WO2022183691A1 - 一种高分子材料高加速老化试验装置及方法 - Google Patents

一种高分子材料高加速老化试验装置及方法 Download PDF

Info

Publication number
WO2022183691A1
WO2022183691A1 PCT/CN2021/112972 CN2021112972W WO2022183691A1 WO 2022183691 A1 WO2022183691 A1 WO 2022183691A1 CN 2021112972 W CN2021112972 W CN 2021112972W WO 2022183691 A1 WO2022183691 A1 WO 2022183691A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
accelerated aging
aging test
polymer materials
film layer
Prior art date
Application number
PCT/CN2021/112972
Other languages
English (en)
French (fr)
Inventor
覃家祥
彭煌
王受和
陶友季
祁黎
王俊
Original Assignee
中国电器科学研究院股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电器科学研究院股份有限公司 filed Critical 中国电器科学研究院股份有限公司
Priority to GB2312297.1A priority Critical patent/GB2618710A/en
Publication of WO2022183691A1 publication Critical patent/WO2022183691A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/004Investigating resistance of materials to the weather, to corrosion, or to light to light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/50Solar heat collectors using working fluids the working fluids being conveyed between plates
    • F24S10/502Solar heat collectors using working fluids the working fluids being conveyed between plates having conduits formed by paired plates and internal partition means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/30Solar heat collectors for heating objects, e.g. solar cookers or solar furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/72Arrangements for concentrating solar-rays for solar heat collectors with reflectors with hemispherical reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/45Arrangements for moving or orienting solar heat collector modules for rotary movement with two rotation axes
    • F24S30/452Vertical primary axis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/002Test chambers

