WO2022182092A1 - 산업단지 에너지 관리 시스템 - Google Patents

산업단지 에너지 관리 시스템 Download PDF

Info

Publication number
WO2022182092A1
WO2022182092A1 PCT/KR2022/002565 KR2022002565W WO2022182092A1 WO 2022182092 A1 WO2022182092 A1 WO 2022182092A1 KR 2022002565 W KR2022002565 W KR 2022002565W WO 2022182092 A1 WO2022182092 A1 WO 2022182092A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
power
unit
industrial complex
management system
Prior art date
Application number
PCT/KR2022/002565
Other languages
English (en)
French (fr)
Inventor
최상규
김호진
김영민
조철희
Original Assignee
필즈엔지니어링 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 필즈엔지니어링 주식회사 filed Critical 필즈엔지니어링 주식회사
Publication of WO2022182092A1 publication Critical patent/WO2022182092A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/14Gas-turbine plants having means for storing energy, e.g. for meeting peak loads
    • F02C6/16Gas-turbine plants having means for storing energy, e.g. for meeting peak loads for storing compressed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/16Control of working fluid flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R22/00Arrangements for measuring time integral of electric power or current, e.g. electricity meters
    • G01R22/06Arrangements for measuring time integral of electric power or current, e.g. electricity meters by electronic methods
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y10/00Economic sectors
    • G16Y10/35Utilities, e.g. electricity, gas or water
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y40/00IoT characterised by the purpose of the information processing
    • G16Y40/10Detection; Monitoring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers

