WO2022181382A1 - Boiler - Google Patents

Boiler Download PDF

Info

Publication number
WO2022181382A1
WO2022181382A1 PCT/JP2022/005820 JP2022005820W WO2022181382A1 WO 2022181382 A1 WO2022181382 A1 WO 2022181382A1 JP 2022005820 W JP2022005820 W JP 2022005820W WO 2022181382 A1 WO2022181382 A1 WO 2022181382A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
differential pressure
combustion
air
boiler
Prior art date
Application number
PCT/JP2022/005820
Other languages
French (fr)
Japanese (ja)
Inventor
公亮 中村
Original Assignee
三浦工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三浦工業株式会社 filed Critical 三浦工業株式会社
Publication of WO2022181382A1 publication Critical patent/WO2022181382A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/06Regulating fuel supply conjointly with draught

Definitions

  • the present invention has been devised in view of such circumstances, and its object is to provide a boiler that can be applied even when the fuel supply pressure is low while suppressing costs and appropriately adjusting the oxygen concentration at the time of ignition. It is to be.
  • the fuel supply amount is can be increased.
  • it is possible to appropriately adjust the oxygen concentration at the time of transition to the second state while suppressing costs. It can also be applied when the fuel supply pressure is low.
  • an open valve is provided for releasing the pressure in the second communication passage to the outside, and the differential pressure increase control is performed by opening the open valve so as to open the first communication passage and the second communication passage. This control is to increase the differential pressure with the inside of the communication passage.
  • a pressure reducing section is provided on the downstream side of the open valve.
  • the differential pressure increase control means starts the differential pressure increase control at a predetermined timing until transition processing for shifting to the second state is started.
  • the transition process can be started with the oxygen concentration adjusted.
  • the first state is an ignition waiting state before starting combustion
  • the second state is a state at the time of starting combustion
  • the first state is a state of combustion with a smaller amount of combustion than the second state.
  • a boiler comprises: a blower for sending air into a boiler body through an air passage; a first communication passage communicating at a first position of the air passage; A flow rate for adjusting the flow rate of the fuel supplied to the boiler body according to the pressure difference between the first communication path and the second communication path, which communicates at a second position on the downstream side and an adjusting unit for reducing the differential pressure between the first communication passage and the second communication passage when shifting from a second state in which the amount of combustion is greater than that of the first state to the first state. and differential pressure reduction control means for performing differential pressure reduction control.
  • the differential pressure between the first communication passage and the second communication passage is reduced, thereby reducing the amount of fuel supplied. can be reduced.
  • it is possible to appropriately adjust the oxygen concentration at the time of transition to the first state while suppressing costs. It can also be applied when the fuel supply pressure is low.
  • the boiler 1 as shown in FIG. , a fuel supply line 5 for supplying fuel to the boiler body 2 , a water supply line (not shown) for supplying water to the boiler body 2 , and a control section 6 for controlling the operation and operation of the boiler 1 .
  • the fuel is gas
  • the fuel is not limited to gas such as gas, and may be liquid such as oil.
  • the fuel supply line 5 is connected to the air supply path 30. Fuel supplied from the fuel supply line 5 is mixed with air blown from the blower 3 in the air supply path 30 and supplied to the burner 20 in the boiler main body 2 .
  • Air supplied from the blower 3 is supplied as combustion air to the burner 20 in the boiler body 2 via the air supply path 30 .
  • the flow rate of the combustion air is adjusted by providing a damper 7 in the air supply path 30 and adjusting the position (opening degree) of the damper 7, or alternatively or in addition to this, by adjusting the speed of the blower 3 using an inverter. This is done by changing the rotation speed of the fan.
  • the fuel supply line 5 is provided with an on-off valve 11 (solenoid valve) for opening and closing the passage, and a fuel supply amount adjustment valve 12 .
  • the fuel supply amount adjustment valve 12 functions as a fuel supply amount adjustment valve (also referred to as a flow rate adjustment section) capable of adjusting the flow rate of the fuel supplied to the boiler main body 2, and also has a cutoff function.
  • the fuel supply amount adjustment valve 12 is arranged downstream of the on-off valve 11 .
  • the fuel supply amount control valve 12 is a governor.
  • the air supply path 30 is provided with a combustion air pressure reducing member 8 such as a punching metal downstream of the damper 7 .
  • the air supply passage 30 communicates with the fuel supply amount control valve 12 provided on the fuel supply line 5 via the first communication passage 14 upstream of the combustion air pressure reducing member 8 . Further, the air supply passage 30 communicates with the fuel supply amount adjustment valve 12 provided on the fuel supply line 5 through the second communication passage 15 downstream of the combustion air pressure reducing member 8 .
  • the governor (fuel supply amount adjusting valve) 12 adjusts the pressure difference between the first communication passage 14 and the second communication passage 15 (basically, the pressure difference before and after the combustion air pressure reducing member 8 in the air supply passage 30). is the same as ).
