WO2022183699A1 - 一种应用于igbt驱动控制的门极电压无源限幅电路 - Google Patents
一种应用于igbt驱动控制的门极电压无源限幅电路 Download PDFInfo
- Publication number
- WO2022183699A1 WO2022183699A1 PCT/CN2021/116229 CN2021116229W WO2022183699A1 WO 2022183699 A1 WO2022183699 A1 WO 2022183699A1 CN 2021116229 W CN2021116229 W CN 2021116229W WO 2022183699 A1 WO2022183699 A1 WO 2022183699A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- igbt
- gate
- control circuit
- circuit
- switch control
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 10
- 238000004590 computer program Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 5
- 238000003860 storage Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000003137 locomotive effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/51—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
- H03K17/56—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
- H03K17/567—Circuits characterised by the use of more than one type of semiconductor device, e.g. BIMOS, composite devices such as IGBT
Definitions
- the application relates to the field of IGBT drive control, in particular to a gate voltage passive limiting circuit applied to IGBT drive control.
- IGBT Insulated Gate Bipolar Transistor
- BJT Bipolar Junction Transistor
- MOSFET Insulated Gate Field Effect Transistor, Metal-Oxide-Semiconductor Field-Effect Transistor
- IGBT In high-power applications, the reliable operation of the IGBT needs to be realized through the control and protection of the IGBT drive.
- IGBT is a voltage-controlled device. When an overvoltage fault occurs at the collector or the stray capacitance C GC between the gate and the collector of the anti-parallel diode in the IGBT produces a large dv/dt, it may cause the gate. The voltage rises, causing the IGBT to trigger incorrectly, resulting in serious faults such as IGBT breakdown.
- the gate voltage protection function of the existing IGBT drive circuit can only work in an active state, and the IGBT drive cannot be connected to the gate when the board is not powered on. pole voltage is limited.
- the existing IGBT drive circuit is likely to cause false triggering in a power-down state.
- the present application provides a gate voltage passive limiting circuit applied to IGBT drive control, including: a capacitor, a TVS tube Series branch, charging diode, switch control circuit and power supply;
- Both the capacitor and the TVS tube series branch are connected between the IGBT collector and the gate;
- the anodes of the switch control circuit and the charging diode are both connected to the gate of the IGBT;
- the emitter of the IGBT is grounded or connected to a switch control circuit
- the negative electrode of the charging diode is connected to the power supply.
- the negative electrode of the series branch of the TVS tube is connected to the collector of the IGBT, and the positive electrode is connected to the gate of the IGBT;
- the TVS tube series branch includes a plurality of TVS tubes connected in series.
- the switch control circuit includes: a power electronic switch tube and a switch tube drive circuit connected in series;
- the switch tube driving circuit is connected to the power supply, and obtains electrical energy from the power supply;
- the power electronic switch tube is connected to the gate electrode or the emitter electrode of the IGBT.
- the power electronic switch tube adopts IGBT or MOSFET.
- the switch transistor driving circuit includes an amplifier and a resistor
- One end of the resistor is grounded, and the other end is connected to the positive input end of the amplifier;
- the negative input terminal of the amplifier is connected to the power supply.
- the switch control circuit further includes a resistor
- the resistor is connected in series between the power electronic switch tube and the gate or emitter of the IGBT.
- the application provides a gate voltage passive limiting circuit applied to IGBT drive control, including: a capacitor, a TVS tube series branch, a charging diode, a switch control circuit and a power supply; the capacitor and the TVS tube series branch
- the circuit is connected between the collector and the gate of the IGBT; the anode of the switch control circuit and the charging diode are both connected to the gate of the IGBT; the emitter of the IGBT is grounded or connected to the switch control circuit; the negative electrode of the charging diode connected with the power supply; the present application avoids false triggering when the IGBT driver is in a power-down state.
- FIG. 1 is a schematic diagram of a gate voltage boost in the prior art
- FIG. 2 is a circuit diagram of a gate voltage limiting circuit including two-way switch control circuits for the application;
- FIG. 3 is a circuit diagram of a gate voltage limiting circuit including a switch control circuit of the present application
- FIG. 4 is a flowchart of the IGBT gate voltage protection method of the present application.
