WO2022183996A1 - 多端口混合式直流断路器、装置、系统及其控制方法 - Google Patents

多端口混合式直流断路器、装置、系统及其控制方法 Download PDF

Info

Publication number
WO2022183996A1
WO2022183996A1 PCT/CN2022/078134 CN2022078134W WO2022183996A1 WO 2022183996 A1 WO2022183996 A1 WO 2022183996A1 CN 2022078134 W CN2022078134 W CN 2022078134W WO 2022183996 A1 WO2022183996 A1 WO 2022183996A1
Authority
WO
WIPO (PCT)
Prior art keywords
branch
circuit breaker
switch
bus
port
Prior art date
Application number
PCT/CN2022/078134
Other languages
English (en)
French (fr)
Inventor
石巍
方太勋
谢晔源
杨兵
吕玮
王文杰
许元震
陈羽
孙超
Dongming CAO (曹冬明)
Original Assignee
南京南瑞继保电气有限公司
南京南瑞继保工程技术有限公司
常州博瑞电力自动化设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京南瑞继保电气有限公司, 南京南瑞继保工程技术有限公司, 常州博瑞电力自动化设备有限公司 filed Critical 南京南瑞继保电气有限公司
Priority to EP22762461.6A priority Critical patent/EP4254701A1/en
Publication of WO2022183996A1 publication Critical patent/WO2022183996A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/26Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
    • H02H7/268Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured for dc systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/087Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current for dc applications
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/22Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for distribution gear, e.g. bus-bar systems; for switching devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/59Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle
    • H01H33/596Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle for interrupting dc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/548Electromechanical and static switch connected in series
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K2017/515Mechanical switches; Electronic switches controlling mechanical switches, e.g. relais
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Definitions

