WO2022183804A1 - 一种光学元件及光学模组 - Google Patents

一种光学元件及光学模组 Download PDF

Info

Publication number
WO2022183804A1
WO2022183804A1 PCT/CN2021/137464 CN2021137464W WO2022183804A1 WO 2022183804 A1 WO2022183804 A1 WO 2022183804A1 CN 2021137464 W CN2021137464 W CN 2021137464W WO 2022183804 A1 WO2022183804 A1 WO 2022183804A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical element
layer
diffractive
fresnel lens
transparent substrate
Prior art date
Application number
PCT/CN2021/137464
Other languages
English (en)
French (fr)
Inventor
汪肇坤
伍未名
刘风雷
Original Assignee
浙江水晶光电科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江水晶光电科技股份有限公司 filed Critical 浙江水晶光电科技股份有限公司
Priority to US18/026,804 priority Critical patent/US20230244014A1/en
Priority to KR1020237007425A priority patent/KR20230041078A/ko
Priority to JP2023513406A priority patent/JP2023538777A/ja
Publication of WO2022183804A1 publication Critical patent/WO2022183804A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1876Diffractive Fresnel lenses; Zone plates; Kinoforms
    • G02B5/188Plurality of such optical elements formed in or on a supporting substrate
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1876Diffractive Fresnel lenses; Zone plates; Kinoforms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1814Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1876Diffractive Fresnel lenses; Zone plates; Kinoforms
    • G02B5/189Structurally combined with optical elements not having diffractive power
    • G02B5/1895Structurally combined with optical elements not having diffractive power such optical elements having dioptric power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films