Definitions

  • the present invention relates to an industrial complex energy management system configured to efficiently manage the energy required by various factories or industrial facilities lined up in the industrial complex, and in detail, each plant or It relates to an energy management system configured to cover the energy required by industrial facilities.
  • energy used in industrial complexes has various forms.
  • energy used in industrial complexes has various forms.
  • in the form of electricity, steam, compressed air, etc. are used in various factories.
  • the present invention is intended to solve the above problems, and it is an object of the present invention to provide an industrial complex energy management system configured to cover various types of energy required in a number of energy sources with compressed air or electric energy produced using a turbine. There is this.
  • the present invention is configured to supply energy to a plurality of energy use points during the peak power period when the amount of power is the most, so that each energy use point does not exceed the integrated contract power It is an object of providing an industrial complex energy management system .
  • the present invention a turbine unit connected to a number of energy use in the industrial complex; a compressed air supply unit provided in the turbine unit and configured to provide compressed air to the energy use destination; a power generation unit provided in the turbine unit and generating electrical energy to be used in the energy use place; and an integrated control unit for controlling the compressed air supply unit and the power generation unit.
  • the integrated control unit includes a power amount measuring unit for measuring the power consumption of the energy use, the integrated control unit, based on the data measured by the power amount measuring unit can control the compressed air supply unit and the power generation unit.
  • the first energy storage unit for storing the electrical energy produced by the power generation unit; and a second energy storage unit in which thermal energy generated in the process of cooling the power generation unit is stored.
  • the thermal energy stored in the second energy storage unit may include high-temperature cooling water or steam generated in the process of cooling the power generation unit by water cooling.
  • the integrated control unit when the power usage of the energy use point reaches 80 to 90% of the integrated contract power concluded between the energy use point and the power supplier, the first energy storage unit or the second energy storage By controlling the unit, the electric energy stored in the first energy storage unit or the thermal energy stored in the second energy storage unit may be supplied to the energy use destination.
  • the integrated contract power is calculated based on the previous year power usage of each energy user entering the industrial complex, and the previous year power usage may be the average power usage for 2 to 5 years of the energy user.
  • the integrated control unit is stored in the first energy storage unit by controlling the first energy storage unit or the second energy storage unit during the peak power time period when the power consumption of each energy use place arranged in the industrial complex is the largest. Electrical energy or thermal energy stored in the second energy storage unit may be supplied to the energy use destination.
  • the calculation unit for calculating the total amount of power used in each energy use; an analysis unit that compares and analyzes the integrated power consumption calculated by the calculation unit and the integrated contract power; and an overload detection unit configured to detect an energy usage that exceeds the annual allowable power based on the data analyzed by the analysis unit.
  • the calculator may analyze the power usage pattern of each energy user based on the power usage data used by each energy user for a unit period in the past year and the power amount data measured by the power amount measuring unit.
  • the power amount measuring unit may be implemented as an Internet of Things (IOT) by receiving an Internet IP based on IPv6.
  • IOT Internet of Things
  • the industrial complex energy management system provides a configuration that can supply various types of energy required by the energy users of the industrial complex. It can be supplied to facilitate the operation of energy-using places.
  • the industrial complex energy management system integrally analyzes and manages the energy consumption patterns of the energy receiving points constituting the industrial complex, so that the energy users can efficiently consume energy.
  • the industrial complex energy management system provides a configuration that can supply compressed air, steam, electrical energy, high-temperature cooling water, etc. to the energy user, thereby reducing the conversion energy used by the energy user to convert energy. make it possible
  • the industrial complex energy management system prevents a phenomenon in which energy is insufficient during the peak power period so that the energy use place can be continuously and stably operated.
  • the industrial complex energy management system optimally calculates the integrated contract power to be commonly applied to the energy users of the industrial complex and concludes a contract with the power supplier, Since it has a configuration for managing and controlling the power supplied, it is not necessary for each energy user to sign a contract for power exceeding an unnecessary amount of power, thereby reducing the burden of electricity bills.
  • the industrial complex energy management system can control the power supply state so that the integrated power consumption does not exceed the integrated contract power by comparing and analyzing the current power usage pattern with the past year power usage data of the energy users in real time. , it is possible to prevent the occurrence of excessive usage charges in advance.
  • the industrial complex energy management system has a configuration in which the optimal auxiliary contract information is provided in advance to the energy users expected to exceed the annual allowable power due to various factors, so that the energy users continuously By allowing the power to be supplied, continuous plant operation is possible and, in addition, unnecessary high electricity bills can be prevented from being paid.
  • FIG. 1 is a view schematically showing the configuration of an industrial complex energy management system according to an embodiment of the present invention.
  • FIG. 2 is a view showing the configuration of an energy storage unit according to an embodiment of the present invention.
  • FIG. 3 is a view showing the configuration of an integrated management unit according to an embodiment of the present invention.
  • FIG. 4 is a view showing a state in which a plurality of turbine units are provided in an industrial complex according to an embodiment of the present invention.
  • FIGS. 1 to 4 An industrial complex energy management system according to an embodiment of the present invention will be described in detail with reference to FIGS. 1 to 4 .
  • detailed descriptions of related well-known functions or configurations are omitted so as not to obscure the gist of the present invention.
  • FIG. 1 is a diagram schematically showing the configuration of an industrial complex energy management system according to an embodiment of the present invention
  • FIG. 2 is a diagram showing the configuration of an energy storage unit according to an embodiment of the present invention
  • FIG. 3 is the present invention is a view showing the configuration of the integrated management unit according to an embodiment of the present invention
  • Figure 4 is a view showing a state in which a plurality of turbine units according to an embodiment of the present invention are provided in the industrial complex.
  • the industrial complex energy management system 100 integrates management and control of energy used in factories or industrial facilities of various industries entered into the industrial complex to reduce energy wastage and cost. It can be said that the invention is characterized by
  • Industrial complex energy management system 100 as shown in Figs. 1 and 2, a turbine unit 200 connected to a plurality of energy use in the industrial complex; a compressed air supply unit 210 provided in the turbine unit 200 and providing compressed air to the energy use destination 10; a power generation unit 220 provided in the turbine unit 200 and generating electrical energy to be used in the energy use destination 10; and an integrated control unit 300 for controlling the compressed air supply unit 210 and the power generation unit 220 .
  • the turbine unit 200 may be said to be a component that supplies energy to a plurality of energy users 10 entered in an industrial complex, and may be provided with at least one or more depending on the scale of the industrial complex. For example, as shown in Fig. 4, it may be provided in plurality.
  • the turbine unit 200 may be implemented as a known steam turbine, a gas turbine, or the like, and is preferably implemented as a gas turbine having a simple structure and low construction cost.
  • the compressed air supply unit 210 may be a compressor that generates compressed air using the turbine unit 200 as a prime mover
  • the power generation unit 220 is a power generation device that uses the turbine unit 200 as a prime mover to produce electrical energy. can do.
  • the compressed air supply unit 210 and the power generation unit 220 as described above serve to supply the pneumatic air or electric energy required by a plurality of energy usage places 10, in particular, during peak power consumption times It can be operated to supply compressed air or electric energy to each energy use place (10).
  • the configuration for generating compressed air or generating electricity using the turbine unit 200 as a prime mover is a well-known configuration widely used in the general industrial field in the relevant field, so in order not to obscure the gist of the invention in this specification A detailed description thereof is omitted.
  • the industrial complex energy management system 100 may include a power amount measuring unit 240 for measuring the power usage of the energy use place.
  • the power measurement unit 240 may be provided on a power line that delivers power to each factory or industrial facility entered in the industrial complex, and checks the power supplied to the energy use place 10 in real time, and the data wirelessly It may be transmitted to the integrated control unit 300 .
  • the wattage measurement unit 240 is preferably implemented as an electronic watt-hour meter rather than a mechanical watt-hour meter.
  • the wattage measurement unit 240 has a configuration that can be remotely controlled because it is very difficult to physically integrate the power supply lines of each of the energy users 10 lined up in the factory area.
  • the power amount measurement unit 240 is provided in each energy use place 10 entered in the industrial complex, and can measure the amount of power in real time, and the measured data is remotely integrated into the control unit It can be passed to (300).
  • the wattage measurement unit 240 may be configured to perform the functions of a data hub, a repeater, and a transmitter by itself rather than simply performing a role as a measuring device, and accordingly, a separate data hub is not installed. make sure not to In addition, it may be implemented as an Internet of Things (IOT) by receiving an Internet IP by IPv6.
  • IOT Internet of Things
  • the wattage measurement unit 240 having the above configuration may easily transmit wattage data of each of the electricity users 10 arranged to be separated by several kilometers or more to the integrated control unit 300 . That is, the wattage measurement unit 240 may be configured to further include a relay unit for amplifying a data signal to transmit the measured data to a long distance, and, in addition, integrate and manage the wattage data of each energy use destination 10 . Since it can also perform the role of a data hub including a management server that further includes a wattage, the integrated control unit 300 to be described later collects the data provided from the power measurement unit 240 and easily analyzes the data.
  • the integrated control unit 300 may control the compressed air supply unit 210 and the power generation unit 220 based on the data measured by the power measurement unit 240 .
  • the compressed air supply unit 210 may be operated during the daytime when the energy use 10 is operated to supply compressed air required by the energy use 10 .
  • the power generation unit 220 may be operated to produce electric energy during the night time when the energy use destination 10 is not operated.
  • the compressed air supplied from the compressed air supply unit 210 can be of great help.
  • the power generation unit 220 may be operated during the daytime because there is a case where the amount of power for making compressed air is insufficient during the peak power period when the amount of power is high.
  • the compressed air supply unit 210 and the power generation unit 220 may be operated simultaneously or separately depending on the amount of power used in the energy use destination (10).