  • the present application relates to the technical field of DC power grids, and in particular to a multi-port hybrid DC circuit breaker, a device, a system and a control method thereof.
  • Exemplary embodiments of the present application provide a multi-port hybrid DC circuit breaker, comprising at least two current branches, at least two commutation branches and a breaking branch, each of the at least two current branches One includes a first fast mechanical switch and a one-way commutator switch connected in series, one end of the at least two current branches is connected to each other and forms a DC bus, each of the at least two current branches
  • the breaking current directions of the one-way commutation switches are the same; each of the at least two commutation branches includes a diode upper bridge arm and a diode lower bridge arm connected in series in the same direction, and the at least two commutation branches are connected in series.
  • the other end of the flow branch is correspondingly connected to the middle point between the diode upper bridge arm and the diode lower bridge arm of the corresponding commutation branch to form a port;
  • a linear resistor wherein the disconnecting branch and the at least two commutating branches are connected in parallel with each other and form a first common busbar and a second common busbar respectively at both ends of the parallel connection, and the
  • the breaking current direction of the one-way breaking switch is the direction in which the first common busbar points to the second common busbar, and the cathode of the upper bridge arm of the diode of the commutation branch is connected to the direction of the first common busbar , the anodes of the diode lower arms of the commutation branch are all connected to the second common bus.
  • the multi-port hybrid DC circuit breaker further includes a busbar fault protection branch, and the busbar fault protection branch includes a second fast mechanical switch, wherein one end of the second fast mechanical switch is connected to On the DC bus, the other end is connected to the first common bus; or one end of the second fast mechanical switch is connected to the DC bus, and the other end is connected to the second common bus.
  • the multi-port hybrid DC circuit breaker further includes a bus fault protection branch, the bus fault protection branch includes a second fast mechanical switch and a one-way switch connected in series, the bus fault protection Both ends of the protection branch are connected to the first common busbar and the second common busbar respectively, and the middle point between the second fast mechanical switch and the one-way switch of the busbar fault protection branch is connected on the DC bus; wherein, one end of the second fast mechanical switch is connected to the first common bus, and one end of the one-way switch is connected to the second common bus, and the one-way switch is connected to the second common bus.
  • the conduction direction of the second common bus is the direction that the second common bus points to the DC bus
  • the breaking current direction of the one-way commutator switch of the current branch is the direction that points to the DC bus; or
  • One end of the second fast mechanical switch is connected to the second common bus, one end of the one-way switch is connected to the first common bus, and the conduction direction of the one-way switch is the DC bus Pointing to the direction of the first common bus, the breaking current direction of the one-way commutator switch of the current-passing branch is the direction pointing to the port.
  • the unidirectional conduction switch includes at least one diode connected in series and at least one third switching semiconductor device connected in series, and the at least one diode and the at least one third switching semiconductor device are connected in series with each other.
  • the third switching semiconductor device includes at least one of SCR, IGBT, IEGT, IGCT or MOSFET.
  • it also includes: an auxiliary energy dissipation branch, including a diode group and a linear resistor connected in series; and wherein, when one end of the second fast mechanical switch is connected to the DC bus, the other end is connected to the DC bus.
  • an auxiliary energy dissipation branch including a diode group and a linear resistor connected in series; and wherein, when one end of the second fast mechanical switch is connected to the DC bus, the other end is connected to the DC bus.
  • one end of the auxiliary energy dissipation branch is connected to the second common bus, and the other end of the auxiliary energy dissipation branch is connected to the ground or metal return line, wherein the diode group
  • the cathode is connected to the second common bus; or when one end of the second fast mechanical switch is connected to the DC bus and the other end is connected to the second common bus, one end of the auxiliary energy-consuming branch is connected
  • the other end of the auxiliary energy dissipation branch is connected to the ground or a metal return line, and the anode of the diode group is connected to the first common bus.
  • the diode bank includes at least one diode connected in series.
  • the first quick mechanical switch comprises at least one mechanical switch fracture connected in series; and/or
  • the second quick mechanical switch includes at least one mechanical switch fracture connected in series.
  • the one-way commutator switch includes at least one first switching semiconductor device connected in series; and/or the one-way breaking switch includes at least one second switching semiconductor device connected in series.
  • the first switching semiconductor device and the second switching semiconductor device comprise at least one of IGBT, IEGT, IGCT or MOSFET.
  • the diode upper arm includes at least one diode connected in series; and the diode lower arm includes at least one diode connected in series.
  • Embodiments of the present application also provide the above-mentioned control method for a multi-port hybrid DC circuit breaker, including controlling the flow-through branch, the commutation branch, and the breaking branch based on the working mode of the multi-port hybrid DC circuit breaker.
  • the working modes include normal operation mode, opening mode and closing mode.
  • each current-flowing branch is controlled to be in an on state, and the breaking branch is in an off state; and when the multi-port When the hybrid DC circuit breaker further includes a bus fault protection branch, the method further includes: when the multi-port hybrid DC circuit breaker is in the normal operation mode, controlling the bus fault protection branch to be in an off state .
  • the multi-port hybrid DC circuit breaker is in the opening mode, and when the port connected to the multi-port hybrid DC circuit breaker needs to be cut off, the one-way switching of the breaking branch is controlled.
  • the breaking switch is turned on, all the one-way commutation switches of the current-passing branch are turned off, and the current starts to be transferred to the one-way breaking switch of the breaking branch through the commutating branch;
  • the current of the flow branch is close to zero, control the opening of the first fast mechanical switch of the flow branch where the port to be cut is located;
  • the flow branch where the port to be cut is located is located
  • the one-way breaking switches of the breaking branch are controlled to be turned off, and the one-way commutation switches of all the current-passing branches are turned on, and control the current of the port that needs to be cut off, so as to be transferred to the non-linear resistance of the disconnecting branch and the linear resistance of the auxiliary energy dissipation branch;
  • the multi-port hybrid DC circuit breaker is in the closing mode, and when the port connected to the multi-port hybrid DC circuit breaker needs to be connected, the disconnecting branch is controlled
  • the one-way disconnect switch is turned on; and wherein, if the multi-port hybrid DC circuit breaker is not in fault, control the first fast circuit of the current branch where the port that needs to be connected is located.
  • the mechanical switch is closed; and when the first fast mechanical switch of the current branch where the port to be connected is located is in the closed position, the one-way breaking switch of the breaking branch is controlled to be turned off, the closing is successful and the end closing operation.
  • the one-way breaking switch of the breaking branch is controlled to be turned off, the closing fails, and the closing operation is ended.
  • the operating mode further includes: a bus fault protection mode
  • the multi-port hybrid DC circuit breaker is in a bus fault protection mode control based on the fault type
  • the method further includes: when the fault type is the DC bus grounding fault, controlling the one-way breaking switch of the breaking branch to conduct, and the bus fault protection branch of the The unidirectional conduction switch is turned on, the unidirectional commutation switches of all the current-passing branches are turned off, and the current starts to be transferred to the unidirectional breaking switches of the breaking branch through the commutation branch; when the current of the current branch is close to zero, controlling the first fast mechanical switches of all the current branches to open; and when the first fast mechanical switches of all the current branches are opened to When the insulation voltage is at the position, the one-way breaking switch of the disconnecting branch is controlled to be turned off, the one-way commutation switches of all the passing branches are turned on, and the current is transferred to the non-
  • the fault type is that when the multi-port hybrid DC circuit breaker is connected to the positive pole of the DC grid system and a ground fault occurs on the first common bus, the multi-port hybrid DC circuit breaker cannot complete the bus isolation. operation, and control the second fast mechanical switch of the bus fault protection branch to close to start the failure backup protection;
  • the fault type is that the multi-port hybrid DC circuit breaker is connected to the negative pole of the DC grid system and the second common bus is grounded fault
  • the second fast mechanical switch of the control bus fault protection branch is closed to start the failure backup protection;
  • the fault type is that the multi-port hybrid DC circuit breaker is on When the positive pole of the DC grid system is grounded and the second common bus is grounded, the bus differential protection will not operate in the normal operation mode of the multi-port hybrid DC circuit breaker.
  • the bus differential protection will be triggered. , and the multi-port hybrid DC circuit breaker suspends the opening operation and starts backup failure protection; and/or the fault type is that the multi-port hybrid DC circuit breaker is connected to the negative pole of the DC grid system and the first common bus is In the event of a ground fault, the bus differential protection will not act in the normal operation mode of the multi-port hybrid DC circuit breaker. If the opening operation is performed at this time, the bus differential protection will be triggered, and the multi-port hybrid DC circuit breaker will The DC circuit breaker suspends the opening operation and initiates backup failure protection.
  • Embodiments of the present application further provide a fault protection device for a DC power grid system according to the above-mentioned control method of a multi-port hybrid DC circuit breaker, including the above-mentioned multi-port hybrid DC circuit breaker.
  • Embodiments of the present application further provide a DC power grid system using the above-mentioned control method for a multi-port hybrid DC circuit breaker, including the above-mentioned fault protection device.
  • the technical solutions provided in the embodiments of the present application can realize fault protection of multiple transmission lines by sharing expensive disconnecting switches, and the more transmission lines, the better the economy; compared with the existing two-port or multi-port hybrid DC circuit breakers , the number of semiconductors in the current flowing through the path is halved, the current loss is lower, and the economy is better; it has the bus fault protection capability, which improves the reliability of the DC circuit breaker; it has the auxiliary energy consumption capability, which is carried out through high-reliability linear resistors. Auxiliary energy consumption, thereby reducing the demand for non-linear resistance energy and improving the reliability of the DC circuit breaker; maintaining the rated current of the hybrid DC circuit breaker for fast breaking, fault current fast breaking and fast reclosing.
  • FIG. 1 is a topology diagram of a multi-port hybrid DC circuit breaker according to an embodiment of the present application.
  • FIG. 2 is a topology diagram of a multi-port hybrid DC circuit breaker when the bus fault protection branch is connected to the positive pole of the DC grid system according to an embodiment of the present application.
  • FIG. 3 is a topology diagram of a multi-port hybrid DC circuit breaker when the bus fault protection branch is connected to the negative pole of the DC power grid system according to an embodiment of the present application.
  • FIG. 4 is a third topology diagram of a multi-port hybrid DC circuit breaker when the bus fault protection branch is connected to the positive pole of the DC grid system according to an embodiment of the present application.
  • FIG. 5 is a topology diagram of a multi-port hybrid DC circuit breaker when the bus fault protection branch is connected to the negative pole of the DC grid system according to an embodiment of the present application.
  • FIG. 6 is a topology diagram of a multi-port hybrid DC circuit breaker with an auxiliary energy-consuming branch and connected to the positive pole of the DC grid system according to an embodiment of the present application.
  • FIG. 7 is a topology diagram of a multi-port hybrid DC circuit breaker with an auxiliary energy-consuming branch and connected to the negative pole of the DC grid system according to an embodiment of the present application.
  • FIG. 8 is a topology diagram of a multi-port hybrid DC circuit breaker with an auxiliary energy-consuming branch and connected to the positive pole of the DC grid system through the bus fault protection branch according to an embodiment of the present application.
  • FIG. 9 is a topology diagram of a multi-port hybrid DC circuit breaker with an auxiliary energy-consuming branch and connected to the negative pole of the DC power grid system through the busbar fault protection branch according to an embodiment of the present application.
  • FIG. 10 is a topology diagram of a multi-port hybrid DC circuit breaker with an auxiliary energy-consuming branch and connected to the positive pole of the DC grid system through the busbar fault protection branch according to an embodiment of the present application.
  • FIG. 11 is a topology diagram of a multi-port hybrid DC circuit breaker with an auxiliary energy-consuming branch and connected to the negative pole of the DC grid system through the bus fault protection branch according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a disconnecting switch of a multi-port hybrid DC circuit breaker according to an embodiment of the present application.
  • the multi-port DC circuit breaker is used in the prior art, and the number of semiconductors arranged on the current flow path of the multi-port DC circuit breaker is often relatively large, and the current loss is relatively high.
  • the busbar fault protection circuit only the DC busbar fault is considered and the two common busbar faults inside the multi-port DC circuit breaker are not considered. Based on the current industry demands and technical status, it can be seen that there is an urgent need for a multi-port DC circuit breaker that can solve the above technical problems.
  • FIG. 1 is a topology diagram of a multi-port hybrid DC circuit breaker according to an embodiment of the present application.
  • the multi-port hybrid DC circuit breaker includes n flow branches 101,..., 10k,..., 10n, n commutation branches 201,..., 20k,..., 20n and one breaking branch Road 300, where n is the total number of ports, k represents any k-th branch, where 1 ⁇ k ⁇ n, and n is a positive integer.
  • Each flow branch 10k includes a first fast mechanical switch 11k and a one-way commutation switch 12k connected in series, respectively.
  • Each commutation branch 20k includes a diode upper bridge arm 21k and a diode lower bridge arm 22k which are connected in series in the same direction.
  • the flow branches 10k correspond to the commutation branches 20k one-to-one.
  • One ends of all the current branches 101-10n are connected to each other and form a DC bus, that is, one end of all the current branches 101-10n is connected to the DC bus.
  • each current-flow branch 10k is connected to the middle point of the commutation branch 20k between the diode upper bridge wall 21k and the diode lower bridge arm 22k and forms a port P k , which is connected to the equipment that needs to be protected or line.
  • the breaking branch 300 includes a one-way breaking switch 310 and a non-linear resistor 320 connected in parallel.
  • the breaking branch 300 and all the reversing branches 201-20n are connected in parallel with each other and form a first common bus and a second common bus.
  • the breaking current direction of the one-way breaking switch 310 of the breaking branch 300 is from the first common bus bar to the second common bus bar, that is, it is configured to be able to break the current flowing from the first common bus bar to the second common bus bar.
  • the cathodes of the diode upper arms 211-21n of the commutation branches 201-20n are connected to the first common bus, and the anodes of the diode lower arms 221-22n of the commutation branches 201-20n are all connected to the second common bus .
  • the breaking current directions of the one-way commutator switches 121-12n of each current-passing branch 101-10n are the same, that is, all point to the DC bus or all point to the port.
  • the multi-port hybrid DC circuit breaker in this embodiment can be applied in situations where the fault of the DC bus is not considered.
  • the working modes of the multi-port hybrid DC circuit breaker in this embodiment include: a normal operation mode, an opening mode, and a closing mode.
  • the first fast mechanical switch 111-11n and the one-way commutation switch 121-12n of each current branch 101-10n are both in the conducting state, and the branch 300 is disconnected.
  • the one-way disconnect switch 310 is in the OFF state.
  • the action process is as follows.
  • the first step control the one-way breaking switch 310 of the breaking branch 300 to be turned on, and the one-way commutation switches 121-12n of all the current branches 101-10n to turn off, and the current starts to transfer to the commutation branch 201-20n to One-way disconnect switch 310 that disconnects branch 300 .
  • the second step when the currents of all the current branches 101-10n are close to zero, control the first fast mechanical switch 11k of the current branch 10k of the P kth port to open.
  • the third step when the first fast mechanical switch 11k of the current branch 10k of the P kth port is separated to the insulation voltage position, the one-way disconnect switch 310 of the control The commutation switches 121-12n are turned on, the current of the Pkth port is transferred to the non-linear resistor 320 of the breaking branch 300 and gradually drops to zero, and the currents of other ports other than the Pkth port return to their respective currents.
  • the opening is successful and the opening operation is ended.
  • the first step controlling the one-way breaking switch 310 of the breaking branch 300 to be turned on.
  • Step 2 If the multi-port hybrid DC circuit breaker is not in fault, then control the first fast mechanical switch 11k of the current branch 10k of port P k to close; if the multi-port hybrid DC circuit breaker is in fault, Then, the one-way breaking switch 310 that controls the breaking branch 300 is turned off, the closing fails, and the closing operation is ended.
  • the third step when the first fast mechanical switch 11k of the current branch 10k of the port Pk is in the closed position, the one-way breaking switch 310 of the control breaking branch 300 is turned off, the closing is successful and the closing operation is ended.
  • the multi-port hybrid DC circuit breaker may also be provided with a busbar safeguarding protection branch, which includes a second fast mechanical switch.
  • a busbar safeguarding protection branch which includes a second fast mechanical switch.
  • One end of the second fast mechanical switch is connected to the DC bus, and the other end is connected to the first common bus or the second common bus.
  • the multi-port hybrid DC circuit breaker When the multi-port hybrid DC circuit breaker is in the bus fault protection mode, when the ground fault occurs on the DC bus or the first common bus or the second common bus, the DC circuit breaker cannot complete the bus isolation operation, so the control of the bus fault protection branch is controlled. A second fast mechanical switch closes to activate fail-back protection.
  • FIG. 2 is a second topology diagram of a multi-port hybrid DC circuit breaker connected to the positive pole of a DC grid system according to an embodiment of the present application. Compared with the multi-port hybrid DC circuit breaker shown in FIG. A busbar fault protection branch 400a is added.
  • the bus fault protection branch 400a includes a second fast mechanical switch 410a, one end of the second fast mechanical switch 410a is connected to the DC bus, and the other end is connected to the first common bus.
