WO2022183697A1 - 一种电站锅炉蒸汽吹灰系统及其智能检漏识别方法 - Google Patents

一种电站锅炉蒸汽吹灰系统及其智能检漏识别方法 Download PDF

Info

Publication number
WO2022183697A1
WO2022183697A1 PCT/CN2021/115573 CN2021115573W WO2022183697A1 WO 2022183697 A1 WO2022183697 A1 WO 2022183697A1 CN 2021115573 W CN2021115573 W CN 2021115573W WO 2022183697 A1 WO2022183697 A1 WO 2022183697A1
Authority
WO
WIPO (PCT)
Prior art keywords
model
soot
steam
soot blowing
sootblower
Prior art date
Application number
PCT/CN2021/115573
Other languages
English (en)
French (fr)
Inventor
吴寿贵
刘继锋
赵如宇
王林
刘岗
杨博
赵景涛
高奎
赵晖
王红雨
孟颖琪
高景辉
张亚夫
何信林
Original Assignee
西安热工研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安热工研究院有限公司 filed Critical 西安热工研究院有限公司
Publication of WO2022183697A1 publication Critical patent/WO2022183697A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J1/00Removing ash, clinker, or slag from combustion chambers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors

Definitions

  • the invention belongs to the technical field of coal-fired power generation, and particularly relates to a steam soot blowing system for a power station boiler and an intelligent leak detection and identification method thereof.
  • the thermal conductivity of the soot layer is 0.0581 ⁇ 0.116w/m 2 ⁇ °C, while the thermal conductivity of the metal tube wall on the heating surface of the boiler is 46.5 ⁇ 58.1w/m 2 ⁇ °C.
  • the thermal conductivity of the soot layer is higher than that of the metal tube wall. The coefficient is 500 to 800 times lower.
  • the current leak detection method is generally that after the soot blower is finished blowing, the operator checks on the spot, or indirectly through the alarm of the furnace tube leakage monitoring device. Determine if there is an internal leak in the soot blowing system.
  • the leakage device itself is designed to monitor the leakage of the heating surface of the boiler. It uses a microphone to collect sound signals from different positions of the boiler, and judges whether there is leakage by judging the size of the sound.
  • the furnace tube monitoring device is sensitive after the leakage of the heating surface of the boiler with high pressure.
  • the low pressure and low sound of the sooter system cannot collect and identify the furnace tube leakage device.
  • the location of the furnace tube leakage device is not where the sootblower is located.
  • the sound of the primary fan and the compressed air used for cooling fire detection have a great influence on the leakage device, and the leakage of the soot blowing system cannot be correctly identified.
  • the leakage of the soot blowing system can also be identified indirectly by using the leakage of the boiler furnace tube. more limitations.
  • a flow device is installed on each power plant boiler sootblower, the device detects the medium parameters through the online measurement unit, and the information is converted by the signal conversion processor and displayed on the monitor screen, and the control unit According to the parameters, the medium flow and flow rate are adjusted through the medium flow control valve to judge whether there is steam passing through the blower; however, at present, there are generally more than 90 steam soot blowers for coal-fired power station boilers.
  • Installing a set of medium detection device will increase the investment in equipment, cable tray, cable, control system, etc. It is not a small amount, and the soot blowers are scattered on the whole boiler body, which is extremely difficult to install and maintain. , the failure rate of multiple points is high, and the reliability is poor. When there is a fault in the flow signal, the meaning of detection is lost.
  • Prior art 2 is provided with a temperature measuring thermocouple on the pipe wall at the connection of the lift valve of the sootblower, and the signal output end of the temperature measuring thermocouple is connected with the signal input end of the control box through a cable.
  • the temperature exceeds the set temperature, it indicates that the poppet valve may leak, and an alarm signal is issued to remind the operator.
  • Existing technology 2 detects whether there is a temperature to judge whether the soot blower leaks steam. Compared with technology 1, although the detected parameters are different, there are the same difficulties. There are more than 90 soot blowers in a boiler.
  • a temperature measuring element is installed on the soot blower, which increases equipment investment, cable bridge investment, cable investment, control system investment, etc., and the soot blower is scattered on the entire boiler body, which is extremely difficult to install and maintain. , the failure rate of multiple points is high, and the reliability is poor. When the temperature element is faulty, the meaning of detection is lost.
  • the sootblower running time obtained by logical calculation on the DCS passes the sootblower running time, and compares the sootblower running time with the artificially preset time, when the running time is greater than the artificially preset time Then judge the soot blower operation failure, and alarm on the DCS operation screen.
  • the running time of each sootblower is obviously not a fixed number, and it is obviously wrong to set a constant number of hours compared with the sootblower running time. Alarm, and the logic is more complex and poor reliability.
  • the purpose of the present invention is to provide a power plant boiler steam soot blowing system and its intelligent leak detection and identification method to solve the above problems.
  • the present invention adopts the following technical solutions:
  • a steam soot blowing system for a power station boiler comprising an air inlet pipe and a desuperheating water inlet pipe, a sootblower main pipe, a sootblower sub-pipeline and a soot blower; At one end, the other end of the main sootblower pipeline is connected with a number of sootblower sub-pipes, and each sootblower sub-pipe is provided with a number of sootblowers.
  • a steam inlet electric valve and an open steam inlet regulating valve are sequentially arranged along the flow direction on the air inlet pipe; the desuperheating water electric valve and the desuperheating water regulating valve are sequentially arranged along the flow direction on the warm water inlet pipe.
  • a pressure measuring device and a temperature device are sequentially arranged on the main pipe of the sootblower along the flow direction.
  • a flow measuring device is provided on each sootblower sub-pipeline close to the sootblower main pipe.
  • each sootblower sub-pipeline is sequentially provided with a valve group and a temperature measuring device along the flow direction.
  • valve group includes a trap control valve and a manual trap.
  • an intelligent leak detection and identification method for a steam soot blowing system of a power station boiler includes the following steps:
  • S1 Check the system pressure-holding capability without investing in equipment, and establish an intelligent leak detection and identification model under different sootblower leakage states according to the initial system state of the system's pressure-holding capability;
  • S2 Invoke the intelligent leak detection and identification model, compare the model parameters and track the leakage of the sootblower.
  • step S1 specifically includes:
  • the inspection is only carried out when the new unit is put into operation for the first time or after maintenance; in the case of confirming that there is no internal leakage in soot blowing, increase the soot blowing pressure to 1.8MPa-2.0MPa, close the steam inlet valve, open the desuperheating water electric valve, open the For the desuperheating water control valve, the value of the temperature control device should not exceed 360 °C, and the soot blowing system should not be set up to check the pressure holding capacity of the system M01;
  • S111 Using the system state of the model M02, use the same method to establish a model M303 of the opening degree of the inlet steam regulating valve when the soot blowing system is put into operation with two long soot blowers.
  • step S2 specifically includes:
  • the present invention has the following technical effects:
  • An intelligent leak detection and identification method for a steam soot blowing system of a power station boiler of the present invention is based on the dynamic establishment of a leak detection model of the soot blowing system in different states. , leak detection model of double furnace soot blower, leak detection model of single half-length sootblower, leak detection model of double half-length sootblower, leak detection model of single long sootblower, double length Leak detection model for sootblowers.
  • the system can identify the unit load by itself and call the parameters such as the opening of the inlet steam regulating valve and the system pressure drop rate in the model in real time for comparison.
  • the system automatically exits the sootblower and cuts off the steam source to ensure the safety of the heating surface of the boiler.
  • the soot blower system has low pressure and low sound, the furnace tube leakage device cannot be collected and identified, or the monitoring device is insensitive to the soot blowing system steam leakage, and there are many sound sources in the furnace. The furnace tube leakage cannot correctly identify the soot blowing system leakage. steam dilemma.
  • this technology does not need to add flow measuring devices, temperature measuring devices, or cables, and can be realized by using existing conditions. It has the characteristics of economy and strong practicability. Real-time online before the system is put into operation, during the operation, and intelligent leak detection and identification after the operation.
  • Fig. 1 is the flow chart of the sootblower system of the present invention.
  • Figure 2 is a flow chart of establishing an intelligent leak detection and identification model.
  • Figure 3 is a flowchart of calling the intelligent leak detection and identification model.
  • a system process of intelligent leak detection and identification of a steam soot blowing system of a power plant boiler is shown in Figure 1, and the principle of leak detection and identification is shown in Figure 2.
  • the boiler coal quantity, unit load, and boiler MFT signals are extracted from the unit DCS control system.
  • the identification program is drawn up. After starting the soot blowing program, the program automatically opens the 301, 302, 303, 304, 305, 306 drain control valves
  • the program detects that the boiler is not ignited in the current state, the program does not judge the start-up permitting conditions of the soot blowing system, and directly executes the main program and simulates, that is, the program automatically opens 301, 302, 303, 304 , 305, 306 Drain control valve, open the steam inlet electric valve 101, open the steam inlet regulating valve 102 and put into automatic, the set value of the automatic pressure measuring device 103 is 1.8MPa, and the automatic temperature measuring device 201, 202, 203 The value of , 204, 205, 206 is 220°C and the temperature rises at a temperature of 5°C/min.
  • the pressure of 103 is automatically increased according to the pressure corresponding to the saturation temperature.
  • the pressure rise is stopped, and the value of temperature 201