  • the electric energy produced by the power generation unit 220 in a time period when the energy use destination 10 is not operated may be stored in the first energy storage unit 250 .
  • the first energy storage unit 250 may store electrical energy produced during the late night time period and supply the electrical energy at a time when electrical energy is needed at the energy use place 10 .
  • electric energy may be supplied to the energy use destination 10 during the peak power period, or electric energy may be supplied to the energy use destination 10 when the amount of power used in the energy use destination 10 reaches a certain level of the integrated contract power. have.
  • the power generation unit 220 when the power generation unit 220 produces electric energy, it may include a cooling unit 230 for cooling the high temperature of the power generation unit 220 .
  • the cooling unit 230 may cool the power generation unit 220 in a variety of known methods, but the power generation unit 220 is water-cooled in order to provide steam or high-temperature cooling water required by the energy use 10 . Cooling is preferred.
  • thermal energy generated in the process of cooling the power generation unit 220 may be stored in the second energy storage unit 260 .
  • the thermal energy stored in the second energy storage unit 260 may be steam or high-temperature cooling water. Such thermal energy may be supplied to the energy use destination 10 in advance in a time period before the energy use destination 10 is operated. This is to reduce the initial energy amount and time used for the energy use destination 10 to operate normally.
  • the integrated control unit 300 when the power usage of the energy use destination 10 reaches a certain level of the integrated contract power concluded between the energy use destination 10 and the power supplier, for example, a level of 80 to 90%, By controlling the first energy storage unit 250 or the second energy storage unit 260 , electric energy or thermal energy may be supplied to the energy use destination 10 .
  • the integrated contract power is calculated based on the previous year's power usage of each energy user 10 in the industrial complex, and the previous year's power usage is for 2 to 5 years of the energy user 10 This is the average power consumption.
  • the integrated control unit 300 may include the first energy storage unit 250 or the second energy storage unit 260 during the peak power time period in which the power consumption of each energy usage destination 10 disposed in the industrial complex is greatest. ) to supply electrical energy stored in the first energy storage unit 250 or thermal energy stored in the second energy storage unit 260 to the energy use destination 10 .
  • a plurality of energy users 10 disposed in the industrial complex are compressed air provided by the compressed air supply unit 210 and electrical energy stored in the first energy storage unit 250 or stored in the second energy storage unit 260 . Since various types of energy, such as thermal energy, can be selectively supplied, various devices and automation devices requiring energy can be efficiently operated, and costs associated with energy use can be reduced.
  • the industrial complex energy management system 100 may further include an integrated management unit 400 .
  • the integrated management unit 400 may be said to be a combination of each energy use destination 10 in the industrial complex, and may conclude an integrated contract power with a power supplier on behalf of each energy use destination 10 .
  • the integrated management unit 400 includes a calculation unit 410 that calculates the integrated power consumption of each energy use destination 10 based on the amount of power measured by the power measurement unit 240 ; an analysis unit 420 for comparing and analyzing the integrated power consumption calculated by the calculation unit 410 and the integrated contract power; and an overload detection unit 430 configured to detect the energy use 10 exceeding the annual allowable power based on the data analyzed by the analysis unit 420 .
  • the calculator 410 may calculate the total amount of power used by collecting the power usage of each of the energy users 10 based on the real-time power amount data transmitted from the power amount measuring unit 240 .
  • the calculation unit 410 compares and analyzes the power usage data that each energy usage point 10 used for a unit period in the past year with the power usage data measured by the power amount measurement unit 240, Analyze power usage patterns.
  • the calculation unit 410 has power usage data for the previous year of each energy use destination 10 . Accordingly, the calculation unit 410 may compare and analyze the amount of power currently used by the energy user 10 based on the previous year's power usage data, and transmit the analyzed result value to the overload detection unit 430 .
  • the analysis unit 420 compares and analyzes the integrated contract power signed with the electricity supplier and the integrated power consumption amount of each energy use place 10 calculated by the calculation unit 410, and the result value is used in the overload detection unit ( 430).
  • the overload detection unit 430 may detect the energy usage destination 10 exceeding the annual allowable power based on the result value analyzed by the analysis unit 420 .
  • the energy usage 10 exceeding the annual allowable power is detected from among a plurality of energy usage targets 10 . can do.
  • the integrated control unit 300 may block the supply of power to the corresponding energy use destination 10 . That is, the integrated control unit 300 may further include a blocking unit (not shown) that blocks the supply of power from the overload detection unit 430 to the detected energy use destination 10 .
  • the cut-off unit may be implemented in the form of a cut-off switch or a cut-off valve on the power supply line for supplying power to each energy use place 10 in the industrial complex.
  • the overload detection unit 430 uses power within the range included in the annual allowable power until now, when the integrated power consumption calculated by the calculation unit 410 is less than the integrated contract power. can be judged to be doing.
  • the overload detection unit 430 on the basis of the power usage pattern data of each energy use destination 10 analyzed by the calculation unit 410, before the integrated power consumption exceeds the integrated contract power, annual allowable power It is possible to detect the energy use destination 10 predicted to use power in excess of , and transmit an overload signal to the energy use destination 10 . That is, the overload detection unit 430 estimates the amount of power to be consumed by the energy use destination 10 in the future, and determines whether the amount of electric power exceeds or falls short of the allowable amount of electric power allocated to each electricity use destination 10 . , in addition, a corresponding signal may be transmitted to each energy use destination 10 .
  • the energy users 10 entering the industrial complex may rapidly increase or decrease their power consumption depending on the operability of large-capacity facilities, market volatility of products, seasonality, emergency situations, and the like.
  • the energy user 10 may use power that exceeds or falls short of the allocated annual allowable power, where if the power exceeding the annual allowable power is used, it exceeds the integrated contract power concluded with the electricity supplier. At the same time, it means that the power allocated to another energy use point 10 is stolen and used, causing damage to the other energy use point 10 and paying an excess usage charge to the electricity supplier.
  • the overload detection unit 430 may transmit an overload signal to the energy use destination 10 estimated to exceed the annual allowable power in order to prevent such a problem in advance.
  • the integrated management unit 400 guides the energy user 10 receiving the overload signal from the overload detection unit 430 to enter into a separate auxiliary contract power with the power supplier 20, and the calculation unit ( It may include; a sub-contract recommendation unit 440 for recommending the sub-contract power based on the power usage pattern data analyzed in 410).
  • the sub-contract recommendation unit 440 analyzes the power usage pattern of the energy usage point 10 analyzed by the calculator 410 and the predicted power consumption amount of the energy usage location 10 analyzed by the overload detection unit 430 to optimize the
  • the auxiliary contract power may be calculated and the calculated result may be provided to the energy use destination 10 . Then, the energy user 10 may separately sign the auxiliary contract power recommended by the auxiliary contract recommendation unit 440 with the electricity supplier.
  • the overload detection unit 430 and the auxiliary contract recommendation unit 440 ensure that the integrated power consumption used in each energy use place 10 of the industrial complex does not exceed the integrated contract power and, at the same time, exceeds the annual allowable power. It allows the used energy to be continuously supplied with power, so that continuous production of products or industrial operation can be performed.
  • the overload detection unit 430 and the auxiliary contract recommendation unit 440 may be used to transmit the overload signal or auxiliary contract information to the energy use destination 10 , and in terms of a quick response, the energy use destination It is preferable to transmit the signal and information to the terminal in charge of management of (10).
  • the integrated contract power that the integrated management unit 400 concludes with the electricity supplier may be calculated based on the power usage in the past year of each energy use place 10 entered the industrial complex.
  • the power usage in the past year can be said to be the average power usage in the period of 2 to 5 years of the energy use destination 10 .
  • the power consumption of the past year of the A energy use destination 10 is 700 kw
  • the previous year power consumption of the B energy use place 10 is 400 kw
  • the previous year power consumption of the C energy use place 10 is 1100 kw
  • the previous year power of the D energy use place 10 Assuming that the usage is 660kw, the integrated contract power that the integrated management unit 200 concludes with the electricity supplier may be 2860kw, which is the sum of the previous year power usage of each energy user 10 .
  • the power consumption in the past year of each energy use destination 10 may be referred to as an annual allowable power amount.
  • the overload detection unit 430 when the energy usage A 10 exceeds the annual allowable power amount of 400 kw, it may be detected by the overload detection unit 430 .
  • the blocking unit of the integrated control unit 300 may control the power so that the power is not supplied to the A energy use destination 10 detected from the overload detection unit 430 . Then, the energy use A 10 can no longer use the power in the integrated contract power signed with the integrated management unit 400 and the power supplier.
  • the above-mentioned A energy use destination 10 may receive an overload signal from the overload detection unit 430 before the power supplied by the integrated control unit 300 is cut off. Then, energy A 10 needs to sign a contract power separately with the electricity supplier 20 , and the sub-contract power recommended by the sub-contract recommendation unit 240 may be contracted with the electricity supplier.
  • the electricity usage in the past year of each energy use place 10 may be calculated based on the electricity bill notified to each electricity use place 10 by the electricity supplier, and this information may be provided from the electricity supplier.
  • the integrated contract power is calculated by adding an auxiliary power amount to the power usage of the previous year. This is because, as described above, due to various physical factors and environmental factors, etc., this is because the amount of power consumed in each energy use place 10 is 5 to 15 of the previous year's power usage in order to flexibly cope with this variability. It is desirable to calculate the integrated contract power by adding the auxiliary power amount occupying the % ratio.
  • the rate at which the auxiliary power amount is added may be corrected by the calculator 410 that analyzes the power usage pattern of the energy use destination 10 . That is, in order to calculate the integrated contract power in the next year, the ratio of the amount of auxiliary power added to the power usage of the previous year is corrected by the calculator 410 .
  • the present invention can be applied as an energy management and supply system for efficiently supplying energy to various manufacturing plants or facilities provided in an industrial complex.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computing Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Development Economics (AREA)
  • Economics (AREA)
  • General Business, Economics & Management (AREA)
  • Fluid Mechanics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