  • the working modes of the multi-port hybrid DC circuit breaker in this embodiment include a normal operation mode, an opening mode, a closing mode, and a bus fault protection mode.
  • one end of the bus fault protection branch can be connected to the first common bus and the other end is connected to the DC bus, or one end of the bus fault protection branch can be connected to the second common bus and the other end is connected to the DC bus.
  • the multi-port hybrid DC circuit breaker When the multi-port hybrid DC circuit breaker is connected to the positive pole of the DC grid system, one end of the bus fault protection branch is connected to the DC bus, and the other end is connected to the first common bus; when the multi-port hybrid DC circuit breaker is connected to the DC bus When the DC grid system is negative, one end of the bus fault protection branch is connected to the DC bus, and the other end is connected to the second common bus.
  • both the first fast mechanical switches 111-11n and the one-way converter switches 121-12n of each current-passing branch 101-10n are in the conducting state
  • the one-way breaking switch 310 of the breaking branch 300 is in the off state
  • the second fast mechanical switch 410a of the bus fault protection branch 400a is also in the off state.
  • the action process is as follows.
  • the first step control the one-way breaking switch 310 of the breaking branch 300 to be turned on, and the one-way commutation switches 121-12n of all the current branches 101-10n to turn off, and the current starts to transfer to the commutation branch 201-20n to One-way disconnect switch 310 that disconnects branch 300 .
  • the second step when the currents of all the current branches 101-10n are close to zero, control the first fast mechanical switch 11k of the current branch 10k of the P kth port to open.
  • the third step when the first fast mechanical switch 11k of the current branch 10k of the P kth port is separated to the insulation voltage position, the one-way disconnect switch 310 of the control The commutation switches 121-12n are turned on, the current of the Pkth port is transferred to the non-linear resistor 320 of the breaking branch 300 and gradually drops to zero, and the currents of other ports other than the Pkth port return to their respective pass-through branches On the road, the opening is successful and the opening operation is ended.
  • the first step control the one-way breaking switch 310 of the breaking branch 300 to be turned on;
  • Step 2 If the multi-port hybrid DC circuit breaker is not in fault, then control the first fast mechanical switch 11k of the current branch 10k of port P k to close; if the multi-port hybrid DC circuit breaker is in fault, Then, the one-way breaking switch 310 that controls the breaking branch 300 is turned off, the closing fails, and the closing operation is ended.
  • the third step when the first fast mechanical switch 11k of the current branch 10k of the port Pk is in the closed position, the one-way breaking switch 310 of the control breaking branch 300 is turned off, the closing is successful and the closing operation is ended.
  • the bus fault protection branch will be controlled.
  • the second fast mechanical switch 410a of the circuit 400a is closed to activate the fail-back protection.
  • FIG. 3 is a second topology diagram of the multi-port hybrid DC circuit breaker when it is connected to the negative pole of the DC grid system according to the embodiment of the present application. Compared with the embodiment shown in FIG. 1 , this embodiment adds a bus fault protection branch 400b .
  • the bus fault protection branch 400b includes a second fast mechanical switch 410b, one end of the second fast mechanical switch 410b is connected to the DC bus, and the other end is connected to the second common bus.
  • the working modes of the multi-port hybrid DC circuit breaker in this embodiment include: a normal operation mode, an opening mode, a closing mode, and a bus fault protection mode.
  • the first fast mechanical switch 111-11n and the one-way commutation switch 121-12n of each current branch 101-10n are both in the conducting state, and the branch 300 is disconnected.
  • the one-way disconnecting switch 310 is in the off state, and the second fast mechanical switch 410 of the bus fault protection branch 400 is in the off state.
  • the action process is as follows.
  • the first step control the one-way breaking switch 310 of the breaking branch 300 to be turned on, and the one-way commutation switches 121-12n of all the current branches 101-10n to turn off, and the current starts to transfer to the commutation branch 201-20n to One-way disconnect switch 310 that disconnects branch 300 .
  • the second step when the currents of all the current branches 101-10n are close to zero, control the first fast mechanical switch 11k of the current branch 10k of the P kth port to open.
  • the third step when the first fast mechanical switch 11k of the current branch 10k of the P kth port is separated to the insulation voltage position, the one-way disconnect switch 310 of the control The commutation switches 121-12n are turned on, the current of the P kth port is transferred to the non-linear resistance 320 of the breaking branch 300 and gradually drops to zero, and the current of the non-P kth port returns to the respective current branch. , the opening is successful and the opening operation is ended.
  • the first step controlling the one-way breaking switch 310 of the breaking branch 300 to be turned on.
  • Step 2 If the multi-port hybrid DC circuit breaker is not in fault, then control the first fast mechanical switch 11k of the current branch 10k of port P k to close; if the multi-port hybrid DC circuit breaker is in fault, Then, the one-way breaking switch 310 that controls the breaking branch 300 is turned off, the closing fails, and the closing operation is ended.
  • Step 3 When the first fast mechanical switch 11k of the current branch 10k of the port Pk is in the closed position, the one-way breaking switch 310 of the control breaking branch 300 is turned off, the closing is successful and the closing operation is ended.
  • the bus fault protection branch will be controlled.
  • the second fast mechanical switch 410b of the circuit 400b is closed to activate the fail-back protection.
  • the bus fault protection branch of the multi-port hybrid DC circuit breaker further includes a one-way conduction switch.
  • One end of the on-off switch is connected to the DC bus, and the other end is connected to the common bus that is not connected to the second fast mechanical switch, that is, when one end of the second fast mechanical switch is connected to the first common bus, the The other end is connected to the second common bus and vice versa.
  • FIG. 4 is a third topology diagram of a multi-port hybrid DC circuit breaker connected to the positive pole of a DC grid system according to an embodiment of the present application. Compared with the embodiment of FIG. 1 , this embodiment adds a bus fault protection branch 400c .
  • the bus fault protection branch 400c includes a second fast mechanical switch 410c and a one-way conduction switch 420c connected in series, one end of the second fast mechanical switch 410c is connected to the DC bus, the other end is connected to the first common bus, and the one-way conduction switch One end of 420c is connected to the DC bus, and the other end is connected to the second common bus.
  • the intermediate point between the second fast mechanical switch 410c and the one-way switch 420c of the bus fault protection branch 400c is connected to the DC bus.
  • the conduction direction of the one-way conduction switch 420c is the direction in which the second common bus bar points to the DC bus bar.
  • the breaking current direction of the one-way commutator switches 121-12n of the current-passing branches 101-10n points to the direction of the DC bus.
  • the working modes of the multi-port hybrid DC circuit breaker in this embodiment include a normal operation mode, an opening mode, a closing mode, and a bus fault protection mode.
  • the first fast mechanical switch 111-11n and the one-way commutation switch 121-12n of each current branch 101-10n are both in the conducting state, and the branch 300 is disconnected.
  • the one-way disconnecting switch 310 of 1 is in the off state, and the second fast mechanical switch 410 and the one-way conducting switch 420 of the bus fault protection branch 400 are both in the off state.
  • the action process is as follows.
  • the first step control the one-way breaking switch 310 of the breaking branch 300 to be turned on, and the one-way commutation switches 121-12n of all the current branches 101-10n to turn off, and the current starts to transfer to the commutation branch 201-20n to One-way disconnect switch 310 that disconnects branch 300 .
  • the second step when the currents of all the current branches 101-10n are close to zero, control the first fast mechanical switch 11k of the current branch 10k of the P kth port to open.
  • the third step when the first fast mechanical switch 11k of the current branch 10k of the P kth port is separated to the insulation voltage position, the one-way disconnect switch 310 of the control The commutation switches 121-12n are turned on, the current of the P kth port is transferred to the non-linear resistance 320 of the breaking branch 300 and gradually drops to zero, and the current of the non-P kth port returns to the respective current branch. , the opening is successful and the opening operation is ended.
  • the first step control the one-way breaking switch 310 of the breaking branch 300 to be turned on;
  • Step 2 If the multi-port hybrid DC circuit breaker is not in fault, then control the first fast mechanical switch 11k of the current branch 10k of port P k to close; if the multi-port hybrid DC circuit breaker is in fault, Then, the one-way breaking switch 310 that controls the breaking branch 300 is turned off, the closing fails, and the closing operation is ended.
  • the third step when the first fast mechanical switch 11k of the current branch 10k of the port Pk is in the closed position, the one-way breaking switch 310 of the control breaking branch 300 is turned off, the closing is successful and the closing operation is ended.
  • Step 1 Control the one-way breaking switch 310 of the breaking branch 300 to be turned on, the one-way switch 420c of the bus fault protection branch 400c to be turned on, and the one-way commutator switches 121-12n of all the current-passing branches 101-10n When turned off, the current begins to transfer to the one-way breaker 310 of the breaker branch 300 through the commutation branches 201-20n.
  • the second step when the currents of all the current-passing branches 101-10n are close to zero, control the first fast mechanical switches 111-11n of all the current-passing branches 101-10n to open.
  • the third step when the first fast mechanical switches 111-11n of all the current branches 101-10n are separated to the insulating voltage position, the one-way breaking switch 310 of the control branch 300 is turned off, and all the current branches 101- The one-way commutation switches 121-12n of 10n are turned on, the current is transferred to the non-linear resistance 320 of the breaking branch 300 and drops to zero, the opening is successful and the opening operation is ended.
  • the multi-port hybrid DC circuit breaker When the multi-port hybrid DC circuit breaker is in the bus fault protection mode, when the first common bus is grounded, since the multi-port hybrid DC circuit breaker cannot complete the bus isolation operation, it will control the second bus fault protection branch 400c. Fast mechanical switch 410c closes to activate fail-back protection.
  • the bus differential protection of the multi-port hybrid DC circuit breaker in the normal operation mode will not act. If the opening operation is performed at this time, the bus differential protection will act, and the DC circuit breaker will stop the opening operation and start the backup failure protection.
  • FIG. 5 is a third topology diagram of a multi-port hybrid DC circuit breaker connected to the negative pole of a DC grid system according to an embodiment of the present application. Compared with the multi-port hybrid DC circuit breaker of the present application shown in FIG. For example, the bus fault protection branch 400d is added.
  • the busbar fault protection branch 400d includes a second fast mechanical switch 410d and a one-way conduction switch 420d connected in series.
  • the second quick mechanical switch 410d is connected to the second common bus.
  • the one-way conduction switch 420d is connected to the first common bus, the midpoint of the bus fault protection branch 400 is connected to the DC bus, and the conduction direction of the one-way switch 420 is that the DC bus points to the first common bus.
  • the breaking current direction of the one-way commutator switches 121-12n of the current-passing branches 101-10n is directed to the port.
  • the working modes of the multi-port hybrid DC circuit breaker in this embodiment include a normal operation mode, an opening mode, a closing mode, and a bus fault protection mode.
  • the first fast mechanical switch 111-11n and the one-way commutation switch 121-12n of each current branch 101-10n are both in the conducting state, and the branch 300 is disconnected.
  • the one-way disconnecting switch 310 of 1 is in the off state, and the second fast mechanical switch 410 and the one-way conducting switch 420 of the bus fault protection branch 400 are both in the off state.
  • the action process is as follows.
  • the first step control the one-way breaking switch 310 of the breaking branch 300 to be turned on, and the one-way commutation switches 121-12n of all the current branches 101-10n to turn off, and the current starts to transfer to the commutation branch 201-20n to One-way disconnect switch 310 that disconnects branch 300 .
  • the second step when the currents of all the current branches 101-10n are close to zero, control the first fast mechanical switch 11k of the current branch 10k of the P kth port to open;
  • the third step when the first fast mechanical switch 11k of the current branch 10k of the P kth port is separated to the insulation voltage position, the one-way disconnect switch 310 of the control The commutation switches 121-12n are turned on, the current of the P kth port is transferred to the non-linear resistance 320 of the breaking branch 300 and gradually drops to zero, and the current of the non-P kth port returns to the respective current branch. , the opening is successful and the opening operation is ended.
  • the first step control the one-way breaking switch 310 of the breaking branch 300 to be turned on;
  • Step 2 If the fault is not closed, the first fast mechanical switch 11k of the current branch 10k of the port P k is controlled to be closed; if the fault is met, the one-way breaking switch 310 of the breaking branch 300 is controlled to be turned off , the closing fails and ends the closing operation.
  • the third step when the first fast mechanical switch 11k of the current branch 10k of the port Pk is in the closed position, the one-way breaking switch 310 of the control breaking branch 300 is turned off, the closing is successful and the closing operation is ended.
  • Step 1 Control the one-way breaking switch 310 of the breaking branch 300 to be turned on, the one-way conduction switch 420 of the bus fault protection branch 400 to be turned on, and the one-way commutator switches 121-12n of all current-passing branches 101-10n When turned off, the current begins to transfer to the one-way breaker 310 of the breaker branch 300 through the commutation branches 201-20n.
  • the second step when the currents of all the current-passing branches 101-10n are close to zero, control the first fast mechanical switches 111-11n of all the current-passing branches 101-10n to open.
  • the third step when the first fast mechanical switches 111-11n of all the current branches 101-10n are separated to the insulating voltage position, the one-way breaking switch 310 of the control branch 300 is turned off, and all the current branches 101- The one-way commutation switches 121-12n of 10n are turned on, the current is transferred to the non-linear resistance 320 of the breaking branch 300 and drops to zero, the opening is successful and the opening operation is ended.
  • the bus differential protection of the multi-port hybrid DC circuit breaker in the normal operation mode will not act.
  • the busbar differential protection will act, the DC circuit breaker will stop the opening operation and start the backup failure protection.
  • the multi-port hybrid DC circuit breaker is in the bus fault protection mode, when the second common bus is grounded, since the multi-port hybrid DC circuit breaker cannot complete the bus isolation operation, the second fast mechanical circuit of the bus fault protection branch 400d is controlled. Switch 410d is closed to activate failback protection.
  • the multi-port hybrid DC circuit breaker may not be provided with a bus fault protection branch or a bus fault protection circuit.
  • an auxiliary energy-consuming circuit can be added, and one end of the auxiliary energy-consuming circuit can be connected to the first common busbar, or can be connected to the second common busbar.
  • FIG. 6 is a fourth topology diagram of a multi-port hybrid DC circuit breaker connected to the positive pole of a DC grid system according to an embodiment of the present application. Compared with the embodiment shown in FIG. 1 , this embodiment increases the auxiliary energy consumption support Road 500a.
  • the auxiliary power dissipation branch 500a includes a diode 510a and a linear resistor 520a connected in series. One end of the auxiliary energy dissipation branch 500a is connected to the second common bus, and the other end is connected to the ground or the metal return line. The cathode of diode 510a points to the second common bus.
  • the topology scheme can be applied in the case where the fault of the DC bus is not considered, and the working modes of the multi-port hybrid DC circuit breaker in this embodiment include a normal operation mode, an opening mode and a closing mode.
  • the first fast mechanical switch 111-11n and the one-way commutation switch 121-12n of each current-passing branch 101-10n are both in the conducting state, breaking the branch
  • the one-way disconnect switch 310 of 300 is in the OFF state.
  • the action process is as follows.
  • the first step control the one-way breaking switch 310 of the breaking branch 300 to be turned on, and the one-way commutation switches 121-12n of all the current branches 101-10n to turn off, and the current starts to transfer to the commutation branch 201-20n to One-way disconnect switch 310 that disconnects branch 300 .
  • the second step when the currents of all the current branches 101-10n are close to zero, control the first fast mechanical switch 11k of the current branch 10k of the P kth port to open.
  • the third step when the first fast mechanical switch 11k of the current branch 10k of the P kth port is separated to the insulation voltage position, the one-way disconnect switch 310 of the control The commutation switches 121-12n are turned on, and the current at the Pkth port is transferred to the non-linear resistor 320 of the breaking branch 300 and the linear resistor 520a of the auxiliary energy dissipation branch 500a and gradually drops to zero, the non- Pkth port The currents of the other ports of the switch are restored to their respective current branches, the opening is successful and the opening operation is ended.
  • the action process is as follows.
  • the first step controlling the one-way breaking switch 310 of the breaking branch 300 to be turned on.
  • Step 2 If the multi-port hybrid DC circuit breaker is not in fault, then control the first fast mechanical switch 11k of the current branch 10k of port P k to close; if the multi-port hybrid DC circuit breaker is in fault, Then, the one-way breaking switch 310 that controls the breaking branch 300 is turned off, the closing fails, and the closing operation is ended.
  • the third step when the first fast mechanical switch 11k of the current branch 10k of the port Pk is in the closed position, the one-way breaking switch 310 of the control breaking branch 300 is turned off, the closing is successful and the closing operation is ended.
  • FIG. 7 is a fourth topology diagram of a multi-port hybrid DC circuit breaker connected to the negative pole of a DC grid system according to an embodiment of the present application.
  • an auxiliary energy-consuming branch is added in this embodiment.
  • the auxiliary energy dissipation branch 500b includes a diode 510b and a linear resistor 520b connected in series.
  • auxiliary energy dissipation branch 500b is connected to the first common bus, and the other end is connected to the ground or a metal return line, and the anode of the diode 510b points to the first common bus.
  • the multi-port hybrid DC circuit breaker in this embodiment can be applied in situations where the fault of the DC bus is not considered, and the working modes of the multi-port hybrid DC circuit breaker include a normal operation mode, an opening mode, and a closing mode.
  • the first fast mechanical switch 111-11n and the one-way commutation switch 121-12n of each current branch 101-10n are both in the conducting state, and the branch 300 is disconnected.
  • the one-way disconnect switch 310 is in the OFF state.
  • the action process is as follows.
  • the first step control the one-way breaking switch 310 of the breaking branch 300 to be turned on, and the one-way commutation switches 121-12n of all the current branches 101-10n to turn off, and the current starts to transfer to the commutation branch 201-20n to One-way disconnect switch 310 that disconnects branch 300 .