Definitions

  • the present application relates to the field of optical technology, in particular, to optical elements and optical modules.
  • Optical modules are more and more widely used in modern products, such as structured light in electronic equipment.
  • Structured light projects a specific pattern on the surface of an object and collects it through a receiving module.
  • the change of the signal is used to calculate the position and depth information of the object, and then restore the entire depth space.
  • the pattern can be designed into stripe shape, regular lattice shape, grid shape, speckle shape, coding shape, etc., and even more complex shapes of light.
  • the application scope of structured light is more and more extensive, such as face recognition, gesture recognition, projector, three-dimensional (Three-dimensional, 3D) contour reproduction, depth measurement, anti-counterfeiting identification and so on. Therefore, optical modules have become the focus of research.
  • An optical module in the related art mainly includes a light source, a collimating lens and an optical element.
  • the light beam emitted by the light source is modulated by a collimating lens to be collimated light, and after entering the optical element and diffracting a pattern array of multiple light spots, it is projected onto the object.
  • multiple sets of lenses are generally required.
  • the multiple sets of lenses are prone to deviation during the loading process, which affects the reliability of beam propagation.
  • Multiple sets of lenses are prone to failure after assembly or reliability testing, making the optical
  • the assembly defect rate of the module is high, and the combination of multiple sets of lenses takes up a lot of space, consumes assembly man-hours, and has high production costs.
  • the present application provides an optical element and an optical module, which can reduce the assembly cost and assembly difficulty, and facilitate the miniaturization of the optical module.
  • the optical element may include a diffractive optical element, and a Fresnel lens connected with the diffractive optical element, so that a light beam passes through the diffractive optical element after passing through the Fresnel lens
  • the elements form a preset pattern.
  • the diffractive optical element may include a transparent substrate, and a diffractive layer disposed on the transparent substrate.
  • the constituent material of the transparent substrate may be glass or resin, and the diffraction layer may be patterned by a micro-nano etching or imprinting process.
  • the diffractive layer may be filled with a filling layer covering the diffractive layer, or a cover plate may be provided on the diffractive layer.
  • the Fresnel lens may be disposed on the transparent substrate, or the Fresnel lens may be disposed on the filling layer.
  • the difference between the refractive index n 1 of the diffractive optical element and the refractive index n 2 of the filling layer may be:
  • the material forming the diffractive optical element has a higher refractive index than the material composing the filling layer, or the material forming the diffractive optical element has a lower refractive index than the material composing the filling layer.
  • a transparent conductive layer may be provided on one side of the transparent substrate.
  • the transparent conductive layer may be a transparent metal oxide or metal-doped oxide.
  • the Fresnel lens may include a base body, and a collimation layer disposed on the base body, so that the light beams passing through the Fresnel lens are emitted in parallel, wherein the collimation layer is located on the the side of the substrate facing away from the transparent substrate.
  • the structure types of the diffractive layer and the collimation layer can be either stepped or continuous.
  • the transparent substrate or the light-transmitting surface of the filling layer may be provided with at least one of an anti-reflection film layer, a wear-resistant layer or a hydrophobic and oleophobic layer.
  • the optical module may include the optical element described in any one of the above and a light source, wherein the light source may be located at the Fresnel of the optical element At the focal plane of the lens, and the collimating part of the Fresnel lens faces the light source.
  • the light source in the optical module may use a surface-emitting laser or a laser diode.
  • the structural optical element is formed as a whole, and has optical properties of collimation and diffraction at the same time.
  • the alignment error between the diffractive optical element and the Fresnel lens depends on the alignment ability between the wafers. alignment accuracy between.
  • using the optical elements provided in the embodiments of the present application only a single optical element needs to be assembled during assembly, and the assembly efficiency is higher. Compared with the use of separate collimating lens groups and DOE elements, the assembly cost and assembly can be reduced. difficulty.
  • the space occupied is smaller, which is beneficial to the miniaturized design of the optical module.
  • FIG. 1 is one of the schematic structural diagrams of the optical element provided by the embodiment of the present application.
  • FIG. 2 is the second schematic structural diagram of the optical element provided by the embodiment of the present application.
  • FIG. 3 is a third schematic structural diagram of an optical element provided by an embodiment of the present application.
  • FIG. 4 is a fourth schematic structural diagram of an optical element provided by an embodiment of the present application.
  • FIG. 5 is a fifth schematic structural diagram of an optical element provided by an embodiment of the present application.
  • FIG. 6 is a sixth schematic structural diagram of an optical element provided by an embodiment of the present application.
  • FIG. 8 is the second schematic structural diagram of the optical module provided by the embodiment of the present application.
  • FIG. 9 is a third schematic structural diagram of an optical module provided by an embodiment of the present application.
  • FIG. 10 is the fourth schematic structural diagram of the optical module provided by the embodiment of the application.
  • FIG. 11 is a fifth schematic structural diagram of an optical module provided by an embodiment of the present application.
  • Icon 100-optical element; 110-diffractive optical element; 112-transparent substrate; 114-diffraction layer; 120-Fresnel lens; 122-substrate; 124-collimation layer; 130-filling layer; 200-optical module; 210-light source.
  • connection should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection, or Connected integrally; it can be directly connected, or indirectly connected through an intermediate medium, and it can be the internal communication of two elements.
  • the entire system of 3D structured light includes structured light projection modules, cameras, and image acquisition and processing systems.
  • the process is that the projection module emits a beam to the object to be measured, the camera captures the three-dimensional light pattern formed on the object to be measured, and the captured image is processed by the acquisition and processing system to obtain the surface data of the object to be measured.
  • the degree of beam distortion projected on the measured object depends on the depth of the object surface, so a beam image with depth can be obtained in the captured image.
  • the projection module is one of the important components of the whole 3D vision, which is used to emit specially modulated invisible infrared light to the photographed object, and the quality of the emitted image is very important to the whole recognition effect.
  • the projection module When the projection module is in use, it needs to emit invisible infrared light through the invisible infrared light emission source, the invisible infrared light is calibrated through the collimating lens, and the calibrated invisible infrared light passes through the Diffractive Optical Element (DOE). ) to diffract to obtain the desired spot pattern.
  • DOE Diffractive Optical Element