본 발명은, 산업단지에 들어선 다수의 에너지 사용처와 연결되는 터빈부; 상기 터빈부에 마련되며, 상기 에너지 사용처로 압축 공기를 제공하는 압축공기 공급부; 상기 터빈부에 마련되며, 상기 에너지 사용처에서 사용될 전기 에너지를 생산하는 발전부; 및 상기 압축공기 공급부와 상기 발전부를 제어하는 통합 제어부;를 포함하는 것을 특징으로 한다.

Description

산업단지 에너지 관리 시스템
본 발명은, 산업단지에 늘어선 각종 공장이나 산업시설에서 요구하는 에너지를 효율적으로 관리할 수 있도록 구성된 산업단지 에너지 관리 시스템에 관한 것으로서, 상세하게는, 터빈을 이용한 발전 방식으로 산업단지의 각 공장이나 산업시설에서 필요로하는 에너지를 충당할 수 있도록 구성된 에너지 관리 시스템에 관한 것이다.
일반적으로, 산업단지에서 사용되는 에너지는 다양한 형태를 가지고 있다. 예를 들면, 전기, 스팀, 압축 공기 등과 같은 형태로 각종 공장에서 사용되고 있다.
이러한 에너지는 공장의 운영 조건, 시간, 기타 환경에 따라서 적절하게 관리될 필요성이 있다. 그러나, 전기 에너지의 경우 공장이나 산업시설이 전력 공급업체와 맺은 계약 전력을 바탕으로 얻어지게되고, 이 계약 전력은 전력수요처가 1년 중에 가장 많이 전력을 사용하는 달을 기준으로 맺어지는 때문에 효율적으로 관리할 수 없는 문제점이 있다.
따라서, 스팀이나 압축 공기도 전기 에너지를 바탕으로 생성되기 때문에 결국 공장의 운영 조건, 시간, 기타 환경에 따라서 적절히 관리되지 못하는 문제점이 있다.
특히, 산업단지를 구성하는 공장의 대부분은, 압축 공기에 의해 작동되는 각종 기계장치 및 자동화 기기를 구비하고 있는데, 전력의 사용량이 가장 많아 지는 시간대에서는 압축 공기에 의해 작동되는 각종 장치나 기기들을 원활하게 운영하지 못하는 문제점이 있다.
따라서, 산업단지의 각종 공장에서 사용하는 에너지를 통합적으로 관리할 필요성이 대두되고 있으며, 본 출원인은 상기와 같은 문제점을 해결하기 위하여 본 발명을 제안하게 되었다. 참고로, 이와 관련된 선행기술문헌으로는, 대한민국 등록특허 제10-1659862호의 '스마트 에너지 관리 시스템 및 스마트 에너지 관리 방법'이 있다.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로서, 다수의 에너지 사용처에서 필요로하는 각종 에너지를 터빈을 이용하여 생산된 압축 공기나 전기 에너지로 충당할 수 있도록 구성된 산업단지 에너지 관리 시스템을 제공하는데 목적이 있다.
또한, 본 발명은 전력의 사용량이 가장 많은 전력 피크 시간대에 다수의 에너지 사용처로 에너지를 공급할 수 있도록 구성되어 각 에너지 사용처가 통합 계약 전력을 초과하지 않도록 하는 산업단지 에너지 관리 시스템을 제공하는데 목적이 있다.
본 발명은, 산업단지에 들어선 다수의 에너지 사용처와 연결되는 터빈부; 상기 터빈부에 마련되며, 상기 에너지 사용처로 압축 공기를 제공하는 압축공기 공급부; 상기 터빈부에 마련되며, 상기 에너지 사용처에서 사용될 전기 에너지를 생산하는 발전부; 및 상기 압축공기 공급부와 상기 발전부를 제어하는 통합 제어부;를 포함할 수 있다.
또한, 상기 에너지 사용처의 전력 사용량을 측정하는 전력량 측정부를 포함하며, 상기 통합 제어부는, 상기 전력량 측정부에서 측정된 데이터를 바탕으로 상기 압축공기 공급부와 상기 발전부를 제어할 수 있다.
또한, 상기 발전부에서 생산된 전기 에너지가 저장되는 제1에너지 저장부; 및 상기 발전부를 냉각시키는 과정에서 발생되는 열에너지가 저장되는 제2에너지 저장부;를 포함할 수 있다.
또한, 상기 제2에너지 저장부에 저장되는 열에너지는, 상기 발전부를 수냉식으로 냉각시키는 과정에서 발생되는 고온의 냉각수 또는 스팀을 포함할 수 있다.
또한, 상기 통합 제어부는, 상기 에너지 사용처의 전력 사용량이 상기 에너지 사용처와 전력 공급업체가 체결한 통합 계약 전력의 80~90%에 도달하였을 경우에, 상기 제1에너지 저장부 또는 상기 제2에너지 저장부를 제어하여 상기 제1에너지 저장부에 저장된 전기 에너지 또는 상기 제2에너지 저장부에 저장된 열에너지가 상기 에너지 사용처로 공급되도록 할 수 있다.
또한, 상기 통합 계약 전력은, 산업단지에 들어선 각 에너지 사용처의 과년도 전력 사용량을 기초로 산출되며, 상기 과년도 전력 사용량은, 상기 에너지 사용처의 2년~5년 기간 동안의 평균 전력 사용량일 수 있다.
또한, 상기 통합 제어부는, 산업단지에 배치된 각 에너지 사용처의 전력 사용량이 가장 많아지는 전력 피크 시간대에, 상기 제1에너지 저장부 또는 상기 제2에너지 저장부를 제어하여 상기 제1에너지 저장부에 저장된 전기 에너지 또는 상기 제2에너지 저장부에 저장된 열에너지가 상기 에너지 사용처로 공급될 수 있다.
또한, 상기 전력량 측정부로부터 측정되는 전력량을 바탕으로 각 에너지 사용처의 통합 사용 전력량을 산출하는 산출부; 상기 산출부에서 산출된 통합 사용 전력량과 상기 통합 계약 전력을 비교 분석하는 분석부; 및 상기 분석부에서 분석된 데이터를 바탕으로 연간 허용 전력을 초과한 에너지 사용처를 검출하는 과부하 검출부;를 포함할 수 있다.
또한, 상기 산출부는, 각 에너지 사용처가 과년도에 단위 기간 동안 사용하였던 전력 사용량 데이터와 상기 전력량 측정부로부터 측정되는 전력량 데이터를 바탕으로 각 에너지 사용처의 전력 사용패턴을 분석할 수 있다.
또한, 상기 전력량 측정부는, IPv6에 의한 인터넷 IP를 부여받아 사물인터넷(IOT, Internet of Things)으로 구현될 수 있다.
본 발명에 따른 산업단지 에너지 관리 시스템은, 산업단지의 에너지 사용처가 필요로하는 각종 형태의 에너지를 공급할 수 있는 구성을 제공하므로, 에너지 소비가 많은 시간대에 에너지 사용처가 필요로 에너지를 그 형태에 맞게 공급하여 에너지 사용처의 운영을 원활하게 할 수 있다.
또한, 본 발명에 따른 산업단지 에너지 관리 시스템은, 산업단지를 구성하는 에너지 수용처들의 에너지 소비 패턴을 통합적으로 분석 및 관리하므로, 에너지 사용처가 에너지를 효율적으로 소비할 수 있도록 한다.
또한, 본 발명에 따른 산업단지 에너지 관리 시스템은, 압축 공기, 스팀, 전기 에너지, 고온의 냉각수 등을 에너지 사용처에 공급할 수 있는 구성을 제공하므로, 에너지 사용처가 에너지를 전환시키는데 사용하는 전환 에너지를 줄일 수 있도록 한다.
또한, 본 발명에 따른 산업단지 에너지 관리 시스템은, 전력 피크 시간대에 에너지가 부족한 현상을 방지하여 에너지 사용처가 지속적이면서 안정적으로 운영될 수 있도록 한다.
또한, 본 발명에 따른 산업단지 에너지 관리 시스템은, 산업단지의 에너지 사용처들에게 공통으로 적용될 통합 계약 전력을 최적으로 산출하고 전력 공급업체와 체결한 뒤, 통합 계약 전력을 바탕으로 각각의 에너지 사용처로 공급되는 전력을 관리 및 제어하는 구성을 가지므로, 각 에너지 사용처가 불필요한 전력량 이상으로 계약 전력을 체결할 필요가 없도록 하고, 이에 따른 전기 요금 부담도 줄일 수 있다.
또한, 본 발명에 따른 산업단지 에너지 관리 시스템은, 에너지 사용처들의 과년도 전력 사용량 데이터와 현재 전력 사용패턴을 실시간을 비교 분석하여 통합 사용 전력량이 통합 계약 전력을 초과하지 않도록 전력 공급상태를 제어할 수 있으므로, 초과 사용요금이 발생하는 것을 사전에 방지할 수 있다.
또한, 본 발명에 따른 산업단지 에너지 관리 시스템은, 다양한 요인으로 인하여 연간 허용 전력을 초과할 것으로 예상되는 에너지 사용처에게 최적의 보조 계약 정보를 사전에 제공하는 구성을 가지므로, 해당 에너지 사용처가 지속적으로 전력을 공급받을 수 있도록 하여 지속적인 공장 운행이 가능토록 하고, 더불어, 불필요하게 많은 전기 요금이 납부되지 않도록 할 수 있다.
도 1은 본 발명의 일 실시예에 따른 산업단지 에너지 관리 시스템의 구성을 개략적으로 보여주는 도면.
도 2는 본 발명의 일 실시예에 따른 에너지 저장부의 구성을 보여주는 도면.
도 3은 본 발명의 일 실시예에 따른 통합 관리부의 구성을 보여주는 도면.
도 4는 본 발명의 일 실시예에 따른 터빈부가 산업단지 내에 다수개로 마련된 상태를 보여주는 도면.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다.
그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
이하, 도 1 내지 도 4를 참조하여 본 발명의 일 실시예에 따른 산업단지 에너지 관리 시스템이 상세하게 설명된다. 본 발명을 설명함에 있어, 관련된 공지기능 혹은 구성에 대한 구체적인 설명은 발명의 요지를 모호하지 않게 하기 위하여 생략된다.
도 1은 본 발명의 일 실시예에 따른 산업단지 에너지 관리 시스템의 구성을 개략적으로 보여주는 도면이고, 도 2는 본 발명의 일 실시예에 따른 에너지 저장부의 구성을 보여주는 도면이고, 도 3은 본 발명의 일 실시예에 따른 통합 관리부의 구성을 보여주는 도면이고, 도 4는 본 발명의 일 실시예에 따른 터빈부가 산업단지 내에 다수개로 마련된 상태를 보여주는 도면이다.