  • the second step when the currents of all the current branches 101-10n are close to zero, control the first fast mechanical switch 11k of the current branch 10k of the P kth port to open.
  • the third step when the first fast mechanical switch 11k of the current branch 10k of the P kth port is separated to the insulation voltage position, the one-way disconnect switch 310 of the control The commutation switches 121-12n are turned on, and the current at the P kth port is transferred to the non-linear resistor 320 of the breaking branch 300 and the linear resistor 520 of the auxiliary energy dissipation branch 500 and gradually drops to zero, the non- Pkth port The current is restored to the respective current branches, the opening is successful and the opening operation is ended.
  • the first step controlling the one-way breaking switch 310 of the breaking branch 300 to be turned on.
  • Step 2 If the multi-port hybrid DC circuit breaker is not in fault, then control the first fast mechanical switch 11k of the current branch 10k of port P k to close; if the multi-port hybrid DC circuit breaker is in fault, Then, the one-way breaking switch 310 that controls the breaking branch 300 is turned off, the closing fails, and the closing operation is ended.
  • the third step when the first fast mechanical switch 11k of the current branch 10k of the port Pk is in the closed position, the one-way breaking switch 310 of the control breaking branch 300 is turned off, the closing is successful and the closing operation is ended.
  • the multi-port hybrid DC circuit breaker can add bus fault protection in the case of setting an auxiliary energy-consuming circuit circuit, wherein one end of the auxiliary energy-consuming circuit can be connected to the first common busbar or to the second common busbar, when one end of the auxiliary energy-consuming circuit is connected to the second common busbar, the busbar fault protection circuit is connected to the first common busbar Between the common bus and the DC bus; when one end of the auxiliary energy-consuming circuit is connected to the first common bus, the bus fault protection circuit is connected between the second common bus and the DC bus.
  • the bus fault protection branch further includes a one-way conduction switch, one end of the one-way conduction switch is connected to the DC bus, and the other end is connected to the DC bus. on the common bus that is not connected to the second fast mechanical switch.
  • FIG. 8 is a fifth topology diagram of a multi-port hybrid DC circuit breaker connected to the positive pole of a DC grid system according to an embodiment of the present application. Compared with the embodiment of FIG. 1 , this embodiment adds a bus fault protection branch 400 a and auxiliary energy-consuming branch 500a.
  • the bus fault protection branch 400a includes a second fast mechanical switch 410a, one end of the second fast mechanical switch 410a is connected to the DC bus, and the other end is connected to the first common bus.
  • the auxiliary energy dissipation branch 500a includes a diode 510a and a linear resistor 520a connected in series. One end of the auxiliary energy dissipation branch 500a is connected to the second common bus, and the other end is connected to the ground or metal return line. The cathode of the diode 510a points to the second common bus. busbar.
  • the working modes of the multi-port hybrid DC circuit breaker in this embodiment include a normal operation mode, an opening mode, a closing mode, and a bus fault protection mode.
  • the first fast mechanical switch 111-11n and the one-way commutation switch 121-12n of each current branch 101-10n are both in the conducting state, and the branch 300 is disconnected.
  • the one-way disconnecting switch 310 of 1 is in the off state, and the second fast mechanical switch 410a of the bus fault protection branch 400a is in the off state.
  • the action process is as follows.
  • the first step control the one-way breaking switch 310 of the breaking branch 300 to be turned on, and the one-way commutation switches 121-12n of all the current branches 101-10n to turn off, and the current starts to transfer to the commutation branch 201-20n to One-way disconnect switch 310 that disconnects branch 300 .
  • the second step when the currents of all the current branches 101-10n are close to zero, control the first fast mechanical switch 11k of the current branch 10k of the P kth port to open.
  • the third step when the first fast mechanical switch 11k of the current branch 10k of the P kth port is separated to the insulation voltage position, the one-way disconnect switch 310 of the control The commutation switches 121-12n are turned on, and the current at the Pkth port is transferred to the non-linear resistor 320 of the breaking branch 300 and the linear resistor 520a of the auxiliary energy dissipation branch 500a and gradually drops to zero, the non- Pkth port The current is restored to the respective current branches, the opening is successful and the opening operation is ended.
  • the first step controlling the one-way breaking switch 310 of the breaking branch 300 to be turned on.
  • Step 2 If the multi-port hybrid DC circuit breaker is not in fault, then control the first fast mechanical switch 11k of the current branch 10k of port P k to close; if the multi-port hybrid DC circuit breaker is in fault, Then, the one-way breaking switch 310 that controls the breaking branch 300 is turned off, the closing fails, and the closing operation is ended.
  • the third step when the first fast mechanical switch 11k of the current branch 10k of the port Pk is in the closed position, the one-way breaking switch 310 of the control breaking branch 300 is turned off, the closing is successful and the closing operation is ended.
  • FIG. 9 is a fifth topology diagram of a multi-port hybrid DC circuit breaker connected to the negative pole of a DC grid system according to an embodiment of the present application. Compared with the embodiment of FIG. 1 , this embodiment adds a bus fault protection branch 400b and an auxiliary energy-consuming branch 500b.
  • the bus fault protection branch 400b includes a second fast mechanical switch 410b, one end of the second fast mechanical switch 410b is connected to the DC bus, and the other end is connected to the second common bus.
  • the auxiliary power dissipation branch 500b includes a diode 510b and a linear resistor 520b connected in series. One end of the auxiliary energy dissipation branch 500b is connected to the first common bus, and the other end is connected to the ground or the metal return line, and the anode of the diode 510b points to the first common bus.
  • the working modes of the multi-port hybrid DC circuit breaker in this embodiment include a normal operation mode, an opening mode, a closing mode and a bus fault protection mode.
  • the first fast mechanical switch 111-11n and the one-way commutation switch 121-12n of each current branch 101-10n are both in the conducting state, and the branch 300 is disconnected.
  • the one-way disconnecting switch 310 of 1 is in the off state, and the second fast mechanical switch 410b of the bus fault protection branch 400b is in the off state.
  • the action process is as follows.
  • the first step control the one-way breaking switch 310 of the breaking branch 300 to be turned on, and the one-way commutation switches 121-12n of all the current branches 101-10n to turn off, and the current starts to transfer to the commutation branch 201-20n to One-way disconnect switch 310 for disconnecting branch 300 .
  • the second step when the currents of all the current branches 101-10n are close to zero, control the first fast mechanical switch 11k of the current branch 10k of the P kth port to open.
  • the third step when the first fast mechanical switch 11k of the current branch 10k of the P kth port is separated to the insulation voltage position, the one-way disconnect switch 310 of the control The commutation switches 121-12n are turned on, and the current at the Pkth port is transferred to the non-linear resistor 320 of the breaking branch 300 and the linear resistor 520b of the auxiliary energy dissipation branch 500b, and gradually drops to zero, the non- Pkth port The current is restored to the respective current branches, the opening is successful and the opening operation is ended.
  • the first step controlling the one-way breaking switch 310 of the breaking branch 300 to be turned on.
  • Step 2 If the multi-port hybrid DC circuit breaker is not in fault, then control the first fast mechanical switch 11k of the current branch 10k of port P k to close; if the multi-port hybrid DC circuit breaker is in fault, Then, the one-way breaking switch 310 that controls the breaking branch 300 is turned off, the closing fails, and the closing operation is ended.
  • the third step when the first fast mechanical switch 11k of the current branch 10k of the port Pk is in the closed position, the one-way breaking switch 310 of the control breaking branch 300 is turned off, the closing is successful and the closing operation is ended.
  • FIG. 10 is a sixth topology diagram of a multi-port hybrid DC circuit breaker connected to the positive pole of the DC grid system according to the embodiment of the present application. Compared with the embodiment of FIG. 1 , a bus fault protection branch 400c and a Auxiliary energy dissipation branch 500a.
  • the busbar fault protection branch 400c includes a second fast mechanical switch 410c and a one-way switch 420c connected in series, the second fast mechanical switch 410c is connected to the first common bus, and the one-way switch 420c is connected to the second common bus,
  • the middle point of the bus fault protection branch 400c is connected to the DC bus, and the conduction direction of the one-way conduction switch 420c is that the second common bus points to the DC bus.
  • the auxiliary energy dissipation branch 500a includes a diode 510a and a linear resistor 520a connected in series. One end of the auxiliary energy dissipation branch 500a is connected to the second common bus, and the other end is connected to the ground or metal return line. The cathode of the diode 510a points to the second common bus. busbar.
  • the breaking current direction of the one-way commutator switches 121-12n of the current-passing branches 101-10n is directed to the DC bus.
  • the working modes of the multi-port hybrid DC circuit breaker in this embodiment include a normal operation mode, an opening mode, a closing mode, and a bus fault protection mode.
  • the first fast mechanical switch 111-11n and the one-way commutation switch 121-12n of each current branch 101-10n are both in the conducting state, and the branch 300 is disconnected.
  • the one-way disconnecting switch 310 is in the off state, and the second fast mechanical switch 410b and the one-way conducting switch 420b of the bus fault protection branch 400b are both in the off state;
  • the action process is as follows.
  • the first step control the one-way breaking switch 310 of the breaking branch 300 to be turned on, and the one-way commutation switches 121-12n of all the current branches 101-10n to turn off, and the current starts to transfer to the commutation branch 201-20n to One-way disconnect switch 310 that disconnects branch 300 .
  • the second step when the currents of all the current branches 101-10n are close to zero, control the first fast mechanical switch 11k of the current branch 10k of the P kth port to open.
  • the third step when the first fast mechanical switch 11k of the current branch 10k of the P kth port is separated to the insulation voltage position, the one-way disconnect switch 310 of the control The commutation switches 121-12n are turned on, and the current at the Pkth port is transferred to the non-linear resistor 320 of the breaking branch 300 and the linear resistor 520a of the auxiliary energy dissipation branch 500a and gradually drops to zero, the non- Pkth port The current is restored to the respective current branches, the opening is successful and the opening operation is ended.
  • the first step controlling the one-way breaking switch 310 of the breaking branch 300 to be turned on.
  • Step 2 If the multi-port hybrid DC circuit breaker is not in fault, then control the first fast mechanical switch 11k of the current branch 10k of port P k to close; if the multi-port hybrid DC circuit breaker is in fault, Then, the one-way breaking switch 310 that controls the breaking branch 300 is turned off, the closing fails, and the closing operation is ended.
  • the third step when the first fast mechanical switch 11k of the current branch 10k of the port Pk is in the closed position, the one-way breaking switch 310 of the control breaking branch 300 is turned off, the closing is successful and the closing operation is ended.
  • Step 1 Control the one-way breaking switch 310 of the breaking branch 300 to be turned on, the one-way switch 420c of the bus fault protection branch 400c to be turned on, and the one-way commutator switches 121-12n of all the current-passing branches 101-10n When turned off, the current begins to transfer to the one-way breaker 310 of the breaker branch 300 through the commutation branches 201-20n.
  • the second step when the currents of all the current-passing branches 101-10n are close to zero, control the first fast mechanical switches 111-11n of all the current-passing branches 101-10n to open.
  • the third step when the first fast mechanical switches 111-11n of all the current branches 101-10n are separated to the insulating voltage position, the one-way breaking switch 310 of the control branch 300 is turned off, and all the current branches 101- The one-way commutation switches 121-12n of 10n are turned on, the current is transferred to the non-linear resistance 320 of the breaking branch 300 and drops to zero, the opening is successful and the opening operation is ended.
  • the multi-port hybrid DC circuit breaker In the bus fault protection mode, when the first common bus is grounded, the multi-port hybrid DC circuit breaker cannot complete the bus isolation operation, and will start the failure backup protection and control the bus fault protection branch 400c.
  • the second quick mechanical switch 410c is closed.
  • the bus differential protection will not act in the normal operation mode of the multi-port hybrid DC circuit breaker. If the opening operation is performed at this time, the bus differential protection will act, and the DC The circuit breaker suspends the opening operation to activate the backup failure protection.
  • FIG. 11 is a sixth topology diagram of a multi-port hybrid DC circuit breaker connected to a negative pole of a DC grid system according to an embodiment of the present application.
  • this embodiment adds a busbar fault protection branch 400d and an auxiliary energy dissipation branch 500b.
  • the bus fault protection branch 400d includes a second fast mechanical switch 410d and a one-way switch 420d connected in series, the second fast mechanical switch 410 is connected to the second common bus, and the one-way switch 420d is connected to the first common bus,
  • the middle point of the bus fault protection branch 400d is connected to the DC bus, and the conduction direction of the one-way conduction switch 420d is that the DC bus points to the first common bus.
  • the auxiliary power dissipation branch 500b includes a diode 510b and a linear resistor 520b connected in series.
  • auxiliary energy dissipation branch 500b is connected to the first common bus, and the other end is connected to the ground or the metal return line, and the anode of the diode 510b points to the first common bus.
  • breaking current direction of the one-way commutator switches 121-12n of the current-passing branches 101-10n is directed to the port.
  • the working modes of the multi-port hybrid DC circuit breaker in this embodiment include a normal operation mode, an opening mode, a closing mode, and a bus fault protection mode.
  • the first fast mechanical switch 111-11n and the one-way commutation switch 121-12n of each current branch 101-10n are both in the conducting state, and the branch 300 is disconnected.
  • the one-way disconnecting switch 310 of the above is in the off state, and the second fast mechanical switch 410d and the one-way conducting switch 420d of the bus fault protection branch 400d are both in the off state.
  • the action process is as follows.
  • the first step control the one-way breaking switch 310 of the breaking branch 300 to be turned on, and the one-way commutation switches 121-12n of all the current branches 101-10n to turn off, and the current starts to transfer to the commutation branch 201-20n to One-way disconnect switch 310 that disconnects branch 300 .
  • the second step when the currents of all the current branches 101-10n are close to zero, control the first fast mechanical switch 11k of the current branch 10k of the P kth port to open.
  • the third step when the first fast mechanical switch 11k of the current branch 10k of the P kth port is separated to the insulation voltage position, the one-way disconnect switch 310 of the control The commutation switches 121-12n are turned on, and the current at the Pkth port is transferred to the non-linear resistor 320 of the breaking branch 300 and the linear resistor 520b of the auxiliary energy dissipation branch 500b, and gradually drops to zero, the non- Pkth port The current is restored to the respective current branches, the opening is successful and the opening operation is ended.
  • the first step controlling the one-way breaking switch 310 of the breaking branch 300 to be turned on.
  • Step 2 If the fault is not closed, the first fast mechanical switch 11k of the current branch 10k of the port P k is controlled to be closed; if the fault is met, the one-way breaking switch 310 of the breaking branch 300 is controlled to be turned off , the closing fails and ends the closing operation.
  • the third step when the first fast mechanical switch 11k of the current branch 10k of the port Pk is in the closed position, the one-way breaking switch 310 of the control breaking branch 300 is turned off, the closing is successful and the closing operation is ended.
  • the first step control the one-way breaking switch 310 of the breaking branch 300 to be turned on, the one-way conduction switch 420d of the bus fault protection branch 400d to be turned on, and the one-way commutator switches 121-12n of all the current-passing branches 101-10n When turned off, the current begins to transfer to the one-way breaker 310 of the breaker branch 300 through the commutation branches 201-20n.
  • the second step when the currents of all the current-passing branches 101-10n are close to zero, control the first fast mechanical switches 111-11n of all the current-passing branches 101-10n to open.
  • the third step when the first fast mechanical switches 111-11n of all the current branches 101-10n are separated to the insulating voltage position, the one-way breaking switch 310 of the control branch 300 is turned off, and all the current branches 101- The one-way commutation switches 121-12n of 10n are turned on, the current is transferred to the non-linear resistance 320 of the breaking branch 300 and drops to zero, the opening is successful and the opening operation is ended.
  • the bus differential protection of the multi-port hybrid DC circuit breaker in the normal operation mode will not act.
  • the busbar differential protection will act, the DC circuit breaker will stop the opening operation and start the backup failure protection.
  • the first fast mechanical switches 111-11n include at least one mechanical switch break connected in series
  • the diode groups 211-21n, 221-22n, 510 include at least one diode connected in series.
  • the unidirectional commutator switches 121-12n include at least one first switching semiconductor device connected in series
  • the unidirectional breaking switch 310 includes at least one second switching semiconductor device connected in series, wherein the first switching semiconductor device and the second switching semiconductor device
  • IGBTs, IEGTs, IGCTs, and MOSFETs may be included accordingly.
  • the first switching semiconductor device refers to a series assembly applied to a unidirectional commutator switch and a unidirectional disconnecting switch
  • the second switching semiconductor device refers to a series assembly applied to a unidirectional conduction switch, that is, They are switch semiconductor devices respectively, and their number and distribution positions are determined according to the actual circuit structure.
  • the first switch semiconductor device and the second switch semiconductor device refer to a general term, which is not a limitation on their number and position, but is only used to indicate different category of switching semiconductor devices.
  • the first diode and the second diode are only limited in their distribution positions, and their types and numbers are not limited, and they are actually diodes.
  • the unidirectional conduction switch 420d or 420c includes at least one diode connected in series and at least one third switching semiconductor device connected in series, the diode and the third switching semiconductor device being connected in series with each other.
  • the third switching semiconductor device includes one or a combination of SCR, IGBT, IEGT, IGCT, and MOSFET.
  • lightning arresters are usually used in nonlinear resistance engineering.
  • the disconnect switch may include a plurality of one-way disconnect switches 310 connected in series and a non-linear resistor 320 connected in parallel with the plurality of one-way disconnect switches 310 .
  • a fault protection device for a DC power grid system applying the foregoing method, including a multi-port hybrid DC circuit breaker.