  • the interlock closes the electric door 302; when the value of temperature 203 reaches 220°C, the interlock closes the electric door 303; when the value of temperature 204 reaches 220°C, the interlock closes the electric door 303;
  • the lock closes the electric door 304; when the value of the temperature 205 reaches 220°C, the interlock closes the electric door 305; when the value of the temperature 206 reaches 220°C, the interlock closes the electric door 306.
  • the system will not execute the program and will feedback that the system does not meet the starting conditions.
  • the first modeling of the program is performed. Before modeling, the program first identifies the load of the boiler. Generally, the first modeling is performed under the minimum allowable soot blowing load of the boiler. After the modeling is completed, if there is a load lower than the first modeling load in the subsequent soot blowing process, the program will Automatically remodel and reinitialize the model.
  • the program first records the boiler load to meet the boiler soot blowing load, and then models the intelligent leak detection and identification of the soot blowing system for the first time, and manually opens the manual traps 401, 402, 403, 404, 405, 406 in advance , open the drain control valve 301, 302, 303, 304, 305, 306, open the steam inlet valve 101, open the steam inlet regulating valve 102 and put it into automatic, the set value of the automatic given pressure 103 is 1.8MPa, the inlet steam regulating valve 102
  • the opening degree is automatically increased according to the feedback of the temperature measuring devices 201, 202, 203, 204, 205, and 206, and the temperature rise is controlled by 5°C/min.
  • the steam inlet valve 101 is closed, and when the pressure device 103 drops to 0.8 MPa, the system pressure holding capacity model M01 is saved, corresponding to the pressure device 103 drop rate K01.
  • K01 in the model M01 is a fixed value, unless the system detects that the unit load during soot blowing is lower than the load during modeling, it is necessary to re-go the modeling program to initialize K01.
  • the program first records the boiler load to meet the boiler soot blowing load, and then models the intelligent leak detection identification of the soot blowing system for the first time, and manually opens the manual traps 401, 402, 403, 404, 405, 406 in advance , open the drain control valve 301, 302, 303, 304, 305, 306, open the steam inlet valve 101, open the steam inlet regulating valve 102 and put it into automatic, the set value of the automatic given pressure 103 is 1.8MPa, the inlet steam regulating valve 102
  • the opening degree is automatically increased according to the feedback of the temperature measuring devices 201, 202, 203, 204, 205, and 206, and the temperature rise is controlled by 5°C/min.
  • the pressure device 103 rises to 1.8MPa, the pressure is stopped.
  • the electric door 301 is interlocked and closed; when the value of the temperature 202 reaches 220°C, the electric door 302 is interlocked and closed; the value of the temperature 203 reaches 220°C
  • the interlock closes the electric door 304; when the value of temperature 205 reaches 220°C, the interlock closes the electric door 305; when the value of temperature 206 reaches 220°C, the interlock closes the electric door Door 306.
  • K101 in model M101 is a fixed value, unless the system detects that the unit load during blowing is lower than the load during modeling, it is necessary to re-run the modeling program to initialize K101.
  • Establish a leak detection identification model M201 the program first records the boiler load to meet the boiler soot blowing load, and then models the intelligent leak detection identification of the soot blowing system for the first time, and manually opens the manual traps 401, 402, 403, 404, 405, 406 in advance , Open the drain control valve 301, 302, 303, 304, 305, 306, open the steam inlet valve 101, open the steam inlet regulating valve 102 and put it into automatic, the set value of the automatic given pressure 103 is 1.8MPa, the steam inlet regulating valve 102 The opening degree is automatically increased according to the feedback of the temperature measuring devices 201, 202, 203, 204, 205, and 206, and the temperature rise is controlled by 5°C/min.
  • the model M201 corresponds to the pressure Device 103 descends at rate K201.
  • K201 in model M201 is a fixed value, unless the system detects that the unit load during blowing is lower than the load during modeling, it is necessary to re-run the modeling program to initialize K201.
  • the program first records the boiler load to meet the boiler soot blowing load, and then models the intelligent leak detection identification of the soot blowing system for the first time, and manually opens the manual traps 401, 402, 403, 404, 405, 406 in advance , open the drain control valve 301, 302, 303, 304, 305, 306, open the steam inlet valve 101, open the steam inlet regulating valve 102 and put it into automatic, the set value of the automatic given pressure 103 is 1.8MPa, the inlet steam regulating valve 102
  • the opening degree is automatically increased according to the feedback of the temperature measuring devices 201, 202, 203, 204, 205, and 206, and the temperature rise is controlled by 5°C/min.
  • the pressure device 103 rises to 2.0MPa, the pressure is stopped.
  • the electric door 301 is interlocked and closed; when the value of the temperature 202 reaches 220°C, the electric door 302 is interlocked and closed; the value of the temperature 203 reaches 220°C
  • the interlock closes the electric door 304; when the value of temperature 205 reaches 220°C, the interlock closes the electric door 305; when the value of temperature 206 reaches 220°C, the interlock closes the electric door Door 306.
  • K301 in model M301 is a fixed value, unless the system detects that the unit load during blowing is lower than the load during modeling, it is necessary to re-run the modeling program to initialize K301.
  • Establish a leak detection identification model M02 the program first records the boiler load to meet the boiler soot blowing load, and then models the intelligent leak detection identification of the soot blowing system for the first time, and manually opens the manual traps 401, 402, 403, 404, 405, 406 in advance , open the drain control valve 301, 302, 303, 304, 305, 306, open the steam inlet valve 101, open the steam inlet regulating valve 102 and put it into automatic, the set value of the automatic given pressure 103 is 1.8MPa, the inlet steam regulating valve 102 The opening degree is automatically increased according to the feedback of the temperature measuring devices 201, 202, 203, 204, 205, and 206, and the temperature rise is controlled by 5°C/min.
  • Establish a leak detection identification model M102 the program first records the boiler load to meet the boiler soot blowing load, and then models the intelligent leak detection identification of the soot blowing system for the first time, and manually opens the manual traps 401, 402, 403, 404, 405, 406 in advance , open the drain control valve 301, 302, 303, 304, 305, 306, open the steam inlet valve 101, open the steam inlet regulating valve 102 and put it into automatic, the set value of the automatic given pressure 103 is 1.8MPa, the inlet steam regulating valve 102 The opening degree is automatically increased according to the feedback of the temperature measuring devices 201, 202, 203, 204, 205, and 206, and the temperature rise is controlled by 5°C/min.
  • F101 in the model M102 is a fixed value, unless the system detects that the unit load during blowing is lower than the load during modeling, it is necessary to re-run the modeling program to initialize F101.
  • the program first records the boiler load to meet the boiler soot blowing load, and then models the intelligent leak detection and identification of the soot blowing system for the first time, and manually opens the manual traps 401, 402, 403, 404, 405, 406 in advance , open the drain control valve 301, 302, 303, 304, 305, 306, open the steam inlet valve 101, open the steam inlet regulating valve 102 and put it into automatic, the set value of the automatic given pressure 103 is 1.8MPa, the inlet steam regulating valve 102
  • the opening degree is automatically increased according to the feedback of the temperature measuring devices 201, 202, 203, 204, 205, and 206, and the temperature rise is controlled by 5°C/min.
  • F102 in model M103 is a fixed value, unless the system detects that the unit load during blowing is lower than the load during modeling, it needs to re-run the modeling program to initialize F102.
  • Establish a leak detection identification model M202 After the program first records the boiler load to meet the boiler soot blowing load, it models the intelligent leak detection identification of the soot blowing system for the first time, and manually opens the manual traps 401, 402, 403, 404, 405, 406 in advance , open the drain control valve 301, 302, 303, 304, 305, 306, open the steam inlet valve 101, open the steam inlet regulating valve 102 and put into automatic, the set value of the automatic given pressure 103 is 2.0MPa, the steam inlet regulating valve 102 The opening degree is automatically increased according to the feedback of the temperature measuring devices 201, 202, 203, 204, 205, and 206, and the temperature rise is controlled by 5°C/min.
  • the pressure device 103 rises to 2.0MPa, the pressure is stopped.
  • the electric door 301 is interlocked and closed;
  • the value of the temperature 202 reaches 220°C, the electric door 302 is interlocked and closed;
  • the value of the temperature 203 reaches 220°C
  • the interlock closes the electric door 304;
  • the value of temperature 205 reaches 220°C, the interlock closes the electric door 305;
  • the value of temperature 206 reaches 220°C, the interlock closes the electric door Door 306.
  • F201 in model M203 is a fixed value, unless the system detects that the unit load during blowing is lower than the load during modeling, it is necessary to re-run the modeling program to initialize F201.
  • Establish a leak detection identification model M203 The program first records the boiler load to meet the boiler soot blowing load, and then models the intelligent leak detection identification of the soot blowing system for the first time, and manually opens the manual traps 401, 402, 403, 404, 405, 406 in advance , open the drain control valve 301, 302, 303, 304, 305, 306, open the steam inlet valve 101, open the steam inlet regulating valve 102 and put into automatic, the set value of the automatic given pressure 103 is 2.0MPa, the steam inlet regulating valve 102 The opening degree is automatically increased according to the feedback of the temperature measuring devices 201, 202, 203, 204, 205, and 206, and the temperature rise is controlled by 5°C/min.
  • the pressure device 103 rises to 2.0MPa, the pressure is stopped.
  • the electric door 301 is interlocked and closed;
  • the value of the temperature 202 reaches 220°C, the electric door 302 is interlocked and closed;
  • the value of the temperature 203 reaches 220°C
  • the interlock closes the electric door 304;
  • the value of temperature 205 reaches 220°C, the interlock closes the electric door 305;
