WO2022185429A1 - Active particle supply device, and water treatment system using same - Google Patents

Active particle supply device, and water treatment system using same Download PDF

Info

Publication number
WO2022185429A1
WO2022185429A1 PCT/JP2021/008070 JP2021008070W WO2022185429A1 WO 2022185429 A1 WO2022185429 A1 WO 2022185429A1 JP 2021008070 W JP2021008070 W JP 2021008070W WO 2022185429 A1 WO2022185429 A1 WO 2022185429A1
Authority
WO
WIPO (PCT)
Prior art keywords
active particle
supply device
water
particle supply
plasma
Prior art date
Application number
PCT/JP2021/008070
Other languages
French (fr)
Japanese (ja)
Inventor
有波 塩田
昌樹 葛本
学 生沼
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN202180094821.4A priority Critical patent/CN116964007A/en
Priority to JP2021537962A priority patent/JP7034388B1/en
Priority to PCT/JP2021/008070 priority patent/WO2022185429A1/en
Publication of WO2022185429A1 publication Critical patent/WO2022185429A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment

Definitions

  • This application relates to an active particle supply device and a water treatment system using it.
  • a water treatment system that decomposes and removes pollutants is equipped with an ozone generator, and gas containing highly oxidizing ozone is injected into the water to be treated using an ejector for purification.
  • gas containing highly oxidizing ozone is injected into the water to be treated using an ejector for purification.
  • the water pipe to be treated inner pipe
  • the oxygen gas pipe outer pipe
  • the water pipe to be treated is used as a ground electrode
  • the oxygen gas pipe is used as a power supply electrode.
  • a system has been disclosed in which a dielectric barrier discharge is generated by applying a high AC voltage between ground electrodes to generate oxygen plasma (for example, Patent Document 1).
  • Patent Document 1 since the water pipe to be treated is used as a ground electrode, the discharge space for generating oxygen atoms is restricted only to the outer peripheral portion of the water pipe to be treated (inner pipe). Therefore, the discharge space for generating oxygen atoms and the contact portion for supplying the oxygen atoms to the water to be treated are separated from each other. Since the rate of oxygen atoms returning to oxygen molecules due to recombination reaction increases while oxygen atoms are being transported, oxygen atoms are not effectively supplied to the water to be treated, resulting in a problem of reduced water treatment efficiency.
  • the present application discloses a technique for solving the above-mentioned problems, and an active particle supply device capable of efficiently supplying active particles to the water to be treated and efficiently purifying the water to be treated, and the same.
  • the object is to obtain a water treatment system using
  • the active particle supply device disclosed in the present application includes a contact portion in a space where a first fluid is ejected from a nozzle and the pressure around the ejected first fluid is reduced by the venturi effect, and the contact portion is provided with a second It comprises an ejector having a supply port to which two fluids are supplied, and a plasma generating device for generating plasma at a contact portion for generating active particles in the second fluid.
  • the water treatment system disclosed in the present application includes the active particle supply device, and supplies active particles to the water to be treated, which is the first fluid.
  • water to be treated can be efficiently purified.
  • FIG. 1 is a configuration diagram of a water treatment system provided with an active particle supply device according to Embodiment 1.
  • FIG. 4 is a perspective view of an ejector of the active particle supply device according to Embodiment 1.
  • FIG. 4 is a cross-sectional view of an ejector of the active particle supply device according to Embodiment 1.
  • FIG. 7 is a configuration diagram of an active particle supply device according to Embodiment 2;
  • FIG. 8 is a perspective view of an ejector of the active particle supply device according to Embodiment 2;
  • FIG. 8 is a cross-sectional view of an ejector of the active particle supply device according to Embodiment 2;
  • FIG. 10 is a configuration diagram of a water treatment system provided with an active particle supply device according to Embodiment 3;
  • FIG. 10 is a configuration diagram of a water treatment system provided with an active particle supply device according to Embodiment 4;
  • FIG. 11 is a perspective view of an ejector of an active particle supply device according to Embodiment 4;
  • FIG. 11 is a cross-sectional view of an ejector of an active particle supply device according to Embodiment 4;
  • FIG. 11 is a configuration diagram of an active particle supply device according to Embodiment 5;
  • FIG. 11 is a perspective view of an ejector of an active particle supply device according to Embodiment 5;
  • FIG. 11 is a cross-sectional view of an ejector of an active particle supply device according to Embodiment 5;
  • Embodiment 1 is provided with a plasma generator and an ejector that ejects water to be treated from a nozzle and reduces the pressure around the ejected water to be treated by the venturi effect.
  • a contact portion is provided in the space where the contact portion is formed, a dielectric is arranged on the upper surface of the contact portion, a supply port for supplying oxygen gas is provided to the contact portion, and a high electric field is applied through the dielectric using a plasma generation device.
  • the present invention relates to an active particle supply device that generates plasma in a contact portion to generate active particles in oxygen gas, and a water treatment system that purifies water to be treated using this active particle supply device.
  • FIG. 2A is a sectional view of the ejector.
  • the configuration of the water treatment system 1 and the active particle supply device 4 of Embodiment 1 will be described based on the configuration diagram of FIG. First, the configuration of the water treatment system 1 will be described.
  • the water treatment system 1 includes a treatment tank 3 for storing water 2 (first fluid) to be treated, an active particle supply device 4 for purifying the water 2 to be treated, and a circulation pump 5 .
  • a circulation pump 5 circulates the water to be treated 2 between the treated water tank 3 and the active particle supply device 4 .
  • the treated water tank 3 , the active particle supply device 4 , and the circulation pump 5 are connected by a water to be treated pipe 6 .
  • an arrow (Y) indicates the direction in which the water 2 to be treated flows.
  • a valve 7 and a flow rate regulator 8 are connected to the water-to-be-treated pipe 6 on the downstream side of the circulation pump 5, that is, on the upstream side of the active particle supply device 4. As shown in FIG. A valve 9 is connected to the water-to-be-treated pipe 6 on the downstream side of the active particle supply device 4 .
  • the active particle supply device 4 is composed of an ejector 10 as a mixing section and a plasma generation device 11 that generates plasma 100 as an active particle generation means.
  • the ejector 10 in FIG. 1 shows a vertical cross section including the central axis of the ejector 10 in the direction in which the water 2 to be treated flows, except for a part.
  • FIG. 2A is a perspective view of the ejector 10
  • FIG. 2B is a sectional view.
  • 2A and 2B are conceptual diagrams for making the configuration of the ejector 10 easier to understand.
  • the direction in which the water to be treated 2 supplied to the ejector 10 flows is the Y-axis direction
  • the horizontal right direction is the X-axis direction
  • the vertical direction is the Z-axis direction.
  • the flow axis through which the water to be treated 2 flows coincides with the central axis of the ejector 10 in the Y-axis direction.
  • FIG. 2B is a cross-sectional view taken along line AA in FIG. 2A, taken along a vertical plane including the central axis of the ejector 10.
  • FIG. 2B Although the gas supply port 16 does not exist in the cross-sectional view of FIG. 2B, it is shown as a virtual line (dotted line) in order to make the positional relationship easier to understand.
  • "MW" indicates microwaves
  • "OG” indicates oxygen gas O2.
  • FIG. 2A and FIG. 2B are collectively described, they will be referred to as FIG. 2 as appropriate. The same applies to the description of the second and subsequent embodiments.
  • Ejector 10 is composed of nozzle 12 , contact portion 13 , diffuser 14 and dielectric 15 .
  • the nozzle 12 has a configuration in which the pipe cross-sectional area is gradually narrowed toward the downstream side at a reduction angle of approximately 45 degrees.
  • the diffuser 14 has a configuration in which the cross-sectional area of the pipeline is gradually expanded toward the downstream side at an expansion angle of 5 to 10 degrees.
  • the contact portion 13 refers to the entire rectangular parallelepiped area under the dielectric 15 in FIG. 2A.
  • the water to be treated 2 pressurized by the circulation pump 5 is supplied from the upstream of the nozzle 12 .
  • the water to be treated 2 whose flow velocity has increased passes through the contact portion 13 and pressure recovery is performed by the diffuser 14 .
  • the water to be treated 2 whose pressure has been restored is discharged downstream of the diffuser 14 .
  • the contact portion 13 is in a negative pressure state of several kPa to 50 kPa (absolute pressure) due to the venturi effect of the water 2 to be treated injected from the nozzle 12 .
  • the contact portion 13 has a gas supply port 16 for supplying oxygen gas (second fluid) from a direction intersecting the flow axis of the water 2 to be treated.
  • the intersecting direction is, for example, desirably arranged at an angle of about 90° ⁇ 30°, preferably about 90° ⁇ 5° with respect to the flow axis of the water 2 to be treated.
  • the position of the gas supply port 16 in the ejector 10 is arranged at a position eccentrically upward from the flow axis of the water 2 to be treated.
  • the position of the gas supply port 16 may be arranged on the flow axis.
  • the contact portion 13 has a negative pressure due to the venturi effect, the oxygen gas supplied from the gas supply port 16 is sucked into the water 2 to be treated, and the water 2 to be treated and the oxygen gas are mixed.
  • a dielectric 15 is arranged on the upper surface of the contact portion 13 . This dielectric 15 has the property of transmitting part of the microwave and reflecting the rest. Quartz and alumina are preferably used for the dielectric 15, but other materials may be used.
  • a plasma generator 11 is connected to the upper portion of the dielectric 15 , that is, to the upper surface side of the contact portion 13 of the ejector 10 .
  • Plasma generator 11 comprises microwave oscillator 17 , rectangular waveguide 18 , isolator 19 , directional coupler 20 , matching device 21 , reactor 22 , short plunger 23 and slot antenna 24 .
  • the plasma generator 11 generates plasma 100 in oxygen gas supplied to the contact portion 13 of the ejector 10 from the gas supply port 16 .
  • a microwave oscillator 17 , an isolator 19 , a directional coupler 20 and a matching device 21 are connected by a rectangular waveguide 18 .
  • the configuration of the plasma generator 11 is an example, and may be different from the above.
  • the microwave oscillator 17 is a device for generating microwaves, and is assumed to generate microwaves using a magnetron. However, a semiconductor scheme or other schemes may be used.
  • the microwave frequency used by microwave oscillator 17 is approximately 2.45 GHz, although other frequencies may be used.
  • the isolator 19 is connected after the microwave oscillator 17 .
  • the isolator 19 propagates the microwave (incident wave) generated by the microwave oscillator 17 with low loss, but sufficiently attenuates the microwave (reflected wave) reflected from the short plunger 23 . That is, the isolator 19 is installed for the purpose of protecting the microwave oscillator 17 from reflected waves.
  • the directional coupler 20 is connected after the isolator 19 , separates the incident wave and the reflected wave, detects them, and measures the power consumed in the plasma 100 (incident wave ⁇ reflected wave). The power consumption measurement of the plasma 100 is used to adjust the power of the microwave oscillator 17 .
  • the matching device 21 is connected after the directional coupler 20 and matches the circuit impedance of the entire plasma generating device 11 .
  • a reactor 22 connected to the rear stage of the matcher 21 has a rectangular parallelepiped shape and is made of aluminum, copper, steel or other metal. Also, the inner surface or the outer surface of the reactor 22 may be plated.
  • a slot antenna 24 with a slot is arranged on the lower surface of the reactor 22 . Microwaves are radiated from the slot antenna 24 toward the dielectric 15 of the ejector 10 .
  • the width of the slot antenna 24 is desirably 1 mm or less.
  • a high electric field is generated in the slot portion by blocking the current flowing through the lower surface of the reactor 22 by the slot antenna 24 , and the plasma 100 is excited in the contact portion 13 of the ejector 10 .
  • the short plunger 23 is connected to the rear stage of the reactor 22 and reflects microwaves.
  • a reflector (not shown) is attached inside the short plunger 23 .
  • a standing wave is generated in the space from the reactor 22 to the short plunger 23 by adjusting the distance from the reactor 22 to the reflector. By using this standing wave, the plasma 100 is easily generated in the contact portion 13 of the ejector 10 .
  • the plasma generator 11 introduces microwaves from the microwave oscillator 17 and generates a high electric field with the slot antenna 24 in the reactor 22 to generate the plasma 100 at the contact portion 13 of the ejector 10 .
  • electron collisions generate oxygen atoms (O), which are active particles, from oxygen gas (O2+e ⁇ O+O+e, where e indicates an electron).
  • the plasma 100 is generated in the upper portion of the contact portion 13, that is, the region between the lower surface of the dielectric 15 and the upper surface of the flow path for the water 2 to be treated.
  • the active particle supply device 4 supplies the active gas containing oxygen atoms generated by the plasma 100 to the water to be treated 2 flowing through the contact portion 13 in the ejector 10 .
  • the water treatment system 1 purifies the water 2 to be treated by oxidatively decomposing the organic substances in the water 2 to be treated.
  • the plasma generation device 11 generates plasma 100 using microwaves. For this reason, compared to conventionally used plasma using high frequencies of several hundred kHz or higher (for example, inductive coupling plasma, capacitive coupling plasma, etc.), it is possible to generate higher density plasma 100 with the same input power. can be done. As a result, when oxygen gas is used, oxygen atoms can be produced at a high density.
  • Oxygen atoms generated in plasma 100 are rapidly deactivated (O+O ⁇ O2) upon leaving plasma 100 . Therefore, it is necessary to supply an active gas containing oxygen atoms to the water 2 to be treated before the oxygen atoms are deactivated. Therefore, it is necessary to set the time from when the oxygen atoms leave the plasma 100 until they reach the water 2 to be treated to 1 msec or less.
  • the active particle supply device 4 of Embodiment 1 since the plasma 100 is generated at the contact portion 13 of the ejector 10, deactivation of oxygen atoms is suppressed and the water to be treated 2 can be supplied immediately. As a result, the water treatment performance of the active particle supply device 4 can be dramatically improved.
  • the water to be treated 2 is shown as the first fluid, but the first fluid may be oxygen gas or an oxygen-containing gas such as air.
  • the oxygen atoms generated at the contact portion 13 inside the ejector 10 are mixed with the oxygen-containing gas and converted into ozone, and the plasma generator 11 functions as a highly efficient ozone generator.
  • oxygen gas is used as the second fluid.
  • an inert gas eg, helium gas, argon gas, etc.
  • helium gas and argon gas can generate plasma relatively easily compared to oxygen gas, which is electron-adhesive. Note that when the plasma 100 is generated with an inert gas, hydroxyl radicals are generated at the contact portion 13 .
  • the plasma 100 is easily generated by controlling the flow rate of the inert gas. That is, after the inert gas is supplied to the gas supply port 16 to generate the plasma 100, the flow rate of the inert gas is gradually decreased and the flow rate of the oxygen gas is increased. By finally controlling the plasma 100 to be maintained only by the oxygen gas, the generation of the plasma 100 is facilitated.
  • the plasma 100 can also be easily generated by controlling the flow rate of the oxygen gas before and after plasma generation without using an inert gas.
  • the flow rate of the oxygen gas supplied from the gas supply port 16 to the contact portion 13 is restricted, and in this state, introduction of microwaves from the microwave oscillator 17 is started.
  • the gas pressure in the contact portion 13 is low, the plasma 100 is easily generated.
  • the flow rate of the oxygen gas is gradually increased to raise the gas pressure of the contact portion 13, thereby maintaining the plasma 100 stably.
  • the ejector 10 is exposed to active gases such as oxygen atoms (O), ozone (O3), hydrogen peroxide (H2O2), and hydroxyl radicals (OH). Therefore, it is desirable that the ejector 10 is made of a material having high corrosion resistance.
  • active gases such as oxygen atoms (O), ozone (O3), hydrogen peroxide (H2O2), and hydroxyl radicals (OH). Therefore, it is desirable that the ejector 10 is made of a material having high corrosion resistance.
  • the material of the ejector 10 include metal materials such as stainless steel (SUS (stainless steel) 316, SUS304, etc.), fluorine such as PTFE (polytetrafluoroethylene), and PFA (p-fluorophenylalanine) (perfluoroalkoxyalkane).
  • a resin, a material whose surface is coated with a fluororesin, or the like can be used.
  • the water to be treated 2 returning to the treated water tank 3 after passing through the active particle supply device 4 may contain ozone generated from oxygen atoms. be. Therefore, as shown in FIG. 1, the treated water tank 3 preferably has an exhaust port 25 and an ozone decomposition treatment device 26 using activated carbon or the like.
  • the water treatment system 1 of FIG. 1 includes a treated water tank 3 for storing the treated water 2, an active particle supply device 4 for purifying the treated water 2, and a circulation pump 5. are purifying.
