WO2022183654A1 - 定位装置、定位单元、定位组件及定位组件的卸载方法 - Google Patents

定位装置、定位单元、定位组件及定位组件的卸载方法 Download PDF

Info

Publication number
WO2022183654A1
WO2022183654A1 PCT/CN2021/105191 CN2021105191W WO2022183654A1 WO 2022183654 A1 WO2022183654 A1 WO 2022183654A1 CN 2021105191 W CN2021105191 W CN 2021105191W WO 2022183654 A1 WO2022183654 A1 WO 2022183654A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning
unloading
building
positioning unit
annular
Prior art date
Application number
PCT/CN2021/105191
Other languages
English (en)
French (fr)
Inventor
王雷
张健
李白
马高峰
刘大伟
康清明
唐新权
马庆东
杨世杰
黄韬睿
商忠河
丁言兵
李文德
Original Assignee
中国铁建国际集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国铁建国际集团有限公司 filed Critical 中国铁建国际集团有限公司
Publication of WO2022183654A1 publication Critical patent/WO2022183654A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G25/00Shores or struts; Chocks
    • E04G25/02Shores or struts; Chocks non-telescopic
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G25/00Shores or struts; Chocks

Definitions

  • the present invention relates to the field of construction technology, and in particular, to a positioning device, a positioning unit, a positioning assembly and a method for unloading the positioning assembly.
  • the problem solved by the present invention is how to reduce the bit type variation of the main structure.
  • the present invention provides a positioning device for positioning and supporting a building support column
  • the building support column includes an auxiliary column
  • the positioning device includes a support beam, at least one first backing plate and a plurality of stoppers.
  • a stop structure, the first backing plate is cushioned under the support beam, the support beam is used to support the auxiliary pillar, the stop structure is connected with the support beam, and all the stop structures are enclosed
  • a positioning portion is formed, and the positioning portion is suitable for the positioning of the auxiliary strut in the horizontal direction.
  • the stopper structure includes a stopper and a plurality of second backing plates, the stopper is connected to the support beam, and the second backing plates are respectively connected to the auxiliary pillar and the stopper Pieces fit.
  • the positioning device further includes a plurality of backup pads, the thicknesses of the backup pads are different, and the thickness of the backup pads is smaller than the thickness of the first pad or the second pad.
  • the positioning device of the present invention has the following beneficial effects:
  • the present invention supports the auxiliary pillar through the support beam, the stop structure is connected with the support beam, and all the stop structures are enclosed to form a positioning portion, so that the The stop structure can limit the displacement in the horizontal direction of the auxiliary pillar, realize the positioning of the auxiliary pillar in the horizontal direction, and increase the supporting stability of the positioning device to the building, thereby reducing the stability of the building.
  • the change of the position type is convenient for the subsequent construction type finding. Since the first backing plate is located under the supporting beam, during the unloading process of the supporting beam, the first backing plate only needs to be pulled out to realize the unloading of the first backing plate, thereby facilitating the Unloading of the first pad.
  • the present invention also provides a positioning unit, which includes a plurality of the above positioning devices, the positioning unit further includes a tower, and two limit posts are arranged on the tower, and the two limit posts are located at the On the opposite sides of the support beam, a positioning groove is opened on the limiting column, the positioning groove is arranged in the vertical direction, and a sliding block is provided on the supporting beam, and the sliding block is connected to the side wall of the positioning groove. fit, and the slider is suitable for sliding along the chute.
  • the positioning unit of the present invention has the following beneficial effects:
  • the two limiting columns are located on opposite sides of the support beam, the limiting columns are provided with positioning grooves, and the sliding block is fitted with the positioning grooves, so that the positioning grooves can limit the
  • the horizontal displacement of the support beam can avoid that the auxiliary pillar pushes the support beam to produce horizontal displacement during the vertical unloading process of the support beam, thereby making the unloading process of the support beam more stable and safe.
  • the present invention also provides a positioning assembly, comprising a plurality of the above-mentioned positioning units, which is applied to a ring-shaped building, the ring-shaped building includes a building ring beam and a plurality of the building support columns, all the building support columns are along the The circumferential arrangement of the building ring beam, the positions of the positioning units correspond to the auxiliary pillars of the building support column respectively, and the radial stop structure is used for the positioning of the auxiliary pillars along the radial direction of the building ring beam.
  • the direction stop structure is used for the positioning of the auxiliary pillar in the circumferential direction of the construction ring beam.
  • the positioning assembly of the present invention has the following beneficial effects:
  • the building pillars are arranged along the circumferential direction of the building ring beam, and the positioning unit corresponds to the auxiliary pillar, so that the positioning unit can be used for all
  • the supporting stability of the units to the auxiliary pillars reduces the variation of the position shape of the building and facilitates shape finding in the subsequent construction.
  • the present invention also provides a method for unloading a positioning assembly, which is applied to the positioning assembly as described above.
  • the positioning assembly includes a plurality of target positioning unit groups, and the target positioning unit group includes four target positioning units.
  • the units are symmetrically arranged in a cross shape with respect to the center of the building ring beam, the target positioning unit group includes a first target positioning unit group; the first target positioning unit group includes a first target positioning unit, and the unloading of the positioning assembly
  • the method includes: sequentially unloading the stopper structure and the support beam of the first target positioning unit to realize the unloading of the first target positioning unit, wherein the unloading of the stopper structure comprises sequentially unloading the circumferential stopper The stop structure and the radial stop structure are unloaded; and/or, all the target positioning units in the first target positioning unit group are unloaded synchronously in sequence, so as to realize the unloading of the first target positioning unit group ; Unload the other target unit groups in turn to complete the unloading of the
  • the unloading of the annular stop structure and the radial stop structure of the target positioning unit includes respectively performing multi-stage and step-by-step unloading of the stop structure on the annular stop structure and the radial stop structure,
  • the multi-level and step-by-step unloading of the stopper structure gradually removes the different second pads in the order of the unloading amount from small to large;
  • Step-by-step unloading, the multi-level and step-by-step unloading of the support beam gradually removes the different first pads in the order of the unloading amount from small to large.
  • the method for unloading the positioning assembly further includes: acquiring stress information and/or strain information of the annular building and the positioning assembly; when the stress information is greater than a preset stress value and/or the strain information When the strain value is greater than the preset value, the three-dimensional scanner is used to obtain the displacement information of the annular building and the positioning assembly; The radial stop structure and the unloading amount of the support beam.
  • the unloading of the current target positioning unit group is stopped,
  • the preferred positioning unit is unloaded, wherein the preferred positioning unit is located between two adjacent target positioning units, and the preferred positioning unit is a positioning unit that is re-determined according to the stress-strain simulation result of the Midas software.
  • using a three-dimensional scanner to obtain the displacement information of the annular building and the positioning unit includes: obtaining a construction drawing model of the annular building and the positioning unit; The positioning unit performs three-dimensional scanning to determine the point cloud data at the first moment; the positioning unit and the positioning unit are three-dimensionally scanned at the second moment to determine the point cloud data at the second moment, wherein the second moment is at the second moment.
  • the annular building and the The positioning unit determines the second displacement difference between the point cloud data at the second moment and the construction drawing model; determines the setting of the annular building and the positioning unit according to the first displacement difference and the second displacement difference. displacement information between the first time and the second time of the fixed part.
  • the method for unloading the positioning assembly of the present invention has the following beneficial effects:
  • the present invention includes a plurality of target unit groups through the positioning assembly, the target unit group includes four target positioning units, and the target positioning units are cross-shaped with respect to the center of the building ring beam Symmetrical arrangement avoids excessive deformation of the building caused by asymmetric unloading of the target positioning unit.
  • the annular building can be prevented from bending deformation under the blocking of the stop structure, and on the other hand It can be avoided that the annular building is deformed by downward deflection and pushes the positioning unit, resulting in a safety hazard.
  • the radial stop structure is used for the radial positioning of the auxiliary pillar, and the annular stop structure is used for the circumferential positioning of the auxiliary pillar, the hoop stress of the building is smaller than the radial stress, During the unloading process of the stopper structure, by first unloading the annular stopper structure and then unloading the radial stopper structure, the safety of step-by-step unloading can be ensured, and the building The change of the position type of the material is convenient for the follow-up construction to find the type.
  • FIG. 1 is a schematic structural diagram of a positioning unit in an embodiment of the present invention.
  • Fig. 2 is the enlarged schematic diagram of the structure at A place in Fig. 1 of the present invention
  • FIG. 3 is a schematic structural diagram of a positioning assembly in an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of an annular building in an embodiment of the present invention.
  • FIG. 5 is a flowchart of a method for uninstalling a positioning component in an embodiment of the present invention.
  • 1-support beam 11-first backing plate, 12-backing plate support column, 14-slider; 3-stop structure, 31-radial stop structure, 32-circumferential stop structure, 311-radial Stopper, 312-radial backing plate; 321-circular stopper; 322-circular backing plate; 4-limiting column, 41-positioning groove; 5-tower; 6-building ring beam; 7- Building support columns; 72 - Auxiliary columns.
  • a positioning device is used for positioning and supporting a building support column 7.
  • the building support column 7 includes an auxiliary column 72.
  • the positioning device includes a support beam 1, a plurality of first backing plates 11 and a plurality of There are stop structures 3, the first backing plate 11 is located under the support beam 1, the support beam 1 is used to support the auxiliary pillar 72, the stop structure 3 is connected with the support beam 1, all the The stop structure 3 encloses a positioning portion, and the positioning portion is suitable for the positioning of the auxiliary support column 72 in the horizontal direction.
  • the building includes a building ring beam 6 , one end of the building support column 7 is welded with the building ring beam 6 , and the other end of the building support column 7 is fixed to the in reinforced concrete columns.
  • the building support column 7 includes a support column body and an auxiliary column 72, the auxiliary column 72 is a square column structure, the auxiliary column 72 is welded with the support column body, and the support column body is a V-shaped structure , the auxiliary support column 72 is connected with the opposite two side walls of the support column body.
  • the positioning unit includes a tower 5, the tower 5 includes a first end, a working platform and a backing plate support column 12, the first end is fastened with ground bolts, and the backing plate supporting column 12 is connected to the ground.
  • the upper end surface of the working platform is welded, the first backing plate 11 is located between the backing plate support column 12 and the support beam 1, and the first backing plate 11 is respectively connected with the backing plate support column 12 and the backing plate support column 12 and the supporting beam 1.
  • the support beam 1 is attached. Therefore, the first backing plate 11 is located between the backing plate support column 12 and the support beam 1, so that the backing plate supporting column 12 can support the first backing plate 11, reducing the The number of the first pads 11 used increases the stability of the vertical support at the same time.
  • the thickness of the first backing plate 11 is not limited in this embodiment. Specifically, the thickness of the first backing plate 11 may be 2 mm, 4 mm, 6 mm, 14 mm or 20 mm. Therefore, during the unloading process of the support beam 1, by setting a plurality of the first backing plates 11, and the plurality of the first backing plates 11 are stacked in sequence, one or more of the first backing plates 11 can be unloaded in sequence.
  • the backing plate 11 increases the choice of the unloading amount of the support beam 1 and makes the unloading of the support beam 1 more flexible.
  • the upper end surface of the support beam 1 is attached to the lower end surface of the auxiliary pillar 72 , and the support beam 1 supports the building support column 7 in the vertical direction through the auxiliary pillar 72 .
  • a positioning portion is formed.
  • the stopper structure 3 is a baffle, and there are four baffles.
  • the four baffles are welded to the upper end surface of the support beam 1 respectively.
  • the four baffles are enclosed to form a positioning portion.
  • the part presents a through-slot structure, and the auxiliary pillar 72 is inserted into the positioning part.
  • the advantage of this arrangement is that when the internal stress of the building changes, the auxiliary pillars 72 are supported by the support beam 1, the stop structure 3 is connected with the support beam 1, and all the stops The structure 3 is enclosed to form a positioning portion, so that the stopper structure 3 can limit the displacement of the auxiliary strut 72 in the circumferential and radial directions, so as to realize the positioning of the auxiliary strut 72 in the horizontal direction, and increase the impact of the positioning device on all
  • the support stability of the building is improved, thereby reducing the variation of the position type of the building and facilitating subsequent construction type finding.
  • the unloading of the first backing plate 11 can be realized by simply pulling out the first backing plate 11 . , so as to facilitate the unloading of the first backing plate 11 .
  • the stopper structure 3 includes a stopper and a plurality of second pads, the stopper is connected to the support beam 1 , and the second pads are respectively connected to the The auxiliary strut 72 is in contact with the stopper.
  • the stopper is a baffle plate
  • the stopper is welded with the support beam 1
  • the second backing plate is located between the stopper and the auxiliary pillar 72
  • One end surface of the second backing plate is abutted with the outer side wall of the auxiliary pillar 72