  • the governor is a pressure equalizing valve whose opening degree is mechanically adjusted so that the differential pressure to be introduced and the pressure of the fuel to be supplied (pressure on the secondary side) are equalized.
  • a branch path 13 is provided from the downstream flow path of the governor. The governor adjusts the degree of opening so that the pressure on the secondary side obtained from the branch passage 13 corresponds to the differential pressure across the combustion air pressure reducing member 8 in the air supply passage 30 to which it is introduced. can be done. As a result, if the differential pressure across the combustion air pressure reducing member 8 increases, the flow rate of the fuel supplied to the boiler body 2 increases, and if the differential pressure across the combustion air pressure reducing member 8 decreases, the boiler body 2 is reduced.
  • a branch path is provided in the middle of the second communication path 15 .
  • An open valve (solenoid valve) 16 is provided in the branch path. By opening the release valve 16, the second communication path 15 is opened to the atmosphere, and air escapes from the second communication path 15. Therefore, the pressure in the second communication path 15 decreases, and the first The differential pressure between the communication passage 14 and the second communication passage 15 increases more than the actual differential pressure across the combustion air pressure reducing member 8 in the air supply passage 30 .
  • a pressure reducing section (orifice) 17 is provided downstream of the open valve 16 . The decompression part 17 prevents the air from being released excessively when the release valve 16 is opened.
  • the amount of fuel supply is gradually increased in accordance with the differential pressure across the combustion air pressure reducing member 8. Therefore, the amount of combustion air increases with respect to the actual amount of fuel supplied, and the oxygen concentration tends to be high and excessive.
  • the open valve 16 is opened so that and the pressure difference between the inside of the second communication passage.
  • the differential pressure can be increased by a simple structure and operation of providing the open valve 16 in the second communication passage 15 and opening it. As the differential pressure increases, the degree of opening of the fuel supply amount control valve 12 increases, the amount of fuel supplied increases, and the oxygen concentration of the combustion air can be relatively reduced.
  • the first state is an ignition waiting state before the start of combustion;
  • the second state is the state at the start of combustion (for example, main try, low combustion state, etc.) (hereinafter also referred to as "at the start of combustion")
  • the first state is the second state
  • An example of a state in which the combustion amount is smaller than the state (hereinafter also referred to as "high combustion transition time"), that is, an example in which the first state is a low combustion state and the second state is a high combustion state and
  • the oxygen concentration tends to be high and excessive, which is likely to cause multi-stage ignition and ignition noise. Therefore, at the start of combustion in the present embodiment, by opening the open valve 16 and increasing the differential pressure between the first communication passage and the second communication passage, the amount of fuel supplied is increased for combustion. Stable ignition can be achieved by relatively lowering the oxygen concentration of the operating air. After the ignition is completed, the open valve 16 is closed, and fuel is supplied according to the actual differential pressure across the combustion air pressure reducing member 8 in the air supply passage 30. As a result, the oxygen concentration of the combustion air becomes high during combustion.
  • the timing of starting the differential pressure increase control is set to a predetermined timing until the transition processing for shifting to the second state is started.
  • the timing of switching the open valve 16 to the open state at the start of combustion may be the timing until the ignition processing of the burner 20 is started.
  • the timing may be a predetermined time before starting the ignition process, the timing during the purge, or the timing when the purge is completed.
  • the timing of switching the open valve 16 to the open state at the time of transition to the high combustion state may be the timing until the transition processing to the high combustion state is started.
  • the timing may be a predetermined time before the state transition processing is started. It should be noted that the predetermined time may be longer than the time required from the start of the control for switching the open valve 16 to the open state until it is completely opened.
  • the timing at which the differential pressure increase control is terminated is the predetermined timing during the transition processing, the timing at which the transition processing is completed, or the like, when the combustion in the second state is stabilized. Any timing is acceptable.
  • the timing at which the open valve 16 is switched to the closed state at the start of combustion may be the timing at which it is determined that the burner 20 is ignited, or the timing at which the main try ends.
  • the timing of switching the open valve 16 to the closed state at the time of transition to the high combustion state is, for example, the timing when a predetermined time has passed since the transition processing to the high combustion state was started, or the timing when the transition processing to the high combustion state has been completed. It may be timing or the like.
  • the second communication path 15 is not open to the atmosphere, and air will not escape from the second communication path 15 . Therefore, the differential pressure between the first communication passage and the second communication passage becomes the differential pressure (original differential pressure) across the combustion air pressure reducing member 8 in the air supply passage 30 .
  • the opening degree of the fuel supply amount adjusting valve 12 is controlled to decrease according to the differential pressure across the combustion air pressure reducing member 8 in the air supply passage 30, the amount of fuel supplied decreases, and the combustion air relative increase in oxygen concentration (for example, it becomes the oxygen concentration designed according to the combustion state).