Abstract

提供一种多端口混合式直流断路器及其控制方法。多端口混合式直流断路器包括至少两条通流支路(101,…,10k,…,10n)、至少两条换向支路(201,…,20k,…,20n)和分断支路(300),通流支路(101,…,10k,…,10n)包括串联连接的第一快速机械开关(111,…,11k,…,11n)和单向换流开关(121,…,12k,…,12n),通流支路(101,…,10k,…,10n)的一端相互连接并构成直流母线;换向支路(201,…,20k,…,20n)包括同向串联连接的二极管上桥臂(211,…,21k,…,21n)和二极管下桥臂(221,…,22k,…,22n),每条通流支路(101,…,10k,…,10n)的另一端一一对应连接于每条换向支路(201,…,20k,…,20n)的中间点,并构成一个端口;分断支路(300)包括并联连接的单向分断开关(310)和非线性电阻(320),分断支路(300)和换向支路(201,…,20k,…,20n)相互并联连接并构成第一公共母线和第二公共母线。

Description

多端口混合式直流断路器、装置、系统及其控制方法
相关申请
本申请要求于2021年3月3日提交中国专利局、申请号为202110234171.0、申请名称为“多端口混合式直流断路器及其控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及直流电网技术领域,具体涉及多端口混合式直流断路器、装置、系统及其控制方法。
背景技术
随着直流电网网架结构的复杂化的趋势,直流电网系统中需要加装的直流断路器数目将大幅增加。直流断路器投入成本过高已成为目前限制直流电网发展的瓶颈问题。考虑到由大量电力电子器件串并联构成的分断开关是直流断路器的主要成本,近年来提出了多端口直流断路器的设计思路,即同一直流母线上所有进出线共用昂贵的分断开关。因此,采用多端口直流断路器可保证各进出线故障电流分断能力的同时,大幅减少直流电网中直流断路器的数量和投入成本。
发明内容
本申请各示例性实施例提供一种多端口混合式直流断路器,包括至少两条通流支路、至少两条换向支路和分断支路,所述至少两条通流支路的每一者均包括串联连接的第一快速机械开关和单向换流开关,所述至少两条通流支路的一端相互连接并构成直流母线,所述至少两条通流支路的每一者的所述单向换流开关的分断电流方向相同;所述至少两条换向支路的每一者均包括同向串联连接的二极管上桥臂和二极管下桥臂,所述至少两条通流支路的另一端相应地连接于对应的换向支路的二极管上桥臂和二极管下桥臂之间的中间点,以构成端口;以及分断支路包括并联连接的单向分断开关和非线性电阻,其中,所述分断支路和所述至少两条换向支路相互并联连接并在并联连接的两端分别构成 第一公共母线和第二公共母线,所述分断支路的所述单向分断开关的分断电流方向为所述第一公共母线指向所述第二公共母线的方向,所述换向支路的所述二极管上桥臂的阴极连接于所述第一公共母线的方向,所述换向支路的所述二极管下桥臂的阳极均连接于所述第二公共母线。
在一实施例中,所述多端口混合式直流断路器还包括一条母线故障保护支路,所述母线故障保护支路包括第二快速机械开关,其中,所述第二快速机械开关的一端连接于直流母线,另一端连接于第一公共母线;或所述第二快速机械开关的一端连接于直流母线,另一端连接于第二公共母线。
在一实施例中,所述多端口混合式直流断路器还包括一条母线故障保护支路,所述母线故障保护支路包括串联连接的第二快速机械开关和单向导通开关,所述母线故障保护支路两端分别连接于所述第一公共母线和所述第二公共母线,所述母线故障保护支路的所述第二快速机械开关和所述单向导通开关之间的中间点连接于所述直流母线;其中,所述第二快速机械开关的一端连接于所述第一公共母线,且所述单向导通开关的一端连接于所述第二公共母线,所述单向导通开关的导通方向为所述第二公共母线指向所述直流母线的方向,所述通流支路的所述单向换流开关的分断电流方向为指向所述直流母线的方向;或
所述第二快速机械开关的一端连接于所述第二公共母线,所述单向导通开关的一端连接于所述第一公共母线,所述单向导通开关的导通方向为所述直流母线指向所述第一公共母线的方向,所述通流支路的所述单向换流开关的分断电流方向为指向所述端口的方向。
在一实施例中,所述单向导通开关包括串联连接的至少一个二极管和串联连接的至少一个第三开关半导体器件,且所述至少一个二极管和所述至少一个第三开关半导体器件相互串联。
在一实施例中,所述第三开关半导体器件包括SCR、IGBT、IEGT、IGCT或MOSFET的至少一种。
在一实施例中,还包括:辅助耗能支路,包括串联连接的二极管组和线性电阻;以及其中,当所述第二快速机械开关的一端连接于所述直流母线,另一端连接于所述第一公共母线时,所述辅助耗能支路的一端连接于所述第二公共母线,所述辅助耗能支路的另一端连接于大地或金属回线,其中,所述二极管组的阴极连接于所述第二公共母线;或当所述第二快速机械开关的一端连接于所述直流母线,另一端连接于所述第二公共母线时,所述辅助耗能支路的一端连接于所述第一公共母线,所述辅助耗能支路的另一端连接于大地或金属回线,所述二极管组的阳极连接于所述第一公共母线。
在一实施例中,所述二极管组包括串联连接的至少一个二极管。
在一实施例中,所述第一快速机械开关包括串联连接的至少一个机械开关断口;和/或
所述第二快速机械开关包括串联连接的至少一个机械开关断口。
在一实施例中,所述单向换流开关包括串联连接的至少一个第一开关半导体器件;和/或所述单向分断开关包括串联连接的至少一个第二开关半导体器件。
在一实施例中,所述第一开关半导体器件和所述第二开关半导体器件包括IGBT、IEGT、IGCT或MOSFET中的至少一种。
在一实施例中,所述二极管上桥臂包括串联连接的至少一个二极管;以及所述二极管下桥臂包括串联连接的至少一个二极管。
本申请实施例还提供如上所述多端口混合式直流断路器的控制方法,包括基于所述多端口混合式直流断路器的工作模式进行控制通流支路、换向支路和分断支路的通断,所述工作模式包括正常运行模式、分闸模式和合闸模式。
在一实施例中,所述多端口混合式直流断路器处于所述正常运行模式下时,控制每条通流支路处于导通状态,分断支路处于关断状态;以及当所述多端口混合式直流断路器还包括母线故障保护支路时,所述方法还包括:所述多端口混合式直流断路器处于所述正常运行模式下时,控制所述母线故障保护支路处于关断状态。
在一实施例中,所述多端口混合式直流断路器处于所述分闸模式下,当所述多端口混合式直流断路器所连接的端口需要切除时,控制所述分断支路的单向分断开关导通、所有所述通流支路的单向换流开关关断,电流开始通过所述换向支路转移至所述分断支路的所述单向分断开关;当所有所述通流支路的电流接近于零时,控制被需要切除的所述端口所处的通流支路的第一快速机械开关分闸;当被切除的所述端口所处的所述通流支路的所述第一快速机械开关,分开至绝缘电压位置时,控制所述分断支路的所述单向分断开关关断、所有所述通流支路的所述单向换流开关导通,并控制被需要切除的所述端口的电流,以转移至所述分断支路的非线性电阻以及辅助耗能支路的线性电阻中;以及当被切除的所述端口的所述电流逐渐下降至零时,除被需要切除的所述端口之外的其他端口的电流恢复至各自的通流支路中,分闸成功并结束分闸操作。
在一实施例中,所述多端口混合式直流断路器处于所述合闸模式下,且当与所述多端口混合式直流断路器所连接的端口需要接入时,控制所述分断支路的单向分断开关导通;以及其中,若所述多端口混合式直流断路器未合于故障,则控制需要接入的所述端口所处的所述通流支路的所述第一快速机械开关闭合;以及当需要接入的所述端口所处的通流支路的第一快速机械开关处于合位后,控制所述分断支路的单向分断开关关断,合闸成功并结束合闸操作。
在一实施例中,若所述多端口混合式直流断路器合于故障,则控制所述分断支路的所述单向分断开关关断,合闸失败并结束合闸操作。
在一实施例中,所述多端口混合式直流断路器还包括母线故障保护支路时,所述工作模式还包括:母线故障保护模式,所述多端口混合式直流断路器处于母线故障保护模式下,基于故障类型进行控制;以及所述方法还包括:所述故障类型为所述直流母线接地故障时,控制所述分断支路的单向分断开关导通、所述母线故障保护支路的单向导通开关导通、所有所述通流支路的单向换流开关关断,电流开始通过所述换向支路转移至所述分断支路的所述单向分断开关;当所有所述通流支路的电流接近于零时,控制所有所述通流支路的所述第一快速机械开关分闸;以及当所有所述通流支路的所述第一快速机械开关分开至绝缘电压位置时,控制所述分断支路的所述单向分断开关关断、所有所述通流支路的所述单向换流开关导通,电流转移至所述分断支路的非线性电阻,当所述电流下降至零时,分闸成功并结束分闸操作。
在一实施例中,所述故障类型为所述多端口混合式直流断路器接通于直流电网系统正极且第一公共母线发生接地故障时,所述多端口混合式直流断路器无法完成母线隔离操作,并控制所述母线故障保护支路的第二快速机械开关闭合以启动失灵后备保护;所述故障类型为多端口混合式直流断路器接通于直流电网系统负极且第二公共母线接地故障时,所述多端口混合式直流断路器无法完成母线隔离操作,控制母线故障保护支路的第二快速机械开关闭合以启动失灵后备保护;所述故障类型为多端口混合式直流断路器接通于直流电网系统正极且第二公共母线接地故障时,所述多端口混合式直流断路器正常运行模式下母线差动保护不会动作,若此时进行分闸操作则触发所述母线差动保护,且所述多端口混合式直流断路器中止所述分闸操作并启动后备失灵保护;和/或所述故障类型为多端口混合式直流断路器接通于直流电网系统负极且第一公共母线接地故障时,所述多端口混合式直流断路器正常运行模式下母线差动保护不会动作,若此时进行所述分闸操作则触发所述母线差动保护,且所述多端口混合式直流断路器中止所述分闸操作并启动后备失灵保护。
本申请实施例还提供如上所述多端口混合式直流断路器的控制方法的直流电网系统的故障保护装置,包括上述的多端口混合式直流断路器。
本申请实施例还提供使用如上述所述多端口混合式直流断路器的控制方法的直流电网系统,包括上述的故障保护装置。
本申请实施例提供的技术方案,通过共用价格昂贵的分断开关能够实现多条输电线路的故障保护,输电线路越多、经济性更好;相比现有两端口或多端口混合式直流断路器,电流流经路径半导体数量减半,通流损耗更低、经济性更好;具有母线故障保护能力,提高了直流断路器的可靠性;具有辅助耗能能力,通过高可靠性的线性电阻进行辅助耗能,从而降低了对非线性电阻能量的需求,提高了直流断路器的可靠性;保持混合式直流断路器额定电流快速开断、故障电流快速开断和快速重合闸。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一实施例的多端口混合式直流断路器的拓扑图。
图2是本申请一实施例的通过母线故障保护支路接通于直流电网系统正极时的多端口混合式直流断路器的拓扑图。
图3是本申请一实施例的通过母线故障保护支路接通于直流电网系统负极时的多端口混合式直流断路器的拓扑图。
图4是本申请一实施例的通过母线故障保护支路接通于直流电网系统正极时的多端口混合式直流断路器第三拓扑图。
图5是本申请一实施例的通过母线故障保护支路接通于直流电网系统负极时的多端口混合式直流断路器的拓扑图。
图6是本申请一实施例的具有辅助耗能支路且接通于直流电网系统正极时的多端口混合式直流断路器的拓扑图。
图7是本申请一实施例的具有辅助耗能支路且接通于直流电网系统负极时的多端口混合式直流断路器的拓扑图。
图8是本申请一实施例的具有辅助耗能支路且通过母线故障保护支路接通于直流电网系统正极时的多端口混合式直流断路器的拓扑图。
图9是本申请一实施例的具有辅助耗能支路且通过母线故障保护支路接通于直流电网系统负极时的多端口混合式直流断路器的拓扑图。
图10是本申请一实施例的具有辅助耗能支路且通过母线故障保护支路接通于直流电网系统正极时的多端口混合式直流断路器的拓扑图。
图11是本申请一实施例的具有辅助耗能支路且通过母线故障保护支路接通于直流电网系统负极时的多端口混合式直流断路器的拓扑图。
图12是本申请一实施例的多端口混合式直流断路器的分断开关示意图。
具体实施方式
就当前的技术背景而言,现有技术中采用多端口的直流断路器,在多端口直流断路器的电流流经路线上设置的半导体数量往往相对较多,通流损耗较高。在母线故障保护电路方面,也仅考虑了直流母线故障而未考虑多端口直流断路器内部的两条公共母线故障。基于当前的行业需求与技术现状,可见,亟需一种可解决上述技术问题的多端口直流断路器。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
应当理解,本申请的说明书和权利要求书中使用的术语“包括”和“包含”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。
在本申请中,使用诸如“第一”,“第二”等的序数术语来修饰元件并不表示一个元件相对于另一个元件的任何优先级,位次或顺序,或者执行方法中的动作的时间顺序。除非另外特别说明,否则此类序数词仅用作标签以将具有特定名称的一个元件与具有(除序数词外在一实施例中相同名称的另一元件区分开。在所有附图中,除非在在上下文中另有定义,可以注意到,通过参考标记中的相同的数字标记来表示相似或相同的具有同样功能的部件,通过具有相同数字标记的参考标记的不同字母后缀来区分相似或相同的具有同样功能的部件的不同实施例。
图1是本申请一实施例的多端口混合式直流断路器的拓扑图。
如图1所示,多端口混合式直流断路器包括n条通流支路101,…,10k,…,10n、n条换向支路201,…,20k,…,20n和1条分断支路300,其中n为端口总数,k表示任意第k条支路,其中1≤k≤n,n为正整数。
每条通流支路10k分别包括串联连接的第一快速机械开关11k和单向换流开关12k。每条换向支路20k分别包括同向串联连接的二极管上桥臂21k和二极管下桥臂22k。通流支路10k与换向支路20k一一对应。所有通流支路101-10n的一端相互连接并构成直流母线,即所有通流支路101-10n的一端连接于直流母线。每条通流支路10k的另一端连接于换向支路20k的位于二极管上桥壁21k和二极管下桥臂22k之间的中间点并构成一个端口P k,该端口连接于需要保护的设备或线路。分断支路300包括并联连接的单向分断开关310和非线性电阻320。
分断支路300和所有换向支路201-20n相互并联连接并构成第一公共母线和第二公共母线。分断支路300的单向分断开关310的分断电流方向为第一公共母线指向第二公共母线,即被配置为能够开断从第一公共母线流向第二公共母线的电流。换向支路201-20n的二极管上桥臂211-21n的阴极均连接于第一公共母线,且换向支路201-20n的二极管下桥臂221-22n的阳极均连接于第二公共母线。每条通流支路101-10n的单向换流开关121-12n的分断电流方向相同,即全部指向直流母线或全部指向端口。
本实施例的多端口混合式直流断路器可在不考虑直流母线故障的场合下应用。
本实施例的多端口混合式直流断路器工作模式包括:正常运行模式、分闸 模式以及合闸模式。
多端口混合式直流断路器在正常运行模式下,每条通流支路101-10n的第一快速机械开关111-11n和单向换流开关121-12n均处于导通状态,分断支路300的单向分断开关310处于关断状态。
多端口混合式直流断路器在分闸模式下,当多端口混合式直流断路器所连接的第P k端口需要切除时,动作过程如下。
第一步:控制分断支路300的单向分断开关310导通、所有通流支路101-10n的单向换流开关121-12n关断,电流开始通过换向支路201-20n转移至分断支路300的单向分断开关310。
第二步:当所有通流支路101-10n的电流接近于零时,控制第P k端口的通流支路10k的第一快速机械开关11k分闸。
第三步:当第P k端口的通流支路10k的第一快速机械开关11k分开至绝缘电压位置时,控制分断支路300的单向分断开关310关断、所有通流支路的单向换流开关121-12n导通,第P k端口的电流转移至分断支路300的非线性电阻320中并逐渐下降至零、非第P k端口的其他端口的电流恢复至各自的通流支路中,分闸成功并结束分闸操作。
多端口混合式直流断路器在合闸模式下,当多端口混合式直流断路器所连接的第P k端口需要接入时,动作过程如下。
第一步:控制分断支路300的单向分断开关310导通。
第二步:若多端口混合式直流断路器未合于故障,则控制第P k端口的通流支路10k的第一快速机械开关11k闭合;若多端口混合式直流断路器合于故障,则控制分断支路300的单向分断开关310关断,合闸失败并结束合闸操作。
第三步:当第P k端口的通流支路10k的第一快速机械开关11k处于合位后,控制分断支路300的单向分断开关310关断,合闸成功并结束合闸操作。
可选地,多端口混合式直流断路器还可以设有母线保障保护支路,其包括第二快速机械开关。该第二快速机械开关的一端连接于直流母线,另一端连接于第一公共母线或第二公共母线。
多端口混合式直流断路器在母线故障保护模式下时,当直流母线或第一公共母线或第二公共母线发生接地故障时,直流断路器无法完成母线隔离操作,因此控制母线故障保护支路的第二快速机械开关闭合以启动失灵后备保护。