  • the other end surface of the second backing plate is abutted with the stopper.
  • the thickness of the second backing plates is not limited in this embodiment.
  • the thickness of the second backing plate may be 2mm, 4mm, 6mm, 10mm, 14mm or 20mm. Therefore, in the process of unloading in the circumferential direction and in the radial direction, by providing a plurality of the second backing plates, and the plurality of the second backing plates are stacked in sequence, one or more of the second backing plates can be unloaded in sequence. Therefore, the selection of the unloading amount of the second backing plate is increased, and the unloading of the second backing plate is more flexible.
  • the stop structure includes a radial stop structure 31 and a circumferential stop structure 32
  • the radial stop structure 31 includes a radial stop piece 311 and a radial backing plate 312
  • the radial backing plate 312 is respectively fitted with the radial stopper 311 and the auxiliary strut 72
  • the annular stopper structure 32 includes the annular stopper 321 and the annular backing plate 322 .
  • the annular backing plate 322 is respectively fitted with the annular stopper 321 and the auxiliary strut 72 .
  • the stopper is connected to the support beam 1, so that the stopper can limit the horizontal displacement of the second backing plate and the auxiliary support column 72, and the second backing plate respectively Fitting with the auxiliary strut 72 and the stopper, the circumferential and radial unloading can be realized only by pulling out the second backing plate, thereby facilitating horizontal unloading.
  • the positioning device further includes a plurality of backup pads, the thicknesses of the backup pads are different, and the thickness of the backup pads is smaller than the thickness of the first pad 11 or the second pad.
  • the spare pad is used to pad under the support beam 1, and when the second pad 11 is pulled out After being pulled out, the spare pad is used to pad between the stop structure 3 and the auxiliary support 72 .
  • the different thicknesses of the backup pads refer to that the thicknesses of a plurality of the backup pads are different from each other, and the thickness of the backup pads is between 2-25 mm. Specifically, the backup pads are The thickness can be: 2mm, 6mm, 8mm, 15mm or 25mm.
  • the thicknesses of the plurality of backup pads are different, and the thickness of the plurality of backup pads is smaller than the thickness of the first pad 11 or the second pad , after the first pad 11 is unloaded, the backup pad is placed under the support beam 1 to control the vertical unloading amount of the first pad 11, so that the The unloading of the support beam 1 is more flexible; after the second backing plate is unloaded, the spare backing plate is placed between the baffle and the auxiliary pillar to adjust the level of the supporting beam 1. The amount of unloading is controlled to make the horizontal unloading of the support beam 1 more flexible.
  • the radial stopper 311 and the annular stopper 321 are spaced apart to leave a certain avoidance space, and the avoidance space is used to facilitate the extraction of the second backing plate , so as to facilitate the unloading of the second backing plate.
  • the positioning device further includes a first sliding plate, and the first sliding plate is made of a material with a low coefficient of friction, for example, the material with a low coefficient of friction may be a polytetrafluoroethylene material.
  • the first sliding plate is located between the supporting beam 1 and the auxiliary column 72 , the first sliding plate includes a first surface and a second surface arranged oppositely, and the first surface is attached to the auxiliary column 72 The lower end surface of the second surface is attached to the upper end surface of the support beam 1 .
  • the first sliding plate is positioned between the support beam 1 and the auxiliary column 72, so that the first sliding plate can reduce the auxiliary column 72
  • the horizontal frictional force with the support beam 1 facilitates the unloading of the second backing plate, and on the other hand, prevents the auxiliary strut 72 from scratching the support beam 1 .
  • the positioning device further includes a second sliding plate, the second sliding plate is located between the second backing plate and the auxiliary support column 72 , and the second sliding plate includes oppositely disposed first side surfaces and the second side surface, the first side surface is attached to the side surface of the auxiliary pillar 72 , and the second side surface is attached to the second backing plate.
  • the second sliding plate is made of a low friction coefficient material, for example, the low friction coefficient material may be a polytetrafluoroethylene material.
  • the second slide plate can reduce the size of the second pad by being located between the second pad and the auxiliary support 72 .
  • the friction force with the auxiliary support strut 72 facilitates the unloading of the second backing plate.
  • a positioning unit further includes a tower frame 5 .
  • the tower frame 5 is provided with two limit posts 4 .
  • the limit posts 4 are located on opposite sides of the support beam 1 of the positioning device.
  • the limit posts 4 are provided with positioning grooves 41 , and the positioning grooves 41 are arranged in the vertical direction.
  • the support beam 1 is provided with
  • the slider 14 is fitted with the side wall of the positioning slot 41 , and the slider 14 is suitable for sliding along the positioning slot 41 .
  • the limiting column 4 is welded with the tower 5 .
  • the support beam 1 includes a support beam body and two sliding blocks 14, and the two sliding blocks 14 are respectively connected with opposite ends of the support beam body.
  • the advantage of this arrangement is that the two limiting columns 4 are located on opposite sides of the support beam 1 , the limiting columns 4 are provided with positioning grooves, and the sliding block 14 is attached to the positioning grooves 41 .
  • the positioning groove 41 can limit the horizontal displacement of the support beam 1, and it can be avoided that during the vertical unloading process of the support beam 1, the auxiliary support column 72 pushes the support beam 1 to produce a horizontal displacement, thereby causing The unloading process of the support beam 1 is more stable and safe.
  • the limit post 4 includes a limit block 42, the limit block 42 is located in the positioning groove 41, the limit block 42 is provided with a first through hole, the sliding The block 14 is provided with a second through hole, and a bolt fastener passes through the first through hole and the second through hole to realize the connection between the limiting block 42 and the slider 14 . Therefore, the positioning of the sliding block 14 in the positioning groove 41 is realized by the bolted connection between the limiting block 42 and the sliding block 14 , preventing the support beam 1 from being in any position before the vertical unloading.
  • the positioning groove 41 slides.
  • a positioning assembly includes a plurality of positioning units as described above, and is applied to a ring-shaped building.
  • the ring-shaped building includes a building ring beam 6 and a plurality of the building support columns 7. All the building The support columns 7 are arranged along the circumferential direction of the building ring beam 6, the positions of the positioning units are respectively corresponding to the auxiliary columns 72 of the building support columns 7, and the radial stop structure 31 is used for the auxiliary columns 72 along the For the radial positioning of the construction ring beam, the circumferential stop structure 32 is used for the circumferential positioning of the auxiliary pillar 72 along the construction ring beam 6 .
  • the building ring beam 6 is a saddle-shaped hyperboloid structure, and the building ring beam 6 is formed by splicing multiple ring beam units, and each ring beam unit corresponds to two of the building support columns 7.
  • the building support column 7 is welded with the building ring beam 6.
  • the building support column 7 presents a V-shaped structure.
  • the auxiliary support column 72 is arranged on the outer side wall of the V-shaped structure. It refers to the opposite two side walls of two adjacent said building support columns 7 .
  • the positioning unit is located between two adjacent building support columns 7 .
  • On a support beam 1 there are two radial stop structures 31 , the two radial stop structures 31 are arranged opposite to each other, and there are two annular stop structures 32 .
  • the stop structures 32 are oppositely arranged.
  • the positioning assembly not only has the beneficial effects of the positioning unit, but also along the circumferential direction of the building ring beam 6 through the building support column 7 when the internal stress of the building changes.
  • the positioning components correspond to the auxiliary pillars 72 , so that the positioning components can position and support the building.
  • the circumferential stop structure 32 performs circumferential positioning of the auxiliary pillar 72, which increases the support stability of the positioning unit for the auxiliary pillar 72, thereby reducing the position change of the building.
  • the quantity is convenient for the follow-up construction to find the type.
  • the positioning assembly includes a plurality of target positioning unit groups, and the target positioning unit group includes four target positioning units.
  • the target positioning unit is symmetrically arranged in a cross shape with respect to the center of the building ring beam.
  • the target positioning unit group includes a first target positioning unit group; the first target positioning unit group includes a first target positioning unit.
  • each target positioning unit group includes four target positioning units
  • the four target positioning units are respectively the first target positioning unit, the second target positioning unit, the third target positioning unit and the fourth target positioning unit, and the first target positioning unit and the second target positioning unit are relatively set , the first target positioning unit and the second target positioning unit are located on a first straight line, the first straight line passing through the center of the construction ring beam 6, the third target positioning unit and the The fourth target positioning units are disposed opposite to each other, the third target positioning unit and the fourth target positioning unit are located on a second straight line, and the second straight line passes through the center of the construction ring beam 6 .
  • the unloading method of the positioning assembly includes:
  • a jacking mechanism is used to push the auxiliary pillar 72 in the circumferential direction of the building, so as to make way for the circumferential backing plate 322 on the circumferential stop structure 32
  • the annular backing plate 322 on the annular stop structure 32 is pulled out, so as to realize the unloading of the annular backing plate 322 .
  • a jacking mechanism is used to push the auxiliary pillar 72 in the radial direction of the building, so as to leave the unloading space of the radial backing plate 312 on the radial stop structure 31, and to extract the radial stop structure
  • the radial backing plate 312 on the radial stop structure 31 can be unloaded.
  • a jacking mechanism is used to push the bottom of the support beam 1 in the vertical direction to free up the unloading space of the first backing plate 11 , and the first backing plate 11 is pulled out to realize the first backing plate 11 unloading, here, the first backing plate 11 is a vertical backing plate.
  • the jacking mechanism can be any one of a hydraulic jack, an electric jack or a screw jack.
  • the annular stop structure 32, the radial stop structure 31 and the support beam 1 of the other three target positioning units in the target positioning unit group are unloaded in sequence, In order to realize the unloading of a target positioning unit group.
  • the four target positioning units in the positioning assembly are unloaded synchronously to avoid excessive deformation of the annular building caused by asymmetric unloading.
  • the positioning assembly includes a plurality of target positioning unit groups, and the target positioning unit group includes four target positioning units, and the target positioning units are related to the construction ring.
  • the center of the beam is symmetrically arranged in a cross shape, which avoids excessive deformation of the building caused by asymmetric unloading of the target positioning unit.
  • the horizontal displacement space of the building can be freed. Bending deformation occurs under the blocking of the stopper structure 3, and on the other hand, it can prevent the building from bending and deforming to push the positioning unit, causing a potential safety hazard.
  • the radial stop structure 31 is used for the radial positioning of the auxiliary pillars 72 and the circumferential stop structure 32 is used for the circumferential positioning of the auxiliary pillars 72 , the hoop stress of the building is less than Tangential stress, in the unloading process of the stopper structure 3, by first unloading the annular stopper structure 32, and then unloading the radial stopper structure 31, it is possible to ensure that the unloading step by step Safety, reducing the position type variation of the building, and facilitating subsequent construction type finding.
  • the unloading of the annular stop structure 32 and the radial stop structure 31 of the target positioning unit includes performing multi-stage separation on the annular stop structure 32 and the radial stop structure 31 respectively.
  • Step-by-step unloading the multi-level step-by-step unloading of the stopper structure gradually removes the different second pads in the order of the unloading amount from small to large;
  • the multi-level and step-by-step unloading of the support beam gradually removes the different first pads 11 according to the order of the unloading amount from small to large.
  • the unloading of the annular stop structure 32 is carried out in four steps.
  • the first step is to use the jacking mechanism to push the auxiliary pillar 72 in the circumferential direction of the building, so that the auxiliary pillar 72 is separated from the radial pad on the annular stop structure 32 by 2mm, and a 10mm thick Circumferential backing plate 322 is then put into a 6 mm thick spare backing plate, and the jack is lowered to complete the first step of 4 mm unloading of the circumferential stop structure 32 .
  • the second step use the jacking mechanism to push the auxiliary pillar 72 in the circumferential direction of the building, so that the auxiliary pillar 72 is separated from the annular backing plate on the annular stop structure 32 by 2mm, and a 6mm thick Back up the backing plate and drop the jack to complete the second step of 6mm unloading of the annular stop structure 32 .
  • the third step is to use the jacking mechanism to push the auxiliary pillar 72 in the circumferential direction of the building, so that the auxiliary pillar 72 is separated from the annular backing plate on the annular stop structure 32 by 2 mm, and the ring is pulled out.
  • a piece of annular backing plate 322 on the stopper structure 32 is lowered back down the jacking mechanism to realize the third step of 10mm unloading of the annular stopper structure 32 .
  • the fourth step is to complete the multi-level and step-by-step unloading of all stopper structures.
  • the unloading of the radial stop structure 31 is similar.
  • the unloading of the support beam 1 includes the step-by-step unloading of the support beam 1.
  • the multi-level and step-by-step unloading of the support beam 1 gradually unloads the first pad according to the order of the unloading amount from small to large. Plate 11 is removed.
  • the unloading of the support beam 1 is performed in four steps.
  • the unloading amount of the three steps is: 6mm, 8mm, 10mm.
  • the first step is to use the jacking mechanism to push the support beam 1 in the vertical direction, so that the support beam 1 is separated from the first backing plate by 2mm, take out the 20mm thick first backing plate, put in a 14mm thick spare backing plate, and return it to the
  • the lifting mechanism completes the first step of 6mm unloading of the support beam 1 .