  • the value of temperature 206 reaches 220°C, the interlock closes the electric door Door 306.
  • F202 in model M203 is a fixed value, unless the system detects that the unit load during blowing is lower than the load during modeling, it is necessary to re-run the modeling program to initialize F202.
  • the program first records the boiler load to meet the boiler soot blowing load, and then models the intelligent leak detection and identification of the soot blowing system for the first time, and manually opens the manual traps 401, 402, 403, 404, 405, 406 in advance , open the drain control valve 301, 302, 303, 304, 305, 306, open the steam inlet valve 101, open the steam inlet regulating valve 102 and put into automatic, the set value of the automatic given pressure 103 is 2.0MPa, the steam inlet regulating valve 102
  • the opening degree is automatically increased according to the feedback of the temperature measuring devices 201, 202, 203, 204, 205, and 206, and the temperature rise is controlled by 5°C/min.
  • the pressure device 103 rises to 2.0MPa, the pressure is stopped.
  • the electric door 301 is interlocked and closed;
  • the value of the temperature 202 reaches 220°C, the electric door 302 is interlocked and closed;
  • the value of the temperature 203 reaches 220°C
  • the interlock closes the electric door 304;
  • the value of temperature 205 reaches 220°C, the interlock closes the electric door 305;
  • the value of temperature 206 reaches 220°C, the interlock closes the electric door Door 306.
  • F301 in model M302 is a fixed value, unless the system detects that the unit load during blowing is lower than the load during modeling, it needs to re-run the modeling program to initialize F301.
  • Establish a leak detection identification model M303 the program first records the boiler load to meet the boiler soot blowing load, and then models the intelligent leak detection identification of the soot blowing system for the first time, and manually opens the manual traps 401, 402, 403, 404, 405, 406 in advance , open the drain control valve 301, 302, 303, 304, 305, 306, open the steam inlet valve 101, open the steam inlet regulating valve 102 and put into automatic, the set value of the automatic given pressure 103 is 2.0MPa, the steam inlet regulating valve 102 The opening degree is automatically increased according to the feedback of the temperature measuring devices 201, 202, 203, 204, 205, and 206, and the temperature rise is controlled by 5°C/min.
  • the pressure device 103 rises to 2.0MPa, the pressure is stopped.
  • the electric door 301 is interlocked and closed;
  • the value of the temperature 202 reaches 220°C, the electric door 302 is interlocked and closed;
  • the value of the temperature 203 reaches 220°C
  • the interlock closes the electric door 304;
  • the value of temperature 205 reaches 220°C, the interlock closes the electric door 305;
  • the value of temperature 206 reaches 220°C, the interlock closes the electric door Door 306.
  • F302 in model M303 is a fixed value, unless the system detects that the unit load during blowing is lower than the load during modeling, it is necessary to re-run the modeling program to initialize F302.
  • the electric door 301 When the value of the temperature 201 reaches 220°C, the electric door 301 is interlocked and closed; when the value of the temperature 202 reaches 220°C, the electric door 302 is interlocked and closed; the value of the temperature 203 reaches 220°C
  • the interlock closes the electric door 304; when the value of temperature 205 reaches 220°C, the interlock closes the electric door 305; when the value of temperature 206 reaches 220°C, the interlock closes the electric door Door 306.
  • the system After the heating pipe is completed, close the steam inlet valve 101, the system will identify the pressure drop rate K02 by itself, and compare it with K01 in the model M01.
  • K02 is greater than K01 and a leak alarm is issued, it means that the system has a leak point. If K02 is less than or equal to K01, It means that the system has no leaks and the system is normal. K02 is a dynamic value, and each time this step is performed, the new value replaces the old value.
  • the electric door 301 When the value of the temperature 201 reaches 220°C, the electric door 301 is interlocked and closed; when the value of the temperature 202 reaches 220°C, the electric door 302 is interlocked and closed; the value of the temperature 203 reaches 220°C
  • the interlock closes the electric door 304; when the value of temperature 205 reaches 220°C, the interlock closes the electric door 305; when the value of temperature 206 reaches 220°C, the interlock closes the electric door Door 306. After the heating pipe is completed, close the steam inlet valve 101 and start soot blowing.
  • the system When any soot blower is put into the furnace, the system will identify the opening degree F103 of the steam inlet regulating valve 102 and compare it with F101 in the model M102. If F103 is greater than F101 , it means that the first furnace soot blower has a leak, record the blower number and issue a leak alarm, if F103 is less than or equal to F101, it means that the soot blower has no leakage point, and the soot blower is normal. F103 is a dynamic value. Every time this step is executed, the new value replaces the old value.
  • the electric door 301 When the value of the temperature 201 reaches 220°C, the electric door 301 is interlocked and closed; when the value of the temperature 202 reaches 220°C, the electric door 302 is interlocked and closed; the value of the temperature 203 reaches 220°C
  • the interlock closes the electric door 304; when the value of temperature 205 reaches 220°C, the interlock closes the electric door 305; when the value of temperature 206 reaches 220°C, the interlock closes the electric door Door 306. After the heating pipe is completed, close the steam inlet valve 101 and start soot blowing.
  • the system will identify the opening degree F104 of the steam inlet regulating valve 102 and compare it with F102 in the model M103. If F104 is greater than F102 , it means that the first two furnace soot blowers have leakage, record the blower number and issue a leakage alarm. If F104 is less than or equal to F102, it means that the soot blower has no leakage point, and the soot blower is normal. F104 is a dynamic value. Every time this step is executed, the new value replaces the old value.
  • the electric door 301 When the value of the temperature 201 reaches 220°C, the electric door 301 is interlocked and closed; when the value of the temperature 202 reaches 220°C, the electric door 302 is interlocked and closed; the value of the temperature 203 reaches 220°C
  • the interlock closes the electric door 304; when the value of temperature 205 reaches 220°C, the interlock closes the electric door 305; when the value of temperature 206 reaches 220°C, the interlock closes the electric door Door 306. After the heating pipe is completed, close the steam inlet valve 101 and start soot blowing.
  • the system will identify the opening degree F203 of the steam inlet regulating valve 102 by itself, and compare it with F201 in the model M202, such as F203 If it is greater than F201, it means that the first half-length soot blower is leaking. Record the blower number and issue a leak alarm. If F203 is less than or equal to F201, it means that the soot blower has no leakage point, and the soot blower is normal. F203 is a dynamic value. Every time this step is executed, the new value replaces the old value.
  • the electric door 301 When the value of the temperature 201 reaches 220°C, the electric door 301 is interlocked and closed; when the value of the temperature 202 reaches 220°C, the electric door 302 is interlocked and closed; the value of the temperature 203 reaches 220°C
  • the interlock closes the electric door 304; when the value of temperature 205 reaches 220°C, the interlock closes the electric door 305; when the value of temperature 206 reaches 220°C, the interlock closes the electric door Door 306. After the heating pipe is completed, close the steam inlet valve 101 and start soot blowing.
  • the system will identify the opening degree F204 of the steam inlet regulating valve 102 by itself, and compare it with F202 in the model M203, such as F204 If it is greater than F202, it means that the first 2 half-length soot blowers have leaks, record the blower number and issue a leak alarm. If F204 is less than or equal to F202, it means that the soot blower has no leakage point, and the soot blower is normal. F204 is a dynamic value. Every time this step is executed, the new value replaces the old value.
  • the electric door 301 When the value of the temperature 201 reaches 220°C, the electric door 301 is interlocked and closed; when the value of the temperature 202 reaches 220°C, the electric door 302 is interlocked and closed; the value of the temperature 203 reaches 220°C
  • the interlock closes the electric door 304; when the value of temperature 205 reaches 220°C, the interlock closes the electric door 305; when the value of temperature 206 reaches 220°C, the interlock closes the electric door Door 306. After the heating pipe is completed, close the steam inlet valve 101 and start soot blowing.
  • the system When any long soot blower is put into operation, the system will identify the opening degree F303 of the steam inlet regulating valve 102 by itself, and compare it with F301 in the model M302. If F303 is greater than F302 , it means that the first 1 long soot blower has a leak, record the blower number and issue a leak alarm, if F303 is less than or equal to F302, it means that the soot blower has no leakage point, and the soot blower is normal. F303 is a dynamic value. Every time this step is executed, the new value replaces the old value.
  • the electric door 301 When the value of the temperature 201 reaches 220°C, the electric door 301 is interlocked and closed; when the value of the temperature 202 reaches 220°C, the electric door 302 is interlocked and closed; the value of the temperature 203 reaches 220°C
  • the interlock closes the electric door 304; when the value of temperature 205 reaches 220°C, the interlock closes the electric door 305; when the value of temperature 206 reaches 220°C, the interlock closes the electric door Door 306. After the heating pipe is completed, close the steam inlet valve 101 and start soot blowing.
  • the system will identify the opening degree F304 of the steam inlet regulating valve 102 by itself, and compare it with F302 in the model M303, if F304 is greater than F302 , it means that the first 2 long soot blowers have leakage, record the blower number and issue a leakage alarm, if F304 is less than or equal to F302, it means that the soot blower has no leakage point, and the soot blower is normal.
  • F304 is a dynamic value. Every time this step is executed, the new value replaces the old value.
  • the program After the first model of the program is completed, as long as the unit load during soot blowing is not lower than the load during modeling, the program will always call the model. If the program detects that the current opportunity load is lower than the load during soot blowing modeling, The program will re-model, initializing the parameters of the first modeling, so that the model can be dynamically updated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Incineration Of Waste (AREA)