  • the control unit 6 controls the blower 3 and the damper 7, which are the air supply units, so that the flow rate of the supplied combustion air becomes the flow rate corresponding to the set combustion amount, thereby adjusting the supply flow rate of the combustion air. adjust. Further, the control unit 6 controls the open valve 16 according to the state of the boiler 1 (for example, combustion state). Further, the control unit 6 can function as differential pressure increase control means for performing differential pressure increase control and differential pressure decrease control means for performing differential pressure decrease control.
  • FIG. 2 is a flow chart showing an example of a boiler transfer process. These transition processes are executed by the control unit 6 .
  • FIG. 2(a) is a flowchart for explaining an example of a main try transition process at the start of combustion.
  • step S01 it is determined whether or not the purge performed before the start of combustion has been completed. If it is determined that the purge has been completed, the process proceeds to step S02, and if it is determined that the purge has not been completed, the process returns to step S01.
  • step S02 the open valve 16 is controlled to open, and the process proceeds to step S03.
  • the pressure in the second communication passage 15 decreases, and the differential pressure between the first and second communication passages becomes equal to the original differential pressure in the air supply passage 30 before and after the combustion air pressure reducing member 8 .
  • the opening degree of the fuel supply amount control valve 12 is controlled to increase, the amount of fuel supplied increases, and the oxygen concentration of the combustion air relatively decreases.
  • step S03 transition processing is performed to transition from the ignition waiting state to the main try.
  • processing for transitioning to the main try processing for setting the flow rate of the combustion air to the flow rate for the main try, processing for igniting the burner 20, processing for determining whether or not the ignition has occurred, and the like are performed.
  • step S04 it is determined whether or not the ignition of the burner 20 has been completed and the main try has ended. If it is determined that the main try has ended, the process proceeds to step S05, and if it is determined that the main try has not ended, the process returns to step S04.
  • step S05 the open valve 16 is controlled to be closed, and the main try transition processing ends.
  • the differential pressure between the first communication passage and the second communication passage becomes the differential pressure (original differential pressure) across the combustion air pressure reducing member 8 in the air supply passage 30 .
  • control is performed so that the degree of opening of the fuel supply amount adjusting valve 12 becomes smaller according to the differential pressure across the combustion air pressure reducing member 8 in the air supply passage 30.
  • the amount of fuel supplied decreases, and the oxygen concentration of the combustion air relatively increases (for example, the oxygen concentration is designed according to the combustion state).
  • FIG. 2(b) is a flow chart for explaining an example of transition processing during transition to high combustion.
  • step S11 it is determined whether or not it is time to transition to high combustion. If it is determined that it is time to transition to high combustion, the process proceeds to step S12, and if it is determined that it is not time to transition to high combustion, the process returns to step S11.
  • step S12 the open valve 16 is controlled to open, and the process proceeds to step S13.
  • the pressure in the second communication passage 15 decreases, and the differential pressure between the first and second communication passages becomes equal to the original differential pressure in the air supply passage 30 before and after the combustion air pressure reducing member 8 .
  • the opening degree of the fuel supply amount control valve 12 is controlled to increase, the amount of fuel supplied increases, and the oxygen concentration of the combustion air relatively decreases.
  • step S13 transition processing for transitioning from the low combustion state to the high combustion state is performed.
  • processing for adjusting the flow rate of the combustion air to the flow rate for the high combustion state is performed.
  • step S14 it is determined whether or not the transition to the high combustion state has ended. If it is determined that the transition to the high combustion state has ended, the process proceeds to step S15, and if it is determined that the transition to the high combustion state has not ended, the process returns to step S14.
  • step S15 the open valve 16 is controlled to be closed, and the transition processing to the high combustion state ends.
  • the differential pressure between the first communication passage and the second communication passage becomes the differential pressure (original differential pressure) across the combustion air pressure reducing member 8 in the air supply passage 30 .
  • control is performed so that the degree of opening of the fuel supply amount adjusting valve 12 becomes smaller according to the differential pressure across the combustion air pressure reducing member 8 in the air supply passage 30.
  • the amount of fuel supplied decreases, and the oxygen concentration of the combustion air relatively increases (for example, the oxygen concentration is designed according to the combustion state).
  • differential pressure increase control is performed to increase the differential pressure between the first communication passage 14 and the second communication passage 15 . Therefore, when shifting from the first state to the second state in which the amount of combustion is large, the amount of fuel supplied can be increased by increasing the differential pressure between the first communication passage and the second communication passage. can be done. As a result, it is possible to appropriately adjust the oxygen concentration at the time of transition to the second state while suppressing costs. It can also be applied when the fuel supply pressure is low.
