WO2022181545A1 - Manufacturing method for polymer comprising hydrolyzable silyl group, and polymer, curable composition, and cured product - Google Patents

Manufacturing method for polymer comprising hydrolyzable silyl group, and polymer, curable composition, and cured product Download PDF

Info

Publication number
WO2022181545A1
WO2022181545A1 PCT/JP2022/006967 JP2022006967W WO2022181545A1 WO 2022181545 A1 WO2022181545 A1 WO 2022181545A1 JP 2022006967 W JP2022006967 W JP 2022006967W WO 2022181545 A1 WO2022181545 A1 WO 2022181545A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polymer
weight
hydrolyzable silyl
parts
Prior art date
Application number
PCT/JP2022/006967
Other languages
French (fr)
Japanese (ja)
Inventor
直己 味岡
章徳 佐藤
のどか 久保田
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2022181545A1 publication Critical patent/WO2022181545A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/336Polymers modified by chemical after-treatment with organic compounds containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides

Definitions

  • the present invention relates to a method for producing a polymer having a hydrolyzable silyl group, a polyoxyalkylene polymer having a hydrolyzable silyl group, a curable composition containing the polymer, and a cured product thereof.
  • hydrolyzable silyl group An organic polymer having a hydroxyl group or a hydrolyzable group on a silicon atom and having a silicon-containing group capable of forming a siloxane bond (hereinafter referred to as a "hydrolyzable silyl group”) is known as a moisture-reactive polymer. It is contained in many industrial products such as adhesives, sealants, coating materials, paints, and adhesives, and is used in a wide range of fields. As such a hydrolyzable silyl group-containing polymer, various polymers having a main chain skeleton such as a polyoxyalkylene polymer, a saturated hydrocarbon polymer, and a (meth)acrylic acid ester copolymer are known. ing.
  • a method for producing a hydrolyzable silyl group-containing polymer for example, after synthesizing a polyoxyalkylene polymer having a terminal hydroxyl group by ring-opening polymerization of an epoxy compound, the hydroxyl group is converted into a carbon-carbon double bond.
  • a method of introducing a hydrolyzable silyl group into a polymer by converting the carbon-carbon double bond and a silane compound into a hydrosilylation reaction is known (see, for example, Patent Document 1).
  • the hydrolyzable silyl group-containing polymer obtained by this method does not always have sufficient curability, and improvement of this is desired.
  • Patent Document 2 a hydroxyl group possessed by a polyoxyalkylene polymer is converted to a carbon-carbon triple bond, and then the carbon-carbon triple bond is subjected to a hydrosilylation reaction with a silane compound to convert a hydrolyzable silyl group into the polymer.
  • a method of introduction is described, and the resulting polymer is said to have carbon-carbon double bonds attached to silicon atoms and to exhibit rapid curing properties.
  • the present invention provides a novel method for producing a polymer having a hydrolyzable silyl group and a carbon-carbon double bond bonded to a silicon atom in the silyl group, and a method obtainable by the production method.
  • An object of the present invention is to provide a polymer, a curable composition containing the polymer, and a cured product thereof.
  • the present inventors used a metathesis reaction that recombines bonds between vinyl groups instead of a hydrosilylation reaction on a carbon-carbon triple bond as described in Patent Document 2 to obtain a hydrolyzable silyl group, The inventors have found that it is possible to produce a polymer having a carbon-carbon double bond bonded to the silicon atom in the silyl group, leading to the present invention.
  • the present invention provides a hydrolyzable silyl polymer comprising a step of metathesis reacting a vinyl group-containing polymer with a silane compound having a vinyl group and a hydroxyl group or a hydrolyzable group on a silicon atom in the presence of a catalyst.
  • the present invention relates to a method for producing a polymer having groups.
  • the temperature during the metathesis reaction is 60° C. or less.
  • the metathesis reaction is carried out while bubbling an inert gas through the reaction system.
  • said catalyst is a Grubbs catalyst.
  • the silane compound is represented by the formula: CH 2 ⁇ CH—Si(R 1 ) 3-a (X) a (wherein R 1 is a substituted or unsubstituted represents a hydrocarbon group, X represents a hydroxyl group or a hydrolyzable group, and a represents 1, 2, or 3).
  • the polyoxyalkylene polymer may contain ruthenium, in which case the ruthenium content in the polymer may be 10 to 2,000 ppm. Furthermore, the present invention also relates to a curable composition containing the polyoxyalkylene polymer. The curable composition may further contain a curing catalyst. Furthermore, the present invention also relates to a cured product of the curable composition.
  • a novel process for producing a polymer having a hydrolyzable silyl group and a carbon-carbon double bond bonded to a silicon atom in the silyl group and a polymer obtainable by the process , a curable composition containing the polymer, and a cured product thereof.
  • hydrolyzable silyl groups and carbon-carbon double bonds attached to silicon atoms in the silyl groups are prepared without the use of unstable and difficult-to-handle carbon-carbon triple bond-containing compounds. It is possible to produce a polymer having Moreover, according to the present invention, a polymer in which a hydrolyzable silyl group is bonded to the polymer skeleton via a carbon-carbon double bond can be produced with high selectivity.
  • This embodiment includes a step of metathesis reacting a polymer having a vinyl group with a silane compound having a vinyl group and a hydroxyl group or a hydrolyzable group on a silicon atom in the presence of a catalyst. It relates to a method for producing a polymer having A metathesis reaction is a reaction in which bond recombination proceeds between two types of olefins. A hydrolyzable silyl group can be introduced into the polymer by recombination of the bond between the vinyl group of the polymer and the vinyl group of the silane compound by the metathesis reaction.
  • the starting polymer has vinyl groups.
  • the position where the vinyl group is bonded is not particularly limited.
  • the polymer is preferably an organic polymer.
  • the organic polymer has a polymer skeleton composed of a plurality of repeating units.
  • the polymer backbone of the organic polymer may be linear or branched.
  • the polymer skeleton of the organic polymer is not particularly limited, and various polymer skeletons can be used.
  • Specific examples of polymer backbones include polyoxyethylene, polyoxypropylene, polyoxybutylene, polyoxytetramethylene, polyoxyethylene-polyoxypropylene copolymers, and polyoxypropylene-polyoxybutylene copolymers.
  • Saturated hydrocarbon polymers such as coalescence, polybutadiene, isoprene or copolymers of butadiene with acrylonitrile and styrene, and hydrogenated polyolefin polymers obtained by hydrogenating these polyolefin polymers; Coalescence; (meth)acrylic acid ester-based polymers obtained by radical polymerization of (meth)acrylic acid ester-based monomers such as ethyl (meth)acrylate and butyl (meth)acrylate, as well as (meth)acrylic acid-based monomers and acetic acid Vinyl polymers such as polymers obtained by radical polymerization of monomers such as vinyl, acrylonitrile, and styrene; graft polymers obtained by polymerizing vinyl monomers in the above polymers; polysulfide polymers; polyamides type polymer; polycarbonate type polymer; diallyl phthalate type polymer; and other organic polymers.
  • Each of the above polymers may be mixed in block form, graft form, or the like.
  • saturated hydrocarbon-based polymers, polyoxyalkylene-based polymers, and (meth)acrylic acid ester-based polymers have relatively low glass transition temperatures, and the obtained cured products have excellent cold resistance.
  • polyoxyalkylene-based polymers are more preferred, and polyoxypropylene is particularly preferred.
  • the organic polymer may be a polymer having one type of polymer skeleton, or a mixture of two or more types of polymers having different polymer skeletons.
  • the mixture may be a mixture of polymers produced separately, or a mixture produced at the same time so as to have an arbitrary composition.
  • the number average molecular weight of the organic polymer is not particularly limited. ,000 to 30,000.
  • the number average molecular weight is 3,000 or more, the relative amount of hydrolyzable silyl groups with respect to the whole polymer is within an appropriate range, which is desirable in terms of production cost.
  • the number average molecular weight is 100,000 or less, it is easy to achieve a desired viscosity from the viewpoint of workability.
  • the number average molecular weight can be determined in terms of polystyrene by GPC measurement.
  • the molecular weight distribution (Mw/Mn) of the organic polymer is not particularly limited, it is preferably narrow. Specifically, it is preferably less than 2.0, more preferably 1.6 or less, still more preferably 1.5 or less, and particularly preferably 1.4 or less. Moreover, from the viewpoint of improving mechanical properties such as durability and elongation of the cured product, it is preferably 1.2 or less.
  • the molecular weight distribution (Mw/Mn) can be calculated from the number-average molecular weight and the weight-average molecular weight obtained in terms of polystyrene by GPC measurement.
  • the production method is not particularly limited, but may be, for example, a method of introducing a carbon-carbon double bond into a hydroxyl-containing organic polymer by utilizing the reactivity of hydroxyl groups.
  • the polymer skeleton of the polyoxyalkylene-based polymer can be formed by polymerizing an epoxy compound with an initiator having a hydroxyl group by a conventionally known method, whereby a hydroxyl-terminated polyoxyalkylene-based polymer is obtained.
  • a polymerization method is not particularly limited, since a hydroxyl group-terminated polymer with a small molecular weight distribution (Mw/Mn) can be obtained, a polymerization method using a double metal cyanide complex catalyst such as a zinc hexacyanocobaltate glyme complex is used. is preferred.
  • hydroxyl-containing initiators include, but are not limited to, ethylene glycol, propylene glycol, glycerin, pentaerythritol, low-molecular-weight polyoxypropylene glycol, low-molecular-weight polyoxypropylene triol, allyl alcohol, and low-molecular-weight polyoxypropylene.
  • the epoxy compound is not particularly limited, examples thereof include alkylene oxides such as ethylene oxide and propylene oxide, and glycidyl ethers such as methyl glycidyl ether and butyl glycidyl ether. Propylene oxide is preferred.
  • reaction with alkali metal salt In introducing a carbon-carbon double bond to a hydroxyl-terminated polyoxyalkylene polymer, first, an alkali metal salt is allowed to act on the hydroxyl-terminated polyoxyalkylene polymer to convert the terminal hydroxyl group to a metaloxy group. preferably.
  • a double metal cyanide complex catalyst can also be used instead of the alkali metal salt. As described above, a metaloxy group-terminated polyoxyalkylene polymer is formed.
  • the alkali metal salt is not particularly limited, examples thereof include sodium hydroxide, sodium alkoxide, potassium hydroxide, potassium alkoxide, lithium hydroxide, lithium alkoxide, cesium hydroxide, and cesium alkoxide.
  • Sodium hydroxide, sodium methoxide, sodium ethoxide, sodium tert-butoxide, potassium hydroxide, potassium methoxide, potassium ethoxide, and potassium tert-butoxide are preferred from the viewpoint of ease of handling and solubility, and sodium methoxide and sodium tert. -butoxide is more preferred. From the standpoint of availability, sodium methoxide is particularly preferred, and from the standpoint of reactivity, sodium tert-butoxide is particularly preferred.
  • the alkali metal salt may be dissolved in a solvent before being subjected to the reaction.
  • the amount of the alkali metal salt used is not particularly limited, but the molar ratio to the hydroxyl group of the hydroxyl-terminated polyoxyalkylene polymer is preferably 0.5 or more, more preferably 0.6 or more, and 0.7 or more. More preferably, 0.8 or more is even more preferable.
  • the molar ratio is preferably 1.2 or less, more preferably 1.1 or less.
  • the alkali metal salt is used to convert the hydroxyl groups of the hydroxyl-terminated polyoxyalkylene polymer into metaloxy groups. It is preferable to previously remove substances having a hydroxyl group other than coalescence from the reaction system. For removal, known methods may be used, such as heat evaporation, vacuum devolatilization, spray vaporization, thin film evaporation, azeotropic devolatilization, and the like.
  • the temperature at which the alkali metal salt is allowed to act can be appropriately set by those skilled in the art, but is preferably 50°C or higher and 150°C or lower, more preferably 110°C or higher and 145°C or lower.
  • the time for which the alkali metal salt is allowed to act is preferably 10 minutes or more and 5 hours or less, more preferably 30 minutes or more and 3 hours or less.
  • reaction with electrophile By reacting an electrophilic agent having a vinyl group on the metaloxy group-terminated polyoxyalkylene polymer obtained as described above, the metaloxy group can be converted to a structure containing a vinyl group. . Thereby, a polyoxyalkylene polymer having a vinyl group is formed.
  • the electrophile having a vinyl group is not particularly limited as long as it is a compound capable of reacting with the metaloxy group possessed by the polyoxyalkylene polymer and introducing a vinyl group into the polyoxyalkylene polymer. group-containing organic halides, and the like.
  • the organic halide having a vinyl group can react with the metaloxy group through a halogen substitution reaction to form an ether bond, thereby introducing a structure containing a vinyl group to the end of the polyoxyalkylene polymer.
  • the organic halide having a vinyl group is, but not limited to, the following general formula (3): Z—R 3 —CH ⁇ CH 2 (3) can be expressed as In general formula (3), R 3 represents a direct bond or a divalent hydrocarbon group having 1 to 4 carbon atoms. Z represents a halogen atom.
  • R 3 is preferably a divalent hydrocarbon group having 1 to 3 carbon atoms, more preferably a divalent hydrocarbon group having 1 to 2 carbon atoms.
  • the hydrocarbon group is preferably an alkylene group, and a methylene group, ethylene group, propylene group, or butylene group can be used. Methylene groups are particularly preferred.
  • organic halides having a vinyl group are not particularly limited, but include vinyl chloride, allyl chloride, vinyl bromide, allyl bromide, vinyl iodide, and allyl iodide. Allyl chloride is preferred for ease of handling.
  • the amount of the organic halide having a vinyl group to be added is not particularly limited, but the molar ratio of the organic halide to the hydroxyl group of the polyoxyalkylene polymer is preferably 0.7 or more, more preferably 1.0 or more. . Moreover, the molar ratio is preferably 5.0 or less, more preferably 2.0 or less.
  • the temperature at which the vinyl group-containing organic halide is reacted with the metaloxy group-terminated polyoxyalkylene polymer is preferably 50°C or higher and 150°C or lower, more preferably 110°C or higher and 140°C or lower.
  • the reaction time is preferably 10 minutes to 5 hours, more preferably 30 minutes to 3 hours.
  • the method for producing the organic polymer includes (I) a compound having a polymerizable unsaturated group and a reactive functional group (for example, , acrylic acid, 2-hydroxyethyl acrylate) are copolymerized with a monomer having a (meth)acrylic structure to obtain a polymer, and then any position in the resulting polymer (preferably the molecular chain end ), and (II) a monomer having a (meth)acrylic structure is polymerized by a living radical polymerization method such as atom transfer radical polymerization to obtain a polymer.
  • a living radical polymerization method such as atom transfer radical polymerization
  • the method for producing the organic polymer includes olefins having 2 to 6 carbon atoms such as ethylene, propylene, 1-butene, and isobutylene. Examples include a method of polymerizing a base compound as a main monomer to obtain a polymer, and then introducing a vinyl group at any position (preferably at the molecular chain terminal) of the obtained polymer.
  • silane compound having vinyl group and hydroxyl group or hydrolyzable group on silicon atom (Silane compound having vinyl group and hydroxyl group or hydrolyzable group on silicon atom)
  • the silane compound having a vinyl group and a hydroxyl group or a hydrolyzable group on the silicon atom (hereinafter also referred to as a silane compound for short) has a vinyl group bonded to the silicon atom and a hydroxyl group or a hydrolyzable group bonded to the silicon atom.
  • the silane compound can be represented by the formula: CH 2 ⁇ CH—Si(R 1 ) 3-a (X) a .
  • R 1 represents a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms.
  • the number of carbon atoms is preferably 1 to 10, more preferably 1 to 8 carbon atoms, still more preferably 1 to 6 carbon atoms, even more preferably 1 to 3 carbon atoms, and particularly preferably 1 or 2 carbon atoms.
  • the hydrocarbon group has a substituent, the substituent is not particularly limited, and examples thereof include halogen groups such as chloro, alkoxy groups such as methoxy, and amino groups such as N,N-diethylamino. .
  • R 1 examples include unsubstituted groups such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, tert-butyl group, n-hexyl group, 2-ethylhexyl group and n-dodecyl group.
  • Alkyl group ; chloromethyl group, methoxymethyl group, substituted alkyl group such as N,N-diethylaminomethyl group; vinyl group, isopropenyl group, unsaturated hydrocarbon group such as allyl group; cycloalkyl group such as cyclohexyl group; phenyl aryl groups such as toluyl group and 1-naphthyl group; and aralkyl groups such as benzyl group.
  • R 1 only one type of group may be used, or two or more types of groups may be used in combination.
  • X represents a hydroxyl group or a hydrolyzable group.
  • Examples of X include hydroxyl group, hydrogen, halogen, alkoxy group, acyloxy group, ketoximate group, amino group, amide group, acid amide group, aminooxy group, mercapto group and alkenyloxy group.
  • the above alkoxy group and the like may have a substituent.
  • An alkoxy group is preferred because it is moderately hydrolyzable and easy to handle, methoxy, ethoxy, n-propoxy and isopropoxy are more preferred, methoxy and ethoxy are still more preferred, and methoxy is particularly preferred.
  • As X only one type of group may be used, or two or more types of groups may be used in combination.
  • a in the above formula represents 1, 2, or 3. Preferably 2 or 3. It is more preferably 2 in terms of the balance between the curability of the polymer and the physical properties of the cured product.
  • silane compound examples include trimethoxyvinylsilane, triethoxyvinylsilane, tris(2-propenyloxy)vinylsilane, triacetoxyvinylsilane, methyldimethoxyvinylsilane, methyldiethoxyvinylsilane, dimethoxyethylvinylsilane, (chloromethyl)dimethoxy vinylsilane, (chloromethyl)diethoxyvinylsilane, (methoxymethyl)dimethoxyvinylsilane, (methoxymethyl)diethoxyvinylsilane, (N,N-diethylaminomethyl)dimethoxyvinylsilane, (N,N-diethylaminomethyl)diethoxyvinylsilane and the like. be done.
  • One type of silane compound may be used alone, or two or more types may be used in combination.
  • the amount of the silane compound used is not particularly limited, but it is preferably 0.1 to 100 times by moles, more preferably 0.5 to 30 times by moles, more preferably 1 to 20 times by moles the vinyl groups possessed by the polymer. Molar fold is more preferred. From the viewpoint of increasing the rate of silyl group introduction into the polymer, it is preferably 2 mol times or more, more preferably 3 mol times or more.
  • the catalyst is a catalyst that promotes a metathesis reaction between the vinyl group of the polymer and the vinyl group of the silane compound.
  • the catalyst is not particularly limited, an organometallic complex having carbene as a ligand can be used.
  • Metal species constituting the metal complex include, for example, titanium, tantalum, molybdenum, tungsten, ruthenium, and osmium.
  • first-generation Grubbs catalysts (benzylidene-bis(tricyclohexylphosphino)dichlororuthenium)
  • second-generation Grubbs catalysts [1,3-bis-(2, 4,6-trimethylphenyl)-2-imidazolidinylidene]dichloro(phenylmethylene)(tricyclohexylphosphino)ruthenium
  • first generation Hoveyda-Grubbs catalyst (dichloro(o-isopropoxyphenylmethylene) (tri Cyclohexylphosphine)ruthenium(II)
  • second-generation Hoveyda-Grubbs catalyst [1,3-bis-(2,4,6-trimethylphenyl)-2-imidazolidinylidene]dichloro(o-isopropoxyphenylmethylene) ruthenium) and the like.
  • Grubbs catalysts are preferred, and first-generation Grubbs catalysts are preferred, and first-generation
  • the amount of the catalyst used is not particularly limited, but it is preferably 0.001 to 1 mol, more preferably 0.01 to 0.5 mol, more preferably 0.01 to 1 mol, relative to the vinyl groups of the polymer. 05 to 0.3 mol times is more preferable.
  • the polymer having a vinyl group is subjected to a metathesis reaction with a silane compound having a vinyl group and a hydroxyl group or a hydrolyzable group on the silicon atom in the presence of the catalyst to obtain a polymer having a hydrolyzable silyl group. Coalescence can be produced.
  • a hydrolyzable silyl group is introduced into the polymer by recombination of bonds between the vinyl group of the polymer and the vinyl group of the silane compound by the metathesis reaction.
  • the reaction formula in the case where the polymer having a vinyl group is polyoxypropylene having an allyl group and the silane compound is trimethoxyvinylsilane is shown below.
  • PPO in the formula represents polyoxypropylene, and Me represents a methyl group.
  • Me represents a methyl group.
  • the product polymer having a hydrolyzable silyl group is shown in the trans form, the structure of the polymer is not limited to the trans form, and may include both the trans and cis forms.
  • the reaction temperature during the metathesis reaction is not particularly limited, and may be, for example, about 0 to 150°C, preferably about 15 to 120°C. However, from the viewpoint of suppressing the isomerization reaction of the allyl group, which is a side reaction, the temperature is preferably relatively low, specifically 80°C or lower, more preferably 60°C or lower, and particularly preferably 50°C or lower. .
  • the reaction time of the metathesis reaction is not particularly limited, and may be, for example, about 1 to 10 hours.
  • the metathesis reaction may be carried out in the presence of a solvent or may be carried out without a solvent.
  • a solvent is not particularly limited and may be selected as appropriate.
  • Hydrogen, aliphatic halogenated hydrocarbons such as dichloroethane and chloroform, aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene and isopropylbenzene, aromatic halogenated hydrocarbons such as chlorobenzene and chlorotoluene, methanol and ethanol and ether solvents such as tetrahydrofuran (THF) and tetrahydropyran (THP).
  • THF tetrahydrofuran
  • THP tetrahydropyran
  • the solvent only one type may be used, or two or more types may be used in combination.
  • the metathesis reaction may be carried out by mixing each component and stirring.
  • the metathesis reaction is preferably carried out while bubbling an inert gas such as nitrogen or argon into the reaction system, since the rate of introduction of silyl groups into the polymer is improved. It is presumed that this is because the bubbling of the inert gas efficiently removes ethylene, which is a by-product, from the reaction system.
  • a polymer formed by coupling two molecules of a polymer having a vinyl group may be produced as a by-product.
  • a polymer having a hydrolyzable silyl group can be produced by the production method detailed above. Such polymers also constitute one aspect of the present embodiment. However, the polymer is not limited to the production method according to this embodiment.
  • the polymer having a hydrolyzable silyl group has a hydrolyzable silyl group and a carbon-carbon double bond bonded to a silicon atom in the silyl group.
  • the polymer that can be produced according to this embodiment can exhibit rapid curing properties due to the carbon-carbon double bond attached to the silicon atom in the hydrolyzable silyl group.
  • the hydrolyzable silyl group possessed by the polymer corresponds to the hydrolyzable silyl group in the silane compound and can be represented by —Si(R 1 ) 3-a (X) a . wherein R 1 , X, and a are each as described above.
  • hydrolyzable silyl group possessed by the polymer include, for example, a trimethoxysilyl group, a triethoxysilyl group, a tris(2-propenyloxy)silyl group, a triacetoxysilyl group, a methyldimethoxysilyl group, a methyldi ethoxysilyl group, dimethoxyethylsilyl group, (chloromethyl)dimethoxysilyl group, (chloromethyl)diethoxysilyl group, (methoxymethyl)dimethoxysilyl group, (methoxymethyl)diethoxysilyl group, (N,N-diethylaminomethyl) ) dimethoxysilyl group, (N,N-diethylaminomethyl)diethoxysilyl group and the like. Only one type of hydrolyzable silyl group may be used, or two or more types may coexist.
  • the hydrolyzable silyl group-containing polymer has a hydrolyzable silyl group bonded to the polymer skeleton via a carbon-carbon double bond, as shown in the chemical reaction formula. Specifically, it may have a structure represented by the formula: —CH ⁇ CH—Si(R 1 ) 3-a (X) a . R 1 , X, and a in the above formula are each as described above.
  • the following chemical reaction formula can be obtained.
  • the proportion of the hydrolyzable silyl groups occupied by the ⁇ -form structure is preferably 80 mol% or more and 100 mol% or less, more preferably is 90 mol% or more and 100 mol% or less, more preferably 95 mol% or more and 100 mol% or less, and the ratio of the ⁇ -body structure is preferably 0 mol% or more and 20 mol% or less, more preferably 0 mol%. 10 mol % or more, more preferably 0 mol % or more and 5 mol % or less. Polymers having such a high ratio of 80 mol % or more of ⁇ -body structure have not been reported so far.
  • Such a structure can be formed by using an allyl group-containing polymer as the vinyl group-containing polymer.
  • the details of the polymer skeleton, the number average molecular weight, and the range of the molecular weight distribution of the polymer having the hydrolyzable silyl group are the same as those of the polymer having the vinyl group, so the description is omitted.
  • the polymer having a hydrolyzable silyl group When the polymer having a hydrolyzable silyl group is produced using a ruthenium-containing catalyst as a catalyst, the polymer may contain ruthenium derived from the catalyst.
  • the ruthenium content of the polymer having a hydrolyzable silyl group is not particularly limited, depending on the amount of the ruthenium-containing catalyst used, the method of post-treatment, etc., but is, for example, 10 to 2,000 ppm. can be to some extent.
  • the lower limit may be 100 ppm or more, 500 ppm or more, or 1,000 ppm or more.
  • the ruthenium content ratio may be calculated from the amount of the ruthenium-containing catalyst used, or may be measured by general elemental analysis such as mass spectrometry.
  • a polymer having a hydrolyzable silyl group as described above can constitute a curable composition containing it.
  • the curable composition according to the present embodiment preferably contains a curing catalyst for the purpose of promoting the reaction of hydrolyzing and condensing the hydrolyzable silyl groups, that is, the curing reaction.