본 발명의 일 실시예에 따른 산업단지 에너지 관리 시스템(100)은, 산업단지에 들어선 다양한 업종의 공장이나 산업시설 등에서 사용되는 에너지를 통합적으로 관리하고 제어하여 에너지의 낭비와 비용을 줄일 수 있도록 한 것에 특징이 있는 발명이라 할 수 있다.
산업단지 에너지 관리 시스템(100)은, 도 1 및 도 2에 도시된 바와 같이, 산업단지에 들어선 다수의 에너지 사용처와 연결되는 터빈부(200); 상기 터빈부(200)에 마련되며, 상기 에너지 사용처(10)로 압축 공기를 제공하는 압축공기 공급부(210); 상기 터빈부(200)에 마련되며, 상기 에너지 사용처(10)에서 사용될 전기 에너지를 생산하는 발전부(220); 및 상기 압축공기 공급부(210)와 상기 발전부(220)를 제어하는 통합 제어부(300);를 포함할 수 있다.
먼저, 상기 터빈부(200)는, 산업단지에 들어선 다수개의 에너지 사용처(10)로 에너지를 공급하는 구성요소라 할 수 있으며, 산업단지의 규모에 따라서 적어도 하나 이상으로 마련될 수 있다. 예컨대, 도 4에 도시된 바와 같이, 다수개로 마련될 수도 있다. 참고로, 터빈부(200)는, 공지의 증기 터빈, 가스 터빈 등으로 구현될 수 있으며, 구조가 간단하면서 건설비가 저렴한 가스 터빈으로 구현되는 것이 바람직하다.
압축공기 공급부(210)는 터빈부(200)를 원동기로 하여 압축 공기를 생성하는 콤프레서라 할 수 있고, 발전부(220)는 터빈부(200)를 원동기로 하여 전기 에너지를 생산하는 발전장치라 할 수 있다.
위와 같은 압축공기 공급부(210)와 발전부(220)는, 다수개의 에너지 사용처(10)에서 필요로 하는 압 공기 또는 전기 에너지를 공급하는 역할을 하는바, 특히, 전력량 사용이 가장 많은 전력 피크 시간대에 운영되어 각 에너지 사용처(10)로 압축 공기 또는 전기 에너지를 공급할 수 있다.
참고로, 터빈부(200)를 원동기로 하여 압축 공기를 생성하거나 전기를 발전시키는 구성은 해당 분야의 일반 산업분야에서 널리 사용되고 있는 공지의 구성이므로, 본 명세서상에서는 발명의 요지를 모호하지 않도록 하기 위하여 그 구체적인 설명이 생략된다.
본 발명의 일 실시예에 따른 산업단지 에너지 관리 시스템(100)은, 에너지 사용처의 전력 사용량을 측정하는 전력량 측정부(240)를 포함할 수 있다.
전력량 측정부(240)는, 산업단지에 들어선 각 공장이나 산업시설에 전력을 전달하는 전력선에 마련될 수 있으며, 에너지 사용처(10)로 공급되는 전력을 실시간으로 체크하고, 그 데이터를 무선으로 상기 통합 제어부(300)에 전달할 수 있다.
산업단지에 배치된 에너지 사용처는 일반 주택이나 상가와는 다르게 고압 및 대량의 산업용 전력을 사용하기 때문에, 상기 전력량 측정부(240)는, 기계식 전력량계보다는 전자식 전력량계로 구현되는 것이 바람직하다. 더불어, 전력량 측정부(240)는, 공장지대에 늘어선 각 에너지 사용처(10)들의 전력 공급선을 물리적으로 통합하는 것이 매우 어렵기 때문에 원격으로 제어될 수 있는 구성을 가진다.
다시 말해, 본 발명의 일 실시예에 따른 전력량 측정부(240)는, 산업단지에 들어선 각 에너지 사용처(10)에 각각 마련되어 전력량을 실시간으로 측정할 수 있고, 그 측정된 데이터를 원격으로 통합 제어부(300)에 전달할 수 있다.
또한, 전력량 측정부(240)는, 단순히 측정기로서의 역할만 수행하지 않고 그 자체가 데이터 허브(Data Hub), 중계기 및 송신기 기능을 수행하도록 구성될 수 있으며, 이에 따라, 별도의 데이터 허브가 설치되지 않도록 한다. 그리고, IPv6에 의한 인터넷 IP를 부여받아 사물인터넷(IOT, Internet of Things)으로 구현될 수도 있다.
위와 같은 구성을 가지는 전력량 측정부(240)는, 수 킬로미터 이상 떨어지게 배치된 각 전기 사용처(10)들의 전력량 데이터를, 상기 통합 제어부(300)로 용이하게 전달할 수 있다. 즉, 전력량 측정부(240)는, 측정된 데이터를 먼 거리까지 전달하기 위하여 데이터 신호를 증폭하는 중계부를 더 포함하여 구성될 수 있고, 더불어, 각 에너지 사용처(10)들의 전력량 데이터를 통합하여 관리하는 관리 서버를 더 포함한 데이터 허브의 역할도 수행할 수 있으므로 후술할 통합 제어부(300)가 전력량 측정부(240)로부터 제공되는 데이터들을 취합하여 용이하게 분석할 수 있도록 한다.
통합 제어부(300)는, 전력량 측정부(240)에서 측정된 데이터를 바탕으로 상기 압축공기 공급부(210)와 상기 발전부(220)를 제어할 수 있다.
예컨대, 에너지 사용처(10)가 운영되는 낮 시간대에는 압축공기 공급부(210)를 가동하여 에너지 사용처(10)에서 필요로하는 압축 공기를 공급할 수 있다. 그리고, 에너지 사용처(10)가 운영되지 않는 밤 시간대에는 발전부(220)를 가동하여 전기 에너지를 생산할 수 있다.
산업단지를 구성하는 공장의 대부분은 압축 공기에 의해 작동되는 각종 기계장치 및 자동화 기기를 구비하고 있기 때문에, 상기 압축공기 공급부(210)에서 공급되는 압축 공기가 큰 도움이 될 수 있다. 이때, 전력의 사용량이 많은 전력 피크 시간대에서는 압축 공기를 만들기 위한 전력량이 부족한 경우도 있기 때문에 상기 발전부(220)는 낮 시간대에 가동될 수도 있다.
즉, 압축공기 공급부(210)와 발전부(220)는 에너지 사용처(10)에서 사용하는 전력량에 따라서 동시에 또는 개별적으로 가동될 수 있다.
한편, 에너지 사용처(10)가 운영되지 않는 시간대에서 상기 발전부(220)에 의하여 생산되는 전기 에너지는 제1에너지 저장부(250)에 저장될 수 있다.
상기 제1에너지 저장부(250)는 심야 시간대에 생산된 전기 에너지를 저장하였다가 에너지 사용처(10)에서 전기 에너지를 필요로 하는 시점에 전기 에너지를 공급할 수 있다. 예컨대, 전력 피크 시간대에 에너지 사용처(10)로 전기 에너지를 공급하거나, 또는, 에너지 사용처(10)에서 사용한 전력량이 통합 계약 전력의 일정 수준에 도달하였을 때 에너지 사용처(10)로 전기 에너지를 공급할 수 있다.
한편, 발전부(220)가 전기 에너지를 생산할 시에, 상기 발전부(220)의 높은 온도를 냉각시키는 냉각부(230)를 포함할 수 있다.
냉각부(230)는, 공지의 다양한 방식으로 발전부(220)를 냉각시킬 수 있으나, 에너지 사용처(10)에서 필요로하는 스팀이나 또는 고온의 냉각수를 제공하기 위하여 수냉식으로 발전부(220)를 냉각시키는 것이 바람직하다.
그리고, 발전부(220)를 냉각시키는 과정에서 발생되는 열에너지는 제2에너지 저장부(260)에 저장될 수 있다.
제2에너지 저장부(260)에 저장되는 열에너지는 스팀 또는 고온의 냉각수라 할 수 있다. 이러한 열에너지는 에너지 사용처(10)가 운영되기 이전 시간대에 에너지 사용처(10)로 미리 공급될 수 있다. 왜냐하면, 에너지 사용처(10)가 정상적으로 운영되기 위하여 사용되는 초기 에너지량과 시간을 줄이기 위함이다.
따라서, 통합 제어부(300)는, 에너지 사용처(10)의 전력 사용량이 에너지 사용처(10)와 전력 공급업체 간에 체결한 통합 계약 전력의 일정 수준, 예컨대, 80~90%의 수준에 도달하였을 때, 제1에너지 저장부(250) 또는 제2에너지 저장부(260)를 제어하여 전기 에너지 또는 열에너지를 에너지 사용처(10)에 공급할 수 있다.
참고로, 상기 통합 계약 전력은, 산업단지에 들어선 각 에너지 사용처(10)의 과년도 전력 사용량을 기초로 산출되며, 상기 과년도 전력 사용량은, 상기 에너지 사용처(10)의 2년~5년 기간 동안의 평균 전력 사용량이라 할 수 있다.
또 다른 예로, 통합 제어부(300)는, 산업단지에 배치된 각 에너지 사용처(10)의 전력 사용량이 가장 많아지는 전력 피크 시간대에, 제1에너지 저장부(250) 또는 제2에너지 저장부(260)를 제어하여 상기 제1에너지 저장부(250)에 저장된 전기 에너지 또는 상기 제2에너지 저장부(260)에 저장된 열에너지를 상기 에너지 사용처(10)에 공급할 수 있다.
따라서, 산업단지에 배치된 다수의 에너지 사용처(10)는 압축공기 공급부(210)에서 제공하는 압축 공기와 제1에너지 저장부(250)에 저장된 전기 에너지 또는 제2에너지 저장부(260)에 저장된 열에너지와 같이 다양한 종류의 에너지를 선택적으로 공급받을 수 있으므로, 에너지를 필요로 하는 각종 장치 및 자동화 기기를 효율적으로 운영할 수 있고, 더불어, 에너지 사용에 따른 비용도 절감할 수 있다.
한편, 본 발명의 일 실시예에 따른 산업단지 에너지 관리 시스템(100)은, 도 3에 도시된 바와 같이, 통합 관리부(400)를 더 포함할 수 있다.
상기 통합 관리부(400)는, 산업단지내 각 에너지 사용처(10)들의 조합이라고 할 수 있으며, 각각의 에너지 사용처(10)를 대신하여 전력 공급업체와 통합 계약 전력을 체결할 수 있다.
이러한 통합 관리부(400)는, 상기 전력량 측정부(240)로부터 측정되는 전력량을 바탕으로 각 에너지 사용처(10)의 통합 사용 전력량을 산출하는 산출부(410); 상기 산출부(410)에서 산출된 통합 사용 전력량과 상기 통합 계약 전력을 비교 분석하는 분석부(420); 및 상기 분석부(420)에서 분석된 데이터를 바탕으로 연간 허용 전력을 초과한 에너지 사용처(10)를 검출하는 과부하 검출부(430);를 포함할 수 있다.
