WO2022183813A1 - 定位参数确定方法、装置、计算机设备和存储介质 - Google Patents

定位参数确定方法、装置、计算机设备和存储介质 Download PDF

Info

Publication number
WO2022183813A1
WO2022183813A1 PCT/CN2021/140022 CN2021140022W WO2022183813A1 WO 2022183813 A1 WO2022183813 A1 WO 2022183813A1 CN 2021140022 W CN2021140022 W CN 2021140022W WO 2022183813 A1 WO2022183813 A1 WO 2022183813A1
Authority
WO
WIPO (PCT)
Prior art keywords
deviation
antenna
array antenna
arrival
target
Prior art date
Application number
PCT/CN2021/140022
Other languages
English (en)
French (fr)
Inventor
潘孟冠
齐望东
黄永明
尤肖虎
刘升恒
徐海鹏
李艳
Original Assignee
网络通信与安全紫金山实验室
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 网络通信与安全紫金山实验室 filed Critical 网络通信与安全紫金山实验室
Publication of WO2022183813A1 publication Critical patent/WO2022183813A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • H04B17/12Monitoring; Testing of transmitters for calibration of transmit antennas, e.g. of the amplitude or phase
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/21Monitoring; Testing of receivers for calibration; for correcting measurements

Definitions

  • the base station needs to measure the positioning parameters such as the angle of arrival (Angle of Arrival, AoA) > the angle of departure (Angle of Departure, AoD) of the positioning signal sent by the terminal, and then based on the measured
  • the positioning parameter calculates the position of the terminal, therefore, the accuracy of the positioning parameter determines the positioning accuracy.
  • the method includes: acquiring a positioning signal sent by a terminal based on a target array antenna; determining a preset target space-frequency flow pattern matrix corresponding to the target array antenna ; wherein, the target space-frequency flow pattern matrix is obtained by using the phase deviation matrix corresponding to the target array antenna to pre-correct the ideal space-frequency flow pattern matrix corresponding to the target array antenna; the phase deviation matrix is obtained according to Determined by the phase deviations of the target array antenna measured at multiple different spatial angles of arrival and multiple different frequencies, the ideal space-frequency flow pattern matrix is used to characterize that each antenna element of the target array antenna is in a preset array.
  • an embodiment of the present application provides an apparatus for determining positioning parameters.
  • the apparatus includes: a first obtaining module, configured to obtain a positioning signal sent by a terminal based on a target array antenna; a determining module, configured to determine a preset and all The target space-frequency flow pattern matrix corresponding to the target array antenna; wherein, the target space-frequency flow pattern matrix is obtained by using the phase deviation matrix corresponding to the target array antenna to perform the ideal space-frequency flow pattern matrix corresponding to the target array antenna.
  • the phase deviation matrix is determined according to the phase deviations measured by the target array antenna at multiple different spatial angles of arrival and multiple different frequencies, and the ideal space-frequency flow pattern matrix is used to characterize the Spatial frequency response of each antenna element of the target array antenna within the preset array coverage; an extraction module for extracting the spatial arrival corresponding to the positioning signal by using the target space-frequency flow pattern matrix and the positioning signal.
  • the estimated angle value and the estimated delay value, the estimated value of the spatial angle of arrival and the estimated value of delay are used as positioning parameters to position the terminal.
  • an embodiment of the present application provides a computer device, including a memory and a processor, wherein the memory stores a computer program, and when the processor executes the computer program, the method for determining the positioning parameter of the first aspect described above is implemented. step.
  • an embodiment of the present application provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, implements the steps of the method for determining a positioning parameter in the first aspect above.
  • FIG. 1 is an application environment diagram of a method for determining positioning parameters in one embodiment
  • FIG. 2 is a schematic flowchart of a method for determining positioning parameters in one embodiment
  • FIG. 3 is a schematic flowchart for obtaining a phase deviation matrix in another embodiment
  • 4 is a schematic flowchart of step 302 in another embodiment
  • Fig. 5 is a schematic flowchart of step 302 in another embodiment
  • Fig. 6 is a schematic flowchart of obtaining an ideal air-frequency flow moment in another embodiment
  • Fig. 7 is a graph of experimental results in one embodiment
  • Fig. 8 is another implementation
  • Fig. 9 is a graph of experimental results in another embodiment
  • Fig. 10 is a graph of experimental results in another embodiment
  • FIG. 11 is a structural block diagram of a positioning parameter determination device in an embodiment
  • Fig. 12 is an embodiment The internal structure diagram of the computer equipment in the example.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to make the objectives, technical solutions and advantages of the present application clearer, the present application will be further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present application, but not to limit the present application.
  • the positioning parameter determination method, device, computer equipment, and storage medium provided in the embodiments of the present application aim to improve the accuracy of the positioning parameters in the terminal positioning process, thereby improving the positioning accuracy of the terminal.
  • the method for determining positioning parameters provided by the embodiments of the present application may be applied to the implementation environment shown in FIG. 1 .
  • the implementation environment may include a terminal 101 and a base station 102 .
  • the base station 102 may communicate with the terminal 101 through a wireless network.
  • the terminal 101 may be a personal computer, a notebook computer, a media player, a smart TV, a smart phone, a tablet computer, a portable wearable device, or the like, and the embodiment of the present application does not specifically limit the type of the terminal 101.
  • a method for determining positioning parameters is provided, and the method is applied to the base station in FIG. 1 as an example for description, including the following steps: Step 201, the base station acquires a terminal based on a target array antenna The positioning signal sent.
  • the array antenna is composed of at least two antenna elements arranged regularly or randomly.
  • one or more array antennas may be configured in the base station, and the target array antenna may be any array antenna configured by the base station.
  • the terminal sends a sounding reference signal in the time domain to the base station, and after receiving the sounding reference signal through the target array antenna, the base station converts it from the time domain to the frequency domain to obtain a frequency domain multi-carrier The base station continues to preprocess the frequency domain multi-carrier signal to obtain a positioning signal.
  • the base station preprocesses the frequency-domain multi-carrier signal, which may be to perform vectorization processing on the frequency-domain multi-carrier signal to obtain a signal vector, and use the signal vector as a positioning signal; optionally, after the base station obtains the signal vector, It is also possible to perform subcarrier extraction on the signal vector according to a preset subcarrier extraction rate, so as to reduce the dimension of the signal vector and obtain a positioning signal.
  • the base station determines a preset target space-frequency flow pattern matrix corresponding to the target array antenna. In the embodiment of the present application, each array antenna is preset with a corresponding space-frequency flow pattern matrix.
  • the space-frequency flow pattern matrix corresponding to the array antenna can cancel the phase deviation brought by the array antenna in the positioning signal received by the array antenna.
  • the base station stores the mapping relationship between each array antenna of the base station and the corresponding space-frequency flow pattern matrix. After the base station obtains the positioning signal sent by the terminal through the target array antenna, it can use the mapping relationship , and determine the target space-frequency flow pattern matrix corresponding to the target array antenna.
  • the target space-frequency flow pattern matrix is obtained by pre-correcting the ideal space-frequency flow pattern matrix corresponding to the target array antenna by using the phase deviation matrix corresponding to the target array antenna, and the ideal space-frequency flow pattern matrix is used to represent the The spatial frequency response of each antenna element of the target array antenna at each spatial angle of arrival and each frequency within the preset array coverage.
  • the base station can use the following formula 1 to pre-correct the ideal space-frequency flow pattern matrix to obtain the target space-frequency flow pattern matrix: Equation Among them, is the ideal empty frequency flow pattern matrix corresponding to the target array antenna, 1 is the phase deviation matrix corresponding to the target array antenna, ⁇ is the delay time, Arrival angle of space.
  • the phase deviation matrix is determined according to phase deviations measured by the target array antenna at multiple different spatial angles of arrival and at multiple different frequencies, where the spatial angle of arrival represents the angle between the incident direction of the signal and the normal direction of the array antenna.
  • the embodiment of the present application by actually measuring the phase deviation of the target array antenna at a plurality of different spatial angles of arrival, the phase deviation matrix takes into account each For the real phase deviations of different spatial angles of arrival, compared with only considering the phase deviations in a single direction, or only by defaulting that the phase deviations in different directions are the same, the embodiment of the present application improves the accuracy of the phase deviation matrix.
  • many communication systems such as 5G, Wi-Fi, and UWB
  • OFDM Orthogonal frequency division multiplexing
  • OFDM Orthogonal Frequency Division Multiplexing
  • the sounding reference signal in the time domain sent by the terminal to the base station is a large-bandwidth signal, that is, a multi-carrier signal, and the phase deviation of the target array antenna is also different at each frequency. Therefore, in this embodiment of the present application, by actually measuring the target array antenna Phase deviations at multiple different frequencies, so that the phase deviation matrix considers the real phase deviations of different frequencies, compared to not considering the phase deviations caused by different frequencies, or only defaulting to the same phase deviations at different frequencies, The embodiments of the present application improve the accuracy of the phase deviation matrix.
  • Step 203 the base station uses the target space-frequency flow pattern matrix and the positioning signal to extract and obtain the estimated value of the angle of arrival in space and the estimated value of delay corresponding to the positioning signal, and the estimated value of the spatial angle of arrival and the estimated value of delay are used as positioning parameters to carry out the terminal.
  • Location targeting the base station may implement the process of step 203 by performing the following step A1: Step A1, the base station performs space-frequency two-dimensional processing on the target space-frequency flow pattern matrix and the positioning signal to obtain an estimated value of the spatial angle of arrival and delay estimates.
  • the space-frequency two-dimensional processing includes at least one of multiple signal classification processing and matched filtering processing.
  • the base station can use the target space-frequency flow pattern matrix to perform matched filtering on the positioning signal, and obtain the angle-delay two-dimensional spectrum y: y / ' ⁇ H2 (A factory x where, is the target space-frequency flow pattern matrix, and X is the base station based on The target array antenna obtains the positioning signal sent by the terminal.
  • the base station rearranges y according to each delay and each spatial angle of arrival to obtain a matrix Y, and detects the peak points in the matrix Y to obtain the space corresponding to the positioning signal.
  • the estimated value of the angle of arrival and the estimated value of delay is the target space-frequency flow pattern matrix.
  • the base station can accurately locate the terminal based on the estimated value of the angle of arrival in space and the estimated value of delay.
  • the above embodiment determines the preset by acquiring the positioning signal sent by the terminal based on the target array antenna.
  • the target space-frequency flow pattern matrix corresponding to the target array antenna because the target space-frequency flow pattern matrix is obtained by using the phase deviation matrix corresponding to the target array antenna to pre-correct the ideal space-frequency flow pattern matrix corresponding to the target array antenna , the ideal space-frequency flow pattern matrix is used to characterize the spatial frequency response of each antenna element of the target array antenna within the preset array coverage.
  • the target space-frequency flow pattern matrix can cancel the phase deviation caused by the target array antenna in the positioning signal, that is, the phase deviation matrix can be used for the positioning signal.
  • the phase deviation is compensated to realize the correction of the phase deviation of the target array antenna, so as to improve the accuracy of the estimated value of the spatial angle of arrival and the estimated value of delay.
  • the phase deviation matrix is based on the target array antenna. in multiple different spatial angles of arrival and multiple different frequencies It is determined by the phase deviation measured at different frequencies.
  • the data dimension of the phase deviation matrix is more abundant, which is conducive to improving the data reliability of the phase deviation matrix, and can further improve the estimated value of the spatial angle of arrival and Accuracy of delay estimates.
  • the estimated value of the spatial angle of arrival and the estimated value of delay are used as positioning parameters to position the terminal, so that the positioning accuracy of the terminal can be improved.
  • a Wi-Fi access point (AP) or a UWB base station with a small number of array elements joint processing in the air domain and frequency domain can greatly improve the ability to distinguish multipath signals.
  • this embodiment relates to a process of acquiring a phase deviation matrix.
  • the acquisition process of the phase deviation matrix includes step 301, step 302 and step 303:
  • the base station acquires each spatial angle of arrival of the target array antenna within the preset array coverage and the phase deviation measured at each frequency .
  • the phase deviation can be measured by means of darkroom measurement, active on-site measurement, numerical calculation using electromagnetic simulation software, etc., and the specific method of measuring the phase deviation is not limited herein. Taking the darkroom measurement as an example, after setting each spatial arrival angle and each frequency within the array coverage of the target array antenna, for a spatial arrival angle, keep the angle between the incident direction of the known signal and the normal direction of the target array antenna.
  • the phase deviation may include antenna element deviation, radio frequency channel deviation, and connection component deviation.
  • the deviation of the antenna array element includes the spatial angle of arrival of each antenna element within the preset array coverage and the phase deviation measured at each frequency;
  • the radio frequency channel deviation includes the radio frequency channel corresponding to the target array antenna within the preset array coverage.
  • connection component deviation includes the phase deviation measured at each frequency within the preset array coverage of the connection component corresponding to the target array antenna; that is, the antenna element deviation is related to both the angle and the frequency,
  • the RF channel deviation, as well as the connecting component deviation, are related only to frequency.
  • the base station obtains the antenna element deviation, radio frequency channel deviation and connection component deviation measured at each spatial angle of arrival and each frequency of the target array antenna within the preset array coverage.
  • Step 302 the base station obtains the array deviation factor corresponding to the target array antenna according to the phase deviation.
  • the base station can obtain the antenna deviation factor by substituting the antenna element deviation into Equation 2
  • the base station can obtain the RF channel deviation factor by substituting the radio frequency channel deviation into Equation 2
  • the base station can obtain the connection assembly deviation factor by substituting the connection component deviation into Equation 2.
  • the base station fuses the antenna deviation factor, the radio frequency channel deviation factor and the connection component deviation factor to obtain the array deviation factor.
  • step 302 in order to avoid that the measured phase deviation cannot cover all spatial angles of arrival and all frequencies within the array coverage of the target array antenna, before obtaining the array deviation factor, firstly perform interpolation on the phase deviation , so that the interpolated phase deviation can cover all spatial angles of arrival and all frequencies within the array coverage of the target array antenna, and then the array deviation factor is obtained based on the interpolated phase deviation.
  • step 302 may include steps 3021, 3022, 3023 and 3024 shown in FIG. 4: Step 3021, the base station obtains the set of spatial sampling points and the number of sub-bands corresponding to the target array antenna.
  • the spatial sampling point set includes multiple sampling angles of arrival, and each sampling angle of arrival is obtained by uniformly sampling all the spatial angles of arrival in the range of the angle of arrival corresponding to the target array antenna.
  • the range of the angle of arrival of the target array antenna may be determined according to the antenna pattern parameters of the target array antenna. Assuming the range of the angle of arrival of the target array antenna, the base station can use a preset sampling rate (for example, using uniform grid), for the angle of arrival angle range All spatial arrival angles in are uniformly sampled,
  • the angle range of the angle of arrival is the set of sampling points in the spatial domain, it can be
  • the base station determines the minimum processing frequency interval A/ of the current communication system.
  • Step 3022 the base station performs interpolation processing on the antenna element deviation according to the spatial sampling point set and the number of sub-bands to obtain the interpolated antenna element deviation, and according to the number of sub-bands, the radio frequency channel deviation is respectively Interpolate with the deviation of the connection components to obtain the interpolated radio frequency channel deviation and the interpolated connection component deviation.
  • the phase interpolation processing may adopt linear interpolation, cubic interpolation, or cubic spline interpolation, etc.
  • the base station obtains the antenna deviation factor according to the interpolated antenna element deviation, obtains the radio frequency channel deviation factor according to the interpolated radio frequency channel deviation, and obtains the connection component deviation factor according to the interpolated connection component deviation.
  • the antenna element deviation after interpolation is used to represent the RF channel deviation after interpolation.
  • the base station can use the above formula 2, according to the antenna element deviation after interpolation j Get the antenna deviation factor
  • the base station fuses the antenna deviation factor, the radio frequency channel deviation factor and the connection component deviation factor to obtain the array deviation factor.