图2是本申请实施例的一种接通于直流电网系统正极时的多端口混合式直流断路器第二拓扑图,相比于图1所示的多端口混合式直流断路器,本实施例增加了母线故障保护支路400a。
母线故障保护支路400a包括第二快速机械开关410a,第二快速机械开关 410a一端连接于直流母线,另一端连接于第一公共母线。
本实施例的多端口混合式直流断路器的工作模式包括正常运行模式、分闸模式、合闸模式和母线故障保护模式。
可以理解的是,母线故障保护支路的一端可以连接于第一公共母线,另一端连接于直流母线,也可以母线故障保护支路的一端连接于第二公共母线,另一端连接直流母线,当多端口混合式直流断路器接通于直流电网系统正极时,所述母线故障保护支路的一端连接于直流母线,另一端连接于第一公共母线;当多端口混合式直流断路器接通于直流电网系统负极时,所述母线故障保护支路的一端连接于直流母线,另一端连接于第二公共母线。
本实施例中,多端口混合式直流断路器在正常运行模式下,每条通流支路101-10n的第一快速机械开关111-11n和单向换流开关121-12n均处于导通状态,分断支路300的单向分断开关310处于关断状态,母线故障保护支路400a的第二快速机械开关410a也处于关断状态。
多端口混合式直流断路器在分闸模式下,当多端口混合式直流断路器所连接的第P k端口需要切除时,动作过程如下。
第一步:控制分断支路300的单向分断开关310导通、所有通流支路101-10n的单向换流开关121-12n关断,电流开始通过换向支路201-20n转移至分断支路300的单向分断开关310。
第二步:当所有通流支路101-10n的电流接近于零时,控制第P k端口的通流支路10k的第一快速机械开关11k分闸。
第三步:当第P k端口的通流支路10k的第一快速机械开关11k分开至绝缘电压位置时,控制分断支路300的单向分断开关310关断、所有通流支路的单向换流开关121-12n导通,第P k端口的电流转移至分断支路300的非线性电阻320中并逐渐下降至零、非第Pk端口的其他端口的电流恢复至各自的通流支路中,分闸成功并结束分闸操作。
多端口混合式直流断路器在合闸模式下,当多端口混合式直流断路器所连接的第P k端口需要接入时,动作过程如下。
第一步:控制分断支路300的单向分断开关310导通;
第二步:若多端口混合式直流断路器未合于故障,则控制第P k端口的通流支路10k的第一快速机械开关11k闭合;若多端口混合式直流断路器合于故障,则控制分断支路300的单向分断开关310关断,合闸失败并结束合闸操作。
第三步:当第P k端口的通流支路10k的第一快速机械开关11k处于合位后,控制分断支路300的单向分断开关310关断,合闸成功并结束合闸操作。
多端口混合式直流断路器在母线故障保护模式下时,当直流母线或第一公 共母线或第二公共母线发生接地故障时,由于直流断路器无法完成母线隔离操作,因此将控制母线故障保护支路400a的第二快速机械开关410a闭合以启动失灵后备保护。
图3是本申请实施例的接通于直流电网系统负极时的多端口混合式直流断路器第二拓扑图,相比于图1所示实施例,本实施例增加了母线故障保护支路400b。
母线故障保护支路400b包括第二快速机械开关410b,第二快速机械开关410b一端连接于直流母线,另一端连接于第二公共母线。
本实施例的多端口混合式直流断路器工作模式包括:正常运行模式、分闸模式、合闸模式和母线故障保护模式。
多端口混合式直流断路器在正常运行模式下,每条通流支路101-10n的第一快速机械开关111-11n和单向换流开关121-12n均处于导通状态,分断支路300的单向分断开关310处于关断状态,母线故障保护支路400的第二快速机械开关410均处于关断状态。
多端口混合式直流断路器在分闸模式下,当多端口混合式直流断路器所连接的第P k端口需要切除时,动作过程如下。
第一步:控制分断支路300的单向分断开关310导通、所有通流支路101-10n的单向换流开关121-12n关断,电流开始通过换向支路201-20n转移至分断支路300的单向分断开关310。
第二步:当所有通流支路101-10n的电流接近于零时,控制第P k端口的通流支路10k的第一快速机械开关11k分闸。
第三步:当第P k端口的通流支路10k的第一快速机械开关11k分开至绝缘电压位置时,控制分断支路300的单向分断开关310关断、所有通流支路的单向换流开关121-12n导通,第P k端口的电流转移至分断支路300的非线性电阻320中并逐渐下降至零、非第P k端口的电流恢复至各自的通流支路中,分闸成功并结束分闸操作。
多端口混合式直流断路器在合闸模式下,当多端口混合式直流断路器所连接的第P k端口需要接入时,动作过程如下。
第一步:控制分断支路300的单向分断开关310导通。
第二步:若多端口混合式直流断路器未合于故障,则控制第P k端口的通流支路10k的第一快速机械开关11k闭合;若多端口混合式直流断路器合于故障,则控制分断支路300的单向分断开关310关断,合闸失败并结束合闸操作。
第三步:当第P k端口的通流支路10k的第一快速机械开关11k处于合位后, 控制分断支路300的单向分断开关310关断,合闸成功并结束合闸操作。
多端口混合式直流断路器在母线故障保护模式下时,当直流母线或第一公共母线或第二公共母线发生接地故障时,由于直流断路器无法完成母线隔离操作,因此将控制母线故障保护支路400b的第二快速机械开关410b闭合以启动失灵后备保护。
图4和图5所示的实施例与图2和图3所示的实施例的不同之处在于,多端口混合式直流断路器的母线故障保护支路还包括单向导通开关,该单向导通开关的一端连接于直流母线,另一端连接于未与第二快速机械开关连接的公共母线上,即,当第二快速机械开关的一端连接于第一公共母线时,则单向导通开关的另一端连接于第二公共母线,反之亦然。
图4是本申请实施例的一种接通于直流电网系统正极时的多端口混合式直流断路器第三拓扑图,相比于图1实施例,本实施例增加了母线故障保护支路400c。
母线故障保护支路400c包括串联连接的第二快速机械开关410c和单向导通开关420c,第二快速机械开关410c的一端连接于直流母线,另一端连接于第一公共母线,而单向导通开关420c的一端连接于直流母线,另一端连接于第二公共母线。母线故障保护支路400c的第二快速机械开关410c和单向导通开关420c之间的中间点连接于直流母线。单向导通开关420c的导通方向为第二公共母线指向直流母线的方向。此外,通流支路101-10n的单向换流开关121-12n的分断电流方向指向直流母线的方向。
本实施例的多端口混合式直流断路器的工作模式包括正常运行模式、分闸模式、合闸模式和母线故障保护模式。
多端口混合式直流断路器在正常运行模式下,每条通流支路101-10n的第一快速机械开关111-11n和单向换流开关121-12n均处于导通状态,分断支路300的单向分断开关310处于关断状态,母线故障保护支路400的第二快速机械开关410和单向导通开关420均处于关断状态。
多端口混合式直流断路器在分闸模式下,当多端口混合式直流断路器所连接的第P k端口需要切除时,动作过程如下。
第一步:控制分断支路300的单向分断开关310导通、所有通流支路101-10n的单向换流开关121-12n关断,电流开始通过换向支路201-20n转移至分断支路300的单向分断开关310。
第二步:当所有通流支路101-10n的电流接近于零时,控制第P k端口的通流支路10k的第一快速机械开关11k分闸。
第三步:当第P k端口的通流支路10k的第一快速机械开关11k分开至绝缘电压位置时,控制分断支路300的单向分断开关310关断、所有通流支路的单 向换流开关121-12n导通,第P k端口的电流转移至分断支路300的非线性电阻320中并逐渐下降至零、非第P k端口的电流恢复至各自的通流支路中,分闸成功并结束分闸操作。
多端口混合式直流断路器在合闸模式下,当多端口混合式直流断路器所连接的第P k端口需要接入时,动作过程如下。
第一步:控制分断支路300的单向分断开关310导通;
第二步:若多端口混合式直流断路器未合于故障,则控制第P k端口的通流支路10k的第一快速机械开关11k闭合;若多端口混合式直流断路器合于故障,则控制分断支路300的单向分断开关310关断,合闸失败并结束合闸操作。
第三步:当第P k端口的通流支路10k的第一快速机械开关11k处于合位后,控制分断支路300的单向分断开关310关断,合闸成功并结束合闸操作。
多端口混合式直流断路器在母线故障保护模式下时,当直流母线接地故障时,动作过程如下。
第一步:控制分断支路300的单向分断开关310导通、母线故障保护支路400c的单向导通开关420c导通、所有通流支路101-10n的单向换流开关121-12n关断,电流开始通过换向支路201-20n转移至分断支路300的单向分断开关310。
第二步:当所有通流支路101-10n的电流接近于零时,控制所有通流支路101-10n的第一快速机械开关111-11n分闸。
第三步:当所有通流支路101-10n的第一快速机械开关111-11n分开至绝缘电压位置时,控制分断支路300的单向分断开关310关断、所有通流支路101-10n的单向换流开关121-12n导通,电流转移至分断支路300的非线性电阻320并下降至零,分闸成功并结束分闸操作。
多端口混合式直流断路器在母线故障保护模式下时,当第一公共母线接地故障时,由于多端口混合式直流断路器无法完成母线隔离操作,因此将控制母线故障保护支路400c的第二快速机械开关410c闭合以启动失灵后备保护。
多端口混合式直流断路器在母线故障保护模式下时,当第二公共母线接地故障时,多端口混合式直流断路器的在正常运行模式下的母线差动保护不会动作。若此时进行分闸操作则母线差动保护会动作,直流断路器则中止分闸操作并启动后备失灵保护。
图5是本申请实施例的一种接通于直流电网系统负极时的多端口混合式直流断路器第三拓扑图,相比于图1所示本申请多端口混合式直流断路器,本实施例增加了母线故障保护支路400d。
母线故障保护支路400d包括串联连接的第二快速机械开关410d和单向导通开关420d。第二快速机械开关410d连接于第二公共母线。单向导通开关420d连接于第一公共母线,母线故障保护支路400的中间点连接于直流母线,单向导通开关420的导通方向为直流母线指向第一公共母线。此外,通流支路101-10n的单向换流开关121-12n的分断电流方向指向端口。
本实施例多端口混合式直流断路器的工作模式包括正常运行模式、分闸模式、合闸模式和母线故障保护模式。
多端口混合式直流断路器在正常运行模式下,每条通流支路101-10n的第一快速机械开关111-11n和单向换流开关121-12n均处于导通状态,分断支路300的单向分断开关310处于关断状态,母线故障保护支路400的第二快速机械开关410和单向导通开关420均处于关断状态。
多端口混合式直流断路器在分闸模式下,当多端口混合式直流断路器所连接的第P k端口需要切除时,动作过程如下。
第一步:控制分断支路300的单向分断开关310导通、所有通流支路101-10n的单向换流开关121-12n关断,电流开始通过换向支路201-20n转移至分断支路300的单向分断开关310。
第二步:当所有通流支路101-10n的电流接近于零时,控制第P k端口的通流支路10k的第一快速机械开关11k分闸;
第三步:当第P k端口的通流支路10k的第一快速机械开关11k分开至绝缘电压位置时,控制分断支路300的单向分断开关310关断、所有通流支路的单向换流开关121-12n导通,第P k端口的电流转移至分断支路300的非线性电阻320中并逐渐下降至零、非第P k端口的电流恢复至各自的通流支路中,分闸成功并结束分闸操作。
多端口混合式直流断路器在合闸模式下,当多端口混合式直流断路器所连接的第P k端口需要接入时,动作过程如下。
第一步:控制分断支路300的单向分断开关310导通;
第二步:若未合于故障,则控制第P k端口的通流支路10k的第一快速机械开关11k闭合;若合于故障,则控制分断支路300的单向分断开关310关断,合闸失败并结束合闸操作。
第三步:当第P k端口的通流支路10k的第一快速机械开关11k处于合位后,控制分断支路300的单向分断开关310关断,合闸成功并结束合闸操作。
多端口混合式直流断路器在母线故障保护模式下,当直流母线接地故障时,动作过程如下。
第一步:控制分断支路300的单向分断开关310导通、母线故障保护支路 400的单向导通开关420导通、所有通流支路101-10n的单向换流开关121-12n关断,电流开始通过换向支路201-20n转移至分断支路300的单向分断开关310。
第二步:当所有通流支路101-10n的电流接近于零时,控制所有通流支路101-10n的第一快速机械开关111-11n分闸。
第三步:当所有通流支路101-10n的第一快速机械开关111-11n分开至绝缘电压位置时,控制分断支路300的单向分断开关310关断、所有通流支路101-10n的单向换流开关121-12n导通,电流转移至分断支路300的非线性电阻320并下降至零,分闸成功并结束分闸操作。
多端口混合式直流断路器在母线故障保护模式下,当第一公共母线接地故障时,多端口混合式直流断路器正常运行模式下母线差动保护不会动作,若此时进行分闸操作则母线差动保护会动作,直流断路器中止分闸操作并启动后备失灵保护。
多端口混合式直流断路器在母线故障保护模式下,当第二公共母线接地故障时,由于多端口混合式直流断路器无法完成母线隔离操作,因此控制母线故障保护支路400d的第二快速机械开关410d闭合以启动失灵后背保护。
图6和图7所示的实施例与图4和图5所示的实施例的不同之处在于,多端口混合式直流断路器的可以不设置母线故障保护支路,不设置母线故障保护电路的情况下,可以增设辅助耗能电路,该辅助耗能电路的一端可以连接于第一公共母线,也可以连接与第二公共母线。
图6是本申请实施例的一种接通于直流电网系统正极时的多端口混合式直流断路器第四拓扑图,相比于图1所示实施例,本实施例增加了辅助耗能支路500a。
辅助耗能支路500a包括串联连接的二极管510a和线性电阻520a。辅助耗能支路500a的一端连接于第二公共母线,另一端连接于大地或金属回线。二极管510a的阴极指向第二公共母线。该拓扑方案可在不考虑直流母线故障的场合下应用,本实施例的多端口混合式直流断路器的工作模式包括正常运行模式、分闸模式和合闸模式。
多端口混合式直流断路器在正常运行模式下时,每条通流支路101-10n的第一快速机械开关111-11n和单向换流开关121-12n均处于导通状态,分断支路300的单向分断开关310处于关断状态。
多端口混合式直流断路器在分闸模式下时,当多端口混合式直流断路器所连接的第P k端口需要切除时,动作过程如下。
第一步:控制分断支路300的单向分断开关310导通、所有通流支路101-10n的单向换流开关121-12n关断,电流开始通过换向支路201-20n转移 至分断支路300的单向分断开关310。
第二步:当所有通流支路101-10n的电流接近于零时,控制第P k端口的通流支路10k的第一快速机械开关11k分闸。
第三步:当第P k端口的通流支路10k的第一快速机械开关11k分开至绝缘电压位置时,控制分断支路300的单向分断开关310关断、所有通流支路的单向换流开关121-12n导通,第P k端口的电流转移至分断支路300的非线性电阻320和辅助耗能支路500a的线性电阻520a中并逐渐下降至零、非第P k端口的其他端口的电流恢复至各自的通流支路中,分闸成功并结束分闸操作。
多端口混合式直流断路器在合闸模式下时,当多端口混合式直流断路器所连接的第P k端口需要接入时,动作过程如下。
第一步:控制分断支路300的单向分断开关310导通。
第二步:若多端口混合式直流断路器未合于故障,则控制第P k端口的通流支路10k的第一快速机械开关11k闭合;若多端口混合式直流断路器合于故障,则控制分断支路300的单向分断开关310关断,合闸失败并结束合闸操作。
第三步:当第P k端口的通流支路10k的第一快速机械开关11k处于合位后,控制分断支路300的单向分断开关310关断,合闸成功并结束合闸操作。
图7是本申请实施例的一种接通于直流电网系统负极时的多端口混合式直流断路器第四拓扑图,相比于图1实施例,本实施例增加了一条辅助耗能支路500b,辅助耗能支路500b包括串联连接的二极管510b和线性电阻520b。
辅助耗能支路500b的一端连接于第一公共母线,另一端连接于大地或金属回线,二极管510b的阳极指向第一公共母线。本实施例多端口混合式直流断路器可在不考虑直流母线故障的场合下应用,多端口混合式直流断路器的工作模式包括正常运行模式、分闸模式、合闸模式。
多端口混合式直流断路器在正常运行模式下,每条通流支路101-10n的第一快速机械开关111-11n和单向换流开关121-12n均处于导通状态,分断支路300的单向分断开关310处于关断状态。
多端口混合式直流断路器在分闸模式下,当多端口混合式直流断路器所连接的第P k端口需要切除时,动作过程如下。
第一步:控制分断支路300的单向分断开关310导通、所有通流支路101-10n的单向换流开关121-12n关断,电流开始通过换向支路201-20n转移至分断支路300的单向分断开关310。
第二步:当所有通流支路101-10n的电流接近于零时,控制第P k端口的通流支路10k的第一快速机械开关11k分闸。