  • the second step use the jacking mechanism to push the support beam 1 in the vertical direction, so that the support beam 1 is separated from the first backing plate by 2mm, take out a 14mm thick spare backing plate, put in a 6mm thick backing plate, and drop the backing plate.
  • the jacking mechanism completes the second step of 8mm unloading of the support beam 1.
  • the fourth step is to complete the unloading of all the remaining first pads 11 .
  • the advantage of this arrangement is that by gradually removing the second backing plate according to the order of the unloading amount from small to large, the multi-level and step-by-step unloading of the stopper structure 3 is realized.
  • the unloading process by gradually increasing the unloading amount of the stopper structure 3, on the one hand, it can avoid the deformation of the building caused by the rapid increase of the stress of the building caused by the excessive unloading amount after the unloading is in place, and the other
  • a balance can be achieved to improve construction efficiency, and multiple monitoring and deviation corrections can be performed to ensure the safety and stability of unloading construction.
  • the multi-level and step-by-step unloading of the support beam 1 is realized.
  • the excessive unloading amount causes the stress of the building to increase sharply and cause the deformation of the building.
  • step S1 it includes: using a computer to simulate and analyze the stress and/or strain of the main steel structure during the unloading construction process, and determine the minimum impact of unloading on the stress and/or strain of the main steel structure.
  • the unloading sequence of each positioning unit; the unloading sequence of each positioning device in three directions is determined based on the principle of the unloading amount from small to large; the unloading times of vertical grading unloading and the unloading times of each positioning device are determined based on the principle of efficient and reliable unloading. number of uninstalls.
  • the simulation is carried out according to the final unloading sequence, and the theoretical value and/or the theoretical change value of the stress and/or strain unloaded in each step is determined.
  • the method for unloading the positioning assembly further includes: acquiring stress information and/or strain information of the annular building and the positioning assembly; when the stress information is greater than a preset stress value and/or the strain information When the strain value is greater than the preset strain value, the three-dimensional scanner is used to obtain the displacement information of the annular building and the positioning assembly; when the displacement information exceeds the first preset displacement value, the radial stop structure 31, The unloading amount of the annular stop structure 32 and the support beam 1 .
  • the acquiring the stress information of the annular building and the positioning assembly includes: disposing a stress sensor at a target position on the annular building and the positioning assembly, and periodically acquiring the stress information of the stress sensor.
  • all the building support columns 7 and the building ring beams 6 are divided into four quadrants, and stress sensors are arranged at the top and middle of all the building support columns 7 in any quadrant.
  • a stress sensor is arranged at the position corresponding to the building ring beam 6 and the building support column 7.
  • the stress sensor may be a vibrating wire sensor, and the acquisition period of the stress information is between 5-12 minutes.
  • the stress acquisition period can be 5min, 6min, 8min, 10min or 12min.
  • the stress sensor arrangement target position corresponds to the positioning unit.
  • Acquiring the strain information of the annular building and the positioning assembly includes: arranging a strain tester at a preset position, and acquiring the strain information of the target position at a preset time.
  • the target positions are: both ends of the ring beam unit corresponding to the positioning unit, the building support column 7 corresponding to the positioning unit, and the target positioning unit.
  • the preset time is before unloading and after unloading of each step in the multi-level and step-by-step unloading of the positioning unit.
  • the strain tester is a total station, a 3D scanner, a ruler, and the like.
  • the stress and strain information of the annular building is still within a safe range, and the next step in the multi-level step-by-step unloading process is maintained.
  • Unload amount and unload order For example, in the unloading process of the support beam 1, the unloading of the support beam 1 is performed in four steps, and the unloading amount of the four steps is 6mm, 8mm, 10mm and the remaining unloading amount in sequence. After the first step of 6mm unloading is completed, the stress information is less than the preset stress value and the strain information is less than the preset strain value, and the second step of 8mm unloading is performed.
  • the preset stress value and the preset strain value are preset stress values and preset strain values for safe construction obtained by performing Midas simulation analysis of stress and strain according to a theoretical construction model.
  • a three-dimensional scanner is used to acquire the displacement information of the annular building and the positioning assembly.
  • the unloading of the support beam 1 is performed in four steps, and the unloading amounts of the four steps are: 6mm, 8mm, 10mm and the remaining unloading amount.
  • the stress information is greater than the preset stress value or the strain information is greater than the preset strain value, and the building may have been greatly deformed.
  • start the 3D scanner to obtain the The actual model of the building is compared with the construction model drawing to obtain the actual position deformation information of the building, so as to avoid excessive errors or structural instability.
  • the actual stress value and/or the actual stress difference value of the main steel structure is collected in real time by using the sensor of the stress monitor, the monitoring data is analyzed and processed through the cloud platform, and the theoretical value and/or the theoretical difference value is compared with the theoretical value and/or the theoretical difference value. Automatic comparison realizes real-time monitoring of unloading stress, and automatic warning is performed when the stress information exceeds the preset strain value.
  • the displacement information exceeds the first preset displacement value
  • the unloading amount of the annular stop structure 32 and the radial stop structure 31 is reduced, and the unloading amount of the support beam 1 is reduced.
  • the displacement information exceeds the first preset displacement value, it means that the actual displacement of the annular building has exceeded the preset value, but is still within a controllable safety range.
  • the influence of the unloading displacement of the building on the shape-finding of the subsequent construction needs to be reduced in the next step of the unloading amount of the annular backing plate 322 or the radial backing plate 312 during the multi-level step-by-step unloading process of the stop structure, and the supporting beams need to be reduced. 1.
  • the unloading amount of the first pad 11 in the multi-level and step-by-step unloading process so as to slow down the unloading deviation of the building.
  • the first preset displacement value is 20mm
  • the unloading of the support beam 1 is performed in four steps
  • the unloading amount of the four steps is: 6mm, 8mm, 10mm and all remaining uninstalls.
  • the stress information is greater than the preset stress value or the strain information is greater than the preset strain value
  • the displacement information of the annular building and the positioning assembly is greater than the first preset displacement value , change the unloading amount of the second step to 7mm.
  • the annular building is still within a safe range, maintaining the unloading amount in the multi-level and step-by-step unloading process, and maintaining the multi-level and step-by-step unloading of the support beam The amount of unloading in the process.
  • the unloading of the current target positioning unit group is stopped,
  • the preferred positioning unit is unloaded, wherein the preferred positioning unit is located between two adjacent target positioning units, and the preferred positioning unit is a positioning unit that is re-determined according to the stress-strain simulation result of the Midas software.
  • the advantage of this setting is that when the displacement information exceeds the second preset displacement value, by unloading the preferred positioning unit, the preferred positioning unit has been re-determined by the stress-strain simulation results of the Midas software, and further optimized The unloading overrun effect is brought about by the unloading sequence.
  • the method further includes: using a three-dimensional scanner and a total station to measure the position pattern, and compare and analyze the theoretical position pattern and the change of the theoretical position pattern before and after unloading.
  • the stress is monitored by a stress monitor, and compared with the theoretical stress and the theoretical stress change before and after unloading, so as to check the quality of unloading construction and guide the next construction accordingly.
  • using a three-dimensional scanner to obtain the displacement information of the annular building and the positioning unit includes: obtaining a construction drawing model of the annular building and the positioning unit; The positioning unit performs three-dimensional scanning to determine the point cloud data at the first moment; the positioning unit and the positioning unit are three-dimensionally scanned at the second moment to determine the point cloud data at the second moment, wherein the second moment is at the second moment.
  • the positioning unit determines a second displacement difference between the point cloud data at the second moment and the construction drawing model; determines the annular building and the positioning unit according to the first displacement difference and the second displacement difference The displacement information between the first time and the second time of the set part.
  • a construction drawing model of the annular building and the positioning unit is obtained.
  • the BIM model of the annular building and the positioning unit is established by using Midas software, and according to the completed model established by Midas, Tekla software is used to establish a detailed conversion of the BIM model into a construction drawing BIM model IFC (Issue for Construction, construction drawing), the design accuracy of the model development level is LOD350, which is the final state after completion.
  • the IFC model is converted into Navisworks' .NWC format by Revit software, it can be used as a benchmark reference model.
  • the annular building and the positioning unit are three-dimensionally scanned at the first moment to determine point cloud data at the first moment.
  • the annular building and the positioning unit are three-dimensionally scanned at a second time point to determine point cloud data at a second time point, wherein the second time point is subsequent to the first time point.
  • two time points are set to monitor and compare the location type changes of the annular building and the positioning unit.
  • the annular building and the positioning unit are scanned by a high-precision 3D scanner to obtain on-site scan data, and the acquired scan data is processed, registered, point cloud generated and processed by the scanner software Scene. Crop to get the point cloud data at the first moment. Similarly, point cloud data at the second moment can be obtained.
  • a FARO S350 type scanner is selected. The ranging error of the scanner within 350 meters is only 1 mm, and the angular accuracy reaches 19 arc seconds.
  • the three-dimensional position accuracy reaches 3.5 mm, and the maximum measurement speed is 3.5 mm. Up to 976000pts/sec.
  • the scanner software Scene Before scanning, it is necessary to use the scanner software Scene to perform On-Site Compensation on the scanner, that is, to check and calibrate the corner accuracy to improve the reliability of the scanned data. Before scanning, it is necessary to set various parameters of the scanner. Based on the scanning object, distance and accuracy requirements, select the scanning resolution as 1/4 and the quality as 4x, turn on the inclinometer, and take a panoramic color photo.
  • scanning it is necessary to use a checkerboard target, and use a total station to measure its three-dimensional coordinates to establish a spatial coordinate system.
  • a first displacement difference between the point cloud data at the first moment and the construction drawing model is determined for the annular building and the set position of the positioning unit.
  • a second displacement difference between the point cloud data at the second moment and the construction drawing model is determined for the annular building and the set position of the positioning unit.
  • the position type difference between the first moment and the second moment of the annular building and the set part of the positioning unit is determined.
  • a reference model needs to be borrowed.
  • the model integration software NavisWorks is used to integrate the point cloud data at the first moment and the point cloud data at the second moment respectively with the construction drawing IFC reference model of the steel structure. Since the point cloud data and the IFC model use a unified coordinate system, they can be automatically aligned when integrated in the NavisWorks software, eliminating the need for additional alignment operations.
  • the displacement difference between the point cloud data at the first moment and the second moment and the IFC reference model is obtained respectively, and then the difference between the point cloud data at the first moment and the point cloud data at the second moment is obtained. Bit type difference.
  • Midas software is used to establish BIM models for each stage of steel structure construction, including the BIM models at the first and second moments, and the midas software is used to simulate and calculate the difference between the BIM models at these two moments.
  • the theoretical displacement difference is used as the preset position difference limit. If the positional difference obtained in the step exceeds the preset positional difference limit, the positional difference of the steel structure between the two moments exceeds the limit.
  • the invention combines and innovates the 3D laser scanning technology and the BIM technology, and provides a monitoring method for steel structure construction based on the 3D scanning technology.
  • 3D scanning technology refers to the technology of scanning the spatial shape, structure and color of an object to obtain the spatial coordinates of the object surface. quite convenient and quick way.
  • Three-dimensional scanning technology can realize non-contact measurement, and has the advantages of high speed and high precision.
  • BIM technology integrates all relevant information of a construction project into a 3D visualization model for interactive management and collaborative work by all participants, which can improve work efficiency, save resources, and improve the refinement of project management. In many application scenarios, BIM is an important carrier for feedback information and ultimately to guide on-site construction.
  • the monitoring method provided by the invention breaks through the limitation that traditional monitoring methods can only perform single-point measurement, can monitor the displacement change of any point, has high monitoring accuracy, efficient and convenient monitoring, does not require high-altitude operations, and reduces the interaction between other construction operations. interference.
  • the invention adopts a high-precision 3D laser scanner, and the formed point cloud data can be visually displayed and digitally stored, and the point cloud data can be compared and measured with the BIM model of the construction drawing through the integration software, so as to provide accurate data for the stress and strain analysis of the annular building , so as to ensure the reliability of the quality control of the annular building construction.