  • the branch passage provided in the middle of the second communication passage 15 is provided with the open valve 16
  • the differential pressure can be increased by a simple structure and operation of opening the open valve 16 by providing the open valve 16.
  • the orifice 17 is provided as a pressure reducing portion downstream of the open valve 16, it is possible to prevent the differential pressure from being excessively increased.
  • control for switching the open valve 16 to the open state is performed by the time the main try transition process and the high combustion transition process are started, respectively, as shown in step S02 of FIG. 2(a) and step S12 of FIG. 2(b). be started. Therefore, the transition process can be started with the oxygen concentration adjusted.
  • stable ignition can be achieved when combustion is started from an ignition waiting state before combustion is started. Furthermore, as shown in FIG. 2(b), when the low combustion state transitions to the high combustion state, it is possible to shift to the high combustion state in which the combustion amount is large while maintaining a stable state.
  • the branch path was provided in the middle of the second communication path 15, but in the boiler according to the second embodiment, as shown in FIG. , a branch path is provided in the middle of the first communication path 14 .
  • An open valve (solenoid valve) 18 is provided in the branch path. By opening the open valve 18, the first communication path 14 is opened to the atmosphere, and air is released from the first communication path 14. Therefore, the pressure in the first communication path 15 decreases, and the air is supplied.
  • the differential pressure across the combustion air pressure reducing member 8 in passage 30 is reduced.
  • a pressure reducing section (orifice) 19 is provided downstream of the open valve 18 . The decompression unit 19 prevents excessive air leakage when the release valve 18 is opened.
  • the amount of fuel supply is reduced according to the differential pressure across the combustion air pressure reducing member 8.
  • the amount of combustion air is small relative to the actual amount of fuel supplied, and the oxygen concentration tends to be too low.
  • the second state (high combustion state) to the first state hereinafter also referred to as “during transition to low combustion"
  • the release valve 18 is opened to reduce the pressure difference between the first communication passage and the second communication passage. Decrease. In this way, the differential pressure can be reduced by the simple structure and operation of providing the open valve 18 in the first communication passage 14 and opening it.
  • the degree of opening of the fuel supply amount control valve 12 decreases, the amount of fuel supplied decreases, and the oxygen concentration of the combustion air can be relatively increased. As a result, low combustion transition can be performed while maintaining a stable state. After the low combustion transition is completed, the open valve 18 is closed, and fuel is supplied according to the actual differential pressure across the combustion air pressure reducing member 8 in the air supply passage 30. .
  • the timing of starting the differential pressure reduction control is set to a predetermined timing until the transition processing for shifting to the first state is started.
  • the timing at which the open valve 18 is switched to the open state at the time of transition to the low combustion state may be the timing until the transition processing to the low combustion state is started.
  • the timing may be a predetermined time before the start of the transition process to the low combustion state. It should be noted that the predetermined time may be longer than the time required from the start of the control for switching the open valve 18 to the open state until it is completely opened.
  • the timing at which the differential pressure reduction control is terminated is the predetermined timing during the transition processing, the timing at which the transition processing is completed, or the like, when the combustion in the first state is stabilized. Any timing is acceptable.
  • the timing at which the open valve 18 is switched to the closed state at the time of the transition to the low combustion state is the timing after a predetermined time has elapsed since the transition processing to the low combustion state was started, the timing at which the transition processing to the low combustion state has been completed, or the like.
  • the first communication path 14 is not open to the atmosphere, and air will not escape from the first communication path 14 . Therefore, the differential pressure between the first communication passage and the second communication passage becomes the differential pressure (original differential pressure) across the combustion air pressure reducing member 8 in the air supply passage 30 .
  • the opening degree of the fuel supply amount adjusting valve 12 is controlled to increase according to the differential pressure across the combustion air pressure reducing member 8 in the air supply passage 30, the amount of fuel supplied increases, and the combustion air increases.
  • the oxygen concentration of is relatively decreased (for example, it becomes the oxygen concentration designed according to the combustion state).
  • the differential pressure reduction control reduces the differential pressure between the first communication passage 14 and the second communication passage 15 when shifting from the second state to the first state where the combustion amount is small. I do. For this reason, when shifting from the second state to the first state in which the combustion amount is small, the amount of fuel supplied is reduced by reducing the differential pressure between the first communication passage and the second communication passage. can be done. As a result, it is possible to appropriately adjust the oxygen concentration at the time of transition to the first state while suppressing costs. It can also be applied when the fuel supply pressure is low.
  • the differential pressure increase control described in the first embodiment and the second embodiment are not limited to this. You may make it perform both the differential pressure reduction control demonstrated by the form. That is, when shifting from the first state to the second state where the combustion amount is large, the differential pressure increase control is performed, and the second state where the combustion amount is larger than the first state is shifted to the first state.
  • the boiler may be a boiler that performs differential pressure reduction control.
