2021-03-04 2021-03-04 工事検出装置、工事検出システム及び工事検出方法

Publications (1)

Publication Number Publication Date
WO2022185469A1 true WO2022185469A1 (ja) 2022-09-09

Family

ID=83155229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008374 WO2022185469A1 (ja) 2021-03-04 2021-03-04 工事検出装置、工事検出システム及び工事検出方法

Country Status (3)

Country Link
US (1) US20240125642A1 (ja)
JP (1) JPWO2022185469A1 (ja)
WO (1) WO2022185469A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024069740A1 (ja) * 2022-09-27 2024-04-04 日本電信電話株式会社 推定装置、推定方法及びプログラム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001059719A (ja) * 1999-08-24 2001-03-06 Tokyo Gas Co Ltd 地中構造物損傷予防のための検知装置
JP2002152937A (ja) * 2000-11-13 2002-05-24 Toshiba Corp 異常信号監視装置
JP2005241431A (ja) * 2004-02-26 2005-09-08 Tokyo Gas Co Ltd 光ファイバ干渉型センサ
JP2013072800A (ja) * 2011-09-28 2013-04-22 Chugoku Electric Power Co Inc:The 振動検出システム
WO2020255358A1 (ja) * 2019-06-20 2020-12-24 日本電気株式会社 光ファイバセンシングシステム及び音源位置特定方法
WO2021010251A1 (ja) * 2019-07-17 2021-01-21 日本電気株式会社 光ファイバセンシングシステム、光ファイバセンシング機器、及び異常判断方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001059719A (ja) * 1999-08-24 2001-03-06 Tokyo Gas Co Ltd 地中構造物損傷予防のための検知装置
JP2002152937A (ja) * 2000-11-13 2002-05-24 Toshiba Corp 異常信号監視装置
JP2005241431A (ja) * 2004-02-26 2005-09-08 Tokyo Gas Co Ltd 光ファイバ干渉型センサ
JP2013072800A (ja) * 2011-09-28 2013-04-22 Chugoku Electric Power Co Inc:The 振動検出システム
WO2020255358A1 (ja) * 2019-06-20 2020-12-24 日本電気株式会社 光ファイバセンシングシステム及び音源位置特定方法
WO2021010251A1 (ja) * 2019-07-17 2021-01-21 日本電気株式会社 光ファイバセンシングシステム、光ファイバセンシング機器、及び異常判断方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024069740A1 (ja) * 2022-09-27 2024-04-04 日本電信電話株式会社 推定装置、推定方法及びプログラム

Also Published As

Publication number Publication date
US20240125642A1 (en) 2024-04-18
JPWO2022185469A1 (ja) 2022-09-09

Similar Documents

Publication Publication Date Title
US11867541B2 (en) Distributed fibre optic sensing
CN112567581B (zh) 电线杆位置指定系统、装置、方法和计算机可读介质
WO2020116030A1 (ja) 道路監視システム、道路監視装置、道路監視方法、及び非一時的なコンピュータ可読媒体
US11561118B2 (en) State specifying system, state specifying apparatus, state specifying method, and non-transitory computer readable medium
JP2024014948A (ja) 道路監視システム、道路監視装置、道路監視方法、及びプログラム
CN113531399B (zh) 光纤振动预警方法、装置、计算机设备及存储介质
US20230152543A1 (en) Impulse signal detection for buried cable protection using distributed fiber optic sensing
JP2023099542A (ja) 電柱劣化検出システム、電柱劣化検出装置、電柱劣化検出方法、及びプログラム
CN108389343B (zh) 一种可提示入侵轨迹的防区型光纤入侵监测系统
WO2022185469A1 (ja) 工事検出装置、工事検出システム及び工事検出方法
US12111189B2 (en) Object localization and threat classification for optical cable protection
WO2021010251A1 (ja) 光ファイバセンシングシステム、光ファイバセンシング機器、及び異常判断方法
CN102034330A (zh) 一种防火防入侵同步预警系统及其信号处理方法
US20210310836A1 (en) Hybrid distributed fiber optic sensing
CN110779614B (zh) 基于分布式光纤传感的海缆锚害监测定位方法及系统
WO2022185468A1 (ja) 鉄塔劣化検出装置、鉄塔劣化検出システム及び鉄塔劣化検出方法
US20240110824A1 (en) Lightning strike detection device, lightning strike detection system, and lightning strike detection method
US20230152130A1 (en) Fiber identification without cut point using distributed fiber optic sensing
US20230010341A1 (en) Detection system, detection device, and detection method
GB2583712A (en) Distributed acoustic sensor applications
WO2022034750A1 (ja) 未確認音抽出装置、未確認音抽出システム、未確認音抽出方法及び記録媒体
US9851461B1 (en) Modular processing system for geoacoustic sensing
WO2020116031A1 (ja) 線路監視システム、線路監視装置、線路監視方法、及び非一時的なコンピュータ可読媒体
KR101639712B1 (ko) 모션센서모듈 및 이를 이용한 통신선로 공가상태 감시 시스템
RU2746176C2 (ru) Способ сбора информации от пространственно разнесенных источников

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21929043

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023503276

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18279142

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21929043

Country of ref document: EP

Kind code of ref document: A1