  • the base station can use the following formula 3 to fuse the antenna deviation factor, the radio frequency channel deviation factor and the connection component deviation factor: 3
  • Step 303 the base station performs matrix processing on the array deviation factor to obtain a phase deviation matrix.
  • phase deviation matrix ⁇ is expressed as follows in,
  • the base station obtains the phase deviation matrix.
  • the number of angle measurement points is smaller than the dimension of the spatial sampling point set, and the number of frequency measurement points is smaller than the number of sub-bands, and in order to avoid that the measured phase deviation cannot cover the array of the target array antenna
  • the array deviation factor first interpolate the measured phase deviation, so that the interpolated phase deviation can cover all the spatial angles of arrival within the array coverage of the target array antenna and all frequencies, so that the accuracy of the phase deviation matrix can be improved, thereby improving the accuracy of the estimated value of the spatial angle of arrival and the estimated value of the delay corresponding to the positioning signal.
  • this embodiment involves a process of phase unwrapping for the phase deviation.
  • this embodiment further includes step 3025:
  • the base station performs phase dewinding processing on the deviation of the antenna element, the deviation of the radio frequency channel, and the deviation of the connection component respectively, and obtains the first deviation corresponding to the deviation of the antenna element.
  • the purpose of phase de-wrapping is to prevent phase folding of the phase measurement data of adjacent frequency points or adjacent angles, resulting in large errors in phase interpolation.
  • the phase dewinding process is as follows:
  • the deviation of the antenna array element involves the unwinding in the frequency and the angle dimension, and the cascade processing method can be used. For example, the frequency dimension unwinding is performed first, and then the angle dimension unwinding is performed. The frequency dimension unwinding is handled in the same way as described above.
  • the base station can implement the process of step 3022 by performing steps 3022a, 3022b, and 3022c: Step 3022a, the base station performs interpolation processing on the first deviation according to the set of spatial sampling points and the number of sub-bands to obtain the interpolated antenna array deviation. Step 3022b, the base station performs interpolation processing on the second deviation according to the number of sub-bands to obtain the interpolated radio frequency channel deviation. Step 3022c, the base station performs interpolation processing on the third deviation according to the number of sub-bands to obtain the interpolated connection component deviation.
  • the base station performs phase dewinding processing on the antenna array element deviation, radio frequency channel deviation and connection component deviation respectively, and then interpolates the antenna array element deviation, the radio frequency channel deviation and the connection component deviation after phase dewinding, and then according to the interpolation
  • Obtain the antenna deviation factor according to the deviation of the antenna array element obtain the deviation factor of the radio frequency channel according to the deviation of the radio frequency channel after interpolation, obtain the deviation factor of the connection component according to the deviation of the connection component after interpolation, and combine the deviation factor of the antenna deviation factor, the deviation factor of the radio frequency channel and the deviation factor of the connection component Fusion is performed to obtain the array deviation factor, which can prevent phase folding of the phase measurement data of adjacent frequency points or adjacent angles, resulting in phase interpolation
  • the accuracy of the array deviation factor is improved, thereby improving the accuracy of the phase deviation matrix.
  • this embodiment involves the process of acquiring the ideal space-frequency flow pattern moment.
  • the process includes steps 601 and 602:
  • the base station obtains a time-domain sampling point set corresponding to the target array antenna, and the time-domain sampling point set includes multiple sampling delay values, and each sampling delay value is It is obtained by uniformly sampling all the delay values in the delay range corresponding to the target array antenna.
  • the base station may acquire the reception sensitivity parameter of the base station, and determine the delay range of the target array antenna based on the reception sensitivity parameter; the base station uniformly samples all the delay values in the delay range based on the preset sampling rate, to obtain A collection of sampling points in the time domain. is the delay range of the target array antenna, the base station can be based on a preset sampling rate (for example, using a uniform grid
  • the base station obtains the set of spatial sampling points corresponding to the target array antenna, and generates an ideal space-frequency flow pattern matrix based on the set of spatial sampling points and the set of time domain sampling points.
  • the base station can acquire the antenna pattern parameters of the target array antenna, and determine the angle of arrival angle range of the target array antenna according to the antenna pattern parameters; The corners are uniformly sampled to obtain a set of spatial sampling points.
  • the base station can be based on the preset Sampling rate (e.g. using a uniform grid) for the full spatial AOA in gftiss 1 for this AOA range [min ;
  • IL 60° 60° 1 line is uniformly sampled to obtain a set of sampling points in the spatial domain.
  • the angle of arrival angle is in the range of 1 ? ]
  • the set of sampling points in the spatial domain can be
  • the set of sampling points in the airspace covers all the spatial angles of arrival within the range of the angle of arrival.
  • the Gangxin Department still relies on the vector points to persuade , assuming that n 3 ( ) the target array antenna is a linear array, and the angle between the incident direction of the signal and the normal direction of the array is defined as ⁇ , the element of the spatial matching vector & is , where is the distance between the first antenna element and the first antenna element,
  • A is the wavelength.
  • the space-frequency two-dimensional matching vector is a binary matching vector function of delay r and spatial arrival angle 0.
  • an ideal space-frequency flow pattern matrix (the matrix dimension is NM ⁇ PQ) can be established, as follows: In this way, the ideal space-frequency manifold matrix is obtained.
  • the base station uses the phase deviation matrix corresponding to the target array antenna to pre-correct the ideal space-frequency flow pattern matrix corresponding to the target array antenna, and obtains the target space-frequency flow pattern matrix corresponding to the target array antenna and presets it in the database.
  • the preset target space-frequency flow pattern matrix corresponding to the target array antenna can be directly determined, and the spatial angle of arrival corresponding to the positioning signal can be extracted by using the target space-frequency flow pattern matrix and the positioning signal.
  • the estimated value and the estimated delay value are used to realize accurate and rapid extraction of the estimated value of the spatial angle of arrival and the estimated value of delay corresponding to the positioning signal.
  • the phase correction effect of the positioning signal in the embodiment of the present application will be described by taking a 5G positioning system whose communication system is the 2.565 GHz frequency band as an example.
  • the Sounding Reference Signal (SRS) in the 5G R16 standard is used as the positioning signal.
  • the sub-carrier spacing is 60 kHz
  • the number of occupied sub-bands is 1632
  • the number of antenna elements is 4, and the spacing between antenna elements is 5.8 cm.
  • the following uses the active test data in the darkroom to verify the correction effect of the embodiment of the present application on the phase deviation in the positioning signal, collects the received data of -60° ⁇ +60°, and collects 5(8) SRS symbols at each angle.
  • the first type is the antenna deviation that does not consider the angle dependence, and only compensates the angle-independent active RF channel deviation and passive deviations such as cables and connectors;
  • the second type is to perform phase compensation on the positioning signal according to the phase deviation of the corresponding signal incident direction, assuming that the angle of the incident signal is known.
  • the comparison criterion used is: After the phase deviation correction is performed on the 5 (8) SRS symbol data, the root mean square error (Root Mean Square Error, RMSE) of the angle measurement results obtained by using the space-frequency two-dimensional spectrum estimation algorithm.
  • the space-frequency two-dimensional spectrum estimation algorithm may be, for example, a two-dimensional matched filter (2D-MF) algorithm.
  • the space-frequency two-dimensional processing algorithms are not limited to 2D-MF, two-dimensional subspace algorithms, and the like.
  • FIG. 7 is a 2D-MF angle dimension spectrum of a certain frame of data obtained by using the method of the embodiment of the present application to correct the ideal space-frequency flow pattern matrix for the positioning signal in the -60° direction using the simulated antenna deviation. (The curve corresponding to "Air-Frequency Flow Pattern Correction" in the figure).
  • FIG. 8 FIG.
  • FIG. 8 shows the positioning signal in the direction of -60°, using the method of the embodiment of the present application, using the anechoic chamber test antenna deviation to perform the ideal space-frequency flow pattern matrix correction, and obtain the 2D-MF angle dimension of a certain frame of data. spectrum (the curve corresponding to "space-frequency flow pattern correction" in the figure).
  • Fig. 7 and Fig. 8 are respectively added with the above-mentioned correction methods of the first and second types of positioning signals, it can be seen that:
  • the method of the embodiment of the present application can obtain an effect similar to the correction method of the known incident signal angle, but the method of the embodiment of the present application does not need to be known
  • the incident signal angle of the positioning signal can accurately compensate the angle-dependent phase error when the incident direction is unknown.
  • the corrected target space-frequency flow pattern matrix can be used for real-time space-frequency two-dimensional processing of the actual signal, and realizes the accuracy of the angle and High precision estimation of time delay.
  • FIG. 9 is the RMSE of 5 (8) SRS symbol data angle measurement results, and the simulated deviation data is used during the correction.
  • FIG. 10 shows statistics on the RMSE of 500 SRS symbol data angle measurement results, and the deviation data measured in the darkroom is used in the correction, and the curve corresponding to "space-frequency flow pattern correction" in the figure corresponds to the embodiment of the application statistical results. It can be seen from the RMSE results that if the angle-dependent phase error is not considered, the angle measurement exhibits obvious divergence at large angles, and the embodiment of the present application can achieve accurate compensation for the angle-dependent phase error when the incident direction is unknown. .
  • the method for determining positioning parameters in the embodiment of the present application can realize the angle- and frequency-dependent arrays when the direction of incoming waves is unknown.
  • the phase deviation of the antenna is precisely compensated, which effectively solves the problem of array antenna correction required for signal processing in the wireless direction finding positioning system.
  • the positioning parameter determination method of the embodiment of the present application corrects the ideal space-frequency flow pattern matrix offline, which does not increase the real-time calculation amount of the positioning system, and the joint processing of the space domain and the frequency domain can greatly improve the accuracy of multipath signals. resolution ability. It should be understood that although the steps in the above flow charts are displayed in sequence according to the arrows, these steps are not necessarily executed in the sequence indicated by the arrows.
  • the execution of these steps is not strictly limited to the order, and the steps may be executed in other orders. Moreover, at least a part of the steps in the above flow chart may include multiple steps or multiple stages. These steps or stages are not necessarily executed at the same time, but may be executed at different times. The execution sequence of these steps or stages It also does not have to be performed sequentially, but may be performed alternately or alternately with other steps or at least a portion of the steps or phases within the other steps. In one embodiment, as shown in FIG.
  • an apparatus for determining positioning parameters includes: a first obtaining module 10, configured to obtain a positioning signal sent by a terminal based on a target array antenna; a determining module 20, using is used to determine the preset target space-frequency flow pattern matrix corresponding to the target array antenna; wherein, the target space-frequency flow pattern matrix is the phase deviation matrix corresponding to the target array antenna corresponding to the target array antenna.
  • the ideal space-frequency flow pattern matrix is pre-corrected; the phase deviation matrix is determined according to the phase deviation measured by the target array antenna at multiple different spatial angles of arrival and multiple different frequencies, and the ideal space-frequency flow
  • the pattern matrix is used to characterize the spatial frequency response of each antenna element of the target array antenna within the preset array coverage; the extraction module 30 is used to extract the target space-frequency flow pattern matrix and the positioning signal to obtain The estimated spatial angle of arrival and the estimated delay corresponding to the positioning signal, where the estimated spatial angle of arrival and the estimated delay are used as positioning parameters to position the terminal.
  • the first obtaining module 10 is specifically configured to: receive, through the target array antenna, a sounding reference signal in the time domain sent by the terminal; convert the sounding reference signal from a time domain to a frequency domain, obtaining a frequency-domain multi-carrier signal; performing vectorization processing on the frequency-domain multi-carrier signal to obtain a signal vector; performing sub-carrier extraction on the signal vector according to a preset sub-carrier extraction rate to obtain the positioning signal.
  • the apparatus further includes: a second acquisition module, configured to acquire the phase deviation measured at each spatial angle of arrival and each frequency of the target array antenna within the preset array coverage area;
  • a third obtaining module is configured to obtain an array deviation factor corresponding to the target array antenna according to the phase deviation;
  • a matrix processing module is configured to perform matrix processing on the array deviation factor to obtain the phase deviation matrix.
  • the third acquisition module is specifically configured to: interpolate the phase deviation, so that the interpolated phase deviation covers all spatial angles of arrival and all frequencies within the array coverage of the target array antenna, and based on the interpolation After the phase deviation is obtained, the array deviation factor is obtained.
  • the phase deviation includes an antenna element deviation, a radio frequency channel deviation, and a connection component deviation; wherein the antenna array element deviation includes each of the antenna array elements within the coverage area of the preset array.
  • the radio frequency channel deviation includes the phase deviation measured at each frequency within the preset array coverage of the radio frequency channel corresponding to the target array antenna;
  • the connection component deviation Including the phase deviation measured by the connection component corresponding to the target array antenna at each frequency within the coverage area of the preset array.
  • the third obtaining module is specifically configured to obtain a set of spatial sampling points and the number of sub-bands corresponding to the target array antenna, the set of sampling points in the spatial domain includes a plurality of sampling angles of arrival, and each of the sampling arrivals The angle is obtained by uniformly sampling all the spatial arrival angles in the angle of arrival angle range corresponding to the target array antenna; the antenna element deviation is interpolated according to the spatial sampling point set and the number of sub-bands, Obtain the antenna array element deviation after interpolation, and perform interpolation processing on the radio frequency channel deviation and the connection component deviation respectively according to the number of sub-bands, to obtain the interpolated radio frequency channel deviation and the interpolated connection component deviation; obtaining the antenna deviation factor from the interpolated antenna element deviation, obtaining the radio frequency channel deviation factor according to the interpolated radio frequency channel deviation, and obtaining the connection component deviation factor according to the interpolated connection component deviation; The factor, the RF channel deviation factor and the connection component deviation factor are fused to obtain the array deviation factor.
  • the apparatus further includes:
  • the dewinding module is used to perform phase dewinding processing on the deviation of the antenna array element, the deviation of the radio frequency channel and the deviation of the connection component respectively, and obtain the first deviation corresponding to the deviation of the antenna array element and the deviation of the radio frequency channel The corresponding second deviation and the third deviation corresponding to the connection component deviation;
  • the third obtaining module is specifically configured to interpolate the first deviation according to the spatial sampling point set and the number of sub-bands processing to obtain the interpolated antenna array element deviation; performing interpolation processing on the second deviation according to the number of sub-bands to obtain the interpolated radio frequency channel deviation; The deviation is subjected to interpolation processing to obtain the interpolated connection component deviation.
  • the apparatus further includes: a fourth acquisition module, configured to acquire a time-domain sampling point set corresponding to the target array antenna, the time-domain sampling point set includes a plurality of sampling delay values, each of which is The sampling delay value is obtained by uniformly sampling all the delay values in the delay range corresponding to the target array antenna: a generating module is used to obtain a set of spatial sampling points corresponding to the target array antenna, and based on the generating the ideal space-frequency manifold matrix by using the space-domain sampling point set and the time-domain sampling point set.
  • the fourth obtaining module is further configured to: obtain a receiving sensitivity parameter of a base station, and determine a delay range of the target array antenna based on the receiving sensitivity parameter; All delay values in the time range are uniformly sampled to obtain the time domain sampling point set.
  • the generating module is further configured to: acquire the antenna pattern parameters of the target array antenna, and determine the angle of arrival angle range of the target array antenna according to the antenna pattern parameters; based on a preset sampling rate , performing uniform sampling on all the spatial arrival angles in the angle of arrival angle range to obtain the spatial sampling point set.
  • the apparatus further includes: a fifth acquisition module, configured to acquire the antenna pattern parameters of the target array antenna, and determine the angle of arrival angle range of the target array antenna according to the antenna pattern parameters ; a first sampling module, configured to uniformly sample all the spatial arrival angles in the angle of arrival angle range based on a preset sampling rate to obtain the spatial sampling point set.