  • a punching metal is used as the combustion air decompression member 8, but it is not limited to this, and any member that can decompress the air and has a proportional air flow rate and pressure loss may be used.
  • the fuel supply amount adjustment valve 12 can also be electronically controlled by the control unit 6.
  • an air amount detection unit that detects a differential pressure across the combustion air pressure reducing member 8 and outputs differential pressure information is electrically connected to the control unit 6 to detect the air amount.
  • the differential pressure information from the unit is input to the control unit 6 .
  • the control unit 6 is realized by a computer including a memory, a timer, and an arithmetic processing unit inside, and operates the fuel supply amount adjustment valve 12 according to the stage of combustion based on differential pressure information input from the air amount detection unit.
  • the control unit 6 transmits an opening degree specifying signal for specifying the opening degree to the fuel supply amount adjusting valve 12 based on the opening degree adjustment information stored in advance in the memory.
  • the fuel supply amount adjustment valve 12 is controlled to have an opening degree corresponding to the differential pressure across the combustion air pressure reducing member 8 , thereby adjusting the flow rate of the fuel supplied to the boiler main body 2 .
  • the opening degree adjustment information may be, for example, a table that can specify the degree of opening of the fuel supply amount adjustment valve 12 according to the pressure difference, or the opening degree of the fuel supply amount adjustment valve 12 according to the pressure difference. It may be an arithmetic expression for specifying the degree.
  • the control unit 6 sets the differential pressure specified from the differential pressure information input from the air amount detection unit to a predetermined value.
  • the fuel supply amount adjusting valve 12 is controlled to the degree of opening corresponding to the increased value, and when shifting from the second state in which the combustion amount is larger than the first state to the first state, the air amount detection unit
  • the fuel supply amount adjusting valve 12 may be controlled to an opening degree corresponding to a value obtained by subtracting a predetermined value from the differential pressure specified from the input differential pressure information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

Provided is a boiler comprising: a ventilator that sends air into a boiler body via a ventilation path; a first communication path that allows communication at a first position in the ventilation path; a second communication path that allows communication at a second position in the ventilation path, the second position being located further downstream than the first position; a flow rate adjustment unit that adjusts the flow rate of fuel being supplied to the boiler body in accordance with a difference in pressure between the first communication path and the second communication path; and a pressure-difference-increasing control means that performs a pressure-difference-increasing control for increasing the difference in pressure between the first communication path and the second communication path during a transition from a first state to a second state in which the combustion amount is greater than in the first state.

Description

ボイラboiler
 本願は、2021年2月24日に日本に出願された特願2021-027755号に基づき優先権を主張し、その内容をここに援用する。
 本発明は、ボイラに関する。
This application claims priority based on Japanese Patent Application No. 2021-027755 filed in Japan on February 24, 2021, the contents of which are incorporated herein.
The present invention relates to boilers.
 近年、環境への関心が高まっており、窒素酸化物(NOx)などの大気汚染物質の排出濃度や排出量を規制して大気汚染を防止すること(低NOx化)が求められている。低NOx化を実現する方法の一つとして、燃料に対する燃焼用空気の比率を高くして燃焼中の酸素濃度を高くする方法が考えられる。一方、着火時や燃焼状態の移行時においては、安定性等を向上させるために酸素濃度を一時的に低下させることが望ましい。このような背景を受けて、バーナの着火時に酸素濃度過剰となることを防止するために、燃料供給ラインの経路上にバイパスラインを設け、通常の燃焼時にはバイパス弁を閉じる一方、バーナの着火時にはバイパス弁を開いてバイパスラインからも燃料を流通させることにより、通常の燃焼時に比べて燃料の供給量を大きくする制御を行うボイラがあった(例えば、特許文献1参照)。  In recent years, interest in the environment has increased, and there is a need to prevent air pollution (low NOx) by regulating the concentration and amount of emissions of air pollutants such as nitrogen oxides (NOx). As one of the methods for realizing low NOx, it is conceivable to increase the oxygen concentration during combustion by increasing the ratio of combustion air to fuel. On the other hand, it is desirable to temporarily lower the oxygen concentration in order to improve stability and the like at the time of ignition or transition of the combustion state. In response to this background, in order to prevent the oxygen concentration from becoming excessive when the burner ignites, a bypass line is installed on the route of the fuel supply line. There is a boiler that performs control to increase the amount of fuel supplied compared to normal combustion by opening a bypass valve and allowing fuel to flow also from a bypass line (see, for example, Patent Document 1).
国際公開第2016/157925号WO2016/157925
 しかしながら、従来のボイラでは、燃料供給ラインの経路上にバイパスラインという大掛かりな設備を設ける必要がありコストが増大してしまう。また、燃料供給ラインにバイパス用のオリフィス(圧損)を設ける必要があるために、例えば燃料供給圧力が低い場合に悪影響となる虞があった。 However, with conventional boilers, it is necessary to install a large-scale facility called a bypass line on the route of the fuel supply line, which increases costs. In addition, since it is necessary to provide a bypass orifice (pressure loss) in the fuel supply line, there is a risk of adverse effects, for example, when the fuel supply pressure is low.