  • the curing catalyst conventionally known ones can be used. Specifically, organic tin compounds, carboxylic acid metal salts, amine compounds, carboxylic acids, alkoxy metals, inorganic acids, etc. can be used.
  • organotin compounds include dibutyltin dilaurate, dibutyltin dioctanoate, dibutyltin bis(butyl maleate), dibutyltin diacetate, dibutyltin oxide, dibutyltin bis(acetylacetonate), dibutyltin oxide and silicate compounds.
  • reaction product with dibutyltin oxide and phthalate ester dioctyltin diacetate, dioctyltin dilaurate, dioctyltin bis(ethyl maleate), dioctyltin bis(octyl maleate), dioctyltin bis(acetylacetonate) phosphate), dioctyltin dilaurate, dioctyltin distearate, dioctyltin diacetate, dioctyltin oxide, a reaction product of dioctyltin oxide and a silicate compound, and the like.
  • Dioctyltin compounds are preferred due to recent heightened environmental concerns.
  • the curable composition according to this embodiment does not contain an organic tin compound and is generally less active than an organic tin compound.
  • a curing catalyst in particular, an amine compound or the like may be contained. Even if the curable composition according to the present embodiment contains an amine compound, it can exhibit good curability.
  • carboxylate metal salts include tin carboxylate, bismuth carboxylate, titanium carboxylate, zirconium carboxylate, iron carboxylate, potassium carboxylate, and calcium carboxylate.
  • carboxylic acid group the following carboxylic acid and various metals can be combined.
  • amine compounds include amines such as octylamine, 2-ethylhexylamine, laurylamine, stearylamine; pyridine, 1,8-diazabicyclo[5,4,0]undecene-7 (DBU), 1, Nitrogen-containing heterocyclic compounds such as 5-diazabicyclo[4,3,0]nonene-5 (DBN); guanidines such as guanidine, phenylguanidine and diphenylguanidine; biguanides such as phenylbiguanide; and ketimine compounds.
  • carboxylic acids include acetic acid, propionic acid, butyric acid, 2-ethylhexanoic acid, lauric acid, stearic acid, oleic acid, linoleic acid, neodecanoic acid, and versatic acid.
  • alkoxy metals include titanium compounds such as tetrabutyl titanate, titanium tetrakis (acetylacetonate), diisopropoxytitanium bis (ethylacetonate), aluminum tris (acetylacetonate), diisopropoxy aluminum ethylacetate
  • titanium compounds such as tetrabutyl titanate, titanium tetrakis (acetylacetonate), diisopropoxytitanium bis (ethylacetonate), aluminum tris (acetylacetonate), diisopropoxy aluminum ethylacetate
  • aluminum compounds such as acetate
  • zirconium compounds such as zirconium tetrakis (acetylacetonate).
  • fluorine anion-containing compounds As other curing catalysts, fluorine anion-containing compounds, photoacid generators, and photobase generators can also be used.
  • the curing catalyst may be used in combination of two or more different catalysts.
  • the combination of the amine compound and carboxylic acid, or the combination of the amine compound and alkoxy metal provides the effect of improving the reactivity. There is a possibility that it will be
  • the hydrolyzable silyl group of the polymer according to the present embodiment has high activity, the amount of the curing catalyst can be reduced, or a curing catalyst with low activity can be used, or an amino group-containing silane coupling agent.
  • Aminosilanes can also be used as curing catalysts. Since aminosilane is usually added as an adhesion imparting agent in many cases, when aminosilane is used as a curing catalyst, a curable composition that does not use a commonly used curing catalyst can be produced. Therefore, it is preferable not to add other curing catalysts.
  • the hydrolyzable silyl group contains a trimethoxysilyl group or a methoxymethyldimethoxysilyl group, excellent curability is exhibited even when only aminosilane is used as a curing catalyst.
  • the amount of the curing catalyst is preferably 0.001 to 20 parts by weight, more preferably 0.01 to 15 parts by weight, and 0.01 to 10 parts by weight with respect to 100 parts by weight of the polymer according to the present embodiment. is particularly preferred. If the amount of the curing catalyst is less than 0.001 part by weight, the reaction rate may be insufficient. On the other hand, when the amount of the curing catalyst exceeds 20 parts by weight, the reaction rate is too fast, and the usable time of the composition is shortened, resulting in poor workability and poor storage stability. Furthermore, some curing catalysts may exude to the surface of the cured product or contaminate the surface of the cured product after the curable composition is cured. In such a case, by setting the amount of the curing catalyst to 0.01 to 3.0 parts by weight, it is possible to maintain good surface conditions of the cured product while ensuring curability.
  • the curable composition according to the present embodiment contains other additives such as a silicon compound, an adhesion imparting agent, a plasticizer, a solvent, a diluent, a silicate, a filler, an anti-sagging agent, an antioxidant, and a light stabilizer.
  • additives such as a silicon compound, an adhesion imparting agent, a plasticizer, a solvent, a diluent, a silicate, a filler, an anti-sagging agent, an antioxidant, and a light stabilizer.
  • various additives may be added to the curable composition according to the present embodiment as necessary for the purpose of adjusting various physical properties of the composition or cured product. Examples of such additives include curability modifiers, radical inhibitors, metal deactivators, antiozonants,
  • Fillers include ground calcium carbonate, colloidal calcium carbonate, magnesium carbonate, diatomaceous earth, clay, talc, titanium oxide, fumed silica, precipitated silica, crystalline silica, fused silica, anhydrous silicic acid, hydrous silicic acid, carbon black, ferric oxide, fine aluminum powder, zinc oxide, active zinc white, PVC powder, PMMA powder, glass fiber and filament, and the like.
  • the amount of filler used is preferably 1 to 300 parts by weight, more preferably 10 to 250 parts by weight, with respect to 100 parts by weight of the polymer according to this embodiment.
  • Organic balloons and inorganic balloons may be added for the purpose of weight reduction (lower specific gravity) of the composition.
  • the balloon is hollow inside with a spherical filler, and is made of inorganic materials such as glass, shirasu, and silica, and organic materials such as phenolic resin, urea resin, polystyrene, and saran. materials.
  • the amount of balloon used is preferably 0.1 to 100 parts by weight, more preferably 1 to 20 parts by weight, with respect to 100 parts by weight of the polymer according to this embodiment.
  • An adhesion imparting agent can be added to the curable composition according to the present embodiment.
  • a silane coupling agent or a reactant of the silane coupling agent can be added as the adhesion imparting agent.
  • Specific examples of silane coupling agents include ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropylmethyldimethoxysilane, N- ⁇ -aminoethyl- ⁇ -aminopropyltrimethoxysilane, N- ⁇ -aminoethyl- ⁇ - Amino group-containing silanes such as aminopropylmethyldimethoxysilane, N-phenyl- ⁇ -aminopropyltrimethoxysilane, (2-aminoethyl)aminomethyltrimethoxysilane; ⁇ -isocyanatopropyltrimethoxysilane, ⁇ -isocyanatopropyltrimethoxysilane; isocyan
  • Condensates of various silane coupling agents such as condensation products of amino group-containing silanes, condensation products of amino group-containing silanes and other alkoxysilanes; reaction products of amino group-containing silanes and epoxy group-containing silanes; Reaction products of various silane coupling agents, such as reaction products of containing silanes and (meth)acrylic group-containing silanes, can also be used.
  • the adhesiveness-imparting agent may be used alone or in combination of two or more.
  • the amount of the silane coupling agent used is preferably 0.1 to 20 parts by weight, more preferably 0.5 to 10 parts by weight, with respect to 100 parts by weight of the polymer according to this embodiment.
  • plasticizer A plasticizer can be added to the curable composition according to the present embodiment.
  • plasticizers include dibutyl phthalate, diisononyl phthalate (DINP), diheptyl phthalate, di(2-ethylhexyl) phthalate, diisodecyl phthalate (DIDP), phthalate compounds such as butylbenzyl phthalate; bis(2-ethylhexyl )-terephthalate compounds such as 1,4-benzenedicarboxylate; non-phthalate compounds such as 1,2-cyclohexanedicarboxylic acid diisononyl ester; dioctyl adipate, dioctyl sebacate, dibutyl sebacate, diisodecyl succinate, Aliphatic polyvalent carboxylic acid ester compounds such as tributyl acetylcitrate; unsaturated fatty acid ester compounds such as butyl oleate
  • polymer plasticizer can be used.
  • polymeric plasticizers include vinyl polymers; polyester plasticizers; polyether polyols such as polyethylene glycol and polypropylene glycol having a number average molecular weight of 500 or more; polyethers such as derivatives converted to polystyrenes; polybutadiene, polybutene, polyisobutylene, butadiene-acrylonitrile, polychloroprene and the like.
  • a plasticizer may be used individually and may use 2 or more types together.
  • the amount of the plasticizer used is preferably 5 to 150 parts by weight, more preferably 10 to 120 parts by weight, and even more preferably 20 to 100 parts by weight with respect to 100 parts by weight of the polymer according to this embodiment.
  • solvent or diluent can be added to the curable composition according to the present embodiment.
  • Solvents and diluents that can be used include, but are not limited to, aliphatic hydrocarbons, aromatic hydrocarbons, alicyclic hydrocarbons, halogenated hydrocarbons, alcohols, esters, ketones, and ethers.
  • the boiling point of the solvent is preferably 150° C. or higher, more preferably 200° C. or higher, and particularly preferably 250° C. or higher, because of the problem of air pollution when the composition is used indoors. .
  • the above solvents or diluents may be used alone or in combination of two or more.
  • An anti-sagging agent may be added to the curable composition according to the present embodiment to prevent sagging and improve workability, if necessary.
  • the anti-sagging agent is not particularly limited, but examples thereof include polyamide waxes; hydrogenated castor oil derivatives; metal soaps such as calcium stearate, aluminum stearate and barium stearate. These anti-sagging agents may be used alone or in combination of two or more.
  • the amount of anti-sagging agent used is preferably 0.1 to 20 parts by weight with respect to 100 parts by weight of the polymer according to this embodiment.
  • antioxidant antioxidant agent
  • An antioxidant can be used in the curable composition according to the present embodiment.
  • the use of an antioxidant can enhance the weather resistance of the cured product.
  • antioxidants include hindered phenols, monophenols, bisphenols, and polyphenols. Specific examples of antioxidants are also described in JP-A-4-283259 and JP-A-9-194731.
  • the amount of the antioxidant used is preferably 0.1 to 10 parts by weight, more preferably 0.2 to 5 parts by weight, with respect to 100 parts by weight of the polymer according to this embodiment.
  • a light stabilizer can be used in the curable composition according to the present embodiment.
  • the use of a light stabilizer can prevent photo-oxidative deterioration of the cured product.
  • Benzotriazole-based, hindered amine-based, and benzoate-based compounds can be exemplified as light stabilizers, and hindered amine-based compounds are particularly preferred.
  • the amount of light stabilizer used is preferably 0.1 to 10 parts by weight, more preferably 0.2 to 5 parts by weight, with respect to 100 parts by weight of the polymer according to the present embodiment.
  • UV absorber can be used in the curable composition according to the present embodiment.
  • the use of an ultraviolet absorber can enhance the surface weather resistance of the cured product.
  • UV absorbers include benzophenone-based, benzotriazole-based, salicylate-based, substituted acrylonitrile-based, and metal chelate-based compounds.
  • Benzotriazole-based compounds are particularly preferred, and are commercially available under the names Tinuvin P, Tinuvin 213, Tinuvin 234, Tinuvin 326, Tinuvin 327, Tinuvin 328, Tinuvin 329, Tinuvin 571, Tinuvin 1600, Tinuvin B75 (manufactured by BASF).
  • the amount of the ultraviolet absorbent used is preferably 0.1 to 10 parts by weight, more preferably 0.2 to 5 parts by weight, with respect to 100 parts by weight of the polymer according to this embodiment.
  • a physical property modifier for adjusting the tensile properties of the resulting cured product may be added to the curable composition according to the present embodiment, if necessary.
  • the physical property modifier is not particularly limited, for example, alkylalkoxysilanes such as phenoxytrimethylsilane, methyltrimethoxysilane, dimethyldimethoxysilane, trimethylmethoxysilane, and n-propyltrimethoxysilane; diphenyldimethoxysilane, phenyltrimethoxysilane.
  • arylalkoxysilanes such as; alkylisopropenoxysilanes such as dimethyldiisopropenoxysilane, methyltriisopropenoxysilane, ⁇ -glycidoxypropylmethyldiisopropenoxysilane; trialkylsilylborates such as silyl)borate; silicone varnishes; polysiloxanes;
  • the physical property modifiers may be used alone or in combination of two or more.
  • a compound that produces a compound having a monovalent silanol group in the molecule by hydrolysis has the effect of lowering the modulus of the cured product without worsening the surface stickiness of the cured product.
  • Compounds that generate trimethylsilanol are particularly preferred.
  • examples of compounds that generate a compound having a monovalent silanol group in the molecule by hydrolysis include alcohol derivatives such as hexanol, octanol, phenol, trimethylolpropane, glycerin, pentaerythritol, and sorbitol, which are hydrolyzed into silane monovalent groups.
  • Mention may be made of silicon compounds that produce ols. Specific examples include phenoxytrimethylsilane and tris((trimethylsiloxy)methyl)propane.
  • the amount of the physical property modifier used is preferably 0.1 to 10 parts by weight, more preferably 0.5 to 5 parts by weight, with respect to 100 parts by weight of the polymer according to the present embodiment.
  • tackifying resin A tackifying resin can be added to the curable composition according to the present embodiment for the purpose of enhancing the adhesiveness or adhesion to a substrate, or for other purposes.
  • tackifying resin there is no particular limitation, and those commonly used can be used.
  • terpene-based resins aromatic modified terpene resins, hydrogenated terpene resins, terpene-phenolic resins, phenolic resins, modified phenolic resins, xylene-phenolic resins, cyclopentadiene-phenolic resins, coumarone-indene resins, rosin-based Resins, rosin ester resins, hydrogenated rosin ester resins, xylene resins, low molecular weight polystyrene resins, styrene copolymer resins, styrene block copolymers and hydrogenated products thereof, petroleum resins (e.g., C5 hydrocarbon resins, C9 hydrocarbon resins, C5C9 hydrocarbon copolymer resins, etc.), hydrogenated petroleum resins, DCPD resins, and the like. These may be used alone or in combination of two or more.
  • petroleum resins e.g., C5 hydrocarbon resins, C9 hydrocarbon resins, C
  • the amount of the tackifying resin used is preferably 2 to 100 parts by weight, more preferably 5 to 50 parts by weight, and more preferably 5 to 30 parts by weight with respect to 100 parts by weight of the polymer according to the present embodiment. More preferred.
  • a compound containing an epoxy group can be used in the curable composition according to the present embodiment.
  • the use of a compound having an epoxy group can enhance the restorability of the cured product.
  • Examples of compounds having an epoxy group include epoxidized unsaturated fats and oils, epoxidized unsaturated fatty acid esters, alicyclic epoxy compounds, epichlorohydrin derivatives, and mixtures thereof.
  • the epoxy compound is preferably used in the range of 0.5 to 50 parts by weight with respect to 100 parts by weight of the polymer according to this embodiment.
  • a photocurable substance can be used in the curable composition according to the present embodiment.
  • a photocurable substance When a photocurable substance is used, a film of the photocurable substance is formed on the surface of the cured product, and the stickiness of the cured product and the weather resistance of the cured product can be improved.
  • Many compounds such as organic monomers, oligomers, resins, or compositions containing them are known as this type of compound.
  • Unsaturated acrylic compounds, polyvinyl cinnamates, azide resins, etc., which are monomers, oligomers, or mixtures thereof can be used.
  • the amount of the photocurable substance used is preferably 0.1 to 20 parts by weight, more preferably 0.5 to 10 parts by weight, per 100 parts by weight of the polymer according to this embodiment.
  • oxygen-curable substance An oxygen-curable substance can be used in the curable composition according to this embodiment.
  • oxygen-curable substances include unsaturated compounds that can react with oxygen in the air, and react with oxygen in the air to form a hardened film near the surface of the cured product, which causes the surface to become sticky and dust on the surface of the cured product. and prevent the adhesion of dust.
  • Specific examples of oxygen-curable substances include drying oils such as paulownia oil and linseed oil, various alkyd resins obtained by modifying these compounds; acrylic polymers modified with drying oils, and epoxy resins.
  • silicone resins 1,2-polybutadiene, 1,4-polybutadiene, C5-C8 diene polymers obtained by polymerizing or copolymerizing diene compounds such as butadiene, chloroprene, isoprene, 1,3-pentadiene, etc.
  • diene compounds such as butadiene, chloroprene, isoprene, 1,3-pentadiene, etc.
  • liquid polymers These may be used alone or in combination of two or more.
  • the amount of the oxygen-curable substance used is preferably in the range of 0.1 to 20 parts by weight, more preferably 0.5 to 10 parts by weight, per 100 parts by weight of the polymer according to this embodiment.
  • oxygen-curable substances are preferably used in combination with photo-curable substances.
  • Epoxy resin An epoxy resin can be used in combination with the curable composition according to the present embodiment.
  • a composition containing an epoxy resin is particularly preferred as an adhesive, especially an adhesive for exterior wall tiles.
  • epoxy resins include bisphenol A type epoxy resins and novolac type epoxy resins.
  • a curing agent that cures the epoxy resin can be used in combination with the curable composition according to the present embodiment.
  • the epoxy resin curing agent that can be used is not particularly limited, and generally used epoxy resin curing agents can be used.
  • the amount used is preferably in the range of 0.1 to 300 parts by weight with respect to 100 parts by weight of the epoxy resin.
  • the curable composition according to the present embodiment can be prepared as a one-component type in which all the ingredients are preformed and sealed and cured by moisture in the air after application, and a curing catalyst is separately added as a curing agent. , a filler, a plasticizer, water, etc., and mixed with the organic polymer composition before use. From the viewpoint of workability, the one-component type is preferred.
  • the ingredients containing water are preliminarily dehydrated and dried before use, or dehydrated by decompression or the like during blending and kneading. is preferred.
  • the curable composition according to the present embodiment includes adhesives, sealing materials for buildings, ships, automobiles, roads, etc., adhesives, waterproofing materials, coating film waterproofing materials, molding agents, vibration-proof materials, vibration-damping materials, Can be used as soundproofing material, foaming material, paint, spraying material.
  • a cured product obtained by curing the curable composition according to the present embodiment is excellent in flexibility and adhesiveness, and thus can be suitably used as a sealant or an adhesive.
  • the curable composition according to the present embodiment can be used for electrical and electronic component materials such as solar cell backside sealing materials, electrical and electronic components such as insulating coating materials for electric wires and cables, electrical insulating materials for devices, and acoustic insulation.
  • electrical and electronic component materials such as solar cell backside sealing materials, electrical and electronic components such as insulating coating materials for electric wires and cables, electrical insulating materials for devices, and acoustic insulation.
  • the curable composition according to the present embodiment is an adhesive for interior panels, an adhesive for exterior panels, an adhesive for tiling, an adhesive for stone, a ceiling finishing adhesive, a floor finishing adhesive, a wall Finishing adhesives, vehicle panel adhesives, electrical, electronic and precision equipment assembly adhesives, adhesives for bonding leather, textiles, fabrics, paper, boards and rubber, reactive post-crosslinking pressure sensitive adhesives , a sealing material for direct glazing, a sealing material for double glazing, a sealing material for the SSG construction method, a sealing material for working joints of buildings, a material for civil engineering, and a bridge material. Furthermore, it can be used as an adhesive material such as an adhesive tape and an adhesive sheet.
  • the number average molecular weight in the examples is the GPC molecular weight measured under the following conditions.
  • Liquid delivery system Tosoh HLC-8420GPC Column: TSKgel SuperH series manufactured by Tosoh Solvent: THF Molecular weight: Polystyrene equivalent Measurement temperature: 40°C
  • the "silyl group introduction rate" was calculated by the following formula using the integrated value of the signal representing each group after measuring 1 H NMR for the polyoxyalkylene polymer having a hydrolyzable silyl group.
  • Formula: 100 ⁇ (number of moles of carbon-carbon double bonds next to hydrolyzable silyl groups) / (number of moles of carbon-carbon double bonds next to hydrolyzable silyl groups and hydrolyzable silyl groups introduced The number of moles of a group capable of introducing a hydrolyzable silyl group (allyl group in this example) that remained without being removed, and the isomerized group (1 in this example, 1 -propenyl group), the number of moles of a group (a propyl group in this example) obtained by reducing the group into which the hydrolyzable silyl group can be introduced, and the groups into which the hydrolyzable silyl group can be introduced. is the total number of moles of carbon-carbon double bonds formed by coupling)
  • the "molar ratio of the ⁇ -body structure and the ⁇ -body structure” is obtained by measuring 1 H NMR of the polyoxyalkylene polymer having a hydrolyzable silyl group, and calculating the integrated value of the signals indicated by the ⁇ -body structure and the ⁇ -body structure. It was calculated by the following formula.
  • Mole ratio of ⁇ -form structure (number of moles of carbon-carbon double bonds adjacent to hydrolyzable silyl groups of ⁇ -form structure)/(moles of carbon-carbon double bonds adjacent to hydrolyzable silyl groups of ⁇ -form structure number + number of moles of carbon-carbon double bonds next to hydrolyzable silyl groups in ⁇ -body structure)
  • Mole ratio of ⁇ -form structure (moles of carbon-carbon double bonds adjacent to hydrolyzable silyl groups in ⁇ -form structure)/(moles of carbon-carbon double bonds adjacent to hydrolyzable silyl groups in ⁇ -form structure number + number of moles of carbon-carbon double bonds next to hydrolyzable silyl groups in ⁇ -body structure)
  • the obtained unpurified propargyl group-terminated polyoxypropylene was mixed with n-hexane and water and stirred, and then the water was removed by centrifugation. Metal salts were removed. As a result, polyoxypropylene (A-2) having propargyl groups at the ends was obtained.
  • Example 1 100 parts by weight of polymer (A-1) and 2.5 parts by weight of hexane were added to a glass reactor equipped with a stirrer, a reflux condenser and a thermometer, and azeotropic dehydration was carried out at 90°C. Hexane was distilled off under reduced pressure and the residue was replaced with nitrogen. The temperature was lowered to 45° C., 26.1 parts by weight of trimethoxyvinylsilane (10.0 mol times the terminal allyl group) was added, and then Grubbs Catalyst (registered trademark) 1st Generation (manufactured by Sigma-Aldrich) was added as a reaction catalyst.
  • Grubbs Catalyst registered trademark
  • 1st Generation manufactured by Sigma-Aldrich
  • Example 2 100 parts by weight of polymer (A-1) and 2.5 parts by weight of hexane were added to a glass reactor equipped with a stirrer, a reflux condenser and a thermometer, and azeotropic dehydration was carried out at 90°C. Hexane was distilled off under reduced pressure and the residue was replaced with nitrogen. The temperature was lowered to 45° C., 26.1 parts by weight of trimethoxyvinylsilane (10.0 mol times the terminal allyl group) was added, and then Grubbs Catalyst (registered trademark) 1st Generation (manufactured by Sigma-Aldrich) was added as a reaction catalyst.
  • Grubbs Catalyst registered trademark
  • 1st Generation manufactured by Sigma-Aldrich
  • Example 3 100 parts by weight of polymer (A-1) and 2.5 parts by weight of hexane were added to a glass reactor equipped with a stirrer, a reflux condenser and a thermometer, and azeotropic dehydration was carried out at 90°C. Hexane was distilled off under reduced pressure and the residue was replaced with nitrogen. The temperature was lowered to 45° C., and 26.1 parts by weight of trimethoxyvinylsilane (10.0 mol times the terminal allyl group) was added, followed by 1 part of Grubbs Catalyst (registered trademark) 2nd Generation (manufactured by Sigma-Aldrich) as a reaction catalyst.
  • Grubbs Catalyst registered trademark
  • 2nd Generation manufactured by Sigma-Aldrich
  • Example 4 100 parts by weight of polymer (A-1) and 2.5 parts by weight of hexane were added to a glass reactor equipped with a stirrer, a reflux condenser and a thermometer, and azeotropic dehydration was carried out at 90°C. Hexane was distilled off under reduced pressure and the residue was replaced with nitrogen. The temperature was lowered to 45° C., and 26.1 parts by weight of trimethoxyvinylsilane (10.0 mol times the terminal allyl group) was added, followed by Hoveyda-Grubbs Catalyst (registered trademark) 2nd Generation (manufactured by Sigma-Aldrich) as a reaction catalyst.
  • Hoveyda-Grubbs Catalyst registered trademark
  • 2nd Generation manufactured by Sigma-Aldrich
  • Comparative example 1 100 parts by weight of polymer (A-2) and 2.5 parts by weight of hexane were added to a glass reactor equipped with a stirrer, a reflux condenser and a thermometer, and azeotropic dehydration was carried out at 90°C. Hexane was distilled off under reduced pressure and the residue was replaced with nitrogen.
  • a polymer having a hydrolyzable silyl group can be produced by subjecting a polymer having a vinyl group to a metathesis reaction of trimethoxyvinylsilane in the presence of a catalyst.
  • a catalyst for a hydrolyzable silyl group
  • 80 mol % or more of the hydrolyzable silyl groups in the polymers obtained in each example have a ⁇ structure.
  • Comparative Example 1 in which a hydrosilylation reaction was used to introduce a hydrolyzable silyl group into a polymer having a propargyl group, it was found that the ⁇ -form structure and the ⁇ -form structure were produced at a ratio of about 1:1. From Example 2 among Examples 1 to 4, it can be seen that a very high silyl group introduction rate of 83% can be achieved by using the first generation Grubbs catalyst and performing the above reaction while bubbling nitrogen.