  • the collimating lens and the DOE are discrete components, which makes the entire module occupy a large space, low in alignment accuracy, and high in assembly cost, which has great limitations.
  • the embodiments of the present application use a single optical element to realize the functions of collimation and diffraction at the same time, so as to solve the above problems.
  • the present embodiment provides an optical element 100 , which may include a diffractive optical element 110 and a Fresnel lens 120 connected to the diffractive optical element 110 , so that the light beam is transmitted through the Fresnel lens 120 .
  • a predetermined pattern is formed through the diffractive optical element 110 .
  • the diffractive optical element 110 and the Fresnel lens 120 are integrally formed.
  • the alignment error between the lenses 120 depends on the alignment capability (micrometer level) between wafers, and is much smaller than the alignment error (millimeter level) between components in the conventional method. In the above manner, the optical performance of the optical element 100 as a whole can be improved.
  • the light source When using the optical element 100 provided in the embodiment of the present application, the light source is placed at the focal plane of the Fresnel lens 120, and the scattered light spot emitted by the light source will be collimated when passing through the Fresnel lens 120 in the optical element 100, Then it is incident on the diffractive optical element 110 in parallel, and the diffractive optical element 110 will diffract the collimated light to form a preset pattern.
  • the modified preset pattern may be designed into a stripe shape, a regular lattice shape, a grid shape, a speckle shape, a coding shape, etc. according to actual needs, which is not specifically described in this embodiment of the present application.
  • the optical element 100 by connecting the diffractive optical element 110 and the Fresnel lens 120, the optical element 100 forms a whole and has both collimation and diffraction optical properties.
  • the alignment error between the diffractive optical element 110 and the Fresnel lens 120 depends on the alignment ability between the wafers, which is much higher than that in the traditional way of assembling a mirror group. on the alignment accuracy between the mirror groups.
  • the optical element 100 provided in the embodiment of the present application only a single optical element 100 needs to be assembled during assembly, the assembly efficiency is higher, and the assembly cost can be reduced compared with the use of separate collimating lens groups and DOE elements. and assembly difficulty.
  • using a single optical element 100 takes up less space, which is beneficial to the miniaturized design of the optical module 200 .
  • the diffractive optical element 110 may include a transparent substrate 112 and a diffractive layer 114 disposed on the transparent substrate 112 .
  • the constituent material of the transparent substrate 112 can be glass or resin
  • the diffractive layer 114 can be patterned by using a micro-nano etching process, so that the laser is diffracted after passing through each diffractive unit to form a specific light intensity Distribution, such as generating a lattice, can also generate a diffuser with uniform light according to actual needs.
  • the specific pattern of the diffraction unit of the diffractive optical element 110 is determined by the working wavelength
  • the used vertical cavity surface emission laser (VCSEL) lattice distribution and the final required diffraction pattern distribution and the height of the diffractive optical element 110 is determined by
  • the working wavelength is determined by the difference between the refractive indices of the two materials used and the number of steps.
  • the diffractive layer 114 can be formed by nano-imprinting to form desired diffractive units.
  • the diffractive layer 114 may be filled with a filling layer 130 covering the diffractive layer 114 , or a cover plate 140 may be provided on the diffractive layer 114 .
  • the diffractive layer 114 is formed in the form, in order to ensure the stability of the structure of the diffractive layer 114 and avoid the structure of the diffractive layer 114 from being affected by external bumps, the diffractive layer 114 can be filled with a covering filling layer 130, so that the diffractive layer 114 is coated on the filling layer. 130 to ensure the stability of the structure of the diffractive layer 114 .
  • a cover plate 140 may also be provided on the diffractive portion of the diffractive optical element 110 to protect the diffractive layer 114 of the diffractive optical element 110 , thereby ensuring the stability of the optical element 100 during use.
  • the difference between the refractive index n 1 of the diffractive optical element 110 and the refractive index n 2 of the filling layer 130 Can be:
  • the material forming the diffractive optical element 110 may have a relatively high refractive index, and the material constituting the filling layer 130 may have a relatively low refractive index. It may also be that the material constituting the diffractive optical element 110 has a relatively low refractive index, and the material constituting the filling layer 130 has a relatively high refractive index, which is not specifically described in this embodiment of the present application.
  • ⁇ 0.2 the diffraction effect is better, and the obtained preset pattern is better.
  • the use of different refractive indices is to ensure the normal formation of diffraction. If materials with the same refractive index are used, it can be considered that the filling layer 130 and the diffractive layer 114 form the same structure, so the diffractive layer 114 is no longer present. Therefore, the refractive index between the filling layer 130 and the diffractive optical element 110 needs to be different. In addition, when the filling layer 130 is not provided, the diffractive optical element 110 and the air also have different refractive indices, which can also ensure the normal generation of the desired pattern.
  • the Fresnel lens 120 may be disposed on the transparent substrate 112 , or the Fresnel lens 120 may be disposed on the diffractive layer 114 .
  • FIG. 3 is a schematic structural diagram of the Fresnel lens 120 disposed on the diffractive layer 114.
  • the Fresnel lens 120 When the Fresnel lens 120 is prepared, when the Fresnel lens 120 and the diffractive optical element 110 are located on the same side of the transparent substrate 112, it can be It is formed directly on the filling layer 130 by means of imprinting, etching, or direct laser writing. In this way, the filling layer 130 and the Fresnel lens 120 are made of the same material, which is beneficial to more stable bonding between the Fresnel lens 120 and the filling layer 130 . Wherein, the materials of the Fresnel lens 120 and the filling layer 130 can be UV-curable glue or the like.
  • the material of the filling layer 130 may also be different from the material of the Fresnel lens 120 .
  • the filling layer 130 needs to be filled and coated on the diffractive layer 114 and flattened, and then a new level is set and stamped to form Fresnel lens 120.
  • FIG. 4 is a schematic diagram of the structure of the Fresnel lens 120 disposed on the transparent substrate 112.
  • the master plate of the diffractive optical element 110 and the master plate of the Fresnel lens 120 are fabricated, they can be directly pressed on opposite sides of the transparent substrate 112, respectively.
  • the main structure of the diffractive optical element 110 and the Fresnel lens 120 is printed, and finally the required optical element 100 is formed by demolding.
  • the layer 114 is filled with an overfill layer 130 .
  • the materials of the diffractive optical element 110 and the Fresnel lens 120 may be the same or different. It should be noted that, no matter what preparation form is used, the alignment error can be reduced by adding alignment marks.
  • one side of the transparent substrate 112 may be provided with a transparent conductive layer.