  • the apparatus further includes: a sixth acquisition module, configured to acquire a receiving sensitivity parameter, and determine the delay range of the target array antenna based on the receiving sensitivity parameter; a second sampling module, using Based on a preset sampling rate, all delay values in the delay range are uniformly sampled to obtain the time domain sampling point set.
  • the extraction module is specifically configured to perform space-frequency two-dimensional processing on the target space-frequency flow pattern matrix and the positioning signal, to obtain the space angle of arrival estimated value and the delay estimated value
  • the space-frequency two-dimensional processing includes at least one of parameter estimation algorithms such as multiple signal classification processing and matched filtering processing.
  • parameter estimation algorithms such as multiple signal classification processing and matched filtering processing.
  • Each module in the above positioning parameter determination device may be implemented in whole or in part by software, hardware and combinations thereof.
  • the above modules may be embedded in or independent of the processor in the computer device in the form of hardware, or may be stored in the memory in the computer device in the form of software, so that the processor can call and execute operations corresponding to the above modules.
  • a computer device is provided, the computer device may be a base station, and an internal structure diagram thereof may be shown in FIG. 12 .
  • the computer device includes a processor, memory, and a network interface connected by a system bus. Wherein, the processor of the computer device is used to provide computing and control capabilities.
  • the memory of the computer device includes non-volatile storage media, internal memory.
  • the nonvolatile storage medium stores an operating system, a computer program, and a database.
  • the internal memory provides an environment for the execution of the operating system and computer programs in the non-volatile storage medium.
  • the database of the computer device is used to store the data of the method of determining the positioning parameter.
  • the network interface of the computer device is used to communicate with an external terminal through a network connection.
  • the computer program when executed by a processor, implements a positioning parameter determination method.
  • a computer device including a memory and a processor, a computer program is stored in the memory, and the processor implements the following steps when executing the computer program: acquiring a positioning signal sent by a terminal based on a target array antenna; determining a predetermined The target space-frequency flow pattern matrix corresponding to the target array antenna is set; wherein, the target space-frequency flow pattern matrix is the ideal space-frequency flow pattern corresponding to the target array antenna using the phase deviation matrix corresponding to the target array antenna obtained by pre-correcting the flow pattern matrix; the phase deviation matrix is determined according to the phase deviations measured by the target array antenna at multiple different spatial angles of arrival and multiple different frequencies, and the ideal space-frequency flow pattern matrix is determined by to characterize the spatial frequency response of each antenna element of the target array antenna within the preset array coverage; using the target space-frequency flow pattern matrix and the positioning signal to extract the spatial angle of arrival
  • the processor executes the computer program, the following steps are further implemented: receiving, by using the target array antenna, a sounding reference signal in the time domain sent by the terminal; performing a time domain to frequency domain sounding reference signal on the sounding reference signal converting to obtain a frequency-domain multi-carrier signal; performing vectorization processing on the frequency-domain multi-carrier signal to obtain a signal vector; performing sub-carrier extraction on the signal vector according to a preset sub-carrier extraction rate to obtain the positioning signal .
  • the processor further implements the following steps when executing the computer program: acquiring the phase deviation measured at each spatial angle of arrival and each frequency of the target array antenna within the preset array coverage; The phase deviation is obtained, and an array deviation factor corresponding to the target array antenna is obtained; and the array deviation factor is subjected to matrix processing to obtain the phase deviation matrix.
  • the processor further implements the following steps when executing the computer program: interpolating the phase deviation, so that the interpolated phase deviation covers all spatial angles of arrival and all frequencies within the array coverage of the target array antenna, And the array deviation factor is obtained based on the interpolated phase deviation.
  • the phase deviation includes an antenna element deviation, a radio frequency channel deviation, and a connection component deviation; wherein, the antenna array element deviation includes each of the antenna array elements within the preset array coverage area.
  • the radio frequency channel deviation includes the phase deviation measured at each frequency within the preset array coverage of the radio frequency channel corresponding to the target array antenna;
  • the connection component deviation Including the phase deviation measured by the connection component corresponding to the target array antenna at each frequency within the coverage area of the preset array.
  • the processor further implements the following steps when executing the computer program: acquiring a set of spatial sampling points and the number of sub-bands corresponding to the target array antenna, where the set of spatial sampling points includes a plurality of sampling angles of arrival, each of the The sampling angle of arrival is obtained by uniformly sampling all the spatial angles of arrival in the angle of arrival angle range corresponding to the target array antenna; the antenna array element deviation is interpolated according to the set of sampling points in the spatial domain and the number of sub-bands processing, obtaining the antenna array element deviation after interpolation, and performing interpolation processing on the radio frequency channel deviation and the connection component deviation respectively according to the number of sub-bands, to obtain the interpolated radio frequency channel deviation and the interpolated connection component deviation; Obtain an antenna deviation factor according to the interpolated antenna element deviation, obtain a radio frequency channel deviation factor according to the interpolated radio frequency channel deviation, and obtain a connection component deviation factor according to the interpolated connection component deviation; The antenna deviation factor, the radio frequency channel deviation factor and the connection component deviation
  • the processor further implements the following steps when executing the computer program: performing phase dewinding processing on the antenna element deviation, the radio frequency channel deviation and the connection component deviation respectively, to obtain the antenna array element deviation the corresponding first deviation, the second deviation corresponding to the radio frequency channel deviation, and the third deviation corresponding to the connection component deviation;
  • the array element deviation is subjected to interpolation processing to obtain the interpolated antenna array element deviation, and the radio frequency channel deviation and the connection component deviation are respectively subjected to interpolation processing according to the number of sub-bands to obtain the interpolated radio frequency channel deviation and the interpolated radio frequency channel deviation.
  • connection component deviation of Linear array element deviation perform interpolation processing on the second deviation according to the number of sub-bands to obtain the interpolated radio frequency channel deviation; perform interpolation processing on the third deviation according to the number of sub-bands to obtain the Interpolated connected component bias.
  • the processor further implements the following steps when executing the computer program: acquiring a time domain sampling point set corresponding to the target array antenna, where the time domain sampling point set includes a plurality of sampling delay values, each of the sampling points The delay value is obtained by uniformly sampling all the delay values in the delay range corresponding to the target array antenna: obtaining the set of spatial sampling points corresponding to the target array antenna, and based on the set of spatial sampling points and all The set of sampling points in the time domain is used to generate the ideal space-frequency manifold matrix.
  • the processor further implements the following steps when executing the computer program: acquiring a receiving sensitivity parameter of a base station, and determining a delay range of the target array antenna based on the receiving sensitivity parameter; All delay values in the delay range are uniformly sampled to obtain the time domain sampling point set.
  • the processor further implements the following steps when executing the computer program: acquiring the antenna pattern parameters of the target array antenna, and determining the angle of arrival angle range of the target array antenna according to the antenna pattern parameters; based on the At the preset sampling rate, uniform sampling is performed on all the spatial arrival angles in the angle of arrival angle range to obtain the spatial sampling point set.
  • the processor further implements the following steps when executing the computer program: acquiring the antenna pattern parameters of the target array antenna, and determining the angle of arrival angle range of the target array antenna according to the antenna pattern parameters; based on the At the preset sampling rate, uniform sampling is performed on all the spatial arrival angles in the angle of arrival angle range to obtain the spatial sampling point set.
  • the processor further implements the following steps when executing the computer program: acquiring a receiving sensitivity parameter, and determining the delay range of the target array antenna based on the receiving sensitivity parameter; All delay values in the delay range are uniformly sampled to obtain the time domain sampling point set.
  • the processor further implements the following steps when executing the computer program: performing space-frequency two-dimensional processing on the target space-frequency flow pattern matrix and the positioning signal to obtain the estimated value of the spatial angle of arrival and the delay and the space-frequency two-dimensional processing includes at least one of parameter estimation algorithms such as multiple signal classification processing and matched filtering processing.
  • the steps implemented in the above-mentioned computer device embodiments correspond to the steps of the aforementioned positioning parameter determination method.
  • the technical features and beneficial effects described in the above-mentioned positioning parameter determination method embodiments are all applicable to the computer device. Refer to the above limitation on the method for determining the positioning parameter, which is not repeated here.
  • a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the following steps are implemented: acquiring a positioning signal sent by a terminal based on a target array antenna; determining a preset and a target space-frequency flow pattern matrix corresponding to the target array antenna; wherein, the target space-frequency flow pattern matrix is an ideal space-frequency flow pattern matrix corresponding to the target array antenna using the phase deviation matrix corresponding to the target array antenna obtained by performing pre-correction; the phase deviation matrix is determined according to the phase deviations measured by the target array antenna at multiple different spatial angles of arrival and multiple different frequencies, and the ideal space-frequency flow pattern matrix is used to characterize all the The spatial frequency response of each antenna element of the target array antenna within the preset array coverage; Using the target space-frequency flow pattern matrix and the positioning signal, extracting and obtaining the estimated value of the spatial angle of arrival corresponding to the positioning signal and The estimated delay value, the estimated value of the spatial angle of arrival and the estimated value of delay
  • the following steps are further implemented: receiving, by using the target array antenna, a sounding reference signal in the time domain sent by the terminal; performing the time domain to frequency domain on the sounding reference signal to obtain a frequency-domain multi-carrier signal; perform vectorization processing on the frequency-domain multi-carrier signal to obtain a signal vector; according to a preset sub-carrier extraction rate, perform sub-carrier extraction on the signal vector to obtain the positioning Signal.
  • the following steps are further implemented: acquiring the phase deviation measured at each spatial angle of arrival and each frequency of the target array antenna within the preset array coverage; For the phase deviation, obtain an array deviation factor corresponding to the target array antenna; and perform matrix processing on the array deviation factor to obtain the phase deviation matrix.
  • the computer program further implements the following steps when executed by the processor: interpolating the phase deviation, so that the interpolated phase deviation covers all spatial angles of arrival and all frequencies within the array coverage of the target array antenna , and the array deviation factor is obtained based on the interpolated phase deviation.
  • the phase deviation includes an antenna element deviation, a radio frequency channel deviation, and a connection component deviation; wherein, the antenna array element deviation includes each of the antenna array elements within the preset array coverage area.
  • the radio frequency channel deviation includes the phase deviation measured at each frequency within the preset array coverage of the radio frequency channel corresponding to the target array antenna;
  • the connection component deviation Including the phase deviation measured by the connection component corresponding to the target array antenna at each frequency within the coverage area of the preset array.
  • the following steps are further implemented: acquiring a set of spatial sampling points and the number of sub-bands corresponding to the target array antenna, where the set of spatial sampling points includes a plurality of sampling angles of arrival, each of which is The sampled angle of arrival is obtained by uniformly sampling all the spatial angles of arrival in the angle of arrival angle range corresponding to the target array antenna; Interpolation processing to obtain the antenna array element deviation after interpolation, and performing interpolation processing on the radio frequency channel deviation and the connection component deviation respectively according to the number of sub-bands, to obtain the interpolated radio frequency channel deviation and the interpolated connection component deviation.
  • an antenna deviation factor according to the interpolated antenna element deviation obtaining a radio frequency channel deviation factor according to the interpolated radio frequency channel deviation, and obtaining a connection component deviation factor according to the interpolated connection component deviation;
  • the antenna deviation factor, the radio frequency channel deviation factor and the connection component deviation factor are fused to obtain the array deviation factor.
  • phase unwinding processing is performed on the deviation of the antenna array element, the deviation of the radio frequency channel, and the deviation of the connection component, respectively, to obtain the antenna array element a first deviation corresponding to the deviation, a second deviation corresponding to the radio frequency channel deviation, and a third deviation corresponding to the connection component deviation; correspondingly, the said sampling point set in the spatial domain and the number of the sub-bands Interpolate the antenna array element deviation to obtain the interpolated antenna array element deviation, and perform interpolation processing on the radio frequency channel deviation and the connection component deviation respectively according to the number of sub-bands to obtain the interpolated radio frequency channel deviation and the interpolation
  • the obtained connection component deviation includes: performing interpolation processing on the first deviation according to the spatial sampling point set and the number of sub-bands to obtain the interpolated antenna element deviation; performing interpolation processing on the second deviation to obtain the interpolated radio frequency channel deviation; and performing interpolation processing on the third deviation according to the number
  • the following steps are further implemented: acquiring a time-domain sampling point set corresponding to the target array antenna, where the time-domain sampling point set includes a plurality of sampling delay values, each of the The sampling delay value is obtained by uniformly sampling all the delay values in the delay range corresponding to the target array antenna: obtaining a set of spatial sampling points corresponding to the target array antenna, and based on the set of spatial sampling points and The time-domain sampling point set generates the ideal space-frequency manifold matrix.
  • the following steps are further implemented: acquiring a receiving sensitivity parameter of a base station, and determining a delay range of the target array antenna based on the receiving sensitivity parameter; based on a preset sampling rate, All delay values in the delay range are uniformly sampled to obtain the time domain sampling point set.
  • the following steps are further implemented: acquiring an antenna pattern parameter of the target array antenna, and determining an angle of arrival angle range of the target array antenna according to the antenna pattern parameter; Based on a preset sampling rate, uniform sampling is performed on all the spatial arrival angles in the angle of arrival angle range to obtain the spatial sampling point set.
  • the following steps are further implemented: acquiring an antenna pattern parameter of the target array antenna, and determining an angle of arrival angle range of the target array antenna according to the antenna pattern parameter; Based on a preset sampling rate, uniform sampling is performed on all the spatial arrival angles in the angle of arrival angle range to obtain the spatial sampling point set.
  • the following steps are further implemented: acquiring a receiving sensitivity parameter, and determining the delay range of the target array antenna based on the receiving sensitivity parameter; and based on a preset sampling rate, All delay values in the delay range are uniformly sampled to obtain the time domain sampling point set.
  • the following steps are further implemented: performing space-frequency two-dimensional processing on the target space-frequency flow pattern matrix and the positioning signal to obtain the estimated value of the spatial angle of arrival and the Delay estimation value, the space-frequency two-dimensional processing includes at least one of parameter estimation algorithms such as multiple signal classification processing and matched filtering processing.
  • the steps implemented in the above-mentioned computer-readable storage medium embodiments correspond to the steps of the aforementioned positioning parameter determination method, and the technical features and their beneficial effects described in the above-mentioned positioning parameter determination method embodiments are applicable to the implementation of the computer-readable storage medium.
  • the specific limitation refer to the limitation on the method for determining the positioning parameter above, which will not be repeated here.
  • any reference to memory, storage, database or other media used in the various embodiments provided in this application may include at least one of non-volatile and volatile memory.
  • the non-volatile memory may include read-only memory (Read-Only Memory, ROM), magnetic tape, floppy disk, flash memory or optical memory, and the like.
  • Volatile memory may include random access memory (RAM) or external cache memory.
  • RAM can take many forms, such as Static Random Access Memory,