- the present application provides a gate voltage passive limiter circuit applied to the IGBT drive control, by controlling the switching of the power electronic switch in the limiter circuit state, change the electrical connection between the gate and the emitter of the IGBT, and limit the gate-emitter voltage when the power supply of the driver board is powered off, thereby preventing the false triggering of the IGBT.
- the application discloses an IGBT gate voltage passive amplitude limiting circuit, which includes a collector voltage protection circuit, a switch control circuit, and a charging power supply network;
- the collector voltage protection circuit is connected in parallel between the collector and the gate of the IGBT, and includes a set of TVS tubes in series.
- the TVS tube can be composed of multiple TVS tubes connected in series.
- the negative electrode of the TVS tube is connected to the collector electrode of the IGBT, and the positive electrode is connected to the gate electrode of the IGBT.
- the charging power network includes charging diodes and a power supply.
- the collector voltage protection circuit is also called TVS tube series branch.
- a gate voltage passive limiting circuit applied to IGBT drive control including: a capacitor, a TVS tube series branch, a charging diode, a switch control circuit and a power supply;
- the capacitor and the TVS tube series branch are both connected between the IGBT collector and the gate; the anodes of the switch control circuit and the charging diode are both connected to the IGBT gate; the IGBT emitter is grounded or connected a switch control circuit; the negative electrode of the charging diode is connected to the power supply.
- the negative pole of the series branch of the TVS tube is connected to the collector of the IGBT, and the positive pole is connected to the gate of the IGBT;
- the switch control circuit includes: a power electronic switch tube and a switch tube drive circuit connected in series;
- the switch tube driving circuit is connected to the power supply, and obtains electrical energy from the power supply;
- the power electronic switch tube is connected to the gate electrode or the emitter electrode of the IGBT.
- the switch control circuit may have two circuits, as shown in FIG. 2 , which are a first switch control circuit and a second switch control circuit, which are respectively connected to the gate and the emitter of the IGBT.
- the switch control circuit can also have only one channel, which is connected to the gate of the IGBT, and the emitter of the IGBT is grounded, as shown in Figure 3.
- Each of the first switch control circuit and the second switch control circuit includes a voltage-controlled power electronic switch tube and a switch tube drive circuit. Switch operation, when the voltage of the charging power network rises to the set value, the switch tube is controlled to be turned on, and when the voltage of the charging power network is lower than the set value, the switch tube is controlled to be turned off. When the switch is turned on, the gate and collector of the IGBT will be shorted to the same reference ground.
- the charging power supply network is charged by the collector voltage through the TVS tube and the protection diode D2 in the collector voltage protection circuit, and the charged charging power supply network provides working power for the driving circuit of the switch control circuit.
- the reference ground of the first switch control circuit and the second switch control circuit is the same.
- the types of the voltage-controlled power electronic switch tubes include, but are not limited to, IGBTs, MOSFETs, and the like.
- the IGBT gate voltage clamping circuit can omit the second switch control circuit, see FIG. 3 , if this form is adopted, the emitter of the IGBT needs to be connected to the reference ground.
- a gate voltage protection method is: charging a charging network with a gate current that may cause the gate voltage to rise, and the charging network acts as an excitation power source to control two switch control circuits to switch and control a power electronic switch tube.
- the above control process turns on the power electronic switch, thereby short-circuiting the IGBT gate and emitter via the common reference level, limiting the gate-emitter voltage to a level that is not enough to trigger the IGBT by mistake , to achieve gate voltage limiting and prevent IGBT false triggering, see Figure 4.
- the purpose of this application is to propose a gate voltage passive limiting circuit applied to IGBT drive control.
- the gate voltage passive limiter circuit can limit the gate-emitter voltage to below the turn-on potential even when the power supply of the driver board is powered off, preventing the IGBT due to The overvoltage fault of the collector occurs, or the gate voltage rises due to the charging of the parasitic capacitance C GC between the gate and the collector, which leads to the false triggering of the IGBT, which improves the reliability of the IGBT driving.