Definitions

  • the invention belongs to the technical field of accelerated aging of polymer materials, and in particular relates to a high-accelerated aging test device and method for polymer materials.
  • the sun-tracking concentrating accelerated aging test is a natural accelerated aging test method that uses a sun-tracking concentrating device to increase the amount of solar radiation on the exposed surface of the test sample during the test.
  • the cost of the sun-tracking concentrating accelerated aging test is lower, and the correlation and reliability are still relatively high. Therefore, in recent years, the sun tracking accelerated aging test method has been widely used in automobile, building materials, coatings and other industries, and is used for material formula screening and durability evaluation of equipment products.
  • the test acceleration rate is only 6 to 8 times, and the test period is still relatively long.
  • the object of the present invention is to provide a high-accelerated aging test device for polymer materials.
  • the device tracks the sun and reflects and concentrates light, so that the surface of the polymer material sample receives a high-rate radiation intensity during the accelerated aging test, while maintaining the radiation intensity.
  • the uniformity of intensity, the consistency of irradiation dose and the stability of sample temperature enable the highly accelerated aging of polymer materials.
  • Another object of the present invention is to provide a method for conducting a highly accelerated aging test of polymer materials using the above-mentioned device, which can enhance the ultraviolet radiation intensity received by the surface of the polymer material sample under the condition that the aging mechanism of the material remains unchanged. , and control the surface temperature of the sample within a certain range to achieve accelerated aging of the sample.
  • a high-accelerated aging test device for polymer materials comprising:
  • the main structure of the ultraviolet light reflection system is a spherical concave surface, which is mainly composed of a concave surface frame and a fixing frame for fixing the concave surface frame, and a plurality of reflecting mirrors are arranged on the concave surface frame;
  • the sample temperature control system includes a bracket, a sample stage and a temperature control mechanism. One end of the bracket is connected to the ultraviolet light reflection system, and the other end is provided with a sample stage.
  • the sample stage is provided with a sample and a temperature control device for controlling the sample temperature.
  • a temperature control mechanism the sample is arranged opposite the ultraviolet light reflection system and is located at the reflection center position of the reflector, and the temperature control mechanism is located around the sample;
  • the sun tracking system includes a vertical rotation mechanism, a horizontal rotation mechanism and a base, the horizontal rotation mechanism is installed on the base, the vertical rotation device is connected with the ultraviolet light reflection system, and the vertical rotation mechanism and the Horizontal rotation mechanism, the reflection surface of the ultraviolet reflection system is always perpendicular to the direct sunlight;
  • the present invention also includes a multi-environmental factor coordinated control system; the multi-environmental factor coordinated control system includes a control box and a sensing element.
  • the material of the reflector is coated glass
  • the coated glass includes a glass substrate and a combined reflective film provided on the glass substrate
  • the combined reflective film includes Bottom film layer, middle film layer and top film layer
  • the bottom film layer is alternately formed by HfO 2 and SiO 2 with different optical thicknesses
  • the middle film layer is alternately formed by high refractive index material and low refractive index material with different optical thickness formed
  • the high refractive index material is HfO 2 and Ta 2 O 5 or HfO 2 and ZrO 2
  • the low refractive index material is SiO 2
  • the top film layer is composed of Ta 2 O 5 and SiO 2 with different optical thicknesses Alternate deposition is formed, or the top film layer is formed by alternate deposition of ZrO 2 and SiO 2 with different optical thicknesses.
  • the bottom film layer is used to improve short-wave ultraviolet light reflectivity
  • the bottom film layer is alternately formed by HfO 2 and SiO 2 with different optical thicknesses
  • the structure of the bottom film layer is (aHbL) x (cHbL) y (dHbL) z , where H is the high refractive index material HfO 2 , L is the low refractive index material SiO 2 , a, c, d are the optical thickness coefficients of H, b is the optical thickness coefficient of L, x, y and z is the number of film layers.
  • the numerical value of the a is 0.10-0.20
  • the numerical value of the b is 0.20-0.30
  • the numerical value of the c is 0.15-0.25
  • the numerical value of the d is 0.20-0.30
  • the x is 2.00-3.00 ⁇ m.
  • the intermediate film layer is used to improve the reflectivity of medium-wave ultraviolet light
  • the structure of the intermediate film layer is (iHjAbL) w
  • H is a high-refractive index material HfO 2
  • A is a high-refractive index material Ta 2 O 5 or ZrO 2
  • i and j are the optical thickness coefficients of H and A respectively
  • L is the low refractive index material SiO 2
  • b is the optical thickness coefficient of L
  • w is the number of layers.
  • the value of i is 0.05-0.15
  • the value of j is 0.15-0.30
  • the value of b is 0.20-0.30
  • the value of w is 5-15
  • the middle The physical thickness of the film layer is 0.80-1.50 ⁇ m.
  • the top film layer is used to improve long-wave ultraviolet light reflectivity and durability
  • the top film layer structure is (eAbL) u (fAbL) v fA, wherein A is a high refractive index material Ta 2 O 5 or ZrO 2 , L is the low refractive index material SiO 2 , e and f are the optical thickness coefficient of A, b is the optical thickness coefficient of L, and u and v are the number of film layers.
  • the numerical value of e is 0.20-0.35
  • the numerical value of f is 0.30-0.40
  • the numerical value of b is 0.20-0.30
  • the numerical value of u and v is both 5-15, so
  • the physical thickness of the top film layer is 1.5-2.5 ⁇ m.
  • the preparation method of the combined reflective film includes the following steps: selecting a substrate, and sequentially performing bottom film deposition, middle film deposition and top film deposition on the substrate by using plasma-assisted electron beam evaporation deposition method to obtain a combined type reflective film.
  • the combined type reflective film has high ultraviolet reflectivity, large bandwidth and high durability, and the combined type reflective film has an average reflectivity of ⁇ 90% in the ultraviolet wavelength band (240-400 nm).
  • the reflector is square, the side length is 100-500mm, and the installation angle is 1-20°, and the reflector is fixed on the concave frame in an array by snapping or pressing.
  • the reflector has four installation angles, the installation angle of the reflector located in the middle is 0°, the two sides are symmetrical structures, and the installation angles of the three groups of symmetrical reflectors located on both sides of the center from the nearest neighbor to the far end are 1° in turn. ⁇ 6°, 7° ⁇ 12° and 13° ⁇ 18°.
  • the reflector has three installation angles, the installation angle of the reflector located in the middle is 0°, and the installation angles of the three groups of reflectors located on both sides of the center from near to far are 3°, 8° and 15° respectively. .
  • the surface of the ultraviolet reflection system is spherically concave, so that the light can be collected more efficiently.
  • the middle and lower part of the concave frame is provided with a notch for installing the bracket.
  • the gap is mainly used for the bracket to pass through, and the bracket is fixed on the fixing frame.
  • the mirrors are arranged on the concave frame in seven rows and nine columns, and a gap is provided in the middle of the concave frame in the lower three rows, and the upper four rows are in each row.
  • the bottom three rows have six mirrors in each row, the installation angle of the mirrors in the fourth row is 0°, the installation angle of the mirrors in the third and fifth rows is 3°, and the installation angle of the mirrors in the second row is 3°
  • the installation angle of the mirrors in the sixth row is 8°, and the installation angle of the mirrors in the first row and the seventh row is 15°.
  • the installation angle refers to the fixing angle between the concave frame and the back of the concave frame the angle between the racks.
  • the sample stage is in a concave structure where the sample is arranged, the sample is arranged in the concave structure, the sample stage is further provided with an ultraviolet radiation meter, and the ultraviolet radiation meter is also installed in the in the recessed structure.
  • Samples and UV radiometers are fixed and tested by embedding recessed structures.
  • the temperature control mechanism includes a cooling pool and a fan, the cooling pool is provided on the back of the sample, and the fan is provided above the sample.
  • the cooling pool is a serpentine surrounding structure, and the cooling liquid is provided in the serpentine surrounding structure.
  • the cooling pool structure is a serpentine surrounding structure, which can more effectively cool the sample.
  • the sample is cooled by a combination of circulating cooling liquid in the cooling pool and air supply by a fan, so as to realize the control of the sample test temperature and over-temperature protection.
  • the sun tracking system includes a manual mode and an automatic mode, and is controlled by a control box.
  • the system When the system is switched from the manual mode to the automatic mode, the system automatically searches for the best focusing elevation angle and rotation angle to perform a highly accelerated aging test.
  • the sun tracking system uses the vertical rotation device to adjust the elevation angle and the horizontal rotation device to adjust the rotation angle to achieve sun tracking, so that the surface of the reflection system is always perpendicular to the direct sunlight, and achieves more efficient light concentration and highly accelerated aging of materials.
  • control box is arranged on the back of the ultraviolet light reflection system.
  • the sensing element includes a temperature sensor, a humidity sensor and an irradiation sensor.
  • the multi-environmental factor coordinated control system can perform real-time monitoring and data recording of the irradiation received on the surface of the sample in natural irradiation and condensing state, the natural environment temperature and the sample in condensing state, humidity, etc. through the radiometer and thermometer; When the temperature exceeds the natural environment temperature by 20-50°C, the device will automatically adjust and enter the backlight state. When the temperature drops to a temperature difference of ⁇ 20-50°C from the natural environment temperature, the device will be re-adjusted to focus the light through the irradiation sensor and continue to perform high acceleration. Aging test.
  • the multi-environmental factor coordinated control system can sense the solar radiation situation through the radiation sensor.
  • the tracking mode can be adjusted by the control system to the time-controlled mode (the earth is due to the revolution and The periodicity of the rotation causes its position above the earth to be fixed on each day of the year; therefore, the time control mode, that is, the time control mode, determines the reflection system of the device by determining the angle between the direct sunlight at the determined time and the horizontal plane of the determined location.
  • Elevation angle and rotation angle when the solar irradiation is ⁇ 500W/ m2 , that is, it is a sunny day, and the tracking mode is adjusted to the light control mode through the control system (the light control mode is to sense the radiation intensity of the external sunlight through the radiometer, and automatically Adjust the center of the device's reflection system to keep the strongest irradiated light vertical) to obtain a higher aging acceleration rate.
  • the above-mentioned second object of the present invention can be achieved by the following technical solutions: a method for utilizing the above-mentioned device to carry out a highly accelerated aging test of polymer materials, comprising the following steps:
  • step (1) the solar tracking system is switched to the manual mode through the control box, and the equipment sample stage is lowered through the vertical rotation mechanism.
  • the shape of the polymer material sample in step (2) can be processed into a dumbbell-shaped spline, a swatch or a smear, and the melting point and initial decomposition temperature of the polymer material can be determined, and the sample and the UV light meter are sequentially fixed on the sample stage , the back of the sample is attached to the sample stage, so that the temperature of the sample can be cooled sufficiently.
  • the fan and cooling cycle of the temperature control system are turned on, and the upper limit of temperature protection is set at the same time.
  • the upper limit of the test temperature of the amorphous polymer material is 10°C below the glass transition temperature, and the crystallinity is high.
  • the upper limit of the molecular material test temperature is 30 to 100°C below the melting point, and in the case of a crosslinked polymer material, the decomposition temperature is set to 100 to 200°C or lower without the glass transition temperature and melting point.
  • step (4) the solar tracking system of the equipment is switched to the automatic mode, the reflection surface of the reflection system of the equipment is automatically adjusted to be perpendicular to the direct sunlight of the sun, and the light is concentrated through all the installed reflectors to enhance the light received by the sample on the sample. Irradiation for highly accelerated aging.
  • the present invention has the following advantages:
  • the present invention develops a spherical concave reflection system through structural design, which can expand the number of mirrors installed, and achieve an increase in the ultraviolet radiation intensity on the surface of the polymer material, which is about 30 to 50 times that of natural aging, and has high accelerated aging. Function;
  • the temperature control system in the present invention can effectively control the temperature of the test sample under the combined action of cooling liquid circulation and air flow cooling through the designed cooling system;
  • the surface of the reflective mirror adopts a combined reflective film
  • the reflective film has high ultraviolet reflectivity, large bandwidth and high durability
  • the combined reflective film has an average reflectivity in the ultraviolet band (240-400nm) ⁇ 95 %
  • the device of the present invention can enhance the ultraviolet radiation intensity received by the surface of the polymer material sample, and control the surface temperature of the sample within a certain range to achieve accelerated aging of the sample, that is, it can Maintain the uniformity of irradiation intensity, uniformity of irradiation dose, and sample temperature control of the sample during the high accelerated aging test of the sample;