Abstract

一种定位装置、定位单元、定位组件及定位组件的卸载方法,其中,定位装置包括支撑梁(1)、至少一个第一垫板(11)和多个止挡结构(3),第一垫板(11)垫设于支撑梁(1)的下方,止挡结构(3)与支撑梁(1)连接,所有止挡结构(3)合围形成定位部;定位单元包括多个定位装置、塔架(5),塔架(5)上设置有两个限位柱(4),两个限位柱(4)位于支撑梁(1)的相对两侧对支撑梁(1)限位;定位组件包括多个定位单元,应用于环形建筑,对环形建筑的辅助支柱(72)进行定位;定位组件的卸载方法,依次对目标单元组进行卸载,以完成定位组件的卸载。该定位装置、定位单元、定位组件及定位组件的卸载方法增加了支撑稳定性,从而降低了建筑物的位型变化量,便于后续的施工找型。

Description

定位装置、定位单元、定位组件及定位组件的卸载方法 技术领域
本发明涉及建筑技术领域,具体而言,涉及一种定位装置、定位单元、定位组件及定位组件的卸载方法。
背景技术
在大跨度建筑物的施工过程中,需要搭建临时支撑结构来支撑主体结构。在主体结构施工完成后,还要对临时支撑结构进行卸载。由于临时支撑结构通常仅能实现对主体结构的竖向支撑,当主体结构的内应力发生变化时,临时支撑结构难以限定主体结构的水平方向位移,导致主体结构的位型变化幅度过大,对后续的施工找型造成麻烦。
发明内容
本发明解决的问题是如何降低主体结构的位型变化量。
为解决上述问题,本发明提供一种定位装置,用于建筑支撑柱的定位和支撑,所述建筑支撑柱包括辅助支柱,所述定位装置包括支撑梁、至少一个第一垫板和多个止挡结构,所述第一垫板垫设于所述支撑梁的下方,所述支撑梁用于支撑所述辅助支柱,所述止挡结构与所述支撑梁连接,所有所述止挡结构合围形成定位部,所述定位部适于所述辅助支柱水平方向的定位。
可选地,所述止挡结构包括止挡件和多个第二垫板,所述止挡件与所述支撑梁连接,所述第二垫板分别与所述辅助支柱和所述止挡件贴合。
可选地,所述定位装置还包括多个备用垫板,所述备用垫板的厚度不同,且所述备用垫板的厚度小于所述第一垫板或所述第二垫板的厚度。
与现有技术相比,本发明所述的定位装置所具有的有益效果是:
当所述建筑物的内应力发生变化时,本发明通过所述支撑梁支撑所述辅助支柱,所述止挡结构与所述支撑梁连接,所有所述止挡结构合围形成定位部,使所述止挡结构可以限定所述辅助支柱水平方向的位移,实现了所述辅助支柱水平方向的定位,增加了所述定位装置对所述建筑物的支撑稳定性,从而降低了所述建筑物的位型变化量,便于后续的施工找型。通过所述第一垫板位于所述支撑梁下方,在所述支撑梁的卸载过程中,仅需将所述第一垫板抽出便可实现所述第一垫板的卸载,从而便于所述第一垫板的卸载。
本发明还提供一种定位单元,包括多个如上所述的定位装置,所述定位单元还包括塔架,所述塔架上设置有两个限位柱,两个所述限位柱位于所述支撑梁的相对两侧,所述限位柱上开设有定位槽,所述定位槽沿竖直方向设置,所述支撑梁上设置有滑块,所述滑块与所述定位槽侧壁贴合,且所述滑块适于沿所述滑槽滑动。
与现有技术相比,本发明所述的定位单元所具有的有益效果是:
本发明通过两个所述限位柱位于所述支撑梁的相对两侧,所述限位柱上开设有定位槽,所述滑块与所述定位槽贴合,使所述定位槽可以限制所述支撑梁的水平位移,可以避免在所述支撑梁竖向卸载过程中,所述辅助支柱推动所述支撑梁产生水平位移,进而使所述支撑梁的卸载过程中更为稳定、安全。
本发明还提供一种定位组件,包括多个上所述的定位单元,应用于环形建筑,所述环形建筑包括建筑环梁和多个所述建筑支撑柱,所有所述建筑支撑柱沿所述建筑环梁的周向设置,所述定位单元的位置分别与所述建筑支撑柱的辅助支柱相对应,径向止挡结构用于所述辅助支柱沿所述建筑环梁径向的定位,环向止挡结构用于所述辅助支柱沿所述建筑环梁环向的定位。
与现有技术相比,本发明所述的定位组件所具有的有益效果是:
当所述建筑物的内应力发生变化时,本发明通过所述建筑支柱沿所述建筑环梁的周向设置,所述定位单元与所述辅助支柱相对应,实现了所述定位单元对所述建筑物的定位和支撑,通过所述径向止挡结构对所述辅助支柱进行径向的定位,所述环向止挡结构对所述辅助支柱进行环向的定位,增加了所述定位单元对所述辅助支柱的支撑稳定性,从而降低了所述建筑物的位型变化量,便于后续的施工找型。
本发明还提供一种定位组件的卸载方法,应用于如上所述的定位组件,所述定位组件包括多个目标定位单元组,所述目标定位单元组包括四个目标定位单元,所述目标定位单元关于建筑环梁的中心呈十字形对称设置,所述目标定位单元组包括一第一目标定位单元组;所述第一目标定位单元组包括一第一目标定位单元,所述定位组件的卸载方法包括:依次对所述第一目标定位单元的止挡结构和支撑梁进行卸载以实现对所述第一目标定位单元的 卸载,其中,对所述止挡结构进行卸载包括依次对环向止挡结构和径向止挡结构进行卸载;和/或,依次同步对所述第一目标定位单元组中所有的所述目标定位单元进行卸载,以实现对所述第一目标定位单元组的卸载;依次对其他所述目标单元组进行卸载,以完成所述定位组件的卸载。
可选地,对目标定位单元的环向止挡结构和径向止挡结构进行卸载包括分别对所述环向止挡结构和所述径向止挡结构进行止挡结构多级分步卸载,所述止挡结构多级分步卸载按照卸载量从小到大的顺序逐步对不同的所述第二垫板进行拆除;所述对所述支撑梁进行卸载包括对所述支撑梁进行支撑梁多级分步卸载,所述支撑梁多级分步卸载按照卸载量从小到大的顺序逐步对不同的所述第一垫板进行拆除。
可选地,所述定位组件的卸载方法还包括:获取所述环形建筑和所述定位组件的应力信息和/或应变信息;当所述应力信息大于预设应力值和/或所述应变信息大于预设应变值时,采用三维扫描仪获取所述环形建筑和所述定位组件的位移信息;当所述位移信息超出第一预设位移值时,减小所述环向止挡结构、所述径向止挡结构和所述支撑梁的卸载量。
可选地,当所述位移信息超出第二预设位移值时,其中,所述第二预设位移值大于所述第一预设位移值,停止对当前所述目标定位单元组的卸载,对择优对定位单元进行卸载,其中,所述择优定位单元位于相邻的两个所述目标定位单元之间,所述择优定位单元为根据Midas软件的应力应变模拟结果重新确定所得的定位单元。
可选地,采用三维扫描仪获取所述环形建筑和所述定位单元的位移信息,包括:获取所述环形建筑和所述定位单元的施工图模型;在第一时刻对所述环形建筑和所述定位单元进行三维扫描以确定第一时刻点云数据;在第二时刻对所述定位单元和所述定位单元进行三维扫描以确定第二时刻点云数据,其中,所述第二时刻在所述第一时刻之后;针对所述主体结构和所述临时支撑结构的设定部位确定所述第一时刻点云数据与所述施工图模型之间的第一位移差;所述环形建筑和所述定位单元确定所述第二时刻点云数据与所述施工图模型之间的第二位移差;根据所述第一位移差和所述第二位移差确定环形建筑和定位单元的所述设定部位的所述第一时刻与所述第二时刻之间 的位移信息。
与现有技术相比,本发明所述的定位组件的卸载方法具有的有益效果是:
在所述定位组件的卸载过程中,本发明通过所述定位组件包括多个目标单元组,所述目标单元组包括四个目标定位单元,所述目标定位单元关于建筑环梁的中心呈十字形对称设置,避免了所述目标定位单元不对称卸载引起的所述建筑物的变形过大。在所述支撑梁卸载的过程中,通过先卸载所述止挡结构再卸载所述支撑梁,一方面可以避免所述环形建筑物在所述止挡结构的阻挡下产生弯曲变形,另一方面可以避免所述环形建筑产生下挠变形而推动所述定位单元,造成安全隐患。由于所述径向止挡结构用于所述辅助支柱的径向定位,所述环向止挡结构用于所述辅助支柱的环向定位,所述建筑物的环向应力小于径向应力,在所述止挡结构的卸载过程中,通过先进行所述环向止挡结构的卸载,然后再进行所述径向止挡结构的卸载,可以保证分步卸载的安全性,降低所述建筑物的位型变化量,便于后续的施工找型。
附图说明
图1为本发明实施例中的定位单元的结构示意图;
图2为本发明图1中的A处结构放大示意图;
图3为本发明实施例中的定位组件的结构示意图;
图4为本发明实施例中的环形建筑的结构示意图;
图5为本发明实施例中的定位组件的卸载方法流程图。
附图标记说明:
1-支撑梁,11-第一垫板,12-垫板支撑柱,14-滑块;3-止挡结构,31-径向止挡结构,32-环向止挡结构,311-径向止档件,312-径向垫板;321-环向止挡件;322-环向垫板;4-限位柱,41-定位槽;5-塔架;6-建筑环梁;7-建筑支撑柱;72-辅助支柱。
具体实施方式
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
在本说明书的描述中,参考术语“实施例”、“一个实施例”和“一个实施方式”等的描述意指结合该实施例或实施方式描述的具体特征、结构、 材料或者特点包含于本实用新型的至少一个实施例或示实施方式中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实施方式。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或实施方式以合适的方式结合。