Abstract

一种电站锅炉蒸汽吹灰系统及其智能检漏识别方法,包括进气管和减温水进水管、吹灰器主管道、吹灰器分管道和吹灰器;进气管和减温水进水管均连接到吹灰器主管道的一端,吹灰器主管道的另一端连接有若干吹灰器分管道,每个吹灰器分管道上均设置有若干吹灰器。本技术不需要增加流量测量装置、温度测量装置、不需增加电缆,采用现有的条件就能实现,具有经济,可实施性强等特点,实施后具有实时在线对系统进行投运前,投运中,投运后智能检漏识别。

Description

一种电站锅炉蒸汽吹灰系统及其智能检漏识别方法 技术领域
本发明属于燃煤发电技术领域,特别涉及一种电站锅炉蒸汽吹灰系统及其智能检漏识别方法。
背景技术
对电站燃煤锅炉而言,锅炉受热面是重要的部件,其安全可靠是机组济经、安全运行的前提,运行过程中炉膛水冷壁结焦,高温过热器及再热器结焦,尾部受热面积灰是常见且不可避免的问题,也是燃煤电站锅炉运行中存在的难题,尤其在燃用粘污性较强的煤种,受热面积灰、结焦是最常见的现象,沉积在锅炉受热面上的积灰层的导热系数为0.0581~0.116w/m 2˙℃,而锅炉受热面金属管壁的导热系数为46.5~58.1w/m 2˙℃,积灰层的导热系数比金属管壁的导热系数低500~800倍。锅炉受热面积灰后严重影响传热效率,使排烟温度升高,锅炉热效率降低,同时积灰进一步导致受热面产生高低温腐蚀,锅炉爆管频繁,致使运行周期大大缩短。保证锅炉受热面洁净,锅炉采用蒸汽吹灰是提高锅炉经济安全运行非常重要手段,但由于蒸汽吹灰经常发生泄漏,使锅炉经常发生受热面吹爆导致停机,影响锅炉安全经济运行。
为了克服现役锅炉受热面经常被吹灰器吹爆的困局,现在采用的检漏方法一般为吹灰器吹灰结束后,运行人员就地检查,或通过炉膛炉管泄漏监视装置的报警间接判断是否存吹灰系统内漏。但运行巡检人员人技术水平参差不齐、现场影响运行人员判断泄漏的环境因素复杂且运行人员不能做到24小时实时巡检监视等因素的存在,降低了锅炉受热面的安全;锅炉炉管泄漏装置本身就是监视锅炉受热面的泄漏而设,其采用话筒采集锅炉不同位置的声音信号,通过判断声音的大小来判断是否存在泄漏,但锅炉压力高受热面泄漏后炉管监视装置敏感,吹灰器系统压力低,声音小对炉管泄漏装置不能采集识别,同时为 了避免吹灰器吹灰对炉管泄漏判断的影响,炉管泄漏装置布置的位置不在吹灰器所在的位置。其次,锅炉运行过程中,一次风机声音、冷却火检用的压缩空气等声音对泄漏装置的影响较大,吹灰系统泄漏时不能正确识别,采用锅炉炉管泄漏间接识别吹灰系统泄漏也存在较多的局限。
目前,现有技术1,将一个流量装置安装在每只电站锅炉吹灰器上,该装置通过在线测量单元检测介质参数,并将信息经过信号转换处理器转换后在监视屏上显示,调控单元根据参数通过介质流量调节阀调节介质流量和流速,以此来判断是否有蒸汽通过吹器;但是目前燃煤电站锅炉蒸汽吹灰器,一般为都为90多台,要实现每台吹灰器装上一套介质检测装置,所增加的设备投资、电缆桥架投资、电缆投资、控制系统投资等都是不小的数目,而且吹灰器分散布置在整个锅炉本体上,其安装维护难度极大,点多故障率大,可靠性差,在流量信号存在故障时就失去检测的意义。
现有技术2在吹灰器提升阀连接处的管壁上设有测温热电偶,测温热电偶的信号输出端通过电缆与控制箱的信号输入端进行连接,通过测温热电偶,当温度超过设定温度时,说明提升阀可能泄漏,同时发出报警信号,从而提醒运行人员。现有技术2检测是否有温度来判断吹灰器是否漏汽,与技术1相比,虽然检测的参数不一样,但存在一样的困难,一台锅炉90多台吹灰器,要实现每台吹灰器装上一个测温元件,所增加的设备投资、电缆桥架投资、电缆投资、控制系统投资等都是不少,而且吹灰器分散布置在整个锅炉本体上,其安装维护难度极大,点多故障率大,可靠性差,在温度元件存在故障时就失去了检测的意义。
现有技术3在DCS上通过逻辑计算所得的吹灰器运行时间通过吹灰器运行时间,并通过吹灰器运行耗时与人为预设的时间比较,当运行耗时大于人为预设时间时则判断吹灰器运行故障,并在DCS运行画面报警。但是随着锅炉负荷变化以及吹灰器机械的磨损,每次吹灰器运行时间显然不是一个固定不变的数,以设定一个不变的时间数与吹灰器运时 间相比显然存在误报警,且逻辑较为复杂可靠性差。
发明内容
本发明的目的在于提供一种电站锅炉蒸汽吹灰系统及其智能检漏识别方法,以解决上述问题。
为实现上述目的,本发明采用以下技术方案:
一种电站锅炉蒸汽吹灰系统,包括进气管和减温水进水管、吹灰器主管道、吹灰器分管道和吹灰器;进气管和减温水进水管均连接到吹灰器主管道的一端,吹灰器主管道的另一端连接有若干吹灰器分管道,每个吹灰器分管道上均设置有若干吹灰器。
进一步的,进气管上沿流向方向依次设置有进汽电动阀和打开进汽调节阀;温水进水管上沿流向方向依次设置有减温水电动阀和减温水调节阀。
进一步的,吹灰器主管道上沿流向方向依次设置有压力测量装置和温度装置。
进一步的,每个吹灰器分管道靠近吹灰器主管道上均设置有流量测量装置。
进一步的,每个吹灰器分管道的末端依次沿流向方向均设置有阀门组和温度测量装置。
进一步的,阀门组包括疏水控制阀和手动疏阀。
进一步的,一种电站锅炉蒸汽吹灰系统的智能检漏识别方法,包括以下步骤:
S1:建立不投设备的情况下检查系统保压能力,根据系统保压能力的系统初始状态,建立在不同吹灰器泄露状态下的智能检漏识别模型;
S2:调用智能检漏识别模型,比对模型参数并跟踪吹灰器泄漏情况。
进一步的,步骤S1具体包括:
S101:在锅炉负荷满足吹灰系统投运前,对全部吹灰器原位进行一次系统性的检漏识别,保证吹灰器在启动前均在原位且严密不漏,打开所有疏水控制阀,打开进汽电动阀,打开进汽调节阀,给定压力测量装置设定值为1.8MPa—2.0MPa,进汽调节阀根据所有温度测量装置的反馈增加开度,并以5℃/min的温升控制;当压力测量装置升到时1.8MPa—2.0MPa停止升压,温度测量装置的值达到220℃时联锁关闭疏水控制阀;同时就地进 行一次各分支吹灰器的漏汽检查,检查仅在新机组首次投产或检修后首次投运进行;在确认吹灰无内漏的情况下将吹灰压力提至1.8MPa—2.0MPa后关闭进汽阀,打开减温水电动阀,打开减温水调节阀,控制温度装置的值不能超过360℃,建立吹灰系统不投设备检查系统保压能力M01;
S102:以模型M01的系统状态,用同样的方法建立吹灰系统投入一只炉膛吹灰器泄漏的系统降压速率模型M101;
S103:以模型M01的系统状态,用同样的方法建立吹灰系统投入一只半长吹吹灰器泄漏的系统降压速率模型M201;
S104:以模型M01的系统状态,用同样的方法建立吹灰系统投入一只长吹灰器泄漏的系统降压速率模型M301;
S105:以模型M01的系统状态,用同样的方法在不关进汽阀的条件下建立吹灰系统未投吹灰器进汽调节阀的开度模型M02;
S106:以模型M02的系统状态,用同样的方法建立吹灰系统投入一只炉膛吹灰器运行时进汽调节阀的开度模型M102;
S107:以模型M02的系统状态,用同样的方法建立吹灰系统投入两只炉膛吹灰器运行时进汽调节阀的开度模型M103;
S108:以模型M02的系统状态,用同样的方法建立吹灰系统投入一只半长吹吹灰器运行时进汽调节阀的开度模型M202;
S109:以模型M02的系统状态,用同样的方法建立吹灰系统投入两只半长吹吹灰器运行时进汽调节阀的开度模型M203;
S110:以模型M02的系统状态,用同样的方法建立吹灰系统投入一只长吹灰器运行时进汽调节阀的开度模型M302;
S111:以模型M02的系统状态,用同样的方法建立吹灰系统投入两只长吹灰器运行时进汽调节阀的开度模型M303。
进一步的,步骤S2具体包括:
S201:当系统建模完成后,打开所有疏水控制阀,打开进汽电动阀,打开进汽调节阀并投入自动,给定压力测量装置设定值为1.8MPa—2.0MPa,进汽调节阀根据温度测量装置的反馈增加开度,并以5℃/min的温升控制;当压力测量装置升到时1.8MPa—2.0MPa停止升压,温度的值达到220℃时联锁关闭疏水控制阀;将吹灰压力测量装置提至1.8MPa—2.0MPa,关闭进汽阀门,自行计算吹灰系统在密闭条件下压降速率,并调用模型M01,比对模型参数判断系统在投运前的严密性情况;
S202:在系统严密性检查完成后,打开所有疏水控制阀,打开进汽电动阀,打开进汽调节阀并投入自动,给定压力测量装置设定值为1.8MPa—2.0MPa,进汽调节阀根据温度测量装置的反馈增加开度,并以5℃/min的温升控制;当压力测量装置升到时1.8MPa—2.0MPa停止升压,温度的值达到220℃时联锁关闭电动门;将吹灰压力测量装置提至1.8MPa—2.0MPa,打开减温水电动阀,打开减温水调节阀,控制温度装置的值不能超过360℃,投入吹灰器运行,如果系统检测到投入一只炉膛吹灰器运行,则系统自行调出投运一只炉膛吹灰器时调用模型M102,比对模型参数并跟踪吹灰器泄漏情况;
S203:如果系统检测到投入两只炉膛吹灰器运行,则系统自行调出投运两只炉膛吹灰器时调用模型M103,比对模型参数并跟踪吹灰器泄漏情况;
S204:如果系统检测到投入一只半长吹吹灰器运行,则系统自行调出投运一只半长吹吹灰器时调用模型M202,比对模型参数并跟踪吹灰器泄漏情况;
S205:如果系统检测到投入两只半长吹吹灰器运行,则系统自行调出投运两只半长吹吹灰器时调用模型M203,比对模型参数并跟踪吹灰器泄漏情况;
S206:如果系统检测到投入一只长吹灰器运行,则系统自行调出投运一只长吹灰器时调用模型M302,比对模型参数并跟踪吹灰器泄漏情况;
S207:如果系统检测到投入两只长吹灰器运行,则系统自行调出投运两只长吹灰器时调用模型M303,比对模型参数并跟踪吹灰器泄漏情况;
S208:在投运吹灰系统结束后为了防止最后一组吹灰器停运过程中存在问题,吹灰系统投运结束时调用模型M02,比对模型参数判断系统泄漏情况,保证吹灰器不存在漏汽。
与现有技术相比,本发明有以下技术效果:
本发明一种电站锅炉蒸汽吹灰系统智能检漏识别方法是基于动态建立吹灰系统不同状态下的检漏模型,模型类型覆盖系统本身保压能力模型、单只炉膛吹灰器的检漏模型、双只炉膛吹灰的检漏模型、单只半长吹吹灰器的检漏模型、双只半长吹吹灰器的检漏模型、单只长吹灰器的检漏模型、双长吹灰器的检漏模型。在系统实际投运过程中自行识别机组负荷并实时调用模型中的进汽调节阀开度、系统压力下降速率等参数进行比对,及时发现存在漏时,系统自行退出吹灰器,并切断汽源,保证锅炉受热面的安全。与现有通过运行人员就地巡检泄漏或通过炉管泄漏报警装间接发现泄漏的技术相比,克服了运行人员就地检查的时间不及时性、巡检人员人技术水平参差不齐以及环境因素复杂对巡检效果的误判。同时也避免了吹灰器系统压力低、声音小对炉管泄漏装置不能采集识别或监视装置对吹灰系统漏汽不敏感以及炉内声源较多通过炉管泄漏不能正确识别吹灰系统漏汽的困局。
同时与现有的专利技术相比,本技术不需要增加流量测量装置、温度测量装置、不需增加电缆,采用现有的条件就能实现,具有经济,可实施性强等特点,实施后具有实时在线对系统进行投运前,投运中,投运后智能检漏识别。
附图说明
图1是本发明的吹灰器系统流程图。
图2建立智能检漏识别模型流程图。
图3调用智能检漏识别模型流程图。
具体实施方式
以下结合附图对本发明进一步说明:
一种电站锅炉蒸汽吹灰系统智能检漏识别的系统工艺如图1所示,检漏识别原理如图2所示,在机组DCS控制系统提取锅炉煤量、机组负荷、锅炉MFT信号。
拟定识别程序,启动吹灰程序后,程序自动打开301、302、303、304、305、306疏 水控制阀