Abstract

According to the present invention, a polymer comprising a hydrolyzable silyl group is manufactured by causing a silane compound comprising a hydrolyzable group or a hydroxyl group and a vinyl group on a silicon atom to undergo a metathesis reaction with a polymer comprising a vinyl group in the presence of a catalyst. Among the hydrolyzable silyl groups comprised by the polymer, 80 mol% or more have a structure represented by the formula: -CH=CH-Si(R1)3-a(X)a. In the formula, R1 represents a substituted or unsubstituted 1-20C hydrocarbon group; X represents a hydroxyl group or a hydrolyzable group; and a represents 1, 2, or 3.

Description

加水分解性シリル基を有する重合体の製造方法、並びに、重合体、硬化性組成物、及び硬化物Method for producing polymer having hydrolyzable silyl group, polymer, curable composition, and cured product
 本発明は、加水分解性シリル基を有する重合体の製造方法、並びに、加水分解性シリル基を有するポリオキシアルキレン系重合体、該重合体を含む硬化性組成物、及びその硬化物に関する。 The present invention relates to a method for producing a polymer having a hydrolyzable silyl group, a polyoxyalkylene polymer having a hydrolyzable silyl group, a curable composition containing the polymer, and a cured product thereof.
 ケイ素原子上に水酸基または加水分解性基を有し、シロキサン結合を形成し得るケイ素含有基(以下、「加水分解性シリル基」という)を有する有機重合体は、湿分反応性ポリマーとして知られており、接着剤、シーリング材、コーティング材、塗料、粘着剤などの多くの工業製品に含まれ、幅広い分野で利用されている。このような加水分解性シリル基含有重合体としては、主鎖骨格がポリオキシアルキレン系重合体、飽和炭化水素系重合体や(メタ)アクリル酸エステル系共重合体などの各種重合体が知られている。 An organic polymer having a hydroxyl group or a hydrolyzable group on a silicon atom and having a silicon-containing group capable of forming a siloxane bond (hereinafter referred to as a "hydrolyzable silyl group") is known as a moisture-reactive polymer. It is contained in many industrial products such as adhesives, sealants, coating materials, paints, and adhesives, and is used in a wide range of fields. As such a hydrolyzable silyl group-containing polymer, various polymers having a main chain skeleton such as a polyoxyalkylene polymer, a saturated hydrocarbon polymer, and a (meth)acrylic acid ester copolymer are known. ing.
 加水分解性シリル基含有重合体の製造方法としては、例えば、エポキシ化合物を開環重合して末端に水酸基を有するポリオキシアルキレン系重合体を合成した後、前記水酸基を炭素-炭素二重結合に変換し、該炭素-炭素二重結合とシラン化合物とのヒドロシリル化反応を行うことにより加水分解性シリル基を重合体に導入する方法が知られている(例えば、特許文献1を参照)。しかし、当該方法によって得られた加水分解性シリル基含有重合体は、硬化性が必ずしも十分ではなく、これを改善することが求められている。 As a method for producing a hydrolyzable silyl group-containing polymer, for example, after synthesizing a polyoxyalkylene polymer having a terminal hydroxyl group by ring-opening polymerization of an epoxy compound, the hydroxyl group is converted into a carbon-carbon double bond. A method of introducing a hydrolyzable silyl group into a polymer by converting the carbon-carbon double bond and a silane compound into a hydrosilylation reaction is known (see, for example, Patent Document 1). However, the hydrolyzable silyl group-containing polymer obtained by this method does not always have sufficient curability, and improvement of this is desired.
 特許文献2では、ポリオキシアルキレン系重合体が有する水酸基を炭素-炭素三重結合に変換した後、該炭素-炭素三重結合にシラン化合物をヒドロシリル化反応させることによって加水分解性シリル基を重合体に導入する方法が記載されており、得られた重合体は、ケイ素原子に結合した炭素-炭素二重結合を有しており、速硬化性を示すと記載されている。 In Patent Document 2, a hydroxyl group possessed by a polyoxyalkylene polymer is converted to a carbon-carbon triple bond, and then the carbon-carbon triple bond is subjected to a hydrosilylation reaction with a silane compound to convert a hydrolyzable silyl group into the polymer. A method of introduction is described, and the resulting polymer is said to have carbon-carbon double bonds attached to silicon atoms and to exhibit rapid curing properties.
特開昭52-73998号公報JP-A-52-73998 国際公開第2019/189491号WO2019/189491
 特許文献2に記載された製造方法によると、速硬化性の加水分解性シリル基含有重合体を製造できるものの、炭素-炭素三重結合を導入するにあたって、不安定で取り扱いに困難を伴う炭素-炭素三重結合含有化合物(例えば、臭化プロパルギル)を使用する必要があった。そのため、当該化合物を使用しない新規製造方法の開発が求められている。 According to the production method described in Patent Document 2, although a fast-curing hydrolyzable silyl group-containing polymer can be produced, in introducing a carbon-carbon triple bond, the carbon-carbon is unstable and difficult to handle. It was necessary to use triple bond containing compounds (eg propargyl bromide). Therefore, development of a new production method that does not use the compound is desired.
 本発明は、上記現状に鑑み、加水分解性シリル基と、該シリル基中のケイ素原子に結合した炭素-炭素二重結合とを有する重合体の新規製造方法、並びに、該製造方法によって取得可能な重合体、該重合体を含む硬化性組成物、及びその硬化物を提供することを目的とする。 In view of the above situation, the present invention provides a novel method for producing a polymer having a hydrolyzable silyl group and a carbon-carbon double bond bonded to a silicon atom in the silyl group, and a method obtainable by the production method. An object of the present invention is to provide a polymer, a curable composition containing the polymer, and a cured product thereof.
 本発明者らは、特許文献2に記載されているような炭素-炭素三重結合に対するヒドロシリル化反応ではなく、ビニル基間で結合を組み替えるメタセシス反応を利用することによって、加水分解性シリル基と、該シリル基中のケイ素原子に結合した炭素-炭素二重結合とを有する重合体を製造できることを見出し、本発明に至った。 The present inventors used a metathesis reaction that recombines bonds between vinyl groups instead of a hydrosilylation reaction on a carbon-carbon triple bond as described in Patent Document 2 to obtain a hydrolyzable silyl group, The inventors have found that it is possible to produce a polymer having a carbon-carbon double bond bonded to the silicon atom in the silyl group, leading to the present invention.
 すなわち、本発明は、ビニル基を有する重合体に対し、ケイ素原子上にビニル基と水酸基又は加水分解性基を有するシラン化合物を、触媒の存在下でメタセシス反応させる工程を含む、加水分解性シリル基を有する重合体の製造方法に関する。
 好ましくは、メタセシス反応時の温度が60℃以下である。
 好ましくは、反応系に不活性気体をバブリングさせながら前記メタセシス反応を行う。
 好ましくは、前記触媒がグラブス触媒である。
 好ましくは、前記シラン化合物が、式:CH=CH-Si(R3-a(X)で表される(式中、Rは、炭素原子数1~20の置換又は非置換の炭化水素基を表す。Xは水酸基又は加水分解性基を表す。aは、1、2、又は3を表す。)。
 また本発明は、加水分解性シリル基を有するポリオキシアルキレン系重合体であって、前記加水分解性シリル基のうち80モル%以上が、式:-CH=CH-Si(R3-a(X)で表される構造を有する(式中、Rは、炭素原子数1~20の置換又は非置換の炭化水素基を表す。Xは水酸基又は加水分解性基を表す。aは、1、2、又は3を表す。)、ポリオキシアルキレン系重合体にも関する。
 好ましくは、前記構造が、-O-CH-CH=CH-Si(R3-a(X)で表される。
 前記ポリオキシアルキレン系重合体は、ルテニウムが含まれるものでもよく、その場合、該重合体中のルテニウム含有割合は10~2,000ppmであってよい。
 さらに本発明は、前記ポリオキシアルキレン系重合体を含有する硬化性組成物にも関する。前記硬化性組成物は、さらに硬化触媒を含有してもよい。
 さらにまた、本発明は、前記硬化性組成物の硬化物にも関する。
That is, the present invention provides a hydrolyzable silyl polymer comprising a step of metathesis reacting a vinyl group-containing polymer with a silane compound having a vinyl group and a hydroxyl group or a hydrolyzable group on a silicon atom in the presence of a catalyst. The present invention relates to a method for producing a polymer having groups.
Preferably, the temperature during the metathesis reaction is 60° C. or less.
Preferably, the metathesis reaction is carried out while bubbling an inert gas through the reaction system.
Preferably, said catalyst is a Grubbs catalyst.
Preferably, the silane compound is represented by the formula: CH 2 ═CH—Si(R 1 ) 3-a (X) a (wherein R 1 is a substituted or unsubstituted represents a hydrocarbon group, X represents a hydroxyl group or a hydrolyzable group, and a represents 1, 2, or 3).
The present invention also provides a polyoxyalkylene polymer having hydrolyzable silyl groups, wherein 80 mol% or more of the hydrolyzable silyl groups are represented by the formula: -CH=CH-Si(R 1 ) 3- a (X) having a structure represented by a (wherein R 1 represents a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms; X represents a hydroxyl group or a hydrolyzable group; a represents 1, 2, or 3), and also relates to polyoxyalkylene-based polymers.
Preferably, the structure is represented by -O-CH 2 -CH=CH-Si(R 1 ) 3-a (X) a .
The polyoxyalkylene polymer may contain ruthenium, in which case the ruthenium content in the polymer may be 10 to 2,000 ppm.
Furthermore, the present invention also relates to a curable composition containing the polyoxyalkylene polymer. The curable composition may further contain a curing catalyst.
Furthermore, the present invention also relates to a cured product of the curable composition.
 本発明によれば、加水分解性シリル基と、該シリル基中のケイ素原子に結合した炭素-炭素二重結合とを有する重合体の新規製造方法、並びに、該製造方法によって取得可能な重合体、該重合体を含む硬化性組成物、及びその硬化物を提供することができる。
 本発明によれば、不安定で取り扱いに困難を伴う炭素-炭素三重結合含有化合物を使用せずに、加水分解性シリル基と、該シリル基中のケイ素原子に結合した炭素-炭素二重結合とを有する重合体を製造することができる。
 また、本発明によれば、加水分解性シリル基が炭素-炭素二重結合を介して重合体骨格に結合した重合体を、高い選択性で製造することができる。
According to the present invention, a novel process for producing a polymer having a hydrolyzable silyl group and a carbon-carbon double bond bonded to a silicon atom in the silyl group, and a polymer obtainable by the process , a curable composition containing the polymer, and a cured product thereof.
According to the present invention, hydrolyzable silyl groups and carbon-carbon double bonds attached to silicon atoms in the silyl groups are prepared without the use of unstable and difficult-to-handle carbon-carbon triple bond-containing compounds. It is possible to produce a polymer having
Moreover, according to the present invention, a polymer in which a hydrolyzable silyl group is bonded to the polymer skeleton via a carbon-carbon double bond can be produced with high selectivity.
 以下に本発明の実施形態を詳細に説明する。
 本実施形態は、ビニル基を有する重合体に対し、ケイ素原子上にビニル基と水酸基又は加水分解性基を有するシラン化合物を、触媒の存在下でメタセシス反応させる工程を含む、加水分解性シリル基を有する重合体の製造方法に関する。メタセシス反応とは、二種類のオレフィン間で結合の組換えが進行する反応のことをいう。当該メタセシス反応によって、前記重合体が有するビニル基と、前記シラン化合物が有するビニル基との間で結合の組換えが起こることによって、重合体に加水分解性シリル基を導入することができる。
Embodiments of the present invention are described in detail below.
This embodiment includes a step of metathesis reacting a polymer having a vinyl group with a silane compound having a vinyl group and a hydroxyl group or a hydrolyzable group on a silicon atom in the presence of a catalyst. It relates to a method for producing a polymer having A metathesis reaction is a reaction in which bond recombination proceeds between two types of olefins. A hydrolyzable silyl group can be introduced into the polymer by recombination of the bond between the vinyl group of the polymer and the vinyl group of the silane compound by the metathesis reaction.
 (ビニル基を有する重合体)
 出発物質である重合体は、ビニル基を有する。当該ビニル基は、CH=CH-で表すことができる。ビニル基は、重合体骨格に直接結合したものであってもよいし、例えばアリル基(CH=CH-CH-)として、結合基を介して重合体骨格に結合したものであってもよい。ビニル基が結合する位置は特に限定されない。前記重合体は、有機重合体であることが好ましい。前記有機重合体は、複数の繰り返し単位から構成される重合体骨格を有するものである。前記有機重合体の重合体骨格は、直鎖状のものであってもよいし、分岐鎖状のものであってもよい。
(Polymer having a vinyl group)
The starting polymer has vinyl groups. The vinyl group can be represented by CH 2 =CH-. The vinyl group may be directly attached to the polymer backbone, or may be attached to the polymer backbone via a linking group, for example, as an allyl group (CH 2 =CH-CH 2 -). good. The position where the vinyl group is bonded is not particularly limited. The polymer is preferably an organic polymer. The organic polymer has a polymer skeleton composed of a plurality of repeating units. The polymer backbone of the organic polymer may be linear or branched.
 前記有機重合体の重合体骨格には特に制限はなく、各種の重合体骨格を使用することができる。重合体骨格の具体例としては、例えば、ポリオキシエチレン、ポリオキシプロピレン、ポリオキシブチレン、ポリオキシテトラメチレン、ポリオキシエチレン-ポリオキシプロピレン共重合体、およびポリオキシプロピレン-ポリオキシブチレン共重合体などのポリオキシアルキレン系重合体;エチレン-プロピレン系共重合体、ポリイソブチレン、イソブチレンとイソプレンなどとの共重合体、ポリクロロプレン、ポリイソプレン、イソプレンあるいはブタジエンとアクリロニトリルおよび/またはスチレンなどとの共重合体、ポリブタジエン、イソプレンあるいはブタジエンとアクリロニトリルおよびスチレンなどとの共重合体、ならびにこれらのポリオレフィン系重合体に水素添加して得られる水添ポリオレフィン系重合体などの飽和炭化水素系重合体;ポリエステル系重合体;エチル(メタ)アクリレート、ブチル(メタ)アクリレートなどの(メタ)アクリル酸エステル系モノマーをラジカル重合して得られる(メタ)アクリル酸エステル系重合体、ならびに(メタ)アクリル酸系モノマー、酢酸ビニル、アクリロニトリル、およびスチレンなどのモノマーをラジカル重合して得られる重合体などのビニル系重合体;前述の重合体中でのビニルモノマーを重合して得られるグラフト重合体;ポリサルファイド系重合体;ポリアミド系重合体;ポリカーボネート系重合体;ジアリルフタレート系重合体;などの有機重合体が挙げられる。上記各重合体はブロック状、グラフト状などに混在していてもよい。これらの中でも、飽和炭化水素系重合体、ポリオキシアルキレン系重合体、および(メタ)アクリル酸エステル系重合体が、比較的ガラス転移温度が低いことと、得られる硬化物が耐寒性に優れることとから好ましく、ポリオキシアルキレン系重合体がより好ましく、ポリオキシプロピレンが特に好ましい。 The polymer skeleton of the organic polymer is not particularly limited, and various polymer skeletons can be used. Specific examples of polymer backbones include polyoxyethylene, polyoxypropylene, polyoxybutylene, polyoxytetramethylene, polyoxyethylene-polyoxypropylene copolymers, and polyoxypropylene-polyoxybutylene copolymers. ethylene-propylene copolymers, polyisobutylene, copolymers of isobutylene and isoprene, etc., copolymers of polychloroprene, polyisoprene, isoprene or butadiene with acrylonitrile and/or styrene, etc. Saturated hydrocarbon polymers such as coalescence, polybutadiene, isoprene or copolymers of butadiene with acrylonitrile and styrene, and hydrogenated polyolefin polymers obtained by hydrogenating these polyolefin polymers; Coalescence; (meth)acrylic acid ester-based polymers obtained by radical polymerization of (meth)acrylic acid ester-based monomers such as ethyl (meth)acrylate and butyl (meth)acrylate, as well as (meth)acrylic acid-based monomers and acetic acid Vinyl polymers such as polymers obtained by radical polymerization of monomers such as vinyl, acrylonitrile, and styrene; graft polymers obtained by polymerizing vinyl monomers in the above polymers; polysulfide polymers; polyamides type polymer; polycarbonate type polymer; diallyl phthalate type polymer; and other organic polymers. Each of the above polymers may be mixed in block form, graft form, or the like. Among these, saturated hydrocarbon-based polymers, polyoxyalkylene-based polymers, and (meth)acrylic acid ester-based polymers have relatively low glass transition temperatures, and the obtained cured products have excellent cold resistance. are preferred, polyoxyalkylene-based polymers are more preferred, and polyoxypropylene is particularly preferred.
 前記有機重合体は、1種類の重合体骨格を有する重合体であってもよいし、異なる重合体骨格を有する2種類以上の重合体の混合物でもよい。また、混合物については、それぞれ別々に製造された重合体の混合物でもよいし、任意の混合組成になるように同時に製造された混合物でもよい。 The organic polymer may be a polymer having one type of polymer skeleton, or a mixture of two or more types of polymers having different polymer skeletons. The mixture may be a mixture of polymers produced separately, or a mixture produced at the same time so as to have an arbitrary composition.
 前記有機重合体の数平均分子量は、特に限定されないが、GPCにおけるポリスチレン換算分子量において好ましくは3,000~100,000であり、より好ましくは3,000~50,000であり、さらに好ましくは3,000~30,000である。数平均分子量が3,000以上であると、重合体全体に対する加水分解性シリル基の相対量が適切な範囲にあり、製造コストの点で望ましい。また、数平均分子量が100,000以下であると、作業性の点から望ましい粘度を達成しやすい。当該数平均分子量はGPC測定によってポリスチレン換算で求めることができる。 The number average molecular weight of the organic polymer is not particularly limited. ,000 to 30,000. When the number average molecular weight is 3,000 or more, the relative amount of hydrolyzable silyl groups with respect to the whole polymer is within an appropriate range, which is desirable in terms of production cost. Moreover, when the number average molecular weight is 100,000 or less, it is easy to achieve a desired viscosity from the viewpoint of workability. The number average molecular weight can be determined in terms of polystyrene by GPC measurement.
 前記有機重合体の分子量分布(Mw/Mn)は特に限定されないが、狭いことが好ましい。具体的には2.0未満が好ましく、1.6以下がより好ましく、1.5以下がさらに好ましく、1.4以下が特に好ましい。また、硬化物の耐久性や伸びなどの機械的特性を向上させる観点から、1.2以下が好ましい。分子量分布(Mw/Mn)は、GPC測定によってポリスチレン換算で求められる数平均分子量と重量平均分子量から算出することができる。 Although the molecular weight distribution (Mw/Mn) of the organic polymer is not particularly limited, it is preferably narrow. Specifically, it is preferably less than 2.0, more preferably 1.6 or less, still more preferably 1.5 or less, and particularly preferably 1.4 or less. Moreover, from the viewpoint of improving mechanical properties such as durability and elongation of the cured product, it is preferably 1.2 or less. The molecular weight distribution (Mw/Mn) can be calculated from the number-average molecular weight and the weight-average molecular weight obtained in terms of polystyrene by GPC measurement.
 <重合体の製造方法>
 次に、ビニル基を有する重合体を製造する方法について説明する。当該製造方法は特に限定されないが、例えば、水酸基含有有機重合体に対し、水酸基の反応性を利用して炭素-炭素二重結合を導入する方法であってよい。
<Method for producing polymer>
Next, a method for producing a polymer having a vinyl group will be described. The production method is not particularly limited, but may be, for example, a method of introducing a carbon-carbon double bond into a hydroxyl-containing organic polymer by utilizing the reactivity of hydroxyl groups.
 (ポリオキシアルキレン系重合体)
 以下、前記有機重合体の重合体骨格がポリオキシアルキレン系重合体である場合について、前記有機重合体を製造する方法の一例を詳述するが、前記有機重合体を製造する方法は以下の記載に限定されるものではない。
(Polyoxyalkylene polymer)
Hereinafter, an example of a method for producing the organic polymer will be described in detail in the case where the polymer skeleton of the organic polymer is a polyoxyalkylene polymer. The method for producing the organic polymer is described below. is not limited to
 (重合)
 ポリオキシアルキレン系重合体の重合体骨格は、従来公知の方法によって、水酸基を有する開始剤にエポキシ化合物を重合させることで形成することができ、これによって水酸基末端ポリオキシアルキレン系重合体が得られる。具体的な重合方法としては特に限定されないが、分子量分布(Mw/Mn)の小さい水酸基末端重合体が得られることから、亜鉛ヘキサシアノコバルテートグライム錯体等の複合金属シアン化物錯体触媒を用いた重合方法が好ましい。
(polymerization)
The polymer skeleton of the polyoxyalkylene-based polymer can be formed by polymerizing an epoxy compound with an initiator having a hydroxyl group by a conventionally known method, whereby a hydroxyl-terminated polyoxyalkylene-based polymer is obtained. . Although the specific polymerization method is not particularly limited, since a hydroxyl group-terminated polymer with a small molecular weight distribution (Mw/Mn) can be obtained, a polymerization method using a double metal cyanide complex catalyst such as a zinc hexacyanocobaltate glyme complex is used. is preferred.
 水酸基を有する開始剤としては特に限定されないが、例えば、エチレングリコール、プロピレングリコール、グリセリン、ペンタエリスリトール、低分子量のポリオキシプロピレングリコール、低分子量のポリオキシプロピレントリオール、アリルアルコール、低分子量のポリオキシプロピレンモノアリルエーテル、低分子量のポリオキシプロピレンモノアルキルエーテル等の、水酸基を1個以上有する有機化合物が挙げられる。 Examples of hydroxyl-containing initiators include, but are not limited to, ethylene glycol, propylene glycol, glycerin, pentaerythritol, low-molecular-weight polyoxypropylene glycol, low-molecular-weight polyoxypropylene triol, allyl alcohol, and low-molecular-weight polyoxypropylene. Organic compounds having one or more hydroxyl groups, such as monoallyl ethers and low-molecular-weight polyoxypropylene monoalkyl ethers, can be mentioned.
 前記エポキシ化合物としては特に限定されないが、例えば、エチレンオキサイド、プロピレンオキサイド等のアルキレンオキサイド類、メチルグリシジルエーテル、ブチルグリシジルエーテル等のグリシジルエーテル類等が挙げられる。好ましくはプロピレンオキサイドである。 Although the epoxy compound is not particularly limited, examples thereof include alkylene oxides such as ethylene oxide and propylene oxide, and glycidyl ethers such as methyl glycidyl ether and butyl glycidyl ether. Propylene oxide is preferred.
 (アルカリ金属塩との反応)
 水酸基末端ポリオキシアルキレン系重合体に対し炭素-炭素二重結合を導入するにあたっては、まず、水酸基末端ポリオキシアルキレン系重合体に対しアルカリ金属塩を作用させて末端の水酸基をメタルオキシ基に変換することが好ましい。また、アルカリ金属塩の代わりに、複合金属シアン化物錯体触媒を用いることもできる。以上によって、メタルオキシ基末端ポリオキシアルキレン系重合体が形成される。
(Reaction with alkali metal salt)
In introducing a carbon-carbon double bond to a hydroxyl-terminated polyoxyalkylene polymer, first, an alkali metal salt is allowed to act on the hydroxyl-terminated polyoxyalkylene polymer to convert the terminal hydroxyl group to a metaloxy group. preferably. A double metal cyanide complex catalyst can also be used instead of the alkali metal salt. As described above, a metaloxy group-terminated polyoxyalkylene polymer is formed.
 前記アルカリ金属塩としては特に限定されないが、例えば、水酸化ナトリウム、ナトリウムアルコキシド、水酸化カリウム、カリウムアルコキシド、水酸化リチウム、リチウムアルコキシド、水酸化セシウム、セシウムアルコキシド等が挙げられる。取り扱いの容易さと溶解性から、水酸化ナトリウム、ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムtert-ブトキシド、水酸化カリウム、カリウムメトキシド、カリウムエトキシド、カリウムtert-ブトキシドが好ましく、ナトリウムメトキシド、ナトリウムtert-ブトキシドがより好ましい。入手性の点で、ナトリウムメトキシドが、反応性の点で、ナトリウムtert-ブトキシドが、それぞれ特に好ましい。アルカリ金属塩は溶剤に溶解した状態で反応に供してもよい。 Although the alkali metal salt is not particularly limited, examples thereof include sodium hydroxide, sodium alkoxide, potassium hydroxide, potassium alkoxide, lithium hydroxide, lithium alkoxide, cesium hydroxide, and cesium alkoxide. Sodium hydroxide, sodium methoxide, sodium ethoxide, sodium tert-butoxide, potassium hydroxide, potassium methoxide, potassium ethoxide, and potassium tert-butoxide are preferred from the viewpoint of ease of handling and solubility, and sodium methoxide and sodium tert. -butoxide is more preferred. From the standpoint of availability, sodium methoxide is particularly preferred, and from the standpoint of reactivity, sodium tert-butoxide is particularly preferred. The alkali metal salt may be dissolved in a solvent before being subjected to the reaction.
 前記アルカリ金属塩の使用量は、特に限定されないが、水酸基末端ポリオキシアルキレン系重合体が有する水酸基に対するモル比として、0.5以上が好ましく、0.6以上がより好ましく、0.7以上がさらに好ましく、0.8以上がより更に好ましい。前記モル比は1.2以下が好ましく、1.1以下がより好ましい。 The amount of the alkali metal salt used is not particularly limited, but the molar ratio to the hydroxyl group of the hydroxyl-terminated polyoxyalkylene polymer is preferably 0.5 or more, more preferably 0.6 or more, and 0.7 or more. More preferably, 0.8 or more is even more preferable. The molar ratio is preferably 1.2 or less, more preferably 1.1 or less.
 前記アルカリ金属塩は、水酸基末端ポリオキシアルキレン系重合体が有する水酸基をメタルオキシ基に変換するために使用するが、この変換反応を効率的に進行させるために、水分や、ポリオキシアルキレン系重合体以外の水酸基を有する物質を予め反応系中から除去しておくことが好ましい。除去するためには、公知の方法を利用すれば良く、例えば、加熱蒸発、減圧脱揮、噴霧気化、薄膜蒸発、共沸脱揮等を利用できる。 The alkali metal salt is used to convert the hydroxyl groups of the hydroxyl-terminated polyoxyalkylene polymer into metaloxy groups. It is preferable to previously remove substances having a hydroxyl group other than coalescence from the reaction system. For removal, known methods may be used, such as heat evaporation, vacuum devolatilization, spray vaporization, thin film evaporation, azeotropic devolatilization, and the like.
 アルカリ金属塩を作用させる際の温度は、当業者が適宜設定できるが、50℃以上150℃以下が好ましく、110℃以上145℃以下がより好ましい。アルカリ金属塩を作用させる際の時間としては、10分以上5時間以下が好ましく、30分以上3時間以下がより好ましい。 The temperature at which the alkali metal salt is allowed to act can be appropriately set by those skilled in the art, but is preferably 50°C or higher and 150°C or lower, more preferably 110°C or higher and 145°C or lower. The time for which the alkali metal salt is allowed to act is preferably 10 minutes or more and 5 hours or less, more preferably 30 minutes or more and 3 hours or less.
 (求電子剤との反応)
 以上のようにして得られたメタルオキシ基末端ポリオキシアルキレン系重合体に対し、ビニル基を有する求電子剤を作用させることで、メタルオキシ基を、ビニル基を含む構造に変換することができる。これにより、ビニル基を有するポリオキシアルキレン系重合体が形成される。
(Reaction with electrophile)
By reacting an electrophilic agent having a vinyl group on the metaloxy group-terminated polyoxyalkylene polymer obtained as described above, the metaloxy group can be converted to a structure containing a vinyl group. . Thereby, a polyoxyalkylene polymer having a vinyl group is formed.
 ビニル基を有する求電子剤としては、ポリオキシアルキレン系重合体が有する前記メタルオキシ基と反応し、ポリオキシアルキレン系重合体にビニル基を導入できる化合物であれば特に限定されないが、例えば、ビニル基を有する有機ハロゲン化物等が挙げられる。 The electrophile having a vinyl group is not particularly limited as long as it is a compound capable of reacting with the metaloxy group possessed by the polyoxyalkylene polymer and introducing a vinyl group into the polyoxyalkylene polymer. group-containing organic halides, and the like.
 前記ビニル基を有する有機ハロゲン化物は、ハロゲンの置換反応によって前記メタルオキシ基と反応してエーテル結合を形成して、ポリオキシアルキレン系重合体の末端にビニル基を含む構造を導入することができる。ビニル基を有する有機ハロゲン化物は、限定されるものではないが、下記一般式(3):
Z-R-CH=CH   (3)
で表すことができる。一般式(3)中、Rは、直接結合、又は炭素数1~4の二価の炭化水素基を表す。Zは、ハロゲン原子を表す。
The organic halide having a vinyl group can react with the metaloxy group through a halogen substitution reaction to form an ether bond, thereby introducing a structure containing a vinyl group to the end of the polyoxyalkylene polymer. . The organic halide having a vinyl group is, but not limited to, the following general formula (3):
Z—R 3 —CH═CH 2 (3)
can be expressed as In general formula (3), R 3 represents a direct bond or a divalent hydrocarbon group having 1 to 4 carbon atoms. Z represents a halogen atom.
 Rとしては、炭素数1~3の二価の炭化水素基が好ましく、炭素数1~2の二価の炭化水素基がより好ましい。該炭化水素基としては、アルキレン基が好ましく、メチレン基、エチレン基、プロピレン基、ブチレン基を使用することができる。メチレン基が特に好ましい。 R 3 is preferably a divalent hydrocarbon group having 1 to 3 carbon atoms, more preferably a divalent hydrocarbon group having 1 to 2 carbon atoms. The hydrocarbon group is preferably an alkylene group, and a methylene group, ethylene group, propylene group, or butylene group can be used. Methylene groups are particularly preferred.
 ビニル基を有する有機ハロゲン化物の具体例としては、特に限定されないが、塩化ビニル、塩化アリル、臭化ビニル、臭化アリル、ヨウ化ビニル、ヨウ化アリル等が挙げられる。取り扱いの容易さから、塩化アリルが好ましい。 Specific examples of organic halides having a vinyl group are not particularly limited, but include vinyl chloride, allyl chloride, vinyl bromide, allyl bromide, vinyl iodide, and allyl iodide. Allyl chloride is preferred for ease of handling.
 ビニル基を有する有機ハロゲン化物の添加量は、特に制限はないが、ポリオキシアルキレン系重合体が有する水酸基に対する有機ハロゲン化物のモル比として、0.7以上が好ましく、1.0以上がより好ましい。また、当該モル比は、5.0以下が好ましく、2.0以下がより好ましい。 The amount of the organic halide having a vinyl group to be added is not particularly limited, but the molar ratio of the organic halide to the hydroxyl group of the polyoxyalkylene polymer is preferably 0.7 or more, more preferably 1.0 or more. . Moreover, the molar ratio is preferably 5.0 or less, more preferably 2.0 or less.
 メタルオキシ基末端ポリオキシアルキレン系重合体に対し、ビニル基を有する有機ハロゲン化物を反応させる際の温度としては、50℃以上150℃以下が好ましく、110℃以上140℃以下がより好ましい。反応時間としては、10分以上5時間以が好ましく、30分以上3時間以下がより好ましい。 The temperature at which the vinyl group-containing organic halide is reacted with the metaloxy group-terminated polyoxyalkylene polymer is preferably 50°C or higher and 150°C or lower, more preferably 110°C or higher and 140°C or lower. The reaction time is preferably 10 minutes to 5 hours, more preferably 30 minutes to 3 hours.
 ((メタ)アクリル酸エステル系重合体)
 前記有機重合体の重合体骨格が(メタ)アクリル酸エステル系重合体である場合、前記有機重合体の製造方法としては、(I)重合性不飽和基と反応性官能基を有する化合物(例えば、アクリル酸、アクリル酸2-ヒドロキシエチル)を、(メタ)アクリル構造を有するモノマーとともに共重合して重合体を得た後、得られた重合体中のいずれかの位置(好ましくは分子鎖末端)にビニル基を導入する方法、(II)原子移動ラジカル重合などのリビングラジカル重合法によって(メタ)アクリル構造を有するモノマーを重合して重合体を得た後、得られた重合体中のいずれかの位置(好ましくは分子鎖末端)にビニル基を導入する方法などが挙げられる。
((Meth)acrylic acid ester polymer)
When the polymer skeleton of the organic polymer is a (meth)acrylic acid ester polymer, the method for producing the organic polymer includes (I) a compound having a polymerizable unsaturated group and a reactive functional group (for example, , acrylic acid, 2-hydroxyethyl acrylate) are copolymerized with a monomer having a (meth)acrylic structure to obtain a polymer, and then any position in the resulting polymer (preferably the molecular chain end ), and (II) a monomer having a (meth)acrylic structure is polymerized by a living radical polymerization method such as atom transfer radical polymerization to obtain a polymer. A method of introducing a vinyl group at a certain position (preferably at a molecular chain terminal), and the like can be mentioned.
 (飽和炭化水素系重合体)
 前記有機重合体の主鎖が飽和炭化水素系重合体である場合には、前記有機重合体の製造方法としては、エチレン、プロピレン、1-ブテン、およびイソブチレンなどの炭素原子数2~6のオレフィン系化合物を主モノマーとして重合させて重合体を得た後、得られた重合体のいずれかの位置(好ましくは分子鎖末端)にビニル基を導入する方法などが挙げられる。
(Saturated hydrocarbon polymer)
When the main chain of the organic polymer is a saturated hydrocarbon polymer, the method for producing the organic polymer includes olefins having 2 to 6 carbon atoms such as ethylene, propylene, 1-butene, and isobutylene. Examples include a method of polymerizing a base compound as a main monomer to obtain a polymer, and then introducing a vinyl group at any position (preferably at the molecular chain terminal) of the obtained polymer.
 (ケイ素原子上にビニル基と水酸基又は加水分解性基を有するシラン化合物)
 前記ケイ素原子上にビニル基と水酸基又は加水分解性基を有するシラン化合物(以下、略してシラン化合物ともいう)は、ケイ素原子に結合したビニル基と、ケイ素原子に結合した水酸基又は加水分解性基を有する化合物である。具体的には、前記シラン化合物は、式:CH=CH-Si(R3-a(X)で表すことができる。
(Silane compound having vinyl group and hydroxyl group or hydrolyzable group on silicon atom)
The silane compound having a vinyl group and a hydroxyl group or a hydrolyzable group on the silicon atom (hereinafter also referred to as a silane compound for short) has a vinyl group bonded to the silicon atom and a hydroxyl group or a hydrolyzable group bonded to the silicon atom. is a compound having Specifically, the silane compound can be represented by the formula: CH 2 ═CH—Si(R 1 ) 3-a (X) a .
 Rは、炭素原子数1~20の置換又は非置換の炭化水素基を表す。前記炭素数は1~10が好ましく、炭素数1~8がより好ましく、炭素数1~6がさらに好ましく、炭素数1~3がより更に好ましく、炭素数1又は2が特に好ましい。前記炭化水素基が置換基を有する場合、該置換基としては特に限定されないが、例えば、クロロ基等のハロゲン基、メトキシ基等のアルコキシ基、N,N-ジエチルアミノ基等のアミノ基が挙げられる。 R 1 represents a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms. The number of carbon atoms is preferably 1 to 10, more preferably 1 to 8 carbon atoms, still more preferably 1 to 6 carbon atoms, even more preferably 1 to 3 carbon atoms, and particularly preferably 1 or 2 carbon atoms. When the hydrocarbon group has a substituent, the substituent is not particularly limited, and examples thereof include halogen groups such as chloro, alkoxy groups such as methoxy, and amino groups such as N,N-diethylamino. .
 Rとしては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、tert-ブチル基、n-ヘキシル基、2-エチルヘキシル基、n-ドデシル基等の無置換のアルキル基;クロロメチル基、メトキシメチル基、N,N-ジエチルアミノメチル基等の置換アルキル基;ビニル基、イソプロペニル基、アリル基などの不飽和炭化水素基;シクロヘキシル基等のシクロアルキル基;フェニル基、トルイル基、1-ナフチル基等のアリール基;ベンジル基等のアラルキル基等が挙げられる。好ましくは置換又は無置換のアルキル基であり、より好ましくは、メチル基、エチル基、クロロメチル基、メトキシメチル基であり、さらに好ましくは、メチル基、メトキシメチル基であり、特に好ましくは、メチル基である。Rとしては、一種類の基のみを使用してよいし、二種類以上の基を併用してもよい。 Examples of R 1 include unsubstituted groups such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, tert-butyl group, n-hexyl group, 2-ethylhexyl group and n-dodecyl group. Alkyl group; chloromethyl group, methoxymethyl group, substituted alkyl group such as N,N-diethylaminomethyl group; vinyl group, isopropenyl group, unsaturated hydrocarbon group such as allyl group; cycloalkyl group such as cyclohexyl group; phenyl aryl groups such as toluyl group and 1-naphthyl group; and aralkyl groups such as benzyl group. Preferred are substituted or unsubstituted alkyl groups, more preferred are methyl groups, ethyl groups, chloromethyl groups and methoxymethyl groups, still more preferred are methyl groups and methoxymethyl groups, and particularly preferred are methyl groups. is the base. As R 1 , only one type of group may be used, or two or more types of groups may be used in combination.
 Xは水酸基又は加水分解性基を表す。Xとしては、例えば、水酸基、水素、ハロゲン、アルコキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、酸アミド基、アミノオキシ基、メルカプト基、アルケニルオキシ基等が挙げられる。前記のアルコキシ基等は、置換基を有していてもよい。加水分解性が穏やかで取扱いやすいことから、アルコキシ基が好ましく、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基がより好ましく、メトキシ基、エトキシ基がさらに好ましく、メトキシ基が特に好ましい。Xとしては、一種類の基のみを使用してよいし、二種類以上の基を併用してもよい。  X represents a hydroxyl group or a hydrolyzable group. Examples of X include hydroxyl group, hydrogen, halogen, alkoxy group, acyloxy group, ketoximate group, amino group, amide group, acid amide group, aminooxy group, mercapto group and alkenyloxy group. The above alkoxy group and the like may have a substituent. An alkoxy group is preferred because it is moderately hydrolyzable and easy to handle, methoxy, ethoxy, n-propoxy and isopropoxy are more preferred, methoxy and ethoxy are still more preferred, and methoxy is particularly preferred. As X, only one type of group may be used, or two or more types of groups may be used in combination.
 前記式中のaは、1、2、又は3を表す。好ましくは2又は3である。重合体の硬化性と、硬化物の物性とのバランスの面で、より好ましくは2である。 "a" in the above formula represents 1, 2, or 3. Preferably 2 or 3. It is more preferably 2 in terms of the balance between the curability of the polymer and the physical properties of the cured product.
 前記シラン化合物の具体例としては、例えば、トリメトキシビニルシラン、トリエトキシビニルシラン、トリス(2-プロペニルオキシ)ビニルシラン、トリアセトキシビニルシラン、メチルジメトキシビニルシラン、メチルジエトキシビニルシラン、ジメトキシエチルビニルシラン、(クロロメチル)ジメトキシビニルシラン、(クロロメチル)ジエトキシビニルシラン、(メトキシメチル)ジメトキシビニルシラン、(メトキシメチル)ジエトキシビニルシラン、(N,N-ジエチルアミノメチル)ジメトキシビニルシラン、(N,N-ジエチルアミノメチル)ジエトキシビニルシラン等が挙げられる。シラン化合物は1種類を単独で使用してもよいし、2種以上を併用してもよい。 Specific examples of the silane compound include trimethoxyvinylsilane, triethoxyvinylsilane, tris(2-propenyloxy)vinylsilane, triacetoxyvinylsilane, methyldimethoxyvinylsilane, methyldiethoxyvinylsilane, dimethoxyethylvinylsilane, (chloromethyl)dimethoxy vinylsilane, (chloromethyl)diethoxyvinylsilane, (methoxymethyl)dimethoxyvinylsilane, (methoxymethyl)diethoxyvinylsilane, (N,N-diethylaminomethyl)dimethoxyvinylsilane, (N,N-diethylaminomethyl)diethoxyvinylsilane and the like. be done. One type of silane compound may be used alone, or two or more types may be used in combination.
 前記シラン化合物の使用量は、特に限定されないが、前記重合体が有するビニル基に対して0.1~100モル倍であることが好ましく、0.5~30モル倍がより好ましく、1~20モル倍がさらに好ましい。重合体へのシリル基導入率を高める観点から、2モル倍以上が好ましく、3モル倍以上がより好ましい。 The amount of the silane compound used is not particularly limited, but it is preferably 0.1 to 100 times by moles, more preferably 0.5 to 30 times by moles, more preferably 1 to 20 times by moles the vinyl groups possessed by the polymer. Molar fold is more preferred. From the viewpoint of increasing the rate of silyl group introduction into the polymer, it is preferably 2 mol times or more, more preferably 3 mol times or more.
 (触媒)
 前記触媒は、前記重合体が有するビニル基と、前記シラン化合物が有するビニル基との間のメタセシス反応を促進する触媒である。当該触媒としては特に限定されないが、カルベンを配位子として持つ有機金属錯体を使用することができる。金属錯体を構成する金属種としては、例えば、チタン、タンタル、モリブデン、タングステン、ルテニウム、オスミウム等が挙げられる。特にルテニウムカルベン錯体が好ましく、具体的には、第一世代グラブス(Grubbs)触媒(ベンジリデン-ビス(トリシクロヘキシルホスフィノ)ジクロロルテニウム)、第二世代グラブス触媒([1,3-ビス-(2,4,6-トリメチルフェニル)-2-イミダゾリジニリデン]ジクロロ(フェニルメチレン)(トリシクロヘキシルホスフィノ)ルテニウム)、第一世代ホベイダ(Hoveyda)-グラブス触媒(ジクロロ(o-イソプロポキシフェニルメチレン)(トリシクロヘキシルホスフィン)ルテニウム(II))、第二世代ホベイダ-グラブス触媒([1,3-ビス-(2,4,6-トリメチルフェニル)-2-イミダゾリジニリデン]ジクロロ(o-イソプロポキシフェニルメチレン)ルテニウム)等が挙げられる。なかでも、重合体へのシリル基導入率が向上することから、グラブス触媒が好ましく、第一世代グラブス触媒が特に好ましい。前記触媒としては1種類のみを使用してもよいし、2種類以上を併用してもよい。
(catalyst)
The catalyst is a catalyst that promotes a metathesis reaction between the vinyl group of the polymer and the vinyl group of the silane compound. Although the catalyst is not particularly limited, an organometallic complex having carbene as a ligand can be used. Metal species constituting the metal complex include, for example, titanium, tantalum, molybdenum, tungsten, ruthenium, and osmium. Ruthenium carbene complexes are particularly preferred, and specifically, first-generation Grubbs catalysts (benzylidene-bis(tricyclohexylphosphino)dichlororuthenium), second-generation Grubbs catalysts ([1,3-bis-(2, 4,6-trimethylphenyl)-2-imidazolidinylidene]dichloro(phenylmethylene)(tricyclohexylphosphino)ruthenium), first generation Hoveyda-Grubbs catalyst (dichloro(o-isopropoxyphenylmethylene) (tri Cyclohexylphosphine)ruthenium(II)), second-generation Hoveyda-Grubbs catalyst ([1,3-bis-(2,4,6-trimethylphenyl)-2-imidazolidinylidene]dichloro(o-isopropoxyphenylmethylene) ruthenium) and the like. Of these, Grubbs catalysts are preferred, and first-generation Grubbs catalysts are particularly preferred, since they improve the rate of introduction of silyl groups into the polymer. As the catalyst, only one type may be used, or two or more types may be used in combination.
 前記触媒の使用量としては特に限定されないが、前記重合体が有するビニル基に対して0.001~1モル倍であることが好ましく、0.01~0.5モル倍がより好ましく、0.05~0.3モル倍がさらに好ましい。 The amount of the catalyst used is not particularly limited, but it is preferably 0.001 to 1 mol, more preferably 0.01 to 0.5 mol, more preferably 0.01 to 1 mol, relative to the vinyl groups of the polymer. 05 to 0.3 mol times is more preferable.
 (メタセシス反応)
 前記ビニル基を有する重合体に対し、前記ケイ素原子上にビニル基と水酸基又は加水分解性基を有するシラン化合物を、前記触媒の存在下でメタセシス反応させることで、加水分解性シリル基を有する重合体を製造することができる。当該メタセシス反応によって、前記重合体が有するビニル基と、前記シラン化合物が有するビニル基との間で結合の組換えが起こることによって、重合体に加水分解性シリル基が導入される。一例として、ビニル基を有する重合体がアリル基を有するポリオキシプロピレンであり、前記シラン化合物がトリメトキシビニルシランである場合の反応式を次に示す。
(Metathesis reaction)
The polymer having a vinyl group is subjected to a metathesis reaction with a silane compound having a vinyl group and a hydroxyl group or a hydrolyzable group on the silicon atom in the presence of the catalyst to obtain a polymer having a hydrolyzable silyl group. Coalescence can be produced. A hydrolyzable silyl group is introduced into the polymer by recombination of bonds between the vinyl group of the polymer and the vinyl group of the silane compound by the metathesis reaction. As an example, the reaction formula in the case where the polymer having a vinyl group is polyoxypropylene having an allyl group and the silane compound is trimethoxyvinylsilane is shown below.
Figure JPOXMLDOC01-appb-C000001
 