  • the active particle supply device 4 can also be applied to a so-called open loop system in which the water to be purified is supplied to the active particle supply device 4, and the water to be treated is discharged after being purified.
  • the active particle supply device of Embodiment 1 includes an ejector that ejects the first fluid from the nozzle and reduces the pressure around the ejected first fluid by the venturi effect. Equipped with a contact portion in a space where the pressure of the first fluid drops, a supply port for supplying the second fluid to the contact portion, and generating plasma at the contact portion to generate active particles in the second fluid is.
  • a water treatment system purifies water to be treated using this active particle supply device. Therefore, the water treatment system and the active particle supply device of Embodiment 1 can efficiently purify the water to be treated.
  • Embodiment 2 In the active particle supply device of Embodiment 2, dielectrics are arranged on the lower surface and both side surfaces in addition to the upper surface of the contact portion.
  • FIG. 3 is a configuration diagram of the active particle supply device
  • FIG. 4A is a perspective view of the ejector of the active particle supply device
  • FIG. 4A is a cross-sectional view of the ejector. 4B
  • the description will focus on the differences from the first embodiment.
  • FIGS. 3 and 4 of the second embodiment the same reference numerals are given to the same or corresponding parts as those of the first embodiment.
  • the active particle supply device 204, the ejector 210, and the contact portion 213 are used.
  • the active particle supply device 204 is composed of an ejector 210 which is a mixing section, and a plasma generation device 11 which generates plasma 100 which is an active particle generation means.
  • the ejector 210 in FIG. 3 shows a vertical cross section including the central axis of the ejector 210 in the direction in which the water to be treated flows, except for a part.
  • FIG. 4A is a perspective view of the ejector 210
  • FIG. 4B is a cross-sectional view.
  • the direction in which the water to be treated 2 supplied to the ejector 210 flows is the Y-axis direction
  • the horizontal right direction is the X-axis direction
  • the vertical direction is the Z-axis direction.
  • the flow axis through which the water to be treated 2 flows coincides with the central axis of the ejector 210 in the Y-axis direction.
  • 4B is a cross-sectional view taken along line AA in FIG.
  • FIG. 4A taken along a vertical plane including the central axis of the ejector 210.
  • FIG. 4B Although the gas supply port 16 does not exist in the cross-sectional view of FIG. 4B, it is shown as a virtual line (dotted line) so as to make the positional relationship easier to understand.
  • "MW" indicates microwaves
  • "OG” indicates oxygen gas O2.
  • the method of generating plasma 100 in the plasma generator 11 and the contact portion 213 of the ejector 210 is the same as in the first embodiment. Differences from the first embodiment, that is, differences in the structure of the contact portion 213 and differences in the generation region of the plasma 100 will be described.
  • the dielectric 15 is arranged on all four surfaces of the contact portion 213 of the ejector 210 , including the lower surface, the right side surface, and the left side surface, in addition to the upper surface. As a result, as can be seen in FIG.
  • the plasma 100 is generated in the region between the lower surface of the dielectric 15 above the contact portion 213 and the upper surface of the flow path of the water to be treated, and further in the dielectric 15 below the contact portion 213. It also occurs in the area between the upper surface and the bottom of the flow passage of the water to be treated.
  • the plasma 100 is generated over the entire circumference of the water to be treated 2 flowing through the contact portion 213. It is possible to supply high-density oxygen atoms to the water 2 to be treated.
  • the active particle supply device of Embodiment 2 has dielectrics arranged on the lower surface and both side surfaces in addition to the upper surface of the contact portion. Therefore, the active particle supply device of Embodiment 2 can efficiently purify the water to be treated. Furthermore, the water to be treated can be purified with high-density oxygen atoms.
  • Embodiment 3 The active particle supply device and the water treatment system of Embodiment 3 are provided with a swirling flow generator in the front stage of the ejector of the active particle supply device.
  • Embodiment 3 differences from Embodiment 1 will be described based on FIG. Mainly explained.
  • FIG. 5 of Embodiment 3 the same or corresponding parts as those of Embodiment 1 are denoted by the same reference numerals.
  • the water treatment system 301 and the active particle supply device 304 are used.
  • the water treatment system 301 includes a treated water tank 3 for storing the treated water 2 (first fluid), an active particle supply device 304 for purifying the treated water 2, a circulation pump 5, and a swirling flow generator 27. .
  • the swirling flow generator 27 is connected to the downstream side of the circulation pump 5 and the upstream side of the active particle supply device 304 .
  • the circulation pump 5 circulates the water to be treated 2 between the treated water tank 3 , the swirling flow generator 27 and the active particle supply device 304 .
  • the treated water tank 3 , the active particle supply device 304 , the circulation pump 5 , and the swirling flow generator 27 are connected by a water pipe 6 to be treated.
  • an arrow (Y) indicates the direction in which the water 2 to be treated flows.
  • a valve 7 and a flow rate regulator 8 are connected to the water-to-be-treated pipe 6 on the downstream side of the circulation pump 5 , that is, on the upstream side of the active particle supply device 304 .
  • a valve 9 is connected to the water-to-be-treated pipe 6 on the downstream side of the active particle supply device 304 .
  • the water treatment system 301 also includes an exhaust port 25 and an ozone decomposition treatment device 26 .
  • the active particle supply device 304 is composed of an ejector 10 as a mixing section and a plasma generation device 11 that generates plasma 100 as an active particle generation means.
  • the ejector 10 in FIG. 5 shows a vertical cross section including the central axis of the ejector 10 in the direction in which the water 2 to be treated flows, except for a part. Also, since the configuration of the ejector 10 is the same as that of the first embodiment, the perspective view and cross-sectional view of the ejector 10 are omitted.
  • the swirling flow generator 27 has a mechanism for swirling the water 2 to be treated.
  • the swirling flow generator 27 By providing the swirling flow generator 27 in front of the nozzle 12 of the ejector 10 of the active particle supply device 304, the water 2 to be treated is supplied to the nozzle 12 of the ejector 10 in a spirally swirling state.
  • the flow velocity of the water 2 to be treated increases, and the inside of the contact portion 13 can be brought into a negative pressure state more strongly due to the venturi effect. Therefore, the plasma 100 can be easily generated, and the oxygen atoms generated at the contact portion 13 can be supplied to the water 2 to be treated with high efficiency.
  • the swirling flow generating device 27 is described as a device inside the active particle supply device 304, but it may be a device outside the active particle supply device 304. Further, in the third embodiment, the swirling flow generator 27 is provided in the active particle supply device 4 of the first embodiment, but the same effect can be obtained by providing it in the active particle supply device 204 of the second embodiment. Play.
  • the active particle supply device and the water treatment system of Embodiment 3 are provided with the swirling flow generator in the front stage of the ejector of the active particle supply device. Therefore, the water treatment system and the active particle supply device of Embodiment 3 can efficiently purify the water to be treated. Furthermore, plasma generation is facilitated, and oxygen atoms can be supplied to the water to be treated with high efficiency.
  • Embodiment 4 The active particle supply device and the water treatment system of Embodiment 4 are obtained by adding a constrictor for preventing adhesion of water droplets directly below the dielectric of the ejector.
  • FIG. 6 is a configuration diagram of the water treatment system provided with the active particle supply device, and the perspective view of the ejector of the active particle supply device. 7A and FIG. 7B, which is a cross-sectional view of the ejector, the differences from the first embodiment will be mainly described.
  • FIGS. 6 and 7 of Embodiment 4 portions identical or corresponding to those of Embodiment 1 are given the same reference numerals.
  • the water treatment system 401, the active particle supply device 404, the ejector 410, and the contact portion 413 are used.
  • the water treatment system 401 includes a treatment tank 3 for storing the water 2 (first fluid) to be treated, an active particle supply device 404 for purifying the water 2 to be treated, and a circulation pump 5 .
  • the circulation pump 5 circulates the water to be treated 2 between the treated water tank 3 and the active particle supply device 404 .
  • the treated water tank 3 , the active particle supply device 404 , and the circulation pump 5 are connected to each other by the to-be-treated water pipe 6 .
  • an arrow (Y) indicates the direction in which the water 2 to be treated flows.
  • a valve 7 and a flow rate regulator 8 are connected to the water-to-be-treated pipe 6 on the downstream side of the circulation pump 5 , that is, on the upstream side of the active particle supply device 404 .
  • a valve 9 is connected to the water-to-be-treated pipe 6 on the downstream side of the active particle supply device 404 .
  • the water treatment system 401 also includes an exhaust port 25 and an ozone decomposition treatment device 26 .
  • the active particle supply device 404 is composed of an ejector 410 which is a mixing section, and a plasma generation device 11 which generates plasma 100 which is an active particle generation means.
  • the ejector 410 in FIG. 6 shows a vertical cross section including the central axis of the ejector 410 in the direction in which the water 2 to be treated flows, except for a part.
  • FIG. 7A is a perspective view of the ejector 410
  • FIG. 7B is a cross-sectional view.
  • the direction in which the water to be treated 2 supplied to the ejector 410 flows is the Y-axis direction
  • the horizontal right direction is the X-axis direction
  • the vertical direction is the Z-axis direction.
  • the flow axis through which the water to be treated 2 flows coincides with the center axis of the ejector 410 in the Y-axis direction.
  • 7B is a cross-sectional view taken along line AA in FIG.
  • FIG. 7A taken along a vertical plane including the central axis of the ejector 410.
  • FIG. 7B Although the gas supply port 16 does not exist in the cross-sectional view of FIG. 7B, it is shown as an imaginary line (dotted line) so as to make the positional relationship easier to understand.
  • "MW" indicates microwaves
  • "OG” indicates oxygen gas O2.
  • the method of generating plasma 100 in plasma generator 11 and contact portion 413 of ejector 410 is the same as in the first embodiment.
  • Embodiment 4 differs from Embodiment 1 in the structure of contact portion 413 of ejector 410 .
  • the difference from the first embodiment, that is, the constrictor 28 added to the contact portion 413 for preventing adhesion of water droplets and its effect will be described.
  • the contact portion 413 has a constrictor 28 for preventing adhesion of water droplets directly below the dielectric 15 .
  • the constrictor 28 is arranged directly below the dielectric 15 at the contact portion 413 of the ejector 410 of the active particle supply device 404 .
  • the plasma 100 is generated in the region between the lower surface of the dielectric 15 above the contact portion 413 and the upper surface of the constrictor 28 installed on the upper surface of the flow passage of the water to be treated.
  • the active particle supply device 404 of the fourth embodiment stably generates the plasma 100 without being affected by the water content of the water 2 to be treated. can be maintained. As a result, the oxygen atoms generated at the contact portion 413 can be supplied to the water 2 to be treated with high efficiency.
  • the constrictor 28 is a plate having a thickness of about 1 mm and having a large number of through holes having a diameter of about 0.1 to 1 mm.
  • a material with high corrosion resistance For example, it is possible to use a metal material such as stainless steel (SUS316, SUS304, etc.), a fluororesin such as PTFE or PFA, or a material whose surface is coated with a fluororesin.
  • the constrictor 28 for preventing adhesion of water droplets is added to the active particle supply device 4 of the first embodiment, but the active particle supply device 204 of the second embodiment and the Even if it is provided in the active particle supply device 304 of Mode 3, the same effect can be obtained.
  • the water treatment system and the active particle supply device of Embodiment 4 are such that a constrictor for preventing adhesion of water droplets is added directly below the dielectric of the ejector. Therefore, the water treatment system and the active particle supply device of Embodiment 4 can efficiently purify water to be treated. Furthermore, plasma can be stably maintained and oxygen atoms can be supplied to the water to be treated with high efficiency without being affected by moisture in the water to be treated.
  • the active particle supplying apparatus of Embodiment 5 uses a plasma generating apparatus having a configuration in which a feed electrode is provided on the upper surface of the ejector, a ground electrode is provided on the lower surface, and an AC voltage is applied between the feed electrode and the ground electrode. be.
  • FIG. 8 is a configuration diagram of the active particle supply device
  • FIG. 9A is a perspective view of the ejector of the active particle supply device
  • FIG. 9A is a cross-sectional view of the ejector. 9B
  • FIGS. 8 and 9 of Embodiment 5 portions identical or corresponding to those of Embodiment 1 are given the same reference numerals.
  • an active particle supply device 504 a plasma generation device 511, and an ejector 510 are used.
  • Embodiment 5 the difference from Embodiment 1 is the plasma generator 511, so in FIG. etc. are omitted.
  • the active particle supply device 504 is composed of an ejector 510 which is a mixing section and a plasma generation device 511 which generates the plasma 100 which is active particle generation means.
  • the ejector 510 in FIG. 8 shows a vertical cross section including the central axis of the ejector 510 in the direction in which the water to be treated flows, except for a part.
  • FIG. 9A is a perspective view of the ejector 510
  • FIG. 9B is a cross-sectional view.
  • the direction in which the water to be treated 2 supplied to the ejector 510 flows is the Y-axis direction
  • the horizontal right direction is the X-axis direction
  • the vertical direction is the Z-axis direction.
  • the flow axis through which the water to be treated 2 flows coincides with the central axis of the ejector 510 in the Y-axis direction.
  • 9B is a cross-sectional view taken along line AA in FIG.
  • FIG. 9A taken along a vertical plane including the central axis of the ejector 510.
  • FIG. 9B the gas supply port 16 does not originally exist, but is described as a virtual line (dotted line) so as to make the positional relationship easier to understand.
  • "OG" indicates oxygen gas O2.
  • the plasma generator 511 is not a component of the ejector 510, but it is described to make the overall configuration easier to understand.
  • Embodiment 5 differs from Embodiment 1 in the method of generating plasma 100 in contact portion 13 of ejector 510 .
  • the structure and function of the plasma generator 511 which are different from the first embodiment, will be described.
  • the plasma generator 511 includes a feed electrode 29 provided on the upper surface of the ejector 510 , a ground electrode 30 provided on the lower surface, and an AC power supply 31 that applies an AC voltage to the feed electrode 29 .
  • Plasma 100 is generated at the contact portion 13 by applying an AC voltage (frequency: several kHz, voltage: about 10 kV) output from the AC power supply 31 to the power supply electrode 29 .
  • the plasma 100 is generated in the area between the lower surface of the dielectric 15 above the contact portion 13 and the upper surface of the flow path of the water to be treated, and also in the area below the flow path of the water to be treated. is doing. That is, plasma 100 is generated in the entire contact portion 13 other than the flow passage for the water to be treated.
  • the configuration and operation other than the method of generating plasma 100 are the same as those of the first embodiment.
  • the active particle supply device 504 of the fifth embodiment has a simpler configuration than the case of generating plasma using microwaves described in the first embodiment. Moreover, in the active particle supply device 504 according to Embodiment 5, stable plasma 100 can be generated regardless of the type of gas supplied from the gas supply port.
  • the plasma density is lower than that of the plasma generating apparatus 11 of Embodiment 1 using a microwave generator. Simple and easy to operate.
  • the plasma generating device 511 having a configuration in which the feeder electrode and the ground electrode are provided on the upper and lower surfaces of the ejector and an AC voltage is applied between the electrodes is applied to the active particle supply device 4 of the first embodiment. The same effect can be obtained by applying to the active particle supply devices 204, 304, and 404 of the second to fourth embodiments.
  • the active particle supply apparatus as a plasma generating apparatus, has a feed electrode on the upper surface of the ejector, a ground electrode on the bottom surface, and applies an AC voltage between the feed electrode and the ground electrode. It is equipped with an AC power supply to apply. Therefore, the active particle supply device of Embodiment 5 can efficiently purify the water to be treated. Furthermore, the configuration of the device is simplified and the operation is facilitated.