第三步:当第P k端口的通流支路10k的第一快速机械开关11k分开至绝缘电压位置时,控制分断支路300的单向分断开关310关断、所有通流支路的单向换流开关121-12n导通,第P k端口的电流转移至分断支路300的非线性电阻320和辅助耗能支路500的线性电阻520中并逐渐下降至零、非第P k端口的电流恢复至各自的通流支路中,分闸成功并结束分闸操作。
多端口混合式直流断路器在合闸模式下,当多端口混合式直流断路器所连接的第P k端口需要接入时,动作过程如下。
第一步:控制分断支路300的单向分断开关310导通。
第二步:若多端口混合式直流断路器未合于故障,则控制第P k端口的通流支路10k的第一快速机械开关11k闭合;若多端口混合式直流断路器合于故障,则控制分断支路300的单向分断开关310关断,合闸失败并结束合闸操作。
第三步:当第P k端口的通流支路10k的第一快速机械开关11k处于合位后,控制分断支路300的单向分断开关310关断,合闸成功并结束合闸操作。
图8和图9所示的实施例与图7和图8所示的实施例的不同之处在于,多端口混合式直流断路器的可以在设置辅助耗能电路的情况下,增设母线故障保护电路,其中,辅助耗能电路的一端可以连接于第一公共母线,也可以连接于第二公共母线,当辅助耗能电路的一端连接于第二公共母线时,母线故障保护电路连接于第一公共母线与直流母线之间;当辅助耗能电路的一端连接于第一公共母线时,母线故障保护电路连接于第二公共母线与直流母线之间。
图10所示的实施例与图8和图9所示实施例的不同之处在于,母线故障保护支路还包括单向导通开关,该单向导通开关的一端连接于直流母线,另一端连接于未与第二快速机械开关连接的公共母线上。
图8是本申请实施例的一种接通于直流电网系统正极时的多端口混合式直流断路器第五拓扑图,相比于图1实施例,本实施例增加了母线故障保护支路400a和辅助耗能支路500a。
母线故障保护支路400a包括第二快速机械开关410a,第二快速机械开关410a一端连接于直流母线,另一端连接于第一公共母线。辅助耗能支路500a包括串联连接的二极管510a和线性电阻520a,辅助耗能支路500a的一端连接于第二公共母线,另一端连接于大地或金属回线,二极管510a的阴极指向第二公共母线。本实施例多端口混合式直流断路器的工作模式包括正常运行模式、分闸模式、合闸模式和母线故障保护模式。
多端口混合式直流断路器在正常运行模式下,每条通流支路101-10n的第一快速机械开关111-11n和单向换流开关121-12n均处于导通状态,分断支路300的单向分断开关310处于关断状态,母线故障保护支路400a的第二快速机械开关410a均处于关断状态。
多端口混合式直流断路器在分闸模式下,当多端口混合式直流断路器所连接的第P k端口需要切除时,动作过程如下。
第一步:控制分断支路300的单向分断开关310导通、所有通流支路101-10n的单向换流开关121-12n关断,电流开始通过换向支路201-20n转移至分断支路300的单向分断开关310。
第二步:当所有通流支路101-10n的电流接近于零时,控制第P k端口的通流支路10k的第一快速机械开关11k分闸。
第三步:当第P k端口的通流支路10k的第一快速机械开关11k分开至绝缘电压位置时,控制分断支路300的单向分断开关310关断、所有通流支路的单向换流开关121-12n导通,第P k端口的电流转移至分断支路300的非线性电阻320和辅助耗能支路500a的线性电阻520a中并逐渐下降至零、非第P k端口的电流恢复至各自的通流支路中,分闸成功并结束分闸操作。
多端口混合式直流断路器在合闸模式下,当多端口混合式直流断路器所连接的第P k端口需要接入时,动作过程如下。
第一步:控制分断支路300的单向分断开关310导通。
第二步:若多端口混合式直流断路器未合于故障,则控制第P k端口的通流支路10k的第一快速机械开关11k闭合;若多端口混合式直流断路器合于故障,则控制分断支路300的单向分断开关310关断,合闸失败并结束合闸操作。
第三步:当第P k端口的通流支路10k的第一快速机械开关11k处于合位后,控制分断支路300的单向分断开关310关断,合闸成功并结束合闸操作。
多端口混合式直流断路器在母线故障保护模式下,当直流母线或第一公共母线或第二公共母线发生接地故障时,由于直流断路器无法完成母线隔离操作,控制母线故障保护支路400a的第二快速机械开关410a闭合以启动失灵后备保护。
图9是本申请实施例的一种接通于直流电网系统负极时的多端口混合式直流断路器第五拓扑图,相比于图1实施例,本实施例增加了一条母线故障保护支路400b和一条辅助耗能支路500b。
母线故障保护支路400b包括第二快速机械开关410b,第二快速机械开关410b一端连接于直流母线,另一端连接于第二公共母线。辅助耗能支路500b包括串联连接的二极管510b和线性电阻520b。辅助耗能支路500b的一端连接于第一公共母线,另一端连接于大地或金属回线,二极管510b的阳极指向所述第一公共母线。
本实施例多端口混合式直流断路器的工作模式包括正常运行模式、分闸模 式、合闸模式和母线故障保护模式。
多端口混合式直流断路器在正常运行模式下,每条通流支路101-10n的第一快速机械开关111-11n和单向换流开关121-12n均处于导通状态,分断支路300的单向分断开关310处于关断状态,母线故障保护支路400b的第二快速机械开关410b均处于关断状态。
多端口混合式直流断路器在分闸模式下,当多端口混合式直流断路器所连接的第P k端口需要切除时,动作过程如下。
第一步:控制分断支路300的单向分断开关310导通、所有通流支路101-10n的单向换流开关121-12n关断,电流开始通过换向支路201-20n转移至分断支路300的单向分断开关310。
第二步:当所有通流支路101-10n的电流接近于零时,控制第P k端口的通流支路10k的第一快速机械开关11k分闸。
第三步:当第P k端口的通流支路10k的第一快速机械开关11k分开至绝缘电压位置时,控制分断支路300的单向分断开关310关断、所有通流支路的单向换流开关121-12n导通,第P k端口的电流转移至分断支路300的非线性电阻320和辅助耗能支路500b的线性电阻520b中并逐渐下降至零、非第P k端口的电流恢复至各自的通流支路中,分闸成功并结束分闸操作。
多端口混合式直流断路器在合闸模式下,当多端口混合式直流断路器所连接的第P k端口需要接入时,动作过程如下。
第一步:控制分断支路300的单向分断开关310导通。
第二步:若多端口混合式直流断路器未合于故障,则控制第P k端口的通流支路10k的第一快速机械开关11k闭合;若多端口混合式直流断路器合于故障,则控制分断支路300的单向分断开关310关断,合闸失败并结束合闸操作。
第三步:当第P k端口的通流支路10k的第一快速机械开关11k处于合位后,控制分断支路300的单向分断开关310关断,合闸成功并结束合闸操作。
多端口混合式直流断路器在母线故障保护模式下,当直流母线或第一公共母线或第二公共母线发生接地故障时,由于直流断路器无法完成母线隔离操作,控制母线故障保护支路400b的第二快速机械开关410b闭合以启动失灵后备保护。
图10是本申请实施例的一种接通于直流电网系统正极时的多端口混合式直流断路器第六拓扑图,相比于图1实施例,增加了一条母线故障保护支路400c和一条辅助耗能支路500a。
母线故障保护支路400c包括串联连接的第二快速机械开关410c和单向导 通开关420c,第二快速机械开关410c连接于第一公共母线,单向导通开关420c连接于所述第二公共母线,母线故障保护支路400c的中间点连接于直流母线,单向导通开关420c的导通方向为第二公共母线指向直流母线。
辅助耗能支路500a包括串联连接的二极管510a和线性电阻520a,辅助耗能支路500a的一端连接于第二公共母线,另一端连接于大地或金属回线,二极管510a的阴极指向第二公共母线。此外,通流支路101-10n的单向换流开关121-12n的分断电流方向指向直流母线。本实施例多端口混合式直流断路器的工作模式包括正常运行模式、分闸模式、合闸模式和母线故障保护模式。
多端口混合式直流断路器在正常运行模式下,每条通流支路101-10n的第一快速机械开关111-11n和单向换流开关121-12n均处于导通状态,分断支路300的单向分断开关310处于关断状态,母线故障保护支路400b的第二快速机械开关410b和单向导通开关420b均处于关断状态;
多端口混合式直流断路器在分闸模式下,当多端口混合式直流断路器所连接的第P k端口需要切除时,动作过程如下。
第一步:控制分断支路300的单向分断开关310导通、所有通流支路101-10n的单向换流开关121-12n关断,电流开始通过换向支路201-20n转移至分断支路300的单向分断开关310。
第二步:当所有通流支路101-10n的电流接近于零时,控制第P k端口的通流支路10k的第一快速机械开关11k分闸。
第三步:当第P k端口的通流支路10k的第一快速机械开关11k分开至绝缘电压位置时,控制分断支路300的单向分断开关310关断、所有通流支路的单向换流开关121-12n导通,第P k端口的电流转移至分断支路300的非线性电阻320和辅助耗能支路500a的线性电阻520a中并逐渐下降至零、非第P k端口的电流恢复至各自的通流支路中,分闸成功并结束分闸操作。
多端口混合式直流断路器在合闸模式下,当多端口混合式直流断路器所连接的第P k端口需要接入时,动作过程如下。
第一步:控制分断支路300的单向分断开关310导通。
第二步:若多端口混合式直流断路器未合于故障,则控制第P k端口的通流支路10k的第一快速机械开关11k闭合;若多端口混合式直流断路器合于故障,则控制分断支路300的单向分断开关310关断,合闸失败并结束合闸操作。
第三步:当第P k端口的通流支路10k的第一快速机械开关11k处于合位后,控制分断支路300的单向分断开关310关断,合闸成功并结束合闸操作。
多端口混合式直流断路器在母线故障保护模式下,当直流母线接地故障时,动作过程如下。
第一步:控制分断支路300的单向分断开关310导通、母线故障保护支路400c的单向导通开关420c导通、所有通流支路101-10n的单向换流开关121-12n关断,电流开始通过换向支路201-20n转移至分断支路300的单向分断开关310。
第二步:当所有通流支路101-10n的电流接近于零时,控制所有通流支路101-10n的第一快速机械开关111-11n分闸。
第三步:当所有通流支路101-10n的第一快速机械开关111-11n分开至绝缘电压位置时,控制分断支路300的单向分断开关310关断、所有通流支路101-10n的单向换流开关121-12n导通,电流转移至分断支路300的非线性电阻320并下降至零,分闸成功并结束分闸操作。
多端口混合式直流断路器在母线故障保护模式下,当第一公共母线接地故障时,多端口混合式直流断路器无法完成母线隔离操作,将启动失灵后备保护并控制母线故障保护支路400c的第二快速机械开关410c闭合。
多端口混合式直流断路器在母线故障保护模式下,由于多端口混合式直流断路器正常运行模式下母线差动保护不会动作,若此时进行分闸操作则母线差动保护会动作,直流断路器中止分闸操作以启动后备失灵保护。
图11是本申请实施例的一种接通于直流电网系统负极时的多端口混合式直流断路器第六拓扑图。
相比于图1实施例,本实施例增加了一条母线故障保护支路400d和一条辅助耗能支路500b。
母线故障保护支路400d包括串联连接的第二快速机械开关410d和单向导通开关420d,第二快速机械开关410连接于第二公共母线,单向导通开关420d连接于所述第一公共母线,母线故障保护支路400d的中间点连接于直流母线,单向导通开关420d的导通方向为直流母线指向第一公共母线。辅助耗能支路500b包括串联连接的二极管510b和线性电阻520b。
辅助耗能支路500b的一端连接于第一公共母线,另一端连接于大地或金属回线,二极管510b的阳极指向所述第一公共母线。此外,通流支路101-10n的单向换流开关121-12n的分断电流方向指向端口。本实施例多端口混合式直流断路器的工作模式包括正常运行模式、分闸模式、合闸模式和母线故障保护模式。
多端口混合式直流断路器在正常运行模式下,每条通流支路101-10n的第一快速机械开关111-11n和单向换流开关121-12n均处于导通状态,分断支路300的单向分断开关310处于关断状态,母线故障保护支路400d的第二快速机械开关410d和单向导通开关420d均处于关断状态。
多端口混合式直流断路器在分闸模式下,当多端口混合式直流断路器所连接的第P k端口需要切除时,动作过程如下。
第一步:控制分断支路300的单向分断开关310导通、所有通流支路101-10n的单向换流开关121-12n关断,电流开始通过换向支路201-20n转移至分断支路300的单向分断开关310。
第二步:当所有通流支路101-10n的电流接近于零时,控制第P k端口的通流支路10k的第一快速机械开关11k分闸。
第三步:当第P k端口的通流支路10k的第一快速机械开关11k分开至绝缘电压位置时,控制分断支路300的单向分断开关310关断、所有通流支路的单向换流开关121-12n导通,第P k端口的电流转移至分断支路300的非线性电阻320和辅助耗能支路500b的线性电阻520b中并逐渐下降至零、非第P k端口的电流恢复至各自的通流支路中,分闸成功并结束分闸操作。
多端口混合式直流断路器在合闸模式下,当多端口混合式直流断路器所连接的第P k端口需要接入时,动作过程如下。
第一步:控制分断支路300的单向分断开关310导通。
第二步:若未合于故障,则控制第P k端口的通流支路10k的第一快速机械开关11k闭合;若合于故障,则控制分断支路300的单向分断开关310关断,合闸失败并结束合闸操作。
第三步:当第P k端口的通流支路10k的第一快速机械开关11k处于合位后,控制分断支路300的单向分断开关310关断,合闸成功并结束合闸操作。
多端口混合式直流断路器在母线故障保护模式下,当直流母线接地故障时,动作过程如下。
第一步:控制分断支路300的单向分断开关310导通、母线故障保护支路400d的单向导通开关420d导通、所有通流支路101-10n的单向换流开关121-12n关断,电流开始通过换向支路201-20n转移至分断支路300的单向分断开关310。
第二步:当所有通流支路101-10n的电流接近于零时,控制所有通流支路101-10n的第一快速机械开关111-11n分闸。
第三步:当所有通流支路101-10n的第一快速机械开关111-11n分开至绝缘电压位置时,控制分断支路300的单向分断开关310关断、所有通流支路101-10n的单向换流开关121-12n导通,电流转移至分断支路300的非线性电阻320并下降至零,分闸成功并结束分闸操作。
多端口混合式直流断路器在母线故障保护模式下,当第一公共母线接地故障时,多端口混合式直流断路器正常运行模式下母线差动保护不会动作,若此 时进行分闸操作则母线差动保护会动作,直流断路器中止分闸操作并启动后备失灵保护。
多端口混合式直流断路器在母线故障保护模式下,当第二公共母线接地故障时,由于多端口混合式直流断路器无法完成母线隔离操作,控制母线故障保护支路400d的第二快速机械开关410d闭合以失灵后备保护。
图1-图11中,第一快速机械开关111-11n包括串联连接的至少一个机械开关断口,二极管组211-21n,221-22n,510包括串联连接的至少一个二极管。单向换流开关121-12n包括串联连接的至少一个第一开关半导体器件,单向分断开关310包括串联连接的至少一个第二开关半导体器件,其中,第一开关半导体器件和第二开关半导体器件可以相应包括IGBT、IEGT、IGCT、MOSFET中的一种或组合。
需要说明的是,所述第一开关半导体器件是指,应用于单向换流开关和单向分断开关的串联组件,第二开关半导体器件是指,应用于单向导通开关的串联组件,即分别为开关半导体器件,其数量和分布位置根据实际电路结构确定,第一开关半导体器件和第二开关半导体器件均为泛指,并不是对其数量和位置上的限定,其仅仅用于指示不同类别的开关半导体器件。
第一二极管和第二二极管仅仅为对其分布位置上的不同限定,不对其种类和数量作出限定,其实际均为二极管。
单向导通开关420d或420c包括串联连接的至少一个二极管和串联连接的至少一个第三开关半导体器件,二极管和第三开关半导体器件相互串联连接。第三开关半导体器件包括SCR、IGBT、IEGT、IGCT、MOSFET的一种或组合。此外,非线性电阻工程中通常采用避雷器实现。
图12是本申请一实施例的多端口混合式直流断路器的分断开关示意图。在本实施例中,该分断开关可以包括串联连接的多个单向分断开关310和与多个单向分断开关310并联连接的非线性电阻320。
根据本申请实施例的又一个方面,还提供了一种应用前述方法的直流电网系统的故障保护装置,包括多端口混合式直流断路器。
根据本申请实施例的又一个方面,还提供了一种应用前述方法的直流电网系统,包括前述的故障保护装置。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权 利要求为准。