建立启动检漏识别程序,如果程序检测到当前状态锅炉未点火,则程序不判断吹灰系统的启动允许条件,直接执行上主程序并进行仿真,即打程序自动打开301、302、303、304、305、306疏水控制阀,打开进汽电动阀101,打开进汽调节阀102并投入自动,自动给定压力测量装置103设定值为1.8MPa,自动给定温度测量装置201、202、203、204、205、206的值为220℃并以5℃/每分的温度升温,同时压力103自动根据饱和温度对应的压力升压,压力103升到时1.8MPa停止升压,温度201的值达到220℃时联锁关闭电动门301;温度202的值达到220℃时联锁关闭电动门302;温度203的值达到220℃时联锁关闭电动门303;温度204的值达到220℃时联锁关闭电动门304;温度205的值达到220℃时联锁关闭电动门305;温度206的值达到220℃时联锁关闭电动门306。自动投入炉膛吹灰器前101,炉膛吹灰器前101运行正常后退出;自动投入半长吹灰器左半101,半长吹灰器前左半101运行正常后退出;自动投入长吹灰器左长101,长吹灰器左长101运行正常后退出程序静态自检结束,并报告结果。
如果程序检测到锅炉已点火,但还未达到吹灰系统的最低吹灰要求条件时,系统不执行程序,并反馈系统不具备启动条件。
如果系统检测到锅炉已点火,且已满足吹灰系统启动条件时,执行程序首次建模。建模前,程序先识别锅炉的负荷,一般在锅炉最低允吹灰的负荷下进行首次建模,建模完成后如果在以后吹灰过程中存在负荷比首次建模的负荷低时,程会自动重新建模,并重新初始化模型。
建立检漏识别模型M01:程序先记录锅炉负荷满足锅炉吹灰的负荷后,对吹灰系统智能检漏识别进行首次建模,提前手动打开手动疏阀401、402、403、404、405、406,打开疏水控制阀301、302、303、304、305、306,打开进汽阀101,打开进汽调节阀102并投入自动,自动给定压力103设定值为1.8MPa,进汽调节阀102自动根据温度测量装 置201、202、203、204、205、206的反馈增加开度,并以5℃/min的温升控制。当压力装置103升到时1.8MPa停止升压,温度201的值达到220℃时联锁关闭电动门301;温度202的值达到220℃时联锁关闭电动门302;温度203的值达到220℃时联锁关闭电动门303;温度204的值达到220℃时联锁关闭电动门304;温度205的值达到220℃时联锁关闭电动门305;温度206的值达到220℃时联锁关闭电动门306。暖管完成后关闭进汽阀101,待压力装置103降至0.8MPa时,保存系统保压能力模型M01,对应压力装置103下降速率K01。模型M01中的K01为一个固定不变的值,除非系统检查到吹灰时的机组负荷比建模时的负荷低时,需要重新走建模程序初始化K01。
建立检漏识别模型M101:程序先记录锅炉负荷满足锅炉吹灰的负荷后,对吹灰系统智能检漏识别进行首次建模,提前手动打开手动疏阀401、402、403、404、405、406,打开疏水控制阀301、302、303、304、305、306,打开进汽阀101,打开进汽调节阀102并投入自动,自动给定压力103设定值为1.8MPa,进汽调节阀102自动根据温度测量装置201、202、203、204、205、206的反馈增加开度,并以5℃/min的温升控制。当压力装置103升到时1.8MPa停止升压,温度201的值达到220℃时联锁关闭电动门301;温度202的值达到220℃时联锁关闭电动门302;温度203的值达到220℃时联锁关闭电动门303;温度204的值达到220℃时联锁关闭电动门304;温度205的值达到220℃时联锁关闭电动门305;温度206的值达到220℃时联锁关闭电动门306。暖管完成后关闭进汽阀101,投入1根炉膛吹灰器前101运行,待压力装置103降至0.8MPa时,保存炉膛吹灰器一只投运模型M101,对应压力装置103下降速率K101。模型M101中的K101为一个固定不变的值,除非系统检查到吹时的机组负荷比建模时的负荷低时,需要重新走建模程序初始化K101。
建立检漏识别模型M201:程序先记录锅炉负荷满足锅炉吹灰的负荷后,对吹灰系统智能检漏识别进行首次建模,提前手动打开手动疏阀401、402、403、404、405、406, 打开疏水控制阀301、302、303、304、305、306,打开进汽阀101,打开进汽调节阀102并投入自动,自动给定压力103设定值为1.8MPa,进汽调节阀102自动根据温度测量装置201、202、203、204、205、206的反馈增加开度,并以5℃/min的温升控制。当压力装置103升到时1.8MPa停止升压,温度201的值达到220℃时联锁关闭电动门301;温度202的值达到220℃时联锁关闭电动门302;温度203的值达到220℃时联锁关闭电动门303;温度204的值达到220℃时联锁关闭电动门304;温度205的值达到220℃时联锁关闭电动门305;温度206的值达到220℃时联锁关闭电动门306。暖管完成后关闭进汽阀101,投入1根半长吹吹灰器左半101运行,待压力装置103降至0.8MPa时,保存半长吹吹灰器一只投运模型M201,对应压力装置103下降速率K201。模型M201中的K201为一个固定不变的值,除非系统检查到吹时的机组负荷比建模时的负荷低时,需要重新走建模程序初始化K201。
建立检漏识别模型M301:程序先记录锅炉负荷满足锅炉吹灰的负荷后,对吹灰系统智能检漏识别进行首次建模,提前手动打开手动疏阀401、402、403、404、405、406,打开疏水控制阀301、302、303、304、305、306,打开进汽阀101,打开进汽调节阀102并投入自动,自动给定压力103设定值为1.8MPa,进汽调节阀102自动根据温度测量装置201、202、203、204、205、206的反馈增加开度,并以5℃/min的温升控制。当压力装置103升到时2.0MPa停止升压,温度201的值达到220℃时联锁关闭电动门301;温度202的值达到220℃时联锁关闭电动门302;温度203的值达到220℃时联锁关闭电动门303;温度204的值达到220℃时联锁关闭电动门304;温度205的值达到220℃时联锁关闭电动门305;温度206的值达到220℃时联锁关闭电动门306。暖管完成后关闭进汽阀101,投入1根长吹灰器左长101运行,待压力装置103降至0.8MPa时,保存长吹灰器一只投运模型M301,对应压力装置103下降速率K301。模型M301中的K301为一个固定不变的值,除非系统检查到吹时的机组负荷比建模时的负荷低时,需要重新走建模程序 初始化K301。
建立检漏识别模型M02:程序先记录锅炉负荷满足锅炉吹灰的负荷后,对吹灰系统智能检漏识别进行首次建模,提前手动打开手动疏阀401、402、403、404、405、406,打开疏水控制阀301、302、303、304、305、306,打开进汽阀101,打开进汽调节阀102并投入自动,自动给定压力103设定值为1.8MPa,进汽调节阀102自动根据温度测量装置201、202、203、204、205、206的反馈增加开度,并以5℃/min的温升控制。当压力装置103升到时1.8MPa停止升压,温度201的值达到220℃时联锁关闭电动门301;温度202的值达到220℃时联锁关闭电动门302;温度203的值达到220℃时联锁关闭电动门303;温度204的值达到220℃时联锁关闭电动门304;温度205的值达到220℃时联锁关闭电动门305;温度206的值达到220℃时联锁关闭电动门306。不投入任何吹灰器运行,待压力装置103稳定时,记录进汽调节阀102的开度,保存吹灰系统未投运模型M02,对应进汽调节102的开度为F100。模型M02中的F100为一个固定不变的值,除非系统检查到吹时的机组负荷比建模时的负荷低时,需要重新走建模程序初始化F100。
建立检漏识别模型M102:程序先记录锅炉负荷满足锅炉吹灰的负荷后,对吹灰系统智能检漏识别进行首次建模,提前手动打开手动疏阀401、402、403、404、405、406,打开疏水控制阀301、302、303、304、305、306,打开进汽阀101,打开进汽调节阀102并投入自动,自动给定压力103设定值为1.8MPa,进汽调节阀102自动根据温度测量装置201、202、203、204、205、206的反馈增加开度,并以5℃/min的温升控制。当压力装置103升到时1.8MPa停止升压,温度201的值达到220℃时联锁关闭电动门301;温度202的值达到220℃时联锁关闭电动门302;温度203的值达到220℃时联锁关闭电动门303;温度204的值达到220℃时联锁关闭电动门304;温度205的值达到220℃时联锁关闭电动门305;温度206的值达到220℃时联锁关闭电动门306。投入一根炉膛吹灰器前101运行,记录进汽调节阀102的开度,保存吹灰系统投运一只炉膛吹灰器前101模型 M102,对应进汽调节102的开度为F101。模型M102中的F101为一个固定不变的值,除非系统检查到吹时的机组负荷比建模时的负荷低时,需要重新走建模程序初始化F101。
建立检漏识别模型M103:程序先记录锅炉负荷满足锅炉吹灰的负荷后,对吹灰系统智能检漏识别进行首次建模,提前手动打开手动疏阀401、402、403、404、405、406,打开疏水控制阀301、302、303、304、305、306,打开进汽阀101,打开进汽调节阀102并投入自动,自动给定压力103设定值为1.8MPa,进汽调节阀102自动根据温度测量装置201、202、203、204、205、206的反馈增加开度,并以5℃/min的温升控制。当压力装置103升到时1.8MPa停止升压,温度201的值达到220℃时联锁关闭电动门301;温度202的值达到220℃时联锁关闭电动门302;温度203的值达到220℃时联锁关闭电动门303;温度204的值达到220℃时联锁关闭电动门304;温度205的值达到220℃时联锁关闭电动门305;温度206的值达到220℃时联锁关闭电动门306。投入两根炉膛吹灰器前101、后101运行,记录进汽调节阀102的开度,保存吹灰系统投运两只炉膛吹灰器的模型M103,对应进汽调节102的开度为F102。模型M103中的F102为一个固定不变的值,除非系统检查到吹时的机组负荷比建模时的负荷低时,需要重新走建模程序初始化F102。
建立检漏识别模型M202:程序先记录锅炉负荷满足锅炉吹灰的负荷后,对吹灰系统智能检漏识别进行首次建模,提前手动打开手动疏阀401、402、403、404、405、406,打开疏水控制阀301、302、303、304、305、306,打开进汽阀101,打开进汽调节阀102并投入自动,自动给定压力103设定值为2.0MPa,进汽调节阀102自动根据温度测量装置201、202、203、204、205、206的反馈增加开度,并以5℃/min的温升控制。当压力装置103升到时2.0MPa停止升压,温度201的值达到220℃时联锁关闭电动门301;温度202的值达到220℃时联锁关闭电动门302;温度203的值达到220℃时联锁关闭电动门303;温度204的值达到220℃时联锁关闭电动门304;温度205的值达到220℃时联锁关闭电动门305;温度206的值达到220℃时联锁关闭电动门306。投入一根半长吹吹灰 器左半101运行,记录进汽调节阀102的开度,保存吹灰系统投一只半长吹模型M203,对应进汽调节102的开度为F201。模型M203中的F201为一个固定不变的值,除非系统检查到吹时的机组负荷比建模时的负荷低时,需要重新走建模程序初始化F201。
建立检漏识别模型M203:程序先记录锅炉负荷满足锅炉吹灰的负荷后,对吹灰系统智能检漏识别进行首次建模,提前手动打开手动疏阀401、402、403、404、405、406,打开疏水控制阀301、302、303、304、305、306,打开进汽阀101,打开进汽调节阀102并投入自动,自动给定压力103设定值为2.0MPa,进汽调节阀102自动根据温度测量装置201、202、203、204、205、206的反馈增加开度,并以5℃/min的温升控制。当压力装置103升到时2.0MPa停止升压,温度201的值达到220℃时联锁关闭电动门301;温度202的值达到220℃时联锁关闭电动门302;温度203的值达到220℃时联锁关闭电动门303;温度204的值达到220℃时联锁关闭电动门304;温度205的值达到220℃时联锁关闭电动门305;温度206的值达到220℃时联锁关闭电动门306。投入两半长吹吹灰器左半101、左半101运行,记录进汽调节阀102的开度,保存吹灰系统投两只半长吹的模型M203,对应进汽调节102的开度为F202。模型M203中的F202为一个固定不变的值,除非系统检查到吹时的机组负荷比建模时的负荷低时,需要重新走建模程序初始化F202。