Abstract

An active particle supply device (4) including: an ejector (10) that includes a contact part (13) in a space where water (2) to be treated is injected from a nozzle (12) and the pressure around the injected water (2) to be treated is reduced by the Venturi effect, that has a dielectric (15) disposed on the top surface of the contact part (13), and that includes a supply port (16) through which oxygen gas is supplied to the contact part (13); and a plasma generation device (11) that generates, in the contact part (13), plasma (100) for generating active particles in the oxygen gas.

Description

活性粒子供給装置、およびそれを用いた水処理システムACTIVE PARTICLE SUPPLY DEVICE AND WATER TREATMENT SYSTEM USING THE SAME
 本願は、活性粒子供給装置、およびそれを用いた水処理システムに関するものである。 This application relates to an active particle supply device and a water treatment system using it.
 汚染物質の分解・除去を行う水処理システムでは、オゾン発生器を備え、酸化力の高いオゾンを含んだガスが、エジェクタを用いて被処理水に注入され浄化処理が行われる。このシステムでは、2つの基本的な課題がある。(1)高濃度のオゾンを発生させると、オゾン発生効率が低くなり、水処理効率が低下する。(2)オゾン発生器として構造が複雑で高価な誘電体バリア放電発生器が必要である。 A water treatment system that decomposes and removes pollutants is equipped with an ozone generator, and gas containing highly oxidizing ozone is injected into the water to be treated using an ejector for purification. There are two basic problems with this system. (1) When high-concentration ozone is generated, the efficiency of ozone generation is lowered and the efficiency of water treatment is lowered. (2) As an ozone generator, a complicated and expensive dielectric barrier discharge generator is required.
 この課題に対して、被処理水配管(内管)と酸素ガス配管(外管)とを同軸状に配置し、被処理水配管を接地電極とし、酸素ガス配管を給電電極として、給電電極と接地電極間に交流高電圧を印加することで誘電体バリア放電を生成し、酸素プラズマを発生させるシステムが開示されている(例えば、特許文献1)。 To solve this problem, the water pipe to be treated (inner pipe) and the oxygen gas pipe (outer pipe) are arranged coaxially, the water pipe to be treated is used as a ground electrode, and the oxygen gas pipe is used as a power supply electrode. A system has been disclosed in which a dielectric barrier discharge is generated by applying a high AC voltage between ground electrodes to generate oxygen plasma (for example, Patent Document 1).
特開平4-222693号公報JP-A-4-222693
 特許文献1の構成では、被処理水配管を接地電極として使用するため、酸素原子を生成する放電空間は被処理水配管(内管)の外周部のみに制約される。このため、酸素原子を生成する放電空間と、酸素原子が被処理水に供給される接触部は離れた構造になる。酸素原子が輸送される間に再結合反応で酸素分子に戻る割合が高くなるため、酸素原子が有効に被処理水に供給されず、水処理効率が低下するという問題がある。 In the configuration of Patent Document 1, since the water pipe to be treated is used as a ground electrode, the discharge space for generating oxygen atoms is restricted only to the outer peripheral portion of the water pipe to be treated (inner pipe). Therefore, the discharge space for generating oxygen atoms and the contact portion for supplying the oxygen atoms to the water to be treated are separated from each other. Since the rate of oxygen atoms returning to oxygen molecules due to recombination reaction increases while oxygen atoms are being transported, oxygen atoms are not effectively supplied to the water to be treated, resulting in a problem of reduced water treatment efficiency.
 本願は、上記のような課題を解決するための技術を開示するものであり、被処理水に効率良く活性粒子を供給し、効率的に被処理水を浄化処理できる活性粒子供給装置、およびそれを用いた水処理システムを得ることを目的とする。 The present application discloses a technique for solving the above-mentioned problems, and an active particle supply device capable of efficiently supplying active particles to the water to be treated and efficiently purifying the water to be treated, and the same. The object is to obtain a water treatment system using
 本願に開示される活性粒子供給装置は、ノズルから第一の流体が噴射され、ベンチュリ―効果により噴射された第一の流体の周囲の圧力が低下する空間に接触部を備え、接触部に第二の流体が供給される供給口を備えるエジェクタと、第二の流体中に活性粒子を生成するプラズマを接触部に発生させるプラズマ生成装置と、を備えるものである。
 本願に開示される水処理システムは、上記活性粒子供給装置を備え、第一の流体である被処理水に対して活性粒子を供給するものである。
The active particle supply device disclosed in the present application includes a contact portion in a space where a first fluid is ejected from a nozzle and the pressure around the ejected first fluid is reduced by the venturi effect, and the contact portion is provided with a second It comprises an ejector having a supply port to which two fluids are supplied, and a plasma generating device for generating plasma at a contact portion for generating active particles in the second fluid.
The water treatment system disclosed in the present application includes the active particle supply device, and supplies active particles to the water to be treated, which is the first fluid.
 本願に開示される活性粒子供給装置、および水処理システムによれば、効率的に被処理水を浄化処理することができる。 According to the active particle supply device and water treatment system disclosed in the present application, water to be treated can be efficiently purified.
実施の形態1に係る活性粒子供給装置を備えた水処理システムの構成図である。1 is a configuration diagram of a water treatment system provided with an active particle supply device according to Embodiment 1. FIG. 実施の形態1に係る活性粒子供給装置のエジェクタの斜視図である。4 is a perspective view of an ejector of the active particle supply device according to Embodiment 1. FIG. 実施の形態1に係る活性粒子供給装置のエジェクタの断面図である。4 is a cross-sectional view of an ejector of the active particle supply device according to Embodiment 1. FIG. 実施の形態2に係る活性粒子供給装置の構成図である。FIG. 7 is a configuration diagram of an active particle supply device according to Embodiment 2; 実施の形態2に係る活性粒子供給装置のエジェクタの斜視図である。FIG. 8 is a perspective view of an ejector of the active particle supply device according to Embodiment 2; 実施の形態2に係る活性粒子供給装置のエジェクタの断面図である。FIG. 8 is a cross-sectional view of an ejector of the active particle supply device according to Embodiment 2; 実施の形態3に係る活性粒子供給装置を備えた水処理システムの構成図である。FIG. 10 is a configuration diagram of a water treatment system provided with an active particle supply device according to Embodiment 3; 実施の形態4に係る活性粒子供給装置を備えた水処理システムの構成図である。FIG. 10 is a configuration diagram of a water treatment system provided with an active particle supply device according to Embodiment 4; 実施の形態4に係る活性粒子供給装置のエジェクタの斜視図である。FIG. 11 is a perspective view of an ejector of an active particle supply device according to Embodiment 4; 実施の形態4に係る活性粒子供給装置のエジェクタの断面図である。FIG. 11 is a cross-sectional view of an ejector of an active particle supply device according to Embodiment 4; 実施の形態5に係る活性粒子供給装置の構成図である。FIG. 11 is a configuration diagram of an active particle supply device according to Embodiment 5; 実施の形態5に係る活性粒子供給装置のエジェクタの斜視図である。FIG. 11 is a perspective view of an ejector of an active particle supply device according to Embodiment 5; 実施の形態5に係る活性粒子供給装置のエジェクタの断面図である。FIG. 11 is a cross-sectional view of an ejector of an active particle supply device according to Embodiment 5;
実施の形態1.
 実施の形態1は、プラズマ生成装置と、ノズルから被処理水を噴射し、ベンチュリ効果により噴射された被処理水の周囲の圧力を低下させるエジェクタとを備え、エジェクタは被処理水の圧力が低下する空間に接触部を備え、接触部の上面に誘電体を配置し、接触部に酸素ガスを供給する供給口を備え、プラズマ生成装置を用いて、誘電体を介して高電界を印加することで、接触部にプラズマを発生させ、酸素ガス中に活性粒子を生成する活性粒子供給装置、およびこの活性粒子供給装置を用いて被処理水の浄化処理を行う水処理システムに関するものである。
Embodiment 1.
Embodiment 1 is provided with a plasma generator and an ejector that ejects water to be treated from a nozzle and reduces the pressure around the ejected water to be treated by the venturi effect. A contact portion is provided in the space where the contact portion is formed, a dielectric is arranged on the upper surface of the contact portion, a supply port for supplying oxygen gas is provided to the contact portion, and a high electric field is applied through the dielectric using a plasma generation device. The present invention relates to an active particle supply device that generates plasma in a contact portion to generate active particles in oxygen gas, and a water treatment system that purifies water to be treated using this active particle supply device.
 以下、実施の形態1に係る活性粒子供給装置および水処理システムの構成および動作について、活性粒子供給装置を備えた水処理システムの構成図である図1、活性粒子供給装置のエジェクタの斜視図である図2A、およびエジェクタの断面図である図2Bに基づいて説明する。 The configuration and operation of the active particle supply device and the water treatment system according to Embodiment 1 will be described below with reference to FIG. 2A, and FIG. 2B, which is a sectional view of the ejector.
 実施の形態1の水処理システム1および活性粒子供給装置4の構成を図1の構成図に基づいて説明する。
 まず、水処理システム1の構成について説明する。
 水処理システム1は、被処理水2(第一の流体)を貯める処理水槽3、被処理水2を浄化処理する活性粒子供給装置4、および循環ポンプ5を備えている。循環ポンプ5は、処理水槽3と活性粒子供給装置4との間で被処理水2を循環させる。
 処理水槽3、活性粒子供給装置4、および循環ポンプ5との間は、被処理水配管6で接続されている。図1において、矢印(Y)は被処理水2の流れる方向を示している。
 循環ポンプ5の下流側、すなわち活性粒子供給装置4の上流側の被処理水配管6には、バルブ7、および流量調整器8が接続されている。活性粒子供給装置4の下流側の被処理水配管6には、バルブ9が接続されている。
The configuration of the water treatment system 1 and the active particle supply device 4 of Embodiment 1 will be described based on the configuration diagram of FIG.
First, the configuration of the water treatment system 1 will be described.
The water treatment system 1 includes a treatment tank 3 for storing water 2 (first fluid) to be treated, an active particle supply device 4 for purifying the water 2 to be treated, and a circulation pump 5 . A circulation pump 5 circulates the water to be treated 2 between the treated water tank 3 and the active particle supply device 4 .
The treated water tank 3 , the active particle supply device 4 , and the circulation pump 5 are connected by a water to be treated pipe 6 . In FIG. 1, an arrow (Y) indicates the direction in which the water 2 to be treated flows.
A valve 7 and a flow rate regulator 8 are connected to the water-to-be-treated pipe 6 on the downstream side of the circulation pump 5, that is, on the upstream side of the active particle supply device 4. As shown in FIG. A valve 9 is connected to the water-to-be-treated pipe 6 on the downstream side of the active particle supply device 4 .
 次に、活性粒子供給装置4の構成について説明する。
 活性粒子供給装置4は、混合部であるエジェクタ10、および活性粒子生成手段であるプラズマ100を発生させるプラズマ生成装置11で構成されている。
 なお、図1のエジェクタ10は、水処理システム1の構成をわかりやすくするために、一部を除いて、エジェクタ10の被処理水2が流れる方向の中心軸を含む垂直断面を示している。
Next, the configuration of the active particle supply device 4 will be described.
The active particle supply device 4 is composed of an ejector 10 as a mixing section and a plasma generation device 11 that generates plasma 100 as an active particle generation means.
In order to make the configuration of the water treatment system 1 easier to understand, the ejector 10 in FIG. 1 shows a vertical cross section including the central axis of the ejector 10 in the direction in which the water 2 to be treated flows, except for a part.
 まず、エジェクタ10の構成について、図2A、図2Bも参照して説明する。
 図2Aはエジェクタ10の斜視図、図2Bは断面図である。なお、図2A、図2Bは、エジェクタ10の構成をわかりやすくするための概念図である。
 図2Aにおいて、エジェクタ10に供給された被処理水2が流れる方向をY軸方向とし、水平右方向をX軸方向、垂直方向をZ軸方向としている。被処理水2が流れる流通軸とエジェクタ10のY軸方向の中心軸は一致している。
 図2Bは、図2Aの矢視A-Aの断面図であり、エジェクタ10の中心軸を含む垂直面で切断した断面図である。なお、図2Bの断面図では、本来、ガス供給口16は存在しないが、位置関係をわかりやすくするために仮想線(点線)として記載している。
 図2A、図2Bにおいて、「MW」はマイクロ波を示し、「OG」は酸素ガスO2を示す。
 以降、図2Aと図2Bをまとめて記載する場合は適宜図2と記載する。実施の形態2以降の説明においても、同様である。
First, the configuration of the ejector 10 will be described with reference to FIGS. 2A and 2B as well.
2A is a perspective view of the ejector 10, and FIG. 2B is a sectional view. 2A and 2B are conceptual diagrams for making the configuration of the ejector 10 easier to understand.
In FIG. 2A, the direction in which the water to be treated 2 supplied to the ejector 10 flows is the Y-axis direction, the horizontal right direction is the X-axis direction, and the vertical direction is the Z-axis direction. The flow axis through which the water to be treated 2 flows coincides with the central axis of the ejector 10 in the Y-axis direction.
2B is a cross-sectional view taken along line AA in FIG. 2A, taken along a vertical plane including the central axis of the ejector 10. FIG. Although the gas supply port 16 does not exist in the cross-sectional view of FIG. 2B, it is shown as a virtual line (dotted line) in order to make the positional relationship easier to understand.
In FIGS. 2A and 2B, "MW" indicates microwaves, and "OG" indicates oxygen gas O2.
Hereinafter, when FIG. 2A and FIG. 2B are collectively described, they will be referred to as FIG. 2 as appropriate. The same applies to the description of the second and subsequent embodiments.
 エジェクタ10は、ノズル12、接触部13、ディフューザ14、および誘電体15で構成されている。ノズル12は、下流側に向かって縮小角度が約45度で管路断面積を徐々に絞った構成である。ディフューザ14は、下流側に向かって拡大角度が5度から10度で管路断面積を徐々に拡げた構成である。
 なお、接触部13は、図2Aにおいて、誘電体15の下部の直方体の領域全体をいう。
Ejector 10 is composed of nozzle 12 , contact portion 13 , diffuser 14 and dielectric 15 . The nozzle 12 has a configuration in which the pipe cross-sectional area is gradually narrowed toward the downstream side at a reduction angle of approximately 45 degrees. The diffuser 14 has a configuration in which the cross-sectional area of the pipeline is gradually expanded toward the downstream side at an expansion angle of 5 to 10 degrees.
The contact portion 13 refers to the entire rectangular parallelepiped area under the dielectric 15 in FIG. 2A.
 エジェクタ10において、循環ポンプ5で加圧された被処理水2が、ノズル12の上流から供給される。流速が増加した被処理水2は、接触部13を通過し、ディフューザ14で圧力回復が行われる。圧力回復した被処理水2は、ディフューザ14の下流から排出される。
 接触部13は、ノズル12から噴射された被処理水2のベンチュリ効果によって数kPaから50kPa(絶対圧)の負圧(陰圧)状態になる。
 接触部13は、被処理水2の流通軸に対し交差する方向から酸素ガス(第二の流体)を供給するためのガス供給口16を備えている。ここで、交差する方向とは、例えば、被処理水2の流通軸に対して90°±30°程度、好ましくは90°±5°程度の角度で配置することが望ましい。
In the ejector 10 , the water to be treated 2 pressurized by the circulation pump 5 is supplied from the upstream of the nozzle 12 . The water to be treated 2 whose flow velocity has increased passes through the contact portion 13 and pressure recovery is performed by the diffuser 14 . The water to be treated 2 whose pressure has been restored is discharged downstream of the diffuser 14 .
The contact portion 13 is in a negative pressure state of several kPa to 50 kPa (absolute pressure) due to the venturi effect of the water 2 to be treated injected from the nozzle 12 .
The contact portion 13 has a gas supply port 16 for supplying oxygen gas (second fluid) from a direction intersecting the flow axis of the water 2 to be treated. Here, the intersecting direction is, for example, desirably arranged at an angle of about 90°±30°, preferably about 90°±5° with respect to the flow axis of the water 2 to be treated.
 なお、図1、図2ではエジェクタ10におけるガス供給口16の位置は、被処理水2の流通軸から上方に偏心した位置に配置されている。しかし、ガス供給口16の位置は、流通軸上に配置されていてもよい。
 接触部13はベンチュリ効果により負圧となり、ガス供給口16から供給された酸素ガスが被処理水2に吸い込まれて、被処理水2と酸素ガスとが混合される。
 図1において、接触部13の上面には、誘電体15が配置されている。この誘電体15は、マイクロ波の一部を透過し、残りは反射させる性質を持つ。
 誘電体15には、石英およびアルミナが好適に用いられるが、その他の材料を用いてもよい。この誘電体15の上部、すなわちエジェクタ10の接触部13の上部面側にプラズマ生成装置11が接続されている。
1 and 2, the position of the gas supply port 16 in the ejector 10 is arranged at a position eccentrically upward from the flow axis of the water 2 to be treated. However, the position of the gas supply port 16 may be arranged on the flow axis.
The contact portion 13 has a negative pressure due to the venturi effect, the oxygen gas supplied from the gas supply port 16 is sucked into the water 2 to be treated, and the water 2 to be treated and the oxygen gas are mixed.