  • the transparent conductive layer can be a transparent metal oxide or metal-doped oxide, such as indium tin oxide, zinc oxide, tin oxide, indium-doped tin monoxide, tin-doped gallium trioxide, tin-doped tin oxide Silver indium oxide, indium tin oxide, zinc doped indium trioxide, antimony doped tin dioxide, aluminum doped zinc oxide, etc.
  • the entire transparent conductive layer may be disposed on the side of the transparent substrate facing away from the diffractive optical element 110 .
  • the transparent conductive layer can be firstly disposed on one side of the transparent substrate 112 , and then the diffractive optical elements 110 are respectively formed on the transparent substrate by means of double-sided imprinting. and the Fresnel lens 120 , at this time, the transparent conductive layer may be on the diffractive optical element 110 or the Fresnel lens 120 .
  • the controller corresponding to the optical module 200 can determine the state of the optical element 100 according to the on-off of the transparent conductive layer.
  • the light source 210 can emit light normally.
  • the laser light emitted by the light source 210 is diffracted by the optical element 100 and will not cause damage to human eyes.
  • the controller controls the light source 210 to turn off, so as to prevent the light beam emitted by the light source 210 from being directly emitted, thereby effectively protecting the user and improving the safety of the product in use.
  • the Fresnel lens 120 may include a base body 122 and a collimation layer 124 disposed on the base body 122, so that the light beams passing through the Fresnel lens 120 are emitted in parallel, wherein the collimation layer 124 is located on the base body 122 is the side facing away from the transparent substrate 112 .
  • the Fresnel lens 120 can be formed in the form of embossing, etching or laser direct writing on the transparent substrate 112.
  • the base body 122 and the transparent substrate 112 can be considered as the same feature.
  • the embossing glue can also be coated on the transparent substrate 112 , and the surface of the embossing glue can be embossed to form, so as to form the connection between the Fresnel lens 120 and the transparent substrate 112 .
  • the required master can be prepared in the form of etching or laser direct writing. Embossing of the master is beneficial to reduce production costs, facilitate mass production, and improve production efficiency.
  • the parallel output of the light beams of the light-transmitting Fresnel lens 120 specifically means that the emitted light beams are parallel to each other, but the emitted light beams and the plane where the transparent substrate 112 is located are perpendicular to each other, so as to ensure effective collimation of the light beams.
  • the structure types of the diffractive layer 114 and the collimation layer 124 may adopt either a stepped type or a continuous type, respectively.
  • the diffractive layer 114 of the diffractive optical element 110 may include diffractive units, and the individuals forming the diffractive units may be stepped or continuous.
  • the diffractive layer 114 adopts a stepped structure second-order, fourth-order, or eighth-order may be employed.
  • Equal step structure the collimation layer 124 of the Fresnel lens 120 can also be a stepped type (as shown in FIG. 1 ) or a continuous type (as shown in FIG. 2 ). Wherein, when the collimation layer 124 adopts a stepped structure, a fourth-order, eighth-order, or a higher-order stepped structure may be used as required.
  • the Fresnel lens 120 used in the embodiment of the present application is preferably a micro-nano Fresnel lens.
  • this microstructure is finer and has higher precision, which can reduce the number of lenses of the collimating element.
  • the height of the continuous Fresnel lens 120 is about 10-30um, which is based on the principle of refraction.
  • the height of the stepped Fresnel lens 120 is about 1-2um, which is based on the principle of diffraction, and obtains higher diffraction efficiency through the phase change of the Fresnel zone plate.
  • the transparent substrate 112 or the light-transmitting surface of the filling layer 130 may be provided with at least one of an anti-reflection film layer, a wear-resistant layer or a hydrophobic and oleophobic layer (Anti-fingerprint).
  • an anti-reflection film layer is provided on the light-transmitting surface of the transparent substrate 112 or the filling layer 130, the transmittance of the light beam can be improved, thereby improving the effective utilization rate of the light beam.
  • a wear-resistant layer may also be provided on the light-emitting surface of the transparent substrate 112 or the filling layer 130 to ensure the stability of the optical element 100 during assembly or use, and reduce damage caused by surface wear. Affects the probability of beam propagation.
  • a hydrophobic and oleophobic layer can also be provided according to actual needs, so as to improve the anti-fingerprint capability and ensure that the light-transmitting surface of the transparent substrate 112 or the filling layer 130 remains smooth and bright.
  • an embodiment of the present application further provides an optical module 200 , which may include the optical element 100 in the foregoing embodiments and a light source 210 , wherein the light source 210 is located at the Fresnel lens 120 of the optical element 100 . At the focal plane of , and the collimating part of the Fresnel lens 120 faces the light source 210 .
  • the light source 210 in the optical module 200 can be a surface-emitting laser or a laser diode (Laser Diode, LD), wherein the surface-emitting laser has a small volume, a circular output spot, a single longitudinal mode output, and a threshold current
  • Laser Diode LD
  • the advantages of small size, low price, and easy integration into large-area arrays are beneficial to the diversified output of light beams.
  • By arranging the light source 210 at the focal plane of the Fresnel lens 120 it is beneficial to better collimation and calibration of the light beam, so as to ensure the quality of forming the preset pattern.
  • the optical module 200 of the present application has a simple structure, only includes the light source 210 and the optical element 100, and does not need to add other collimating lenses. Compared with the traditional optical module 200, the assembly cost is lower, and the optical element 100 combines the functions of collimation and diffraction. The overall size can be controlled within 1 mm, which is beneficial to the miniaturization of the optical module 200 .
  • the Fresnel lens 120 adopts a stepped type, and respectively adopts a laser diode or a surface-emitting laser.
  • the structure is the Fresnel lens 120 and the diffractive optical element 110 respectively.
  • a cover plate 140 may be provided on the diffractive optical element 110 to make the structured optical module 200 more stable during use.
  • a filling layer 130 (as shown in FIG. 11 ) can also be provided on the diffractive optical element 110 to achieve the same function as the cover plate 140 .
  • this structure is a case where the Fresnel lens 120 and the diffractive optical element 110 are arranged on the same side of the transparent substrate. No matter what form is adopted, by arranging the Fresnel lens 120 and the diffractive optical element 110 as a whole, the occupied space is effectively reduced, which is beneficial to improve the alignment accuracy of the module while ensuring high efficiency and low processing difficulty. Reducing the assembly cost is beneficial to the miniaturization of the optical module 200 .
  • the present application provides an optical element and an optical module, the optical element includes a diffractive optical element, and a Fresnel lens connected to the diffractive optical element, so that the light transmitted through the diffractive optical element through the Fresnel lens
  • the beam forms a preset pattern.
  • the assembly cost can be reduced, and the miniaturization of the optical module can be facilitated.
  • optical elements and optical modules of the present application are reproducible and can be used in a variety of industrial applications.
  • optical element and optical module of the present application can be used in the field of optical technology.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