Figure JPOXMLDOC01-appb-C000001
 
 式中のPPOは、ポリオキシプロピレンを表し、Meはメチル基を表す。生成物である加水分解性シリル基を有する重合体はトランス体で示しているが、当該重合体の構造は、トランス体に限定されず、トランス体とシス体の双方を含み得る。 PPO in the formula represents polyoxypropylene, and Me represents a methyl group. Although the product polymer having a hydrolyzable silyl group is shown in the trans form, the structure of the polymer is not limited to the trans form, and may include both the trans and cis forms.
 前記メタセシス反応時の反応温度は特に限定されず、例えば、0~150℃程度であってよく、15~120℃程度が好ましい。しかし、副反応であるアリル基の異性化反応を抑制する観点から、比較的低温であることが好ましく、具体的には80℃以下が好ましく、60℃以下がより好ましく、50℃以下が特に好ましい。前記メタセシス反応の反応時間は特に限定されず、例えば、1~10時間程度であってもよい。 The reaction temperature during the metathesis reaction is not particularly limited, and may be, for example, about 0 to 150°C, preferably about 15 to 120°C. However, from the viewpoint of suppressing the isomerization reaction of the allyl group, which is a side reaction, the temperature is preferably relatively low, specifically 80°C or lower, more preferably 60°C or lower, and particularly preferably 50°C or lower. . The reaction time of the metathesis reaction is not particularly limited, and may be, for example, about 1 to 10 hours.
 前記メタセシス反応は溶媒の存在下で行ってもよいし、無溶媒で行ってもよい。溶媒を使用する場合、溶媒の種類としては特に限定されず、適宜選択すればよいが、例えば、ペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキサン、シクロオクタン、シクロデカン、シクロドデカン、石油エーテル等の脂肪族炭化水素や、ジクロロエタン、クロロホルム等の脂肪族ハロゲン化炭化水素や、ベンゼン、トルエン、キシレン、エチルベンゼン、イソプロピルベンゼン等の芳香族炭化水素や、クロロベンゼン、クロロトルエン等の芳香族ハロゲン化炭化水素、メタノール、エタノール等のアルコール性溶媒、テトラヒドロフラン(THF)、テトラヒドロピラン(THP)等のエーテル溶媒等が挙げられる。溶媒としては1種類のみを使用してもよいし、2種類以上を併用してもよい。 The metathesis reaction may be carried out in the presence of a solvent or may be carried out without a solvent. When a solvent is used, the type of solvent is not particularly limited and may be selected as appropriate. Hydrogen, aliphatic halogenated hydrocarbons such as dichloroethane and chloroform, aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene and isopropylbenzene, aromatic halogenated hydrocarbons such as chlorobenzene and chlorotoluene, methanol and ethanol and ether solvents such as tetrahydrofuran (THF) and tetrahydropyran (THP). As the solvent, only one type may be used, or two or more types may be used in combination.
 前記メタセシス反応は、各成分を混合して攪拌下で実施すればよい。その際、重合体へのシリル基導入率が向上することから、反応系に、窒素やアルゴン等の不活性気体をバブリングさせながら前記メタセシス反応を行うことが好ましい。これは、不活性気体のバブリングによって、副産物であるエチレンが反応系から効率よく除去されるためと推測される。 The metathesis reaction may be carried out by mixing each component and stirring. In this case, the metathesis reaction is preferably carried out while bubbling an inert gas such as nitrogen or argon into the reaction system, since the rate of introduction of silyl groups into the polymer is improved. It is presumed that this is because the bubbling of the inert gas efficiently removes ethylene, which is a by-product, from the reaction system.
 尚、前記メタセシス反応では、副生物として、ビニル基を有する重合体2分子がカップリングしてなる重合体が生じる場合がある。 In the metathesis reaction, a polymer formed by coupling two molecules of a polymer having a vinyl group may be produced as a by-product.
 (加水分解性シリル基を有する重合体)
 以上で詳述した製造方法によって、加水分解性シリル基を有する重合体を製造することができる。このような重合体も、本実施形態の一態様を構成する。但し、当該重合体は、本実施形態に係る製造方法に限定されるものではない。
(Polymer having a hydrolyzable silyl group)
A polymer having a hydrolyzable silyl group can be produced by the production method detailed above. Such polymers also constitute one aspect of the present embodiment. However, the polymer is not limited to the production method according to this embodiment.
 前記加水分解性シリル基を有する重合体は、加水分解性シリル基と、該シリル基中のケイ素原子に結合した炭素-炭素二重結合とを有する。このように、本実施形態によって製造され得る重合体は、加水分解性シリル基中のケイ素原子に炭素-炭素二重結合が結合しているために、速硬化性を示し得るものである。 The polymer having a hydrolyzable silyl group has a hydrolyzable silyl group and a carbon-carbon double bond bonded to a silicon atom in the silyl group. Thus, the polymer that can be produced according to this embodiment can exhibit rapid curing properties due to the carbon-carbon double bond attached to the silicon atom in the hydrolyzable silyl group.
 前記重合体が有する加水分解性シリル基は、前記シラン化合物中の加水分解性シリル基に相当し、-Si(R3-a(X)で表すことができる。式中、R、X、及びaは、それぞれ上述した通りである。前記重合体が有する加水分解性シリル基の具体例としては、例えば、トリメトキシシリル基、トリエトキシシリル基、トリス(2-プロペニルオキシ)シリル基、トリアセトキシシリル基、メチルジメトキシシリル基、メチルジエトキシシリル基、ジメトキシエチルシリル基、(クロロメチル)ジメトキシシリル基、(クロロメチル)ジエトキシシリル基、(メトキシメチル)ジメトキシシリル基、(メトキシメチル)ジエトキシシリル基、(N,N-ジエチルアミノメチル)ジメトキシシリル基、(N,N-ジエチルアミノメチル)ジエトキシシリル基等が挙げられる。加水分解性シリル基は1種類のみであってもよいし、2種以上が併存していてもよい。 The hydrolyzable silyl group possessed by the polymer corresponds to the hydrolyzable silyl group in the silane compound and can be represented by —Si(R 1 ) 3-a (X) a . wherein R 1 , X, and a are each as described above. Specific examples of the hydrolyzable silyl group possessed by the polymer include, for example, a trimethoxysilyl group, a triethoxysilyl group, a tris(2-propenyloxy)silyl group, a triacetoxysilyl group, a methyldimethoxysilyl group, a methyldi ethoxysilyl group, dimethoxyethylsilyl group, (chloromethyl)dimethoxysilyl group, (chloromethyl)diethoxysilyl group, (methoxymethyl)dimethoxysilyl group, (methoxymethyl)diethoxysilyl group, (N,N-diethylaminomethyl) ) dimethoxysilyl group, (N,N-diethylaminomethyl)diethoxysilyl group and the like. Only one type of hydrolyzable silyl group may be used, or two or more types may coexist.
 好適な態様によると、前記加水分解性シリル基を有する重合体は、前記化学反応式中に示したように、加水分解性シリル基が炭素-炭素二重結合を介して重合体骨格に結合しており、具体的には、式:-CH=CH-Si(R3-a(X)で表される構造を有し得る。前記式中のR、X、及びaは、それぞれ上述した通りである。 According to a preferred embodiment, the hydrolyzable silyl group-containing polymer has a hydrolyzable silyl group bonded to the polymer skeleton via a carbon-carbon double bond, as shown in the chemical reaction formula. Specifically, it may have a structure represented by the formula: —CH═CH—Si(R 1 ) 3-a (X) a . R 1 , X, and a in the above formula are each as described above.
 特許文献2で記載されているような、重合体が有する炭素-炭素三重結合にシラン化合物をヒドロシリル化反応させて加水分解性シリル基を重合体に導入する方法によると、次の化学反応式に示すように、前記式:-CH=CH-Si(R3-a(X)で表される構造(以下、β体構造ともいう)に加えて、式:-C(=CH)(-Si(R3-a(X))で表される構造(以下、α体構造ともいう)も形成され得る。即ち、従来公知の製造方法によると、β体構造を有する重合体分子と、α体構造を有する重合体分子をおよそ1:1の比率で含む混合物が製造される。 According to the method of introducing a hydrolyzable silyl group into the polymer by hydrosilylating the carbon-carbon triple bond of the polymer with a silane compound, as described in Patent Document 2, the following chemical reaction formula can be obtained. As shown, in addition to the structure represented by the formula: -CH=CH-Si(R 1 ) 3-a (X) a (hereinafter also referred to as the β-form structure), the formula: -C(=CH 2 )(—Si(R 1 ) 3-a (X) a ) (hereinafter also referred to as α-form structure) can also be formed. That is, according to a conventionally known production method, a mixture containing a polymer molecule having a β-body structure and a polymer molecule having an α-body structure at a ratio of approximately 1:1 is produced.
Figure JPOXMLDOC01-appb-C000002
 