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radio Transmission System (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请涉及一种定位参数确定方法、装置、计算机设备和存储介质。方法包括:基于目标阵列天线获取终端发送的定位信号;确定预置的与目标阵列天线对应的目标空频流型矩阵;其中,目标空频流型矩阵是采用目标阵列天线对应的相位偏差矩阵对目标阵列天线对应的理想空频流型矩阵进行预校正得到的;相位偏差矩阵是根据目标阵列天线在多个不同空间到达角和多个不同频率下测量的相位偏差确定的;利用目标空频流型矩阵和定位信号,提取得到定位信号对应的空间到达角估计值和延时估计值,空间到达角估计值和延时估计值用于作为定位参数对终端进行位置定位。

Description

定位参数确定方法、 装置、 计算机设备和存储介质 相关申请的交叉引用 本申请要求 2021年 03月 02日递交的、 标题为 “定位参数确定方法、 装置、 计算机设备和存储介 质”、 申请号为 2021102293007的中国申请的优先权, 其公开内容通过引用全部结合在本申请中。 技术领域 本申请涉及定位技术领域, 特别是涉及一种定位参数确定方法、 装置、 计算机设备和存储介质。 背景技术 随着工业互联网、 物联网和车联网的快速发展, 高精度定位成为智能机器人、 无人车等终端不可 或缺的关键支撑服务。 目前, 通过无线定位基站对终端进行定位的过程中, 基站需要测量终端发送的定位信号的到达角 (Angle of Arrival, AoA) > 离开角 (Angle of Departure, AoD)等定位参数, 再基于测量的定位参数计算终 端的位置, 因此, 定位参数的准确性决定了定位的准确性。 发明内容 本申请提供一种定位参数确定方法、 装置、 计算机设备和存储介质。 第一方面, 本申请实施例提供一种定位参数确定方法, 所述方法包括: 基于目标阵列天线获取终端发送的定位信号; 确定预置的与所述目标阵列天线对应的目标空频流型矩阵; 其中, 所述目标空频流型矩阵是采用 所述目标阵列天线对应的相位偏差矩阵对所述目标阵列天线对应的理想空频流型矩阵进行预校正得到 的; 所述相位偏差矩阵是根据所述目标阵列天线在多个不同空间到达角和多个不同频率下测量的相位 偏差确定的, 所述理想空频流型矩阵用于表征所述目标阵列天线的各天线阵元在预设阵列覆盖范围内 的空间频率响应; 利用所述目标空频流型矩阵和所述定位信号, 提取得到所述定位信号对应的空间到达角估计值和 延时估计值, 所述空间到达角估计值和所述延时估计值用于作为定位参数对所述终端进行位置定位。 第二方面, 本申请实施例提供一种定位参数确定装置, 所述装置包括: 第一获取模块, 用于基于目标阵列天线获取终端发送的定位信号; 确定模块, 用于确定预置的与所述目标阵列天线对应的目标空频流型矩阵; 其中, 所述目标空频 流型矩阵是采用所述目标阵列天线对应的相位偏差矩阵对所述目标阵列天线对应的理想空频流型矩阵 进行预校正得到的; 所述相位偏差矩阵是根据所述目标阵列天线在多个不同空间到达角和多个不同频 率下测量的相位偏差确定的, 所述理想空频流型矩阵用于表征所述目标阵列天线的各天线阵元在预设 阵列覆盖范围内的空间频率响应; 提取模块, 用于利用所述目标空频流型矩阵和所述定位信号, 提取得到所述定位信号对应的空间 到达角估计值和延时估计值, 所述空间到达角估计值和所述延时估计值用于作为定位参数对所述终端 进行位置定位。 第三方面, 本申请实施例提供一种计算机设备, 包括存储器和处理器, 所述存储器存储有计算机 程序, 所述处理器执行所述计算机程序时实现如上述第一方面的定位参数确定方法的步骤。 第四方面, 本申请实施例提供一种计算机可读存储介质, 其上存储有计算机程序, 所述计算机程 序被处理器执行时实现如上述第一方面的定位参数确定方法的步骤。 本申请的一个或多个实施例的细节在下面的附图和描述中提出。 本申请的其它特征、 目的和优点 将从说明书、 附图以及权利要求书变得明显。 附图说明 图 1为一个实施例中定位参数确定方法的应用环境图; 图 2为一个实施例中定位参数确定方法的流程示意图; 图 3为另一个实施例中获取相位偏差矩阵的流程示意图; 图 4为另一个实施例中步骤 302的流程示意图; 图 5为另一个实施例中步骤 302的流程示意图; 图 6为另一个实施例中获取理想空频流型矩的流程示意图; 图 7为一个实施例中实验结果图; 图 8为另一个实施例中实验结果图; 图 9为另一个实施例中实验结果图; 图 10为另一个实施例中实验结果图; 图 11为一个实施例中定位参数确定装置的结构框图; 图 12为一个实施例中计算机设备的内部结构图。 具体实施方式 为了使本申请的目的、 技术方案及优点更加清楚明白, 以下结合附图及实施例, 对本申请进行进 一步详细说明。 应当理解, 此处描述的具体实施例仅仅用以解释本申请, 并不用于限定本申请。 本申请实施例提供的定位参数确定方法、 装置、 计算机设备和存储介质, 旨在提升终端定位过程 中定位参数的准确性, 从而提升终端的定位准确性。 下面将通过实施例并结合附图具体地对本申请的 技术方案以及本申请的技术方案如何解决上述技术问题进行详细说明。 下面这几个具体地实施例可以 相互结合, 对于相同或相似的概念或过程可能在某些实施例中不再赘述。 本申请实施例提供的定位参数确定方法, 可以应用于如图 1所示的实施环境中, 如图 1所示, 该 实施环境可以包括终端 101和基站 102。 其中, 基站 102可以和终端 101通过无线网络通信。 其中, 终端 101可以是个人计算机、 笔记本电脑、 媒体播放器、 智能电视、 智能手机、 平板电脑 和便携式可穿戴设备等, 本申请实施例对终端 101的类型也不作具体限定。 在一个实施例中, 如图 2所示, 提供了一种定位参数确定方法, 以该方法应用于图 1中的基站为 例进行说明, 包括以下步骤: 步骤 201, 基站基于目标阵列天线获取终端发送的定位信号。 阵列天线是由至少两个天线阵元规则或随机排列组成, 本申请实施例中, 基站中可以配置一个或 多个阵列天线, 目标阵列天线可以是基站配置的任意一个阵列天线。 在基站对终端进行定位的过程中, 终端向基站发送时域的探测参考信号, 基站通过目标阵列天线 接收到该探测参考信号后, 对其进行时域至频域的转换, 得到频域多载波信号, 基站继续对该频域多 载波信号进行预处理则得到定位信号。 可选地, 基站对频域多载波信号进行预处理, 可以是对频域多载波信号进行向量化处理得到信号 向量, 将该信号向量作为定位信号; 可选地, 基站在得到信号向量之后, 还可以按照预设的子载波抽 取率, 对该信号向量进行子载波抽取, 从而实现对信号向量降维, 得到定位信号。 步骤 202, 基站确定预置的与目标阵列天线对应的目标空频流型矩阵。 本申请实施例中, 每个阵列天线预置有对应的空频流型矩阵。 对于每个阵列天线, 该阵列天线对 应的空频流型矩阵, 可以抵消该阵列天线接收的定位信号中由该阵列天线带来的相位偏差。 在一种可能的实施方式中, 基站中存储有基站的各个阵列天线与对应空频流型矩阵之间的映射关 系, 基站通过目标阵列天线获取终端发送的定位信号后, 则可以通过该映射关系, 确定该目标阵列天 线对应的目标空频流型矩阵。 本申请实施例中, 目标空频流型矩阵是采用目标阵列天线对应的相位偏差矩阵对目标阵列天线对 应的理想空频流型矩阵进行预校正得到的, 该理想空频流型矩阵用于表征目标阵列天线的各天线阵元 在预设阵列覆盖范围内各个空间到达角和各个频率下的空间频率响应。 可选地, 基站可以采用如下公式 1, 对理想空频流型矩阵进行预校正得到目标空频流型矩阵: 公式
Figure imgf000004_0001
其中, 为目标阵列天线对应的理想空 £\ 频流型矩阵, 1 为目标阵列天线对应的相位偏差矩阵, ^ 为延时,
Figure imgf000005_0001
空间到达角。 其中, 相位偏差矩阵是根据目标阵列天线在多个不同空间到达角和多个不同频率下测量的相位偏 差确定的, 该空间到达角表征信号入射方向与阵列天线法向之间的夹角。 需要说明的是, 其一, 在实际应用中, 受各天线阵元间互耦、 加工工艺、 安装部署位置的影响, 不同方向上的相位偏差往往存在差异, 在基站与终端的夹角较大时尤其明显, 即目标阵列天线的相位 偏差具有角度依赖性, 因此, 本申请实施例中, 通过实际测量目标阵列天线在多个不同空间到达角的 相位偏差, 这样, 相位偏差矩阵则考虑了各个不同空间到达角的真实的相位偏差, 相较于仅考虑单一 方向上的相位偏差, 或者仅默认不同方向上的相位偏差相同, 本申请实施例提升了相位偏差矩阵的准 确性。 此外,很多通信系统 (例如 5G、 Wi-Fi和 UWB)中都大量使用了大带宽的正交频分复用 (Orthogonal Frequency Division Multiplexing, OFDM) 信号, 对此类信号而言, 相位偏差在频带内同样存在起伏。例 如, 终端向基站发送时域的探测参考信号为大带宽信号, 即多载波信号, 目标阵列天线的相位偏差在 各个频率下也是不同的, 因此, 本申请实施例中, 通过实际测量目标阵列天线在多个不同频率的相位 偏差, 这样, 相位偏差矩阵则考虑了各个不同频率的真实的相位偏差, 相较于不考虑频率不同带来的 相位偏差, 或者仅默认不同频率下的相位偏差相同, 本申请实施例提升了相位偏差矩阵的准确性。 步骤 203,基站利用目标空频流型矩阵和定位信号,提取得到定位信号对应的空间到达角估计值和 延时估计值, 空间到达角估计值和延时估计值用于作为定位参数对终端进行位置定位。 在一种可能的实施方式中, 基站可以通过执行如下步骤 A1, 实现步骤 203的过程: 步骤 A1, 基站对目标空频流型矩阵和定位信号进行空频二维处理, 得到空间到达角估计值和延时 估计值。 其中, 空频二维处理包括多重信号分类处理和匹配滤波处理中的至少一种。 以空频二维匹配滤波 (Two Dimensional Matched Filtering, 2D-MF) 算法为例。基站可以采用目标空 频流型矩阵对定位信号进行匹配滤波, 得到角度 -延时二维谱 y: y / ' \H 二 (A 厂 x 其中, 为目标空频流型矩阵, X为基站基于目标阵列天线获取终端发送的定位信号。 接着, 基站对 y按照各个延时、 各个空间到达角进行重排, 得到矩阵 Y, 对矩阵 Y中的峰值点进 行检测, 即可获得定位信号对应的空间到达角估计值和延时估计值。 这样, 基站基于空间到达角估计 值和延时估计值即可对终端进行准确定位。 上述实施例通过基于目标阵列天线获取终端发送的定位信号, 确定预置的与该目标阵列天线对应 的目标空频流型矩阵, 由于该目标空频流型矩阵是采用目标阵列天线对应的相位偏差矩阵对目标阵列 天线对应的理想空频流型矩阵进行预校正得到的, 理想空频流型矩阵用于表征目标阵列天线的各天线 阵元在预设阵列覆盖范围内的空间频率响应, 这样, 在利用目标空频流型矩阵和定位信号提取得到定 位信号对应的空间到达角估计值和延时估计值的过程中, 目标空频流型矩阵即可抵消定位信号中由目 标阵列天线带来的相位偏差, 也即, 相位偏差矩阵可以对定位信号中目标阵列天线的相位偏差进行补 偿, 以实现对目标阵列天线的相位偏差的校正, 从而能够提升空间到达角估计值和延时估计值的准确 性。 另外, 本申请实施例中, 相位偏差矩阵是根据目标阵列天线在多个不同空间到达角和多个不同频 率下测量的相位偏差确定的, 由于考虑了不同空间到达角和不同频率, 因此相位偏差矩阵的数据维度 更丰富, 有利于提升相位偏差矩阵的数据可靠性, 可以进一步提升空间到达角估计值和延时估计值的 准确性。 进一步地, 该空间到达角估计值和延时估计值用于作为定位参数对终端进行位置定位, 从而 可以提升终端的定位准确性。 另外, 对于阵元数较少的 5G小基站、 Wi-Fi接入点 (Access Point, AP) 或者 UWB基站而言, 利用 空域和频域联合处理能够大大提高对多径信号的分辨能力。 在一个实施例中,基于图 2所示的实施例,参见图 3,本实施例涉及的是相位偏差矩阵的获取过程。 如图 3所示, 相位偏差矩阵的获取过程包括步骤 301、 步骤 302和步骤 303: 步骤 301,基站获取目标阵列天线在预设阵列覆盖范围内的各空间到达角和各频率下测量的相位偏 差。 本申请实施例中, 可采用暗室测量、 现场有源测量、 利用电磁仿真软件进行数值计算等方式测量 相位偏差, 在此对测量相位偏差的具体方式不做限制。 以暗室测量为例, 设定目标阵列天线的阵列覆盖范围内的各空间到达角和各频率后, 对于一个空 间到达角, 保持己知信号的入射方向与目标阵列天线法向之间的夹角为该空间到达角, 而后, 在各个 不同频率下分别发送该己知信号, 根据接收到的信号的相位和己知信号的相位, 即可得到该空间到达 角下各不同频率对应的相位偏差, 重复该过程, 则可以得到各空间到达角和各频率下测量的相位偏差。 在一种可能的实施方式中, 相位偏差可以包括天线阵元偏差、 射频通道偏差以及连接组件偏差。 其中, 天线阵元偏差包括各天线阵元在预设阵列覆盖范围内的各空间到达角和各频率下测量的相位偏 差; 射频通道偏差包括目标阵列天线对应的射频通道在预设阵列覆盖范围内的各频率下测量的相位偏 差; 连接组件偏差包括目标阵列天线对应的连接组件在预设阵列覆盖范围内的各频率下测量的相位偏 差; 也即, 天线阵元偏差与角度和频率均有关, 射频通道偏差以及连接组件偏差均只与频率有关。 该预设阵列覆盖范围可以包括目标阵列天线的到达角角度范围以及目标阵列天线的频率覆盖范