一种光学元件(100)及光学模组(200),涉及光学技术领域。包括衍射光学元件(110),以及与衍射光学元件(110)连接的菲涅尔透镜(120),以使经菲涅尔透镜(120)透过衍射光学元件(110)的光束形成预设图案。能够降低组装成本和组装难度,且有利于光学模组(200)的小型化。

Description

一种光学元件及光学模组
相关申请的交叉引用
本申请要求于2021年03月04日提交中国国家知识产权局的申请号为202110238053.7、名称为“一种光学元件及光学模组”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光学技术领域,具体而言,涉及光学元件及光学模组。
背景技术
光学模组在现代产品中的应用越来越广泛,如电子设备中的结构光(structure light),结构光是通过投射特定的图案至物体表面,并通过接收模组采集,根据物体造成的光信号的变化来计算物体的位置及深度信息,进而复原整个深度空间。该图案可被设计成条纹形态、规则点阵形态、网格形态、散斑形态、编码形态等,甚至更复杂形态的光形。随着光学技术的发展,结构光的应用范围越来越广泛,比如人脸识别、手势识别、投影仪、三维(Three-dimensional,3D)轮廓重现、深度测量、防伪辨识等。因此光学模组成为人们研究的重点。
相关技术中的一种光学模组主要包括光源、准直透镜以及光学元件。其中,光源发出的光束经准直透镜调制为准直光,在进入光学元件并衍射出多个光斑的图案阵列后投影至物体上。然而,在对光束进行准直衍射时一般需要多组镜片,多组镜片在装载过程中容易产生偏差,影响光束传播的可靠性,多组镜片经组装或可靠性测试后容易出现失效,使得光学模组的组装不良率高,且采用多组镜片组合占用空间大,耗费组装工时,生产成本高。
发明内容
本申请提供了一种光学元件及光学模组,能够降低组装成本和组装难度,且有利于光学模组的小型化。
本申请的一些实施例提供了一种光学元件,光学元件可以包括衍射光学元件,以及与所述衍射光学元件连接的菲涅尔透镜,以使光束经菲涅尔透镜后透过所述衍射光学元件形成预设图案。
可选地,所述衍射光学元件可以包括透明基底,以及设置在所述透明基底上的衍射层。
可选地,所述透明基底的组成材料可以是玻璃或者树脂,所述衍射层可以采用微纳刻蚀或压印工艺对所述衍射层进行图案化。
可选地,所述衍射层上可以填充有覆盖所述衍射层的填充层,或,所述衍射层上可以设置有盖板。
可选地,所述菲涅尔透镜可以设置在所述透明基底上,或,所述菲涅尔透镜可以设置在所述填充层上。
可选地,所述衍射光学元件的折射率n 1与所述填充层的折射率n 2之间的差值可以为:|n 1-n 2|≥0.2。
可选地,形成所述衍射光学元件的材料具有比组成所述填充层的材料高的折射率,或者,形成所述衍射光学元件的材料具有比组成所述填充层的材料低的折射率。
可选地,所述透明基底的一侧面可以设置有透明导电层。
可选地,所述透明导电层可以采用透明的金属氧化物或金属掺杂氧化物。
可选地,所述菲涅尔透镜可以包括基体,以及设置在所述基体上的准直层,以使透过所述菲涅尔透镜的光束平行射出,其中,所述准直层位于所述基体背离所述透明基底的一侧。
可选地,所述衍射层和所述准直层的结构类型可以分别采用台阶型和连续型的任意一种。
可选地,所述透明基底或所述填充层的透光面可以设置有抗反膜层、耐磨层或疏水疏油层的至少一种。
本申请的另一些实施例提供了一种光学模组,该光学模组可以包括如上所述任意一项所述的光学元件以及光源,其中,所述光源可以位于所述光学元件的菲涅尔透镜的焦平面处,且所述菲涅尔透镜的准直部朝向所述光源。
可选地,所述光学模组中的所述光源可以采用面射型激光,或激光二极管。
本申请实施例的有益效果至少包括:
本申请实施例提供的光学元件及光学模组,通过将衍射光学元件与菲涅尔透镜连接,使得结构光学件形成一个整体,同时具有准直和衍射的光学性能。在对光学元件进行加工时,衍射光学元件与菲涅尔透镜之间的对位误差取决于晶圆之间的对位能力,与传统的采用镜组装配的形式相比,远高于镜组之间的对位精度。另外,采用本申请实施例提供的光学元件,组装时只需要对单个光学元件进行装配即可,装配效率更高,与使用分立的准直镜组和DOE元件相比,能够降低组装成本和组装难度。另外,采用单个的光学元件,占用的空间更小,有利于光学模组的小型化设计。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请实施例提供的光学元件的结构示意图之一;
图2为本申请实施例提供的光学元件的结构示意图之二;
图3为本申请实施例提供的光学元件的结构示意图之三;
图4为本申请实施例提供的光学元件的结构示意图之四;
图5为本申请实施例提供的光学元件的结构示意图之五;
图6为本申请实施例提供的光学元件的结构示意图之六;
图7为本申请实施例提供的光学模组的结构示意图之一;
图8为本申请实施例提供的光学模组的结构示意图之二;
图9为本申请实施例提供的光学模组的结构示意图之三;
图10为本申请实施例提供的光学模组的结构示意图之四;
图11为本申请实施例提供的光学模组的结构示意图之五。
图标:100-光学元件;110-衍射光学元件;112-透明基底;114-衍射层;120-菲涅尔透镜;122-基体;124-准直层;130-填充层;140-盖板;200-光学模组;210-光源。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“设置”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
光学元件被广泛应用在众多场景中,如3D结构光的整个系统包含结构光投影模组、摄像机、图像采集处理系统。其过程就是投影模组发射光束到被测物体上,摄像机拍摄在被测物体上形成的三维光图形,拍摄图像经采集处理系统处理后获得被测物体表面数据。在这个系统中,当相机和投影模组相对位置一定时,投射在被测物体上的光束畸变程度取决于物体表面的深度,所以在拍摄图像中可以得到一张拥有深度的光束图像。
投影模组是整个3D视觉重要的组件之一,用于发射经过特殊调制的不可见红外光至拍摄物体,其发射图像的质量对整个识别效果至关重要。投影模组在使用时,需要通过不可见红外光发射源发射出不可见红外光,不可见红外光通过准直镜头进行校准,校准后的不可见红外光通过光学衍射元件(Diffractive Optical Element,DOE)进行衍射,进而得到所需的光斑图案。
传统投影模组中,准直镜头和DOE为分立元件,使得整个模组存在占用空间大,对位精度低,组装成本高等问题,具有较大的局限性。本申请实施例通过单个光学元件,并同时实现准直和衍射的功能,以解决上述问题。
请参照图1和图2,本实施例提供一种光学元件100,可以包括衍射光学元件110,以及与衍射光学元件110连接的菲涅尔透镜120,以使光束经菲涅尔透镜120后透过衍射光学元件110形成预设图案。
具体的,通过将衍射光学元件110与菲涅尔透镜120连接形成一体结构,或者在同一基材上进行压印、刻蚀或激光直写的形式一体成型,使得衍射光学元件110与菲涅尔透镜120之间的对位误差取决于晶圆之间的对位能力(微米级),要远小于传统方法中元器件之间的对位误差(毫米级)。采用上述方式,可以提高光学元件100整体的光学性能。
在使用本申请实施例提供的光学元件100时,将光源置于菲涅尔透镜120的焦平面处,光源发射出的散射光斑通过光学元件100中的菲涅尔透镜120时会被准直,然后平行入射到衍射光学元件110,衍射光学元件110会对准直光进行衍射,形成预设图案。其中,改预设图案可以根据实际需要设计成条纹形态、规则点阵形态、网格形态、散斑形态、编码形态等,本申请实施例对此不做具体。
本申请实施例提供的光学元件100,通过将衍射光学元件110与菲涅尔透镜120连接,使得光学元件100形成一个整体,同时具有准直和衍射的光学性能。在对光学元件100进行加工时,衍射光学元件110与菲涅尔透镜120之间的对位误差取决于晶圆之间的对位能力,与传统的采用镜组装配的形式相比,远高于镜组之间的对位精度。另外,采用本申请实施例提供的光学元件100,组装时只需要对单个光学元件100进行装配即可,装配效率更高,与使用分立的准直镜组和DOE元件相比,能够降低组装成本和组装难度。另外,采用单个的光学元件100,占用的空间更小,有利于光学模组200的小型化设计。
如图1和图2所示,衍射光学元件110可以包括透明基底112,以及设置在透明基底112上的衍射层114。
具体的,透明基底112的组成材料可以是玻璃或者树脂,衍射层114可采用微纳刻蚀工艺对衍射层114进行图案化,以使激光经过每个衍射单元后发生衍射,形成特定的光强分布,如产生点阵,也可以根据实际需要产生匀光的扩散片。其中,衍射光学元件110的 衍射单元具体图案由工作波长、使用的面射型激光(Vertical Cavity Surface Emitting Laser,VCSEL)点阵分布和最终需要的衍射图案分布共同决定,衍射光学元件110的高度由工作波长和使用的两种材料的折射率之差以及台阶数目来决定。另外,衍射层114可以采用纳米压印成型,以形成所需的衍射单元。