Figure JPOXMLDOC01-appb-C000002
 
 一方、本実施形態によると、メタセシス反応の反応機構に起因して、β体構造が高い選択性で形成され、α体構造は実質的に形成され得ない。よって、本実施形態により製造され得る加水分解性シリル基を有する重合体においては、加水分解性シリル基のうち、β体構造の占める割合が、好ましくは80モル%以上100モル%以下、より好ましくは90モル%以上100モル%以下、さらに好ましくは95モル%以上100モル%以下であり、前記α体構造の占める割合が、好ましくは0モル%以上20モル%以下、より好ましくは0モル%以上10モル%以下、さらに好ましくは0モル%以上5モル%以下である。このようにβ体構造を80モル%以上という高い割合で有する重合体は、これまで報告されていない。 On the other hand, according to the present embodiment, due to the reaction mechanism of the metathesis reaction, the β-body structure is formed with high selectivity, and the α-body structure cannot be substantially formed. Therefore, in the polymer having a hydrolyzable silyl group that can be produced according to the present embodiment, the proportion of the hydrolyzable silyl groups occupied by the β-form structure is preferably 80 mol% or more and 100 mol% or less, more preferably is 90 mol% or more and 100 mol% or less, more preferably 95 mol% or more and 100 mol% or less, and the ratio of the α-body structure is preferably 0 mol% or more and 20 mol% or less, more preferably 0 mol%. 10 mol % or more, more preferably 0 mol % or more and 5 mol % or less. Polymers having such a high ratio of 80 mol % or more of β-body structure have not been reported so far.
 好適な態様によると、前記式:-CH=CH-Si(R3-a(X)で表される構造は、-O-CH-CH=CH-Si(R3-a(X)で表される構造であってもよい。このような構造は、ビニル基を有する重合体として、アリル基を有する重合体を使用することによって形成することができる。 According to a preferred embodiment, the structure represented by the formula: -CH=CH-Si(R 1 ) 3-a (X) a is represented by -O-CH 2 -CH=CH-Si(R 1 ) 3- It may be a structure represented by a (X) a . Such a structure can be formed by using an allyl group-containing polymer as the vinyl group-containing polymer.
 前記加水分解性シリル基を有する重合体の重合体骨格の詳細や、数平均分子量、及び分子量分布の範囲は、ビニル基を有する重合体と同様であるので、記載を省略する。 The details of the polymer skeleton, the number average molecular weight, and the range of the molecular weight distribution of the polymer having the hydrolyzable silyl group are the same as those of the polymer having the vinyl group, so the description is omitted.
 前記加水分解性シリル基を有する重合体が、触媒としてルテニウム含有触媒を使用して製造された場合には、当該重合体には、前記触媒に由来するルテニウムが含まれる場合がある。このような場合、前記加水分解性シリル基を有する重合体のルテニウム含有割合は、前記ルテニウム含有触媒の使用量や後処理の手法などに依存し、特に限定されないが、例えば、10~2,000ppm程度であり得る。下限は、100ppm以上であってもよいし、500ppm以上であってもよいし、1,000ppm以上であってもよい。
 尚、ルテニウム含有割合は、前記ルテニウム含有触媒の使用量から算出してもよいし、また、質量分析法など一般的な元素分析によって測定してもよい。
When the polymer having a hydrolyzable silyl group is produced using a ruthenium-containing catalyst as a catalyst, the polymer may contain ruthenium derived from the catalyst. In such a case, the ruthenium content of the polymer having a hydrolyzable silyl group is not particularly limited, depending on the amount of the ruthenium-containing catalyst used, the method of post-treatment, etc., but is, for example, 10 to 2,000 ppm. can be to some extent. The lower limit may be 100 ppm or more, 500 ppm or more, or 1,000 ppm or more.
The ruthenium content ratio may be calculated from the amount of the ruthenium-containing catalyst used, or may be measured by general elemental analysis such as mass spectrometry.
 (硬化性組成物)
 上述した加水分解性シリル基を有する重合体は、これを含む硬化性組成物を構成することができる。
(Curable composition)
A polymer having a hydrolyzable silyl group as described above can constitute a curable composition containing it.
 (硬化触媒)
 本実施形態に係る硬化性組成物は、加水分解性シリル基を加水分解・縮合させる反応、即ち硬化反応を促進する目的で、硬化触媒を含有することが好ましい。
(Curing catalyst)
The curable composition according to the present embodiment preferably contains a curing catalyst for the purpose of promoting the reaction of hydrolyzing and condensing the hydrolyzable silyl groups, that is, the curing reaction.
 硬化触媒としては、従来公知のものを使用することができ、具体的には、有機錫化合物、カルボン酸金属塩、アミン化合物、カルボン酸、アルコキシ金属、無機酸等を使用することができる。 As the curing catalyst, conventionally known ones can be used. Specifically, organic tin compounds, carboxylic acid metal salts, amine compounds, carboxylic acids, alkoxy metals, inorganic acids, etc. can be used.
 有機錫化合物の具体例としては、ジブチル錫ジラウレート、ジブチル錫ジオクタノエート、ジブチル錫ビス(ブチルマレエート)、ジブチル錫ジアセテート、ジブチル錫オキサイド、ジブチル錫ビス(アセチルアセトナート)、ジブチル錫オキサイドとシリケート化合物との反応物、ジブチル錫オキサイドとフタル酸エステルとの反応物、ジオクチル錫ジアセテート、ジオクチル錫ジラウレート、ジオクチル錫ビス(エチルマレエート)、ジオクチル錫ビス(オクチルマレエート)、ジオクチル錫ビス(アセチルアセトナート)、ジオクチル錫ジラウレート、ジオクチル錫ジステアレート、ジオクチル錫ジアセテート、ジオクチル錫オキサイド、ジオクチル錫オキサイドとシリケート化合物との反応物などが挙げられる。近年の環境への関心の高まりから、ジオクチル錫化合物が好ましい。
 しかし、本実施形態に係る重合体は速硬化性を示し得るため、本実施形態に係る硬化性組成物は有機錫化合物を含有せず、有機錫化合物よりも一般的に活性が低いとされる硬化触媒(特に、アミン系化合物等)を含有するものとすることができる。本実施形態に係る硬化性組成物はアミン系化合物を含有するものであっても、良好な硬化性を示すことができる。
Specific examples of organotin compounds include dibutyltin dilaurate, dibutyltin dioctanoate, dibutyltin bis(butyl maleate), dibutyltin diacetate, dibutyltin oxide, dibutyltin bis(acetylacetonate), dibutyltin oxide and silicate compounds. reaction product with dibutyltin oxide and phthalate ester, dioctyltin diacetate, dioctyltin dilaurate, dioctyltin bis(ethyl maleate), dioctyltin bis(octyl maleate), dioctyltin bis(acetylacetonate) phosphate), dioctyltin dilaurate, dioctyltin distearate, dioctyltin diacetate, dioctyltin oxide, a reaction product of dioctyltin oxide and a silicate compound, and the like. Dioctyltin compounds are preferred due to recent heightened environmental concerns.
However, since the polymer according to this embodiment can exhibit rapid curing properties, the curable composition according to this embodiment does not contain an organic tin compound and is generally less active than an organic tin compound. A curing catalyst (in particular, an amine compound or the like) may be contained. Even if the curable composition according to the present embodiment contains an amine compound, it can exhibit good curability.
 カルボン酸金属塩の具体例としては、カルボン酸錫、カルボン酸ビスマス、カルボン酸チタン、カルボン酸ジルコニウム、カルボン酸鉄、カルボン酸カリウム、カルボン酸カルシウムなどが挙げられる。カルボン酸基としては下記のカルボン酸と各種金属を組み合わせることができる。 Specific examples of carboxylate metal salts include tin carboxylate, bismuth carboxylate, titanium carboxylate, zirconium carboxylate, iron carboxylate, potassium carboxylate, and calcium carboxylate. As the carboxylic acid group, the following carboxylic acid and various metals can be combined.
 アミン化合物の具体例としては、オクチルアミン、2-エチルヘキシルアミン、ラウリルアミン、ステアリルアミン、などのアミン類;ピリジン、1,8-ジアザビシクロ[5,4,0]ウンデセン-7(DBU)、1,5-ジアザビシクロ[4,3,0]ノネン-5(DBN)、などの含窒素複素環式化合物;グアニジン、フェニルグアニジン、ジフェニルグアニジンなどのグアニジン類;ブチルビグアニド、1-o-トリルビグアニドや1-フェニルビグアニドなどのビグアニド類;ケチミン化合物などが挙げられる。 Specific examples of amine compounds include amines such as octylamine, 2-ethylhexylamine, laurylamine, stearylamine; pyridine, 1,8-diazabicyclo[5,4,0]undecene-7 (DBU), 1, Nitrogen-containing heterocyclic compounds such as 5-diazabicyclo[4,3,0]nonene-5 (DBN); guanidines such as guanidine, phenylguanidine and diphenylguanidine; biguanides such as phenylbiguanide; and ketimine compounds.
 カルボン酸の具体例としては、酢酸、プロピオン酸、酪酸、2-エチルヘキサン酸、ラウリン酸、ステアリン酸、オレイン酸、リノール酸、ネオデカン酸、バーサチック酸などが挙げられる。 Specific examples of carboxylic acids include acetic acid, propionic acid, butyric acid, 2-ethylhexanoic acid, lauric acid, stearic acid, oleic acid, linoleic acid, neodecanoic acid, and versatic acid.
 アルコキシ金属の具体例としては、テトラブチルチタネート、チタンテトラキス(アセチルアセトナート)、ジイソプロポキシチタンビス(エチルアセトセテート)などのチタン化合物や、アルミニウムトリス(アセチルアセトナート)、ジイソプロポキシアルミニウムエチルアセトアセテートなどのアルミニウム化合物類、ジルコニウムテトラキス(アセチルアセトナート)などのジルコニウム化合物類が挙げられる。 Specific examples of alkoxy metals include titanium compounds such as tetrabutyl titanate, titanium tetrakis (acetylacetonate), diisopropoxytitanium bis (ethylacetonate), aluminum tris (acetylacetonate), diisopropoxy aluminum ethylacetate Examples include aluminum compounds such as acetate, and zirconium compounds such as zirconium tetrakis (acetylacetonate).
 その他の硬化触媒として、フッ素アニオン含有化合物、光酸発生剤や光塩基発生剤も使用できる。 As other curing catalysts, fluorine anion-containing compounds, photoacid generators, and photobase generators can also be used.
 硬化触媒は、異なる2種類以上の触媒を併用して使用してもよく、例えば、前記のアミン化合物とカルボン酸や、アミン化合物とアルコキシ金属を併用することで、反応性が向上する効果が得られる可能性がある。 The curing catalyst may be used in combination of two or more different catalysts. For example, the combination of the amine compound and carboxylic acid, or the combination of the amine compound and alkoxy metal provides the effect of improving the reactivity. There is a possibility that it will be
 また、本実施形態に係る重合体が有する加水分解性シリル基は活性が高いため、硬化触媒の量を減らしたり、活性の低い硬化触媒を使用したり、またアミノ基含有シランカップリング剤であるアミノシランを硬化触媒として使用することも出来る。アミノシランは通常接着性付与剤として添加することが多いため、アミノシランを硬化触媒として利用する場合には、通常使われる硬化触媒を使用しない硬化性組成物を作製できる。そのため、他の硬化触媒を添加しないほうが好ましい。特に、加水分解性シリル基が、トリメトキシシリル基、又はメトキシメチルジメトキシシリル基を含む場合に、アミノシランのみを硬化触媒として使用しても優れた硬化性を示す。 In addition, since the hydrolyzable silyl group of the polymer according to the present embodiment has high activity, the amount of the curing catalyst can be reduced, or a curing catalyst with low activity can be used, or an amino group-containing silane coupling agent. Aminosilanes can also be used as curing catalysts. Since aminosilane is usually added as an adhesion imparting agent in many cases, when aminosilane is used as a curing catalyst, a curable composition that does not use a commonly used curing catalyst can be produced. Therefore, it is preferable not to add other curing catalysts. In particular, when the hydrolyzable silyl group contains a trimethoxysilyl group or a methoxymethyldimethoxysilyl group, excellent curability is exhibited even when only aminosilane is used as a curing catalyst.
 硬化触媒の配合量としては、本実施形態に係る重合体100重量部に対して、0.001~20重量部が好ましく、0.01~15重量部がより好ましく、0.01~10重量部が特に好ましい。硬化触媒の配合量が0.001重量部を下回ると反応速度が不十分となる可能性がある。一方、硬化触媒の配合量が20重量部を上回ると反応速度が速すぎるため組成物の使用可能な時間が短くなることにより作業性が悪くなったり、貯蔵安定性が悪くなる傾向がある。さらに、硬化触媒の中には、硬化性組成物が硬化した後で、硬化物の表面に染み出したり、硬化物表面を汚染する場合がある。このような場合には、硬化触媒の使用量を0.01~3.0重量部とすることで、硬化性を確保しながら、硬化物の表面状態を良好に保てる。 The amount of the curing catalyst is preferably 0.001 to 20 parts by weight, more preferably 0.01 to 15 parts by weight, and 0.01 to 10 parts by weight with respect to 100 parts by weight of the polymer according to the present embodiment. is particularly preferred. If the amount of the curing catalyst is less than 0.001 part by weight, the reaction rate may be insufficient. On the other hand, when the amount of the curing catalyst exceeds 20 parts by weight, the reaction rate is too fast, and the usable time of the composition is shortened, resulting in poor workability and poor storage stability. Furthermore, some curing catalysts may exude to the surface of the cured product or contaminate the surface of the cured product after the curable composition is cured. In such a case, by setting the amount of the curing catalyst to 0.01 to 3.0 parts by weight, it is possible to maintain good surface conditions of the cured product while ensuring curability.
 本実施形態に係る硬化性組成物には、その他の添加剤として、シリコン化合物、接着性付与剤、可塑剤、溶剤、希釈剤、シリケート、充填剤、タレ防止剤、酸化防止剤、光安定剤、紫外線吸収剤、物性調整剤、粘着付与樹脂、エポキシ基を含有する化合物、光硬化性物質、酸素硬化性物質、表面性改良剤、エポキシ樹脂、その他の樹脂、難燃剤、発泡剤を添加しても良い。また、本実施形態に係る硬化性組成物には、該組成物又は硬化物の諸物性の調整を目的として、必要に応じて各種添加剤を添加してもよい。このような添加物の例としては、たとえば、硬化性調整剤、ラジカル禁止剤、金属不活性化剤、オゾン劣化防止剤、リン系過酸化物分解剤、滑剤、顔料、防かび剤等が挙げられる。 The curable composition according to the present embodiment contains other additives such as a silicon compound, an adhesion imparting agent, a plasticizer, a solvent, a diluent, a silicate, a filler, an anti-sagging agent, an antioxidant, and a light stabilizer. , UV absorbers, physical property modifiers, tackifier resins, compounds containing epoxy groups, photo-curing substances, oxygen-curing substances, surface property modifiers, epoxy resins, other resins, flame retardants, foaming agents. can be In addition, various additives may be added to the curable composition according to the present embodiment as necessary for the purpose of adjusting various physical properties of the composition or cured product. Examples of such additives include curability modifiers, radical inhibitors, metal deactivators, antiozonants, phosphorus peroxide decomposers, lubricants, pigments, antifungal agents, and the like. be done.
 (充填剤)
 本実施形態に係る硬化性組成物には、種々の充填剤を配合することができる。充填剤としては、重質炭酸カルシウム、膠質炭酸カルシウム、炭酸マグネシウム、ケイソウ土、クレー、タルク、酸化チタン、ヒュームドシリカ、沈降性シリカ、結晶性シリカ、溶融シリカ、無水ケイ酸、含水ケイ酸、カーボンブラック、酸化第二鉄、アルミニウム微粉末、酸化亜鉛、活性亜鉛華、PVC粉末、PMMA粉末、ガラス繊維およびフィラメント等が挙げられる。
(filler)
Various fillers can be added to the curable composition according to the present embodiment. Fillers include ground calcium carbonate, colloidal calcium carbonate, magnesium carbonate, diatomaceous earth, clay, talc, titanium oxide, fumed silica, precipitated silica, crystalline silica, fused silica, anhydrous silicic acid, hydrous silicic acid, carbon black, ferric oxide, fine aluminum powder, zinc oxide, active zinc white, PVC powder, PMMA powder, glass fiber and filament, and the like.
 充填剤の使用量は、本実施形態に係る重合体100重量部に対して、1~300重量部が好ましく、10~250重量部がより好ましい。 The amount of filler used is preferably 1 to 300 parts by weight, more preferably 10 to 250 parts by weight, with respect to 100 parts by weight of the polymer according to this embodiment.
 組成物の軽量化(低比重化)の目的で、有機バルーン、無機バルーンを添加してもよい。バルーンは、球状体充填剤で内部が中空のものであり、このバルーンの材料としては、ガラス、シラス、シリカなどの無機系の材料、および、フェノール樹脂、尿素樹脂、ポリスチレン、サランなどの有機系の材料が挙げられる。 Organic balloons and inorganic balloons may be added for the purpose of weight reduction (lower specific gravity) of the composition. The balloon is hollow inside with a spherical filler, and is made of inorganic materials such as glass, shirasu, and silica, and organic materials such as phenolic resin, urea resin, polystyrene, and saran. materials.
 バルーンの使用量は、本実施形態に係る重合体100重量部に対して、0.1~100重量部が好ましく、1~20重量部がより好ましい。 The amount of balloon used is preferably 0.1 to 100 parts by weight, more preferably 1 to 20 parts by weight, with respect to 100 parts by weight of the polymer according to this embodiment.
 (接着性付与剤)
 本実施形態に係る硬化性組成物には、接着性付与剤を添加することができる。接着性付与剤としては、シランカップリング剤、シランカップリング剤の反応物を添加することができる。
 シランカップリング剤の具体例としては、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルメチルジメトキシシラン、N-β-アミノエチル-γ-アミノプロピルトリメトキシシラン、N-β-アミノエチル-γ-アミノプロピルメチルジメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、(2-アミノエチル)アミノメチルトリメトキシシランなどのアミノ基含有シラン類;γ-イソシアネートプロピルトリメトキシシラン、γ-イソシアネートプロピルトリエトキシシラン、γ-イソシアネートプロピルメチルジメトキシシラン、α-イソシアネートメチルトリメトキシシラン、α-イソシアネートメチルジメトキシメチルシラン等のイソシアネート基含有シラン類;γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン等のメルカプト基含有シラン類;γ-グリシドキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシ基含有シラン類等が挙げられる。また、アミノ基含有シランの縮合物、アミノ基含有シランと他のアルコキシシランとの縮合物、等の各種シランカップリング剤の縮合物;アミノ基含有シランとエポキシ基含有シランの反応物、アミノ基含有シランと(メタ)アクリル基含有シランの反応物、等の各種シランカップリング剤の反応物も使用できる。上記接着性付与剤は1種類のみで使用しても良いし、2種類以上混合使用しても良い。
(Adhesion imparting agent)
An adhesion imparting agent can be added to the curable composition according to the present embodiment. A silane coupling agent or a reactant of the silane coupling agent can be added as the adhesion imparting agent.
Specific examples of silane coupling agents include γ-aminopropyltrimethoxysilane, γ-aminopropylmethyldimethoxysilane, N-β-aminoethyl-γ-aminopropyltrimethoxysilane, N-β-aminoethyl-γ- Amino group-containing silanes such as aminopropylmethyldimethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, (2-aminoethyl)aminomethyltrimethoxysilane; γ-isocyanatopropyltrimethoxysilane, γ-isocyanatopropyltrimethoxysilane; isocyanate group-containing silanes such as ethoxysilane, γ-isocyanatopropylmethyldimethoxysilane, α-isocyanatomethyltrimethoxysilane, α-isocyanatomethyldimethoxymethylsilane; γ-mercaptopropyltrimethoxysilane, γ-mercaptopropyltriethoxysilane, mercapto group-containing silanes such as γ-mercaptopropylmethyldimethoxysilane; epoxy group-containing silanes such as γ-glycidoxypropyltrimethoxysilane and β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane; . Condensates of various silane coupling agents such as condensation products of amino group-containing silanes, condensation products of amino group-containing silanes and other alkoxysilanes; reaction products of amino group-containing silanes and epoxy group-containing silanes; Reaction products of various silane coupling agents, such as reaction products of containing silanes and (meth)acrylic group-containing silanes, can also be used. The adhesiveness-imparting agent may be used alone or in combination of two or more.
 シランカップリング剤の使用量は、本実施形態に係る重合体100重量部に対して、0.1~20重量部が好ましく、0.5~10重量部がより好ましい。 The amount of the silane coupling agent used is preferably 0.1 to 20 parts by weight, more preferably 0.5 to 10 parts by weight, with respect to 100 parts by weight of the polymer according to this embodiment.
 (可塑剤)
 本実施形態に係る硬化性組成物には、可塑剤を添加することができる。可塑剤の具体例としては、ジブチルフタレート、ジイソノニルフタレート(DINP)、ジヘプチルフタレート、ジ(2-エチルヘキシル)フタレート、ジイソデシルフタレート(DIDP)、ブチルベンジルフタレートなどのフタル酸エステル化合物;ビス(2-エチルヘキシル)-1,4-ベンゼンジカルボキシレートなどのテレフタル酸エステル化合物;1,2-シクロヘキサンジカルボン酸ジイソノニルエステルなどの非フタル酸エステル化合物;アジピン酸ジオクチル、セバシン酸ジオクチル、セバシン酸ジブチル、コハク酸ジイソデシル、アセチルクエン酸トリブチルなどの脂肪族多価カルボン酸エステル化合物;オレイン酸ブチル、アセチルリシノール酸メチルなどの不飽和脂肪酸エステル化合物;アルキルスルホン酸フェニルエステル;リン酸エステル化合物;トリメリット酸エステル化合物;塩素化パラフィン;アルキルジフェニル、部分水添ターフェニルなどの炭化水素系油;プロセスオイル;エポキシ化大豆油、エポキシステアリン酸ベンジルなどのエポキシ可塑剤等が挙げられる。
(Plasticizer)
A plasticizer can be added to the curable composition according to the present embodiment. Specific examples of plasticizers include dibutyl phthalate, diisononyl phthalate (DINP), diheptyl phthalate, di(2-ethylhexyl) phthalate, diisodecyl phthalate (DIDP), phthalate compounds such as butylbenzyl phthalate; bis(2-ethylhexyl )-terephthalate compounds such as 1,4-benzenedicarboxylate; non-phthalate compounds such as 1,2-cyclohexanedicarboxylic acid diisononyl ester; dioctyl adipate, dioctyl sebacate, dibutyl sebacate, diisodecyl succinate, Aliphatic polyvalent carboxylic acid ester compounds such as tributyl acetylcitrate; unsaturated fatty acid ester compounds such as butyl oleate and methyl acetylricinoleate; phenyl alkylsulfonic acid esters; phosphoric acid ester compounds; trimellitic acid ester compounds; Paraffin; hydrocarbon oils such as alkyldiphenyl and partially hydrogenated terphenyl; process oils; epoxy plasticizers such as epoxidized soybean oil and benzyl epoxystearate;
 また、高分子可塑剤を使用することができる。高分子可塑剤の具体例としては、ビニル系重合体;ポリエステル系可塑剤;数平均分子量500以上のポリエチレングリコール、ポリプロピレングリコール等のポリエーテルポリオール、これらポリエーテルポリオールのヒドロキシ基をエステル基、エーテル基などに変換した誘導体等のポリエーテル類;ポリスチレン類;ポリブタジエン、ポリブテン、ポリイソブチレン、ブタジエン-アクリロニトリル、ポリクロロプレン等が挙げられる。可塑剤は、単独で使用してもよく、2種以上を併用してもよい。 In addition, a polymer plasticizer can be used. Specific examples of polymeric plasticizers include vinyl polymers; polyester plasticizers; polyether polyols such as polyethylene glycol and polypropylene glycol having a number average molecular weight of 500 or more; polyethers such as derivatives converted to polystyrenes; polybutadiene, polybutene, polyisobutylene, butadiene-acrylonitrile, polychloroprene and the like. A plasticizer may be used individually and may use 2 or more types together.