- Fig. 2 is a circuit diagram of a gate voltage limiting circuit of a two-way switch control circuit in an embodiment of the patent application.
- IGBT gate voltage limiting circuit can be used in IGBT drive circuit. When the IGBT and the IGBT drive circuit work normally, the charging power network VCC is not charged.
- Condition 1 When an overvoltage fault occurs at the collector, the TVS transistors T 1 to T N are turned on, the current I 1 shown in Figure 1 raises the gate voltage V G through the TVS tube, and the charging current shown in Figure 2 I charge charges the charging power network VCC through the TVS tube and D 2 .
- the switching transistors M 1 and M 2 When the VCC voltage rises to a certain value, the switching transistors M 1 and M 2 will be turned on by the driving circuit. At this time, the IGBT gate G and emitter E are connected to the resistors R 1 , R 3 and the switching transistors M 1 and M 2 through the resistors R 1 , R 3 and M 1 , M 2 .
- the reference potential GND is shorted to achieve the purpose of limiting the gate voltage of the IGBT. The circuit and the protection method avoid the rise of the IGBT base potential and improve the reliability of the IGBT drive.
- IGBT gate voltage limiting circuit including a switch control circuit of the present application.
- the switching tube M 1 When the VCC voltage rises to a certain value, the switching tube M 1 will be turned on by the driving circuit. At this time, the IGBT gate G and the emitter E The purpose of clamping the gate voltage of the IGBT is achieved by short - circuiting the resistor R1 and the switch tube M1 with the reference potential GND.
- the gate voltage protection method includes the protection method of triggering the switch tube control circuit by the fault voltage and the gate voltage limit protection method: the protection method of the switch tube control circuit triggered by the fault voltage: the gate current that may cause the gate voltage to rise
- the charging network is charged, and the charging network is used as an excitation power source to control two switch control circuits to switch and control the power electronic switch tube.
- Gate voltage limiting protection method When the gate voltage rises to the set value, the switch control circuit turns on the power electronic switch tube, thereby short-circuiting the IGBT gate and emitter through the shared reference level, and the gate- The emitter voltage is limited to a level that is not enough to trigger the IGBT by mistake, so as to limit the voltage of the gate and prevent the false trigger of the IGBT.
- the switch tube drive circuit in the switch control circuit performs switching control on the voltage-controlled power electronic switch tube through the charging power network.
- the switch tube driving circuit controls the switch tube to be turned on when the voltage of the charging power network rises to the action setting value, and controls the switch tube to turn off when the charging power network voltage is lower than the action setting value.
- the types of voltage-controlled power electronic switches include, but are not limited to, IGBTs, MOSFETs, and the like.
- the IGBT gate voltage clamping circuit can omit the second switch control circuit, as shown in Figure 3. If this form is adopted, the emitter of the IGBT needs to be connected to the reference ground.
- the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
- computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
- These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
- the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.