In FIG. 1, a dielectric 15 is arranged on the upper surface of the contact portion 13 . This dielectric 15 has the property of transmitting part of the microwave and reflecting the rest.
Quartz and alumina are preferably used for the dielectric 15, but other materials may be used. A plasma generator 11 is connected to the upper portion of the dielectric 15 , that is, to the upper surface side of the contact portion 13 of the ejector 10 .
 次に、プラズマ生成装置11の構成について説明する。
 プラズマ生成装置11は、マイクロ波発振器17、矩形導波管18、アイソレータ19、方向性結合器20、整合器21、リアクタ22、ショートプランジャ23、およびスロットアンテナ24で構成されている。
 プラズマ生成装置11は、ガス供給口16からエジェクタ10の接触部13に供給された酸素ガス中にプラズマ100を発生させる。
 マイクロ波発振器17、アイソレータ19、方向性結合器20、および整合器21は矩形導波管18により接続されている。
 プラズマ生成装置11の構成は例示であり、上記と異なっていてもよい。
Next, the configuration of the plasma generation device 11 will be described.
Plasma generator 11 comprises microwave oscillator 17 , rectangular waveguide 18 , isolator 19 , directional coupler 20 , matching device 21 , reactor 22 , short plunger 23 and slot antenna 24 .
The plasma generator 11 generates plasma 100 in oxygen gas supplied to the contact portion 13 of the ejector 10 from the gas supply port 16 .
A microwave oscillator 17 , an isolator 19 , a directional coupler 20 and a matching device 21 are connected by a rectangular waveguide 18 .
The configuration of the plasma generator 11 is an example, and may be different from the above.
 マイクロ波発振器17は、マイクロ波を発生させるための装置であり、マグネトロンを用いてマイクロ波を発生させることを想定している。しかし、半導体方式またはそれ以外の方式を用いてもよい。
マイクロ波発振器17で使用するマイクロ波周波数は、約2.45GHzであるが、これ以外の周波数を用いてもよい。
The microwave oscillator 17 is a device for generating microwaves, and is assumed to generate microwaves using a magnetron. However, a semiconductor scheme or other schemes may be used.
The microwave frequency used by microwave oscillator 17 is approximately 2.45 GHz, although other frequencies may be used.
 アイソレータ19は、マイクロ波発振器17の後段に接続されている。アイソレータ19は、マイクロ波発振器17で発生したマイクロ波(入射波)は低損失で伝播させるが、ショートプランジャ23から反射されたマイクロ波(反射波)は十分に減衰させる。すなわち、アイソレータ19は、反射波からマイクロ波発振器17を保護する目的で設置している。 The isolator 19 is connected after the microwave oscillator 17 . The isolator 19 propagates the microwave (incident wave) generated by the microwave oscillator 17 with low loss, but sufficiently attenuates the microwave (reflected wave) reflected from the short plunger 23 . That is, the isolator 19 is installed for the purpose of protecting the microwave oscillator 17 from reflected waves.
 方向性結合器20は、アイソレータ19の後段に接続されており、入射波と反射波を分離してそれぞれを検出し、プラズマ100で消費される電力(入射波-反射波)を測定する。プラズマ100の消費電力の測定値を用いて、マイクロ波発振器17の出力が調整される。
 整合器21は、方向性結合器20の後段に接続されており、プラズマ生成装置11の全体の回路インピーダンスを整合する。
 整合器21の後段に接続されているリアクタ22は、直方体の形状をしており、材質は、アルミ、銅、鋼あるいはその他の金属である。また、リアクタ22の内面あるいは外面にメッキが施されていてもよい。
The directional coupler 20 is connected after the isolator 19 , separates the incident wave and the reflected wave, detects them, and measures the power consumed in the plasma 100 (incident wave−reflected wave). The power consumption measurement of the plasma 100 is used to adjust the power of the microwave oscillator 17 .
The matching device 21 is connected after the directional coupler 20 and matches the circuit impedance of the entire plasma generating device 11 .
A reactor 22 connected to the rear stage of the matcher 21 has a rectangular parallelepiped shape and is made of aluminum, copper, steel or other metal. Also, the inner surface or the outer surface of the reactor 22 may be plated.
 リアクタ22の下面に、スロットを切ったスロットアンテナ24が配置されている。このスロットアンテナ24から、エジェクタ10の誘電体15へ向かってマイクロ波が放射される。
 スロットアンテナ24の幅は1mm以下が望ましい。リアクタ22の下面に流れる電流をスロットアンテナ24が遮ることでスロット部に高電界を発生し、エジェクタ10の接触部13内においてプラズマ100が励起される。
A slot antenna 24 with a slot is arranged on the lower surface of the reactor 22 . Microwaves are radiated from the slot antenna 24 toward the dielectric 15 of the ejector 10 .
The width of the slot antenna 24 is desirably 1 mm or less. A high electric field is generated in the slot portion by blocking the current flowing through the lower surface of the reactor 22 by the slot antenna 24 , and the plasma 100 is excited in the contact portion 13 of the ejector 10 .
 ショートプランジャ23は、リアクタ22の後段に接続されており、マイクロ波を反射させる。ショートプランジャ23内には反射板(図示なし)が取り付けられている。リアクタ22から反射板までの距離を調節することで、リアクタ22からショートプランジャ23までの空間に定在波を発生させる。この定在波を用いることで、エジェクタ10の接触部13内においてプラズマ100が発生しやすくなる。 The short plunger 23 is connected to the rear stage of the reactor 22 and reflects microwaves. A reflector (not shown) is attached inside the short plunger 23 . A standing wave is generated in the space from the reactor 22 to the short plunger 23 by adjusting the distance from the reactor 22 to the reflector. By using this standing wave, the plasma 100 is easily generated in the contact portion 13 of the ejector 10 .
 次に、エジェクタ10の接触部13におけるプラズマ100の発生、酸素原子の生成、および被処理水の浄化について説明する。
 プラズマ生成装置11は、マイクロ波発振器17からマイクロ波を導入し、リアクタ22内のスロットアンテナ24で高電界を発生することで、エジェクタ10の接触部13にプラズマ100を発生させる。
 このプラズマ100中では電子衝突により、酸素ガスから活性粒子である酸素原子(O)が生成される(O2+e→O+O+e、ここでeは電子を示す)。
 図2Bでわかるように、実施の形態1では、プラズマ100は、接触部13の上部、すなわち誘電体15の下面と被処理水2の流通路の上面の間の領域に発生している。
Next, generation of the plasma 100, generation of oxygen atoms, and purification of the water to be treated at the contact portion 13 of the ejector 10 will be described.
The plasma generator 11 introduces microwaves from the microwave oscillator 17 and generates a high electric field with the slot antenna 24 in the reactor 22 to generate the plasma 100 at the contact portion 13 of the ejector 10 .
In this plasma 100, electron collisions generate oxygen atoms (O), which are active particles, from oxygen gas (O2+e→O+O+e, where e indicates an electron).
As can be seen from FIG. 2B, in Embodiment 1, the plasma 100 is generated in the upper portion of the contact portion 13, that is, the region between the lower surface of the dielectric 15 and the upper surface of the flow path for the water 2 to be treated.
 活性粒子供給装置4は、プラズマ100で生成された酸素原子を含む活性ガスをエジェクタ10内の接触部13を流通する被処理水2に供給する。このようにして水処理システム1は、被処理水2中の有機物成分などを酸化分解して被処理水2を浄化する。 The active particle supply device 4 supplies the active gas containing oxygen atoms generated by the plasma 100 to the water to be treated 2 flowing through the contact portion 13 in the ejector 10 . In this way, the water treatment system 1 purifies the water 2 to be treated by oxidatively decomposing the organic substances in the water 2 to be treated.
 プラズマ生成装置11は、マイクロ波によりプラズマ100を発生させる。このため、従来から用いられている数百kHz以上の高周波を用いたプラズマ(例えば、誘導結合プラズマ、容量結合プラズマなど)と比較して、同じ投入電力でより高密度なプラズマ100を発生させることができる。この結果、酸素ガスを使用した場合、高密度な酸素原子を生成することができる。 The plasma generation device 11 generates plasma 100 using microwaves. For this reason, compared to conventionally used plasma using high frequencies of several hundred kHz or higher (for example, inductive coupling plasma, capacitive coupling plasma, etc.), it is possible to generate higher density plasma 100 with the same input power. can be done. As a result, when oxygen gas is used, oxygen atoms can be produced at a high density.
 プラズマ100で生成した酸素原子は、プラズマ100を離れると急速に失活する(O+O→O2)。このため、酸素原子が失活する前に酸素原子を含む活性ガスを被処理水2に供給する必要がある。したがって、酸素原子がプラズマ100を離れてから被処理水2に到達するまでの時間を1msec以下にする必要がある。
 実施の形態1の活性粒子供給装置4においては、エジェクタ10の接触部13にプラズマ100を発生させるため、酸素原子の失活を抑制し、即座に被処理水2に供給できる。この結果、活性粒子供給装置4の水処理性能を飛躍的に向上させることができる。
Oxygen atoms generated in plasma 100 are rapidly deactivated (O+O→O2) upon leaving plasma 100 . Therefore, it is necessary to supply an active gas containing oxygen atoms to the water 2 to be treated before the oxygen atoms are deactivated. Therefore, it is necessary to set the time from when the oxygen atoms leave the plasma 100 until they reach the water 2 to be treated to 1 msec or less.
In the active particle supply device 4 of Embodiment 1, since the plasma 100 is generated at the contact portion 13 of the ejector 10, deactivation of oxygen atoms is suppressed and the water to be treated 2 can be supplied immediately. As a result, the water treatment performance of the active particle supply device 4 can be dramatically improved.
 実施の形態1においては、第一の流体として被処理水2を示しているが、第一の流体が酸素ガス、空気などの酸素含有ガスを用いてもよい。このとき、エジェクタ10内の接触部13で生成された酸素原子は、酸素含有ガスと混合しオゾンに変換され、プラズマ生成装置11は高効率なオゾン発生器として機能する。 In Embodiment 1, the water to be treated 2 is shown as the first fluid, but the first fluid may be oxygen gas or an oxygen-containing gas such as air. At this time, the oxygen atoms generated at the contact portion 13 inside the ejector 10 are mixed with the oxygen-containing gas and converted into ozone, and the plasma generator 11 functions as a highly efficient ozone generator.
 また、実施の形態1において、第二の流体として酸素ガスを使用することを想定している。しかし、不活性ガス(例えば、ヘリウムガス、アルゴンガスなど)を使用してもよいし、酸素ガスに不活性ガスを添加してもよい。
 この場合、電子付着性である酸素ガスと比較して、ヘリウムガス、アルゴンガスは、比較的容易にプラズマを発生させることができる。
 なお、不活性ガスでプラズマ100を発生させた場合、接触部13においてヒドロキシラジカルが生成される。
Moreover, in Embodiment 1, it is assumed that oxygen gas is used as the second fluid. However, an inert gas (eg, helium gas, argon gas, etc.) may be used, or an inert gas may be added to the oxygen gas.
In this case, helium gas and argon gas can generate plasma relatively easily compared to oxygen gas, which is electron-adhesive.
Note that when the plasma 100 is generated with an inert gas, hydroxyl radicals are generated at the contact portion 13 .
 実施の形態1において、不活性ガスの流量を制御することで、プラズマ100の発生が容易となる。すなわち、ガス供給口16に不活性ガスを流してプラズマ100を発生させた後、徐々に不活性ガスの流量を減らすと共に酸素ガスの流量を増やす。最終的に酸素ガスだけでプラズマ100を維持するように制御することで、プラズマ100の発生が容易となる。 In Embodiment 1, the plasma 100 is easily generated by controlling the flow rate of the inert gas. That is, after the inert gas is supplied to the gas supply port 16 to generate the plasma 100, the flow rate of the inert gas is gradually decreased and the flow rate of the oxygen gas is increased. By finally controlling the plasma 100 to be maintained only by the oxygen gas, the generation of the plasma 100 is facilitated.
 なお、不活性ガスを使用せず、酸素ガスの流量をプラズマ発生前後において制御することでプラズマ100を容易に発生させることもできる。
 ガス供給口16から接触部13に供給する酸素ガスの流量を絞り、その状態でマイクロ波発振器17からマイクロ波の導入を開始する。この結果、接触部13内のガス圧は低いため、プラズマ100の発生が容易となる。そして、プラズマ100を発生させた後、酸素ガスの流量を徐々に増加させて、接触部13のガス圧を上昇させて安定にプラズマ100を維持することができる。
The plasma 100 can also be easily generated by controlling the flow rate of the oxygen gas before and after plasma generation without using an inert gas.
The flow rate of the oxygen gas supplied from the gas supply port 16 to the contact portion 13 is restricted, and in this state, introduction of microwaves from the microwave oscillator 17 is started. As a result, since the gas pressure in the contact portion 13 is low, the plasma 100 is easily generated. After the plasma 100 is generated, the flow rate of the oxygen gas is gradually increased to raise the gas pressure of the contact portion 13, thereby maintaining the plasma 100 stably.
 エジェクタ10は、酸素原子(O)、オゾン(O3)、過酸化水素(H2O2)、ヒドロキシラジカル(OH)などの活性ガスに曝される。このため、エジェクタ10の材質は、耐食性の高い材質を用いることが望ましい。
 エジェクタ10の材質としては、例えばステンレス(SUS(stainless steel)316、SUS304など)などの金属材料、PTFE(polytetrafluoroethylene)(ポリテトラフルオロエチレン)、PFA(p-fluorophenylalanine)(ペルフルオロアルコキシアルカン)などのフッ素樹脂、または表面がフッ素樹脂で被覆された材料などを用いることができる。
The ejector 10 is exposed to active gases such as oxygen atoms (O), ozone (O3), hydrogen peroxide (H2O2), and hydroxyl radicals (OH). Therefore, it is desirable that the ejector 10 is made of a material having high corrosion resistance.
Examples of the material of the ejector 10 include metal materials such as stainless steel (SUS (stainless steel) 316, SUS304, etc.), fluorine such as PTFE (polytetrafluoroethylene), and PFA (p-fluorophenylalanine) (perfluoroalkoxyalkane). A resin, a material whose surface is coated with a fluororesin, or the like can be used.
 また、実施の形態1の水処理システム1において、活性粒子供給装置4を通過して処理水槽3へ戻ってくる被処理水2の中には、酸素原子から生成されたオゾンが含まれる場合がある。このため、処理水槽3は、図1に示すように、排気ポート25と活性炭などを用いたオゾン分解処理装置26とを備えることが望ましい。 Further, in the water treatment system 1 of Embodiment 1, the water to be treated 2 returning to the treated water tank 3 after passing through the active particle supply device 4 may contain ozone generated from oxygen atoms. be. Therefore, as shown in FIG. 1, the treated water tank 3 preferably has an exhaust port 25 and an ozone decomposition treatment device 26 using activated carbon or the like.
 図1の水処理システム1は、被処理水2を貯める処理水槽3、被処理水2を浄化処理する活性粒子供給装置4、および循環ポンプ5を備えており、いわゆるクローズドループで被処理水2を浄化している。
 活性粒子供給装置4に浄化対象の被処理水を供給し、被処理水を浄化した後排出する、いわゆるオープンループシステムに活性粒子供給装置4を適用することもできる。
The water treatment system 1 of FIG. 1 includes a treated water tank 3 for storing the treated water 2, an active particle supply device 4 for purifying the treated water 2, and a circulation pump 5. are purifying.
The active particle supply device 4 can also be applied to a so-called open loop system in which the water to be purified is supplied to the active particle supply device 4, and the water to be treated is discharged after being purified.
 以上説明したように、実施の形態1の活性粒子供給装置は、ノズルから第一の流体を噴射し、ベンチュリ効果により噴射された第一の流体の周囲の圧力を低下させるエジェクタを備え、エジェクタは第一の流体の圧力が低下する空間に接触部を備え、接触部に第二の流体を供給する供給口を備え、接触部に第二の流体中に活性粒子を生成するプラズマを発生させるものである。また水処理システムは、この活性粒子供給装置を用いて、被処理水を浄化処理するものである。
 したがって、実施の形態1の水処理システムおよび活性粒子供給装置は、効率的に被処理水を浄化処理することができる。
As described above, the active particle supply device of Embodiment 1 includes an ejector that ejects the first fluid from the nozzle and reduces the pressure around the ejected first fluid by the venturi effect. Equipped with a contact portion in a space where the pressure of the first fluid drops, a supply port for supplying the second fluid to the contact portion, and generating plasma at the contact portion to generate active particles in the second fluid is. A water treatment system purifies water to be treated using this active particle supply device.
Therefore, the water treatment system and the active particle supply device of Embodiment 1 can efficiently purify the water to be treated.
実施の形態2.
 実施の形態2の活性粒子供給装置は、接触部の上面に加えて、下面および両側面に誘電体を配置したものである。
Embodiment 2.
In the active particle supply device of Embodiment 2, dielectrics are arranged on the lower surface and both side surfaces in addition to the upper surface of the contact portion.
 実施の形態2に係る活性粒子供給装置の構成および動作について、活性粒子供給装置の構成図である図3、活性粒子供給装置のエジェクタの斜視図である図4A、およびエジェクタの断面図である図4Bに基づいて、実施の形態1との差異を中心に説明する。
 実施の形態2の図3、図4において、実施の形態1と同一あるいは相当部分は、同一の符号を付している。
 なお、実施の形態1と区別するために、活性粒子供給装置204、エジェクタ210、および接触部213としている。
Regarding the configuration and operation of the active particle supply device according to Embodiment 2, FIG. 3 is a configuration diagram of the active particle supply device, FIG. 4A is a perspective view of the ejector of the active particle supply device, and FIG. 4A is a cross-sectional view of the ejector. 4B, the description will focus on the differences from the first embodiment.
In FIGS. 3 and 4 of the second embodiment, the same reference numerals are given to the same or corresponding parts as those of the first embodiment.
In addition, in order to distinguish from the first embodiment, the active particle supply device 204, the ejector 210, and the contact portion 213 are used.