 本発明は、かかる実情に鑑み考え出されたものであり、その目的は、コストを抑えて着火時などの酸素濃度を適正に調整しつつ、燃料供給圧力が低い場合にも適用できるボイラを提供することである。 The present invention has been devised in view of such circumstances, and its object is to provide a boiler that can be applied even when the fuel supply pressure is low while suppressing costs and appropriately adjusting the oxygen concentration at the time of ignition. It is to be.
 上記目的を達成するために、本発明のある局面に従うボイラは、送風路を介してボイラ本体内へ空気を送り込む送風機と、前記送風路の第1位置において連通する第1連通路と、前記送風路の前記第1位置よりも下流側の第2位置において連通する第2連通路と、前記第1連通路内と前記第2連通路内との差圧に応じて、前記ボイラ本体に供給する燃料の流量を調整する流量調整部と、第1の状態から当該第1の状態よりも燃焼量が大きい第2の状態へ移行させる際に、前記第1連通路内と前記第2連通路内との差圧を増大させる差圧増大制御を行う差圧増大制御手段とを備える。 In order to achieve the above object, a boiler according to one aspect of the present invention comprises: a blower for sending air into a boiler body through a blowing passage; a first communication passage communicating at a first position of the blowing passage; A second communication passage that communicates at a second position downstream of the first position of the passage, and supply to the boiler main body according to the differential pressure between the first communication passage and the second communication passage. and a flow rate adjusting portion that adjusts the flow rate of fuel; and differential pressure increase control means for performing differential pressure increase control to increase the differential pressure between.
 上記の構成によれば、第1の状態から燃焼量が大きい第2の状態へ移行させる際に第1連通路内と第2連通路内との差圧を増大させることにより、燃料の供給量を増大させることができる。その結果、コストを抑えて第2の状態への移行時の酸素濃度を適正に調整できる。また、燃料供給圧力が低い場合にも適用できる。 According to the above configuration, by increasing the differential pressure between the first communication passage and the second communication passage when the first state is changed to the second state where the combustion amount is large, the fuel supply amount is can be increased. As a result, it is possible to appropriately adjust the oxygen concentration at the time of transition to the second state while suppressing costs. It can also be applied when the fuel supply pressure is low.
 好ましくは、前記第2連通路の圧力を外部に開放するための開放弁を備え、前記差圧増大制御は、前記開放弁を開状態にすることにより、前記第1連通路内と前記第2連通路内との差圧を増大させる制御である。 Preferably, an open valve is provided for releasing the pressure in the second communication passage to the outside, and the differential pressure increase control is performed by opening the open valve so as to open the first communication passage and the second communication passage. This control is to increase the differential pressure with the inside of the communication passage.
 上記の構成によれば、開放弁を設けて開状態とするという簡単な構造・動作により差圧を増大させることができる。 According to the above configuration, it is possible to increase the differential pressure with a simple structure and operation of providing an open valve and opening it.
 好ましくは、前記開放弁の下流側には減圧部が設けられている。 Preferably, a pressure reducing section is provided on the downstream side of the open valve.
 上記の構成によれば、減圧部が設けられているため、差圧を増大させ過ぎてしまうことを防止できる。 According to the above configuration, since the decompression unit is provided, it is possible to prevent the differential pressure from being excessively increased.
 好ましくは、前記差圧増大制御手段は、前記第2の状態へ移行させるための移行処理を開始するまでの所定タイミングにおいて前記差圧増大制御を開始する。 Preferably, the differential pressure increase control means starts the differential pressure increase control at a predetermined timing until transition processing for shifting to the second state is started.
 上記の構成によれば、酸素濃度を調整した状態で移行処理を開始できる。 According to the above configuration, the transition process can be started with the oxygen concentration adjusted.
 好ましくは、前記第1の状態は、燃焼開始前の着火待ち状態であり、前記第2の状態は、燃焼開始時の状態である。 Preferably, the first state is an ignition waiting state before starting combustion, and the second state is a state at the time of starting combustion.
 上記の構成によれば、安定した着火を行うことができる。 According to the above configuration, stable ignition can be performed.
 好ましくは、前記第1の状態は、前記第2の状態よりも小さい燃焼量で燃焼している状態である。 Preferably, the first state is a state of combustion with a smaller amount of combustion than the second state.
 上記の構成によれば、安定した状態を維持しながら燃焼量が大きな第2の状態に移行できる。 According to the above configuration, it is possible to shift to the second state in which the combustion amount is large while maintaining a stable state.