本发明实施例的一种定位装置,用于建筑支撑柱7的定位和支撑,所述建筑支撑柱7包括辅助支柱72,所述定位装置包括支撑梁1、多个第一垫板11和多个止挡结构3,所述第一垫板11位于所述支撑梁1下方,所述支撑梁1用于支撑所述辅助支柱72,所述止挡结构3与所述支撑梁1连接,所有所述止挡结构3合围形成定位部,所述定位部适于所述辅助支柱72水平方向的定位。
如图1至图4所示,所述建筑物包括建筑环梁6,所述建筑支撑柱7的一端与所述建筑环梁6焊接,所述建筑支撑柱7的另一端通过支座固定于钢筋混凝土柱中。所述建筑支撑柱7包括支撑柱本体和辅助支柱72,所述辅助支柱72呈现为方形柱体结构,所述辅助支柱72与所述支撑柱本体焊接,所述支撑柱本体呈现为V型结构,所述辅助支柱72与所述支撑柱本体的相对两侧壁连接。
所述定位单元包括塔架5,所述塔架5包括第一端部、工作平台和垫板支撑柱12,所述第一端部与地面螺栓紧固连接,所述垫板支撑柱12与所述工作平台的上端面焊接,所述第一垫板11位于所述垫板支撑柱12和所述支撑梁1之间,所述第一垫板11分别与所述垫板支撑柱12和所述支撑梁1贴合。由此,通过所述第一垫板11位于所述垫板支撑柱12和所述支撑梁1之间,使所述垫板支撑柱12可以支撑所述第一垫板11,减少了所述第一垫板11的使用数量,同时增加了竖向支撑的稳定性。
在另一种实施方式中,所述第一垫板11有多个,多个所述第一垫板11依次叠合。本实施例对所述第一垫板11的厚度不进行限定,具体地,所述第一垫板11的厚度可以为2mm、4mm、6mm、14mm或20mm。由此,在所述支撑梁1的卸载过程中,通过设置多个所述第一垫板11,多个所述第一垫板11依次叠合,可以依次卸载一个或多个所述第一垫板11,从而增加了所述支撑梁1卸载量的选择,使所述支撑梁1的卸载更为灵活。
所述支撑梁1的上端面与所述辅助支柱72的下端面贴合,所述支撑梁1通过所述辅助支柱72实现对所述建筑支撑柱7竖直方向上的支撑。每个定位单元需要定位的支撑梁1有四个,四个所述支撑梁1设置于所述工作平台的四个角上,所述止挡结构3分别在每个所述支撑梁1上合围形成定位部。所述止挡结构3为挡板,所述挡板有四个,四个所述挡板分别与所述支撑梁1的上端面焊接,四个所述挡板合围形成定位部,所述定位部呈现为通槽结构,所述辅助支柱72插设于所述定位部内。
这样设置的好处在于,当所述建筑物的内应力发生变化时,通过所述支撑梁1支撑所述辅助支柱72,所述止挡结构3与所述支撑梁1连接,所有所述止挡结构3合围形成定位部,使所述止挡结构3可以限定所述辅助支柱72在环向和径向的位移,实现了所述辅助支柱72水平方向的定位,增加了所述定位装置对所述建筑物的支撑稳定性,从而降低了所述建筑物的位型变化量,便于后续的施工找型。通过所述第一垫板11位于所述支撑梁1下方,在所述支撑梁1的卸载过程中,仅需将所述第一垫板11抽出便可实现所述第一垫板11的卸载,从而便于所述第一垫板11的卸载。
如图1、图2所示,所述止挡结构3包括止挡件和多个第二垫板,所述止挡件与所述支撑梁1连接,所述第二垫板分别与所述辅助支柱72和所述止挡件贴合。
在一种实施方式中,所述止挡件为挡板,所述止挡件与所述支撑梁1焊接,所述第二垫板位于所述止挡件和所述辅助支柱72之间,所述第二垫板的一端面与所述辅助支柱72的外侧壁贴合,所述第二垫板的另一端面与所述止挡件贴合。
在另一种实施方式中,所述第二垫板有多个,多个所述第二垫板依次叠合,本实施例对所述第二垫板的厚度不进行限定,具体地,所述第二垫板厚度可以为2mm、4mm、6mm、10mm、14mm或20mm。由此,在所述环向和径向卸载过程中,通过设置多个所述第二垫板,多个所述第二垫板依次叠合,可以依次卸载一个或多个所述第二垫板,从而增加了所述第二垫板的卸载量的选择,使所述第二垫板的卸载更为灵活。
在另一种实施方式中,所述止挡结构包括径向止挡结构31和环向止挡 结构32,所述径向止挡结构31包括径向止挡件311和径向垫板312,所述径向垫板312分别与所述径向止挡件311和所述辅助支柱72贴合,所述环向止挡结构32包括环向止挡件321和环向垫板322,所述环向垫板322分别与所述环向止挡件321和所述辅助支柱72贴合。
由此,通过所述止挡件与所述支撑梁1连接,使所述止挡件可以限定所述第二垫板和所述辅助支柱72的水平向位移,通过所述第二垫板分别与所述辅助支柱72和所述止挡件贴合,仅需将所述第二垫板抽出便可实现环向和径向卸载,进而便于水平向卸载。
所述定位装置还包括多个备用垫板,所述备用垫板的厚度不同,且所述备用垫板的厚度小于所述第一垫板11或所述第二垫板的厚度。
需要说明的是,在所述定位装置的卸载过程中,当所述第一垫板11抽出后,采用所述备用垫板垫设于所述支撑梁1的下方,当所述第二垫板抽出后,采用所述备用垫板垫设于所述止挡结构3和所述辅助支柱72之间。所述备用垫板的厚度不同指的是,多个所述备用垫板之间的厚度互不相同,所述备用垫板的厚度介于2-25mm之间,具体地,所述备用垫板的厚度可以为:2mm、6mm、8mm、15mm或25mm。
由此,通过设置多个所述备用垫板,多个所述备用垫板的厚度不同,多个所述备用垫板的厚度小于所述第一垫板11或所述第二垫板的厚度,当所述第一垫板11卸载后,通过将所述备用垫板垫设于所述支撑梁1的下方,以对所述第一垫板11的竖向卸载量进行控制,使所述支撑梁1的卸载更为灵活;当所述第二垫板卸载后,通过将所述备用垫板垫设于所述挡板和所述辅助支柱之间,以对所述支撑梁1的水平向卸载量进行控制,使所述支撑梁1的水平卸载更为灵活。
在一种实施方式中,所述径向止挡件311和环向止挡件321之间间隔设置,使其留有一定避让空间,所述避让空间用于方便所述第二垫板的抽出,从而便于所述第二垫板的卸载。
在一种实施方式中,所述定位装置还包括第一滑板,所述第一滑板由低摩擦系数材料制成,例如,所述低摩擦系数材料可以为聚四氟乙烯材料。所述第一滑板位于所述支撑梁1和所述辅助支柱72之间,所述第一滑板包括 相对设置的第一表面和第二表面,所述第一表面贴合于所述辅助支柱72的下端面,所述第二表面贴合于所述支撑梁1的上端面。
由此,在所述第二垫板的卸载过程中,通过所述第一滑板位于所述支撑梁1和所述辅助支柱72之间,使所述第一滑板可以减小所述辅助支柱72与所述支撑梁1之间的水平方向摩擦力,一方面,便于所述第二垫板的卸载,另一方面,防止所述辅助支柱72刮伤所述支撑梁1。
在一种实施方式中,所述定位装置还包括第二滑板,所述第二滑板位于所述第二垫板和所述辅助支柱72之间,所述第二滑板包括相对设置的第一侧面和第二侧面,所述第一侧面贴合于所述辅助支柱72的侧面,所述第二侧面贴合于所述第二垫板。所述第二滑板由低摩擦系数材料制成,例如,所述低摩擦系数材料可以为聚四氟乙烯材料。
由此,在所述第二垫板的卸载过程中,通过所述第二滑板位于第二垫板和所述辅助支柱72之间,使所述第二滑板可以减小所述第二垫板与所述辅助支柱72之间的摩擦力,从而便于所述第二垫板的卸载。
如图1、图2所示,本发明另一实施例的一种定位单元,所示定位单元还包括塔架5,所述塔架5上设置有两个限位柱4,两个所述限位柱4位于所述定位装置的支撑梁1的相对两侧,所述限位柱4上开设有定位槽41,所述定位槽41沿竖直方向设置,所述支撑梁1上设置有滑块14,所述滑块14与所述定位槽41的侧壁贴合,且所述滑块14适于沿所述定位槽41滑动。
在一种实施方式中,所述限位柱4与所述塔架5焊接。所述支撑梁1包括支撑梁本体和两个滑块14,两个滑块14分别与所述支撑梁本体的相对两端连接。这样设置的好处在于,通过两个所述限位柱4位于所述支撑梁1的相对两侧,所述限位柱4上开设有定位槽,所述滑块14与所述定位槽41贴合,使所述定位槽41可以限制所述支撑梁1的水平位移,可以避免在所述支撑梁1竖向卸载过程中,所述辅助支柱72推动所述支撑梁1产生水平位移,进而使所述支撑梁1的卸载过程中更为稳定、安全。
在一种实施方式中,所述限位柱4包括限位块42,所述限位块42位于所述定位槽41内,所述限位块42上开设有第一通孔,所述滑块14上开设有第二通孔,螺栓紧固件穿过所述第一通孔和所述第二通孔以实现所述限位 块42和所述滑块14的连接。由此,通过所述限位块42与所述滑块14螺栓紧固连接,实现了所述滑块14在所述定位槽41的定位,防止所述支撑梁1在竖向卸载之前在所述定位槽41内滑动。
本发明另一实施例的一种定位组件,包括多个如上所述的定位单元,应用于环形建筑,所述环形建筑包括建筑环梁6和多个所述建筑支撑柱7,所有所述建筑支撑柱7沿所述建筑环梁6的周向设置,所述定位单元的位置分别与所述建筑支撑柱7的辅助支柱72相对应,径向止挡结构31用于所述辅助支柱72沿所述建筑环梁径向的定位,环向止挡结构32用于所述辅助支柱72沿所述建筑环梁6环向的定位。