상기 산출부(410)는, 전력량 측정부(240)로부터 전달되는 실시간 전력량 데이터를 바탕으로 각 에너지 사용처(10)들의 전력 사용량을 취합하여 통합 사용 전력량을 산출할 수 있다.
또한, 산출부(410)는, 각 에너지 사용처(10)가 과년도에 단위 기간 동안 사용하였던 전력 사용량 데이터와 상기 전력량 측정부(240)로부터 측정되는 전력량 데이터를 비교 분석하여 각 에너지 사용처(10)의 전력 사용패턴을 분석할 수 있다.
즉, 산출부(410)는, 각 에너지 사용처(10)의 과년도 전력 사용량 데이터를 가지고 있다. 따라서, 산출부(410)는 과년도 전력 사용량 데이터를 바탕으로 현재 에너지 사용처(10)가 사용하고 있는 전력량을 비교 분석하고 이 분석된 결과값을 상기 과부하 검출부(430)로 전달할 수 있다.
상기 분석부(420)는, 전기 공급업체와 체결한 통합 계약 전력과 상기 산출부(410)에서 산출한 각 에너지 사용처(10)들의 통합 사용 전력량을 비교 분석하고, 그 결과값을 상기 과부하 검출부(430)로 전달할 수 있다.
상기 과부하 검출부(430)는, 전술한 바와 같이, 분석부(420)로부터 분석된 결과값을 바탕으로 연간 허용 전력을 초과한 에너지 사용처(10)를 검출할 수 있다.
다시 말해, 과부하 검출부(430), 상기 산출부(410)에서 산출된 통합 사용 전력량이 통합 계약 전력을 초과하면, 다수의 에너지 사용처(10) 중에서 연간 허용 전력을 초가한 에너지 사용처(10)를 검출할 수 있다.
과부하 검출부(430)에서 검출된 에너지 사용처(10) 정보는 상기 통합 제어부(300)로 전달되며, 통합 제어부(300)는 해당 에너지 사용처(10)로 전력이 공급되는 것을 차단할 수 있다. 즉, 통합 제어부(300)는, 과부하 검출부(430)로부터 검출된 에너지 사용처(10)로 전력이 공급되는 것을 차단하는 차단부(미도시)를 더 포함할 수 있다. 참고로, 차단부는, 산업단지 내 각 에너지 사용처(10)로 전력을 공급하는 전력 공급선에 차단 스위치, 또는, 차단 밸브의 형태로 구현되어 마련될 수 있다.
반대로, 과부하 검출부(430)는, 상기 산출부(410)에서 산출된 통합 사용 전력량이 통합 계약 전력에 미달되면, 각 에너지 사용처(10)가 현재 까지는 연간 허용 전력에 포함된 범위 내에서 전력을 사용하고 있는 것으로 판단할 수 있다.
이때, 과부하 검출부(430)는, 상기 산출부(410)에서 분석된 각 에너지 사용처(10)의 전력 사용패턴 데이터를 기초로 하여, 통합 사용 전력량이 통합 계약 전력을 초과하기 이전에, 연간 허용 전력을 초과하여 전력을 사용할 것으로 예측되는 에너지 사용처(10)를 검출하고 그 에너지 사용처(10)에 과부하 신호를 전달할 수 있다. 즉, 과부하 검출부(430)는, 에너지 사용처(10)가 앞으로 소비할 전력량을 추정하고, 그 전력량이 각 전기 사용처(10)에 할당된 허용 전력량을 초과하는지, 또는, 미달되는지를 판단할 수 있으며, 더불어, 그에 따른 대응 신호를 각 에너지 사용처(10)에 전달할 수 있다.
산업단지에 들어선 에너지 사용처(10)들은, 대용량 설비의 가동성, 제품의 시장 변동성, 계절성, 비상 상황 등에 따라서 전력 사용량이 급격히 늘어나거나 줄어들 수 있다.
따라서, 에너지 사용처(10)는, 할당된 연간 허용 전력을 초과하거나 미달되는 전력을 사용할 수가 있는데, 여기서, 연간 허용 전력을 초과하는 전력을 사용하게되면 전기 공급업체와 체결되었던 통합 계약 전력을 초과함과 동시에 또 다른 에너지 사용처(10)에 할당된 전력을 뺏어서 사용한 셈이 되어 다른 에너지 사용처(10)에게 피해를 주고, 전기 공급업체에게 초과 사용 부담금을 지불하게 한다.
과부하 검출부(430)는, 이러한 문제점을 사전에 방지하기 위하여, 연간 허용 전력을 초과 사용할 것으로 추정되는 에너지 사용처(10)에 과부하 신호를 전달할 수 있다.
이때, 상기 통합 관리부(400)는, 상기 과부하 검출부(430)로부터 과부하 신호를 받은 에너지 사용처(10)가 상기 전력 공급업체(20)와 별도의 보조 계약 전력을 맺도록 안내하고, 상기 산출부(410)에서 분석된 전력 사용패턴 데이터를 바탕으로 상기 보조 계약 전력을 추전하는 보조 계약 추천부(440);를 포함할 수 있다.
이러한 보조 계약 추천부(440)는, 산출부(410)에서 분석된 에너지 사용처(10)의 전력 사용패턴과 과부하 검출부(430)에서 분석된 에너지 사용처(10)의 예측 소비 전력량을 분석하여 최적의 보조 계약 전력을 산출하고 그 산출된 결과를 에너지 사용처(10)에 제공할 수 있다. 그러면, 에너지 사용처(10)는 보조 계약 추천부(440)에서 추천한 보조 계약 전력을 전기 공급업체와 별도로 체결할 수 있다.
위와 같은, 과부하 검출부(430)와 보조 계약 추천부(440)는, 산업단지의 각 에너지 사용처(10)에서 사용된 통합 사용 전력량이 통합 계약 전력을 초과하지 않도록 함과 동시에, 연간 허용 전력을 초과 사용한 에너지 사용처(10)가 지속적으로 전력을 공급받을 수 있도록 하여 지속적인 제품의 생산이나 산업적 구동을 수행할 수 있도록 한다.
참고로, 과부하 검출부(430)와 보조 계약 추천부(440)가 에너지 사용처(10)로 과부하 신호 또는 보조 계약 정보를 전달하는 방식은 다양한 공지의 방식이 사용될 수 있으며, 신속한 대응 측면에서는, 에너지 사용처(10)의 관리 담당자 단말기로 신호 및 정보를 전달하는 것이 바람직하다.
한편, 통합 관리부(400)가 전기 공급업체와 체결하는 통합 계약 전력은, 전술한 바와 같이, 산업단지에 들어선 각 에너지 사용처(10)의 과년도 전력 사용량을 기초로 산출될 수 있다. 여기서, 과년도 전력 사용량은, 상기 에너지 사용처(10)의 2년~5년 기간 동의 편균 전력 사용량이라 할 수 있다.
예컨대, A 에너지 사용처(10)의 과년도 전력 사용량이 700kw, B 에너지 사용처(10)의 과년도 전력 사용량이 400kw, C 에너지 사용처(10)의 과년도 전력 사용량이 1100kw, D 에너지 사용처(10)의 과년도 전력 사용량이 660kw라고 가정하면, 상기 통합 관리부(200)가 상기 전기 공급업체와 체결하는 통합 계약 전력은 각 에너지 사용처(10)의 과년도 전력 사용량을 합한 2860kw라 할 수 있다. 더불어, 각 에너지 사용처(10)의 과년도 전력 사용량이 연간 허용 전력량이라고도 할 수 있다.
이 중에서, A 에너지 사용처(10)가 연간 허용 전력량인 400kw를 초가하게 되면, 상기 과부하 검출부(430)로부터 검출될 수 있다.
그러면, 통합 제어부(300)의 차단부는 과부하 검출부(430)부터 검출된 A 에너지 사용처(10)에 전력이 공급되지 않도록 전력을 제어할 수 있다. 그러면, A 에너지 사용처(10)는 통합 관리부(400)와 전력 공급업체와 체결한 통합 계약 전력 내의 전력을 더 이상 사용할 수 없다.
한편, 위와 같은 A 에너지 사용처(10)는, 통합 제어부(300)에 의해 공급되던 전력이 차단되기 이전에, 상기 과부하 검출부(430)로부터 과부하 신호를 전달받을 수 있다. 그러면, A 에너지 사용처(10)는 전기 공급업체(20)와 별도로 계약 전력을 맺어야 하는바, 상기 보조 계약 추천부(240)로부터 추천 받은 보조 계약 전력을 전기 공급업체와 체결할 수 있다.
참고로, 각 에너지 사용처(10)의 과년도 전력 사용량은, 전기 공급업체가 각 전기 사용처(10)에 고지한 전기 요금서를 기초로 산출될 수 있으며, 이러한 정보는 전기 공급업체로부터 제공받을 수 있다.
또한, 상기 통합 계약 전력은, 상기 과년도 전력 사용량에 보조 전력량을 부가하여 산출하는 것이 바람직하다. 왜냐하면, 전술한 바와 같이, 다양한 물리적 요인, 환경적 요인 등으로 인하여 각 에너지 사용처(10)에서 소비되는 전력 사용량의 크기 때문이며, 이 변동성에 유연하게 대처하기 위한 측면으로 상기 과년도 전력 사용량의 5~15% 비율을 차지하는 보조 전력량을 부가하여 통합 계약 전력을 산출하는 것이 바람직하다.
한편, 상기 보조 전력량이 부가되는 비율은 상기 에너지 사용처(10)의 전력 사용패턴을 분석하는 상기 산출부(410)에 의하여 보정될 수 있다. 즉, 다음 해에 통합 계약 전력을 산출하기 위하여 상기 과년도 전력 사용량에 부가되는 보조 전력량의 비율은 상기 산출부(410)에 의하여 보정된다.
지금까지 본 발명에 따른 구체적인 실시예에 관하여 설명하였으나, 본 발명의 범위에서 벗어나지 않는 한도 내에서는 여러 가지 변형이 가능함은 물론이다.
그러므로, 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 안되며, 후술하는 특허 청구의 범위뿐 아니라 이 특허 청구의 범위와 균등한 것들에 의해 정해져야 한다.
본 발명은 산업단지 내에 마련된 각종 제조 공장이나 시설물에게 에너지를 효율적으로 공급하는 에너지 관리 및 공급 시스템으로 적용될 수 있다.