建立检漏识别模型M302:程序先记录锅炉负荷满足锅炉吹灰的负荷后,对吹灰系统智能检漏识别进行首次建模,提前手动打开手动疏阀401、402、403、404、405、406,打开疏水控制阀301、302、303、304、305、306,打开进汽阀101,打开进汽调节阀102并投入自动,自动给定压力103设定值为2.0MPa,进汽调节阀102自动根据温度测量装置201、202、203、204、205、206的反馈增加开度,并以5℃/min的温升控制。当压力装置103升到时2.0MPa停止升压,温度201的值达到220℃时联锁关闭电动门301;温度202的值达到220℃时联锁关闭电动门302;温度203的值达到220℃时联锁关闭电动门303;温度204的值达到220℃时联锁关闭电动门304;温度205的值达到220℃时联锁 关闭电动门305;温度206的值达到220℃时联锁关闭电动门306。投入一只长吹灰器左长101运行,记录进汽调节阀102的开度,保存吹灰系统投一只长吹的模型M302,对应进汽调节102的开度为F301。模型M302中的F301为一个固定不变的值,除非系统检查到吹时的机组负荷比建模时的负荷低时,需要重新走建模程序初始化F301。
建立检漏识别模型M303:程序先记录锅炉负荷满足锅炉吹灰的负荷后,对吹灰系统智能检漏识别进行首次建模,提前手动打开手动疏阀401、402、403、404、405、406,打开疏水控制阀301、302、303、304、305、306,打开进汽阀101,打开进汽调节阀102并投入自动,自动给定压力103设定值为2.0MPa,进汽调节阀102自动根据温度测量装置201、202、203、204、205、206的反馈增加开度,并以5℃/min的温升控制。当压力装置103升到时2.0MPa停止升压,温度201的值达到220℃时联锁关闭电动门301;温度202的值达到220℃时联锁关闭电动门302;温度203的值达到220℃时联锁关闭电动门303;温度204的值达到220℃时联锁关闭电动门304;温度205的值达到220℃时联锁关闭电动门305;温度206的值达到220℃时联锁关闭电动门306。投入两只长吹灰器左长101、右长101运行,记录进汽调节阀102的开度,保存吹灰系统投两只长吹的模型M302,对应进汽调节102的开度为F302。模型M303中的F302为一个固定不变的值,除非系统检查到吹时的机组负荷比建模时的负荷低时,需要重新走建模程序初始化F302。
调用M01模型进行智能检漏识别:系统投运前自检,提前手动打开手动疏阀401、402、403、404、405、406,打开疏水控制阀301、302、303、304、305、306,打开进汽阀101,打开进汽调节阀102并投入自动,自动给定压力103设定值为1.8MPa,进汽调节阀102自动根据温度测量装置201、202、203、204、205、206的反馈增加开度,并以5℃/min的温升控制。当压力装置103升到时2.0MPa停止升压,温度201的值达到220℃时联锁关闭电动门301;温度202的值达到220℃时联锁关闭电动门302;温度203的值达到220℃时联锁关闭电动门303;温度204的值达到220℃时联锁关闭电动门304;温度 205的值达到220℃时联锁关闭电动门305;温度206的值达到220℃时联锁关闭电动门306。暖管完成后关闭进汽阀101,系统自行识别压力下降速率K02,并与模型M01中的K01比较,如K02大于K01,发出有漏报警,则说明系统有漏点,如K02小于等于K01,则说明系统无漏点,发出系统正常。K02为一个动态的值,每次执行此步时,新值将旧值替换。
调用M102模型进行智能检漏识别:系统投运前自检,提前手动打开手动疏阀401、402、403、404、405、406,打开疏水控制阀301、302、303、304、305、306,打开进汽阀101,打开进汽调节阀102并投入自动,自动给定压力103设定值为1.8MPa,进汽调节阀102自动根据温度测量装置201、202、203、204、205、206的反馈增加开度,并以5℃/min的温升控制。当压力装置103升到时2.0MPa停止升压,温度201的值达到220℃时联锁关闭电动门301;温度202的值达到220℃时联锁关闭电动门302;温度203的值达到220℃时联锁关闭电动门303;温度204的值达到220℃时联锁关闭电动门304;温度205的值达到220℃时联锁关闭电动门305;温度206的值达到220℃时联锁关闭电动门306。暖管完成后关闭进汽阀101,开始吹灰,投入炉膛任一只吹灰器时,系统自行识别进汽调节阀102的开度F103,并与模型M102中的F101比较,如F103大于F101,则说明前1根炉膛吹灰器有漏,记录吹器编号并发出有漏报警,如F103小于等于F101,则说明吹灰器无漏点,发出吹灰器正常。F103为一个动态的值,每次执行此步时,新值将旧值替换。
调用M103模型进行智能检漏识别:系统投运前自检,提前手动打开手动疏阀401、402、403、404、405、406,打开疏水控制阀301、302、303、304、305、306,打开进汽阀101,打开进汽调节阀102并投入自动,自动给定压力103设定值为1.8MPa,进汽调节阀102自动根据温度测量装置201、202、203、204、205、206的反馈增加开度,并以5℃/min的温升控制。当压力装置103升到时2.0MPa停止升压,温度201的值达到220℃时联锁关闭电动门301;温度202的值达到220℃时联锁关闭电动门302;温度203的值 达到220℃时联锁关闭电动门303;温度204的值达到220℃时联锁关闭电动门304;温度205的值达到220℃时联锁关闭电动门305;温度206的值达到220℃时联锁关闭电动门306。暖管完成后关闭进汽阀101,开始吹灰,投入炉膛任两只吹灰器时,系统自行识别进汽调节阀102的开度F104,并与模型M103中的F102比较,如F104大于F102,则说明前2根炉膛吹灰器有漏,记录吹器编号并发出有漏报警,如F104小于等于F102,则说明吹灰器无漏点,发出吹灰器正常。F104为一个动态的值,每次执行此步时,新值将旧值替换。
调用M202模型进行智能检漏识别:系统投运前自检,提前手动打开手动疏阀401、402、403、404、405、406,打开疏水控制阀301、302、303、304、305、306,打开进汽阀101,打开进汽调节阀102并投入自动,自动给定压力103设定值为2.0MPa,进汽调节阀102自动根据温度测量装置201、202、203、204、205、206的反馈增加开度,并以5℃/min的温升控制。当压力装置103升到时2.0MPa停止升压,温度201的值达到220℃时联锁关闭电动门301;温度202的值达到220℃时联锁关闭电动门302;温度203的值达到220℃时联锁关闭电动门303;温度204的值达到220℃时联锁关闭电动门304;温度205的值达到220℃时联锁关闭电动门305;温度206的值达到220℃时联锁关闭电动门306。暖管完成后关闭进汽阀101,开始吹灰,投入任一只半长吹吹灰器时,系统自行识别进汽调节阀102的开度F203,并与模型M202中的F201比较,如F203大于F201,则说明前1半长吹吹灰器有漏,记录吹器编号并发出有漏报警,如F203小于等于F201,则说明吹灰器无漏点,发出吹灰器正常。F203为一个动态的值,每次执行此步时,新值将旧值替换。
调用M203模型进行智能检漏识别:系统投运前自检,提前手动打开手动疏阀401、402、403、404、405、406,打开疏水控制阀301、302、303、304、305、306,打开进汽阀101,打开进汽调节阀102并投入自动,自动给定压力103设定值为2.0MPa,进汽调节阀102自动根据温度测量装置201、202、203、204、205、206的反馈增加开度,并以 5℃/min的温升控制。当压力装置103升到时2.0MPa停止升压,温度201的值达到220℃时联锁关闭电动门301;温度202的值达到220℃时联锁关闭电动门302;温度203的值达到220℃时联锁关闭电动门303;温度204的值达到220℃时联锁关闭电动门304;温度205的值达到220℃时联锁关闭电动门305;温度206的值达到220℃时联锁关闭电动门306。暖管完成后关闭进汽阀101,开始吹灰,投入任两只半长吹吹灰器时,系统自行识别进汽调节阀102的开度F204,并与模型M203中的F202比较,如F204大于F202,则说明前2半长吹吹灰器有漏,记录吹器编号并发出有漏报警,如F204小于等于F202,则说明吹灰器无漏点,发出吹灰器正常。F204为一个动态的值,每次执行此步时,新值将旧值替换。
调用M302模型进行智能检漏识别:系统投运前自检,提前手动打开手动疏阀401、402、403、404、405、406,打开疏水控制阀301、302、303、304、305、306,打开进汽阀101,打开进汽调节阀102并投入自动,自动给定压力103设定值为2.0MPa,进汽调节阀102自动根据温度测量装置201、202、203、204、205、206的反馈增加开度,并以5℃/min的温升控制。当压力装置103升到时2.0MPa停止升压,温度201的值达到220℃时联锁关闭电动门301;温度202的值达到220℃时联锁关闭电动门302;温度203的值达到220℃时联锁关闭电动门303;温度204的值达到220℃时联锁关闭电动门304;温度205的值达到220℃时联锁关闭电动门305;温度206的值达到220℃时联锁关闭电动门306。暖管完成后关闭进汽阀101,开始吹灰,投入任一只长吹灰器时,系统自行识别进汽调节阀102的开度F303,并与模型M302中的F301比较,如F303大于F302,则说明前1长吹灰器有漏,记录吹器编号并发出有漏报警,如F303小于等于F302,则说明吹灰器无漏点,发出吹灰器正常。F303为一个动态的值,每次执行此步时,新值将旧值替换。
调用M303模型进行智能检漏识别:系统投运前自检,提前手动打开手动疏阀401、402、403、404、405、406,打开疏水控制阀301、302、303、304、305、306,打开进汽 阀101,打开进汽调节阀102并投入自动,自动给定压力103设定值为2.0MPa,进汽调节阀102自动根据温度测量装置201、202、203、204、205、206的反馈增加开度,并以5℃/min的温升控制。当压力装置103升到时2.0MPa停止升压,温度201的值达到220℃时联锁关闭电动门301;温度202的值达到220℃时联锁关闭电动门302;温度203的值达到220℃时联锁关闭电动门303;温度204的值达到220℃时联锁关闭电动门304;温度205的值达到220℃时联锁关闭电动门305;温度206的值达到220℃时联锁关闭电动门306。暖管完成后关闭进汽阀101,开始吹灰,投入任两只长吹灰器时,系统自行识别进汽调节阀102的开度F304,并与模型M303中的F302比较,如F304大于F302,则说明前2长吹灰器有漏,记录吹器编号并发出有漏报警,如F304小于等于F302,则说明吹灰器无漏点,发出吹灰器正常。F304为一个动态的值,每次执行此步时,新值将旧值替换。
程序首次模完成后,只要吹灰时的机组负荷不低于建模时的负荷时,程一直会调用模型,如果程序吹灰时检测到当前机会负荷低于吹灰建模时的负荷时,程序会重新建模,将第一次建模的参数初始化,以使模型实现动态更新。