Figure imgf000006_0001
Figure imgf000006_0002
围。 假设, 天线阵元偏差采用 表示, 射频通道偏差采用 表示, 连接组件 偏差采用
Figure imgf000006_0003
/ 表示,《为天线阵元的编号, 若目标阵列天线包括 #个天线阵元, 则《 = 1, 2,
Q 1 - A 0 min, Q max
Figure imgf000006_0004
N; 为空间到达角 (即信号的入射角度), 为目标阵列 天线的到达角角度范围; /为频率,
Figure imgf000006_0005
为目标阵列天线的频 率覆盖范围, 即工作频段。 这样, 基站则获取到目标阵列天线在预设阵列覆盖范围内的各空间到达角和各频率下测量的天线 阵元偏差、 射频通道偏差以及连接组件偏差。 步骤 302, 基站根据相位偏差, 获取目标阵列天线对应的阵列偏差因子。 m 在步骤 302 —种可能的实施方式中, 基站可以根据以下公式 2由相位偏差 Y 获取目标阵列天线 对应的阵列偏差因子
Figure imgf000006_0006
/ 二 exp (j ^ ) 公式 2 其中, 为虚部单位, f = -l。 基站将天线阵元偏差代入公式 2则可以得到天线偏差因子, 基站将 射频通道偏差代入公式 2则可以得到射频通道偏差因子, 基站将连接组件偏差代入公式 2则可以得到 连接组件偏差因子。 基站将天线偏差因子、 射频通道偏差因子以及连接组件偏差因子进行融合, 得到阵列偏差因子。 在步骤 302另一种可能的实施方式中, 为了避免测量的相位偏差无法覆盖目标阵列天线的阵列覆 盖范围内的全部空间到达角和全部频率, 在获取阵列偏差因子之前, 首先对相位偏差进行插值, 以使 插值后的相位偏差能够覆盖目标阵列天线的阵列覆盖范围内的全部空间到达角和全部频率, 再基于插 值后的相位偏差获取阵列偏差因子。 参见图 4, 步骤 302可以包括图 4所示的步骤 3021、 步骤 3022、 步骤 3023和步骤 3024: 步骤 3021, 基站获取目标阵列天线对应的空域采样点集合以及子频带数量。 其中, 对于空域采样点集合, 空域采样点集合包括多个采样到达角, 各采样到达角是对目标阵列 天线对应的到达角角度范围中的全部空间到达角进行均匀采样得到的。 其中, 目标阵列天线的到达角 角度范围可以根据目标阵列天线的天线方向图参数确定。
Figure imgf000007_0001
假设 为目标阵列天线的到达角角度范围,基站可以基于预设的采样率 (例如使用
Figure imgf000007_0002
均匀栅格 ), 对该到达角角度范围
Figure imgf000007_0003
Figure imgf000007_0006
中的全部空间到达角进行均匀采样,
60%600] 得到空域采样点集合。 例如到达角角度范围为 空域采样点集合则可以是
60 。,— 590,-58。, , 59°,60。]
,即空域采样点集合覆盖达角角度范围内的全部空间到达 角。 其中, 对于子频带数量, 基站确定当前通信系统的最小处理频率间隔 A/, 对 OFDM系统而言, 最小处理频率间隔一般为子载波间隔, 或者为数倍的子载波间隔, 假设系统带宽为
Figure imgf000007_0004
则子频带数量 M=B/Afo 步骤 3022, 基站根据空域采样点集合和子频带数量对天线阵元偏差进行插值处理, 得到插值后的 天线阵元偏差, 并根据子频带数量分别对射频通道偏差和连接组件偏差进行插值处理, 得到插值后的 射频通道偏差和插值后的连接组件偏差。 本申请实施例中, 相位插值处理可采用线性插值、 立方插值或三次样条插值等方式, 对于天线阵 元偏差的插值, 需进行两维插值, 可直接采用二维插值方法、 或进行级联插值处理, 这样, 插值后可 以得到数量更多的相位偏差。 步骤 3023, 基站根据插值后的天线阵元偏差获取天线偏差因子, 并根据插值后的射频通道偏差获 取射频通道偏差因子, 以及根据插值后的连接组件偏差获取连接组件偏差因子。
Figure imgf000007_0005
假设插值后的天线阵元偏差采用 表示 插值后的射频通道偏差采用 nAfJ 表示, 插值后的连接组件偏差采用 H )表示, 其中, = ,2,
Figure imgf000008_0001
= ,2, ; = 1,2, ... , M 基站可以采用上述公式 2, 根据插值后的天线阵元偏差
Figure imgf000008_0002
j 获取天线偏差因子
7 H ,厶) 、 根据插值后的射频通道偏差 ( )获取射频通道偏差因子 / & (九 ) 根据插值后的连接组件偏差
Figure imgf000008_0003
步骤 3024, 基站将天线偏差因子、 射频通道偏差因子以及连接组件偏差因子进行融合, 得到阵列 偏差因子。 基站可以采用如下公式 3, 将天线偏差因子、 射频通道偏差因子以及连接组件偏差因子进行融合:
Figure imgf000008_0004
3
”)即为目标阵列天线的阵列偏差因子。 步骤 303, 基站对阵列偏差因子进行矩阵化处理, 得到相位偏差矩阵。
|~^ 相位偏差矩阵 ^ 的表达式如下
Figure imgf000008_0005
Figure imgf000008_0006
其中,
Figure imgf000009_0001
I表示单位矩阵, 0表示全零矩阵。 □表示复数空间。 这样, 基站则得到相位偏差矩阵。 上述实施例在获取相位偏差矩阵的过程中, 为了提升测量效率, 角度测量点数小于空域采样点集 合的维度, 频率测量点数小于子频带数量, 而为了避免测量的相位偏差无法覆盖目标阵列天线的阵列 覆盖范围内的全部空间到达角和全部频率, 在获取阵列偏差因子之前, 首先对测量的相位偏差进行插 值, 以使插值后的相位偏差能够覆盖目标阵列天线的阵列覆盖范围内的全部空间到达角和全部频率, 从而可以提升相位偏差矩阵的准确性, 进而提升了定位信号对应的空间到达角估计值和延时估计值的 准确性。 在一个实施例中, 基于图 4所示的实施例, 参见图 5, 本实施例涉及的是对相位偏差进行相位去缠 绕的过程。 如图 5所示, 步骤 3022之前, 本实施例还包括步骤 3025: 步骤 3025, 基站分别对天线阵元偏差、 射频通道偏差以及连接组件偏差进行相位去缠绕处理, 得 到天线阵元偏差对应的第一偏差、 射频通道偏差对应的第二偏差以及连接组件偏差对应的第三偏差。 相位去缠绕的目的, 是防止相邻频率点或相邻角度的相位测量数据出现相位折叠, 从而导致相位 插值出现大的误差。 假设天线阵元《的相邻频点 和/ 测量的天线阵元偏差为 hU 和 L U , m w 'it 土扩 ws/rkm   ' 刀广
Figure imgf000009_0002
则需要进行去缠绕处理, e .·为设定的容忍度 门限。 相位去缠绕过程具体为:
Figure imgf000009_0003
天线阵元偏差涉及频率和角度维两个维度上的解缠绕, 可采用级联处理的方式, 例如, 先进行频 率维解缠绕, 再进行角度维解缠绕, 对于角度维的解缠绕, 可采用上述介绍的频率维度解缠绕相同的 处理方式。 对应地, 基站可以通过执行步骤 3022a、 步骤 3022b、 步骤 3022c实现步骤 3022的过程: 步骤 3022a,基站根据空域采样点集合和子频带数量对第一偏差进行插值处理,得到插值后的天线 阵兀偏差。 步骤 3022b, 基站根据子频带数量对第二偏差进行插值处理, 得到插值后的射频通道偏差。 步骤 3022c, 基站根据子频带数量对第三偏差进行插值处理, 得到插值后的连接组件偏差。 即, 基站对天线阵元偏差、 射频通道偏差以及连接组件偏差分别进行相位去缠绕处理后, 再对相 位去缠绕后的天线阵元偏差、 射频通道偏差以及连接组件偏差进行插值, 再根据插值后的天线阵元偏 差获取天线偏差因子、 根据插值后的射频通道偏差获取射频通道偏差因子、 根据插值后的连接组件偏 差获取连接组件偏差因子, 将天线偏差因子、 射频通道偏差因子以及连接组件偏差因子进行融合, 得 到阵列偏差因子, 从而可以防止相邻频率点或相邻角度的相位测量数据出现相位折叠, 导致相位插值 出现大的误差的情况, 提升了阵列偏差因子的准确性, 进而提升了相位偏差矩阵的准确性。 在一个实施例中, 基于图 2所示的实施例, 本实施例涉及的是理想空频流型矩的获取过程。如图 6 所示, 该过程包括步骤 601和步骤 602: 步骤 601, 基站获取目标阵列天线对应的时域采样点集合, 时域采样点集合包括多个采样延时值, 各采样延时值是对目标阵列天线对应的延时范围中的全部延时值进行均匀采样得到的。 可选地, 基站可以获取基站的接收灵敏度参数, 并基于接收灵敏度参数确定目标阵列天线的延时 范围; 基站基于预设的采样率, 对延时范围中的全部延时值进行均匀采样, 得到时域采样点集合。
Figure imgf000010_0001
为目标阵列天线的延时范围, 基站可以基于预设的采样率 (例如使用均匀栅格
(r }F_ p p=l ), 对该延时范围中的全部延时进行均匀采样, 得到时域采样点集合。 时域采样点集合覆 盖延时范围内的全部延时。 步骤 602,基站获取目标阵列天线对应的空域采样点集合,并基于空域采样点集合以及时域采样点 集合, 生成理想空频流型矩阵。 可选地, 基站可以获取目标阵列天线的天线方向图参数, 并根据天线方向图参数确定目标阵列天 线的到达角角度范围; 基站基于预设的采样率, 对到达角角度范围中的全部空间到达角进行均匀采样, 得到空域采样点集合。
Figure imgf000010_0002
基站可以基于预设的
Figure imgf000010_0003
采样率 (例如使用均匀栅格 ), 对该到达角角度范围 [ min ; gftiss 1中的全部空间到达角进
IL 60° 60°1 行均匀采样, 得到空域采样点集合。例如到达角角度范围为 1 ? ], 空域采样点集合则可以是
[- 60° -59o,-58o,...;59o,60°] 即空域采样点集合覆盖达角角度范围内的全部空间到达角。 假设当綱 信系猶麵 麵 賴 配矢量分勸
Figure imgf000010_0004
,假设 n 3 ( ) 目标阵列天线为线阵, 定义信号入射方向与阵列法向的夹角为 ^, 则空域匹配矢量 & 的第《个 元素为
Figure imgf000010_0005
,其中 为第《个天线阵元与第一天线阵元的距离,
0, A为波长。 对 OFDM系统的定位信号而言, 对于某延时为 r的路径, 延时域匹配矢量的第 个元素 为:
Figure imgf000010_0006
, 则空频二维匹配矢量可表示为
Figure imgf000010_0007
空频二维匹配矢量为延时 r和空间到达角 0的二元匹配矢量函数。 在空域采样点集合以及时域采样点集合的基础上, 可建立理想空频流型矩阵 (矩阵维数为 NM^PQ), 如下:
Figure imgf000011_0001