如图4、图5或图6所示,衍射层114上可以填充有覆盖衍射层114的填充层130,或,衍射层114上可以设置有盖板140。
具体的,如图4和图5所示,当衍射光学元件110和菲涅尔透镜120分别位于透明基底112的相对两侧时,在透明基底112上采用刻蚀或压印或激光直写等形式形成衍射层114之后,为了保证衍射层114结构的稳定性,避免因外界的磕碰影响衍射层114的结构,可在衍射层114上填充覆盖填充层130,使衍射层114包覆于填充层130之内,以保证衍射层114结构的稳定性。如图6所示,也可以在衍射光学元件110的衍射部上设置盖板140,以对衍射光学元件110的衍射层114起到保护的作用,从而保证光学元件100使用时的稳定性。
为了保证经菲涅尔透镜120准直后的光束能够被衍射层114衍射形成所需的图案,需要使衍射光学元件110的折射率n 1与填充层130的折射率n 2之间的差值可以为:|n 1-n 2|≥0.2。
具体的,可以是形成衍射光学元件110的材料具有相对较高折射率,组成填充层130的材料具有相对较低折射率。也可以是组成衍射光学元件110的材料具有相对较低折射率,组成填充层130的材料具有相对较高折射率,本申请实施例对此不做具体。当|n 1-n 2|≥0.2时,衍射效果更好,获得的预设图案更优。
需要说明的是,采用不同的折射率,是为了保证衍射的正常形成,如果采用同一折射率的材料,则可以认为填充层130与衍射层114形成了同一结构,也就不再具有衍射层114了,因此需要填充层130与衍射光学元件110之间的折射率不同。另外,当不具有填充层130时,衍射光学元件110与空气之间也具有不同的折射率,同样可以保证所需图案的正常生成。
如图3和图4所示,菲涅尔透镜120可以设置在透明基底112上,或,菲涅尔透镜120可以设置在衍射层114上。
具体的,图3为菲涅尔透镜120设置在衍射层114的结构示意图,在制备菲涅尔透镜120时,在菲涅尔透镜120与衍射光学元件110位于透明基底112的同一侧时,可以直接在填充层130上采用压印或者刻蚀或者激光直写等形式成型。这样一来,使得填充层130与菲涅尔透镜120的材料相同,而且有利于菲涅尔透镜120与填充层130之间更稳定的结合。其中,菲涅尔透镜120和填充层130的材质可采用紫外光固化胶等。可以理解的,填充层 130的材质也可以与菲涅尔透镜120的材质不同,此时,需要将填充层130在衍射层114上填充包覆并平整后,再设置新的层级并压印形成菲涅尔透镜120。
图4为菲涅尔透镜120设置在透明基底112的结构示意图,在衍射光学元件110的母版和菲涅尔透镜120的母版制作完成之后,可直接在透明基底112的相对两侧分别压印衍射光学元件110和菲涅尔透镜120的主体结构,最后脱模形成所需的光学元件100,为了保证形成光学元件100中对衍射光学元件110的有效保护,可在衍射光学元件110的衍射层114上填充覆盖填充层130。其中,当采用上述方式制备光学元件100时,衍射光学元件110和菲涅尔透镜120的材质可以相同,也可以不同。需要说明的是,不管采用何种制备形式,可以通过添加对位标记的方法减小对位误差。
在本申请的可选实施例中,透明基底112的一侧面可以设置有透明导电层。
具体的,透明导电层可采用透明的金属氧化物或金属掺杂氧化物,如铟锡氧化物、氧化锌、氧化锡、铟掺杂一氧化锡、锡掺杂三氧化二镓、锡掺杂银铟氧化物、铟锡氧化物、锌掺杂三氧化二铟、锑掺杂二氧化锡、铝掺杂氧化锌等。当采用图1或图3的方式时,透明导电层可以整层设置在透明基板背离衍射光学元件110的一侧面。当采用图2、图4或图5中的方式时,透明导电层可以先整层设置在透明基底112的一侧面,之后采用双侧压印的形式分别在透明基板上分别形成衍射光学元件110和菲涅尔透镜120,此时,透明导电层可能在衍射光学元件110或菲涅尔透镜120上。采用上述方式,当光学元件100破裂时,透明导电层会断开,以使检测线路中断,光学模组200对应的控制器,可以根据透明导电层的通断确定光学元件100的状态。在光学元件100完好时,光源210可以正常发光,此时光源210发出的激光经过光学元件100的衍射作用,不会对人眼造成伤害。当光学元件100破裂时,控制器控制光源210关闭,以免光源210发出的光束直接射出,从而有效保护使用者,以提升产品使用时的安全性。
如图2所示,菲涅尔透镜120可以包括基体122,以及设置在基体122上的准直层124,以使透过菲涅尔透镜120的光束平行射出,其中,准直层124位于基体122背离透明基底112的一侧。
具体的,菲涅尔透镜120可采用在透明基底112上压印、刻蚀或激光直写的形式成型,当采用上述形式时,基体122与透明基底112可认为是同一特征。另外,也可以在透明基底112上涂布压印胶,并在压印胶表面压印成型,从而使菲涅尔透镜120与透明基底112之间连接成型。其中,当采用压印成型时,可采用刻蚀或激光直写的形式制备所需的母版,通过母版压印有利于降低生产成本,并有利于进行量产,提升生产效率。另外,透光菲涅尔透镜120的光束平行射出具体指出射光束之间是相互平行的,但是出射光束与透明基底112所在平面之间相互垂直,以保证光束的有效准直校准。
在本申请的可选实施例中,衍射层114和准直层124的结构类型可以分别采用台阶型和连续型的任意一种。
具体的,衍射光学元件110的衍射层114可以包括衍射单元,形成衍射单元的个体可采用台阶型或连续型,其中,衍射层114采用台阶型结构时,可以采用二阶、四阶或八阶等台阶型结构。同样的,菲涅尔透镜120的准直层124也可采用台阶型(如图1所示)或连续型(如图2所示)。其中,准直层124采用台阶型结构时,可以采用四阶、八阶或根据需要设置更高阶等台阶型结构。另外,本申请实施例采用的菲涅尔透镜120优选微纳米级菲涅尔透镜,这种微结构相比普通的菲涅尔结构更为精细,精度更高,可以在减少准直元件的镜片数量的前提下保证良好的聚光性和成像性能,还可以在一定程度上减小准直元件的球面像差对激光品质的影响。需要说明的是,连续型的菲涅尔透镜120高度差不多10~30um,是基于折射的原理。而台阶型的菲涅尔透镜120高度差不多1~2um,是基于衍射的原理,通过菲涅尔波带片的相位变化,以获得较高的衍射效率。
在本申请的可选实施例中,透明基底112或填充层130的透光面可以设置有抗反膜层、耐磨层或疏水疏油层(Anti-fingerprint)的至少一种。这样一来,当在透明基底112或填充层130的透光面设置有抗反膜层时,可以提升光束的透过率,从而提升光束的有效利用率。另外,在本申请的可选实施例中,也可以在透明基底112或填充层130的出光面设置耐磨层,以保证光学元件100在装配或使用过程中的稳定性,减少因表面磨损也影响光束传播的几率。同样的,也可以根据实际需要设置疏水疏油层,以提升抗指纹能力,保证透明基底112或填充层130的透光面保持光洁亮丽。
如图7和图8所示,本申请实施例还提供一种光学模组200,可以包括前述实施例中的光学元件100以及光源210,其中,光源210位于光学元件100的菲涅尔透镜120的焦平面处,且菲涅尔透镜120的准直部朝向光源210。
具体的,光学模组200中的光源210可以采用面射型激光,或激光二极管(Laser Diode,LD),其中,面射型激光具有体积小、圆形输出光斑、单纵模输出、阈值电流小、价格低廉、易集成为大面积阵列等优点有利于光束的多元化出射。通过将光源210设置在菲涅尔透镜120的焦平面处,有利于对光束更好的准直校准,以保证形成预设图案的质量。
本申请的光学模组200结构简单,只包含光源210和光学元件100,无需添加其他准直镜片,相较传统的光学模组200组装成本低,且光学元件100结合了准直和衍射功能,整体尺寸可控制在1mm之内,有利于光学模组200的小型化。
如图6、图9和图10所示,为菲涅尔透镜120采用台阶型,且分别采用激光二极管或面射型激光的结构示意图,该结构为菲涅尔透镜120和衍射光学元件110分别设置在透明基板两侧的情形,在该状态下,为了对衍射光学元件110进行有效的保护,可以在衍射光 学元件110上设置盖板140,以使结构光学模组200使用时更加稳定。也可以在衍射光学元件110上设置填充层130(如图11所示),以达到和盖板140等同的作用。
如图1、图7和图8所示,该结构为菲涅尔透镜120和衍射光学元件110设置在透明基板同一侧的情形。不管采用何种形式,通过将菲涅尔透镜120和衍射光学元件110设置成一个整体,有效降低了占用空间,有利于在保证高效率,加工难度低的同时能够提高模组的对位精度,降低组装成本,有利于光学模组200的小型化。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
工业实用性
本申请提供了一种光学元件及光学模组,该光学元件包括衍射光学元件,以及与所述衍射光学元件连接的菲涅尔透镜,以使经菲涅尔透镜透过所述衍射光学元件的光束形成预设图案。能够降低组装成本,且有利于光学模组的小型化。
此外,可以理解的是,本申请的光学元件及光学模组是可以重现的,并且可以用在多种工业应用中。例如,本申请的光学元件及光学模组可以用于光学技术领域。