 可塑剤の使用量は、本実施形態に係る重合体100重量部に対して、5~150重量部が好ましく、10~120重量部がより好ましく、20~100重量部がさらに好ましい。 The amount of the plasticizer used is preferably 5 to 150 parts by weight, more preferably 10 to 120 parts by weight, and even more preferably 20 to 100 parts by weight with respect to 100 parts by weight of the polymer according to this embodiment.
 (溶剤、希釈剤)
 本実施形態に係る硬化性組成物には溶剤または希釈剤を添加することができる。溶剤及び希釈剤としては、特に限定されないが、脂肪族炭化水素、芳香族炭化水素、脂環族炭化水素、ハロゲン化炭化水素、アルコール、エステル、ケトン、エーテルなどを使用することができる。溶剤または希釈剤を使用する場合、組成物を屋内で使用した時の空気への汚染の問題から、溶剤の沸点は、150℃以上が好ましく、200℃以上がより好ましく、250℃以上が特に好ましい。上記溶剤または希釈剤は単独で用いてもよく、2種以上併用してもよい。
(solvent, diluent)
A solvent or diluent can be added to the curable composition according to the present embodiment. Solvents and diluents that can be used include, but are not limited to, aliphatic hydrocarbons, aromatic hydrocarbons, alicyclic hydrocarbons, halogenated hydrocarbons, alcohols, esters, ketones, and ethers. When a solvent or diluent is used, the boiling point of the solvent is preferably 150° C. or higher, more preferably 200° C. or higher, and particularly preferably 250° C. or higher, because of the problem of air pollution when the composition is used indoors. . The above solvents or diluents may be used alone or in combination of two or more.
 (タレ防止剤)
 本実施形態に係る硬化性組成物には、必要に応じてタレを防止し、作業性を良くするためにタレ防止剤を添加しても良い。タレ防止剤としては特に限定されないが、例えば、ポリアミドワックス類;水添ヒマシ油誘導体類;ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸バリウム等の金属石鹸類等が挙げられる。これらタレ防止剤は単独で用いてもよく、2種以上併用してもよい。
(anti-sagging agent)
An anti-sagging agent may be added to the curable composition according to the present embodiment to prevent sagging and improve workability, if necessary. The anti-sagging agent is not particularly limited, but examples thereof include polyamide waxes; hydrogenated castor oil derivatives; metal soaps such as calcium stearate, aluminum stearate and barium stearate. These anti-sagging agents may be used alone or in combination of two or more.
 タレ防止剤の使用量は、本実施形態に係る重合体100重量部に対して、0.1~20重量部が好ましい。 The amount of anti-sagging agent used is preferably 0.1 to 20 parts by weight with respect to 100 parts by weight of the polymer according to this embodiment.
 (酸化防止剤)
 本実施形態に係る硬化性組成物には、酸化防止剤(老化防止剤)を使用することができる。酸化防止剤を使用すると硬化物の耐候性を高めることができる。酸化防止剤としてはヒンダードフェノール系、モノフェノール系、ビスフェノール系、ポリフェノール系が例示できる。酸化防止剤の具体例は特開平4-283259号公報や特開平9-194731号公報にも記載されている。
 酸化防止剤の使用量は、本実施形態に係る重合体100重量部に対して、0.1~10重量部が好ましく、0.2~5重量部がより好ましい。
(Antioxidant)
An antioxidant (antiaging agent) can be used in the curable composition according to the present embodiment. The use of an antioxidant can enhance the weather resistance of the cured product. Examples of antioxidants include hindered phenols, monophenols, bisphenols, and polyphenols. Specific examples of antioxidants are also described in JP-A-4-283259 and JP-A-9-194731.
The amount of the antioxidant used is preferably 0.1 to 10 parts by weight, more preferably 0.2 to 5 parts by weight, with respect to 100 parts by weight of the polymer according to this embodiment.
 (光安定剤)
 本実施形態に係る硬化性組成物には、光安定剤を使用することができる。光安定剤を使用すると硬化物の光酸化劣化を防止できる。光安定剤としてベンゾトリアゾール系、ヒンダードアミン系、ベンゾエート系化合物等が例示できるが、特にヒンダードアミン系が好ましい。
(light stabilizer)
A light stabilizer can be used in the curable composition according to the present embodiment. The use of a light stabilizer can prevent photo-oxidative deterioration of the cured product. Benzotriazole-based, hindered amine-based, and benzoate-based compounds can be exemplified as light stabilizers, and hindered amine-based compounds are particularly preferred.
 光安定剤の使用量は、本実施形態に係る重合体100重量部に対して、0.1~10重量部が好ましく、0.2~5重量部がより好ましい。 The amount of light stabilizer used is preferably 0.1 to 10 parts by weight, more preferably 0.2 to 5 parts by weight, with respect to 100 parts by weight of the polymer according to the present embodiment.
 (紫外線吸収剤)
 本実施形態に係る硬化性組成物には、紫外線吸収剤を使用することができる。紫外線吸収剤を使用すると硬化物の表面耐候性を高めることができる。紫外線吸収剤としてはベンゾフェノン系、ベンゾトリアゾール系、サリチレート系、置換アクリロニトリル系及び金属キレート系化合物等が例示できるが、特にベンゾトリアゾール系が好ましく、市販名チヌビンP、チヌビン213、チヌビン234、チヌビン326、チヌビン327、チヌビン328、チヌビン329、チヌビン571、チヌビン1600、チヌビンB75(以上、BASF製)が挙げられる。
 紫外線吸収剤の使用量は、本実施形態に係る重合体100重量部に対して、0.1~10重量部が好ましく、0.2~5重量部がより好ましい。
(Ultraviolet absorber)
A UV absorber can be used in the curable composition according to the present embodiment. The use of an ultraviolet absorber can enhance the surface weather resistance of the cured product. Examples of UV absorbers include benzophenone-based, benzotriazole-based, salicylate-based, substituted acrylonitrile-based, and metal chelate-based compounds. Benzotriazole-based compounds are particularly preferred, and are commercially available under the names Tinuvin P, Tinuvin 213, Tinuvin 234, Tinuvin 326, Tinuvin 327, Tinuvin 328, Tinuvin 329, Tinuvin 571, Tinuvin 1600, Tinuvin B75 (manufactured by BASF).
The amount of the ultraviolet absorbent used is preferably 0.1 to 10 parts by weight, more preferably 0.2 to 5 parts by weight, with respect to 100 parts by weight of the polymer according to this embodiment.
 (物性調整剤)
 本実施形態に係る硬化性組成物には、必要に応じて生成する硬化物の引張特性を調整する物性調整剤を添加しても良い。物性調整剤としては特に限定されないが、例えば、フェノキシトリメチルシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、トリメチルメトキシシラン、n-プロピルトリメトキシシラン等のアルキルアルコキシシラン類;ジフェニルジメトキシシラン、フェニルトリメトキシシランなどのアリールアルコキシシラン類;ジメチルジイソプロペノキシシラン、メチルトリイソプロペノキシシラン、γ-グリシドキシプロピルメチルジイソプロペノキシシラン等のアルキルイソプロペノキシシラン;トリス(トリメチルシリル)ボレート、トリス(トリエチルシリル)ボレートなどのトリアルキルシリルボレート類;シリコーンワニス類;ポリシロキサン類等が挙げられる。前記物性調整剤を用いることにより、本実施形態に係る硬化性組成物を硬化させた時の硬度を上げたり、逆に硬度を下げ、破断伸びを出したりし得る。上記物性調整剤は単独で用いてもよく、2種以上併用してもよい。
(Physical property modifier)
A physical property modifier for adjusting the tensile properties of the resulting cured product may be added to the curable composition according to the present embodiment, if necessary. Although the physical property modifier is not particularly limited, for example, alkylalkoxysilanes such as phenoxytrimethylsilane, methyltrimethoxysilane, dimethyldimethoxysilane, trimethylmethoxysilane, and n-propyltrimethoxysilane; diphenyldimethoxysilane, phenyltrimethoxysilane. arylalkoxysilanes such as; alkylisopropenoxysilanes such as dimethyldiisopropenoxysilane, methyltriisopropenoxysilane, γ-glycidoxypropylmethyldiisopropenoxysilane; trialkylsilylborates such as silyl)borate; silicone varnishes; polysiloxanes; By using the physical property modifier, the hardness of the cured curable composition according to the present embodiment can be increased, or conversely, the hardness can be decreased to increase elongation at break. The physical property modifiers may be used alone or in combination of two or more.
 特に、加水分解により分子内に1価のシラノール基を有する化合物を生成する化合物は硬化物の表面のべたつきを悪化させずに硬化物のモジュラスを低下させる作用を有する。特にトリメチルシラノールを生成する化合物が好ましい。加水分解により分子内に1価のシラノール基を有する化合物を生成する化合物としては、ヘキサノール、オクタノール、フェノール、トリメチロールプロパン、グリセリン、ペンタエリスリトール、ソルビトールなどのアルコールの誘導体であって加水分解によりシランモノオールを生成するシリコン化合物を挙げることができる。具体的には、フェノキシトリメチルシラン、トリス((トリメチルシロキシ)メチル)プロパン等が挙げられる。 In particular, a compound that produces a compound having a monovalent silanol group in the molecule by hydrolysis has the effect of lowering the modulus of the cured product without worsening the surface stickiness of the cured product. Compounds that generate trimethylsilanol are particularly preferred. Examples of compounds that generate a compound having a monovalent silanol group in the molecule by hydrolysis include alcohol derivatives such as hexanol, octanol, phenol, trimethylolpropane, glycerin, pentaerythritol, and sorbitol, which are hydrolyzed into silane monovalent groups. Mention may be made of silicon compounds that produce ols. Specific examples include phenoxytrimethylsilane and tris((trimethylsiloxy)methyl)propane.
 物性調整剤の使用量は、本実施形態に係る重合体100重量部に対して、0.1~10重量部が好ましく、0.5~5重量部がより好ましい。 The amount of the physical property modifier used is preferably 0.1 to 10 parts by weight, more preferably 0.5 to 5 parts by weight, with respect to 100 parts by weight of the polymer according to the present embodiment.
 (粘着付与樹脂)
 本実施形態に係る硬化性組成物には、基材への接着性や密着性を高める目的、あるいはその他必要に応じて粘着付与樹脂を添加できる。粘着付与樹脂としては、特に制限はなく通常使用されているものを使うことが出来る。
(tackifying resin)
A tackifying resin can be added to the curable composition according to the present embodiment for the purpose of enhancing the adhesiveness or adhesion to a substrate, or for other purposes. As the tackifying resin, there is no particular limitation, and those commonly used can be used.
 具体例としては、テルペン系樹脂、芳香族変性テルペン樹脂、水素添加テルペン樹脂、テルペン-フェノール樹脂、フェノール樹脂、変性フェノール樹脂、キシレン-フェノール樹脂、シクロペンタジエン-フェノール樹脂、クマロンインデン樹脂、ロジン系樹脂、ロジンエステル樹脂、水添ロジンエステル樹脂、キシレン樹脂、低分子量ポリスチレン系樹脂、スチレン共重合体樹脂、スチレン系ブロック共重合体及びその水素添加物、石油樹脂(例えば、C5炭化水素樹脂、C9炭化水素樹脂、C5C9炭化水素共重合樹脂等)、水添石油樹脂、DCPD樹脂等が挙げられる。これらは単独で用いても良く、2種以上を併用しても良い。 Specific examples include terpene-based resins, aromatic modified terpene resins, hydrogenated terpene resins, terpene-phenolic resins, phenolic resins, modified phenolic resins, xylene-phenolic resins, cyclopentadiene-phenolic resins, coumarone-indene resins, rosin-based Resins, rosin ester resins, hydrogenated rosin ester resins, xylene resins, low molecular weight polystyrene resins, styrene copolymer resins, styrene block copolymers and hydrogenated products thereof, petroleum resins (e.g., C5 hydrocarbon resins, C9 hydrocarbon resins, C5C9 hydrocarbon copolymer resins, etc.), hydrogenated petroleum resins, DCPD resins, and the like. These may be used alone or in combination of two or more.
 粘着付与樹脂の使用量は、本実施形態に係る重合体100重量部に対して2~100重量部が好ましく、5~50重量部であることがより好ましく、5~30重量部であることがさらに好ましい。 The amount of the tackifying resin used is preferably 2 to 100 parts by weight, more preferably 5 to 50 parts by weight, and more preferably 5 to 30 parts by weight with respect to 100 parts by weight of the polymer according to the present embodiment. More preferred.
 (エポキシ基を含有する化合物)
 本実施形態に係る硬化性組成物においてはエポキシ基を含有する化合物を使用できる。エポキシ基を有する化合物を使用すると硬化物の復元性を高めることができる。エポキシ基を有する化合物としてはエポキシ化不飽和油脂類、エポキシ化不飽和脂肪酸エステル類、脂環族エポキシ化合物類、エピクロルヒドリン誘導体に示す化合物及びそれらの混合物等が例示できる。具体的には、エポキシ化大豆油、エポキシ化あまに油、ビス(2-エチルヘキシル)-4,5-エポキシシクロヘキサン-1,2-ジカーボキシレート(E-PS)、エポキシオクチルステアレート、エポキシブチルステアレート等が挙げられる。エポキシ化合物は、本実施形態に係る重合体100重量部に対して0.5~50重量部の範囲で使用するのがよい。
(Compound containing an epoxy group)
A compound containing an epoxy group can be used in the curable composition according to the present embodiment. The use of a compound having an epoxy group can enhance the restorability of the cured product. Examples of compounds having an epoxy group include epoxidized unsaturated fats and oils, epoxidized unsaturated fatty acid esters, alicyclic epoxy compounds, epichlorohydrin derivatives, and mixtures thereof. Specifically, epoxidized soybean oil, epoxidized linseed oil, bis(2-ethylhexyl)-4,5-epoxycyclohexane-1,2-dicarboxylate (E-PS), epoxyoctyl stearate, epoxy butyl stearate and the like. The epoxy compound is preferably used in the range of 0.5 to 50 parts by weight with respect to 100 parts by weight of the polymer according to this embodiment.
 (光硬化性物質)
 本実施形態に係る硬化性組成物には光硬化性物質を使用できる。光硬化性物資を使用すると硬化物表面に光硬化性物質の皮膜が形成され、硬化物のべたつきや硬化物の耐候性を改善できる。この種の化合物には有機単量体、オリゴマー、樹脂或いはそれらを含む組成物等多くのものが知られており、代表的なものとしては、アクリル系又はメタクリル系不飽和基を1ないし数個有するモノマー、オリゴマー或いはそれ等の混合物である不飽和アクリル系化合物、ポリケイ皮酸ビニル類あるいはアジド化樹脂等が使用できる。
(Photocurable substance)
A photocurable substance can be used in the curable composition according to the present embodiment. When a photocurable substance is used, a film of the photocurable substance is formed on the surface of the cured product, and the stickiness of the cured product and the weather resistance of the cured product can be improved. Many compounds such as organic monomers, oligomers, resins, or compositions containing them are known as this type of compound. Unsaturated acrylic compounds, polyvinyl cinnamates, azide resins, etc., which are monomers, oligomers, or mixtures thereof can be used.
 光硬化性物質の使用量は、本実施形態に係る重合体100重量部に対して0.1~20重量部であることが好ましく、0.5~10重量部がより好ましい。 The amount of the photocurable substance used is preferably 0.1 to 20 parts by weight, more preferably 0.5 to 10 parts by weight, per 100 parts by weight of the polymer according to this embodiment.
 (酸素硬化性物質)
 本実施形態に係る硬化性組成物には酸素硬化性物質を使用することができる。酸素硬化性物質には空気中の酸素と反応し得る不飽和化合物を例示でき、空気中の酸素と反応して硬化物の表面付近に硬化皮膜を形成し表面のべたつきや硬化物表面へのゴミやホコリの付着を防止するなどの作用をする。酸素硬化性物質の具体例には、キリ油、アマニ油などで代表される乾性油や、該化合物を変性して得られる各種アルキッド樹脂;乾性油により変性されたアクリル系重合体、エポキシ系樹脂、シリコン樹脂;ブタジエン、クロロプレン、イソプレン、1,3-ペンタジエンなどのジエン系化合物を重合または共重合させて得られる1,2-ポリブタジエン、1,4-ポリブタジエン、C5~C8ジエンの重合体などの液状重合体などが挙げられる。これらは単独で用いてもよく、2種以上併用してもよい。
(oxygen-curable substance)
An oxygen-curable substance can be used in the curable composition according to this embodiment. Examples of oxygen-curable substances include unsaturated compounds that can react with oxygen in the air, and react with oxygen in the air to form a hardened film near the surface of the cured product, which causes the surface to become sticky and dust on the surface of the cured product. and prevent the adhesion of dust. Specific examples of oxygen-curable substances include drying oils such as paulownia oil and linseed oil, various alkyd resins obtained by modifying these compounds; acrylic polymers modified with drying oils, and epoxy resins. , silicone resins; 1,2-polybutadiene, 1,4-polybutadiene, C5-C8 diene polymers obtained by polymerizing or copolymerizing diene compounds such as butadiene, chloroprene, isoprene, 1,3-pentadiene, etc. Examples include liquid polymers. These may be used alone or in combination of two or more.
 酸素硬化性物質の使用量は、本実施形態に係る重合体100重量部に対して0.1~20重量部の範囲で使用するのが好ましく、0.5~10重量部がより好ましい。特開平3-160053号公報に記載されているように酸素硬化性物質は光硬化性物質と併用して使用するのがよい。 The amount of the oxygen-curable substance used is preferably in the range of 0.1 to 20 parts by weight, more preferably 0.5 to 10 parts by weight, per 100 parts by weight of the polymer according to this embodiment. As described in JP-A-3-160053, oxygen-curable substances are preferably used in combination with photo-curable substances.
 (エポキシ樹脂)
 本実施形態に係る硬化性組成物にはエポキシ樹脂を併用することができる。エポキシ樹脂を添加した組成物は特に接着剤、殊に外壁タイル用接着剤として好ましい。エポキシ樹脂としてはビスフェノールA型エポキシ樹脂類またはノボラック型エポキシ樹脂などが挙げられる。
(Epoxy resin)
An epoxy resin can be used in combination with the curable composition according to the present embodiment. A composition containing an epoxy resin is particularly preferred as an adhesive, especially an adhesive for exterior wall tiles. Examples of epoxy resins include bisphenol A type epoxy resins and novolac type epoxy resins.
 エポキシ樹脂と本実施形態に係る重合体の使用割合は、重量比で、本実施形態に係る重合体/エポキシ樹脂=100/1~1/100の範囲であることが好ましい。本実施形態に係る重合体/エポキシ樹脂の割合が1/100未満になると、エポキシ樹脂硬化物の衝撃強度や強靱性の改良効果が得られがたくなり、本実施形態に係る重合体/エポキシ樹脂の割合が100/1を超えると、重合体硬化物の強度が不十分となる。 The weight ratio of the epoxy resin to the polymer according to the present embodiment is preferably in the range of polymer according to the present embodiment/epoxy resin=100/1 to 1/100. If the ratio of the polymer according to the present embodiment/epoxy resin is less than 1/100, it becomes difficult to obtain the effect of improving the impact strength and toughness of the cured epoxy resin, and the polymer/epoxy resin according to the present embodiment becomes difficult to obtain. exceeds 100/1, the strength of the cured polymer becomes insufficient.
 エポキシ樹脂を添加する場合、本実施形態に係る硬化性組成物には、エポキシ樹脂を硬化させる硬化剤を併用できる。使用し得るエポキシ樹脂硬化剤としては、特に制限はなく、一般に使用されているエポキシ樹脂硬化剤を使用できる。 When an epoxy resin is added, a curing agent that cures the epoxy resin can be used in combination with the curable composition according to the present embodiment. The epoxy resin curing agent that can be used is not particularly limited, and generally used epoxy resin curing agents can be used.
 エポキシ樹脂の硬化剤を使用する場合、その使用量は、エポキシ樹脂100重量部に対して0.1~300重量部の範囲であることが好ましい。 When using an epoxy resin curing agent, the amount used is preferably in the range of 0.1 to 300 parts by weight with respect to 100 parts by weight of the epoxy resin.
 <<硬化性組成物の調製>>
 本実施形態に係る硬化性組成物は、すべての配合成分を予め配合密封保存し、施工後空気中の湿気により硬化する1成分型として調製することも可能であり、硬化剤として別途、硬化触媒、充填材、可塑剤、水等の成分を配合しておき、該配合材と有機重合体組成物を使用前に混合する2成分型として調製することもできる。作業性の点からは、1成分型が好ましい。
<<Preparation of curable composition>>
The curable composition according to the present embodiment can be prepared as a one-component type in which all the ingredients are preformed and sealed and cured by moisture in the air after application, and a curing catalyst is separately added as a curing agent. , a filler, a plasticizer, water, etc., and mixed with the organic polymer composition before use. From the viewpoint of workability, the one-component type is preferred.
 前記硬化性組成物が1成分型の場合、すべての配合成分が予め配合されるため、水分を含有する配合成分は予め脱水乾燥してから使用するか、また配合混練中に減圧などにより脱水するのが好ましい。また、脱水乾燥法に加えて、メチルトリメトキシシラン、フェニルトリメトキシシラン、n-プロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルメチルジメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、γ-メルカプトプロピルメチルジエトキシシラン、γ-グリシドキシプロピルトリメトキシシランなどのアルコキシシラン化合物を添加することにより、さらに貯蔵安定性は向上する。 When the curable composition is a one-component type, since all the ingredients are pre-blended, the ingredients containing water are preliminarily dehydrated and dried before use, or dehydrated by decompression or the like during blending and kneading. is preferred. In addition to the dehydration drying method, methyltrimethoxysilane, phenyltrimethoxysilane, n-propyltrimethoxysilane, vinyltrimethoxysilane, vinylmethyldimethoxysilane, γ-mercaptopropylmethyldimethoxysilane, γ-mercaptopropylmethyldimethoxysilane, Addition of alkoxysilane compounds such as ethoxysilane and γ-glycidoxypropyltrimethoxysilane further improves the storage stability.
 <用途>
 本実施形態に係る硬化性組成物は、粘着剤、建造物・船舶・自動車・道路などのシーリング材、接着剤、防水材、塗膜防水材、型取剤、防振材、制振材、防音材、発泡材料、塗料、吹付材として使用することができる。本実施形態に係る硬化性組成物を硬化して得られる硬化物は、柔軟性および接着性に優れることから、シーリング材または接着剤として好適に使用することができる。
<Application>
The curable composition according to the present embodiment includes adhesives, sealing materials for buildings, ships, automobiles, roads, etc., adhesives, waterproofing materials, coating film waterproofing materials, molding agents, vibration-proof materials, vibration-damping materials, Can be used as soundproofing material, foaming material, paint, spraying material. A cured product obtained by curing the curable composition according to the present embodiment is excellent in flexibility and adhesiveness, and thus can be suitably used as a sealant or an adhesive.