  • the high accelerated aging test device of the polymer material in the present invention has a higher aging acceleration rate of about 30 to 50 times for the polymer material, which greatly shortens the aging time. Test Cycle.
  • the high-accelerated aging test device of the polymer material in the present invention is designed by setting a concave frame, a larger number of reflectors, and a new reflector on the design. At the same time, the temperature can be adjusted to control the temperature, so that a high accelerated aging rate can be achieved.
  • the same high accelerated aging rate of different materials can be achieved by adjusting the test temperature and test irradiance; such as high-density polyethylene at 90 °C and 45
  • the aging acceleration rate of 40 times can be achieved, and the epoxy resin composite material can also achieve an aging acceleration rate of 40 times at 160 ° C and the existence of 54 mirrors, which can meet the requirements of different formulations and different structures. , resulting in different performance of polymer materials, under the same acceleration rate, the results can be obtained within the same period.
  • Fig. 1 is the highly accelerated aging test device of sun-tracking light-concentrating polymer material in Example 1;
  • Fig. 2 is the main structure of ultraviolet light reflection system in embodiment 1;
  • Example 3 is a schematic diagram of the installation of a mirror of the ultraviolet light reflection system in Example 1;
  • Fig. 4 is the fixing mode of the reflection mirror of the ultraviolet light reflection system in the embodiment 1;
  • Fig. 5 is the recessed structure of the temperature control system sample stage in Example 1;
  • Example 6 is a schematic diagram of the cooling pool structure and cooling liquid circulation of the temperature control system in Example 1;
  • Fig. 7 is a schematic diagram of air supply by a temperature control system fan in Example 1;
  • Embodiment 8 is a control flow of the multi-environmental factor control system in Embodiment 1;
  • Fig. 9 is the simulation result of ultraviolet irradiation of sample stage in embodiment 1;
  • Fig. 10 is the simulation result of sample temperature field distribution in embodiment 1;
  • Fig. 11 is the control system, vertical rotation transposition, and horizontal rotation transposition of the highly accelerated aging test device for sun-tracking light-concentrating polymer materials in Example 1;
  • Fig. 12 is the structure and reflection principle of the conventional sun tracking accelerated aging test device in embodiment 1;
  • Fig. 13 is the simulation calculation result of ultraviolet irradiation simulation of conventional sun tracking concentrated light accelerated aging test device in Example 1;
  • FIG. 14 is the simulation result of ultraviolet irradiation of the sample stage in Example 2.
  • the main structure of the ultraviolet light reflection system 1 is a spherical concave surface, which is mainly composed of a concave surface frame 11 and a fixing frame 12 for fixing the concave surface frame, and the concave surface frame is provided with a plurality of reflecting mirrors 13.
  • the sample temperature control system 2 includes a bracket 21 , a sample stage 22 and a temperature control mechanism 23 .
  • One end of the bracket 21 is connected to the ultraviolet light reflection system 1, and the other end is provided with a sample stage 22.
  • the sample stage 22 is provided with a sample and a temperature control mechanism 23 for controlling the temperature of the sample.
  • the reflection center of the mirror is located, and the temperature control mechanism is located around the sample.
  • the sun tracking system 3 includes a vertical rotation mechanism 31 , a horizontal rotation mechanism 32 and a base 33 , the horizontal rotation mechanism 31 is mounted on the base 33 , and the vertical rotation mechanism 32 is connected to the ultraviolet light reflection system 1 . Connected, through the vertical rotation mechanism 31 and the horizontal rotation mechanism 32, the reflection surface of the ultraviolet reflection system is always perpendicular to the direct sunlight.
  • the multi-environmental factor coordinated control system includes a control box 41 and sensing elements.
  • the number of reflecting mirrors 13 is 60 pieces.
  • the material of the reflector 13 is coated glass, and the coated glass includes a glass substrate and a combined reflective film provided on the glass substrate.
  • the combined reflective film includes a bottom film layer, a middle film layer and a top film layer.
  • the bottom film layer is alternately formed by HfO 2 and SiO 2 with different optical thicknesses
  • the middle film layer is composed of high refractive index materials and low refractive index materials with different optical thicknesses.
  • the high refractive index material is HfO 2 and Ta 2 O 5 or HfO 2 and ZrO 2
  • the low refractive index material is SiO 2
  • the top film layer is formed by alternating deposition of Ta 2 O 5 and SiO 2 with different optical thicknesses
  • the top layer is formed by alternating deposition of ZrO 2 and SiO 2 with different optical thicknesses.
  • the reflective film based on structure control has a high UV reflectivity, high A reflection bandwidth and durability improvement method, the method includes the following steps:
  • HfO 2 /Ta 2 O 5 /SiO 2 combined UV reflective film is constructed based on optical thin film design software (such as Essential Macleod, Optilayer, TFCalc).
  • optical thin film design software such as Essential Macleod, Optilayer, TFCalc.
  • the structure of the reflective film is divided into three layers. Bottom layer for short-wave UV reflectivity, middle layer for mid-wave UV reflectivity, and top layer for improved long-wave UV reflectivity and durability.
  • the bottom layer structure is (aHbL) 10 (cHbL) 10 (dHbL) 10
  • H is high refractive index material HfO 2
  • L is low refractive index material SiO 2
  • a, c, d are HfO 2 optical thickness coefficients , are 0.15, 0.18 and 0.20, respectively
  • the physical thickness of the single-layer HfO 2 film is 24 nm, 29 nm, and 32 nm, respectively
  • b is the optical thickness coefficient of SiO 2 0.25
  • the physical thickness of the single-layer SiO 2 film is 55 nm.
  • the total number of film layers of the bottom film layer structure is 60, and the total physical thickness is 2.5 ⁇ m.
  • the structure is (iHjAbL) 10
  • H is a high refractive index material HfO 2
  • A is a high refractive index material
  • Ta 2 O 5 is a low-refractive index material
  • the total optical thickness coefficient i+j 0.28
  • the physical thickness of HfO 2 and Ta 2 O 5 are 12 and 23 nm, respectively
  • L is the low-refractive index material SiO 2
  • b is its optical thickness coefficient 0.25
  • the physical thickness of the film layer is 55nm.
  • the total number of film layers in the middle film layer structure is 20, and the total physical thickness is 0.9 ⁇ m.
  • the top layer structure is (eAbL) 10 (fAbL) 10 fA
  • A is a high refractive index material Ta 2 O 5
  • L is a low refractive index material SiO 2
  • e and f are Ta 2 O 5 respectively.
  • the optical thickness coefficients are 0.30 and 0.38, and the physical thickness of the film is 41 and 48 nm, respectively;
  • b is the optical thickness coefficient of SiO 2 0.25, and the physical thickness is 55 nm.
  • the total number of film layers of the top film layer structure is 41, and the total physical thickness is 2.0 ⁇ m.
  • the substrate was heated to 220°C, evacuated to 8 ⁇ 10 -4 Pa, and the composite reflective film was prepared on the substrate by plasma-assisted electron beam evaporation deposition (PIAD).
  • PIAD plasma-assisted electron beam evaporation deposition
  • the preparation of the bottom reflective film layer turn on the high voltage of the electron gun and the evaporation beam, and alternately deposit HfO 2 and SiO 2 films with different physical thicknesses on the substrate; the first film is HfO 2 with a physical thickness of 24nm .
  • the deposition rate of the material is gradually reduced until it is 0, and then the deposition rate of SiO2 is gradually increased, the optical thickness coefficient is 0.25, the physical thickness is 55nm, and 10 layers are alternately deposited; then , 10 layers of HfO 2 with a physical thickness of 29 nm and 10 layers of SiO 2 with a physical thickness of 55 nm, and 10 layers of HfO 2 with a physical thickness of 32 nm and 10 layers of SiO 2 with a physical thickness of 55 nm, respectively, to complete the preparation of the "reflectivity bottom" reflective film.
  • the bottom film structure has a total number of 60 layers, and the total thickness is about 2.5 ⁇ m.
  • the deposition of the middle layer the first is the deposition of the HfO 2 layer, the physical thickness is about 12nm, when the physical thickness of the HfO 2 is 3-5nm smaller than the setting, the deposition rate is gradually reduced, and Ta 2 O 5 is deposited at the same time.
  • the physical thickness is about 23nm, and the total physical thickness of HfO 2 /Ta 2 O 5 is 35nm; then a SiO 2 low refractive index film with a physical thickness of 55nm is deposited, and the HfO 2 /Ta 2 O 5 and SiO 2 films alternately appear
  • the middle film structure is formed, and the total number of the middle film structure is 20 layers, and the total thickness is about 0.90 ⁇ m.
  • the top film structure is carried out after the deposition of the middle film structure. After the deposition rate of the last SiO 2 film reaches 0, the deposition rate of the Ta 2 O 5 film is gradually increased.
  • the physical thickness is 41nm.
  • the thickness ratio is set When the thickness of the material is 3-5nm smaller, the deposition rate of the material is gradually reduced until it is 0, and then the SiO 2 film with a physical thickness of 55 nm is plated with 10 layers each; then Ta 2 O with a physical thickness of 48 nm is alternately deposited 5 film and 55nm SiO 2 film with 10 layers each, and finally a 42nm Ta 2 O 5 film is deposited to form a top reflective film structure with a total of 41 layers and a total thickness of about 2.00 ⁇ m.
  • Spectral performance measurement The test instrument is Lambda950 spectrophotometer, the test method refers to GB/T 2680-1994, the incident angle is 8°, the measurement wavelength is 200-2500nm, and the test quantity is the reflectivity.
  • the reflectance spectrum curve of HfO 2 /Ta 2 O 5 /SiO 2 reflective film using "reflectivity bottom and LIDT top” has high reflectivity in the range of 240-400nm, and the average is as high as 99.6% in this band range, and the bandwidth is relatively high. big.
  • I UV is the total ultraviolet radiation, the unit is megajoules per square meter (MJ/m 2 );
  • I t is the ultraviolet radiation intensity of the ultraviolet lamp at time t, the unit is megajoules per square meter (MJ/m 2 ) ;
  • t is the cumulative UV exposure time, the unit is s.
  • the total amount of UV radiation for one year outdoors is 240MJ/m 2 ; the amount of UV radiation in the laboratory test for 1000h is about 93MJ/m 2 , and the reflectance of UV light decreases by 0.03%.
  • a 5% drop in reflectivity is the end of service life, and the service life of the reflective film outdoors in Qionghai is about 60 years.
  • the average reflectance of ultraviolet light dropped from 99% to 68% after the metal aluminum film was used outdoors for one year. Therefore, the combined reflective film has high durability and long service life.
  • the reflector used in this embodiment is a square with a side length of 300*300mm, and the reflector is fixed on the concave frame in an array shape by means of snaps (as shown in FIG. 4 ).
  • the installation angle of the mirror in the middle is 0°, and the two sides are symmetrical.
  • the installation angles of the three groups of symmetrical mirrors from the nearest neighbor to the far neighbor on the two sides of the middle are 3° and 8°. and 15° (as shown in Figure 3).
  • the surface of the UV reflection system is spherically concave, so that the light can be concentrated more efficiently.
  • the middle and lower part of the concave frame is provided with a notch 14 for installing the bracket (as shown in Figure 1-2).
  • the gap is mainly used for the bracket to pass through, and the bracket is fixed on the fixing frame.
  • the mirrors 13 are arranged in seven rows and nine columns on the concave frame 11, and a gap 14 is provided in the middle of the concave frame in the lower three rows, the upper four rows are nine mirrors per row, and the lower three rows are six mirrors per row,
  • the installation angle of the mirrors in the fourth row is 0°
  • the installation angle of the mirrors in the third and fifth rows is 3°
  • the installation angle of the mirrors in the second and sixth rows is 8°
  • the installation angle of the mirrors in the third and fifth rows is 8°.
  • the installation angle of the mirrors in one row and the seventh row is 15°
  • the installation angle refers to the included angle between the concave frame 11 and the fixing frame 12 located on the back of the concave frame.
  • the sample stage is provided with a concave structure at the sample position (as shown in Figure 5), the sample is set in the concave structure, and an ultraviolet irradiation meter is also provided on the sample stage, and the ultraviolet irradiation meter is also installed in the recessed structure.
  • Samples and UV radiometers are fixed and tested by embedding recessed structures.
  • the temperature control mechanism includes a cooling pool 231 and a fan 232 (as shown in Figures 6-7 ).
  • the cooling pool is located on the back of the sample, and the fan is located above the sample.
  • the cooling pool is a serpentine surrounding structure, and the serpentine surrounding structure is provided with a cooling liquid (the cooling liquid is a conventional cooling medium such as water or a conventional cooling solution, in this embodiment, water).
  • the cooling liquid is a conventional cooling medium such as water or a conventional cooling solution, in this embodiment, water.
  • the cooling pool structure is a serpentine surrounding structure, which can more effectively cool the sample.
  • the sample is cooled by a combination of circulating cooling liquid in the cooling pool and air supply by a fan, so as to realize the control of the sample test temperature and over-temperature protection.
  • the sun tracking system includes manual mode and automatic mode, which is controlled by the control box installed on the back of the ultraviolet light reflection system 1 (as shown in Figure 11).
  • manual mode which is controlled by the control box installed on the back of the ultraviolet light reflection system 1 (as shown in Figure 11).
  • the system When the system is switched from manual mode to automatic mode, the system automatically finds the best focusing elevation angle and corners for highly accelerated aging tests.
  • the sun tracking system realizes sun tracking by adjusting the elevation angle of the vertical rotation device and the rotation angle of the horizontal rotation device, so that the surface of the reflection system is always perpendicular to the direct sunlight, so as to achieve more efficient light concentration and highly accelerated aging of materials.
  • the control box 41 is arranged on the back of the ultraviolet reflection system 1 .
  • Sensing elements include temperature sensors, humidity sensors, and irradiance sensors.