Claims (10)

  1. 산업단지에 들어선 다수의 에너지 사용처와 연결되는 터빈부;
    상기 터빈부에 마련되며, 상기 에너지 사용처로 압축 공기를 제공하는 압축공기 공급부;
    상기 터빈부에 마련되며, 상기 에너지 사용처에서 사용될 전기 에너지를 생산하는 발전부; 및
    상기 압축공기 공급부와 상기 발전부를 제어하는 통합 제어부;를 포함하는 것을 특징으로 하는 산업단지 에너지 관리 시스템.
  2. 제 1 항에 있어서,
    상기 에너지 사용처의 전력 사용량을 측정하는 전력량 측정부를 포함하며,
    상기 통합 제어부는, 상기 전력량 측정부에서 측정된 데이터를 바탕으로 상기 압축공기 공급부와 상기 발전부를 제어하는 것을 특징으로 하는 산업단지 에너지 관리 시스템.
  3. 제 2 항에 있어서,
    상기 발전부에서 생산된 전기 에너지가 저장되는 제1에너지 저장부; 및
    상기 발전부를 냉각시키는 과정에서 발생되는 열에너지가 저장되는 제2에너지 저장부;를 포함하는 것을 특징으로 하는 산업단지 에너지 관리 시스템.
  4. 제 2 항에 있어서,
    상기 제2에너지 저장부에 저장되는 열에너지는, 상기 발전부를 수냉식으로 냉각시키는 과정에서 발생되는 고온의 냉각수 또는 스팀을 포함하는 것을 특징으로 하는 산업단지 에너지 관리 시스템.
  5. 제 3 항에 있어서,
    상기 통합 제어부는,
    상기 에너지 사용처의 전력 사용량이 상기 에너지 사용처와 전력 공급업체가 체결한 통합 계약 전력의 80~90%에 도달하였을 경우에, 상기 제1에너지 저장부 또는 상기 제2에너지 저장부를 제어하여 상기 제1에너지 저장부에 저장된 전기 에너지 또는 상기 제2에너지 저장부에 저장된 열에너지를 상기 에너지 사용처에 공급하는 것을 특징으로 하는 산업단지 에너지 관리 시스템.
  6. 제 5 항에 있어서,
    상기 통합 계약 전력은,
    산업단지에 들어선 각 에너지 사용처의 과년도 전력 사용량을 기초로 산출되며,
    상기 과년도 전력 사용량은,
    상기 에너지 사용처의 2년~5년 기간 동안의 평균 전력 사용량인 것을 특징으로 하는 산업단지 에너지 관리 시스템.
  7. 제 3 항에 있어서,
    상기 통합 제어부는,
    산업단지에 배치된 각 에너지 사용처의 전력 사용량이 가장 많아지는 전력 피크 시간대에, 상기 제1에너지 저장부 또는 상기 제2에너지 저장부를 제어하여 상기 제1에너지 저장부에 저장된 전기 에너지 또는 상기 제2에너지 저장부에 저장된 열에너지를 상기 에너지 사용처에 공급하는 것을 특징으로 하는 산업단지 에너지 관리 시스템.
  8. 제 6 항에 있어서,
    상기 전력량 측정부로부터 측정되는 전력량을 바탕으로 각 에너지 사용처의 통합 사용 전력량을 산출하는 산출부;
    상기 산출부에서 산출된 통합 사용 전력량과 상기 통합 계약 전력을 비교 분석하는 분석부; 및
    상기 분석부에서 분석된 데이터를 바탕으로 연간 허용 전력을 초과한 에너지 사용처를 검출하는 과부하 검출부;를 포함하는 것을 특징으로 하는 산업단지 에너지 관리 시스템.
  9. 제 8 항에 있어서,
    상기 산출부는, 각 에너지 사용처가 과년도에 단위 기간 동안 사용하였던 전력 사용량 데이터와 상기 전력량 측정부로부터 측정되는 전력량 데이터를 바탕으로 각 에너지 사용처의 전력 사용패턴을 분석하는 것을 특징으로 하는 산업단지 에너지 관리 시스템.
  10. 제 9 항에 있어서,
    상기 전력량 측정부는,
    IPv6에 의한 인터넷 IP를 부여받아 사물인터넷(IOT, Internet of Things)으로 구현되는 것을 특징으로 하는 산업단지 에너지 관리 시스템.
PCT/KR2022/002565 2021-02-24 2022-02-22 산업단지 에너지 관리 시스템 WO2022182092A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20210024458 2021-02-24
KR10-2021-0024458 2021-02-24