Claims (14)

  1. 一种光学元件,其特征在于,包括衍射光学元件,以及与所述衍射光学元件连接的菲涅尔透镜,以使经菲涅尔透镜透过所述衍射光学元件的光束形成预设图案。
  2. 根据权利要求1所述的光学元件,其特征在于,所述衍射光学元件包括透明基底,以及设置在所述透明基底上的衍射层。
  3. 根据权利要求2所述的光学元件,其特征在于,所述透明基底的组成材料是玻璃或者树脂,所述衍射层采用微纳刻蚀或压印工艺对所述衍射层进行图案化。
  4. 根据权利要求2或3所述的光学元件,其特征在于,所述衍射层上填充有覆盖所述衍射层的填充层,或,所述衍射层上设置有盖板。
  5. 根据权利要求4所述的光学元件,其特征在于,所述菲涅尔透镜设置在所述透明基底上,或,所述菲涅尔透镜设置在所述填充层上。
  6. 根据权利要求4或5所述的光学元件,其特征在于,所述衍射光学元件的折射率n 1与所述填充层的折射率n 2之间的差值为:|n 1-n 2|≥0.2。
  7. 根据权利要求6所述的光学元件,其特征在于,形成所述衍射光学元件的材料具有比组成所述填充层的材料高的折射率,或者,形成所述衍射光学元件的材料具有比组成所述填充层的材料低的折射率。
  8. 根据权利要求2-7任意一项所述的光学元件,其特征在于,所述透明基底的一侧面设置有透明导电层。
  9. 根据权利要求8所述的光学元件,其特征在于,所述透明导电层采用透明的金属氧化物或金属掺杂氧化物。
  10. 根据权利要求2-9任意一项所述的光学元件,其特征在于,所述菲涅尔透镜包括基体,以及设置在所述基体上的准直层,以使透过所述菲涅尔透镜的光束平行射出,其中,所述准直层位于所述基体背离所述透明基底的一侧。
  11. 根据权利要求10所述的光学元件,其特征在于,所述衍射层和所述准直层的结构类型分别采用台阶型和连续型的任意一种。
  12. 根据权利要求4-11任意一项所述的光学元件,其特征在于,所述透明基底或所述填充层的透光面设置有抗反膜层、耐磨层或疏水疏油层的至少一种。
  13. 一种光学模组,其特征在于,包括权利要求1-12任意一项所述的光学元件以及光源,其中,所述光源位于所述光学元件的菲涅尔透镜的焦平面处,且所述菲涅尔透镜的准直部朝向所述光源。
  14. 根据权利要求13所述的光学模组,其特征在于,所述光学模组中的所述光源采用面射型激光,或激光二极管。
PCT/CN2021/137464 2021-03-04 2021-12-13 一种光学元件及光学模组 WO2022183804A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/026,804 US20230244014A1 (en) 2021-03-04 2021-12-13 Optical element and optical module
KR1020237007425A KR20230041078A (ko) 2021-03-04 2021-12-13 광학 소자 및 광학 모듈
JP2023513406A JP2023538777A (ja) 2021-03-04 2021-12-13 光学素子および光学モジュール