Landscapes
- Electronic Switches (AREA)
- Power Conversion In General (AREA)
Abstract
本申请提供了一种应用于IGBT驱动控制的门极电压无源限幅电路,包括:电容、TVS管串联支路、充电二极管、开关控制电路和电源;所述电容和所述TVS管串联支路均连接在IGBT集电极和门极之间;所述开关控制电路和充电二极管的阳极均连接所述IGBT门极;所述IGBT的发射极接地或连接开关控制电路;所述充电二极管的负极与所述电源连接;本申请避免了IGBT驱动处于掉电状态时,产生的误触发。
Description
相关申请的交叉引用
本申请基于申请号为202110241000.0、申请日为2021年03月04日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
本申请涉及IGBT驱动控制领域,具体涉及一种应用于IGBT驱动控制的门极电压无源限幅电路。
IGBT(绝缘栅双极型晶体管,Insulated Gate Bipolar Transistor)是由BJT(双极型三极管,Bipolar Junction Transistor)和MOSFET(绝缘栅型场效应管,Metal-Oxide-Semiconductor Field-Effect Transistor)组成的复合全控型电压驱动式功率半导体器件。以IGBT器件为基础设计的电力电子变换器被广泛应用在各行各业,包括开关电源、机车牵引、采矿、冶金、电机驱动、电力传输、电力电子变压器、变频器等各种场合,对于整个社会经济的发展起着至关重要的作用。
在大功率应用场合下,IGBT的可靠运行需要通过IGBT驱动的控制与保护来实现。IGBT是电压控制型器件,当集电极发生过压故障或IGBT中反并联二极管上的门极与集电极之间的杂散电容C
GC产生较大的dv/dt时,都有可能导致门极电压升高,导致IGBT误触发,从而发生IGBT击穿等严重故障,现有的IGBT驱动电路门极电压保护功能需在有源状态下才能工作,而当板卡未上电时IGBT驱动无法对门极电压进行限制。
在现有IGBT驱动电路中,当IGBT驱动处于掉电状态下时,至少有两种工况会导致门极电压升高,从而导致IGBT误触发,如附图1所示。当集电极电压发生过压时,TVS管导通,门极与地之间产生的电流I
1会导致IGBT的门极-发射极电压V
GE值的升高,从而导致IGBT被误触发导通;此外,当IGBT中反并联二极管上的门极与集电极之间的杂散电容C
GC产生较大的dv/dt时,也会产生较大的门极电流I
2,导致门极电压升高。
因此,现有IGBT驱动电路在掉电状态下容易导致误触发。
发明内容
为解决现有技术中现有IGBT驱动电路在掉电状态下容易导致误触发的问题,本申请提供了一种应用于IGBT驱动控制的门极电压无源限幅电路,包括:电容、TVS管串联支路、充电二极管、开关控制电路和电源;
所述电容和所述TVS管串联支路均连接在IGBT集电极和门极之间;
所述开关控制电路和充电二极管的阳极均连接所述IGBT门极;
所述IGBT的发射极接地或连接开关控制电路;
所述充电二极管的负极与所述电源连接。
在一些可选实施方式中,所述TVS管串联支路的负极与所述IGBT的集电极相连,正极与IGBT的门极相连;
所述TVS管串联支路包括多个串联的TVS管。
在一些可选实施方式中,所述开关控制电路包括:串联的电力电子开关管和开关管驱动电路;
所述开关管驱动电路与所述电源连接,从所述电源获取电能;
所述电力电子开关管与所述IGBT的门极或发射极连接。
在一些可选实施方式中,所述电力电子开关管采用IGBT或MOSFET。
在一些可选实施方式中,所述开关管驱动电路包括放大器和电阻;
所述电阻的一端接地,另一端与所述放大器的正输入端连接;
所述放大器的负输入端与电源连接。
在一些可选实施方式中,所述开关控制电路还包括电阻;
所述电阻串接于所述电力电子开关管与所述IGBT的门极或发射极之间。
与现有技术相比,本申请的有益效果为:
本申请提供了一种应用于IGBT驱动控制的门极电压无源限幅电路,包括:电容、TVS管串联支路、充电二极管、开关控制电路和电源;所述电容和所述TVS管串联支路均连接在IGBT集电极和门极之间;所述开关控制电路和充电二极管的阳极均连接所述IGBT门极;所述IGBT的发射极接地或连接开关控制电路;所述充电二极管的负极与所述电源连接;本申请避免了IGBT驱动处于掉电状态时,产生的误触发。
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1为现有技术中门极电压抬升原理图;
图2为本申请包括两路开关控制电路的门极电压限幅电路图;
图3为本申请包括一路开关控制电路的门极电压限幅电路图;
图4为本申请的IGBT门极电压保护方法流程图。
本申请为解决在IGBT驱动处于掉电状态时,易产生误触发的问题,提供了一种应用于IGBT驱动控制的门极电压无源限幅电路,通过控制限幅电路中电力电子开关的开关状态,改变IGBT门极与发射极的电气连接方式,在驱动板电源掉电的情况下对门极-发射极电压进行限制,从而防止IGBT的误触发。