  • sensing elements There are two sets of sensing elements, one set is located in the recessed structure where the sample is set on the sample stage, and is used to detect the irradiation, temperature and humidity of the sample, and the other set is set on the back of the sample stage to detect the natural environment. Irradiation, temperature and humidity.
  • the multi-environmental factor coordinated control system can monitor and record data in real time on the irradiation received by the surface of the sample in natural irradiation and concentrating state, natural environment temperature and concentrating state sample, humidity, etc. through radiometers and thermometers; when the sample temperature exceeds When the natural environment temperature is 20-50°C, the device will automatically adjust and enter the backlight state. When the temperature drops to a temperature difference of ⁇ 20-50°C from the natural environment temperature, the device will be re-adjusted to focus the light through the irradiation sensor, and the highly accelerated aging test will continue. .
  • the multi-environmental factor coordinated control system can sense the solar radiation through the radiation sensor.
  • the tracking mode can be adjusted by the control system to the time-controlled mode; when the solar radiation ⁇ At 500W/ m2 , that is, sunny days, the tracking mode is adjusted to the light control mode through the control system to obtain a higher aging acceleration rate.
  • the main structure of the ultraviolet light reflection system is composed of a concave frame and a bracket, and the overall appearance is a spherical concave surface, and the material is stainless steel; after the main structure of the ultraviolet light reflection system is assembled, the mirrors can be sequentially installed under the reflection system The card position is fixed, and 60 pieces can be installed.
  • the reflective mirror is coated glass, and the composition of the reflective film is HfO 2 /Ta 2 O 5 /SiO 2 , which is prepared by deposition on a glass substrate.
  • the reflectivity of ultraviolet band (250-400nm) is ⁇ 95%, and the reflectivity of infrared band (1000-2500nm) is less than or equal to 10%.
  • the mirror is square and measures 300 ⁇ 300mm.
  • the sample temperature control system is assembled by a bracket, a sample stage, a sample clamp (for fixing the sample), a thermometer, an ultraviolet radiation meter, a cooling liquid circulation mechanism, a fan, etc.; the bracket is used to connect the reflection system and the sample stage.
  • the sample stage is fixed vertically on the holder, always parallel to the plane of the reflection system.
  • the sample stage is in a recessed structure (Fig. 5), and the sample and the UV radiometer are embedded in the recessed structure for fixing, testing and radiation monitoring.
  • the sample stage is a hollow structure, and the inside is a cooling pool with a serpentine loop, which can be filled with cooling liquid for temperature control of the sample stage.
  • the top of the sample stage is equipped with an air outlet for a fan, which can better cool the sample surface and avoid sample burns caused by overheating. Based on the cooling pool and fan, it can effectively control the temperature of the test sample and protect it from over-temperature.
  • the sun tracking system consists of a vertical rotation device, a horizontal rotation device and a base.
  • the horizontal swivel is mounted on the base, followed by the vertical swivel.
  • the vertical rotation device is a motor push rod, which forms a certain angle with the reflection system and is used to adjust its elevation angle.
  • the vertical rotation device adjusts the elevation angle and the horizontal rotation device adjusts the rotation angle to achieve sun tracking, so that the surface of the reflection system is always perpendicular to the direct sunlight, achieving more efficient light concentration and highly accelerated aging of materials.
  • the sun tracking system is set to manual mode and automatic mode.
  • the manual mode is used for the lowering of the sample stage when the sample is installed;
  • the automatic mode is the sun tracking mode in the test state, which can automatically find the best focusing elevation angle and rotation angle for highly accelerated aging tests.
  • the multi-environmental factor coordinated control system is mainly a control box, a temperature sensor, an irradiation sensor, a humidity sensor and related components.
  • the control flow is shown in Figure 7.
  • the control system senses the surrounding environment and the test environment through temperature, humidity, and irradiation sensors, and monitors the test status in real time; when the sample temperature exceeds the natural environment temperature by 30 °C, the equipment adjusts itself, and the reflection system enters the backlight state.
  • the ambient temperature difference is less than or equal to 20°C, adjust the device to condense the light again through the irradiation sensor, and continue the highly accelerated aging test.
  • the control system can sense the solar radiation through the radiation sensor.
  • the tracking mode can be adjusted to the time-controlled mode by the control system; when the solar radiation is greater than or equal to 500W/ m2 When it is sunny, that is, on a sunny day, the tracking mode is adjusted to the light control mode by the control system to obtain a higher aging acceleration rate (as shown in Figure 8).
  • simulation software can be further used to simulate the high-accelerated aging test device of polymer material polystyrene, and the solar light source can be set to make the light path and the reflection surface of the reflection system.
  • the solar light source can be set to make the light path and the reflection surface of the reflection system.
  • Vertical the reflectance of the mirror is 99%, and the reflectance of infrared light is 5%.
  • the radiation intensity is about 49.5 times (the ultraviolet radiation intensity of the solar light source is 99.9W/m 2 ).
  • the photothermal conversion calculation was performed based on the simulation software to obtain the thermal field distribution on the surface of the sample stage; when the cooling cycle and the fan were working at the same time, the temperature distribution on the sample surface was uniform, around 61-65 °C ( Figure 10).
  • the ultraviolet radiation intensity of the device in the concentrated state is about 49.5 times that of the ultraviolet radiation in the natural environment. It has a high accelerated aging effect and can be used for high accelerated aging of polymer materials.
  • Figure 12 shows the structure and reflection principle of the conventional sun tracking accelerated aging test device.
  • Simulation software (TracePro, Lighttools, Comsol, etc., specifically using TracePro) is used to simulate the acceleration magnification of the conventional sun tracking concentrated light accelerated aging test, and the calculation results are shown in Figure 13.
  • the ultraviolet radiation intensity of the conventional sun tracking concentrating accelerated aging test device is about 760W/m 2 , which is about 7.6 times that of the sunlight ultraviolet radiation intensity, that is, the aging acceleration rate of the polymer material is about 7.6 times.
  • the method of using a high-accelerated aging test device for polymer materials to conduct a high-accelerated aging test of polystyrene standard materials includes the following steps:
  • the polystyrene polymer material is processed into a color plate by injection molding, with a melting point of 240°C; the samples are fixed on the sample stage in turn by the clamping position, and the back of the sample is attached to the sample stage, so that the temperature of the sample can be fully cooled.
  • the upper limit of the test temperature is 140 °C, that is, 100 °C below the melting point.
  • the material of the combined type reflecting film of the reflecting mirror 13 is different.
  • the method includes the following steps:
  • HfO 2 /ZrO 2 /SiO 2 combined UV reflective film is constructed based on optical film design software (such as Essential Macleod, Optilayer, TFCalc).
  • optical film design software such as Essential Macleod, Optilayer, TFCalc.
  • the structure of the reflective film is divided into three layers, which are used for UV Reflective bottom layer, middle layer and top layer for durability.
  • the bottom layer structure is (aHbL) 10 (cHbL) 10 (dHbL) 10
  • H is the high refractive index material HfO 2
  • a, c, d are the HfO 2 optical thickness coefficients, which are 0.16, 0.19, and 0.24, respectively
  • the physical thickness of the HfO 2 layer is 22nm, 30nm, 40nm respectively
  • L is the low refractive index material SiO 2
  • b is the optical thickness coefficient of SiO 2 is 0.25
  • the physical thickness of the film layer is 55nm.
  • Bottom film structure The total number of film layers is 60, and the total physical thickness is 2.6 ⁇ m.
  • the structure is (iHjAbL) 10
  • H is the high refractive index material HfO 2
  • A is the high refractive index material ZrO 2
  • the total optical thickness coefficient i+j 0.27
  • the physical thickness of HfO 2 and ZrO 2 are 14nm and 26nm respectively
  • L is the low refractive index material SiO 2
  • b is the optical thickness coefficient of 0.24
  • the physical thickness of the film layer is 55nm.
  • the number of film layers in the middle film structure is 20, and the total physical thickness is about 1.0 ⁇ m.
  • the top layer structure is (eAbL) 10 eA, A is the high refractive index material ZrO 2 , e is the optical thickness coefficient of ZrO 2 0.32, the physical thickness of the film layer is 49 nm; L is the low refractive index material SiO 2 , b is the optical thickness coefficient of SiO 2 0.24, the physical thickness is 55nm.
  • the top film structure has 21 film layers and a total physical thickness of 1.0 ⁇ m.
  • the substrate was heated to 220°C, evacuated to 8 ⁇ 10 -4 Pa, and the composite reflective film was prepared on the substrate by plasma-assisted electron beam evaporation deposition (PIAD).
  • PIAD plasma-assisted electron beam evaporation deposition
  • the preparation of the bottom reflective film layer turn on the high voltage of the electron gun and the evaporation beam, and alternately deposit HfO 2 and SiO 2 films with different optical thicknesses on the substrate; the first layer of film is HfO 2 with a physical thickness of 22 nm.
  • the thickness is 3 to 5 nm smaller than the set value, gradually reduce the deposition rate of the material until it is 0, and then gradually increase the deposition rate of SiO 2.
  • the physical thickness is 55 nm, and 10 layers are alternately deposited; then, alternately deposit the physical thickness of 10 layers each of 30nm HfO2 and 55nm SiO2 , 10 layers each of 40nm HfO2 and 55nm SiO2 , to complete the preparation of the "reflectivity bottom" reflective film, the total number of layers is 60 layers, and the total thickness is about 2.6 ⁇ m.
  • the deposition of the middle film layer first, the deposition of the HfO 2 film with a physical thickness of 14 nm, when the HfO 2 thickness is 3-5 nm smaller than the set thickness, the deposition rate is gradually reduced, and the ZrO 2 film is deposited at the same time.
  • the physical thickness is 26 nm, and the total physical thickness of HfO 2 /ZrO 2 is 40 nm; then a SiO 2 low-refractive index film with a physical thickness of 55 nm is deposited, and the HfO 2 /ZrO 2 and SiO 2 films alternately appear to form the middle film layer.
  • the number of layers is 20, and the total thickness is about 1.0 ⁇ m.
  • the top film structure is carried out after the middle film deposition is completed. After the deposition rate of the last SiO 2 film reaches 0, the deposition rate of the ZrO 2 film is gradually increased.
  • the physical thickness is 49nm. When the thickness is smaller than the set thickness From 3 to 5 nm, the deposition rate of the material was gradually reduced until it was 0, and then the SiO 2 film with a physical thickness of 55 nm was plated with 10 layers each; finally, a ZrO 2 film with an optical thickness coefficient of 49 nm was deposited.
  • a top reflective film structure is formed, with a total of 21 layers.
  • Spectral performance measurement The test instrument is Lambda950 spectrophotometer, the test method refers to GB/T 2680-1994, the incident angle is 8°, the measurement wavelength is 200-2500nm, and the test quantity is the reflectivity.
  • Figure 4 is the reflectance spectrum curve of the HfO 2 /ZrO 2 /SiO 2 reflective film, which has a high reflectivity in the range of 240-400nm, an average of 96.3% in this wavelength range, and a large bandwidth.
  • the high reflectivity bandwidth of the reflective film of the present invention is larger than that of the conventional film, and the application range is wider.
  • the photothermal conversion calculation was performed based on the simulation software to obtain the thermal field distribution on the surface of the sample stage; when the cooling cycle and the fan were working at the same time, the temperature distribution on the sample surface was uniform, around 61-65 °C ( Figure 10).
  • the ultraviolet radiation intensity of the device in the concentrated state is about 47.5 times that of the ultraviolet radiation in the natural environment. It has a high accelerated aging effect and can be used for high accelerated aging of polymer materials.
  • Example 1 for the high-accelerated aging test device for polymer materials provided in this example.
  • a method of using a high-accelerated aging test device for polymer materials to conduct a high-accelerated aging test of high-density polyethylene includes the following steps:
  • the high-density polyethylene is processed into a plate by compression molding, and the melting point is 142 ° C through a dumbbell knife; the samples are fixed on the sample stage in turn by the clamping position, and the back of the sample is attached to the sample stage, so that the temperature of the sample can be fully cooled. .
  • the upper limit of the test temperature is 100 °C, that is, 42 °C below the melting point.
  • Example 1 for the high-accelerated aging test device for polymer materials provided in this example.
  • the method of using a high-accelerated aging test device for polymer materials to conduct a high-accelerated aging test of carbon fiber epoxy resin composite materials includes the following steps:
  • the upper limit of the test temperature is 180 °C, that is, 25 °C below the glass transition temperature.
  • the reflective film adopts a conventional reflective film in the art, such as an aluminum film, instead of the combined reflective film in the embodiment 1-4.
  • the above embodiments of the present invention do not limit the scope of protection of the present invention, and the embodiments of the present invention are not limited thereto.
  • the samples in the manual mode, the samples can be subjected to high-speed aging without considering the coordinated control of multiple environmental factors; all these
  • the above-mentioned content of the present invention according to the common technical knowledge and customary means in the field, without departing from the above-mentioned basic technical idea of the present invention, other various forms of modification, replacement or change made to the method of the present invention shall be fall within the protection scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Ecology (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Environmental Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