这样, 则得到理想空频流型矩阵。 基站采用目标阵列天线对应的相位偏差矩阵对目标阵列天线对 应的理想空频流型矩阵进行预校正, 得到目标阵列天线对应的目标空频流型矩阵并预置在数据库中, 从而, 基站基于目标阵列天线获取终端发送的定位信号后, 则可以直接确定预置的与目标阵列天线对 应的目标空频流型矩阵, 利用目标空频流型矩阵和定位信号, 提取得到定位信号对应的空间到达角估 计值和延时估计值, 实现定位信号对应的空间到达角估计值和延时估计值准确快速提取。 以下, 以通信系统为 2.565GHz频段的 5G定位系统为例, 来对本申请实施例定位信号的相位校正 效果进行说明。 采用 5G R16标准中的探测参考信号 (Sounding Reference Signal, SRS)作为定位信号,其子载波间 隔为 60kHz, 占据子频带数量为 1632, 天线阵元数为 4, 天线阵元间距为 5.8cm。 下面以暗室中的有源测试数据来验证本申请实施例对定位信号中的相位偏差的校正效果, 采集 -60°~+60°的接收数据, 每个角度采集 5 ⑻个 SRS符号。 需要说明的是: 暗室环境中仅存在直达径, 真 实的入射角度容易获得, 因此使用暗室有源测试数据便于验证本申请所提方法的有效性和准确性, 本 申请所提方法能够适用于实际的复杂多径环境中。 在进行空频流型矩阵修正时, 使用了两组测量数据, 分别由电磁仿真软件数值计算得到, 以及由 暗室测量得到。 将本申请实施例与两类相位校正方法的结果进行对比, 第一类为不考虑角度依赖的天线偏差, 仅 补偿与角度无关的有源射频通道偏差和线缆、连接件等无源偏差; 第二类为假设己知入射信号的角度, 按照对应信号入射方向的相位偏差对定位信号进行相位补偿。 使用的对比准则为: 对 5 ⑻个 SRS符号数据进行相位偏差校正后, 使用空频二维谱估计算法得到 的测角结果的均方根偏差 (Root Mean Square Error, RMSE)。 空频二维谱估计算法例如可以是二维匹配 滤波 (2D-MF) 算法。 在实际系统中, 为提高多径分辨能力, 空频二维处理算法不限于 2D-MF、 二维 子空间类算法等。 参见图 7, 图 7为对 -60°方向的定位信号, 采用本申请实施例的方法, 使用仿真天线偏差进行理想 空频流型矩阵修正, 得到的某一帧数据的 2D-MF角度维谱 (图中 “空频流型修正”对应的曲线)。 参见图 8, 图 8为对 -60°方向的定位信号, 采用本申请实施例的方法, 使用暗室测试天线偏差进行 理想空频流型矩阵修正, 得到的某一帧数据的 2D-MF角度维谱 (图中 “空频流型修正”对应的曲线)。 图 7和图 8中分别加入了以上所提到的第一类和第二类的定位信号的校正方法, 可以看到:
①大角度时, 天线的相位偏差变得非常显著, 若不考虑角度依赖的偏差将带来较大的测角偏差;
②无论使用的是仿真的天线偏差或是暗室测量的天线偏差, 采用本申请实施例的方法能够获得与 己知入射信号角度的校正方法近似的效果, 但是, 本申请实施例的方法不必己知定位信号的入射信号 角度, 能够在入射方向未知的情况下实现对角度依赖相位误差的精准补偿, 修正后的目标空频流型矩 阵可用于实际信号的实时空频二维处理, 实现对角度和延时的高精度估计。 参见图 9, 图 9为对 5 ⑻个 SRS符号数据测角结果的 RMSE进行统计, 校正时使用的是仿真的偏 差数据, 图中“空频流型修正 ”对应的曲线为本申请实施例对应的统计结果。 参见图 10, 图 10为对 500个 SRS符号数据测角结果的 RMSE进行统计, 校正时使用的是暗室测 量的偏差数据, 图中“空频流型修正 ”对应的曲线为本申请实施例对应的统计结果。 从 RMSE结果中能够看到, 若不考虑角度依赖相位误差, 在大角度时, 角度测量呈现明显的发散 现象, 本申请实施例能够在入射方向未知的情况下实现对角度依赖相位误差的精准补偿。 本申请实施例定位参数确定方法, 可以在来波方向未知的情况下, 实现对角度和频率相关的阵列 天线的相位偏差精准补偿, 有效解决了无线测向定位系统中信号处理所需的阵列天线校正问题。此外, 由于使用的是预校正方法, 本申请实施例定位参数确定方法离线修正理想空频流型矩阵, 不会增加定 位系统的实时计算量, 空域和频域联合处理能够大大提高对多径信号的分辨能力。 应该理解的是, 虽然上述流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必 然按照箭头指示的顺序依次执行。 除非本文中有明确的说明, 这些步骤的执行并没有严格的顺序限制, 这些步骤可以以其它的顺序执行。 而且, 上述流程图中的至少一部分步骤可以包括多个步骤或者多个 阶段, 这些步骤或者阶段并不必然是在同一时刻执行完成, 而是可以在不同的时刻执行, 这些步骤或 者阶段的执行顺序也不必然是依次进行, 而是可以与其它步骤或者其它步骤中的步骤或者阶段的至少 一部分轮流或者交替地执行。 在一个实施例中, 如图 11所示, 提供了一种定位参数确定装置, 所述装置包括: 第一获取模块 10, 用于基于目标阵列天线获取终端发送的定位信号; 确定模块 20, 用于确定预置的与所述目标阵列天线对应的目标空频流型矩阵; 其中, 所述目标 空频流型矩阵是采用所述目标阵列天线对应的相位偏差矩阵对所述目标阵列天线对应的理想空频流型 矩阵进行预校正得到的; 所述相位偏差矩阵是根据所述目标阵列天线在多个不同空间到达角和多个不 同频率下测量的相位偏差确定的, 所述理想空频流型矩阵用于表征所述目标阵列天线的各天线阵元在 预设阵列覆盖范围内的空间频率响应; 提取模块 30, 用于利用所述目标空频流型矩阵和所述定位信号, 提取得到所述定位信号对应的 空间到达角估计值和延时估计值, 所述空间到达角估计值和所述延时估计值用于作为定位参数对所述 终端进行位置定位。 在一个实施例中, 第一获取模块 10具体用于: 通过所述目标阵列天线接收由所述终端发送的时域 的探测参考信号; 对所述探测参考信号进行时域至频域的转换, 得到频域多载波信号; 对所述频域多 载波信号进行向量化处理得到信号向量; 按照预设的子载波抽取率, 对所述信号向量进行子载波抽取, 以得到所述定位信号。 在一个实施例中, 所述装置还包括: 第二获取模块,用于获取所述目标阵列天线在所述预设阵列覆盖范围内的各空间到达角和各频率 下测量的所述相位偏差; 第三获取模块, 用于根据所述相位偏差, 获取所述目标阵列天线对应的阵列偏差因子; 矩阵化处理模块, 用于对所述阵列偏差因子进行矩阵化处理, 得到所述相位偏差矩阵。 在一个实施例中, 第三获取模块具体用于: 对相位偏差进行插值, 以使插值后的相位偏差覆盖所 述目标阵列天线的阵列覆盖范围内的全部空间到达角和全部频率, 并基于插值后的相位偏差获取所述 阵列偏差因子。 在一个实施例中, 所述相位偏差包括天线阵元偏差、 射频通道偏差以及连接组件偏差; 其中,所述天线阵元偏差包括各所述天线阵元在所述预设阵列覆盖范围内的各空间到达角和各频 率下测量的相位偏差; 所述射频通道偏差包括所述目标阵列天线对应的射频通道在所述预设阵列覆盖 范围内的各频率下测量的相位偏差; 所述连接组件偏差包括所述目标阵列天线对应的连接组件在所述 预设阵列覆盖范围内的各频率下测量的相位偏差。 在一个实施例中,所述第三获取模块具体用于获取所述目标阵列天线对应的空域采样点集合以及 子频带数量, 所述空域采样点集合包括多个采样到达角, 各所述采样到达角是对所述目标阵列天线对 应的到达角角度范围中的全部空间到达角进行均匀采样得到的; 根据所述空域采样点集合和所述子频 带数量对所述天线阵元偏差进行插值处理, 得到插值后的天线阵元偏差, 并根据所述子频带数量分别 对所述射频通道偏差和所述连接组件偏差进行插值处理, 得到插值后的射频通道偏差和插值后的连接 组件偏差; 根据所述插值后的天线阵元偏差获取天线偏差因子, 并根据所述插值后的射频通道偏差获 取射频通道偏差因子, 以及根据所述插值后的连接组件偏差获取连接组件偏差因子; 将所述天线偏差 因子、 所述射频通道偏差因子以及所述连接组件偏差因子进行融合, 得到所述阵列偏差因子。 在一个实施例中, 所述装置还包括: 去缠绕模块,用于分别对所述天线阵元偏差、所述射频通道偏差以及所述连接组件偏差进行相位 去缠绕处理, 得到所述天线阵元偏差对应的第一偏差、 所述射频通道偏差对应的第二偏差以及所述连 接组件偏差对应的第三偏差; 对应地,所述第三获取模块具体用于根据所述空域采样点集合和所述子频带数量对所述第一偏差 进行插值处理, 得到所述插值后的天线阵元偏差; 根据所述子频带数量对所述第二偏差进行插值处理, 得到所述插值后的射频通道偏差; 根据所述子频带数量对所述第三偏差进行插值处理, 得到所述插值 后的连接组件偏差。 在一个实施例中, 所述装置还包括: 第四获取模块,用于获取所述目标阵列天线对应的时域采样点集合,所述时域采样点集合包括多 个采样延时值, 各所述采样延时值是对所述目标阵列天线对应的延时范围中的全部延时值进行均匀采 样得到的: 生成模块,用于获取所述目标阵列天线对应的空域采样点集合, 并基于所述空域采样点集合以及 所述时域采样点集合, 生成所述理想空频流型矩阵。 在一个实施例中, 第四获取模块还用于: 获取基站的接收灵敏度参数, 并基于所述接收灵敏度参 数确定所述目标阵列天线的延时范围; 基于预设的采样率, 对所述延时范围中的全部延时值进行均匀 采样, 得到所述时域采样点集合。 在一个实施例中, 生成模块还用于: 获取所述目标阵列天线的天线方向图参数, 并根据所述天线 方向图参数确定所述目标阵列天线的到达角角度范围; 基于预设的采样率, 对所述到达角角度范围中 的全部空间到达角进行均匀采样, 得到所述空域采样点集合。 在一个实施例中, 所述装置还包括: 第五获取模块,用于获取所述目标阵列天线的天线方向图参数, 并根据所述天线方向图参数确定 所述目标阵列天线的到达角角度范围; 第一采样模块,用于基于预设的采样率,对所述到达角角度范围中的全部空间到达角进行均匀采 样, 得到所述空域采样点集合。 在一个实施例中, 所述装置还包括: 第六获取模块,用于获取接收灵敏度参数, 并基于所述接收灵敏度参数确定所述目标阵列天线的 所述延时范围; 第二采样模块, 用于基于预设的采样率, 对所述延时范围中的全部延时值进行均匀采样, 得到所 述时域采样点集合。 在一个实施例中,所述提取模块具体用于对所述目标空频流型矩阵和所述定位信号进行空频二维 处理, 得到所述空间到达角估计值和所述延时估计值, 所述空频二维处理包括多重信号分类处理和匹 配滤波处理等参数估计算法中的至少一种。 关于定位参数确定装置的具体限定可以参见上文中对于定位参数确定方法的限定,在此不再赘述。 在上述定位参数确定方法的实施例阐述的技术特征及其有益效果均适用于定位参数确定装置的实施例 中, 具体内容可参见本申请定位参数确定方法实施例中的叙述。 上述定位参数确定装置中的各个模块可全部或部分通过软件、 硬件及其组合来实现。 上述各模块 可以硬件形式内嵌于或独立于计算机设备中的处理器中, 也可以以软件形式存储于计算机设备中的存 储器中, 以便于处理器调用执行以上各个模块对应的操作。 在一个实施例中, 提供了一种计算机设备, 该计算机设备可以是基站, 其内部结构图可以如图 12 所示。 该计算机设备包括通过系统总线连接的处理器、 存储器和网络接口。 其中, 该计算机设备的处 理器用于提供计算和控制能力。 该计算机设备的存储器包括非易失性存储介质、 内存储器。 该非易失 性存储介质存储有操作系统、 计算机程序和数据库。 该内存储器为非易失性存储介质中的操作系统和 计算机程序的运行提供环境。 该计算机设备的数据库用于存储定位参数确定方法的数据。 该计算机设 备的网络接口用于与外部的终端通过网络连接通信。 该计算机程序被处理器执行时以实现一种定位参 数确定方法。 本领域技术人员可以理解, 图 12中示出的结构, 仅仅是与本申请方案相关的部分结构的框图, 并 不构成对本申请方案所应用于其上的计算机设备的限定, 具体的计算机设备可以包括比图中所示更多 或更少的部件, 或者组合某些部件, 或者具有不同的部件布置。 在一个实施例中, 提供了一种计算机设备, 包括存储器和处理器, 存储器中存储有计算机程序, 该处理器执行计算机程序时实现以下步骤: 基于目标阵列天线获取终端发送的定位信号; 确定预置的与所述目标阵列天线对应的目标空频流 型矩阵; 其中, 所述目标空频流型矩阵是采用所述目标阵列天线对应的相位偏差矩阵对所述目标阵列 天线对应的理想空频流型矩阵进行预校正得到的; 所述相位偏差矩阵是根据所述目标阵列天线在多个 不同空间到达角和多个不同频率下测量的相位偏差确定的, 所述理想空频流型矩阵用于表征所述目标 阵列天线的各天线阵元在预设阵列覆盖范围内的空间频率响应; 利用所述目标空频流型矩阵和所述定 位信号, 提取得到所述定位信号对应的空间到达角估计值和延时估计值, 所述空间到达角估计值和所 述延时估计值用于作为定位参数对所述终端进行位置定位。 在一个实施例中, 处理器执行计算机程序时还实现以下步骤: 通过所述目标阵列天线接收由所述 终端发送的时域的探测参考信号; 对所述探测参考信号进行时域至频域的转换, 得到频域多载波信号; 对所述频域多载波信号进行向量化处理得到信号向量; 按照预设的子载波抽取率, 对所述信号向量进 行子载波抽取, 以得到所述定位信号。 