 実施の形態2においては、実施の形態1との差異はエジェクタ210の接触部213の構造であるから、図3では水処理システムの被処理水2(第一の流体)を貯める処理水槽3、および循環ポンプ5等を省略している。
 まず、活性粒子供給装置204の構成について説明する。
 活性粒子供給装置204は、混合部であるエジェクタ210、および活性粒子生成手段であるプラズマ100を発生させるプラズマ生成装置11で構成されている。
 なお、図3のエジェクタ210は、一部を除いて、エジェクタ210の被処理水が流れる方向の中心軸を含む垂直断面を示している。
In the second embodiment, the difference from the first embodiment is the structure of the contact portion 213 of the ejector 210. Therefore, in FIG. and the circulation pump 5 are omitted.
First, the configuration of the active particle supply device 204 will be described.
The active particle supply device 204 is composed of an ejector 210 which is a mixing section, and a plasma generation device 11 which generates plasma 100 which is an active particle generation means.
Note that the ejector 210 in FIG. 3 shows a vertical cross section including the central axis of the ejector 210 in the direction in which the water to be treated flows, except for a part.
 次に、エジェクタ210の構成について、図4A、図4Bも参照して説明する。
 図4Aはエジェクタ210の斜視図、図4Bは断面図である。
 図4Aにおいて、エジェクタ210に供給された被処理水2が流れる方向をY軸方向とし、水平右方向をX軸方向、垂直方向をZ軸方向としている。被処理水2が流れる流通軸とエジェクタ210のY軸方向の中心軸は一致している。
 図4Bは、図4Aの矢視A-Aの断面図であり、エジェクタ210の中心軸を含む垂直面での断面図である。なお、図4Bの断面図では、本来、ガス供給口16は存在しないが、位置関係をわかりやすくなるように仮想線(点線)として記載している。
 図4A、図4Bにおいて、「MW」はマイクロ波を示し、「OG」は酸素ガスO2を示す。
Next, the configuration of the ejector 210 will be described with reference to FIGS. 4A and 4B as well.
4A is a perspective view of the ejector 210, and FIG. 4B is a cross-sectional view.
In FIG. 4A, the direction in which the water to be treated 2 supplied to the ejector 210 flows is the Y-axis direction, the horizontal right direction is the X-axis direction, and the vertical direction is the Z-axis direction. The flow axis through which the water to be treated 2 flows coincides with the central axis of the ejector 210 in the Y-axis direction.
4B is a cross-sectional view taken along line AA in FIG. 4A, taken along a vertical plane including the central axis of the ejector 210. FIG. Although the gas supply port 16 does not exist in the cross-sectional view of FIG. 4B, it is shown as a virtual line (dotted line) so as to make the positional relationship easier to understand.
In FIGS. 4A and 4B, "MW" indicates microwaves, and "OG" indicates oxygen gas O2.
 実施の形態2において、プラズマ生成装置11およびエジェクタ210の接触部213内でのプラズマ100の発生方法は、実施の形態1と同じである。
 実施の形態1との違い、すなわち接触部213の構造の違いとプラズマ100の発生領域の違いについて説明する。
 図4Aでわかるように、エジェクタ210の接触部213に誘電体15が上面以外にも下面、および右側面、左側面の4面すべてに配置されている。
 この結果、図4Bでわかるように、プラズマ100は、接触部213の上部の誘電体15の下面と被処理水の流通路の上面の間の領域、さらに接触部213の下部の誘電体15の上面と被処理水の流通路の下の間の領域にも発生している。
In the second embodiment, the method of generating plasma 100 in the plasma generator 11 and the contact portion 213 of the ejector 210 is the same as in the first embodiment.
Differences from the first embodiment, that is, differences in the structure of the contact portion 213 and differences in the generation region of the plasma 100 will be described.
As can be seen in FIG. 4A , the dielectric 15 is arranged on all four surfaces of the contact portion 213 of the ejector 210 , including the lower surface, the right side surface, and the left side surface, in addition to the upper surface.
As a result, as can be seen in FIG. 4B, the plasma 100 is generated in the region between the lower surface of the dielectric 15 above the contact portion 213 and the upper surface of the flow path of the water to be treated, and further in the dielectric 15 below the contact portion 213. It also occurs in the area between the upper surface and the bottom of the flow passage of the water to be treated.
 実施の形態2の活性粒子供給装置204は、接触部213の上面、下面、および両側面に誘電体15を配置することで、接触部213を流通する被処理水2の外周全域にわたりプラズマ100を発生することができ、高密度の酸素原子を被処理水2に供給できる。 In the active particle supply device 204 of Embodiment 2, by arranging the dielectric 15 on the upper surface, the lower surface and both side surfaces of the contact portion 213, the plasma 100 is generated over the entire circumference of the water to be treated 2 flowing through the contact portion 213. It is possible to supply high-density oxygen atoms to the water 2 to be treated.
 以上説明したように、実施の形態2の活性粒子供給装置は、接触部の上面に加えて、下面および両側面に誘電体を配置したものである。
 したがって、実施の形態2の活性粒子供給装置は、効率的に被処理水を浄化処理することができる。さらに高密度の酸素原子で被処理水を浄化処理することができる。
As described above, the active particle supply device of Embodiment 2 has dielectrics arranged on the lower surface and both side surfaces in addition to the upper surface of the contact portion.
Therefore, the active particle supply device of Embodiment 2 can efficiently purify the water to be treated. Furthermore, the water to be treated can be purified with high-density oxygen atoms.
実施の形態3.
 実施の形態3の活性粒子供給装置、および水処理システムは、活性粒子供給装置のエジェクタの前段に旋回流発生装置を設けたものである。
Embodiment 3.
The active particle supply device and the water treatment system of Embodiment 3 are provided with a swirling flow generator in the front stage of the ejector of the active particle supply device.
 実施の形態3に係る水処理システム、および活性粒子供給装置の構成および動作について、活性粒子供給装置を備えた水処理システムの構成図である図5に基づいて、実施の形態1との差異を中心に説明する。
 実施の形態3の図5において、実施の形態1と同一あるいは相当部分は、同一の符号を付している。
 なお、実施の形態1と区別するために、水処理システム301および活性粒子供給装置304としている。
Regarding the configuration and operation of the water treatment system and the active particle supply device according to Embodiment 3, differences from Embodiment 1 will be described based on FIG. Mainly explained.
In FIG. 5 of Embodiment 3, the same or corresponding parts as those of Embodiment 1 are denoted by the same reference numerals.
In addition, in order to distinguish from Embodiment 1, the water treatment system 301 and the active particle supply device 304 are used.
 まず、水処理システム301の構成について説明する。
 水処理システム301は、被処理水2(第一の流体)を貯める処理水槽3、被処理水2を浄化処理する活性粒子供給装置304、循環ポンプ5、さらに旋回流発生装置27を備えている。旋回流発生装置27は、循環ポンプ5の後段で活性粒子供給装置304の前段に接続されている。循環ポンプ5は、処理水槽3、旋回流発生装置27、活性粒子供給装置304との間で被処理水2を循環させる。
 処理水槽3、活性粒子供給装置304、循環ポンプ5、および旋回流発生装置27との間は被処理水配管6で接続されている。図5において、矢印(Y)は被処理水2の流れる方向を示している。
 循環ポンプ5の下流側、すなわち活性粒子供給装置304の上流側の被処理水配管6には、バルブ7、および流量調整器8が接続されている。活性粒子供給装置304の下流側の被処理水配管6には、バルブ9が接続されている。
 また、水処理システム301は、排気ポート25とオゾン分解処理装置26とを備える。
First, the configuration of the water treatment system 301 will be described.
The water treatment system 301 includes a treated water tank 3 for storing the treated water 2 (first fluid), an active particle supply device 304 for purifying the treated water 2, a circulation pump 5, and a swirling flow generator 27. . The swirling flow generator 27 is connected to the downstream side of the circulation pump 5 and the upstream side of the active particle supply device 304 . The circulation pump 5 circulates the water to be treated 2 between the treated water tank 3 , the swirling flow generator 27 and the active particle supply device 304 .
The treated water tank 3 , the active particle supply device 304 , the circulation pump 5 , and the swirling flow generator 27 are connected by a water pipe 6 to be treated. In FIG. 5, an arrow (Y) indicates the direction in which the water 2 to be treated flows.
A valve 7 and a flow rate regulator 8 are connected to the water-to-be-treated pipe 6 on the downstream side of the circulation pump 5 , that is, on the upstream side of the active particle supply device 304 . A valve 9 is connected to the water-to-be-treated pipe 6 on the downstream side of the active particle supply device 304 .
The water treatment system 301 also includes an exhaust port 25 and an ozone decomposition treatment device 26 .
 次に、活性粒子供給装置304の構成について説明する。
 活性粒子供給装置304は、混合部であるエジェクタ10、および活性粒子生成手段であるプラズマ100を発生させるプラズマ生成装置11で構成されている。
 なお、図5のエジェクタ10は、水処理システム301の構成をわかりやすくするために、一部を除いて、エジェクタ10の被処理水2が流れる方向の中心軸を含む垂直断面を示している。
 また、エジェクタ10の構成は、実施の形態1と同じであるため、エジェクタ10の斜視図、断面図は省略している。
Next, the configuration of the active particle supply device 304 will be described.
The active particle supply device 304 is composed of an ejector 10 as a mixing section and a plasma generation device 11 that generates plasma 100 as an active particle generation means.
In order to make the configuration of the water treatment system 301 easier to understand, the ejector 10 in FIG. 5 shows a vertical cross section including the central axis of the ejector 10 in the direction in which the water 2 to be treated flows, except for a part.
Also, since the configuration of the ejector 10 is the same as that of the first embodiment, the perspective view and cross-sectional view of the ejector 10 are omitted.
 次に、旋回流発生装置27の機能とその効果について説明する。
 旋回流発生装置27は、被処理水2を旋回させる機構を備えている。旋回流発生装置27を活性粒子供給装置304のエジェクタ10のノズル12の前段に設けたことで、被処理水2が螺旋状に旋回した状態でエジェクタ10のノズル12に供給される。この結果、被処理水2の流速が速くなり、ベンチュリ効果により接触部13の内部をより強く負圧状態にすることができる。このため、プラズマ100を発生させることが容易になるとともに、接触部13で生成した酸素原子を高効率に被処理水2に供給することができる。
 なお、実施の形態3においては、旋回流発生装置27を活性粒子供給装置304内の装置として説明したが、活性粒子供給装置304外の装置としてもよい。
 また、実施の形態3では、旋回流発生装置27を実施の形態1の活性粒子供給装置4に設けることで説明したが、実施の形態2の活性粒子供給装置204に設けても同様の効果を奏する。
Next, the functions and effects of the swirling flow generator 27 will be described.
The swirling flow generator 27 has a mechanism for swirling the water 2 to be treated. By providing the swirling flow generator 27 in front of the nozzle 12 of the ejector 10 of the active particle supply device 304, the water 2 to be treated is supplied to the nozzle 12 of the ejector 10 in a spirally swirling state. As a result, the flow velocity of the water 2 to be treated increases, and the inside of the contact portion 13 can be brought into a negative pressure state more strongly due to the venturi effect. Therefore, the plasma 100 can be easily generated, and the oxygen atoms generated at the contact portion 13 can be supplied to the water 2 to be treated with high efficiency.
In the third embodiment, the swirling flow generating device 27 is described as a device inside the active particle supply device 304, but it may be a device outside the active particle supply device 304.
Further, in the third embodiment, the swirling flow generator 27 is provided in the active particle supply device 4 of the first embodiment, but the same effect can be obtained by providing it in the active particle supply device 204 of the second embodiment. Play.
 以上説明したように、実施の形態3の活性粒子供給装置、および水処理システムは、活性粒子供給装置のエジェクタの前段に旋回流発生装置を設けたものである。
 したがって、実施の形態3の水処理システムおよび活性粒子供給装置は、効率的に被処理水を浄化処理することができる。さらにプラズマの発生が容易になるとともに、酸素原子を高効率に被処理水に供給することができる。
As described above, the active particle supply device and the water treatment system of Embodiment 3 are provided with the swirling flow generator in the front stage of the ejector of the active particle supply device.
Therefore, the water treatment system and the active particle supply device of Embodiment 3 can efficiently purify the water to be treated. Furthermore, plasma generation is facilitated, and oxygen atoms can be supplied to the water to be treated with high efficiency.
実施の形態4.
 実施の形態4の活性粒子供給装置、および水処理システムは、エジェクタの誘電体の直下に水滴付着防止用のコンストリクタを追加したものである。
Embodiment 4.
The active particle supply device and the water treatment system of Embodiment 4 are obtained by adding a constrictor for preventing adhesion of water droplets directly below the dielectric of the ejector.
 実施の形態4に係る水処理システムおよび活性粒子供給装置の構成および動作について、活性粒子供給装置を備えた水処理システムの構成図である図6、活性粒子供給装置のエジェクタの斜視図である図7A、およびエジェクタの断面図である図7Bに基づいて、実施の形態1との差異を中心に説明する。
 実施の形態4の図6、図7において、実施の形態1と同一あるいは相当部分は、同一の符号を付している。
 なお、実施の形態1と区別するために、水処理システム401、活性粒子供給装置404、エジェクタ410、および接触部413としている。
Regarding the configuration and operation of the water treatment system and the active particle supply device according to Embodiment 4, FIG. 6 is a configuration diagram of the water treatment system provided with the active particle supply device, and the perspective view of the ejector of the active particle supply device. 7A and FIG. 7B, which is a cross-sectional view of the ejector, the differences from the first embodiment will be mainly described.
In FIGS. 6 and 7 of Embodiment 4, portions identical or corresponding to those of Embodiment 1 are given the same reference numerals.
In addition, in order to distinguish from Embodiment 1, the water treatment system 401, the active particle supply device 404, the ejector 410, and the contact portion 413 are used.
 まず、水処理システム401の構成について説明する。
 水処理システム401は、被処理水2(第一の流体)を貯める処理水槽3、被処理水2を浄化処理する活性粒子供給装置404、循環ポンプ5を備えている。循環ポンプ5は、処理水槽3、活性粒子供給装置404との間で被処理水2を循環させる。
 処理水槽3、活性粒子供給装置404、および循環ポンプ5との間は被処理水配管6で接続されている。図6において、矢印(Y)は被処理水2の流れる方向を示している。
 循環ポンプ5の下流側、すなわち活性粒子供給装置404の上流側の被処理水配管6には、バルブ7、および流量調整器8が接続されている。活性粒子供給装置404の下流側の被処理水配管6には、バルブ9が接続されている。
 また、水処理システム401は、排気ポート25とオゾン分解処理装置26とを備える。
First, the configuration of the water treatment system 401 will be described.
The water treatment system 401 includes a treatment tank 3 for storing the water 2 (first fluid) to be treated, an active particle supply device 404 for purifying the water 2 to be treated, and a circulation pump 5 . The circulation pump 5 circulates the water to be treated 2 between the treated water tank 3 and the active particle supply device 404 .
The treated water tank 3 , the active particle supply device 404 , and the circulation pump 5 are connected to each other by the to-be-treated water pipe 6 . In FIG. 6, an arrow (Y) indicates the direction in which the water 2 to be treated flows.
A valve 7 and a flow rate regulator 8 are connected to the water-to-be-treated pipe 6 on the downstream side of the circulation pump 5 , that is, on the upstream side of the active particle supply device 404 . A valve 9 is connected to the water-to-be-treated pipe 6 on the downstream side of the active particle supply device 404 .
The water treatment system 401 also includes an exhaust port 25 and an ozone decomposition treatment device 26 .
 次に、活性粒子供給装置404の構成について説明する。
 活性粒子供給装置404は、混合部であるエジェクタ410、および活性粒子生成手段であるプラズマ100を発生させるプラズマ生成装置11で構成されている。
 なお、図6のエジェクタ410は、水処理システム401の構成をわかりやすくするために、一部を除いて、エジェクタ410の被処理水2が流れる方向の中心軸を含む垂直断面を示している。
Next, the configuration of the active particle supply device 404 will be described.
The active particle supply device 404 is composed of an ejector 410 which is a mixing section, and a plasma generation device 11 which generates plasma 100 which is an active particle generation means.
In order to make the configuration of the water treatment system 401 easier to understand, the ejector 410 in FIG. 6 shows a vertical cross section including the central axis of the ejector 410 in the direction in which the water 2 to be treated flows, except for a part.
 次に、エジェクタ410の構成について、図7A、図7Bも参照して説明する。
 図7Aはエジェクタ410の斜視図、図7Bは断面図である。
 図7Aにおいて、エジェクタ410に供給された被処理水2が流れる方向をY軸方向とし、水平右方向をX軸方向、垂直方向をZ軸方向としている。被処理水2が流れる流通軸とエジェクタ410のY軸方向の中心軸は一致している。
 図7Bは、図7Aの矢視A-Aの断面図であり、エジェクタ410の中心軸を含む垂直面で切断した断面図である。なお、図7Bの断面図では、本来、ガス供給口16は存在しないが、位置関係をわかりやすくなるように仮想線(点線)として記載している。
 図7A、図7Bにおいて、「MW」はマイクロ波を示し、「OG」は酸素ガスO2を示す。