一种高分子材料高加速老化试验装置,装置包含紫外光反射系统(1)、样品温度控制系统(2)、太阳跟踪系统(3)及多环境因素协调控制系统等,其中紫外光反射系统(1)呈球凹面,可以实现更高效的聚光,紫外光反射系统(1)中的反射镜(13)表面采用了组合型反射膜,该反射膜具有高紫外反射率、大带宽和高耐久性,样品温度控制系统(2)通过温控机构(23)控温,温控效果更好;同时,还公开了该利用该装置进行加速老化的方法,该设备通过跟踪太阳并聚光,其加速老化速率高达30~50倍,为高分子材料的快速老化评价提供了支撑。

Description

一种高分子材料高加速老化试验装置及方法 技术领域
本发明属于高分子材料加速老化技术领域,具体涉及一种高分子材料高加速老化试验装置及方法。
背景技术
工业上,为了准确、快速评价高分子材料的耐候性能,同时满足在材料配方的筛选、耐老化性能的提高、寿命预估等方面的要求,人们通常需要通过人工加速老化实验的方法来实现,包括氙灯加速老化、紫外灯加速老化、高压/中压汞灯加速老化、碳弧灯老化等,也取得了一定的成果和进展。人工加速老化试验虽然周期短、时效快、重现性高,但是人工光源与自然光光谱存在较大差异,同时也忽略了昼夜温差、季节变化及空气活性组分等因素的影响,不能完全、真实地反映自然环境中全部因素,导致该环境下高分子材料老化失效规律和老化机理与自然环境中的存在一定差异,使得老化试验结果的可信度相对较低。因此,基于人工加速老化试验评价耐候性的高分子材料在投入使用后,依然会存在提前老化失效的问题,严重影响装备产品的服役寿命。
太阳跟踪聚光加速老化试验是一种利用太阳跟踪聚光装置,增加试验期间试验样品暴露表面太阳辐照量的自然加速老化试验方法。相比于人工加速试验,太阳跟踪聚光加速老化试验成本较低,且相关性和可信度还比较高。因此,近年来太阳跟踪聚光加速老化试验方法在汽车、建材、涂料等行业得到了广泛的应用,用于装备产品的材料配方筛选及耐久性评价。但是目前的太阳跟踪聚光加速老化试验设备由于反射镜安装结构设计的限制及反射镜紫外光反射率相对较低,导致其试验加速倍率只有6~8倍,试验周期依然相对较长。
发明内容
本发明的目的在于提供一种高分子材料高加速老化试验装置,该装置通过跟踪太阳并反射聚光,使得加速老化试验过程中高分子材料样品表面接受到高倍率的辐照强度,同时保持辐照强度的均一性、辐照量一致性及样品温度稳定性,实现高分子材料的高加速老化。
本发明的目的还在于提供一种利用上述装置进行高分子材料高加速老化试验的方法,该方法在材料老化机理不变的情况下,能增强高分子材料样品表面接受到的紫外光辐照强度,并控制样品的表面温度在一定范围,实现样品的加速老化。
本发明的上述第一个目的可以通过以下技术方案来实现:一种高分子材料 高加速老化试验装置,包括:
紫外光反射系统;
样品温度控制系统;
太阳跟踪系统;
其中:
所述紫外光反射系统的主体结构为球凹面,主要由凹面框架和用于固定所述凹面框架的固定架组成,所述凹面框架上设有多个反射镜;
所述样品温度控制系统包括支架、样品台和温控机构,所述支架一端连接所述紫外光反射系统,另外一端上设置样品台,所述样品台上设置有样品和用于控制样品温度的温控机构,所述样品与所述紫外光反射系统相对设置且位于所述反射镜的反射中心位置,所述温控机构位于所述样品的周围;
所述太阳跟踪系统包括垂直旋转机构、水平旋转机构和底座,所述水平旋转机构安装在底座上,所述垂直旋转装置与所述紫外光反射系统相连接,通过所述垂直旋转机构和所述水平旋转机构,所述紫外反射系统的反射面始终与太阳光直射垂直;
本发明还包括多环境因素协调控制系统;所述多环境因素协调控制系统包括控制箱和传感元件。
优选的,所述反射镜为20~60块。
作为本发明的一种优选的实施方案,所述反射镜的材质为镀膜玻璃,所述镀膜玻璃包括玻璃基片和设于所述玻璃基片上的组合型反射膜,所述组合型反射膜包括底部膜层、中部膜层和顶部膜层,所述底部膜层由不同光学厚度的HfO 2和SiO 2交替形成,所述中部膜层由不同光学厚度的高折射率材料和低折射率材料交替形成,所述高折射率材料为HfO 2和Ta 2O 5或HfO 2和ZrO 2,所述低折射率材料为SiO 2,所述顶部膜层由不同光学厚度的Ta 2O 5和SiO 2交替沉积形成,或所述顶部膜层由不同光学厚度的ZrO 2和SiO 2交替沉积形成。
优选的,所述底部膜层用于提高短波紫外光反射率,所述底部膜层由不同光学厚度的HfO 2和SiO 2交替形成,所述底部膜层的结构为(aHbL) x(cHbL) y(dHbL) z,其中H为高折射率材料HfO 2,L为低折射率材料SiO 2,a、c、d均为H的光学厚度系数,b为L的光学厚度系数,x、y和z则为膜层数。
优选的,所述a的数值大小为0.10~0.20,所述b的数值大小为0.20~0.30,所述c的数值大小0.15~0.25,所述d的数值大小为0.20~0.30,所述x、y、z 的数值大小均为5~15,所述底部膜层的物理厚度为2.00~3.00μm。
优选的,所述中间膜层用于提高中波紫外光反射率,所述中间膜层的结构为(iHjAbL) w,其中H为高折射率材料HfO 2,A为高折射率材料Ta 2O 5或ZrO 2,i和j分别为H和A的光学厚度系数,L为低折射率材料SiO 2,b为L的光学厚度系数,w则为膜层数。
优选的,所述i的数值大小为0.05~0.15,所述j的数值大小为0.15~0.30,所述b的数值大小为0.20~0.30,所述w的数值大小为5~15,所述中部膜层的物理厚度为0.80~1.50μm。
优选的,所述顶部膜层用于提高长波紫外光反射率和耐久性,所述顶部膜层结构为(eAbL) u(fAbL) vfA,其中A为高折射率材料Ta 2O 5或ZrO 2,L为低折射率材料SiO 2,e、f均为A的光学厚度系数,b为L的光学厚度系数,u、v则为膜层数。
优选的,所述e的数值大小0.20~0.35,所述f的数值大小为0.30~0.40,所述b的数值大小为0.20~0.30,所述u、v的数值大小均为5~15,所述顶部膜层的物理厚度为1.5~2.5μm。
该组合型反射膜的制备方法,包括以下步骤:基片选取,在所述基片上采用等离子体辅助电子束蒸发沉积法依次进行底部膜层沉积、中部膜层沉积和顶部膜层沉积,获得组合型反射膜。
该组合型反射膜具有高紫外反射率、大带宽和高耐久性,该组合型反射膜在紫外波段(240-400nm)平均反射率≥90%。
实际上,也可以采用其它的反射膜,只是效果没有上述的组合型反射膜的效果更佳而已。
优选的,所述反射镜为正方形,边长为100~500mm,安装角度为1~20°,所述反射镜通过卡扣或压片方式呈阵列状固定在所述凹面框架上。
优选的,所述反射镜存在四种安装角度,位于中部的反射镜安装角度为0°,两边为对称结构,位于中部两侧按近邻到远端的三组对称反射镜安装角度依次为1°~6°、7°~12°及13°~18°。
更佳的,所述反射镜存在三种安装角度,位于中部的反射镜安装角度为0°,位于中部两侧由近及远的三组反射镜安装角度分别为3°、8°及15°。
通过梯度的安装角度,使得所述紫外反射系统面呈球凹面,从而更高效的聚光。
作为本发明的一种优选的实施方式,所述凹面框架中下部设有用于安装支架 的缺口。
所述缺口主要用于供支架穿过,将所述支架固定在固定架上。
因此,作为本实用新型的一种优选的实施方式,所述反射镜在所述凹面框架上呈七行九列设置,在下面三行的凹面框架的中部上设有缺口,上面四行为每行九块反射镜,下面三行为每行六块反射镜,其中位于第四行的反射镜的安装角度为0°,位于第三行和第五行的反射镜安装角度为3°,位于第二行和第六行的反射镜安装角度为8°,位于第一行和第七行的反射镜安装角度为15°,该安装角度是指所述凹面框架与位于所述凹面框架背部的所述固定架之间的夹角。
优选的,所述样品台设置样品位置处呈凹陷结构,所述样品设于所述凹陷结构中,所述样品台上还设有紫外辐照计,所述紫外辐照计也安装在所述凹陷结构中。
样品和紫外辐照计通过嵌入凹陷结构进行固定和试验。
优选的,所述温控机构包括冷却池和风机,所述冷却池设于所述样品的背部,所述风机设于所述样品上方。
优选的,所述冷却池为蛇形环绕结构,所述蛇形环绕结构中设有冷却液。
冷却池结构呈蛇形环绕结构,这样可以更有效地对样品进行降温。
样品通过冷却池中的循环冷却液和风机送风进行组合降温,实现样品试验温度的控制和超温保护。
优选的,所述太阳跟踪系统包括手动模式和自动模式,通过控制箱控制,当系统由手动模式切换成自动模式时,系统自动寻找最佳聚光仰角和转角进行高加速老化试验。
所述太阳跟踪系统通过垂直旋转装置调节仰角和水平旋转装置调节转角实现太阳跟踪,使得反射系统面始终与太阳光直射垂直,实现更高效的聚光和材料的高加速老化。
优选的,所述控制箱设于所述紫外光反射系统的背部。
优选的,所述传感原件包括温度传感器、湿度传感器和辐照传感器。
所述多环境因素协调控制系统可通过辐照计及温度计对自然辐照及聚光状态样品表面接受的辐照、自然环境温度及聚光状态样品、湿度等进行实时监测及数据记录;当样品温度超过自然环境温度20-50℃时,设备进行自主调整,进入背光状态,当温度降至与自然环境温度差别≤20-50℃时,重新通过辐照传感器调整设备聚光,继续进行高加速老化试验。
而且,所述多环境因素协调控制系统可通过辐射传感器感应太阳辐射情况, 当太阳辐照量≤500W/m 2时,即阴天,通过控制系统调整跟踪模式为时控模式(地球由于公转和自转的周期性,导致其一年中每一天在地球上方的位置都是固定的;因此,时控模式即时间控制模式就是通过确定的时间太阳直射与确定地点水平面的角度来确定设备反射系统的仰角和转角);当太阳辐照量≥500W/m 2时,即晴天,通过控制系统调整跟踪模式为光控模式(光控模式是通过辐照计感应外界太阳光的辐照强弱,自动调整设备反射系统中心与最强辐照光保持垂直状态),获得更高的老化加速倍率。
本发明的上述第二个目的可以通过以下技术方案来实现:一种利用上述装置进行高分子材料高加速老化试验的方法,包括以下步骤:
(1)接通太阳跟踪系统电源,通过控制箱和垂直旋转机构使样品台下降;
(2)选取高分子材料样品,固定在样品温度控制系统的样品台上;
(3)打开样品温度控制系统的温控机构,设置温度上限保护;
(4)调整所述紫外光反射系统的反射镜面与太阳直射光垂直状态,通过所述反射镜聚光,增强样品台上样品接收到的辐照进行高加速老化,采用多环境因素协调控制系统调控,进行高分子材料高加速老化试验。
进一步的,步骤(1)中通过控制箱把太阳跟踪系统切换为手动模式,通过垂直旋转机构,把设备样品台降下来。
优选的,步骤(2)中高分子材料样品的形状可以加工成哑铃型样条、色板或涂片,并确定高分子材料的熔点和初始分解温度,样品和紫外辐照计依次固定在样品台上,样品背面贴合样品台,这样可以充分冷却样品温度。
优选的,步骤(3)中样品固定好后,打开温度控制系统的风机和冷却循环,同时设置温度上限保护,非晶态高分子材料试验温度上限为玻璃化转变温度以下10℃,结晶性高分子材料试验温度上限为熔点以下30~100℃,若为交联高分子材料,在无玻璃化转变温度和熔点的情况下,则设定为分解温度100~200℃以下。
优选的,步骤(4)中把设备太阳跟踪系统切换成自动模式,设备反射系统反射面自动调整至与太阳直射光垂直状态,通过安装的所有反射镜进行聚光,增强样品上样品接收到的辐照进行高加速老化。
与现有技术相比,本发明具有如下优点:
(1)本发明通过结构设计,开发了球凹面反射系统,可以扩大反射镜的安装数量,实现高分子材料表面紫外辐照强度的提升,约为自然老化的30~50倍,具有高加速老化功能;
(2)本发明中的温度控制系统通过设计的冷却系统,在冷却液循环和空气流动冷却组合作用下,可以实现试验样品温度的有效控制;
(3)本发明中反射镜表面采用了组合型反射膜,该反射膜具有高紫外反射率、大带宽和高耐久性,该组合型反射膜在紫外波段(240-400nm)平均反射率≥95%;
(4)本发明装置在材料老化机理不变的情况下,能增强高分子材料样品表面接受到的紫外光辐照强度,并控制样品的表面温度在一定范围,实现样品的加速老化,即能保持样品高加速老化试验过程中样品的辐照强度均一性、辐照量一致性、样品温度控制等问题;