实施例1:
本申请公开了一种IGBT门极电压无源限幅电路,包括集电极电压保护电路、开关控制电路、充电电源网络;
所述集电极电压保护电路并联在IGBT集电极与门极之间,包括一组串联TVS管。TVS管可以由多个TVS管串联组成。所述TVS管的负极与IGBT的集电极相连,正极与IGBT的门极相连。
充电电源网络包括充电二极管和电源构成。
所述集电极电压保护电路又称为TVS管串联支路。
一种应用于IGBT驱动控制的门极电压无源限幅电路,如图2所示:包括:电容、TVS管串联支路、充电二极管、开关控制电路和电源;
所述电容和所述TVS管串联支路均连接在IGBT集电极和门极之间;所述开关控制电路和充电二极管的阳极均连接所述IGBT门极;所述IGBT的发射极接地或连接开关控制电路;所述充电二极管的负极与所述电源连接。
所述TVS管串联支路的负极与所述IGBT的集电极相连,正极与IGBT的门极相连;
开关控制电路包括:串联的电力电子开关管和开关管驱动电路;
所述开关管驱动电路与所述电源连接,从所述电源获取电能;
所述电力电子开关管与所述IGBT的门极或发射极连接。
其中,所述开关控制电路可以有两路如图2所示,分别为第一路开关控制电路和第二路开关控制电路,分别与IGBT的门极和发射极连接。
开关控制电路也可以只有一路,与IGBT的门极连接,IGBT的发射极接地,如图3所示。
所述第一路开关控制电路与第二路开关控制电路各包含一个电压控制型电力电子开关管以及一个开关管驱动电路,所述开关管驱动电路由充电 电源网络控制,对电力电子开关管进行开关操作,当充电电源网络电压升高至设定值时控制开关管导通,当充电电源网络电压低于设定值时控制开关管关断。当开关管导通时,IGBT的门极和集电极将短接至同一参考地上。
所述充电电源网络,由集电极电压通过集电极电压保护电路中的TVS管和保护二极管D
2进行充电,充电后的充电电源网络为开关控制电路的驱动电路提供工作电源。
所述第一开关控制电路与第二开关控制电路的参考地相同。
所述电压控制型电力电子开关管的种类包括但不限于IGBT、MOSFET等。
所述IGBT门极电压钳位电路可省去第二开关控制电路,见附图3,若采用此形式,所述IGBT的发射极需与参考地连接。
一种门极电压保护方法为:由可能导致门极电压抬升的门极电流对充电网络充电,此充电网络作为激励电源控制两个开关控制电路对电力电子开关管进行开关控制。当门极电压抬升时,上述控制过程使电力电子开关管导通,从而将IGBT门极与发射极经共用的参考电平短接,将门极-发射极电压限制在不足以误触发IGBT的水平,实现门极电压限幅与防止IGBT误触发,见附图4。
本申请旨在提出一种应用于IGBT驱动控制的门极电压无源限幅电路。通过设计具有电力电子开关的保护电路及合理的开关策略,该门极电压无源限幅电路即使在驱动板电源掉电时也能够将门极-发射极电压限制至导通电位以下,防止IGBT由于集电极发生过压故障,或者由于门极-集电极间寄生电容C
GC充电使门极电压抬升而导致IGBT误触发,提高了IGBT驱动的可靠性。
实施例2:
图2为本申请专利实施方式中两路开关控制电路的门极电压限幅电路 图。IGBT门极电压限幅电路,可用在IGBT驱动电路中。当IGBT及IGBT驱动电路正常工作时,充电电源网络VCC不带电。
工况一:当发生集电极发生过电压故障时,TVS管T
1~T
N导通,图1中所示电流I
1经TVS管使门极电压V
G抬升,图2中所示充电电流I
charge通过TVS管和D
2向充电电源网络VCC充电。
工况二:当外部电路使IGBT集电极与门极间寄生电容产生较大dv/dt时,产生的图1中所示电流I
2使门极电压V
G抬升,图2中所示电流I
charge通过D
2向充电电源网络VCC充电。
当VCC电压升高至一定值时,将通过驱动电路触开开关管M
1和M
2,此时IGBT门极G和发射极E经电阻R
1、R
3和开关管M
1、M
2与参考电位GND短接,达到将IGBT门极电压限幅的目的。此电路及保护方法避免了IGBT基极电位的抬升,提高了IGBT驱动的可靠性。
图3为本申请包括一路开关控制电路的IGBT门极电压限幅电路,当VCC电压升高至一定值时,将通过驱动电路触开开关管M
1,此时IGBT门极G和发射极E经电阻R
1和开关管M
1与参考电位GND短接,达到将IGBT门极电压钳位的目的。
门极电压保护方法,包括由故障电压触发开关管控制电路的保护方法和门极电压限幅保护方法:由故障电压触发开关管控制电路的保护方法:由可能导致门极电压抬升的门极电流对充电网络充电,此充电网络作为激励电源控制两个开关控制电路对电力电子开关管进行开关控制。
门极电压限幅保护方法:当门极电压抬升至设定值时,开关控制电路使电力电子开关管导通,从而将IGBT门极与发射极经共用的参考电平短接,将门极-发射极电压限制在不足以误触发IGBT的水平,实现门极电压限幅与防止IGBT误触发。
开关控制电路中的开关管驱动电路通过充电电源网络对电压控制型电 力电子开关管进行开关控制。开关管驱动电路在充电电源网络的电压升高至动作整定值时控制开关管导通,当充电电源网络电压低于动作整定值时控制开关管关断。