Claims (9)

  1. 一种电站锅炉蒸汽吹灰系统,其特征在于,包括进气管和减温水进水管、吹灰器主管道、吹灰器分管道和吹灰器;进气管和减温水进水管均连接到吹灰器主管道的一端,吹灰器主管道的另一端连接有若干吹灰器分管道,每个吹灰器分管道上均设置有若干吹灰器。
  2. 根据权利要求1所述的一种电站锅炉蒸汽吹灰系统,其特征在于,进气管上沿流向方向依次设置有进汽电动阀(101)和打开进汽调节阀(102);减温水进水管上沿流向方向依次设置有减温水电动阀(109)和减温水调节阀(110)。
  3. 根据权利要求1所述的一种电站锅炉蒸汽吹灰系统,其特征在于,吹灰器主管道上沿流向方向依次设置有压力测量装置(103)和温度装置(104)。
  4. 根据权利要求1所述的一种电站锅炉蒸汽吹灰系统,其特征在于,每个吹灰器分管道靠近吹灰器主管道一侧均设置有流量测量装置(105)-流量测量装置(108)。
  5. 根据权利要求1所述的一种电站锅炉蒸汽吹灰系统,其特征在于,每个吹灰器分管道的末端依次沿流向方向均设置有阀门组和温度测量装置(201)。
  6. 根据权利要求5所述的一种电站锅炉蒸汽吹灰系统,其特征在于,阀门组包括疏水控制阀(301)和手动疏阀(401)。
  7. 一种电站锅炉蒸汽吹灰系统的智能检漏识别方法,其特征在于,基于权利要求1至6任意一项所述的一种电站锅炉蒸汽吹灰系统,包括以下步骤:
    S1:建立不投设备的情况下检查系统保压能力,根据系统保压能力的初始状态,建立在不同吹灰器泄漏的智能检漏识别模型;
    S2:调用智能检漏识别模型,比对模型参数并跟踪吹灰器泄漏情况。
  8. 根据权利要求7所述的一种电站锅炉蒸汽吹灰系统的智能检漏识别方法,其特征在于,步骤S1具体包括:
    S101:在锅炉负荷满足吹灰系统投运前,对全部吹灰器原位进行一次系统性的检漏识别,保证吹灰器在启动前均在原位且严密不漏,打开所有疏水控制阀,打开进汽电动阀,打开进汽调节阀,给定压力测量装置设定值为1.8MPa—2.0MPa,进汽调节阀根据所有温 度测量装置的反馈增加开度,并以5℃/min的温升控制;当压力测量装置升到时1.8MPa—2.0MPa停止升压,温度测量装置的值达到220℃时联锁关闭疏水控制阀;同时就地进行一次各分支吹灰器的漏汽检查,检查仅在新机组首次投产或检修后首次投运进行;在确认吹灰无内漏的情况下将吹灰压力提至1.8MPa—2.0MPa后关闭进汽阀,打开减温水电动阀,打开减温水调节阀,控制温度装置的值不超过360℃,建立吹灰系统不投设备检查系统保压能力模型M01;
    S102:以模型M01的系统状态,用同样的方法建立吹灰系统投运一只炉膛吹灰器泄漏的系统降压速率模型M101;
    S103:以模型M01的系统状态,用同样的方法建立吹灰系统投运一只半长吹吹灰器泄漏的系统降压速率模型M201;
    S104:以模型M01的系统状态,用同样的方法建立吹灰系统投运一只长吹灰器泄漏的系统降压速率模型M301;
    S105:以模型M01的系统状态,用同样的方法在不关进汽阀的条件下建立吹灰系统未投吹灰器进汽调节阀的开度模型M02;
    S106:以模型M02的系统状态,用同样的方法建立吹灰系统投入一只炉膛吹灰器运行时进汽调节阀的开度模型M102;
    S107:以模型M02的系统状态,用同样的方法建立吹灰系统投入两只炉膛吹灰器运行时进汽调节阀的开度模型M103;
    S108:以模型M02的系统状态,用同样的方法建立吹灰系统投入一只半长吹吹灰器运行时进汽调节阀的开度模型M202;
    S109:以模型M02的系统状态,用同样的方法建立吹灰系统投入两只半长吹吹灰器运行时进汽调节阀的开度模型M203;
    S110:以模型M02的系统状态,用同样的方法建立吹灰系统投入一只长吹灰器运行时进汽调节阀的开度模型M302;
    S111:以模型M02的系统状态,用同样的方法建立吹灰系统投入两只长吹灰器运行时 进汽调节阀的开度模型M303。
  9. 根据权利要求7所述的一种电站锅炉蒸汽吹灰系统的智能检漏识别方法,其特征在于,步骤S2具体包括:
    S201:当系统建模完成后,打开所有疏水控制阀,打开进汽电动阀,打开进汽调节阀并投入自动,给定压力测量装置设定值为1.8MPa—2.0MPa,进汽调节阀根据温度测量装置的反馈增加开度,并以5℃/min的温升控制;当压力测量装置升到时1.8MPa—2.0MPa停止升压,温度的值达到220℃时联锁关闭疏水控制阀;将吹灰压力测量装置提至1.8MPa—2.0MPa,关闭进汽阀门,自行计算吹灰系统在密闭条件下压降速率,并调用模型M01,比对模型参数判断系统在投运前的严密性情况;
    S202:在系统严密性检查完成后,打开所有疏水控制阀,打开进汽电动阀,打开进汽调节阀并投入自动,给定压力测量装置设定值为1.8MPa—2.0MPa,进汽调节阀根据温度测量装置的反馈增加开度,并以5℃/min的温升控制;当压力测量装置升到时1.8MPa—2.0MPa停止升压,温度的值达到220℃时联锁关闭电动门;将吹灰压力测量装置提至1.8MPa—2.0MPa,打开减温水电动阀,打开减温水调节阀,控制温度装置的值不能超过360℃,投入吹灰器运行,如果系统检测到投入一只炉膛吹灰器运行,则系统自行调出投运一只炉膛吹灰器时调用模型M102,比对模型参数并跟踪吹灰器泄漏情况;
    S203:如果系统检测到投入两只炉膛吹灰器运行,则系统自行调出投运两只炉膛吹灰器时调用模型M103,比对模型参数并跟踪吹灰器泄漏情况;
    S204:如果系统检测到投入一只半长吹吹灰器运行,则系统自行调出投运一只半长吹吹灰器时调用模型M202,比对模型参数并跟踪吹灰器泄漏情况;
    S205:如果系统检测到投入两只半长吹吹灰器运行,则系统自行调出投运两只半长吹吹灰器时调用模型M203,比对模型参数并跟踪吹灰器泄漏情况;
    S206:如果系统检测到投入一只长吹灰器运行,则系统自行调出投运一只长吹灰器时调用模型M302,比对模型参数并跟踪吹灰器泄漏情况;
    S207:如果系统检测到投入两只长吹灰器运行,则系统自行调出投运两只长吹灰器时 调用模型M303,比对模型参数并跟踪吹灰器泄漏情况;
    S208:在投运吹灰系统结束后为了防止最后一组吹灰器停运过程中存在问题,吹灰系统投运结束时调用模型M02,比对模型参数判断系统泄漏情况,保证吹灰器不存在漏汽。
PCT/CN2021/115573 2021-03-05 2021-08-31 一种电站锅炉蒸汽吹灰系统及其智能检漏识别方法 WO2022183697A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110249672.6 2021-03-05
CN202110249672.6A CN112902203B (zh) 2021-03-05 2021-03-05 一种电站锅炉蒸汽吹灰系统及其智能检漏识别方法