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110238053.7 2021-03-04
CN202110238053.7A CN112835139A (zh) 2021-03-04 2021-03-04 一种光学元件及光学模组

Publications (1)

Publication Number Publication Date
WO2022183804A1 true WO2022183804A1 (zh) 2022-09-09

Family

ID=75934546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/137464 WO2022183804A1 (zh) 2021-03-04 2021-12-13 一种光学元件及光学模组

Country Status (5)

Country Link
US (1) US20230244014A1 (zh)
JP (1) JP2023538777A (zh)
KR (1) KR20230041078A (zh)
CN (1) CN112835139A (zh)
WO (1) WO2022183804A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112835139A (zh) * 2021-03-04 2021-05-25 浙江水晶光电科技股份有限公司 一种光学元件及光学模组
CN113391498A (zh) * 2021-07-09 2021-09-14 嘉兴驭光光电科技有限公司 激光投射光学器件及激光投射模组
CN113641076A (zh) * 2021-10-18 2021-11-12 成都菲斯特科技有限公司 一种投影屏幕及投影系统
CN114002768B (zh) * 2021-10-28 2023-01-13 江西欧迈斯微电子有限公司 光学元件、投影模组及电子设备
CN114019597A (zh) * 2021-11-12 2022-02-08 深圳市安思疆科技有限公司 衍射光学元件的设计方法、衍射光学元件及结构光投射器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7763841B1 (en) * 2009-05-27 2010-07-27 Microsoft Corporation Optical component for a depth sensor
CN107357123A (zh) * 2017-07-27 2017-11-17 深圳奥比中光科技有限公司 含有菲涅尔透镜的激光投影装置
CN208738608U (zh) * 2018-10-09 2019-04-12 艾笛森光电股份有限公司 人眼防护光学模块
CN208795952U (zh) * 2018-10-29 2019-04-26 南昌欧菲生物识别技术有限公司 投射模组、成像装置及电子设备
CN110662989A (zh) * 2017-05-26 2020-01-07 Agc株式会社 衍射光学元件、投影装置及计测装置
CN212433441U (zh) * 2020-05-08 2021-01-29 欧菲微电子技术有限公司 光学元件、发光模组、摄像头及电子设备
CN112835139A (zh) * 2021-03-04 2021-05-25 浙江水晶光电科技股份有限公司 一种光学元件及光学模组

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7763841B1 (en) * 2009-05-27 2010-07-27 Microsoft Corporation Optical component for a depth sensor
CN110662989A (zh) * 2017-05-26 2020-01-07 Agc株式会社 衍射光学元件、投影装置及计测装置
CN107357123A (zh) * 2017-07-27 2017-11-17 深圳奥比中光科技有限公司 含有菲涅尔透镜的激光投影装置
CN208738608U (zh) * 2018-10-09 2019-04-12 艾笛森光电股份有限公司 人眼防护光学模块
CN208795952U (zh) * 2018-10-29 2019-04-26 南昌欧菲生物识别技术有限公司 投射模组、成像装置及电子设备
CN212433441U (zh) * 2020-05-08 2021-01-29 欧菲微电子技术有限公司 光学元件、发光模组、摄像头及电子设备
CN112835139A (zh) * 2021-03-04 2021-05-25 浙江水晶光电科技股份有限公司 一种光学元件及光学模组

Also Published As

Publication number Publication date
JP2023538777A (ja) 2023-09-11
KR20230041078A (ko) 2023-03-23
CN112835139A (zh) 2021-05-25
US20230244014A1 (en) 2023-08-03

Similar Documents

Publication Publication Date Title
WO2022183804A1 (zh) 一种光学元件及光学模组
KR102444288B1 (ko) 메타 렌즈를 포함하는 프로젝터
CN111373297B (zh) 基于二维光栅的平面光波导
CN107783361B (zh) 含有光束监测单元的光学投影装置
US8529075B2 (en) Antireflection structure, optical unit, and optical device
CN109579728B (zh) 基于全息波导的散斑结构光投影模组
US20080231600A1 (en) Near-Normal Incidence Optical Mouse Illumination System with Prism
WO2020164346A1 (zh) 分束光学模组及其制造方法
WO2019213865A1 (zh) 一种光源模组、图像获取装置、身份识别装置及电子设备
CN110716377A (zh) 投影模组、光电装置和电子设备
CN106200249A (zh) 结构光和rgb传感器模组整体式集成系统3d相机
CN217820943U (zh) ToF发射模组及包含其的电子设备
US11536981B2 (en) Diffractive optical element, projection device, and measurement device
CN217982120U (zh) 一种双目结构光3d相机的光学系统和双目结构光3d相机
CN217981833U (zh) ToF发射模组及包含其的电子设备
CN208432844U (zh) 投影模组、光电装置和电子设备
CN208569285U (zh) 投影模组、光电装置及电子设备
CN211878344U (zh) 一种激光发射模组和3d成像装置
US20100289035A1 (en) Optoelectronic device and image recording device
CN209895097U (zh) 一种投影器和深度相机
CN211375111U (zh) 一种菲涅尔透镜、结构光投影模组及电子设备
US20190302596A1 (en) Optical module
CN206020916U (zh) 结构光和rgb传感器模组整体式集成系统3d相机
US20210141199A1 (en) Small scale light projection device facilitating the structuring of light emitted for depth-calculating purposes
CN113408513A (zh) 三维成像模组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21928875

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023513406

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237007425

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21928875

Country of ref document: EP

Kind code of ref document: A1