在一个实施例中, 处理器执行计算机程序时还实现以下步骤: 获取所述目标阵列天线在所述预设阵列覆盖范围内的各空间到达角和各频率下测量的所述相位偏 差; 根据所述相位偏差, 获取所述目标阵列天线对应的阵列偏差因子; 对所述阵列偏差因子进行矩阵 化处理, 得到所述相位偏差矩阵。 在一个实施例中, 处理器执行计算机程序时还实现以下步骤: 对相位偏差进行插值, 以使插值后 的相位偏差覆盖所述目标阵列天线的阵列覆盖范围内的全部空间到达角和全部频率, 并基于插值后的 相位偏差获取所述阵列偏差因子。 在一个实施例中, 所述相位偏差包括天线阵元偏差、 射频通道偏差以及连接组件偏差; 其中, 所 述天线阵元偏差包括各所述天线阵元在所述预设阵列覆盖范围内的各空间到达角和各频率下测量的相 位偏差; 所述射频通道偏差包括所述目标阵列天线对应的射频通道在所述预设阵列覆盖范围内的各频 率下测量的相位偏差; 所述连接组件偏差包括所述目标阵列天线对应的连接组件在所述预设阵列覆盖 范围内的各频率下测量的相位偏差。 在一个实施例中, 处理器执行计算机程序时还实现以下步骤: 获取所述目标阵列天线对应的空域采样点集合以及子频带数量, 所述空域采样点集合包括多个采 样到达角, 各所述采样到达角是对所述目标阵列天线对应的到达角角度范围中的全部空间到达角进行 均匀采样得到的; 根据所述空域采样点集合和所述子频带数量对所述天线阵元偏差进行插值处理, 得 到插值后的天线阵元偏差, 并根据所述子频带数量分别对所述射频通道偏差和所述连接组件偏差进行 插值处理, 得到插值后的射频通道偏差和插值后的连接组件偏差; 根据所述插值后的天线阵元偏差获 取天线偏差因子, 并根据所述插值后的射频通道偏差获取射频通道偏差因子, 以及根据所述插值后的 连接组件偏差获取连接组件偏差因子; 将所述天线偏差因子、 所述射频通道偏差因子以及所述连接组 件偏差因子进行融合, 得到所述阵列偏差因子。 在一个实施例中, 处理器执行计算机程序时还实现以下步骤: 分别对所述天线阵元偏差、 所述射频通道偏差以及所述连接组件偏差进行相位去缠绕处理, 得到 所述天线阵元偏差对应的第一偏差、 所述射频通道偏差对应的第二偏差以及所述连接组件偏差对应的 第三偏差; 对应地, 所述根据所述空域采样点集合和所述子频带数量对所述天线阵元偏差进行插值处理, 得 到插值后的天线阵元偏差, 并根据所述子频带数量分别对所述射频通道偏差和所述连接组件偏差进行 插值处理, 得到插值后的射频通道偏差和插值后的连接组件偏差, 包括: 根据所述空域采样点集合和所述子频带数量对所述第一偏差进行插值处理, 得到所述插值后的天 线阵元偏差; 根据所述子频带数量对所述第二偏差进行插值处理, 得到所述插值后的射频通道偏差; 根据所述子频带数量对所述第三偏差进行插值处理, 得到所述插值后的连接组件偏差。 在一个实施例中, 处理器执行计算机程序时还实现以下步骤: 获取所述目标阵列天线对应的时域 采样点集合, 所述时域采样点集合包括多个采样延时值, 各所述采样延时值是对所述目标阵列天线对 应的延时范围中的全部延时值进行均匀采样得到的: 获取所述目标阵列天线对应的空域采样点集合, 并基于所述空域采样点集合以及所述时域采样点集合, 生成所述理想空频流型矩阵。 在一个实施例中, 处理器执行计算机程序时还实现以下步骤: 获取基站的接收灵敏度参数, 并基 于所述接收灵敏度参数确定所述目标阵列天线的延时范围; 基于预设的采样率, 对所述延时范围中的 全部延时值进行均匀采样, 得到所述时域采样点集合。 在一个实施例中, 处理器执行计算机程序时还实现以下步骤: 获取所述目标阵列天线的天线方向 图参数, 并根据所述天线方向图参数确定所述目标阵列天线的到达角角度范围; 基于预设的采样率, 对所述到达角角度范围中的全部空间到达角进行均匀采样, 得到所述空域采样点集合。 在一个实施例中, 处理器执行计算机程序时还实现以下步骤: 获取所述目标阵列天线的天线方向图参数, 并根据所述天线方向图参数确定所述目标阵列天线的 到达角角度范围; 基于预设的采样率, 对所述到达角角度范围中的全部空间到达角进行均匀采样, 得 到所述空域采样点集合。 在一个实施例中, 处理器执行计算机程序时还实现以下步骤: 获取接收灵敏度参数, 并基于所述接收灵敏度参数确定所述目标阵列天线的所述延时范围; 基于 预设的采样率, 对所述延时范围中的全部延时值进行均匀采样, 得到所述时域采样点集合。 在一个实施例中, 处理器执行计算机程序时还实现以下步骤: 对所述目标空频流型矩阵和所述定位信号进行空频二维处理, 得到所述空间到达角估计值和所述 延时估计值,所述空频二维处理包括多重信号分类处理和匹配滤波处理等参数估计算法中的至少一种。 上述计算机设备实施例中所实现的步骤与前述定位参数确定方法的步骤对应, 在上述定位参数确 定方法的实施例阐述的技术特征及其有益效果均适用于计算机设备的实施例中, 具体限定可以参见上 文中对于定位参数确定方法的限定, 在此不再赘述。 在一个实施例中, 提供了一种计算机可读存储介质, 其上存储有计算机程序, 计算机程序被处理 器执行时实现以下步骤: 基于目标阵列天线获取终端发送的定位信号; 确定预置的与所述目标阵列天线对应的目标空频流 型矩阵; 其中, 所述目标空频流型矩阵是采用所述目标阵列天线对应的相位偏差矩阵对所述目标阵列 天线对应的理想空频流型矩阵进行预校正得到的; 所述相位偏差矩阵是根据所述目标阵列天线在多个 不同空间到达角和多个不同频率下测量的相位偏差确定的, 所述理想空频流型矩阵用于表征所述目标 阵列天线的各天线阵元在预设阵列覆盖范围内的空间频率响应; 利用所述目标空频流型矩阵和所述定 位信号, 提取得到所述定位信号对应的空间到达角估计值和延时估计值, 所述空间到达角估计值和所 述延时估计值用于作为定位参数对所述终端进行位置定位。 在一个实施例中, 计算机程序被处理器执行时还实现以下步骤: 通过所述目标阵列天线接收由所 述终端发送的时域的探测参考信号; 对所述探测参考信号进行时域至频域的转换, 得到频域多载波信 号; 对所述频域多载波信号进行向量化处理得到信号向量; 按照预设的子载波抽取率, 对所述信号向 量进行子载波抽取, 以得到所述定位信号。 在一个实施例中, 计算机程序被处理器执行时还实现以下步骤: 获取所述目标阵列天线在所述预设阵列覆盖范围内的各空间到达角和各频率下测量的所述相位偏 差; 根据所述相位偏差, 获取所述目标阵列天线对应的阵列偏差因子; 对所述阵列偏差因子进行矩阵 化处理, 得到所述相位偏差矩阵。 在一个实施例中, 计算机程序被处理器执行时还实现以下步骤: 对相位偏差进行插值, 以使插值 后的相位偏差覆盖所述目标阵列天线的阵列覆盖范围内的全部空间到达角和全部频率, 并基于插值后 的相位偏差获取所述阵列偏差因子。 在一个实施例中, 所述相位偏差包括天线阵元偏差、 射频通道偏差以及连接组件偏差; 其中, 所 述天线阵元偏差包括各所述天线阵元在所述预设阵列覆盖范围内的各空间到达角和各频率下测量的相 位偏差; 所述射频通道偏差包括所述目标阵列天线对应的射频通道在所述预设阵列覆盖范围内的各频 率下测量的相位偏差; 所述连接组件偏差包括所述目标阵列天线对应的连接组件在所述预设阵列覆盖 范围内的各频率下测量的相位偏差。 在一个实施例中, 计算机程序被处理器执行时还实现以下步骤: 获取所述目标阵列天线对应的空域采样点集合以及子频带数量, 所述空域采样点集合包括多个采 样到达角, 各所述采样到达角是对所述目标阵列天线对应的到达角角度范围中的全部空间到达角进行 均匀采样得到的; 根据所述空域采样点集合和所述子频带数量对所述天线阵元偏差进行插值处理, 得 到插值后的天线阵元偏差, 并根据所述子频带数量分别对所述射频通道偏差和所述连接组件偏差进行 插值处理, 得到插值后的射频通道偏差和插值后的连接组件偏差; 根据所述插值后的天线阵元偏差获 取天线偏差因子, 并根据所述插值后的射频通道偏差获取射频通道偏差因子, 以及根据所述插值后的 连接组件偏差获取连接组件偏差因子; 将所述天线偏差因子、 所述射频通道偏差因子以及所述连接组 件偏差因子进行融合, 得到所述阵列偏差因子。 在一个实施例中, 计算机程序被处理器执行时还实现以下步骤: 分别对所述天线阵元偏差、 所述射频通道偏差以及所述连接组件偏差进行相位去缠绕处理, 得到 所述天线阵元偏差对应的第一偏差、 所述射频通道偏差对应的第二偏差以及所述连接组件偏差对应的 第三偏差; 对应地, 所述根据所述空域采样点集合和所述子频带数量对所述天线阵元偏差进行插值处理, 得 到插值后的天线阵元偏差, 并根据所述子频带数量分别对所述射频通道偏差和所述连接组件偏差进行 插值处理, 得到插值后的射频通道偏差和插值后的连接组件偏差, 包括: 根据所述空域采样点集合和所述子频带数量对所述第一偏差进行插值处理, 得到所述插值后的天 线阵元偏差; 根据所述子频带数量对所述第二偏差进行插值处理, 得到所述插值后的射频通道偏差; 根据所述子频带数量对所述第三偏差进行插值处理, 得到所述插值后的连接组件偏差。 在一个实施例中, 计算机程序被处理器执行时还实现以下步骤: 获取所述目标阵列天线对应的时域采样点集合, 所述时域采样点集合包括多个采样延时值, 各所 述采样延时值是对所述目标阵列天线对应的延时范围中的全部延时值进行均匀采样得到的: 获取所述 目标阵列天线对应的空域采样点集合, 并基于所述空域采样点集合以及所述时域采样点集合, 生成所 述理想空频流型矩阵。 在一个实施例中, 计算机程序被处理器执行时还实现以下步骤: 获取基站的接收灵敏度参数, 并 基于所述接收灵敏度参数确定所述目标阵列天线的延时范围; 基于预设的采样率, 对所述延时范围中 的全部延时值进行均匀采样, 得到所述时域采样点集合。 在一个实施例中, 计算机程序被处理器执行时还实现以下步骤: 获取所述目标阵列天线的天线方 向图参数, 并根据所述天线方向图参数确定所述目标阵列天线的到达角角度范围; 基于预设的采样率, 对所述到达角角度范围中的全部空间到达角进行均匀采样, 得到所述空域采样点集合。 在一个实施例中, 计算机程序被处理器执行时还实现以下步骤: 获取所述目标阵列天线的天线方向图参数, 并根据所述天线方向图参数确定所述目标阵列天线的 到达角角度范围; 基于预设的采样率, 对所述到达角角度范围中的全部空间到达角进行均匀采样, 得 到所述空域采样点集合。 在一个实施例中, 计算机程序被处理器执行时还实现以下步骤: 获取接收灵敏度参数, 并基于所述接收灵敏度参数确定所述目标阵列天线的所述延时范围; 基于 预设的采样率, 对所述延时范围中的全部延时值进行均匀采样, 得到所述时域采样点集合。 在一个实施例中, 计算机程序被处理器执行时还实现以下步骤: 对所述目标空频流型矩阵和所述定位信号进行空频二维处理, 得到所述空间到达角估计值和所述 延时估计值,所述空频二维处理包括多重信号分类处理和匹配滤波处理等参数估计算法中的至少一种。 上述计算机可读存储介质实施例中所实现的步骤与前述定位参数确定方法的步骤对应, 在上述定 位参数确定方法的实施例阐述的技术特征及其有益效果均适用于计算机可读存储介质的实施例中, 具 体限定可以参见上文中对于定位参数确定方法的限定, 在此不再赘述。 本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序 来指令相关的硬件来完成, 所述的计算机程序可存储于一非易失性计算机可读取存储介质中, 该计算 机程序在执行时, 可包括如上述各方法的实施例的流程。 其中, 本申请所提供的各实施例中所使用的 对存储器、 存储、 数据库或其它介质的任何引用, 均可包括非易失性和易失性存储器中的至少一种。 非易失性存储器可包括只读存储器 (Read-Only Memory, ROM)、 磁带、 软盘、 闪存或光存储器等。 易失性存储器可包括随机存取存储器 (Random Access Memory, RAM)或外部高速缓冲存储器。 作为 说明而非局限, RAM 可以是多种形式, 比如静态随机存取存储器 (Static Random Access Memory,
SRAM) 或动态随机存取存储器 (Dynamic Random Access Memory, DRAM) 等。 以上实施例的各技术特征可以进行任意的组合,为使描述简洁, 未对上述实施例中的各个技术特 征所有可能的组合都进行描述, 然而, 只要这些技术特征的组合不存在矛盾, 都应当认为是本说明书 记载的范围。 以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解 为对申请专利范围的限制。 应当指出的是, 对于本领域的普通技术人员来说, 在不脱离本申请构思的 前提下, 还可以做出若干变形和改进, 这些都属于本申请的保护范围。 因此, 本申请专利的保护范围 应以所附权利要求为准。