(5)与现有太阳跟踪聚光加速老化试验设备相比,本发明中的高分子材料高加速老化试验装置对高分子材料的老化加速倍率更高,约为30~50倍,大幅缩短了试验周期。
(6)与现有太阳跟踪聚光加速老化试验设备相比,本发明中的高分子材料高加速老化试验装置通过设置凹面框架,以及更多的反射镜数量和设计新的反射镜上的反射膜,同时温度调控控制温度,进而可以实现高加速老化倍率,同时也可以通过调节试验温度和试验辐照度来实现不同材料的相同高加速老化倍率;如高密度聚乙烯在90℃和45个反射镜存在的情况下实现40倍的老化加速倍率,而环氧树脂复合材料在160℃和54个反射镜存在的情况下同样可以实现40倍的老化加速倍率,进而可以满足不同配方,不同结构,导致性能存在差异的高分子材料,在相同的加速倍率下,同期内实现结果的获取。
附图说明
图1为实施例1中太阳跟踪聚光高分子材料高加速老化试验装置;
图2为实施例1中紫外光反射系统主体结构;
图3为实施例1中紫外光反射系统反射镜安装示意图;
图4为实施例1中紫外光反射系统反射镜固定方式;
图5为实施例1中温度控制系统样品台凹陷结构;
图6为实施例1中温度控制系统冷却池结构及冷却液循环示意图;
图7为实施例1中温度控制系统风机送风示意图;
图8为实施例1中多环境因素控制系统控制流程;
图9为实施例1中样品台紫外辐照仿真结果;
图10为实施例1中样品温度场分布仿真结果;
图11为实施例1中太阳跟踪聚光高分子材料高加速老化试验装置控制系统、 垂直旋转转置、水平旋转转置;
图12为实施例1中常规太阳跟踪聚光加速老化试验装置结构及反射原理;
图13为实施例1中常规太阳跟踪聚光加速老化试验装置紫外辐照仿真模拟计算结果;
图14为实施例2中样品台紫外辐照仿真结果。
具体实施方式
下面结合实施例和附图对本发明作进一步说明。
实施例1
本实施例提供的高分子材料高加速老化试验装置,包括:
紫外光反射系统1;
样品温度控制系统2;
太阳跟踪系统3;
多环境因素协调控制系统;
其中:
如图1-4所示,紫外光反射系统1的主体结构为球凹面,主要由凹面框架11和用于固定所述凹面框架的固定架12组成,所述凹面框架上设有多个反射镜13。
如图5-7所示,样品温度控制系统2包括支架21、样品台22和温控机构23。支架21一端连接所述紫外光反射系统1,另外一端上设置样品台22,样品台22上设置有样品和用于控制样品温度的温控机构23,样品与紫外光反射系统相对设置且位于所述反射镜的反射中心位置,温控机构位于所述样品的周围。
如图11所示,太阳跟踪系统3包括垂直旋转机构31、水平旋转机构32和底座33,所述水平旋转机构31安装在底座33上,所述垂直旋转机构32与所述紫外光反射系统1相连接,通过所述垂直旋转机构31和所述水平旋转机构32,所述紫外反射系统的反射面始终与太阳光直射垂直。
如图8、图11所示,多环境因素协调控制系统包括控制箱41和传感元件。
反射镜13为60块。
反射镜13的材质为镀膜玻璃,镀膜玻璃包括玻璃基片和设于玻璃基片上的组合型反射膜。
组合型反射膜包括底部膜层、中部膜层和顶部膜层,底部膜层由不同光学厚度的HfO 2和SiO 2交替形成,中部膜层由不同光学厚度的高折射率材料和低折射率材料交替形成,高折射率材料为HfO 2和Ta 2O 5或HfO 2和ZrO 2,低折射 率材料为SiO 2,顶部膜层由不同光学厚度的Ta 2O 5和SiO 2交替沉积形成,或顶部膜层由不同光学厚度的ZrO 2和SiO 2交替沉积形成。
以8度角入射,HfO 2/Ta 2O 5/SiO 2组合型高紫外反射膜(波段240-400nm,平均反射率>99.5%)为例,说明基于结构调控的反射膜紫外反射率、高反射带宽及耐久性提升方法,该方法包括以下步骤:
(1)反射膜的设计:基于光学薄膜设计软件(如Essential Macleod、Optilayer、TFCalc)构建HfO 2/Ta 2O 5/SiO 2组合型紫外反射膜,反射膜结构分为三层,分别为用于短波紫外光反射率的底部膜层、用于中波紫外光反射率的中部膜层及用于提高长波紫外光反射率和耐久性的顶部膜层。
具体的,底部膜层结构为(aHbL) 10(cHbL) 10(dHbL) 10,H为高折射率材料HfO 2,L为低折射率材料SiO 2,a、c、d为HfO 2光学厚度系数,分别是0.15、0.18及0.20,单层HfO 2膜物理厚度分别为24nm、29nm、32nm;b为SiO 2的光学厚度系数0.25,单层SiO 2膜层物理厚度则为55nm。底部膜层结构膜层总数为60,总物理厚度为2.5μm。
具体的,底部膜结构和顶部膜结构之间存在一层交替HfO 2/Ta 2O 5及SiO 2中部膜层,结构为(iHjAbL) 10,H为高折射率材料HfO 2,A为高折射率材料Ta 2O 5,总光学厚度系数i+j=0.28,HfO 2和Ta 2O 5的物理厚度分别为12和23nm;L为低折射率材料SiO 2,b为其光学厚度系数0.25,膜层物理厚度则为55nm。中部膜层结构膜层总数为20,总物理厚度为0.9μm。
具体的,所述顶部膜层结构为(eAbL) 10(fAbL) 10fA,A为高折射率材料Ta 2O 5,L为低折射率材料SiO 2,e、f分别为Ta 2O 5的光学厚度系数0.30及0.38,膜层物理厚度分别为41和48nm;b则为SiO 2的光学厚度系数0.25,物理厚度为55nm。顶部膜层结构膜层总数为41,总物理厚度为2.0μm。
(2)基片的预处理:以乙醇/乙醚混合液(2:1)对于单面抛光的石英玻璃进行擦拭,然后以超声清洗器清洗干净;
(3)反射膜的制备:将基体加热至220℃,抽真空至8×10 -4Pa,通过等离子体辅助电子束蒸发沉积技术(PIAD)在基片上进行组合型反射膜的制备。
首先底部反射膜层的制备:打开电子枪高压和蒸发束流,在基片上通过先交替沉积不同物理厚度的HfO 2和SiO 2膜;第一层膜为HfO 2,物理厚度为24nm,当HfO 2物理厚度比设置的小3~5nm时逐渐减小该材料的沉积速率,直至为0,再逐渐增加SiO 2的沉积速率,光学厚度系数为0.25,物理厚度为55nm,交替沉积各10层;然后,依次交替沉积物理厚度为29nm的HfO 2和55nm的SiO 2 各10层,物理厚度32nm的HfO 2和55nm的SiO 2各10层,完成“反射率底部”反射膜的制备。底部膜层结构总层数60层,总厚度约为2.5μm。
然后是中部膜层的沉积:首先是HfO 2膜层的沉积,物理厚度约12nm,当HfO 2物理厚度比设置的小3~5nm时,逐渐减小其沉积速率,同时开始沉积Ta 2O 5膜,物理厚度约23nm,HfO 2/Ta 2O 5的总物理厚度为35nm;然后再沉积物理厚度为55nm的SiO 2低折射率膜层,HfO 2/Ta 2O 5与SiO 2膜交替出现形成中部膜层结构,中部膜层结构总层数共20层,总厚度约为0.90μm。
顶部膜层结构是在中部膜层结构沉积结束后进行,在其最后一层SiO 2膜沉积速率将至0后,逐渐增加Ta 2O 5膜的沉积速率,物理厚度为41nm,当厚度比设置的厚度小3~5nm时逐渐减小该材料的沉积速率,直至为0,再开展物理厚度为55nm的SiO 2膜的镀制,各10层;然后再交替沉积物理厚度为48nm的Ta 2O 5膜和55nm的SiO 2膜各10层,最后再沉积一层42nm的Ta 2O 5膜,形成顶部反射膜结构,共41层,总厚度约为2.00μm。
(4)当最后一层Ta 2O 5膜达到设计的厚度时,关闭电子枪蒸发束流和高真空,完成组合型紫外反射膜的制备。
(5)光谱性能测量:测试仪器为Lambda950分光光度计,测试方法参考GB/T 2680-1994,入射角8°,测量波长为200~2500nm,测试量为反射率。
采用“反射率底部和LIDT顶部”的HfO 2/Ta 2O 5/SiO 2反射膜的反射率光谱曲线,在240~400nm范围内具有高反射率,该波段范围内平均高达99.6%,带宽较大。
(6)耐久性评价:对本实施例制成的组合型反射膜进行耐酸碱试验、湿热老化试验及紫外光暴晒试验,试验方法分别参考GB/T 18915.1、GB/T 2423.3及GB/T 16422.3,耐酸碱试验24h、湿热老化1000h、紫外光暴晒1000h后,试验前后参考GB/T 2680-1994进行光谱性能测试,获取其在在240~400nm范围内的算术平均值,耐酸碱试验、湿热试验、紫外光暴晒试验前后其紫外波段平均反射率基本不变,波动范围≤0.03%。
紫外辐照试验中,总紫外辐照量计算公式如式(1)所示:
Figure PCTCN2021112972-appb-000001
其中,I UV为总紫外辐照量,单位为兆焦每平方米(MJ/m 2);I t为t时刻紫外灯紫外辐照强度,单位为兆焦每平方米(MJ/m 2);t为紫外暴晒时间累计,单位为s。
以琼海湿热环境为例,户外一年的总紫外辐照量为240MJ/m 2;实验室试验1000h的紫外辐照量约为93MJ/m 2,紫外光反射率下降0.03%,以紫外光反射率下降5%为服役寿命终点,反射膜在琼海户外服役寿命约为60年。本申请在先期的试验中,采用金属铝膜在户外服役1年后,紫外光平均反射率从99%下降至68%。因此,组合型反射膜具有高耐久性,长服役寿命。
本实施例中采用的反射镜为正方形,边长为300*300mm,反射镜通过卡扣(如图4所示)方式呈阵列状固定在所述凹面框架上。
反射镜存在四种安装角度,位于中部的反射镜安装角度为0°,两边为对称结构,位于中部两侧按近邻到远端近邻位置的三组对称反射镜安装角度依次为3°、8°及15°(如图3所示)。
通过梯度的安装角度,使得紫外反射系统面呈球凹面,从而更高效的聚光。
凹面框架中下部设有用于安装支架的缺口14(如图1-2所示)。
缺口主要用于供支架穿过,将支架固定在固定架上。
反射镜13在凹面框架11上呈七行九列设置,在下面三行的凹面框架的中部上设有缺口14,上面四行为每行九块反射镜,下面三行为每行六块反射镜,其中位于第四行的反射镜的安装角度为0°,位于第三行和第五行的反射镜安装角度为3°,位于第二行和第六行的反射镜安装角度为8°,位于第一行和第七行的反射镜安装角度为15°,该安装角度是指凹面框架11与位于凹面框架背部的固定架12之间的夹角。
样品台设置样品位置处呈凹陷结构(如图5所示),样品设于凹陷结构中,样品台上还设有紫外辐照计,紫外辐照计也安装在凹陷结构中。
样品和紫外辐照计通过嵌入凹陷结构进行固定和试验。
温控机构包括冷却池231和风机232(如图6-7所示),冷却池设于样品的背部,风机设于样品上方。
冷却池为蛇形环绕结构,蛇形环绕结构中设有冷却液(冷却液为常规冷却介质比如水或常规冷却溶液,本实施例中为水)。
冷却池结构呈蛇形环绕结构,这样可以更有效地对样品进行降温。
样品通过冷却池中的循环冷却液和风机送风进行组合降温,实现样品试验温度的控制和超温保护。
太阳跟踪系统包括手动模式和自动模式,通过安装在紫外光反射系统1背部的控制箱控制(如图11所示),当系统由手动模式切换成自动模式时,系统自动寻找最佳聚光仰角和转角进行高加速老化试验。
太阳跟踪系统通过垂直旋转装置调节仰角和水平旋转装置调节转角实现太阳跟踪,使得反射系统面始终与太阳光直射垂直,实现更高效的聚光和材料的高加速老化。
其中控制箱41设于紫外反射系统1的背面。
传感元件包括温度传感器、湿度传感器和辐照传感器。
传感元件包括两套,一套设于样品台设置样品位置处的凹陷结构中,用于检测样品的辐照、温度和湿度,另外一套设于样品台的背面,用于检测自然环境的辐照、温度和湿度。
多环境因素协调控制系统可通过辐照计及温度计对自然辐照及聚光状态样品表面接受的辐照、自然环境温度及聚光状态样品、湿度等进行实时监测及数据记录;当样品温度超过自然环境温度20-50℃时,设备进行自主调整,进入背光状态,当温度降至与自然环境温度差别≤20-50℃时,重新通过辐照传感器调整设备聚光,继续进行高加速老化试验。
而且,多环境因素协调控制系统可通过辐射传感器感应太阳辐射情况,当太阳辐照量≤500W/m 2时,即阴天,通过控制系统调整跟踪模式为时控模式;当太阳辐照量≥500W/m 2时,即晴天,通过控制系统调整跟踪模式为光控模式,获得更高的老化加速倍率。