Claims (20)

  1. 一种多端口混合式直流断路器,包括:
    至少两条通流支路,其中,所述至少两条通流支路的每一者均包括串联连接的第一快速机械开关和单向换流开关,所述至少两条通流支路的一端相互连接并构成直流母线,所述至少两条通流支路的每一者的所述单向换流开关的分断电流方向相同;
    至少两条换向支路,其中,所述至少两条换向支路的每一者均包括同向串联连接的二极管上桥臂和二极管下桥臂,所述至少两条通流支路的另一端相应地连接于对应的换向支路的二极管上桥臂和二极管下桥臂之间的中间点,以构成端口;以及
    分断支路,所述分断支路包括并联连接的单向分断开关和非线性电阻,其中,所述分断支路和所述至少两条换向支路相互并联连接并在并联连接的两端分别构成第一公共母线和第二公共母线,所述分断支路的所述单向分断开关的分断电流方向为所述第一公共母线指向所述第二公共母线的方向,所述至少两条换向支路的所述二极管上桥臂的阴极均连接于所述第一公共母线,以及所述换向支路的所述二极管下桥臂的阳极均连接于所述第二公共母线。
  2. 如权利要求1所述的多端口混合式直流断路器,还包括:
    母线故障保护支路,包括第二快速机械开关,
    其中,所述第二快速机械开关的一端连接于所述直流母线,另一端连接于所述第一公共母线;或
    所述第二快速机械开关的一端连接于所述直流母线,另一端连接于所述第二公共母线。
  3. 如权利要求1所述的多端口混合式直流断路器,还包括:
    母线故障保护支路,包括串联连接的第二快速机械开关和单向导通开关,所述母线故障保护支路的两端分别连接于所述第一公共母线和所述第二公共母线,所述母线故障保护支路的所述第二快速机械开关和所述单向导通开关之间的中间点连接于所述直流母线;以及
    其中,所述第二快速机械开关的一端连接于所述第一公共母线,且所述单向导通开关的一端连接于所述第二公共母线,所述单向导通开关的导通方向为所述第二公共母线指向所述直流母线的方向,所述通流支路的所述单向换流开关的分断电流方向为指向所述直流母线的方向;或
    所述第二快速机械开关的一端连接于所述第二公共母线,所述单向导通开关的一端连接于所述第一公共母线,所述单向导通开关的导通方向为所述直流母线指向所述第一公共母线的方向,所述通流支路的所述单向换流开关的分断电流方向为指向所述端口的方向。
  4. 如权利要求1所述的多端口混合式直流断路器,其中,
    所述单向导通开关包括串联连接的至少一个二极管和串联连接的至少一个第三开关半导体器件,且所述至少一个二极管和所述至少一个第三开关半导体器件相互串联。
  5. 如权利要求4所述的多端口混合式直流断路器,其中,
    所述第三开关半导体器件包括SCR、IGBT、IEGT、IGCT或MOSFET的至少一种。
  6. 如权利要求1至5中任一项所述的多端口混合式直流断路器,还包括:
    辅助耗能支路,包括串联连接的二极管组和线性电阻;以及
    其中,当所述第二快速机械开关的一端连接于所述直流母线,另一端连接于所述第一公共母线时,所述辅助耗能支路的一端连接于所述第二公共母线,所述辅助耗能支路的另一端连接于大地或金属回线,其中,所述二极管组的阴极连接于所述第二公共母线;或
    当所述第二快速机械开关的一端连接于所述直流母线,另一端连接于所述第二公共母线时,所述辅助耗能支路的一端连接于所述第一公共母线,所述辅助耗能支路的另一端连接于大地或金属回线,所述二极管组的阳极连接于所述第一公共母线。
  7. 如权利要求6所述的多端口混合式直流断路器,其中,所述二极管组包括串联连接的至少一个二极管。
  8. 如权利要求1至7中任一项所述的多端口混合式直流断路器,其中,
    所述第一快速机械开关包括串联连接的至少一个机械开关断口;和/或
    所述第二快速机械开关包括串联连接的至少一个机械开关断口。
  9. 如权利要求1至7中任一项所述的多端口混合式直流断路器,其中,
    所述单向换流开关包括串联连接的至少一个第一开关半导体器件;和/或
    所述单向分断开关包括串联连接的至少一个第二开关半导体器件。
  10. 如权利要求9所述的多端口混合式直流断路器,其中,
    所述第一开关半导体器件和所述第二开关半导体器件包括IGBT、IEGT、IGCT或MOSFET中的至少一种。
  11. 如权利要求1所述的多端口混合式直流断路器,其中,
    所述二极管上桥臂包括串联连接的至少一个二极管;以及
    所述二极管下桥臂包括串联连接的至少一个二极管。
  12. 一种如权利要求1至11中任一项所述的多端口混合式直流断路器的控制方法,包括:
    基于所述多端口混合式直流断路器的工作模式,控制通流支路、换向支路和分断支路的通断,所述工作模式包括正常运行模式、分闸模式和合闸模式。
  13. 如权利要求12所述的方法,其中,所述方法还包括:
    所述多端口混合式直流断路器处于所述正常运行模式下时,控制每条所述通流支路处于导通状态,所述分断支路处于关断状态;以及
    当所述多端口混合式直流断路器还包括母线故障保护支路时,所述方法还包括:
    所述多端口混合式直流断路器处于所述正常运行模式下时,控制所述母线故障保护支路处于关断状态。
  14. 如权利要求12所述的方法,其中,所述方法还包括:
    所述多端口混合式直流断路器处于所述分闸模式下,当所述多端口混合式直流断路器所连接的端口需要切除时,控制所述分断支路的单向分断开关导通、所有所述通流支路的单向换流开关关断,电流开始通过所述换向支路转移至所述分断支路的所述单向分断开关;
    当所有所述通流支路的电流接近于零时,控制被需要切除的所述端口所处的通流支路的第一快速机械开关分闸;
    当被切除的所述端口所处的所述通流支路的所述第一快速机械开关,分开至绝缘电压位置时,控制所述分断支路的所述单向分断开关关断、所有所述通流支路的所述单向换流开关导通,并控制被需要切除的所述端口的电流,以转移至分断支路的非线性电阻以及辅助耗能支路的线性电阻中,以及当被切除的所述端口的所述电流逐渐下降至零时,除被需要切除的所述端口之外的其他端口的电流恢复至各自的通流支路中,分闸成功并结束分闸操作。
  15. 如权利要求12所述的控制方法,其中,所述方法还包括:
    所述多端口混合式直流断路器处于所述合闸模式下,且当与所述多端口混合式直流断路器所连接的端口需要接入时,控制所述分断支路的单向分断开关导通;以及
    其中,若所述多端口混合式直流断路器未合于故障,则控制需要接入的所述端口所处的通流支路的第一快速机械开关闭合;以及
    当需要接入的所述端口所处的所述通流支路的所述第一快速机械开关处于合位后,控制所述分断支路的单向分断开关关断,合闸成功并结束合闸操作。
  16. 如权利要求15所述的控制方法,其中,所述方法还包括:
    若所述多端口混合式直流断路器合于故障,则控制所述分断支路的所述单向分断开关关断,合闸失败并结束合闸操作。
  17. 如权利要求12所述的控制方法,其中,
    所述多端口混合式直流断路器还包括母线故障保护支路,所述工作模式还包括:
    母线故障保护模式,所述多端口混合式直流断路器处于所述母线故障保护模式下,基于故障类型进行控制,以及所述方法还包括:
    所述故障类型为所述直流母线接地故障时,控制所述分断支路的单向分断开关导通、所述母线故障保护支路的单向导通开关导通、所有所述通流支路的单向换流开关关断,电流开始通过所述换向支路转移至所述分断支路的所述单向分断开关;
    当所有所述通流支路的电流接近于零时,控制所有所述通流支路的所述第一快速机械开关分闸;以及
    当所有所述通流支路的所述第一快速机械开关分开至绝缘电压位置时,控制所述分断支路的所述单向分断开关关断、所有所述通流支路的所述单向换流开关导通,电流转移至所述分断支路的非线性电阻,当所述电流下降至零时,分闸成功并结束分闸操作。
  18. 如权利要求17所述的控制方法,其中,
    所述故障类型为所述多端口混合式直流断路器接通于直流电网系统的正极且第一公共母线发生接地故障时,所述多端口混合式直流断路器无法完成母线隔离操作,并控制所述母线故障保护支路的第二快速机械开关闭合以启动失灵后备保护;
    所述故障类型为多端口混合式直流断路器接通于直流电网系统的负极且第二公共母线发生接地故障时,所述多端口混合式直流断路器无法完成母线隔离操作,控制所述母线故障保护支路的第二快速机械开关闭合以启动失灵后备保护;
    所述故障类型为多端口混合式直流断路器接通于直流电网系统的正极且第二公共母线发生接地故障时,所述多端口混合式直流断路器在所述正常运行模式下的母线差动保护不会动作,若此时进行所述分闸操作则触发所述母线差动保护,且所述多端口混合式直流断路器中止所述分闸操作并启动后备失灵保护;和/或
    所述故障类型为多端口混合式直流断路器接通于直流电网系统的负极且第一公共母线发生接地故障时,所述多端口混合式直流断路器在所述正常运行模式下的母线差动保护不会动作,若此时进行所述分闸操作则触发所述母线差动保护,且所述多端口混合式直流断路器中止所述分闸操作并启动后备失灵保护。
  19. 一种直流电网系统的故障保护装置,包括权利要求1至18中任一项所述的多端口混合式直流断路器。
  20. 一种直流电网系统,包括权利要求19所述的故障保护装置。
PCT/CN2022/078134 2021-03-03 2022-02-28 多端口混合式直流断路器、装置、系统及其控制方法 WO2022183996A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22762461.6A EP4254701A1 (en) 2021-03-03 2022-02-28 Multiport hybrid direct-current circuit breaker, apparatus, system, and control method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110234171.0 2021-03-03
CN202110234171.0A CN115036891A (zh) 2021-03-03 2021-03-03 多端口混合式直流断路器及其控制方法

Publications (1)

Publication Number Publication Date
WO2022183996A1 true WO2022183996A1 (zh) 2022-09-09

Family

ID=83118466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/078134 WO2022183996A1 (zh) 2021-03-03 2022-02-28 多端口混合式直流断路器、装置、系统及其控制方法

Country Status (3)

Country Link
EP (1) EP4254701A1 (zh)
CN (1) CN115036891A (zh)
WO (1) WO2022183996A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116581722A (zh) * 2023-06-20 2023-08-11 三峡电能有限公司 一种用于潮流控制及直流断路控制的一体装置及控制方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116131207B (zh) * 2023-01-28 2023-12-15 浙江大学 一种基于广义h桥电路的混合式直流断路器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018036054A (ja) * 2016-08-29 2018-03-08 永楽電気株式会社 地絡検出装置、地絡保護装置、及び、地絡検出方法。
CN109193580A (zh) * 2018-09-12 2019-01-11 山东大学 一种限流式快速重合闸直流断路器拓扑结构及控制方法
CN109193625A (zh) * 2018-09-11 2019-01-11 华南理工大学 一种新型组合式直流断路器拓扑
CN110048377A (zh) * 2019-03-28 2019-07-23 山东大学 适用于直流配电网的多端口混合式直流断路器及控制方法
CN111509663A (zh) * 2020-04-10 2020-08-07 中国南方电网有限责任公司超高压输电公司检修试验中心 一种二极管桥式多端口混合式直流断路器及其控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018036054A (ja) * 2016-08-29 2018-03-08 永楽電気株式会社 地絡検出装置、地絡保護装置、及び、地絡検出方法。
CN109193625A (zh) * 2018-09-11 2019-01-11 华南理工大学 一种新型组合式直流断路器拓扑
CN109193580A (zh) * 2018-09-12 2019-01-11 山东大学 一种限流式快速重合闸直流断路器拓扑结构及控制方法
CN110048377A (zh) * 2019-03-28 2019-07-23 山东大学 适用于直流配电网的多端口混合式直流断路器及控制方法
CN111509663A (zh) * 2020-04-10 2020-08-07 中国南方电网有限责任公司超高压输电公司检修试验中心 一种二极管桥式多端口混合式直流断路器及其控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116581722A (zh) * 2023-06-20 2023-08-11 三峡电能有限公司 一种用于潮流控制及直流断路控制的一体装置及控制方法
CN116581722B (zh) * 2023-06-20 2024-01-23 三峡电能有限公司 一种用于潮流控制及直流断路控制的一体装置及控制方法

Also Published As

Publication number Publication date
EP4254701A1 (en) 2023-10-04
CN115036891A (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
US9634476B1 (en) Apparatus for breaking line bidirectional current and control method thereof
WO2022183996A1 (zh) 多端口混合式直流断路器、装置、系统及其控制方法
CN110021919B (zh) 集约型桥式多端口混合直流断路器及控制方法
CN109687405B (zh) 一种多端口组合型混合式直流断路器及控制方法
US9362734B2 (en) Apparatus for limiting current of line or breaking current, and control method thereof
WO2017181928A1 (zh) 一种桥式电路、直流电流分断装置及其控制方法
CN109510178B (zh) 一种二极管钳位式多端口直流断路器及其动作时序
WO2020191847A1 (zh) 一种环形桥式多端口混合直流断路器
CN114172135B (zh) 一种适用于多端直流电网的双主断型多端口混合直流断路器
CN105356411A (zh) 一种桥式电路、高压直流断路器及其控制方法
CN111509663A (zh) 一种二极管桥式多端口混合式直流断路器及其控制方法
WO2014117608A1 (zh) 一种使线路电流分断的装置及其控制方法
CN112865040A (zh) 多端口直流断路器及其控制方法
Jovcic et al. Bidirectional hybrid HVDC CB with a single HV valve
WO2022183696A1 (zh) 一种多功能多端口混合式直流断路器及控制方法
CN107846211A (zh) 主通路串联固态开关的混合式开关
CN208094430U (zh) 一种换流器保护电路
CN110034545A (zh) 一种桥式多端口固态直流断路器
CN210201475U (zh) 一种直流电网潮流可控型多端口直流断路器
CN114583670B (zh) 一种星型联结转移支路的多端口直流断路器及使用方法
CN112968420B (zh) 一种晶闸管型混合式直流断路器及其控制方法
CN214314550U (zh) 多端口直流断路器
CN214314553U (zh) 一种电流注入式直流断路器
CN214314549U (zh) 直流断路器
CN114597874A (zh) 基于转移支路复用的混合式多端口断路器及控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22762461

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022762461

Country of ref document: EP

Effective date: 20230629

NENP Non-entry into the national phase

Ref country code: DE