在一种实施方式中,所述建筑环梁6呈现为马鞍型双曲面结构,所述建筑环梁6由多榀环梁单元拼接而成,每榀环梁单元对应两个所述建筑支撑柱7,所述建筑支撑柱7与所述建筑环梁6焊接,所述建筑支撑柱7呈现为V型结构,所述辅助支柱72设置于所述V型结构的外侧壁上,所述外侧壁指的是相邻的两个所述建筑支撑柱7的相对两侧壁。所述定位单元位于相邻的两个所述建筑支撑柱7之间。所述建筑支撑柱7共设置有八个,八个所述建筑支撑柱7沿所述建筑环梁6的环向方向设置,定位单元位于相邻的两个所述建筑支撑柱7之间。在一个支撑梁1上,所述径向止挡结构31共有两个,两个所述径向止挡结构31相对设置,所述环向止挡结构32共有两个,两个所述环向止挡结构32相对设置。
所述定位组件不仅具有所述定位单元所具有的有益效果,当所述建筑物的内应力发生变化时,所述定位组件还通过所述建筑支撑柱7沿所述建筑环梁6的周向设置,所述定位组件与所述辅助支柱72相对应,实现了所述定位组件对所述建筑物的定位和支撑,通过所述径向止挡结构31对所述辅助支柱72进行径向的定位,所述环向止挡结构32对所述辅助支柱72进行环向的定位,增加了所述定位单元对所述辅助支柱72的支撑稳定性,从而降低了所述建筑物的位型变化量,便于后续的施工找型。
本发明另一实施例的一种定位组件的卸载方法,应用于如上所述的定位组件,所述定位组件包括多个目标定位单元组,所述目标定位单元组包括四个目标定位单元,所述目标定位单元关于建筑环梁的中心呈十字形对称设置。 所述目标定位单元组包括一第一目标定位单元组;所述第一目标定位单元组包括一第一目标定位单元。
在一种实施方式中,所述定位单元共有二十四个,将二十四个所述定位单元划分成六个所述目标定位单元组,每个所述目标定位单元组包括四个目标定位单元,四个目标定位单元分别为第一目标定位单元、第二目标定位单元、第三目标定位单元和第四目标定位单元,所述第一目标定位单元和所述第二目标定位单元相对设置,所述第一目标定位单元和所述第二目标定位单元位于第一直线上,所述第一直线穿过所述建筑环梁6的中心,所述第三目标定位单元和所述第四目标定位单元相对设置,所述第三目标定位单元和所述第四目标定位单元位于第二直线上,所述第二直线穿过所述建筑环梁6的中心。
所述定位组件的卸载方法包括:
S1:依次对所述第一目标定位单元的止挡结构3和支撑梁1进行卸载以实现对所述第一目标定位单元的卸载,其中,对所述止挡结构3进行卸载包括依次对环向止挡结构32和径向止挡结构31进行卸载。
在S1中,在一个目标定位单元中,采用顶升机构沿所述建筑物的环向方向推动所述辅助支柱72,以让出所述环向止挡结构32上的环向垫板322的卸载空间,抽出所述环向止挡结构32上的环向垫板322,以实现对所述环向垫板322的卸载。采用顶升机构沿所述建筑物的径向方向推动所述辅助支柱72,以让出所述径向止挡结构31上的径向垫板312的卸载空间,抽出所述径向止挡结构31上的径向垫板312,以实现对所述径向止挡结构31上径向垫板312的卸载。采用顶升机构沿竖向方向推动所述支撑梁1的底部,以让出所述第一垫板11的卸载空间,将所述第一垫板11抽出,以实现所述第一垫板11的卸载,这里,所述第一垫板11为竖向垫板。所述顶升机构可以为液压千斤顶、电动千斤顶或螺旋千斤顶中的任意一种。
S2:和/或,依次同步对所述第一目标定位单元组中所有的所述目标定位单元进行卸载,以实现对所述第一目标定位单元组的卸载;
在S2中,在一种实施方式中,依次对所述目标定位单元组中的其它三个目标定位单元的环向止挡结构32、径向止挡结构31和所述支撑梁1进行 卸载,以实现对一个目标定位单元组的卸载。在另一种实施方式中,对所述定位组件中的四个所述目标定位单元进行同步卸载,避免不对称卸载对所述环形建筑造成过大的变形。
S3:依次对其他所述目标单元组进行卸载,以完成所述定位组件的卸载。
这样设置的好处在于,在所述定位组件的卸载过程中,通过所述定位组件包括多个目标定位单元组,所述目标定位单元组包括四个目标定位单元,所述目标定位单元关于建筑环梁的中心呈十字形对称设置,避免了所述目标定位单元不对称卸载引起的所述建筑物的变形过大。在所述支撑梁1卸载的过程中,通过先卸载所述止挡结构3再卸载所述支撑梁1,可以让出所述建筑物的水平位移空间,一方面,可以避免所述建筑物在所述止挡结构3的阻挡下产生弯曲变形,另一方面可以避免所述建筑物产生下挠变形而推动所述定位单元,造成安全隐患。由于所述径向止挡结构31用于所述辅助支柱72的径向定位,所述环向止挡结构32用于所述辅助支柱72的环向定位,所述建筑物的环向应力小于切向应力,在所述止挡结构3的卸载过程中,通过先进行所述环向止挡结构32的卸载,然后再进行所述径向止挡结构31的卸载,可以保证分步卸载的安全性,降低所述建筑物的位型变化量,便于后续的施工找型。
可选地,所述对目标定位单元的环向止挡结构32和径向止挡结构31进行卸载包括分别对所述环向止挡结构32和所述径向止挡结构31进行多级分步卸载,所述止挡结构多级分步卸载按照卸载量从小到大的顺序逐步对不同的所述第二垫板进行拆除;对所述支撑梁1进行卸载包括对所述支撑梁1进行多级分步卸载,所述支撑梁多级分步卸载按照卸载量从小到大的顺序逐步对不同的所述第一垫板11进行拆除。
例如,将所述环向止挡结构32的卸载分成四步进行。第一步,使用顶升机构沿所述建筑的环向方向推动所述辅助支柱72,使所述辅助支柱72脱离所述环向止挡结构32上的径向垫板2mm,抽出10mm厚的环向垫板322,然后放入6mm厚的备用垫板,回落千斤顶,完成所述环向止挡结构32的第一步4mm卸载。第二步,使用顶升机构沿所述建筑的环向方向推动所述辅助支柱72,使所述辅助支柱72脱离所述环向止挡结构32上的环向垫板2mm, 抽出6mm厚的备用垫板,回落千斤顶,完成所述环向止挡结构32的第二步6mm卸载。第三步,使用顶升机构沿所述建筑的环向方向推动所述辅助支柱72,使所述辅助支柱72脱离所述环向止挡结构32上的环向垫板2mm,抽出所述环向止挡结构32上的一片环向垫板322,回落顶升机构,实现所述环向止挡结构32的第三步10mm卸载。第四步,完成全部止挡结构的多级分步卸载。径向止挡结构31的卸载与此类似。
所述对所述支撑梁1进行卸载包括对所述支撑梁1进行支撑梁多级分步卸载,所述支撑梁多级分步卸载按照卸载量从小到大的顺序逐步对所述第一垫板11进行拆除。例如:将所述支撑梁1的卸载分四步进行。三步的卸载量依次为:6mm、8mm、10mm。第一步,使用顶升机构沿竖向方向推动所述支撑梁1,使支撑梁1脱离第一垫板2mm,取出20mm厚的第一垫板,放入14mm厚的备用垫板,回落所述顶升机构,完成所述支撑梁1的第一步6mm卸载。第二步,使用顶升机构沿竖向方向推动所述支撑梁1,使支撑梁1脱离第一垫板2mm,取出14mm厚的备用垫板,放入6mm厚的备用垫板,回落所述顶升机构,完成所述支撑梁1的第二步8mm卸载。第三步,取出一片第一垫板11,回落顶升机构,完成所述支撑梁1的20mm卸载。第四步,完成剩余的所有第一垫板11的卸载。
这样设置的好处在于,通过按照卸载量从小到大的顺序逐步对所述第二垫板进行拆除,实现了对所述止挡结构3的多级分步卸载,在所述止挡结构3的卸载过程中,通过逐步增大所述止挡结构3的卸载量,一方面,可以避免一步卸载到位后,由卸载量过大导致所述建筑物应力急剧增长引起所述建筑物变形,另一方面,可以在卸载效率和卸载质量之间达到平衡,以提高施工效率,并可以进行多次的监测和纠偏,保证卸载施工的安全性和稳定性。通过按照卸载量从小到大的顺序逐步对所述第一垫板11进行拆除,实现了对所述支撑梁1的多级分步卸载,通过逐步增大所述支撑梁1的卸载量,可以避免卸载量过大导致所述建筑物应力急剧增长而导致所述建筑物变形。
可选地,在步骤S1前包括:利用计算机对卸载施工过程中主体钢结构的应力和/或应变进行模拟分析,以卸载对主体钢结构的应力和/或应变的影响最小为原则,确定每个定位单元的卸载先后顺序;以卸载量由小到大为原 则,确定每个定位装置在三个方向上的卸载先后顺序;以卸载高效可靠为原则,确定竖向分级卸载的卸载次数和每次的卸载量。在三个维度的卸载顺序都确定后,按照最终拟定的卸载顺序进行仿真模拟,确定每一步卸载的应力和/或应变的理论值和/或理论变化值。
可选地,所述定位组件的卸载方法还包括:获取所述环形建筑和所述定位组件的应力信息和/或应变信息;当所述应力信息大于预设应力值和/或所述应变信息大于预设应变值时,采用三维扫描仪获取所述环形建筑和所述定位组件的位移信息;当所述位移信息超出第一预设位移值时,减小所述径向止挡结构31、所述环向止挡结构32和所述支撑梁1的卸载量。
获取所述环形建筑和所述定位组件的应力信息和/或应变信息。所述获取所述环形建筑和所述定位组件的应力信息包括:在所述环形建筑和所述定位组件上的目标位置上设置应力传感器,周期性地获取所述应力传感器的应力信息。在一种实施方式中,将所有所述建筑支撑柱7和所述建筑环梁6分成四个象限,在任意一个象限的所有建筑支撑柱7的顶部和中部设置应力传感器。在所述建筑环梁6与所述建筑支撑柱7相对应的位置布置应力传感器,所述应力传感器可以为振弦式传感器,应力信息的获取周期介于5-12min之间,具体地,所述应力获取周期可以为5min、、6min、8min、10min或12min。在另一种实施方式中,所述应力传感器布置目标位置与所述定位单元相对应。