具体的,紫外光反射系统主体结构通过凹面框架和支架组合而成,整体呈现为球凹面,材质为不锈钢;紫外光反射系统主体结构组装完成后,反射镜可以依次安装在反射系统框架下,通过卡位固定,可安装60片。反射镜为镀膜玻璃,反射膜组分为HfO 2/Ta 2O 5/SiO 2,通过在玻璃基片上沉积制备而成。紫外波段(250-400nm)反射率为≥95%,红外波段(1000-2500nm)反射率≤10%。反射镜为正方形,尺寸为300×300mm。反射系统框架中反射镜存在三种安装角度,中部为0°,中部近邻位置安装角度为5°,中部远端位置安装较低为10度。通过梯度的安装角度,使得反射系统面呈球凹面,从而更高效的聚光。
具体的,样品温度控制系统通过支架、样品台、样品夹具(用于固定样品)、温度计、紫外辐照计、冷却液循环机构、风机等组装而成;支架用于连接反射系统和样品台。样品台垂直固定在支架上,始终与反射系统面平行。样品台呈凹陷结构(图5),样品和紫外辐照计通过嵌入凹陷结构进行固定、试验和辐照量监测。样品台为中空结构,内部为设置蛇形回路的冷却池,可填充冷却液用于样品台的温度控制。样品台顶部装备风机的出风口,通过风机可以更好地对样品表面进行降温,避免超温导致的样品灼伤。基于冷却池和风机,可有效对试验样品进行温 度控制和超温保护。
具体的,太阳跟踪系统由垂直旋转装置、水平旋转装置及底座组成。水平旋转装置安装在底座上,其次是垂直旋转装置。垂直旋转装置为电机推杆,与反射系统形成一定夹角,用于调整其仰角。垂直旋转装置调节仰角和水平旋转装置调节转角实现太阳跟踪,使得反射系统面始终与太阳光直射垂直,实现更高效的聚光和材料的高加速老化。太阳跟踪系统设置手动模式和自动模式。手动模式用于样品安装时样品台的降下;自动模式为试验状态时的太阳跟踪模式,可自动寻找最佳聚光仰角和转角进行高加速老化试验。
具体的,多环境因素协调控制系统主要是控制箱、温度传感器、辐照传感器、湿度传感器及相关元器件等。控制流程如图7所示。控制系统通过温度、湿度、辐照传感器感应周围环境及试验环境,实时监测试验状态;当样品温度超过自然环境温度30℃时,设备进行自主调整,反射系统进入背光状态,当温度降至与自然环境温度差别≤20℃时,重新通过辐照传感器调整设备聚光,继续进行高加速老化试验。同时,控制系统可通过辐射传感器感应太阳辐射情况,当太阳辐照量≤500W/m 2时,即阴天,通过控制系统调整跟踪模式为时控模式;当太阳辐照量≥500W/m 2时,即晴天,通过控制系统调整跟踪模式为光控模式,获得更高的老化加速倍率(如图8所示)。
高分子材料高加速老化试验装置的控制系统、垂直旋转机构、水平旋转机构如图11所示。
具体的,可进一步通过仿真软件(TracePro、Lighttools、Comsol等,本实施例中采用TracePro)对高分子材料聚苯乙烯高加速老化试验装置进行模拟仿真,设置太阳光源,使光路与反射系统反射面垂直,反射镜反射率为99%,红外光反射率为5%,计算样品台表面紫外辐照强度均匀性,在4600-4800W/m 2左右(图9),偏差较小;为太阳光紫外辐强度的49.5倍左右(太阳光源的紫外辐照强度为99.9W/m 2)。
同时,基于仿真软件进行光热转化计算,获取样品台表面热场分布;在冷却循环和风机同时工作的情况下,样品表面的温度分布均匀,在61-65℃左右(图10)。基于紫外辐强度换算,该设备聚光状态下紫外辐照强度约为自然环境下紫外辐照的49.5倍左右,具有高加速老化作用,可用于高分子材料的高加速老化。
常规太阳跟踪聚光加速老化试验装置结构及反射原理如图12所示。通过仿真软件(TracePro、Lighttools、Comsol等,具体采用TracePro)对常规太阳跟踪聚光加速老化试验加速倍率进行仿真模拟,计算结果如图13所示。常规太阳 跟踪聚光加速老化试验装置的紫外光辐照强度约为760W/m 2,约为太阳光紫外辐照强度的7.6倍,即其对高分子材料的老化加速倍率约为7.6倍。
利用高分子材料高加速老化试验装置进行聚苯乙烯标准材料高加速老化试验的方法,包括以下步骤:
1)接通电源,通过控制箱把太阳跟踪系统切换为手动模式,通过垂直旋转装置,把设备样品台降下来。
2)通过注塑成型把聚苯乙烯高分子材料加工成色板,熔点为240℃;通过卡位将样品依次固定在样品台上,样品背面贴合样品台,这样可以充分冷却样品温度。
3)样品固定好后,打开风机和冷却循环,同时设置温度上限保护,试验温度上限为140℃,即熔点以下100℃。
4)把设备太阳跟踪系统切换成自动模式,设备反射系统反射面自动调整至与太阳直射光垂直状态,通过安装的所有反射镜进行聚光,增强样品上样品接收到的辐照,并采用多环境因素协调控制系统调控,进行高加速老化。
5)定期取样进行测试,直至试验结束。
实施例2
与实施例1不同的是,
反射镜13组合型反射膜的材料不同。
以8度角入射,HfO 2/ZrO 2/SiO 2组合型高紫外反射膜(波段240~400nm,平均反射率>96.3%)为例,进一步说明结构调控时膜层数对反射膜紫外反射率、高反射带宽及耐久性提升的重要性,该方法包括以下步骤:
(1)反射膜的设计:基于光学薄膜设计软件(如Essential Macleod、Optilayer、TFCalc)构建HfO 2/ZrO 2/SiO 2组合型紫外反射膜,反射膜结构分为三层,分别为用于紫外反射的底部膜层、中部膜层及用于提高耐久性的顶部膜层。
具体的,底部膜层结构为(aHbL) 10(cHbL) 10(dHbL) 10,H为高折射率材料HfO 2,a、c、d为HfO 2光学厚度系数,分别是0.16、0.19及0.24,HfO 2膜层的物理厚度则分别为22nm、30nm、40nm;L为低折射率材料SiO 2,b为SiO 2的光学厚度系数为0.25,膜层物理厚度为55nm。底部膜层结构膜层总数为60层,总物理厚度为2.6μm。
具体的,底部膜结构和顶部膜结构之间存在一层HfO 2/ZrO 2及SiO 2中部膜层,结构为(iHjAbL) 10,H为高折射率材料HfO 2,A为高折射率材料ZrO 2,总光学厚度系数i+j=0.27,HfO 2和ZrO 2的物理厚度分别为14nm和26nm;L为 低折射率材料SiO 2,b为其光学厚度系数0.24,膜层物理厚度为55nm。中部膜层结构膜层数为20,总物理厚度约为1.0μm。
具体的,所述顶部膜层结构为(eAbL) 10eA,A为高折射率材料ZrO 2,e为ZrO 2的光学厚度系数0.32,膜层物理厚度为49nm;L为低折射率材料SiO 2,b则为SiO 2的光学厚度系数0.24,物理厚度为55nm。顶部膜层结构膜层数为21,总物理厚度为1.0μm。
(2)基片的预处理:以乙醇/乙醚混合液(2:1)对于单面抛光的硼酸盐玻璃进行擦拭,然后以超声清洗器清洗干净;
(3)反射膜的制备:将基体加热至220℃,抽真空至8×10 -4Pa,通过等离子体辅助电子束蒸发沉积技术(PIAD)在基片上进行组合型反射膜的制备。
首先底部反射膜层的制备:打开电子枪高压和蒸发束流,在基片上通过先交替沉积不同光学厚度的HfO 2和SiO 2膜;第一层膜为HfO 2,物理厚度为22nm,当HfO 2厚度比设置的小3~5nm时逐渐减小该材料的沉积速率,直至为0,再逐渐增加SiO 2的沉积速率,物理厚度为55nm,交替沉积各10层;然后,依次交替沉积物理厚度为30nm的HfO 2和55nm的SiO 2各10层,40nm的HfO 2和55nm的SiO 2各10层,完成“反射率底部”反射膜的制备,总层数60层,总厚度约为2.6μm。
然后是中部膜层的沉积:首先是HfO 2膜层的沉积,物理厚度为14nm,当HfO 2厚度比设置的厚度小3~5nm时,逐渐减小其沉积速率,同时开始沉积ZrO 2膜,物理厚度为26nm,HfO 2/ZrO 2的总物理厚度为40nm;然后再沉积物理厚度为55nm的SiO 2低折射率膜层,HfO 2/ZrO 2与SiO 2膜交替出现形成中部膜层,膜层数共20层,总厚度约为1.0μm。
顶部膜层结构是在中部膜层沉积结束后进行,在其最后一层SiO 2膜沉积速率将至0后,逐渐增加ZrO 2膜的沉积速率,物理厚度为49nm,当厚度比设置的厚度小3~5nm时逐渐减小该材料的沉积速率,直至为0,再开展物理厚度为55nm的SiO 2膜的镀制,各10层;最后再沉积一层光学厚度系数为49nm的ZrO 2膜,形成顶部反射膜结构,共21层。
(4)当最后一层ZrO 2膜达到设计的厚度时,关闭电子枪蒸发束流和高真空,完成组合型紫外反射膜的制备。
(5)光谱性能测量:测试仪器为Lambda950分光光度计,测试方法参考GB/T 2680-1994,入射角8°,测量波长为200~2500nm,测试量为反射率。
图4是HfO 2/ZrO 2/SiO 2反射膜的反射率光谱曲线,在240~400nm范围内 具有高反射率,该波段范围内平均高达96.3%,带宽较大。本发明的反射膜高反射率带宽比常规薄膜更大,应用范围更广。
进一步通过仿真软件(TracePro、Lighttools、Comsol等,本实施例中采用TracePro)对高分子材料聚苯乙烯高加速老化试验装置进行模拟仿真,设置太阳光源,使光路与反射系统反射面垂直,反射镜反射率为99%,红外光反射率为5%,计算样品台表面紫外辐照强度均匀性,在4500-4750W/m 2左右(图14),偏差较小;为太阳光紫外辐强度的47.5倍左右(太阳光源的紫外辐照强度为99.9W/m 2)。
同时,基于仿真软件进行光热转化计算,获取样品台表面热场分布;在冷却循环和风机同时工作的情况下,样品表面的温度分布均匀,在61-65℃左右(图10)。基于紫外辐强度换算,该设备聚光状态下紫外辐照强度约为自然环境下紫外辐照的47.5倍左右,具有高加速老化作用,可用于高分子材料的高加速老化。
实施例3
本实施例提供的高分子材料高加速老化试验装置参考实施例1。
利用高分子材料高加速老化试验装置进行高密度聚乙烯高加速老化试验的方法,包括以下步骤:
1)接通电源,通过控制箱把太阳跟踪系统切换为手动模式,通过垂直旋转装置,把设备样品台降下来。
2)通过压缩模塑把高密度聚乙烯加工成板材,并通过哑铃刀,熔点为142℃;通过卡位将样品依次固定在样品台上,样品背面贴合样品台,这样可以充分冷却样品温度。
3)样品固定好后,打开风机和冷却循环,同时设置温度上限保护,试验温度上限为100℃,即熔点以下42℃。
4)把设备太阳跟踪系统切换成自动模式,设备反射系统反射面自动调整至与太阳直射光垂直状态,通过安装的所有反射镜进行聚光,增强样品上样品接收到的辐照进行高加速老化。
5)定期取样进行测试,直至试验结束。
实施例4
本实施例提供的高分子材料高加速老化试验装置参考实施例1。
利用高分子材料高加速老化试验装置进行碳纤维环氧树脂复合材料高加速老化试验的方法,包括以下步骤:
1)接通电源,通过控制箱把太阳跟踪系统切换为手动模式,通过垂直旋转 装置,把设备样品台降下来。
2)通过把膜压成型将环氧树脂和碳纤维加工成板材,并裁剪成片材,玻璃化转变温度为205℃;通过卡位将样品依次固定在样品台上,样品背面贴合样品台,这样可以充分冷却样品温度。
3)样品固定好后,打开风机和冷却循环,同时设置温度上限保护,试验温度上限为180℃,即玻璃化转变温度以下25℃。
4)把设备太阳跟踪系统切换成自动模式,设备反射系统反射面自动调整至与太阳直射光垂直状态,通过安装的所有反射镜进行聚光,增强样品上样品接收到的辐照进行高加速老化。
5)定期取样进行测试,直至试验结束。
实施例5
与实施例1-4不同的是,反射膜采用本领域常规的反射膜比如铝膜,而非是实施例1-4中的组合型反射膜。
本发明的上述实施例并不是对本发明保护范围的限定,本发明的实施方式不限于此,如在手动模式下,不考虑多环境因素协调控制,也能完成对样品进行高速老化;凡此种种根据本发明的上述内容,按照本领域的普通技术知识和惯用手段,在不脱离本发明上述基本技术思想前提下,对本发明的方法做出的其它多种形式的修改、替换或变更,均应落在本发明的保护范围之内。