电压控制型电力电子开关管的种类包括但不限于IGBT、MOSFET等。
IGBT门极电压钳位电路可省去第二开关控制电路,见图3,若采用此形式,所述IGBT的发射极需与参考地连接。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备 上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上仅为本申请的实施例而已,并不用于限制本申请,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均包含在申请待批的本申请的权利要求范围之内。
Claims (6)
- 一种应用于IGBT驱动控制的门极电压无源限幅电路,包括:电容、TVS管串联支路、充电二极管、开关控制电路和电源;所述电容和所述TVS管串联支路均连接在IGBT集电极和门极之间;所述开关控制电路和充电二极管的阳极均连接所述IGBT门极;所述IGBT的发射极接地或连接开关控制电路;所述充电二极管的负极与所述电源连接。
- 如权利要求1所述的门极电压无源限幅电路,其中,所述TVS管串联支路的负极与所述IGBT的集电极相连,正极与IGBT的门极相连;所述TVS管串联支路包括多个串联的TVS管。
- 如权利要求2所述的门极电压无源限幅电路,其中,所述开关控制电路包括:串联的电力电子开关管和开关管驱动电路;所述开关管驱动电路与所述电源连接,从所述电源获取电能;所述电力电子开关管与所述IGBT的门极或发射极连接。
- 如权利要求3所述的门极电压无源限幅电路,其中,所述电力电子开关管采用IGBT或MOSFET。
- 如权利要求3所述的门极电压无源限幅电路,其中,所述开关管驱动电路包括放大器和电阻;所述电阻的一端接地,另一端与所述放大器的正输入端连接;所述放大器的负输入端与电源连接。
- 如权利要求3所述的门极电压无源限幅电路,其中,所述开关控制电路还包括电阻;所述电阻串接于所述电力电子开关管与所述IGBT的门极或发射极之间。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110241000.0 | 2021-03-04 | ||
CN202110241000.0A CN113141171A (zh) | 2021-03-04 | 2021-03-04 | 一种应用于igbt驱动控制的门极电压无源限幅电路 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022183699A1 true WO2022183699A1 (zh) | 2022-09-09 |
Family
ID=76810815
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/116229 WO2022183699A1 (zh) | 2021-03-04 | 2021-09-02 | 一种应用于igbt驱动控制的门极电压无源限幅电路 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113141171A (zh) |
WO (1) | WO2022183699A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113141171A (zh) * | 2021-03-04 | 2021-07-20 | 全球能源互联网研究院有限公司 | 一种应用于igbt驱动控制的门极电压无源限幅电路 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008086068A (ja) * | 2006-09-26 | 2008-04-10 | Nissan Motor Co Ltd | 電圧駆動型素子のゲート駆動回路 |
CN204906177U (zh) * | 2015-09-19 | 2015-12-23 | 许昌学院 | 一种igbt关断过电压有源钳位电路 |
CN107248857A (zh) * | 2017-05-27 | 2017-10-13 | 浙江大学 | 一种栅极侧和负载侧控制的igbt串联复合均压电路 |
CN107846138A (zh) * | 2016-09-19 | 2018-03-27 | 北京合瑞华思科技有限公司 | 一种绝缘栅双极型晶体管高级有源嵌位电路 |
CN113141171A (zh) * | 2021-03-04 | 2021-07-20 | 全球能源互联网研究院有限公司 | 一种应用于igbt驱动控制的门极电压无源限幅电路 |
-
2021
- 2021-03-04 CN CN202110241000.0A patent/CN113141171A/zh active Pending