Next, the configuration of the ejector 410 will be described with reference to FIGS. 7A and 7B as well.
7A is a perspective view of the ejector 410, and FIG. 7B is a cross-sectional view.
In FIG. 7A, the direction in which the water to be treated 2 supplied to the ejector 410 flows is the Y-axis direction, the horizontal right direction is the X-axis direction, and the vertical direction is the Z-axis direction. The flow axis through which the water to be treated 2 flows coincides with the center axis of the ejector 410 in the Y-axis direction.
7B is a cross-sectional view taken along line AA in FIG. 7A, taken along a vertical plane including the central axis of the ejector 410. FIG. Although the gas supply port 16 does not exist in the cross-sectional view of FIG. 7B, it is shown as an imaginary line (dotted line) so as to make the positional relationship easier to understand.
In FIGS. 7A and 7B, "MW" indicates microwaves, and "OG" indicates oxygen gas O2.
 実施の形態4において、プラズマ生成装置11およびエジェクタ410の接触部413内でのプラズマ100の発生方法は、実施の形態1と同じである。
 実施の形態4においては、実施の形態1との差異はエジェクタ410の接触部413の構造である。
 実施の形態1との差異、すなわち接触部413に追加した水滴付着防止用のコンストリクタ28とその効果について説明する。
In the fourth embodiment, the method of generating plasma 100 in plasma generator 11 and contact portion 413 of ejector 410 is the same as in the first embodiment.
Embodiment 4 differs from Embodiment 1 in the structure of contact portion 413 of ejector 410 .
The difference from the first embodiment, that is, the constrictor 28 added to the contact portion 413 for preventing adhesion of water droplets and its effect will be described.
 図6、図7でわかるように、接触部413において、誘電体15の直下に水滴付着防止用のコンストリクタ28を備えている。
 誘電体15を介してマイクロ波によりプラズマ100を発生する場合、誘電体15に水分が付着すると、プラズマ100を安定的に維持することが困難になる。
 実施の形態4の水処理システム401は、活性粒子供給装置404のエジェクタ410の接触部413において、誘電体15の直下にコンストリクタ28を配置している。コンストリクタ28を接触部413に追加することで、エジェクタ410の接触部413を流通する被処理水2から飛散する水分が誘電体15に付着することを抑制することができる。
As can be seen from FIGS. 6 and 7, the contact portion 413 has a constrictor 28 for preventing adhesion of water droplets directly below the dielectric 15 .
When the plasma 100 is generated by microwaves through the dielectric 15 , it becomes difficult to stably maintain the plasma 100 if moisture adheres to the dielectric 15 .
In the water treatment system 401 of Embodiment 4, the constrictor 28 is arranged directly below the dielectric 15 at the contact portion 413 of the ejector 410 of the active particle supply device 404 . By adding the constrictor 28 to the contact portion 413 , it is possible to suppress the adhesion of water splashed from the water to be treated 2 flowing through the contact portion 413 of the ejector 410 to the dielectric 15 .
 図7Bでわかるように、プラズマ100は、接触部413の上部の誘電体15の下面と、被処理水の流通路の上面に設置されたコンストリクタ28の上面との間の領域に発生している。 As can be seen in FIG. 7B, the plasma 100 is generated in the region between the lower surface of the dielectric 15 above the contact portion 413 and the upper surface of the constrictor 28 installed on the upper surface of the flow passage of the water to be treated. there is
 エジェクタ410の接触部413に水滴付着防止用のコンストリクタ28を追加した結果、実施の形態4の活性粒子供給装置404では、被処理水2の水分の影響を受けることなく安定的にプラズマ100を維持することができる。この結果、接触部413で生成した酸素原子を高効率に被処理水2に供給することができる。 As a result of adding the constrictor 28 for preventing adhesion of water droplets to the contact portion 413 of the ejector 410, the active particle supply device 404 of the fourth embodiment stably generates the plasma 100 without being affected by the water content of the water 2 to be treated. can be maintained. As a result, the oxygen atoms generated at the contact portion 413 can be supplied to the water 2 to be treated with high efficiency.
 コンストリクタ28は、厚さ約1mmの板に直径0.1~1mm程度の貫通穴を多数明けたものである。コンストリクタ28の材料には、耐食性の高い材質を用いることが望ましい。例えばステンレス(SUS316、SUS304など)などの金属材料、PTFE、PFAなどのフッ素樹脂、または表面がフッ素樹脂で被覆された材料などを用いることが可能である。
 なお、実施の形態4では、水滴付着防止用のコンストリクタ28を実施の形態1の活性粒子供給装置4に追加することで説明したが、実施の形態2の活性粒子供給装置204、および実施の形態3の活性粒子供給装置304に設けても同様の効果を奏する。
The constrictor 28 is a plate having a thickness of about 1 mm and having a large number of through holes having a diameter of about 0.1 to 1 mm. As the material of the constrictor 28, it is desirable to use a material with high corrosion resistance. For example, it is possible to use a metal material such as stainless steel (SUS316, SUS304, etc.), a fluororesin such as PTFE or PFA, or a material whose surface is coated with a fluororesin.
In the fourth embodiment, the constrictor 28 for preventing adhesion of water droplets is added to the active particle supply device 4 of the first embodiment, but the active particle supply device 204 of the second embodiment and the Even if it is provided in the active particle supply device 304 of Mode 3, the same effect can be obtained.
 以上説明したように、実施の形態4の水処理システムおよび活性粒子供給装置は、エジェクタの誘電体の直下に水滴付着防止用のコンストリクタを追加したものである。
 したがって、実施の形態4の水処理システムおよび活性粒子供給装置は、効率的に被処理水を浄化処理することができる。さらに、被処理水の水分の影響を受けることなく、安定的にプラズマを維持し、酸素原子を高効率に被処理水に供給することができる。
As described above, the water treatment system and the active particle supply device of Embodiment 4 are such that a constrictor for preventing adhesion of water droplets is added directly below the dielectric of the ejector.
Therefore, the water treatment system and the active particle supply device of Embodiment 4 can efficiently purify water to be treated. Furthermore, plasma can be stably maintained and oxygen atoms can be supplied to the water to be treated with high efficiency without being affected by moisture in the water to be treated.
実施の形態5.
 実施の形態5の活性粒子供給装置は、エジェクタの上面に給電電極を備え、下面に接地電極を備え、給電電極と接地電極との間に交流電圧を印加する構成のプラズマ生成装置を用いるものである。
Embodiment 5.
The active particle supplying apparatus of Embodiment 5 uses a plasma generating apparatus having a configuration in which a feed electrode is provided on the upper surface of the ejector, a ground electrode is provided on the lower surface, and an AC voltage is applied between the feed electrode and the ground electrode. be.
 実施の形態5に係る活性粒子供給装置の構成および動作について、活性粒子供給装置の構成図である図8、活性粒子供給装置のエジェクタの斜視図である図9A、およびエジェクタの断面図である図9Bに基づいて、実施の形態1との差異を中心に説明する。
 実施の形態5の図8、図9において、実施の形態1と同一あるいは相当部分は、同一の符号を付している。
 なお、実施の形態1と区別するために、活性粒子供給装置504、プラズマ生成装置511、およびエジェクタ510としている。
Regarding the configuration and operation of the active particle supply device according to Embodiment 5, FIG. 8 is a configuration diagram of the active particle supply device, FIG. 9A is a perspective view of the ejector of the active particle supply device, and FIG. 9A is a cross-sectional view of the ejector. 9B, the difference from the first embodiment will be mainly described.
In FIGS. 8 and 9 of Embodiment 5, portions identical or corresponding to those of Embodiment 1 are given the same reference numerals.
In addition, in order to distinguish from the first embodiment, an active particle supply device 504, a plasma generation device 511, and an ejector 510 are used.
 実施の形態5においては、実施の形態1との差異はプラズマ生成装置511であるため、図8では水処理システムの被処理水2(第一の流体)を貯める処理水槽3、および循環ポンプ5等を省略している。
 まず、活性粒子供給装置504の構成について説明する。
 活性粒子供給装置504は、混合部であるエジェクタ510、および活性粒子生成手段であるプラズマ100を発生させるプラズマ生成装置511で構成されている。
 なお、図8のエジェクタ510は、一部を除いて、エジェクタ510の被処理水が流れる方向の中心軸を含む垂直断面を示している。
In Embodiment 5, the difference from Embodiment 1 is the plasma generator 511, so in FIG. etc. are omitted.
First, the configuration of the active particle supply device 504 will be described.
The active particle supply device 504 is composed of an ejector 510 which is a mixing section and a plasma generation device 511 which generates the plasma 100 which is active particle generation means.
Note that the ejector 510 in FIG. 8 shows a vertical cross section including the central axis of the ejector 510 in the direction in which the water to be treated flows, except for a part.
 次に、エジェクタ510の構成について、図9A、図9Bも参照して説明する。
 図9Aはエジェクタ510の斜視図、図9Bは断面図である。
 図9Aにおいて、エジェクタ510に供給された被処理水2が流れる方向をY軸方向とし、水平右方向をX軸方向、垂直方向をZ軸方向としている。被処理水2が流れる流通軸とエジェクタ510のY軸方向の中心軸は一致している。
 図9Bは、図9Aの矢視A-Aの断面図であり、エジェクタ510の中心軸を含む垂直面で切断した断面図である。なお、図9Bの断面図では、本来、ガス供給口16は存在しないが、位置関係をわかりやすくなるように仮想線(点線)として記載している。
 図9Aにおいて、「OG」は酸素ガスO2を示す。
 なお、図9Aにおいて、プラズマ生成装置511はエジェクタ510の構成要素ではないが、全体構成をわかりやすくするために記載している。
Next, the configuration of the ejector 510 will be described with reference to FIGS. 9A and 9B as well.
9A is a perspective view of the ejector 510, and FIG. 9B is a cross-sectional view.
In FIG. 9A, the direction in which the water to be treated 2 supplied to the ejector 510 flows is the Y-axis direction, the horizontal right direction is the X-axis direction, and the vertical direction is the Z-axis direction. The flow axis through which the water to be treated 2 flows coincides with the central axis of the ejector 510 in the Y-axis direction.
9B is a cross-sectional view taken along line AA in FIG. 9A, taken along a vertical plane including the central axis of the ejector 510. FIG. In addition, in the sectional view of FIG. 9B, the gas supply port 16 does not originally exist, but is described as a virtual line (dotted line) so as to make the positional relationship easier to understand.
In FIG. 9A, "OG" indicates oxygen gas O2.
In addition, in FIG. 9A, the plasma generator 511 is not a component of the ejector 510, but it is described to make the overall configuration easier to understand.
 実施の形態5において、エジェクタ510の接触部13内でのプラズマ100の発生方法が実施の形態1と異なる。
 実施の形態1との差異であるプラズマ生成装置511の構造、機能について説明する。
 プラズマ生成装置511は、エジェクタ510の上面に設けた給電電極29、下面に設けた接地電極30、および給電電極29に交流電圧を印加する交流電源31を備える。
Embodiment 5 differs from Embodiment 1 in the method of generating plasma 100 in contact portion 13 of ejector 510 .
The structure and function of the plasma generator 511, which are different from the first embodiment, will be described.
The plasma generator 511 includes a feed electrode 29 provided on the upper surface of the ejector 510 , a ground electrode 30 provided on the lower surface, and an AC power supply 31 that applies an AC voltage to the feed electrode 29 .
 交流電源31から出力される交流電圧(周波数:数kHz、電圧:約10kV)を給電電極29に印加することで、接触部13においてプラズマ100を発生させる。
 図9Bでわかるように、プラズマ100は、接触部13の上部の誘電体15の下面と被処理水の流通路の上面の間の領域、さらに被処理水の流通路の下の領域にも発生している。すなわち、被処理水の流通路以外の接触部13全体にプラズマ100が発生している。
Plasma 100 is generated at the contact portion 13 by applying an AC voltage (frequency: several kHz, voltage: about 10 kV) output from the AC power supply 31 to the power supply electrode 29 .
As can be seen in FIG. 9B, the plasma 100 is generated in the area between the lower surface of the dielectric 15 above the contact portion 13 and the upper surface of the flow path of the water to be treated, and also in the area below the flow path of the water to be treated. is doing. That is, plasma 100 is generated in the entire contact portion 13 other than the flow passage for the water to be treated.
 プラズマ100の発生方法以外の構成と動作は、実施の形態1と同様である。
 実施の形態5の活性粒子供給装置504は、実施の形態1で説明したマイクロ波を用いてプラズマを発生させる場合と比較して、活性粒子供給装置の構成が簡単になる。また、実施の形態5における活性粒子供給装置504では、ガス供給口から供給されるガスの種別に関わらず安定したプラズマ100を発生することができる。
The configuration and operation other than the method of generating plasma 100 are the same as those of the first embodiment.
The active particle supply device 504 of the fifth embodiment has a simpler configuration than the case of generating plasma using microwaves described in the first embodiment. Moreover, in the active particle supply device 504 according to Embodiment 5, stable plasma 100 can be generated regardless of the type of gas supplied from the gas supply port.
 実施の形態5のプラズマ生成装置511を用いた場合、マイクロ波発生器を用いる実施の形態1のプラズマ生成装置11に比較して、プラズマ密度が低いため、水処理効率は低下するが、構造が簡単で、操作が容易となる。
 なお、実施の形態5では、エジェクタの上下面に給電電極と接地電極を備え、電極間に交流電圧を印加する構成のプラズマ生成装置511を実施の形態1の活性粒子供給装置4に適用したが、実施の形態2から実施の形態4の活性粒子供給装置204、304、404に適用しても同様の効果を奏する。
When the plasma generating apparatus 511 of Embodiment 5 is used, the plasma density is lower than that of the plasma generating apparatus 11 of Embodiment 1 using a microwave generator. Simple and easy to operate.
In the fifth embodiment, the plasma generating device 511 having a configuration in which the feeder electrode and the ground electrode are provided on the upper and lower surfaces of the ejector and an AC voltage is applied between the electrodes is applied to the active particle supply device 4 of the first embodiment. The same effect can be obtained by applying to the active particle supply devices 204, 304, and 404 of the second to fourth embodiments.
 以上説明したように、実施の形態5の活性粒子供給装置は、プラズマ生成装置として、エジェクタの上面に給電電極を備え、下面に接地電極を備え、給電電極と接地電極との間に交流電圧を印加する交流電源を備えたものである。
 したがって、実施の形態5の活性粒子供給装置は、効率的に被処理水を浄化処理することができる。さらに装置の構成が簡単となり、操作が容易となる。
As described above, the active particle supply apparatus according to the fifth embodiment, as a plasma generating apparatus, has a feed electrode on the upper surface of the ejector, a ground electrode on the bottom surface, and applies an AC voltage between the feed electrode and the ground electrode. It is equipped with an AC power supply to apply.
Therefore, the active particle supply device of Embodiment 5 can efficiently purify the water to be treated. Furthermore, the configuration of the device is simplified and the operation is facilitated.
 本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるものではなく、単独で、または様々な組合せで実施の形態に適用可能である。
 従って、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組合せる場合が含まれるものとする。
While this application describes various exemplary embodiments and examples, various features, aspects, and functions described in one or more embodiments may not apply to particular embodiments. are not limited to, and can be applied to the embodiments singly or in various combinations.
Therefore, countless modifications not illustrated are envisioned within the scope of the technology disclosed in the present application. For example, when at least one component is modified, added or omitted, and at least one component is extracted and combined with the components of other embodiments. .
1,301,401 水処理システム、2 被処理水、3 処理水槽、4,204,304,404,504 活性粒子供給装置、5 循環ポンプ、6 被処理水配管、7,9 バルブ、8 流量調整器、10,210,410,510 エジェクタ、11,511 プラズマ生成装置、12 ノズル、13,213,413 接触部、14 ディフューザ、15 誘電体、16 ガス供給口、17 マイクロ波発振器、18 矩形導波管、19 アイソレータ、20 方向性結合器、21 整合器、22 リアクタ、23 ショートプランジャ、24 スロットアンテナ、25 排気ポート、26 オゾン分解処理装置、27 旋回流発生装置、28 コンストリクタ、29 給電電極、30 接地電極、31 交流電源、100 プラズマ。 1, 301, 401 water treatment system, 2 treated water, 3 treated water tank, 4, 204, 304, 404, 504 active particle supply device, 5 circulation pump, 6 treated water piping, 7, 9 valves, 8 flow rate adjustment vessel, 10, 210, 410, 510 ejector, 11, 511 plasma generator, 12 nozzle, 13, 213, 413 contact part, 14 diffuser, 15 dielectric, 16 gas supply port, 17 microwave oscillator, 18 rectangular waveguide Pipe, 19 isolator, 20 directional coupler, 21 matching box, 22 reactor, 23 short plunger, 24 slot antenna, 25 exhaust port, 26 ozonolysis treatment device, 27 swirl flow generator, 28 constrictor, 29 feeding electrode, 30 ground electrode, 31 AC power supply, 100 plasma.