 本発明の別の局面に従うボイラは、送風路を介してボイラ本体内へ空気を送り込む送風機と、前記送風路の第1位置において連通する第1連通路と、前記送風路の前記第1位置よりも下流側の第2位置において連通する第2連通路と、前記第1連通路内と前記第2連通路内との差圧に応じて、前記ボイラ本体に供給する燃料の流量を調整する流量調整部と、第1の状態よりも燃焼量が大きい第2の状態から前記第1の状態へ移行させる際に、前記第1連通路内と前記第2連通路内との差圧を減少させる差圧減少制御を行う差圧減少制御手段とを備える。 A boiler according to another aspect of the present invention comprises: a blower for sending air into a boiler body through an air passage; a first communication passage communicating at a first position of the air passage; A flow rate for adjusting the flow rate of the fuel supplied to the boiler body according to the pressure difference between the first communication path and the second communication path, which communicates at a second position on the downstream side and an adjusting unit for reducing the differential pressure between the first communication passage and the second communication passage when shifting from a second state in which the amount of combustion is greater than that of the first state to the first state. and differential pressure reduction control means for performing differential pressure reduction control.
 上記の構成によれば、第2の状態から燃焼量が小さい第1の状態へ移行させる際に第1連通路内と第2連通路内との差圧を減少させることにより、燃料の供給量を減少させることができる。その結果、コストを抑えて第1の状態への移行時の酸素濃度を適正に調整できる。また、燃料供給圧力が低い場合にも適用できる。 According to the above configuration, when the second state is changed to the first state in which the combustion amount is small, the differential pressure between the first communication passage and the second communication passage is reduced, thereby reducing the amount of fuel supplied. can be reduced. As a result, it is possible to appropriately adjust the oxygen concentration at the time of transition to the first state while suppressing costs. It can also be applied when the fuel supply pressure is low.
ボイラの概略構成を模式的に示す図である。It is a figure which shows typically a schematic structure of a boiler. ボイラの移行処理の一例を示すフローチャートである。(a)は、メイントライ移行処理の一例を説明するためのフローチャートであり、(b)高燃焼移行処理の一例を説明するためのフローチャートである。It is a flow chart which shows an example of transfer processing of a boiler. (a) is a flowchart for explaining an example of a main try transition process, and (b) is a flowchart for explaining an example of a high combustion transition process. ボイラの概略構成を模式的に示す図である。It is a figure which shows typically a schematic structure of a boiler.
 本開示に係るボイラについて図面を参照しつつ説明する。なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が本発明に含まれることが意図される。 The boiler according to the present disclosure will be explained with reference to the drawings. The present invention is not limited to these examples, but is indicated by the scope of the claims, and is intended to include all modifications within the meaning and scope of equivalents to the scope of the claims. be.
 [第1の実施形態]
 <概略構成について>
 以下に、図面を参照しつつ、本発明の第1の実施形態について説明する。まず、図1を参照して、本実施の形態に係るボイラの概略構成について説明する。
[First embodiment]
<Overview of configuration>
A first embodiment of the present invention will be described below with reference to the drawings. First, referring to FIG. 1, a schematic configuration of a boiler according to the present embodiment will be described.
 ボイラ1は、図1に示すように、ボイラ本体2と、空気供給路30を介してボイラ本体2の燃焼室内に空気を送り込む送風機3と、ボイラ本体2からの排ガスを導出する排気通路4と、ボイラ本体2に燃料を供給する燃料供給ライン5と、ボイラ本体2に給水を行う給水ライン(図示せず)と、ボイラ1の運転・動作を制御する制御部6とを備えている。なお、燃料は、ガスである例について説明するが、ガスなどの気体に限らず、油などの液体であってもよい。 The boiler 1, as shown in FIG. , a fuel supply line 5 for supplying fuel to the boiler body 2 , a water supply line (not shown) for supplying water to the boiler body 2 , and a control section 6 for controlling the operation and operation of the boiler 1 . In addition, although an example in which the fuel is gas will be described, the fuel is not limited to gas such as gas, and may be liquid such as oil.
 燃料供給ライン5は、空気供給路30に接続されている。燃料供給ライン5から供給される燃料は、空気供給路30において、送風機3から送風される空気と混合されて、ボイラ本体2内のバーナ20に供給される。 The fuel supply line 5 is connected to the air supply path 30. Fuel supplied from the fuel supply line 5 is mixed with air blown from the blower 3 in the air supply path 30 and supplied to the burner 20 in the boiler main body 2 .