- 2021-09-02 WO PCT/CN2021/116229 patent/WO2022183699A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008086068A (ja) * | 2006-09-26 | 2008-04-10 | Nissan Motor Co Ltd | 電圧駆動型素子のゲート駆動回路 |
CN204906177U (zh) * | 2015-09-19 | 2015-12-23 | 许昌学院 | 一种igbt关断过电压有源钳位电路 |
CN107846138A (zh) * | 2016-09-19 | 2018-03-27 | 北京合瑞华思科技有限公司 | 一种绝缘栅双极型晶体管高级有源嵌位电路 |
CN107248857A (zh) * | 2017-05-27 | 2017-10-13 | 浙江大学 | 一种栅极侧和负载侧控制的igbt串联复合均压电路 |
CN113141171A (zh) * | 2021-03-04 | 2021-07-20 | 全球能源互联网研究院有限公司 | 一种应用于igbt驱动控制的门极电压无源限幅电路 |
Also Published As
Publication number | Publication date |
---|---|
CN113141171A (zh) | 2021-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10063224B2 (en) | Driver circuit and semiconductor module having same | |
CN107611177B (zh) | 半导体装置以及电力转换装置 | |
US10622986B2 (en) | Gate voltage control circuit of insulated gate bipolar transistor and control method thereof | |
EP2789092B1 (en) | Turn-off overvoltage limiting for igbt | |
WO2012153836A1 (ja) | スイッチング回路及び半導体モジュール | |
US9509299B2 (en) | Apparatus and method for control of semiconductor switching devices | |
EP2854295A1 (en) | Electrical power converter | |
CN111971884A (zh) | 栅极驱动电路和栅极驱动方法 | |
JP5619673B2 (ja) | スイッチング回路及び半導体モジュール | |
US8638134B2 (en) | Gate drive circuit and power semiconductor module | |
WO2022183699A1 (zh) | 一种应用于igbt驱动控制的门极电压无源限幅电路 | |
JP5542719B2 (ja) | 電力用半導体素子の駆動保護回路 | |
US6727516B2 (en) | Semiconductor power conversion apparatus | |
CN111224536B (zh) | 抗米勒效应功率模块的驱动装置及电子设备 | |
JP2017163681A (ja) | 電圧駆動形半導体スイッチ素子の駆動回路 | |
US11095201B2 (en) | Drive device and method for controlling drive device | |
JP2013062965A (ja) | 半導体モジュール | |
JP5772308B2 (ja) | スイッチング素子の保護回路 | |
US20220190706A1 (en) | Driving apparatus, semiconductor apparatus, and driving method | |
CN211981740U (zh) | Igbt有源钳位电路 | |
JP5563050B2 (ja) | ゲート駆動回路、およびパワー半導体モジュール | |
US11606090B2 (en) | Semiconductor device | |
US20240088885A1 (en) | Transistor control circuit | |
CN220653203U (zh) | 用于开关管的有源钳位电路及变频器 | |
WO2023162032A1 (ja) | ゲート駆動回路およびこれを用いた電力変換装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21928776 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21928776 Country of ref document: EP Kind code of ref document: A1 |