Claims (19)

  1. 一种高分子材料高加速老化试验装置,其特征是包括:
    紫外光反射系统;
    样品温度控制系统;
    太阳跟踪系统;
    其中:
    所述紫外光反射系统的主体结构为球凹面,主要由凹面框架和用于固定所述凹面框架的固定架组成,所述凹面框架上设有多个反射镜;
    所述样品温度控制系统包括支架、样品台和温控机构,所述支架一端连接所述紫外光反射系统,另外一端上设置样品台,所述样品台上设置有样品和用于控制样品温度的温控机构,所述样品与所述紫外光反射系统相对设置且位于所述反射镜的反射中心位置,所述温控机构位于所述样品的周围;
    所述太阳跟踪系统包括垂直旋转机构、水平旋转机构和底座,所述水平旋转机构安装在底座上,所述垂直旋转装置与所述紫外光反射系统相连接,通过所述垂直旋转机构和所述水平旋转机构,所述紫外反射系统的反射面始终与太阳光直射垂直。
  2. 根据权利要求1所述的高分子材料高加速老化试验装置,其特征是:所述装置还包括多环境因素协调控制系统;所述多环境因素协调控制系统包括控制箱和传感元件。
  3. 根据权利要求1或2所述的高分子材料高加速老化试验装置,其特征是:所述反射镜为20~60块,所述反射镜的材质为镀膜玻璃,所述镀膜玻璃包括玻璃基片和设于所述玻璃基片上的组合型反射膜,所述组合型反射膜包括底部膜层、中部膜层和顶部膜层,所述底部膜层由不同光学厚度的HfO 2和SiO 2交替形成,所述中部膜层由不同光学厚度的高折射率材料和低折射率材料交替形成,所述高折射率材料为HfO 2和Ta 2O 5或HfO 2和ZrO 2,所述低折射率材料为SiO 2,所述顶部膜层由不同光学厚度的Ta 2O 5和SiO 2交替沉积形成,或所述顶部膜层由不同光学厚度的ZrO 2和SiO 2交替沉积形成。
  4. 根据权利要求3所述的高分子材料高加速老化试验装置,其特征是:所述底部膜层用于提高短波紫外光反射率,所述底部膜层的结构为(aHbL) x(cHbL) y(dHbL) z,其中H为高折射率材料HfO 2,L为低折射率材料SiO 2,a、c、d均为H的光学厚度系数,b为L的光学厚度系数,x、y和z则为膜层 数。
  5. 根据权利要求4所述的高分子材料高加速老化试验装置,其特征是:所述a的数值大小为0.10~0.20,所述b的数值大小为0.20~0.30,所述c的数值大小0.15~0.25,所述d的数值大小为0.20~0.30,所述x、y、z的数值大小均为5~15,所述底部膜层的物理厚度为2.00~3.00μm。
  6. 根据权利要求3所述的高分子材料高加速老化试验装置,其特征是:所述中间膜层用于提高中波紫外光反射率,所述中间膜层的结构为(iHjAbL) w,其中H为高折射率材料HfO 2,A为高折射率材料Ta 2O 5或ZrO 2,i和j分别为H和A的光学厚度系数,L为低折射率材料SiO 2,b为L的光学厚度系数,w则为膜层数。
  7. 根据权利要求6所述的高分子材料高加速老化试验装置,其特征是:所述i的数值大小为0.05~0.15,所述j的数值大小为0.15~0.30,所述b的数值大小为0.20~0.30,所述w的数值大小为5~15,所述中部膜层的物理厚度为0.80~1.50μm。
  8. 根据权利要求3所述的高分子材料高加速老化试验装置,其特征是:所述顶部膜层用于提高长波紫外光反射率和耐久性,所述顶部膜层结构为(eAbL) u(fAbL) vfA,其中A为高折射率材料Ta 2O 5或ZrO 2,L为低折射率材料SiO 2,e、f均为A的光学厚度系数,b为L的光学厚度系数,u、v则为膜层数。
  9. 根据权利要求8所述的高分子材料高加速老化试验装置,其特征是:所述e的数值大小0.20~0.35,所述f的数值大小为0.30~0.40,所述b的数值大小为0.20~0.30,所述u、v的数值大小均为5~15,所述顶部膜层的物理厚度为1.5~2.5μm。
  10. 根据权利要求1或2或3所述的高分子材料高加速老化试验装置,其特征是:所述反射镜为正方形,边长为100~500mm,安装角度为1~20°,所述反射镜通过卡扣或压片方式呈阵列状固定在所述凹面框架上。
  11. 根据权利要求10所述的高分子材料高加速老化试验装置,其特征是:所述反射镜存在三种安装角度,位于中部的反射镜安装角度为0°,位于中部两侧近邻位置的反射镜安装角度为3~8°,位于中部两侧远端位置的反射镜安装角度为8~12°。
  12. 根据权利要求1所述的高分子材料高加速老化试验装置,其特征是:所述凹面框架中下部设有用于安装支架的缺口。
  13. 根据权利要求1所述的高分子材料高加速老化试验装置,其特征是:所述样品台设置样品位置处呈凹陷结构,所述样品设于所述凹陷结构中,所述样品台上还设有紫外辐照计,所述紫外辐照计也安装在所述凹陷结构中。
  14. 根据权利要求1所述的高分子材料高加速老化试验装置,其特征是:所述温控机构包括冷却池和风机,所述冷却池设于所述样品的背部,所述风机设于所述样品上方。
  15. 根据权利要求14所述的高分子材料高加速老化试验装置,其特征是:所述冷却池为蛇形环绕结构,所述蛇形环绕结构中设有冷却液。
  16. 根据权利要求2所述的高分子材料高加速老化试验装置,其特征是:所述太阳跟踪系统包括手动模式和自动模式,通过控制箱控制,当系统由手动模式切换成自动模式时,系统自动寻找最佳聚光仰角和转角进行高加速老化试验,所述传感原件包括温度传感器、湿度传感器和辐照传感器。
  17. 一种利用权利要求2-16任一项所述装置进行高分子材料高加速老化试验的方法,包括以下步骤:
    (1)接通太阳跟踪系统电源,通过控制箱和垂直旋转机构使样品台下降;
    (2)选取高分子材料样品,固定在样品温度控制系统的样品台上;
    (3)打开样品温度控制系统的温控机构,设置温度上限保护;
    (4)调整所述紫外光反射系统的反射镜面与太阳直射光垂直状态,通过所述反射镜聚光,增强样品台上样品接收到的辐照进行高加速老化,采用多环境因素协调控制系统调控,进行高分子材料高加速老化试验。
  18. 根据权利要求17所述的高分子材料高加速老化试验的方法,其特征是:步骤(2)中高分子材料样品的形状加工成哑铃型样条、色板或涂片,并确定高分子材料的熔点和初始分解温度,样品和紫外辐照计依次固定在样品台上,样品背面贴合样品台,这样充分冷却样品温度。
  19. 根据权利要求17所述的高分子材料高加速老化试验的方法,其特征是:步骤(3)中样品固定好后,打开温度控制系统的风机和冷却循环,同时设置温度上限保护,非晶态高分子材料试验温度上限为玻璃化转变温度以下10℃,结晶性高分子材料试验温度上限为熔点以下30~100℃,若为交联高分子材料,在无玻璃化转变温度和熔点的情况下,则设定为分解温度100~200℃以下。
PCT/CN2021/112972 2021-03-02 2021-08-17 一种高分子材料高加速老化试验装置及方法 WO2022183691A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB2312297.1A GB2618710A (en) 2021-03-02 2021-08-17 High-acceleration aging test device and method for high polymer material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110229153.3 2021-03-02
CN202110229153.3A CN113155715B (zh) 2021-03-02 2021-03-02 一种高分子材料高加速老化试验装置及方法

Publications (1)

Publication Number Publication Date
WO2022183691A1 true WO2022183691A1 (zh) 2022-09-09

Family

ID=76883795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112972 WO2022183691A1 (zh) 2021-03-02 2021-08-17 一种高分子材料高加速老化试验装置及方法

Country Status (3)

Country Link
CN (1) CN113155715B (zh)
GB (1) GB2618710A (zh)
WO (1) WO2022183691A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117792281A (zh) * 2023-12-28 2024-03-29 上海圣试电子科技有限公司 一种光伏组件的老化测试装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113155715B (zh) * 2021-03-02 2022-04-19 中国电器科学研究院股份有限公司 一种高分子材料高加速老化试验装置及方法
CN113866079A (zh) * 2021-09-26 2021-12-31 中国科学院长春应用化学研究所 一种原位检测样品紫外老化性能的方法及装置
CN114624172B (zh) * 2022-03-30 2024-01-05 无锡市检验检测认证研究院 基于光伏材料户外实证加速老化测试系统的测试方法
CN117030585B (zh) * 2023-08-08 2024-05-10 重庆阿泰可科技股份有限公司 一种基于镜面系统的加速老化试验装置及其镜面校准方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060207589A1 (en) * 2005-03-18 2006-09-21 Atlas Material Testing Technology, L.L.C. Variably controlled accelerated weathering test apparatus
CN201751835U (zh) * 2010-06-07 2011-02-23 中国电器科学研究院 一种可跟踪太阳的自然大气老化暴露加速实验装置
CN112051206A (zh) * 2020-07-21 2020-12-08 中国电器科学研究院股份有限公司 一种检测汽车外饰件塑料制品虎皮纹缺陷的加速老化方法
CN212179265U (zh) * 2020-04-27 2020-12-18 东莞绿光新能源科技有限公司 一种自然环境下太阳光双轴跟踪聚能曝晒老化的测试装置
CN113151783A (zh) * 2021-03-02 2021-07-23 中国电器科学研究院股份有限公司 一种组合型反射膜及其制备方法
CN113155715A (zh) * 2021-03-02 2021-07-23 中国电器科学研究院股份有限公司 一种高分子材料高加速老化试验装置及方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080055584A1 (en) * 2006-09-01 2008-03-06 Atul Pradhan Optical transmission filter with extended out-of-band blocking
TWI642206B (zh) * 2018-04-03 2018-11-21 國立清華大學 具反射結構的光轉換材料與具有該光轉換材料的發光二極體元件
CN110927050B (zh) * 2019-09-25 2021-02-26 中国电器科学研究院股份有限公司 一种利用太阳跟踪聚光加速老化试验预测聚苯乙烯材料服役寿命的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060207589A1 (en) * 2005-03-18 2006-09-21 Atlas Material Testing Technology, L.L.C. Variably controlled accelerated weathering test apparatus
CN201751835U (zh) * 2010-06-07 2011-02-23 中国电器科学研究院 一种可跟踪太阳的自然大气老化暴露加速实验装置
CN212179265U (zh) * 2020-04-27 2020-12-18 东莞绿光新能源科技有限公司 一种自然环境下太阳光双轴跟踪聚能曝晒老化的测试装置
CN112051206A (zh) * 2020-07-21 2020-12-08 中国电器科学研究院股份有限公司 一种检测汽车外饰件塑料制品虎皮纹缺陷的加速老化方法
CN113151783A (zh) * 2021-03-02 2021-07-23 中国电器科学研究院股份有限公司 一种组合型反射膜及其制备方法
CN113155715A (zh) * 2021-03-02 2021-07-23 中国电器科学研究院股份有限公司 一种高分子材料高加速老化试验装置及方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HENRY K HARDCASTLE, GARY J. JORGENSEN, CARL E. BINGHAM: "Ultra-Accelerated Weathering System (UAWS) I: Design and Functional Considerations", MATERIAL TESTING PRODUCT AND TECHNOLOGY NEWS, vol. 40, no. 88, pages 1 - 9, XP055212683 *
WANG SHOU, WANG JUN, ZHANG XIAODONG, JIANGLU: "Sun-Tracking Concentration Accelerated Exposure Test", AUTOMOBILE TECHNOLOGY & MATERIAL, no. 4, 30 April 2017 (2017-04-30), pages 50 - 53, XP055964264 *
ZHU YU-QIN, HUA-MING YANG, XIAO-RAN YANG, YAN ZHANG: "Tracking Studying on ATLAS's UV-Accelerated Weathering System", EQUIPMENT ENVIRONMENTAL ENGINEERING, vol. 13, no. 3, 30 June 2016 (2016-06-30), pages 111 - 115, XP055964268, ISSN: 1672-9242, DOI: 10.7643/issn.1672-9242.2016.03.018 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117792281A (zh) * 2023-12-28 2024-03-29 上海圣试电子科技有限公司 一种光伏组件的老化测试装置

Also Published As

Publication number Publication date
GB2618710A (en) 2023-11-15
CN113155715B (zh) 2022-04-19
GB202312297D0 (en) 2023-09-27
CN113155715A (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
WO2022183691A1 (zh) 一种高分子材料高加速老化试验装置及方法
Ma et al. Multilayered SiO2/Si3N4 photonic emitter to achieve high-performance all-day radiative cooling
Soum-Glaude et al. Optical characterization of TiAlNx/TiAlNy/Al2O3 tandem solar selective absorber coatings
Yang et al. Bulk material based selective infrared emitter for sub-ambient daytime radiative cooling
US6073500A (en) Ultra-accelerated natural sunlight exposure testing
De Maio et al. Solar selective coatings for evacuated flat plate collectors: Optimisation and efficiency robustness analysis
Al-Shukri Thin film coated energy-efficient glass windows for warm climates
CN103884122B (zh) 一种太阳能光热转换集热器透明热镜及其制备方法
Moss et al. Design and commissioning of a virtual image solar simulator for testing thermal collectors
CN110146943A (zh) 一种硅基底中波红外增透膜及其制备方法
WO2023284350A1 (zh) 一种具有表面周期性微纳结构的辐射制冷薄膜及制备方法
De Maio et al. Multilayers for efficient thermal energy conversion in high vacuum flat solar thermal panels
Alzahrani et al. Optical component analysis for ultrahigh concentrated photovoltaic system (UHCPV)
Krammer et al. VO2: Ge based thermochromic solar absorber coatings
Miller et al. Analysis of transmitted optical spectrum enabling accelerated testing of CPV designs
WO2013031513A1 (ja) 太陽光反射板および集光集熱装置
CN109298475B (zh) Cr/C高热稳定性X射线多层膜反射镜及其制备方法
WO2012057073A1 (ja) 太陽熱集熱部材およびその作製方法
Fathabadi Novel silica-based PV glass cover providing higher radiative cooling and power production compared with state-of-the-art glass covers
Seifert et al. Light management in solar modules
Konttinen et al. Microstructural optimization and extended durability studies of low-cost rough graphite–aluminium solar absorber surfaces
Pinto et al. Outdoor Thermal Performance of Photovoltaic Devices with Enhanced Daytime Radiative Cooling Glass
TWI822168B (zh) 多晶金屬薄膜光熱處理系統及其運作方法
Butel et al. Reflectance optimization of second-surface silvered glass mirrors for concentrating solar power and concentrating photovoltaics application
De Maio et al. A Selective Solar Absorber for Unconcentrated Solar Thermal Panels. Energies 2021, 14, 900

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21928768

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202312297

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20210817

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21928768

Country of ref document: EP

Kind code of ref document: A1