Claims

权利要求书
1、 一种定位参数确定方法, 包括: 基于目标阵列天线获取终端发送的定位信号; 确定预置的与所述目标阵列天线对应的目标空频流型矩阵; 其中, 所述目标空频流型矩阵是采用 所述目标阵列天线对应的相位偏差矩阵对所述目标阵列天线对应的理想空频流型矩阵进行预校正得到 的; 所述相位偏差矩阵是根据所述目标阵列天线在多个不同空间到达角和多个不同频率下测量的相位 偏差确定的, 所述理想空频流型矩阵用于表征所述目标阵列天线的各天线阵元在预设阵列覆盖范围内 的空间频率响应; 利用所述目标空频流型矩阵和所述定位信号, 提取得到所述定位信号对应的空间到达角估计值和 延时估计值, 所述空间到达角估计值和所述延时估计值用于作为定位参数对所述终端进行位置定位。
2、 根据权利要求 1所述的方法, 其中, 基于目标阵列天线获取终端发送的定位信号包括: 通过所述目标阵列天线接收由所述终端发送的时域的探测参考信号; 对所述探测参考信号进行时域至频域的转换, 得到频域多载波信号; 对所述频域多载波信号进行向量化处理得到信号向量; 按照预设的子载波抽取率, 对所述信号向量进行子载波抽取, 以得到所述定位信号。
3、 根据权利要求 1所述的方法, 其中, 所述相位偏差矩阵的获取过程包括: 获取所述目标阵列天线在所述预设阵列覆盖范围内的各空间到达角和各频率下测量的所述相位偏 差; 根据所述相位偏差, 获取所述目标阵列天线对应的阵列偏差因子; 对所述阵列偏差因子进行矩阵化处理, 得到所述相位偏差矩阵。
4、 根据权利要求 3所述的方法, 其中, 获取所述目标阵列天线对应的阵列偏差因子之前, 所述方 法还包括: 对相位偏差进行插值, 以使插值后的相位偏差覆盖所述目标阵列天线的阵列覆盖范围内的全部空 间到达角和全部频率, 并基于插值后的相位偏差获取所述阵列偏差因子。
5、 根据权利要求 3所述的方法, 其中, 所述相位偏差包括天线阵元偏差、 射频通道偏差以及连接 组件偏差; 其中, 所述天线阵元偏差包括各所述天线阵元在所述预设阵列覆盖范围内的各空间到达角和各频 率下测量的相位偏差; 所述射频通道偏差包括所述目标阵列天线对应的射频通道在所述预设阵列覆盖 范围内的各频率下测量的相位偏差; 所述连接组件偏差包括所述目标阵列天线对应的连接组件在所述 预设阵列覆盖范围内的各频率下测量的相位偏差。
6、 根据权利要求 5所述的方法, 其中, 所述根据所述相位偏差, 获取所述目标阵列天线对应的阵 列偏差因子, 包括: 获取所述目标阵列天线对应的空域采样点集合以及子频带数量, 所述空域采样点集合包括多个采 样到达角, 各所述采样到达角是对所述目标阵列天线对应的到达角角度范围中的全部空间到达角进行 均匀采样得到的; 根据所述空域采样点集合和所述子频带数量对所述天线阵元偏差进行插值处理, 得到插值后的天 线阵元偏差, 并根据所述子频带数量分别对所述射频通道偏差和所述连接组件偏差进行插值处理, 得 到插值后的射频通道偏差和插值后的连接组件偏差; 根据所述插值后的天线阵元偏差获取天线偏差因子, 并根据所述插值后的射频通道偏差获取射频 通道偏差因子, 以及根据所述插值后的连接组件偏差获取连接组件偏差因子; 将所述天线偏差因子、 所述射频通道偏差因子以及所述连接组件偏差因子进行融合, 得到所述阵 列偏差因子。
7、 根据权利要求 6所述的方法, 还包括: 分别对所述天线阵元偏差、 所述射频通道偏差以及所述连接组件偏差进行相位去缠绕处理, 得到 所述天线阵元偏差对应的第一偏差、 所述射频通道偏差对应的第二偏差以及所述连接组件偏差对应的 第二偏差; 其中, 所述根据所述空域采样点集合和所述子频带数量对所述天线阵元偏差进行插值处理, 得到 插值后的天线阵元偏差, 并根据所述子频带数量分别对所述射频通道偏差和所述连接组件偏差进行插 值处理, 得到插值后的射频通道偏差和插值后的连接组件偏差, 包括: 根据所述空域采样点集合和所述子频带数量对所述第一偏差进行插值处理, 得到所述插值后的天 线阵兀偏差; 根据所述子频带数量对所述第二偏差进行插值处理, 得到所述插值后的射频通道偏差; 根据所述子频带数量对所述第三偏差进行插值处理, 得到所述插值后的连接组件偏差。
8、 根据权利要求 1所述的方法, 其中, 所述理想空频流型矩的获取过程包括: 获取所述目标阵列天线对应的时域采样点集合, 所述时域采样点集合包括多个采样延时值, 各所 述采样延时值是对所述目标阵列天线对应的延时范围中的全部延时值进行均匀采样得到的: 获取所述目标阵列天线对应的空域采样点集合, 并基于所述空域采样点集合以及所述时域采样点 集合, 生成所述理想空频流型矩阵。
9、 根据权利要求 8所述的方法, 其中, 获取所述目标阵列天线对应的时域采样点集合包括: 获取基站的接收灵敏度参数, 并基于所述接收灵敏度参数确定所述目标阵列天线的延时范围; 基于预设的采样率, 对所述延时范围中的全部延时值进行均匀采样, 得到所述时域采样点集合。
10、 根据权利要求 8所述的方法, 其中, 获取所述目标阵列天线对应的空域采样点集合包括: 获取所述目标阵列天线的天线方向图参数, 并根据所述天线方向图参数确定所述目标阵列天线的 到达角角度范围; 以及基于预设的采样率, 对所述到达角角度范围中的全部空间到达角进行均匀采样, 得到所述空域采样点集合。
11、 根据权利要求 1所述的方法, 其中, 所述利用所述目标空频流型矩阵和所述定位信号, 提取 得到所述定位信号对应的空间到达角估计值和延时估计值, 包括: 对所述目标空频流型矩阵和所述定位信号进行空频二维处理, 得到所述空间到达角估计值和所述 延时估计值, 所述空频二维处理包括多重信号分类处理和匹配滤波处理中的至少一种。
12、 一种定位参数确定装置, 包括: 第一获取模块, 用于基于目标阵列天线获取终端发送的定位信号; 确定模块, 用于确定预置的与所述目标阵列天线对应的目标空频流型矩阵; 其中, 所述目标空频 流型矩阵是采用所述目标阵列天线对应的相位偏差矩阵对所述目标阵列天线对应的理想空频流型矩阵 进行预校正得到的; 所述相位偏差矩阵是根据所述目标阵列天线在多个不同空间到达角和多个不同频 率下测量的相位偏差确定的, 所述理想空频流型矩阵用于表征所述目标阵列天线的各天线阵元在预设 阵列覆盖范围内的空间频率响应; 提取模块,用于利用所述目标空频流型矩阵和所述定位信号,提取得到所述定位信号对应的空间 到达角估计值和延时估计值, 所述空间到达角估计值和所述延时估计值用于作为定位参数对所述终端 进行位置定位。
13、 根据权利要求 12所述的定位参数确定装置, 还包括: 第四获取模块,用于获取所述目标阵列天线对应的时域采样点集合,所述时域采样点集合包括多 个采样延时值, 各所述采样延时值是对所述目标阵列天线对应的延时范围中的全部延时值进行均匀采 样得到的: 生成模块,用于获取所述目标阵列天线对应的空域采样点集合, 并基于所述空域采样点集合以及 所述时域采样点集合, 生成所述理想空频流型矩阵, 所述空域采样点集合覆盖到达角角度范围内的全 部空间到达角。
14、 一种计算机设备, 包括存储器和处理器, 所述存储器存储有计算机程序, 其中, 所述处理器 执行所述计算机程序时实现权利要求 1至 11中任一项所述的方法的步骤。
15、 一种计算机可读存储介质, 其上存储有计算机程序, 其中, 所述计算机程序被处理器执行时 实现权利要求 1至 11中任一项所述的方法的步骤。
PCT/CN2021/140022 2021-03-02 2021-12-21 定位参数确定方法、装置、计算机设备和存储介质 WO2022183813A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110229300.7 2021-03-02
CN202110229300.7A CN112601282B (zh) 2021-03-02 2021-03-02 定位参数确定方法、装置、计算机设备和存储介质

Publications (1)

Publication Number Publication Date
WO2022183813A1 true WO2022183813A1 (zh) 2022-09-09

Family

ID=75208046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140022 WO2022183813A1 (zh) 2021-03-02 2021-12-21 定位参数确定方法、装置、计算机设备和存储介质

Country Status (2)

Country Link
CN (1) CN112601282B (zh)
WO (1) WO2022183813A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115618755A (zh) * 2022-12-21 2023-01-17 西安电子科技大学 一种基于机器学习算法的共形空间功率合成方法
CN117805722A (zh) * 2024-02-28 2024-04-02 上海银基信息安全技术股份有限公司 Aoa校准、计算方法及装置、定位设备及存储介质
CN117834045A (zh) * 2024-03-05 2024-04-05 杰创智能科技股份有限公司 接收信号的来波方向测量方法、装置、设备及介质

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112601282B (zh) * 2021-03-02 2021-06-08 网络通信与安全紫金山实验室 定位参数确定方法、装置、计算机设备和存储介质
CN113452631B (zh) * 2021-06-04 2022-08-26 广东省大湾区集成电路与系统应用研究院 空间内目标判定方法、装置、计算机设备和存储介质
CN113382355B (zh) * 2021-06-08 2022-07-12 上海航天测控通信研究所 一种基于到达角估计的测向定位系统和定位方法
CN113382471B (zh) * 2021-06-08 2022-08-02 上海航天测控通信研究所 一种基于离开角估计的定位系统和定位方法
CN113286363B (zh) * 2021-07-23 2021-10-01 网络通信与安全紫金山实验室 无线定位参数估计方法、装置、计算机设备及存储介质
CN113329491B (zh) * 2021-08-03 2021-10-12 网络通信与安全紫金山实验室 定位参数确定方法、装置、设备和存储介质
CN113365345B (zh) * 2021-08-11 2021-10-29 网络通信与安全紫金山实验室 相位偏差校正方法、装置、计算机设备和存储介质
CN114422046B (zh) * 2022-01-21 2024-03-15 上海创远仪器技术股份有限公司 基于多通道一致性针对异常相位校准数据进行筛查处理的方法、装置、处理器及其存储介质
CN114553649B (zh) * 2022-02-22 2024-05-28 成都四相致新科技有限公司 信号频率偏差校准方法、装置、电子设备和存储介质

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102193080A (zh) * 2010-02-18 2011-09-21 三星电子株式会社 用于估计到达角的方法和设备
US20160345286A1 (en) * 2014-01-30 2016-11-24 Ucl Business Plc Apparatus and method for calibrating a wireless access point comprising an array of multiple antennas
CN107015198A (zh) * 2017-05-08 2017-08-04 西安电子科技大学 一种基于天线非规则布设的室内定位方法
CN110187304A (zh) * 2019-05-21 2019-08-30 泰凌微电子(上海)有限公司 一种信号到达角估计方法及装置
US20200011956A1 (en) * 2017-10-18 2020-01-09 L3 Technologies, Inc. High accuracy angle of arrival estimation using estimated range to target node
CN111044969A (zh) * 2019-12-03 2020-04-21 泰凌微电子(上海)有限公司 一种信号到达角估计方法、装置及计算机可读存储介质
WO2020080333A1 (ja) * 2018-10-19 2020-04-23 株式会社村田製作所 到来角度検知装置、通信システム、レーダ、車両および到来角度検知方法
CN112073895A (zh) * 2019-06-10 2020-12-11 重庆邮电大学 一种基于csi高精度人员定位跟踪方法
CN112601282A (zh) * 2021-03-02 2021-04-02 网络通信与安全紫金山实验室 定位参数确定方法、装置、计算机设备和存储介质
CN113329491A (zh) * 2021-08-03 2021-08-31 网络通信与安全紫金山实验室 定位参数确定方法、装置、设备和存储介质

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109765519B (zh) * 2018-12-14 2020-08-28 北京邮电大学 一种模数混合天线阵列的角度估计方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102193080A (zh) * 2010-02-18 2011-09-21 三星电子株式会社 用于估计到达角的方法和设备
US20160345286A1 (en) * 2014-01-30 2016-11-24 Ucl Business Plc Apparatus and method for calibrating a wireless access point comprising an array of multiple antennas
CN107015198A (zh) * 2017-05-08 2017-08-04 西安电子科技大学 一种基于天线非规则布设的室内定位方法
US20200011956A1 (en) * 2017-10-18 2020-01-09 L3 Technologies, Inc. High accuracy angle of arrival estimation using estimated range to target node
WO2020080333A1 (ja) * 2018-10-19 2020-04-23 株式会社村田製作所 到来角度検知装置、通信システム、レーダ、車両および到来角度検知方法
CN110187304A (zh) * 2019-05-21 2019-08-30 泰凌微电子(上海)有限公司 一种信号到达角估计方法及装置
CN112073895A (zh) * 2019-06-10 2020-12-11 重庆邮电大学 一种基于csi高精度人员定位跟踪方法
CN111044969A (zh) * 2019-12-03 2020-04-21 泰凌微电子(上海)有限公司 一种信号到达角估计方法、装置及计算机可读存储介质
CN112601282A (zh) * 2021-03-02 2021-04-02 网络通信与安全紫金山实验室 定位参数确定方法、装置、计算机设备和存储介质
CN113329491A (zh) * 2021-08-03 2021-08-31 网络通信与安全紫金山实验室 定位参数确定方法、装置、设备和存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LENG YUAN: "Research on Intrusion Detection and Indoor Positioning Technology Based on CSI", CHINA MASTER'S THESES FULL-TEXT DATABASE, INFORMATION TECHNOLOGY, no. 2, 15 February 2020 (2020-02-15), XP055963513 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115618755A (zh) * 2022-12-21 2023-01-17 西安电子科技大学 一种基于机器学习算法的共形空间功率合成方法
CN115618755B (zh) * 2022-12-21 2023-04-07 西安电子科技大学 一种基于机器学习算法的共形空间功率合成方法
CN117805722A (zh) * 2024-02-28 2024-04-02 上海银基信息安全技术股份有限公司 Aoa校准、计算方法及装置、定位设备及存储介质
CN117834045A (zh) * 2024-03-05 2024-04-05 杰创智能科技股份有限公司 接收信号的来波方向测量方法、装置、设备及介质
CN117834045B (zh) * 2024-03-05 2024-05-14 杰创智能科技股份有限公司 接收信号的来波方向测量方法、装置、设备及介质

Also Published As

Publication number Publication date
CN112601282A (zh) 2021-04-02
CN112601282B (zh) 2021-06-08

Similar Documents

Publication Publication Date Title
WO2022183813A1 (zh) 定位参数确定方法、装置、计算机设备和存储介质
Reine et al. Multidimensional high-resolution parameter estimation with applications to channel sounding
Dandekar et al. Experimental study of mutual coupling compensation in smart antenna applications
Pan et al. Efficient joint DOA and TOA estimation for indoor positioning with 5G picocell base stations
US6459409B1 (en) Method and device for using array antenna to estimate location of source in near field
WO2023000614A1 (zh) 无线定位参数估计方法、装置、系统、计算机设备及存储介质
Haneda et al. A parametric UWB propagation channel estimation and its performance validation in an anechoic chamber
Tian et al. 2-D DOA estimation of incoherently distributed sources considering gain-phase perturbations in massive MIMO systems
CN113438738B (zh) 定位参数估计方法、装置、计算机设备和存储介质
CN115856767A (zh) 一种可重构智能超表面辅助的波到达方向估计方法
Pan et al. In situ calibration of antenna arrays for positioning with 5G networks
Wang et al. An effective localization method for mixed far-field and near-field strictly non-circular sources
Viberg et al. Calibration in array processing
Lin et al. 3D wideband mmWave localization for 5G massive MIMO systems
Tayem et al. Hardware implementation of MUSIC and ESPRIT on NI-PXI platform
Al-Sadoon et al. The effects of mutual coupling within antenna arrays on angle of arrival methods
Li et al. Mutual coupling self-calibration algorithm for uniform linear array based on ESPRIT
Raschkowski et al. Directional propagation measurements and modeling in an urban environment at 3.7 GHz
Mondal Studies of different direction of arrival (DOA) estimation algorithm for smart antenna in wireless communication
Xu et al. A diagonal growth curve model and some signal-processing applications
CN103780296B (zh) 一种均匀圆形阵列天线的信号接收及失真矫正方法
JP3946101B2 (ja) 空間特性を用いた多重波の到来方向推定方法及びこれを用いた受信ビーム形成装置
Liu et al. Multidimensional harmonic retrieval with applications in MIMO wireless channel sounding
JP4014941B2 (ja) 到来方向推定装置及び到来方向推定方法
CN113630720B (zh) 基于WiFi信号强度和生成对抗网络的室内定位方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21928884

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21928884

Country of ref document: EP

Kind code of ref document: A1