Claims (12)

  1. ノズルから第一の流体が噴射され、ベンチュリ―効果により噴射された前記第一の流体の周囲の圧力が低下する空間に接触部を備え、前記接触部に第二の流体が供給される供給口を備えるエジェクタと、
    前記第二の流体中に活性粒子を生成するプラズマを前記接触部に発生させるプラズマ生成装置と、を備える活性粒子供給装置。
    A supply port in which a first fluid is injected from a nozzle, a contact portion is provided in a space where the pressure around the injected first fluid is reduced by a venturi effect, and a second fluid is supplied to the contact portion. an ejector comprising
    and a plasma generating device for generating plasma at the contact portion to generate active particles in the second fluid.
  2. 前記接触部の上面に誘電体を配置し、前記誘電体の外部から前記誘電体を介して高電界を印加することで前記第二の流体中に前記プラズマを発生させる請求項1に記載の活性粒子供給装置。 2. The activity according to claim 1, wherein a dielectric is arranged on the upper surface of the contact portion, and the plasma is generated in the second fluid by applying a high electric field from the outside of the dielectric through the dielectric. Particle feeder.
  3. さらに前記接触部の下面、および両側面に誘電体を配置した請求項2に記載の活性粒子供給装置。 3. The active particle supply device according to claim 2, further comprising a dielectric on the lower surface and both side surfaces of said contact portion.
  4. 前記プラズマ生成装置は、前記誘電体を介してマイクロ波を導入し、前記プラズマを発生する請求項2または請求項3に記載の活性粒子供給装置。 4. The active particle supply apparatus according to claim 2, wherein said plasma generator introduces microwaves through said dielectric to generate said plasma.
  5. 前記プラズマ生成装置は、前記接触部を挟むように給電電極および接地電極を備え、前記給電電極に交流電圧を印加することで前記プラズマを発生させる請求項2または請求項3に記載の活性粒子供給装置。 4. The active particle supply according to claim 2 or 3, wherein the plasma generation device includes a power supply electrode and a ground electrode so as to sandwich the contact portion, and the plasma is generated by applying an AC voltage to the power supply electrode. Device.
  6. 前記第二の流体は酸素を含む気体であり、前記プラズマは前記第二の流体中に酸素原子を生成する請求項1に記載の活性粒子供給装置。 2. The active particle supply device according to claim 1, wherein said second fluid is gas containing oxygen, and said plasma generates oxygen atoms in said second fluid.
  7. 前記第二の流体は酸素を含む気体であり、前記プラズマは前記第二の流体中に酸素原子を生成する請求項2から請求項5のいずれか1項に記載の活性粒子供給装置。 6. The active particle supply device according to any one of claims 2 to 5, wherein said second fluid is a gas containing oxygen, and said plasma generates oxygen atoms in said second fluid.
  8. 前記接触部において、前記誘電体の下方に水滴付着防止用のコンストリクタを備える請求項2から請求項5、および請求項7のいずれか1項に記載の活性粒子供給装置。 8. The active particle supply device according to any one of claims 2 to 5 and 7, further comprising a constrictor for preventing adhesion of water droplets below the dielectric in the contact portion.
  9. 前記接触部において、前記第一の流体の流通軸に対し交差する方向から前記第二の流体を供給する請求項1から請求項8のいずれか1項に記載の活性粒子供給装置。 9. The active particle supply device according to any one of claims 1 to 8, wherein the contact portion supplies the second fluid in a direction that intersects the circulation axis of the first fluid.
  10. 前記ノズルの前段に、前記第一の流体に旋回流を形成する旋回流発生装置を備える請求項1から請求項9のいずれか1項に記載の活性粒子供給装置。 10. The active particle supply device according to any one of claims 1 to 9, further comprising a swirling flow generating device that forms a swirling flow in the first fluid in a stage preceding the nozzle.
  11. 請求項1から請求項10のいずれか1項に記載の前記活性粒子供給装置を備え、
    前記第一の流体である被処理水に対して前記活性粒子を供給する水処理システム。
    comprising the active particle supply device according to any one of claims 1 to 10,
    A water treatment system that supplies the active particles to the water to be treated, which is the first fluid.
  12. さらに、前記被処理水を前記活性粒子供給装置に供給する循環ポンプと、前記活性粒子供給装置から排出される処理水を貯める処理水槽を備えた請求項11に記載の水処理システム。 12. The water treatment system according to claim 11, further comprising a circulation pump for supplying the water to be treated to the active particle supply device, and a treated water tank for storing treated water discharged from the active particle supply device.
PCT/JP2021/008070 2021-03-03 2021-03-03 Active particle supply device, and water treatment system using same WO2022185429A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180094821.4A CN116964007A (en) 2021-03-03 2021-03-03 Active particle supply device and water treatment system using same
JP2021537962A JP7034388B1 (en) 2021-03-03 2021-03-03 Active particle supply device and water treatment system using it
PCT/JP2021/008070 WO2022185429A1 (en) 2021-03-03 2021-03-03 Active particle supply device, and water treatment system using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/008070 WO2022185429A1 (en) 2021-03-03 2021-03-03 Active particle supply device, and water treatment system using same