获取所述环形建筑和所述定位组件的应变信息包括:在预设位置布置应变测试仪,在预设时间获取目标位置的应变信息。在一种实施方式中,所述目标位置为:与所述定位单元相对应的环梁单元的两端、与所述定位单元相对应的建筑支撑柱7和所述目标定位单元。所述预设时间为所述定位单元的多级分步卸载中的每一步的卸载前、卸载后。所述应变测试仪为全站仪、3D扫描仪、直尺等。
当所述应力信息小于预设应力值和所述应变信息小于预设应变值时,这时,所述环形建筑的应力应变信息仍处于安全范围内,维持多级分步卸载过程中下一步的卸载量和卸载顺序。例如,在所述支撑梁1的卸载过程中,将所述支撑梁1的卸载分四步进行,四步的卸载量依次为:6mm、8mm、10mm 和剩余全部卸载量。在完成第一步6mm的卸载后,所述应力信息小于预设应力值和所述应变信息小于预设应变值,进行第二步8mm卸载。需要说明的是,所述预设应力值和所述应变预设值为根据理论施工模型进行应力应变的Midas模拟分析所得到安全施工的预设应力值和预设应变值。
当所述应力信息大于预设应力值和/或所述应变信息大于预设应变值时,采用三维扫描仪获取所述环形建筑和所述定位组件的位移信息。例如,在所述支撑梁1的卸载过程中,将所述支撑梁1的卸载分四步进行,四步的卸载量依次为:6mm、8mm、10mm和剩余全部卸载量。在完成第一步6mm的卸载后,所述应力信息大于预设应力值或所述应变信息大于预设应变值,建筑物可能已经产生较大的变形,这时,启动三维扫描仪获取所述建筑物的实际模型,将所述建筑物的实际模型与施工模型图作对比,得到所述建筑物的实际位型变形信息,避免产生过大误差或结构失稳。
在一种实施方式中,利用应力监测仪的传感器实时采集主体钢结构的应力实际值和/或应力实际差值,通过云平台对监测数据进行分析处理,与理论值和/或理论差值进行自动对比,实现对卸载应力的实时监测,当所述应力信息超出预设应变值时进行自动预警。
当所述位移信息超出第一预设位移值时,减小所述环向止挡结构32、所述径向止挡结构31的卸载量,减小所述支撑梁1的卸载量。当所述位移信息超出第一预设位移值时,说明这时所述环形建筑物的实际位移量已超过预设值,但仍在可控的安全范围内,这时,为了降低所述环形建筑物的卸载位移对后续施工找型的影响,需要减小所述止挡结构多级分步卸载过程中环向垫板322或径向垫板312下一步的卸载量,减小所述支撑梁1多级分步卸载过程中的第一垫板11的卸载量,以减缓所述建筑物的卸载偏差。例如:在所述支撑梁1的卸载过程中,所述第一预设位移值为20mm,将所述支撑梁1的卸载分四步进行,四步的卸载量依次为:6mm、8mm、10mm和剩余全部卸载量。在完成第一步6mm的卸载后,所述应力信息大于预设应力值或所述应变信息大于预设应变值,且所述环形建筑和所述定位组件的位移信息大于第一位移预设值时,将第二步的卸载量改成7mm。
当所述实际位移量小于第一预设位移值时,这时,所述环形建筑仍处于 安全范围内,维持多级分步卸载过程中的卸载量,维持所述支撑梁多级分步卸载过程中的卸载量。
可选地,当所述位移信息超出第二预设位移值时,其中,所述第二预设位移值大于所述第一预设位移值,停止对当前所述目标定位单元组的卸载,对择优对定位单元进行卸载,其中,所述择优定位单元位于相邻的两个所述目标定位单元之间,所述择优定位单元为根据Midas软件的应力应变模拟结果重新确定所得的定位单元。
这样设置的好处在于,在所述位移信息超过第二预设位移值时,通过对所述择优定位单元进行卸载,所述择优定位单元已通过Midas软件的应力应变模拟结果重新确定,进而优化了由卸载顺序带来了卸载超限影响。
可选地,在步骤S3后还包括:采用三维扫描仪和全站仪对位型进行测量,与理论位型和卸载前后的理论位型变化量进行对比分析。利用应力监测仪对应力进行监测,并与理论应力和卸载前后的理论应力变化量进行对比分析,以检验卸载施工质量并据此指导下一步施工。
可选地,采用三维扫描仪获取所述环形建筑和所述定位单元的位移信息,包括:获取所述环形建筑和所述定位单元的施工图模型;在第一时刻对所述环形建筑和所述定位单元进行三维扫描以确定第一时刻点云数据;在第二时刻对所述定位单元和所述定位单元进行三维扫描以确定第二时刻点云数据,其中,所述第二时刻在所述第一时刻之后;针对所述主体结构和所述临时支撑结构的设定部位确定所述第一时刻点云数据与所述施工图模型之间的第一位移差;根据所述环形建筑和所述定位单元确定所述第二时刻点云数据与所述施工图模型之间的第二位移差;根据所述第一位移差和所述第二位移差确定述环形建筑和所述定位单元的所述设定部位的所述第一时刻与所述第二时刻之间的位移信息。
获取所述环形建筑和所述定位单元的施工图模型。在本发明实施例中,采用Midas软件建立所述环形建筑和所述定位单元的BIM模型,根据Midas建立的竣工后的模型,采用Tekla软件建立详细的将该BIM模型转换为施工图BIM模型IFC(Issue for Construction,施工图),模型发展等级设计精度为LOD350,为竣工后的最终状态。该IFC模型通过Revit软件转化为 Navisworks的.NWC格式后,可作为基准参考模型使用。
在第一时刻对所述环形建筑和所述定位单元进行三维扫描以确定第一时刻点云数据。
在第二时刻对所述环形建筑和所述定位单元进行三维扫描以确定第二时刻点云数据,其中,所述第二时刻在所述第一时刻之后。
在本发明实施例中,设定了两个时间点来对所述环形建筑和所述定位单元位型变化进行监测比较。在第一时刻,通过高精度3D扫描仪对所述环形建筑和所述定位单元进行扫描以获取现场扫描数据,并通过扫描仪软件Scene对获取的扫描数据进行处理、配准、点云生成与裁剪以得到第一时刻点云数据。同理,可得到第二时刻点云数据。在本发明实施例中,选用FARO S350型扫描仪,该扫描仪350米内测距误差仅为1mm,角精度达到19角秒,当测距为25米时三维位置精度达到3.5mm,最大测量速度达到976000pts/秒。在进行扫描前,需要利用扫描仪软件Scene对扫描仪进行现场补偿(On-Site Compensation),即对转角精度进行检查和校准,以提高扫描数据的可靠性。在进行扫描前,需对扫描仪各项参数进行设置,基于扫描对象、距离与精度要求,选取扫描分辨率为1/4、质量为4x,打开倾角仪,并拍摄全景彩色照片。在扫描时,需要使用棋盘板式标靶,使用全站仪对其三维坐标进行测量,以建立空间坐标系统。
针对所述环形建筑和所述定位单元的设定部位确定所述第一时刻点云数据与所述施工图模型之间的第一位移差。
针对所述环形建筑和所述定位单元的设定部位确定所述第二时刻点云数据与所述施工图模型之间的第二位移差。
根据所述第一位移差和所述第二位移差确定所述环形建筑和所述定位单元的所述设定部位的所述第一时刻与所述第二时刻之间的位型差值。
在本发明实施例中,由于点云数据之间难以进行位型对比,需借用参考模型。通过分别计算第一时刻点云数据和第二时刻点云数据与该参考模型的位移差值,进而得到第一时刻点云数据和第二时刻点云数据之间的位型差值。在本发明实施例中,采用模型整合软件NavisWorks将第一时刻的点云数据和第二时刻的点云数据分别与钢结构的施工图IFC参考模型进行整合。由于 点云数据和IFC模型采用了统一的坐标体系,在NavisWorks软件中整合时可自动对准,无需其他对准操作处理。利用NavisWorks的剖分工具和测量工具,分别得到第一时刻和第二时刻点云数据与该IFC参考模型的位移差值,进而得到第一时刻点云数据和第二时刻点云数据之间的位型差值。
比较所述位型差值与预设位型差限值以判断是否超限。在本发明实施例中,采用Midas软件建立钢结构施工各阶段的BIM模型,其中包括上述第一时刻和第二时刻的BIM模型,并在Midas软件中模拟计算这两个时刻的BIM模型之间的理论位移差,作为预设位型差限值。若步骤中得到的位型差值超过该预设位型差限值,则钢结构在这两个时刻之间的位型差超限。
本发明将3D激光扫描技术与BIM技术进行结合与创新,提供了一种基于三维扫描技术的钢结构施工的监测方法。三维扫描技术是指对物体空间外形和结构及色彩进行扫描,以获得物体表面的空间坐标的技术,其重要意义在于能够将实物的立体信息转换为计算机能直接处理的数字信号,为实物数字化提供了相当方便快捷的手段。三维扫描技术能实现非接触测量,且具有速度快、精度高的优点。BIM技术将建筑项目的所有相关信息都整合到三维可视化模型之中,供各参与方进行交互式管理和协同工作,可以提高工作效率和节省资源,可提升项目管理精细化程度。在很多应用场景中,BIM是反馈信息并最终实现指导现场施工的重要载体。
本发明提供的监测方法突破了传统监测手段只能进行单点测量的限制,可监测任意点位的位移变化,监测精度高,监测高效便捷,无需高空作业,且降低了对其他施工作业的相互干扰。本发明采用高精度3D激光扫描仪,形成的点云数据能够可视化展示和数字化存储,并可通过整合软件将点云数据与施工图BIM模型进行对比测量,为环形建筑应力应变分析提供精确的数据,从而保证了环形建筑施工质量控制的可靠性。
虽然本公开披露如上,但本公开的保护范围并非仅限于此。本领域技术人员在不脱离本公开的精神和范围的前提下,可进行各种变更与修改,这些变更与修改均将落入本发明的保护范围。