 また本実施形態に係る硬化性組成物は、太陽電池裏面封止材などの電気・電子部品材料、電線・ケーブル用絶縁被覆材などの電気・電子部品、装置の電気絶縁材料、音響学的絶縁材料、弾性接着剤、バインダー、コンタクト型接着剤、スプレー型シール材、クラック補修材、タイル張り用接着剤、アスファルト防水材用接着剤、粉体塗料、注型材料、医療用ゴム材料、医療用粘着剤、医療用粘着シート、医療機器シール材、歯科印象材料、食品包装材、サイジングボードなどの外装材の目地用シーリング材、コーティング材、防滑被覆材、緩衝材、プライマー、電磁波遮蔽用導電性材料、熱伝導性材料、ホットメルト材料、電気電子用ポッティング剤、フィルム、ガスケット、コンクリート補強材、仮止め用接着剤、各種成形材料、および、網入りガラスや合わせガラス端面(切断部)の防錆・防水用封止材、自動車部品、トラック、バスなど大型車両部品、列車車両用部品、航空機部品、船舶用部品、電機部品、各種機械部品などにおいて使用される液状シール剤などの様々な用途に利用可能である。自動車を例にすると、プラスチックカバー、トリム、フランジ、バンパー、ウインドウ取付、内装部材、外装部品などの接着取付など多種多様に使用可能である。更に、単独あるいはプライマーの助けをかりてガラス、磁器、木材、金属、樹脂成形物などの如き広範囲の基質に密着しうるので、種々のタイプの密封組成物および接着組成物としても使用可能である。また、本実施形態に係る硬化性組成物は、内装パネル用接着剤、外装パネル用接着剤、タイル張り用接着剤、石材張り用接着剤、天井仕上げ用接着剤、床仕上げ用接着剤、壁仕上げ用接着剤、車両パネル用接着剤、電気・電子・精密機器組立用接着剤、皮革、繊維製品、布地、紙、板およびゴムを結合するための接着剤、反応性後架橋感圧性接着剤、ダイレクトグレージング用シーリング材、複層ガラス用シーリング材、SSG工法用シーリング材、または、建築物のワーキングジョイント用シーリング材、土木用、橋梁用材料としても使用可能である。さらに、粘着テープや粘着シートなどの粘着材料としても使用可能である。 In addition, the curable composition according to the present embodiment can be used for electrical and electronic component materials such as solar cell backside sealing materials, electrical and electronic components such as insulating coating materials for electric wires and cables, electrical insulating materials for devices, and acoustic insulation. Materials, elastic adhesives, binders, contact adhesives, spray sealing materials, crack repairing materials, tiling adhesives, asphalt waterproofing adhesives, powder coatings, casting materials, medical rubber materials, medical Adhesives, medical adhesive sheets, sealing materials for medical equipment, dental impression materials, food packaging materials, joint sealing materials for exterior materials such as sizing boards, coating materials, anti-slip coating materials, cushioning materials, primers, electro-conductive materials for shielding electromagnetic waves Materials, thermally conductive materials, hot melt materials, potting agents for electric and electronic devices, films, gaskets, concrete reinforcing materials, adhesives for temporary fixing, various molding materials, and protection of wire glass and laminated glass edge faces (cut parts) Various applications such as sealing materials for rust and waterproofing, automotive parts, large vehicle parts such as trucks and buses, parts for train cars, aircraft parts, marine parts, electrical parts, and liquid sealants used in various machine parts. available for Taking automobiles as an example, it can be used in a wide variety of ways, such as adhesive attachment of plastic covers, trims, flanges, bumpers, windows, interior members, and exterior parts. Furthermore, since it can adhere to a wide range of substrates such as glass, porcelain, wood, metal, resin moldings, etc. alone or with the help of a primer, it can be used as various types of sealing compositions and adhesive compositions. . Further, the curable composition according to the present embodiment is an adhesive for interior panels, an adhesive for exterior panels, an adhesive for tiling, an adhesive for stone, a ceiling finishing adhesive, a floor finishing adhesive, a wall Finishing adhesives, vehicle panel adhesives, electrical, electronic and precision equipment assembly adhesives, adhesives for bonding leather, textiles, fabrics, paper, boards and rubber, reactive post-crosslinking pressure sensitive adhesives , a sealing material for direct glazing, a sealing material for double glazing, a sealing material for the SSG construction method, a sealing material for working joints of buildings, a material for civil engineering, and a bridge material. Furthermore, it can be used as an adhesive material such as an adhesive tape and an adhesive sheet.
 以下に実施例を掲げて本発明を更に具体的に説明するが、本発明はこれら実施例に限定されるものではない。 The present invention will be described in more detail with reference to examples below, but the present invention is not limited to these examples.
 実施例中の数平均分子量は以下の条件で測定したGPC分子量である。 
  送液システム:東ソー製HLC-8420GPC
  カラム:東ソー製TSKgel SuperHシリーズ
  溶媒:THF
  分子量:ポリスチレン換算
  測定温度:40℃
The number average molecular weight in the examples is the GPC molecular weight measured under the following conditions.
Liquid delivery system: Tosoh HLC-8420GPC
Column: TSKgel SuperH series manufactured by Tosoh Solvent: THF
Molecular weight: Polystyrene equivalent Measurement temperature: 40°C
 「シリル基導入率」は、加水分解性シリル基を有するポリオキシアルキレン系重合体についてH NMRを測定し、各基を示すシグナルの積分値を利用して以下の式によって算出した。
式:100×(加水分解性シリル基隣の炭素-炭素二重結合のモル数)/(加水分解性シリル基隣の炭素-炭素二重結合のモル数と、加水分解性シリル基が導入されずに残留した、加水分解性シリル基を導入可能な基(本実施例ではアリル基)のモル数と、前記加水分解性シリル基を導入可能な基が異性化した基(本実施例では1-プロペニル基)のモル数と、前記加水分解性シリル基を導入可能な基が還元された基(本実施例ではプロピル基)のモル数と、前記加水分解性シリル基を導入可能な基同士がカップリングして形成された炭素-炭素二重結合のモル数との合計)
The "silyl group introduction rate" was calculated by the following formula using the integrated value of the signal representing each group after measuring 1 H NMR for the polyoxyalkylene polymer having a hydrolyzable silyl group.
Formula: 100 × (number of moles of carbon-carbon double bonds next to hydrolyzable silyl groups) / (number of moles of carbon-carbon double bonds next to hydrolyzable silyl groups and hydrolyzable silyl groups introduced The number of moles of a group capable of introducing a hydrolyzable silyl group (allyl group in this example) that remained without being removed, and the isomerized group (1 in this example, 1 -propenyl group), the number of moles of a group (a propyl group in this example) obtained by reducing the group into which the hydrolyzable silyl group can be introduced, and the groups into which the hydrolyzable silyl group can be introduced. is the total number of moles of carbon-carbon double bonds formed by coupling)
 「α体構造とβ体構造のモル比率」は、加水分解性シリル基を有するポリオキシアルキレン系重合体についてH NMRを測定し、α体構造とβ体構造それぞれの示すシグナルの積分値を利用して以下の式によって算出した。
 α体構造のモル比率=(α体構造の加水分解性シリル基隣の炭素-炭素二重結合のモル数)/(α体構造の加水分解性シリル基隣の炭素-炭素二重結合のモル数+β体構造の加水分解性シリル基隣の炭素-炭素二重結合のモル数)
 β体構造のモル比率=(β体構造の加水分解性シリル基隣の炭素-炭素二重結合のモル数)/(α体構造の加水分解性シリル基隣の炭素-炭素二重結合のモル数+β体構造の加水分解性シリル基隣の炭素-炭素二重結合のモル数)
The "molar ratio of the α-body structure and the β-body structure" is obtained by measuring 1 H NMR of the polyoxyalkylene polymer having a hydrolyzable silyl group, and calculating the integrated value of the signals indicated by the α-body structure and the β-body structure. It was calculated by the following formula.
Mole ratio of α-form structure = (number of moles of carbon-carbon double bonds adjacent to hydrolyzable silyl groups of α-form structure)/(moles of carbon-carbon double bonds adjacent to hydrolyzable silyl groups of α-form structure number + number of moles of carbon-carbon double bonds next to hydrolyzable silyl groups in β-body structure)
Mole ratio of β-form structure = (moles of carbon-carbon double bonds adjacent to hydrolyzable silyl groups in β-form structure)/(moles of carbon-carbon double bonds adjacent to hydrolyzable silyl groups in α-form structure number + number of moles of carbon-carbon double bonds next to hydrolyzable silyl groups in β-body structure)
 「ルテニウム含有割合」は、以下の手順で算出した。
 まず、ルテニウム重量を、使用した触媒重量から次式により算出する。
式:ルテニウム重量=使用した触媒重量×ルテニウムの原子量÷使用した触媒の分子量
 次に、得られる加水分解性シリル基含有重合体の重量を、シリル基導入率を勘案しつつ、次式により算出する。
式:加水分解性シリル基含有重合体の重量=アリル基含有重合体の重量+末端に反応したシラン化合物の重量
 最後に、加水分解性シリル基含有重合体中のルテニウム含有割合を次式により算出する。
式:ルテニウム含有割合(ppm)=ルテニウム重量÷(ルテニウム重量+加水分解性シリル基含有重合体の重量)×1,000,000
The "ruthenium content ratio" was calculated by the following procedure.
First, the weight of ruthenium is calculated from the weight of the catalyst used by the following formula.
Formula: Weight of ruthenium = Weight of catalyst used × Atomic weight of ruthenium ÷ Molecular weight of catalyst used Next, the weight of the obtained hydrolyzable silyl group-containing polymer is calculated by the following formula while considering the silyl group introduction rate. .
Formula: Weight of hydrolyzable silyl group-containing polymer = weight of allyl group-containing polymer + weight of silane compound reacted at the terminal Finally, the ruthenium content in the hydrolyzable silyl group-containing polymer is calculated by the following formula. do.
Formula: Ruthenium content ratio (ppm) = ruthenium weight ÷ (ruthenium weight + weight of hydrolyzable silyl group-containing polymer) × 1,000,000
 (合成例1)
 数平均分子量が約4,500のポリオキシプロピレンジオールと数平均分子量が約4,500のポリオキシプロピレントリオールの重量比60:40の混合物を開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体にてプロピレンオキシドの重合を行い、末端に水酸基を有する数平均分子量19,000のポリオキシプロピレンを得た。
 このポリオキシプロピレンの水酸基に対して1.2当量のナトリウムメトキシドのメタノール溶液を添加してメタノールを留去し、さらに1.5当量の3-クロロ-1-プロペンを添加して末端の水酸基をアリル基に変換した。得られた未精製のアリル基末端ポリオキシプロピレンにn-ヘキサンと水を加えて混合攪拌した後、遠心分離により水を除去し、得られたヘキサン溶液からヘキサンを減圧脱揮することでポリマー中の金属塩を除去した。以上により、末端にアリル基を有するポリオキシプロピレン(A-1)を得た。
(Synthesis example 1)
Using a mixture of a polyoxypropylene diol having a number average molecular weight of about 4,500 and a polyoxypropylene triol having a number average molecular weight of about 4,500 in a weight ratio of 60:40 as an initiator, zinc hexacyanocobaltate glyme complex was used to obtain propylene oxide. to obtain polyoxypropylene having a number average molecular weight of 19,000 and having hydroxyl groups at the ends.
A methanol solution of 1.2 equivalents of sodium methoxide is added to the hydroxyl groups of this polyoxypropylene to distill off the methanol, and 1.5 equivalents of 3-chloro-1-propene are added to remove terminal hydroxyl groups. was converted to an allyl group. After adding n-hexane and water to the obtained unpurified allyl group-terminated polyoxypropylene and mixing and stirring, the water was removed by centrifugation, and the hexane was devolatilized under reduced pressure from the resulting hexane solution to remove the hexane in the polymer. of metal salts were removed. Polyoxypropylene (A-1) having an allyl group at the terminal was thus obtained.
 (合成例2)
 数平均分子量が約2,000のポリオキシプロピレングリコールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキサイドの重合を行い、末端に水酸基を有する数平均分子量27,900のポリオキシプロピレンを得た。このポリオキシプロピレンの水酸基に対して1.1モル当量のナトリウムメトキシドのメタノール溶液を添加して留去し、さらに1.2モル当量の臭化プロパルギルを添加して末端の水酸基をプロパルギル基に変換した。未反応の臭化プロパルギルを減圧脱揮により除去した。得られた未精製のプロパルギル基末端ポリオキシプロピレンをn-ヘキサンと、水を混合攪拌した後、遠心分離により水を除去し、得られたヘキサン溶液からヘキサンを減圧脱揮することでポリマー中の金属塩を除去した。以上により、末端にプロパルギル基を有するポリオキシプロピレン(A-2)を得た。
(Synthesis example 2)
Polyoxypropylene glycol with a number average molecular weight of about 2,000 is used as an initiator, and propylene oxide is polymerized with a zinc hexacyanocobaltate glyme complex catalyst to produce polyoxypropylene with a number average molecular weight of 27,900 having hydroxyl groups at the ends. Obtained. A methanol solution of sodium methoxide in an amount of 1.1 molar equivalents relative to the hydroxyl groups of this polyoxypropylene was added and distilled off. Converted. Unreacted propargyl bromide was removed by vacuum devolatilization. The obtained unpurified propargyl group-terminated polyoxypropylene was mixed with n-hexane and water and stirred, and then the water was removed by centrifugation. Metal salts were removed. As a result, polyoxypropylene (A-2) having propargyl groups at the ends was obtained.
 (実施例1)
 撹拌機、還流冷却器、及び温度計を備えたガラス反応器に、重合体(A-1)100重量部と、ヘキサン2.5重量部を加えて90℃で共沸脱水を行った。ヘキサンを減圧下で留去して、窒素置換した。45℃まで温度を下げ、トリメトキシビニルシランを26.1重量部(末端アリル基に対して10.0モル倍)、続いて反応触媒としてGrubbs Catalyst(登録商標) 1st Generation(シグマアルドリッチ製)を1.4重量部(末端アリル基に対して0.1モル倍)加えて、反応を開始した。反応開始2時間後に、H-NMR測定にて反応の終了を確認し、揮発成分を留去して、末端にトリメトキシシリル基を有するポリオキシプロピレン(B-1)を得た。当該重合体におけるシリル基導入率は46%であり、α体構造とβ体構造のモル比率は0:100であった。
(Example 1)
100 parts by weight of polymer (A-1) and 2.5 parts by weight of hexane were added to a glass reactor equipped with a stirrer, a reflux condenser and a thermometer, and azeotropic dehydration was carried out at 90°C. Hexane was distilled off under reduced pressure and the residue was replaced with nitrogen. The temperature was lowered to 45° C., 26.1 parts by weight of trimethoxyvinylsilane (10.0 mol times the terminal allyl group) was added, and then Grubbs Catalyst (registered trademark) 1st Generation (manufactured by Sigma-Aldrich) was added as a reaction catalyst. 0.4 parts by weight (0.1 mol times the terminal allyl group) was added to initiate the reaction. Two hours after the start of the reaction, the completion of the reaction was confirmed by 1 H-NMR measurement, and the volatile components were distilled off to obtain polyoxypropylene (B-1) having trimethoxysilyl groups at the ends. The silyl group introduction rate in the polymer was 46%, and the molar ratio of the α-body structure and the β-body structure was 0:100.
 (実施例2)
 撹拌機、還流冷却器、及び温度計を備えたガラス反応器に、重合体(A-1)100重量部と、ヘキサン2.5重量部を加えて90℃で共沸脱水を行った。ヘキサンを減圧下で留去して、窒素置換した。45℃まで温度を下げ、トリメトキシビニルシランを26.1重量部(末端アリル基に対して10.0モル倍)、続いて反応触媒としてGrubbs Catalyst(登録商標) 1st Generation(シグマアルドリッチ製)を1.4重量部(末端アリル基に対して0.1モル倍)加えて、反応液内を窒素でバブリングをしながら反応を行った。反応開始4時間後に、H-NMR測定にて反応の終了を確認し、揮発成分を留去して、末端にトリメトキシシリル基を有するポリオキシプロピレン(B-2)を得た。当該重合体におけるシリル基導入率は83%であり、α体構造とβ体構造のモル比率は0:100であった。
(Example 2)
100 parts by weight of polymer (A-1) and 2.5 parts by weight of hexane were added to a glass reactor equipped with a stirrer, a reflux condenser and a thermometer, and azeotropic dehydration was carried out at 90°C. Hexane was distilled off under reduced pressure and the residue was replaced with nitrogen. The temperature was lowered to 45° C., 26.1 parts by weight of trimethoxyvinylsilane (10.0 mol times the terminal allyl group) was added, and then Grubbs Catalyst (registered trademark) 1st Generation (manufactured by Sigma-Aldrich) was added as a reaction catalyst. 4 parts by weight (0.1 mol times the amount of the terminal allyl group) was added, and the reaction was carried out while bubbling nitrogen through the reaction solution. After 4 hours from the start of the reaction, completion of the reaction was confirmed by 1 H-NMR measurement, and volatile components were distilled off to obtain polyoxypropylene (B-2) having a trimethoxysilyl group at the end. The silyl group introduction rate in the polymer was 83%, and the molar ratio of the α-body structure and the β-body structure was 0:100.
 (実施例3)
 撹拌機、還流冷却器、及び温度計を備えたガラス反応器に、重合体(A-1)100重量部と、ヘキサン2.5重量部を加えて90℃で共沸脱水を行った。ヘキサンを減圧下で留去して、窒素置換した。45℃まで温度を下げ、トリメトキシビニルシランを26.1重量部(末端アリル基に対して10.0モル倍)、続いて反応触媒としてGrubbs Catalyst(登録商標) 2nd Generation(シグマアルドリッチ製)を1.5重量部(末端アリル基に対して0.1モル倍)加えて、反応液内を窒素でバブリングをしながら反応を行った。反応開始4時間後に、H-NMR測定にて反応の終了を確認し、揮発成分を留去して、末端にトリメトキシシリル基を有するポリオキシプロピレン(B-3)を得た。当該重合体におけるシリル基導入率は38%であり、α体構造とβ体構造のモル比率は0:100であった。
(Example 3)
100 parts by weight of polymer (A-1) and 2.5 parts by weight of hexane were added to a glass reactor equipped with a stirrer, a reflux condenser and a thermometer, and azeotropic dehydration was carried out at 90°C. Hexane was distilled off under reduced pressure and the residue was replaced with nitrogen. The temperature was lowered to 45° C., and 26.1 parts by weight of trimethoxyvinylsilane (10.0 mol times the terminal allyl group) was added, followed by 1 part of Grubbs Catalyst (registered trademark) 2nd Generation (manufactured by Sigma-Aldrich) as a reaction catalyst. .5 parts by weight (0.1 mol times the amount of the terminal allyl group) was added, and the reaction was carried out while bubbling nitrogen through the reaction solution. After 4 hours from the start of the reaction, completion of the reaction was confirmed by 1 H-NMR measurement, and volatile components were distilled off to obtain polyoxypropylene (B-3) having a trimethoxysilyl group at the end. The silyl group introduction rate in the polymer was 38%, and the molar ratio of the α-body structure and the β-body structure was 0:100.
 (実施例4)
 撹拌機、還流冷却器、及び温度計を備えたガラス反応器に、重合体(A-1)100重量部と、ヘキサン2.5重量部を加えて90℃で共沸脱水を行った。ヘキサンを減圧下で留去して、窒素置換した。45℃まで温度を下げ、トリメトキシビニルシランを26.1重量部(末端アリル基に対して10.0モル倍)、続いて反応触媒としてHoveyda-Grubbs Catalyst(登録商標) 2nd Generation(シグマアルドリッチ製)を1.1重量部(末端アリル基に対して0.1モル倍)加えて、反応液内を窒素でバブリングをしながら反応を行った。反応開始5時間後に、H-NMR測定にて反応の終了を確認し、揮発成分を留去して、末端にトリメトキシシリル基を有するポリオキシプロピレン(B-4)を得た。当該重合体におけるシリル基導入率は63%であり、α体構造とβ体構造のモル比率は0:100であった。
(Example 4)
100 parts by weight of polymer (A-1) and 2.5 parts by weight of hexane were added to a glass reactor equipped with a stirrer, a reflux condenser and a thermometer, and azeotropic dehydration was carried out at 90°C. Hexane was distilled off under reduced pressure and the residue was replaced with nitrogen. The temperature was lowered to 45° C., and 26.1 parts by weight of trimethoxyvinylsilane (10.0 mol times the terminal allyl group) was added, followed by Hoveyda-Grubbs Catalyst (registered trademark) 2nd Generation (manufactured by Sigma-Aldrich) as a reaction catalyst. was added in an amount of 1.1 parts by weight (0.1 times by mole with respect to the terminal allyl group), and the reaction was carried out while bubbling nitrogen through the reaction solution. After 5 hours from the start of the reaction, completion of the reaction was confirmed by 1 H-NMR measurement, and volatile components were distilled off to obtain polyoxypropylene (B-4) having trimethoxysilyl groups at the ends. The silyl group introduction rate in the polymer was 63%, and the molar ratio of the α-body structure and the β-body structure was 0:100.
 (比較例1)
 撹拌機、還流冷却器、及び温度計を備えたガラス反応器に、重合体(A-2)100重量部と、ヘキサン2.5重量部を加えて90℃で共沸脱水を行った。ヘキサンを減圧下で留去して、窒素置換した。110℃まで温度を上げ、白金ジビニルジシロキサン錯体を(白金換算で3重量%のイソプロパノール溶液)0.01重量部(白金換算で末端プロパルギル基に対して0.1×10モル倍)、及びトリメトキシシランを1.73重量部(末端プロパルギル基に対して1.4モル倍)添加し、ヒドロシリル化反応を実施した。反応開始2.5時間後に、H-NMR測定にて反応の終了を確認し、未反応のトリメトキシシランを減圧下留去して、末端にトリメトキシシリル基を有するポリオキシプロピレン(C-1)を得た。当該重合体におけるシリル基導入率は99%であり、α体構造とβ体構造のモル比率は49:51であった。
(Comparative example 1)
100 parts by weight of polymer (A-2) and 2.5 parts by weight of hexane were added to a glass reactor equipped with a stirrer, a reflux condenser and a thermometer, and azeotropic dehydration was carried out at 90°C. Hexane was distilled off under reduced pressure and the residue was replaced with nitrogen. Raise the temperature to 110° C., add 0.01 parts by weight of a platinum divinyldisiloxane complex (3% by weight isopropanol solution in terms of platinum) (0.1×10 3 mole times the terminal propargyl group in terms of platinum), and 1.73 parts by weight of trimethoxysilane (1.4 mol times the terminal propargyl group) was added to carry out a hydrosilylation reaction. After 2.5 hours from the start of the reaction, the completion of the reaction was confirmed by 1 H-NMR measurement, unreacted trimethoxysilane was distilled off under reduced pressure, and polyoxypropylene (C- 1) was obtained. The silyl group introduction rate in the polymer was 99%, and the molar ratio of the α-body structure and the β-body structure was 49:51.
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
 表1で示した実施例1~4から、ビニル基を有する重合体に対し、トリメトキシビニルシランを、触媒の存在下でメタセシス反応させることによって、加水分解性シリル基を有する重合体を製造できることが分かる。また、各実施例で得られた重合体では、加水分解性シリル基のうち80モル%以上が、β体構造となることが分かる。一方、プロパルギル基を有する重合体に対しヒドロシリル化反応で加水分解性シリル基を導入した比較例1では、α体構造とβ体構造がおよそ1:1で生成したことが分かる。
 実施例1~4のなかでも実施例2より、第一世代グラブス触媒を使用し、窒素をバブリングさせながら前記反応を行うことで、83%という極めて高いシリル基導入率を達成できることが分かる。
 