Publications (1)

Publication Number Publication Date
WO2022185429A1 true WO2022185429A1 (en) 2022-09-09

Family

ID=81213448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008070 WO2022185429A1 (en) 2021-03-03 2021-03-03 Active particle supply device, and water treatment system using same

Country Status (3)

Country Link
JP (1) JP7034388B1 (en)
CN (1) CN116964007A (en)
WO (1) WO2022185429A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023156780A (en) * 2022-04-13 2023-10-25 日本未来科学研究所合同会社 Liquid treatment device and liquid treatment method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009072716A (en) * 2007-09-21 2009-04-09 Honda Electronic Co Ltd Apparatus and method for treatment with plasma in liquid
WO2015064382A1 (en) * 2013-11-01 2015-05-07 国立大学法人東京工業大学 Liquid treatment apparatus and produced water treatment method
WO2016017456A1 (en) * 2014-07-28 2016-02-04 日本碍子株式会社 Treatment device, sterilization device, sterilization water, and sterilization method
JP6818952B1 (en) * 2020-04-09 2021-01-27 三菱電機株式会社 Oxygen radical supply device and oxygen radical supply method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5785824A (en) * 1995-09-28 1998-07-28 Mitsubishi Denki Kabushiki Kaisha Method of and apparatus for producing ozone

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009072716A (en) * 2007-09-21 2009-04-09 Honda Electronic Co Ltd Apparatus and method for treatment with plasma in liquid
WO2015064382A1 (en) * 2013-11-01 2015-05-07 国立大学法人東京工業大学 Liquid treatment apparatus and produced water treatment method
WO2016017456A1 (en) * 2014-07-28 2016-02-04 日本碍子株式会社 Treatment device, sterilization device, sterilization water, and sterilization method
JP6818952B1 (en) * 2020-04-09 2021-01-27 三菱電機株式会社 Oxygen radical supply device and oxygen radical supply method

Also Published As

Publication number Publication date
JPWO2022185429A1 (en) 2022-09-09
JP7034388B1 (en) 2022-03-11
CN116964007A (en) 2023-10-27

Similar Documents

Publication Publication Date Title
US8878434B2 (en) Inductively-coupled plasma device
US20180122622A1 (en) Enhancing gas-phase reaction in a plasma using high intensity and high power ultrasonic acoustic waves
JP5891341B2 (en) Plasma generating apparatus and method
US9288886B2 (en) Plasma-based chemical source device and method of use thereof
JP2936069B1 (en) Ozone generation system
KR101348038B1 (en) Plasma generating apparatus, plasma processing apparatus, and plasma processing method
US7335850B2 (en) Plasma jet electrode device and system thereof
KR20080033408A (en) Microwave plasma reactor
WO2022185429A1 (en) Active particle supply device, and water treatment system using same
US6261525B1 (en) Process gas decomposition reactor
JP2003080058A (en) Method for producing reactive gas and producing apparatus therefor
JP6818952B1 (en) Oxygen radical supply device and oxygen radical supply method
JP5088667B2 (en) Plasma processing equipment
KR102111693B1 (en) Plasma generating device
WO2023199604A1 (en) Liquid treatment apparatus and liquid treatment method
WO2023095420A1 (en) Plasma generator
Kazama et al. Effect of ozone and humidity addition on hydrogen peroxide generation characteristics of plasmas in oxygen bubbles
JP3845933B2 (en) Volume reduction processing method and apparatus for ion exchange resin
EP4349456A1 (en) Exhaust gas treatment apparatus
JP6818953B1 (en) Oxygen radical generator and oxygen radical generation method
KR100561200B1 (en) Apparatus for plasma reaction
JP2002110398A (en) Plasma processing device and plasma lighting method
JP2023128058A (en) Microwave plasma generation device, microwave plasma processing apparatus and microwave plasma processing method
JP2020181752A (en) Microwave plasma generator
JP2018185958A (en) Surface treatment device and surface treatment method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021537962

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21929005

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180094821.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21929005

Country of ref document: EP

Kind code of ref document: A1