Claims (10)

  1. 一种定位装置,用于建筑支撑柱(7)的定位和支撑,所述建筑支撑柱(7)包括辅助支柱(72),其特征在于,所述定位装置包括支撑梁(1)、至少一个第一垫板(11)和多个止挡结构(3),所述第一垫板(11)垫设于所述支撑梁(1)的下方,所述支撑梁(1)用于支撑所述辅助支柱(72),所述止挡结构(3)与所述支撑梁(1)连接,所有所述止挡结构(3)合围形成定位部,所述定位部适于所述辅助支柱(72)水平方向的定位。
  2. 根据权利要求1所述的定位装置,其特征在于,所述止挡结构(3)包括止挡件和多个第二垫板,所述止挡件与所述支撑梁(1)连接,所述第二垫板分别与所述辅助支柱(72)和所述止挡件贴合。
  3. 根据权利要求2所述的定位装置,其特征在于,还包括多个备用垫板,所述备用垫板的厚度不同,且所述备用垫板的厚度小于所述第一垫板(11)或所述第二垫板的厚度。
  4. 一种定位单元,其特征在于,包括多个如权利要求1-3中任一所述的定位装置,所述定位单元还包括塔架(5),所述塔架(5)上设置有两个限位柱(4),两个所述限位柱(4)位于所述定位装置的支撑梁(1)的相对两侧,所述限位柱(4)上开设有定位槽(41),所述定位槽(41)沿竖直方向设置,所述支撑梁(1)上设置有滑块(14),所述滑块(14)与所述定位槽(41)的侧壁贴合,且所述滑块(14)适于沿所述定位槽(41)滑动。
  5. 一种定位组件,其特征在于,包括多个如权利要求4所述的定位单元,应用于环形建筑,所述环形建筑包括建筑环梁(6)和多个建筑支撑柱(7),所有所述建筑支撑柱(7)沿所述建筑环梁(6)的周向设置,所述定位单元的位置分别与所述建筑支撑柱(7)的辅助支柱(72)相对应,径向止挡结构(31)用于所述辅助支柱(72)沿所述建筑环梁(6)径向的支撑定位,环向止挡结构(32)用于所述辅助支柱(72)沿所述建筑环梁(6)环向的定位。
  6. 一种定位组件的卸载方法,应用于如权利要求5所述的定位组件,其特征在于,所述定位组件包括多个目标定位单元组,所述目标定位单元组 包括四个目标定位单元,所述目标定位单元关于建筑环梁(6)的中心呈十字形对称设置,所述目标定位单元组包括一第一目标定位单元组;所述第一目标定位单元组包括一第一目标定位单元,所述定位组件的卸载方法包括:
    依次对所述第一目标定位单元的止挡结构(3)和支撑梁(1)进行卸载以实现对所述第一目标定位单元的卸载,其中,对所述止挡结构(3)进行卸载包括依次对环向止挡结构(32)和径向止挡结构(31)进行卸载;
    和/或,依次同步对所述第一目标定位单元组中所有的所述目标定位单元进行卸载,以实现对所述第一目标定位单元组的卸载;
    依次对其他所述目标单元组进行卸载,以完成所述定位组件的卸载。
  7. 根据权利要求6所述的定位组件的卸载方法,其特征在于,对目标定位单元的环向止挡结构(31)和径向止挡结构(32)进行卸载包括:
    分别对所述环向止挡结构(31)和所述径向止挡结构(32)进行止挡结构多级分步卸载,所述止挡结构多级分步卸载按照卸载量从小到大的顺序逐步对不同的第二垫板进行拆除;
    所述对所述支撑梁(1)进行卸载包括:
    对所述支撑梁(1)进行支撑梁多级分步卸载,所述支撑梁多级分步卸载按照卸载量从小到大的顺序逐步对不同的第一垫板(11)进行拆除。
  8. 根据权利要求7所述的定位组件的卸载方法,其特征在于,还包括:
    获取环形建筑和所述定位组件的应力信息和/或应变信息;
    当所述应力信息大于预设应力值和/或所述应变信息大于预设应变值时,采用三维扫描仪获取所述环形建筑和所述定位组件的位移信息;
    当所述位移信息超出第一预设位移值时,减小所述环向止挡结构(31)、所述径向止挡结构(32)和所述支撑梁(1)的卸载量。
  9. 根据权利要求8所述的定位组件的卸载方法,其特征在于,当所述位移信息超出第二预设位移值时,其中,所述第二预设位移值大于所述第一预设位移值,停止对当前所述目标定位单元组的卸载,对择优定位单元进行卸载,其中,所述择优定位单元位于相邻的两个所述目标定位单元之间,所述择优定位单元为根据Midas软件的应力应变模拟结果确定的定位单元。
  10. 根据权利要求8所述的定位组件的卸载方法,其特征在于,采用三 维扫描仪获取所述环形建筑和所述定位单元的位移信息,包括:
    获取所述环形建筑和所述定位单元的施工图模型;
    在第一时刻对所述环形建筑和所述定位单元进行三维扫描以确定第一时刻点云数据;在第二时刻对所述环形建筑和所述定位单元进行三维扫描以确定第二时刻点云数据,其中,所述第二时刻在所述第一时刻之后;
    针对所述环形建筑和所述定位单元的设定部位确定所述第一时刻点云数据与所述施工图模型之间的第一位移差;所述环形建筑和所述定位单元确定所述第二时刻点云数据与所述施工图模型之间的第二位移差;
    根据所述第一位移差和所述第二位移差确定述环形建筑和所述定位单元的所述设定部位的所述第一时刻与所述第二时刻之间的位移信息。
PCT/CN2021/105191 2021-03-05 2021-07-08 定位装置、定位单元、定位组件及定位组件的卸载方法 WO2022183654A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110264807.6A CN112878736A (zh) 2021-03-05 2021-03-05 一种定位装置、定位单元、定位组件及定位组件的卸载方法
CN202110264807.6 2021-03-05

Publications (1)

Publication Number Publication Date
WO2022183654A1 true WO2022183654A1 (zh) 2022-09-09

Family

ID=76041234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105191 WO2022183654A1 (zh) 2021-03-05 2021-07-08 定位装置、定位单元、定位组件及定位组件的卸载方法

Country Status (2)

Country Link
CN (1) CN112878736A (zh)
WO (1) WO2022183654A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113048956B (zh) * 2021-03-05 2022-07-22 中国铁建国际集团有限公司 一种基于三维扫描技术的钢结构施工的监测方法及系统
CN112878736A (zh) * 2021-03-05 2021-06-01 中国铁建国际集团有限公司 一种定位装置、定位单元、定位组件及定位组件的卸载方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1136598A (ja) * 1997-07-24 1999-02-09 Kumagai Gumi Co Ltd デッキプレート配設装置
CN201236316Y (zh) * 2008-07-07 2009-05-13 中交第二航务工程局有限公司 多功能组合式三向调位装置
KR20140056900A (ko) * 2012-11-02 2014-05-12 브이에스엘코리아 주식회사 증고 및 증층을 위한 잭업장치 및 이를 이용하는 잭업시스템
CN204326551U (zh) * 2014-08-18 2015-05-13 上海宝冶集团有限公司 一种用于建筑钢结构工程的切割卸载装置
CN204531473U (zh) * 2015-01-30 2015-08-05 浙江精工钢结构集团有限公司 一种建筑结构卸载装置
CN206053405U (zh) * 2016-08-03 2017-03-29 中建七局第四建筑有限公司 一种大悬挑钢桁架施工支撑架
CN107237515A (zh) * 2017-05-31 2017-10-10 中国二十冶集团有限公司 圆形钢桁架结构的支撑装置及其使用方法
CN107391793A (zh) * 2017-06-15 2017-11-24 中国建筑局(集团)有限公司 基于3d扫描技术与mr混合现实技术的建筑结构拆除方法
KR20180023546A (ko) * 2016-08-26 2018-03-07 코아이앤씨 주식회사 프리텐션 방식의 프리스트레스트 콘크리트 빔 제작을 위한 제작대 및 이를 이용한 프리텐션 방식의 프리스트레스트 콘크리트 빔 제작방법
CN110348620A (zh) * 2019-07-02 2019-10-18 深圳大学 基于激光扫描的建筑拆除废弃物产生量预测方法及装置
CN111719892A (zh) * 2020-07-16 2020-09-29 中国二十二冶集团有限公司 千斤顶卸载支撑装置及其使用方法
CN112878736A (zh) * 2021-03-05 2021-06-01 中国铁建国际集团有限公司 一种定位装置、定位单元、定位组件及定位组件的卸载方法
CN214365037U (zh) * 2020-11-24 2021-10-08 精工钢结构(上海)有限公司 一种顶升卸载一体且可全方位滑移的施工工装

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1136598A (ja) * 1997-07-24 1999-02-09 Kumagai Gumi Co Ltd デッキプレート配設装置
CN201236316Y (zh) * 2008-07-07 2009-05-13 中交第二航务工程局有限公司 多功能组合式三向调位装置
KR20140056900A (ko) * 2012-11-02 2014-05-12 브이에스엘코리아 주식회사 증고 및 증층을 위한 잭업장치 및 이를 이용하는 잭업시스템
CN204326551U (zh) * 2014-08-18 2015-05-13 上海宝冶集团有限公司 一种用于建筑钢结构工程的切割卸载装置
CN204531473U (zh) * 2015-01-30 2015-08-05 浙江精工钢结构集团有限公司 一种建筑结构卸载装置
CN206053405U (zh) * 2016-08-03 2017-03-29 中建七局第四建筑有限公司 一种大悬挑钢桁架施工支撑架
KR20180023546A (ko) * 2016-08-26 2018-03-07 코아이앤씨 주식회사 프리텐션 방식의 프리스트레스트 콘크리트 빔 제작을 위한 제작대 및 이를 이용한 프리텐션 방식의 프리스트레스트 콘크리트 빔 제작방법
CN107237515A (zh) * 2017-05-31 2017-10-10 中国二十冶集团有限公司 圆形钢桁架结构的支撑装置及其使用方法
CN107391793A (zh) * 2017-06-15 2017-11-24 中国建筑局(集团)有限公司 基于3d扫描技术与mr混合现实技术的建筑结构拆除方法
CN110348620A (zh) * 2019-07-02 2019-10-18 深圳大学 基于激光扫描的建筑拆除废弃物产生量预测方法及装置
CN111719892A (zh) * 2020-07-16 2020-09-29 中国二十二冶集团有限公司 千斤顶卸载支撑装置及其使用方法
CN214365037U (zh) * 2020-11-24 2021-10-08 精工钢结构(上海)有限公司 一种顶升卸载一体且可全方位滑移的施工工装
CN112878736A (zh) * 2021-03-05 2021-06-01 中国铁建国际集团有限公司 一种定位装置、定位单元、定位组件及定位组件的卸载方法

Also Published As

Publication number Publication date
CN112878736A (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
WO2022183654A1 (zh) 定位装置、定位单元、定位组件及定位组件的卸载方法
CN101882180A (zh) 建筑钢结构件计算机仿真模拟预拼装方法
CN101907439A (zh) 建筑钢结构制作仿真测量检测方法
CN108824816B (zh) 一种高空大跨网架滑移定位安装及监测方法
CN109405817B (zh) 一种圆形立柱垂直度检测方法
CN112016147B (zh) 一种基于Revit平台的钢桁梁预拼装精度检测方法
CN110276165A (zh) 一种波纹侧板-方钢管混凝土柱的轴向承载力的计算方法
CN109469333B (zh) 多角度多牛腿复杂节点斜吊柱精确定位方法
CN110424745A (zh) 空间异形钢管桁架的拼装胎架及其拼装、安装方法
WO2021042631A1 (zh) 三维移动变形测量系统及其在三维相似模拟实验中的应用
CN108252519A (zh) 一种基于bim的房建工程模板施工工艺样板的施工方法
CN113374282A (zh) 采用假定坐标系控制预埋螺栓的方法
CN115130170A (zh) 基于三维激光扫描与bim的钢桁架桥施工监控方法及系统
CN113668873A (zh) 一种倾斜支撑钢柱的安装方法
Cho et al. Scaffolding modelling for real-time monitoring using a strain sensing approach
CN110686592B (zh) 一种大尺寸目标物的组合式测量方法
CN110095112A (zh) 一种基于三维扫描仪技术的预制钢构件位置检查方法
CN113865570A (zh) 一种钢结构圆形立柱垂直度测量方法
WO2023124244A1 (zh) 定位装置及其使用方法
WO2022183650A1 (zh) 一种基于三维扫描技术的钢结构施工的监测方法及系统
CN210598177U (zh) 空间异形钢管桁架的拼装胎架
CN105606080B (zh) 一种超大型组合型钢箱形钢柱、钢板剪力墙尺寸检测方法
CN114485438A (zh) 一种大型模块钢结构圆立柱间距测量方法
JPH08142034A (ja) ショートラインマッチキャスティング用型枠自動制御システム
CN110793448A (zh) 基于视觉的大型建筑构件的测量系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21928732

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 523450560

Country of ref document: SA

122 Ep: pct application non-entry in european phase

Ref document number: 21928732

Country of ref document: EP

Kind code of ref document: A1