Publications (1)

Publication Number Publication Date
WO2022183697A1 true WO2022183697A1 (zh) 2022-09-09

Family

ID=76107961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/115573 WO2022183697A1 (zh) 2021-03-05 2021-08-31 一种电站锅炉蒸汽吹灰系统及其智能检漏识别方法

Country Status (2)

Country Link
CN (1) CN112902203B (zh)
WO (1) WO2022183697A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112902203B (zh) * 2021-03-05 2022-03-22 西安热工研究院有限公司 一种电站锅炉蒸汽吹灰系统及其智能检漏识别方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133585A (ja) * 2008-12-03 2010-06-17 Chugoku Electric Power Co Inc:The 漏洩箇所検出装置
CN204063067U (zh) * 2014-08-11 2014-12-31 大唐彬长发电有限责任公司 一种锅炉吹灰系统
CN105627340A (zh) * 2016-01-14 2016-06-01 大唐彬长发电有限责任公司 一种吹灰系统及其检测方法
CN205560793U (zh) * 2016-01-14 2016-09-07 大唐彬长发电有限责任公司 一种吹灰系统
CN106969885A (zh) * 2017-04-21 2017-07-21 西安热工研究院有限公司 一种发电厂凝汽器泄漏检测系统及检测方法
CN209102289U (zh) * 2018-12-27 2019-07-12 西安热工研究院有限公司 一种热网加热器疏水在线检漏装置
CN112902203A (zh) * 2021-03-05 2021-06-04 西安热工研究院有限公司 一种电站锅炉蒸汽吹灰系统及其智能检漏识别方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6076048A (en) * 1997-09-26 2000-06-13 Betzdearborn, Inc. System and method for least squares filtering based leak flow estimation/detection using exponentially shaped leak profiles
CN102169043B (zh) * 2010-12-30 2012-11-21 北京光华纺织集团有限公司 用于检测燃气泄漏的系统
CN206740328U (zh) * 2017-04-21 2017-12-12 西安热工研究院有限公司 一种发电厂凝汽器泄漏检测系统
CN109441575B (zh) * 2018-09-30 2022-02-22 国网天津市电力公司电力科学研究院 蒸汽联合循环发电机组供热期热网系统运行的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133585A (ja) * 2008-12-03 2010-06-17 Chugoku Electric Power Co Inc:The 漏洩箇所検出装置
CN204063067U (zh) * 2014-08-11 2014-12-31 大唐彬长发电有限责任公司 一种锅炉吹灰系统
CN105627340A (zh) * 2016-01-14 2016-06-01 大唐彬长发电有限责任公司 一种吹灰系统及其检测方法
CN205560793U (zh) * 2016-01-14 2016-09-07 大唐彬长发电有限责任公司 一种吹灰系统
CN106969885A (zh) * 2017-04-21 2017-07-21 西安热工研究院有限公司 一种发电厂凝汽器泄漏检测系统及检测方法
CN209102289U (zh) * 2018-12-27 2019-07-12 西安热工研究院有限公司 一种热网加热器疏水在线检漏装置
CN112902203A (zh) * 2021-03-05 2021-06-04 西安热工研究院有限公司 一种电站锅炉蒸汽吹灰系统及其智能检漏识别方法

Also Published As

Publication number Publication date
CN112902203A (zh) 2021-06-04
CN112902203B (zh) 2022-03-22

Similar Documents

Publication Publication Date Title
WO2022183697A1 (zh) 一种电站锅炉蒸汽吹灰系统及其智能检漏识别方法
JP3230530U (ja) 高温受熱面金属壁の温度調節システム
US4561254A (en) Initial steam flow regulator for steam turbine start-up
CN107420628B (zh) 一种蒸汽阀门内漏监测装置及监测方法
CN110030090B (zh) 燃气轮机热电联产系统及其运行切换方法
CN114427737A (zh) 一种空调防噪音控制方法、装置及空调器
CN110579315B (zh) 一种加热炉煤气换热器检漏装置
JP4672019B2 (ja) 燃料ガス供給設備および燃料ガスの湿分監視方法
CN112228860A (zh) 一种低温省煤器快速放水和在线查漏隔离系统及方法
CN112780417B (zh) 一种应用氮气隔离的燃气轮机启动优化控制系统及方法
KR20180019219A (ko) 터보 기계 냉각용 방법
CN111365700A (zh) 一种煤气锅炉烟气梯级换热装置和温度控制方法
CN113731967A (zh) 一种核电站主蒸汽管道爆破吹扫系统及其工艺
CN220366428U (zh) 一种锅炉蒸汽吹灰系统
CN210004815U (zh) 一种便于检修的管式换热器
CN207131454U (zh) 一种无人值守自动疏水系统
CN220002849U (zh) 一种用于火电厂消防水系统的防凝冻装置
Liu-Huan et al. Experience Feedback Report on Hydrogen Meter Discontinuity of Steam Generator Overflow Tube
CN216953733U (zh) 火检冷却系统
CN217584080U (zh) 一种供汽管道疏水系统
CN211876458U (zh) 一种火检冷却风机系统
CN220049290U (zh) 一种基于机组汽水采样系统改造的氮气吹扫装置
CN114790920B (zh) 一种实时计算高温再热蒸汽管道超压状态的方法
CN219828563U (zh) 一种供热系统安全增减压装置
CN215057761U (zh) 一种维持燃机联合循环机组免清吹信用证装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21928774

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21928774

Country of ref document: EP

Kind code of ref document: A1