From Examples 1 to 4 shown in Table 1, a polymer having a hydrolyzable silyl group can be produced by subjecting a polymer having a vinyl group to a metathesis reaction of trimethoxyvinylsilane in the presence of a catalyst. I understand. It is also found that 80 mol % or more of the hydrolyzable silyl groups in the polymers obtained in each example have a β structure. On the other hand, in Comparative Example 1, in which a hydrosilylation reaction was used to introduce a hydrolyzable silyl group into a polymer having a propargyl group, it was found that the α-form structure and the β-form structure were produced at a ratio of about 1:1.
From Example 2 among Examples 1 to 4, it can be seen that a very high silyl group introduction rate of 83% can be achieved by using the first generation Grubbs catalyst and performing the above reaction while bubbling nitrogen.

Claims (12)

  1.  ビニル基を有する重合体に対し、ケイ素原子上にビニル基と水酸基又は加水分解性基を有するシラン化合物を、触媒の存在下でメタセシス反応させる工程を含む、加水分解性シリル基を有する重合体の製造方法。 Metathesis reaction of a polymer having a vinyl group with a silane compound having a vinyl group and a hydroxyl group or a hydrolyzable group on a silicon atom in the presence of a catalyst. Production method.
  2.  メタセシス反応時の温度が60℃以下である、請求項1に記載の製造方法。 The production method according to claim 1, wherein the temperature during the metathesis reaction is 60°C or less.
  3.  反応系に不活性気体をバブリングさせながら前記メタセシス反応を行う、請求項1又は2に記載の製造方法。 The production method according to claim 1 or 2, wherein the metathesis reaction is performed while inert gas is bubbled through the reaction system.
  4.  前記触媒がグラブス触媒である、請求項1~3のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 3, wherein the catalyst is a Grubbs catalyst.
  5.  前記シラン化合物が、式:CH=CH-Si(R3-a(X)で表される(式中、Rは、炭素原子数1~20の置換又は非置換の炭化水素基を表す。Xは水酸基又は加水分解性基を表す。aは、1、2、又は3を表す。)、請求項1~4のいずれか1項に記載の製造方法。 The silane compound is represented by the formula: CH 2 ═CH—Si(R 1 ) 3-a (X) a (wherein R 1 is a substituted or unsubstituted hydrocarbon having 1 to 20 carbon atoms). X represents a hydroxyl group or a hydrolyzable group, and a represents 1, 2, or 3.), the production method according to any one of claims 1 to 4.
  6.  加水分解性シリル基を有するポリオキシアルキレン系重合体であって、
     前記加水分解性シリル基のうち80モル%以上が、式:-CH=CH-Si(R3-a(X)で表される構造を有する(式中、Rは、炭素原子数1~20の置換又は非置換の炭化水素基を表す。Xは水酸基又は加水分解性基を表す。aは、1、2、又は3を表す。)、ポリオキシアルキレン系重合体。
    A polyoxyalkylene polymer having a hydrolyzable silyl group,
    80 mol % or more of the hydrolyzable silyl groups have a structure represented by the formula: —CH═CH—Si(R 1 ) 3-a (X) a (wherein R 1 is a carbon atom represents a substituted or unsubstituted hydrocarbon group of numbers 1 to 20, X represents a hydroxyl group or a hydrolyzable group, and a represents 1, 2, or 3), a polyoxyalkylene polymer.
  7.  前記構造が、-O-CH-CH=CH-Si(R3-a(X)で表される、請求項6に記載のポリオキシアルキレン系重合体。 7. The polyoxyalkylene polymer according to claim 6, wherein the structure is represented by -O-CH 2 -CH=CH-Si(R 1 ) 3-a (X) a .
  8.  ルテニウムが含まれる、請求項6又は7に記載のポリオキシアルキレン系重合体。 The polyoxyalkylene polymer according to claim 6 or 7, which contains ruthenium.
  9.  ルテニウム含有割合が10~2,000ppmである、請求項8に記載のポリオキシアルキレン系重合体。 The polyoxyalkylene polymer according to claim 8, which has a ruthenium content of 10 to 2,000 ppm.
  10.  請求項6~9のいずれか1項に記載のポリオキシアルキレン系重合体を含有する硬化性組成物。 A curable composition containing the polyoxyalkylene polymer according to any one of claims 6 to 9.
  11.  さらに硬化触媒を含有する、請求項10に記載の硬化性組成物。 The curable composition according to claim 10, further containing a curing catalyst.
  12.  請求項11に記載の硬化性組成物の硬化物。
     
    A cured product of the curable composition according to claim 11 .
PCT/JP2022/006967 2021-02-24 2022-02-21 Manufacturing method for polymer comprising hydrolyzable silyl group, and polymer, curable composition, and cured product WO2022181545A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-027810 2021-02-24
JP2021027810 2021-02-24

Publications (1)

Publication Number Publication Date
WO2022181545A1 true WO2022181545A1 (en) 2022-09-01

Family

ID=83048068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006967 WO2022181545A1 (en) 2021-02-24 2022-02-21 Manufacturing method for polymer comprising hydrolyzable silyl group, and polymer, curable composition, and cured product

Country Status (1)

Country Link
WO (1) WO2022181545A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114249886A (en) * 2021-12-31 2022-03-29 三棵树(上海)新材料研究有限公司 Anti-aging modified silane-terminated polyether resin, MS nail-free glue and preparation method thereof

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3920715A (en) * 1971-11-19 1975-11-18 Huels Chemische Werke Ag Process for the production of polymeric hydrocarbons having reactive silyl end groups
JP2000336152A (en) * 1999-05-28 2000-12-05 Hitachi Chem Co Ltd Dicyclopentadiene ring-opened polymer having functional group at one end and its production
US20060173145A1 (en) * 2005-02-01 2006-08-03 Pawlow James H Multi-functionalized high-trans elastomeric polymers
JP2007051251A (en) * 2005-08-19 2007-03-01 Shin Etsu Chem Co Ltd Reactive silyl group-modified norbornene-based resin and method for producing the same
JP2008540812A (en) * 2005-05-20 2008-11-20 株式会社ブリヂストン Method for preparing low molecular weight polymers
JP2013075994A (en) * 2011-09-30 2013-04-25 Nippon Zeon Co Ltd Polymer, composite, and method for producing polymer
WO2015097192A1 (en) * 2013-12-23 2015-07-02 Compagnie Generale Des Etablissements Michelin Method for controlled metathesis depolymerization of synthetic rubber in a solution
US20160152765A1 (en) * 2013-07-23 2016-06-02 Bostik Sa Hydrocarbon-based polymers bearing two alkoxysilane end groups
CN107841005A (en) * 2016-09-20 2018-03-27 中国石油天然气股份有限公司 A kind of reinforced type nitrile rubber of easy processing and preparation method thereof
CN107841007A (en) * 2016-09-20 2018-03-27 中国石油天然气股份有限公司 The preparation method of easy processing reinforced type nitrile rubber
CN107841010A (en) * 2016-09-20 2018-03-27 中国石油天然气股份有限公司 The preparation method of easy processing reinforced type butadiene-styrene rubber
CN107841008A (en) * 2016-09-20 2018-03-27 中国石油天然气股份有限公司 A kind of easy processing reinforced type butadiene-styrene rubber and preparation method thereof
WO2019189491A1 (en) * 2018-03-30 2019-10-03 株式会社カネカ Reactive silicon group-containing polymer and curable composition
WO2020021187A1 (en) * 2018-07-27 2020-01-30 Bostik Sa Method for preparing compounds with an alkoxysilyl group
WO2020171153A1 (en) * 2019-02-20 2020-08-27 株式会社カネカ Production method for organic polymer having hydrolyzable silyl group

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3920715A (en) * 1971-11-19 1975-11-18 Huels Chemische Werke Ag Process for the production of polymeric hydrocarbons having reactive silyl end groups
JP2000336152A (en) * 1999-05-28 2000-12-05 Hitachi Chem Co Ltd Dicyclopentadiene ring-opened polymer having functional group at one end and its production
US20060173145A1 (en) * 2005-02-01 2006-08-03 Pawlow James H Multi-functionalized high-trans elastomeric polymers
JP2008540812A (en) * 2005-05-20 2008-11-20 株式会社ブリヂストン Method for preparing low molecular weight polymers
JP2007051251A (en) * 2005-08-19 2007-03-01 Shin Etsu Chem Co Ltd Reactive silyl group-modified norbornene-based resin and method for producing the same
JP2013075994A (en) * 2011-09-30 2013-04-25 Nippon Zeon Co Ltd Polymer, composite, and method for producing polymer
US20160152765A1 (en) * 2013-07-23 2016-06-02 Bostik Sa Hydrocarbon-based polymers bearing two alkoxysilane end groups
WO2015097192A1 (en) * 2013-12-23 2015-07-02 Compagnie Generale Des Etablissements Michelin Method for controlled metathesis depolymerization of synthetic rubber in a solution
CN107841005A (en) * 2016-09-20 2018-03-27 中国石油天然气股份有限公司 A kind of reinforced type nitrile rubber of easy processing and preparation method thereof
CN107841007A (en) * 2016-09-20 2018-03-27 中国石油天然气股份有限公司 The preparation method of easy processing reinforced type nitrile rubber
CN107841010A (en) * 2016-09-20 2018-03-27 中国石油天然气股份有限公司 The preparation method of easy processing reinforced type butadiene-styrene rubber
CN107841008A (en) * 2016-09-20 2018-03-27 中国石油天然气股份有限公司 A kind of easy processing reinforced type butadiene-styrene rubber and preparation method thereof
WO2019189491A1 (en) * 2018-03-30 2019-10-03 株式会社カネカ Reactive silicon group-containing polymer and curable composition
WO2020021187A1 (en) * 2018-07-27 2020-01-30 Bostik Sa Method for preparing compounds with an alkoxysilyl group
WO2020171153A1 (en) * 2019-02-20 2020-08-27 株式会社カネカ Production method for organic polymer having hydrolyzable silyl group

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHAUVEAU CYRIL, FOUQUAY STÉPHANE, MICHAUD GUILLAUME, SIMON FRÉDÉRIC, CARPENTIER JEAN-FRANÇOIS, GUILLAUME SOPHIE M.: "Polyolefin/Polyether Alternated Copolymers: Silyl-Modified Polymers as Promising Monocomponent Precursors to Adhesives", ACS APPLIED POLYMER MATERIALS, vol. 2, no. 11, 13 November 2020 (2020-11-13), pages 5135 - 5146, XP055824796, ISSN: 2637-6105, DOI: 10.1021/acsapm.0c00912 *
PIOTR P. MATLOKA, ZACHARY KEAN, MEGHAN GREENFIELD, KENNETH B. WAGENER: "Synthesis and characterization of oligo(oxyethylene)/carbosilane copolymers for thermoset elastomers via ADMET", JOURNAL OF POLYMER SCIENCE PART A: POLYMER CHEMISTRY, JOHN WILEY & SONS, INC., US, vol. 46, no. 12, 15 June 2008 (2008-06-15), US , pages 3992 - 4011, XP055607853, ISSN: 0887-624X, DOI: 10.1002/pola.22740 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114249886A (en) * 2021-12-31 2022-03-29 三棵树(上海)新材料研究有限公司 Anti-aging modified silane-terminated polyether resin, MS nail-free glue and preparation method thereof
CN114249886B (en) * 2021-12-31 2023-10-31 三棵树(上海)新材料研究有限公司 Aging-resistant modified silane end capped polyether resin, MS nail-free adhesive and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6527589B2 (en) Curable composition
JP5666904B2 (en) Room temperature curable composition and cured product thereof
JP6261966B2 (en) Curable composition
JP6096320B2 (en) Curable composition
WO2008032539A1 (en) MOISTURE-CURABLE POLYMER HAVING SiF GROUP AND CURABLE COMPOSITION CONTAINING THE SAME
WO2015105122A1 (en) Curable composition
JP6682227B2 (en) Curable composition
JP6282450B2 (en) Curable composition
JPWO2019189491A1 (en) Reactive silicon group-containing polymer and curable composition
JP7285247B2 (en) REACTIVE SILICON-CONTAINING POLYMER AND CURABLE COMPOSITION
CN116997610A (en) Curable composition and cured product thereof
JP6253372B2 (en) Curable composition
WO2022181545A1 (en) Manufacturing method for polymer comprising hydrolyzable silyl group, and polymer, curable composition, and cured product
WO2018199270A1 (en) Curable composition
US20230027947A1 (en) Mixture of polyoxyalkylene polymers and curable composition
JP2019073680A (en) Curable composition
WO2022163563A1 (en) Polyoxyalkylene-based polymer and mixture thereof
CN113166395B (en) Polyoxyalkylene polymer and curable composition
WO2022163562A1 (en) Polyoxyalkylene polymer mixture and curable composition
JP6283509B2 (en) Reactive silicon group-containing polymer and curable composition
JP2018197287A (en) Curable composition
CN113795547B (en) Curable composition and cured product
WO2022202132A1 (en) Silane-crosslinkable-polymer-containing composition
JP2022135365A (en) Method for producing organic polymer, organic polymer, curable composition, and cured product
JP2022143083A (en) Method for producing organic polymer, organic polymer, curable composition, and cured product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22759581

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22759581

Country of ref document: EP

Kind code of ref document: A1