Publications (1)

Publication Number Publication Date
WO2022182092A1 true WO2022182092A1 (ko) 2022-09-01

Family

ID=83049390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/002565 WO2022182092A1 (ko) 2021-02-24 2022-02-22 산업단지 에너지 관리 시스템

Country Status (1)

Country Link
WO (1) WO2022182092A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6697951B1 (en) * 2000-04-26 2004-02-24 General Electric Company Distributed electrical power management system for selecting remote or local power generators
KR20070112617A (ko) * 2006-05-22 2007-11-27 엘지전자 주식회사 열병합 발전 시스템 및 그 제어방법
KR20100110637A (ko) * 2009-04-03 2010-10-13 주식회사 동흥산업개발 태양광과 풍력의 복합 대체 에너지 발전을 연계한 열병합 발전 시스템
JP2018168745A (ja) * 2017-03-29 2018-11-01 株式会社神戸製鋼所 圧縮空気貯蔵発電装置
KR102103412B1 (ko) * 2018-10-28 2020-05-29 한국전력정보(주) 소규모 분산 전력 자원 통합 관리 시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6697951B1 (en) * 2000-04-26 2004-02-24 General Electric Company Distributed electrical power management system for selecting remote or local power generators
KR20070112617A (ko) * 2006-05-22 2007-11-27 엘지전자 주식회사 열병합 발전 시스템 및 그 제어방법
KR20100110637A (ko) * 2009-04-03 2010-10-13 주식회사 동흥산업개발 태양광과 풍력의 복합 대체 에너지 발전을 연계한 열병합 발전 시스템
JP2018168745A (ja) * 2017-03-29 2018-11-01 株式会社神戸製鋼所 圧縮空気貯蔵発電装置
KR102103412B1 (ko) * 2018-10-28 2020-05-29 한국전력정보(주) 소규모 분산 전력 자원 통합 관리 시스템

Similar Documents

Publication Publication Date Title
WO2011059132A1 (ko) 분산전원의 전력 거래 시스템 및 거래 방법
WO2015068910A1 (ko) 전기자동차 충전 및 과금시스템
WO2013047928A1 (ko) 배전계통의 전기품질 이상 파형 감지 시스템 및 방법
WO2014061889A1 (ko) Pmu를 이용한 facts 기기 운용 장치 및 방법
WO2011055975A2 (en) Network system and method of controlling the same
KR101220773B1 (ko) 스마트 그리드 환경에서 에너지 관리기능을 갖는 지능형 분전반
WO2011052957A2 (en) Method of controlling network system
EP2504949A2 (en) Network system and method of controlling network system
WO2015040725A1 (ja) 蓄電池システム
WO2015147360A1 (ko) 전기자동차 충전 및 과금시스템
KR20190071426A (ko) 태양광발전원의 전력패턴분석·신재생에너지 시각화기능을 갖는 스마트 에너지관리장치
JP2015519032A (ja) 電力監視システムおよび電力監視方法
WO2021141242A1 (ko) 최적 조류 계산 방법 및 시스템
WO2012067277A1 (ko) 냉장고 및 그 동작 방법
WO2011049358A1 (en) Method of controlling network system
WO2019216512A1 (ko) 전자식 전력량계
WO2022182092A1 (ko) 산업단지 에너지 관리 시스템
JP7377193B2 (ja) 複合建築物における太陽エネルギーの制御配給のためのビハインド・ザ・メーター・システム及び方法
WO2022025326A1 (ko) 공용부 ess를 이용한 개별 수용가의 에너지 절감 방법 및 장치
KR100961789B1 (ko) Rtu 제어전원 종합검출관리장치
CN210867288U (zh) 一种电费控制系统
WO2018124570A1 (ko) 변전소의 자산 관리 방법
WO2012002618A1 (ko) 역률 보상 시스템
WO2011049384A2 (en) Network system and method of controlling the same
WO2011155647A1 (ko) 네트워크 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22760010

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22760010

Country of ref document: EP

Kind code of ref document: A1