 送風機3から供給される空気は、燃焼用空気として空気供給路30を介してボイラ本体2内のバーナ20に供給される。燃焼用空気の流量の調整は、空気供給路30にダンパ7を設けて、ダンパ7の位置(開度)を調整するか、これに代えてまたはこれに加えて、インバータを用いて送風機3のファンの回転速度を変えることでなされる。 Air supplied from the blower 3 is supplied as combustion air to the burner 20 in the boiler body 2 via the air supply path 30 . The flow rate of the combustion air is adjusted by providing a damper 7 in the air supply path 30 and adjusting the position (opening degree) of the damper 7, or alternatively or in addition to this, by adjusting the speed of the blower 3 using an inverter. This is done by changing the rotation speed of the fan.
 燃料供給ライン5には、流路を開閉するための開閉弁11(電磁弁)と、燃料供給量調整弁12とが設けられている。燃料供給量調整弁12は、ボイラ本体2に供給する燃料の流量を調整可能な燃料供給量調整弁(流量調整部ともいう)として機能するとともに遮断機能をも備える。燃料供給量調整弁12は、開閉弁11の下流側に配置されている。本実施の形態において、燃料供給量調整弁12はガバナである。 The fuel supply line 5 is provided with an on-off valve 11 (solenoid valve) for opening and closing the passage, and a fuel supply amount adjustment valve 12 . The fuel supply amount adjustment valve 12 functions as a fuel supply amount adjustment valve (also referred to as a flow rate adjustment section) capable of adjusting the flow rate of the fuel supplied to the boiler main body 2, and also has a cutoff function. The fuel supply amount adjustment valve 12 is arranged downstream of the on-off valve 11 . In this embodiment, the fuel supply amount control valve 12 is a governor.
 本実施の形態では、空気供給路30には、ダンパ7より下流にパンチングメタル等の燃焼用空気減圧部材8が設けられている。空気供給路30は、燃焼用空気減圧部材8より上流において、第1連通路14により燃料供給ライン5上に設けられた燃料供給量調整弁12と連通している。また、空気供給路30は、燃焼用空気減圧部材8より下流において、第2連通路15により燃料供給ライン5上に設けられた燃料供給量調整弁12と連通している。 In the present embodiment, the air supply path 30 is provided with a combustion air pressure reducing member 8 such as a punching metal downstream of the damper 7 . The air supply passage 30 communicates with the fuel supply amount control valve 12 provided on the fuel supply line 5 via the first communication passage 14 upstream of the combustion air pressure reducing member 8 . Further, the air supply passage 30 communicates with the fuel supply amount adjustment valve 12 provided on the fuel supply line 5 through the second communication passage 15 downstream of the combustion air pressure reducing member 8 .
 ガバナ(燃料供給量調整弁)12は、第1連通路14内と第2連通路15内との差圧(基本的には空気供給路30内の燃焼用空気減圧部材8の前後の差圧と同じとなる)に応じて開度が変化するように構成されている。ガバナは、導入される差圧と供給する燃料の圧力(2次側の圧力)とが均圧となるように機械的に開度が調整される均圧弁である。ガバナの下流側流路からは、分岐路13が設けられている。ガバナは、分岐路13から得られる二次側の圧力が、導入される空気供給路30内の燃焼用空気減圧部材8の前後の差圧に応じた圧力となるように開度を調整することができる。これにより、燃焼用空気減圧部材8の前後の差圧が増大すれば、ボイラ本体2に供給する燃料の流量が増大し、燃焼用空気減圧部材8の前後の差圧が減少すれば、ボイラ本体2に供給する燃料の流量が減少する。 The governor (fuel supply amount adjusting valve) 12 adjusts the pressure difference between the first communication passage 14 and the second communication passage 15 (basically, the pressure difference before and after the combustion air pressure reducing member 8 in the air supply passage 30). is the same as ). The governor is a pressure equalizing valve whose opening degree is mechanically adjusted so that the differential pressure to be introduced and the pressure of the fuel to be supplied (pressure on the secondary side) are equalized. A branch path 13 is provided from the downstream flow path of the governor. The governor adjusts the degree of opening so that the pressure on the secondary side obtained from the branch passage 13 corresponds to the differential pressure across the combustion air pressure reducing member 8 in the air supply passage 30 to which it is introduced. can be done. As a result, if the differential pressure across the combustion air pressure reducing member 8 increases, the flow rate of the fuel supplied to the boiler body 2 increases, and if the differential pressure across the combustion air pressure reducing member 8 decreases, the boiler body 2 is reduced.
 第2連通路15の途中には、分岐路が設けられている。分岐路には、開放弁(電磁弁)16が設けられている。開放弁16を開状態にすることにより、第2連通路15が大気に開放された状態となり、第2連通路15から空気が抜けるため、第2連通路15内の圧力が低下し、第1連通路14内と第2連通路15内との差圧が空気供給路30内の燃焼用空気減圧部材8の前後の実際の差圧よりも増大する。開放弁16の下流には、減圧部(オリフィス)17が設けられている。減圧部17は、開放弁16を開状態にした際に空気が過剰に抜けてしまうことを防止する。 A branch path is provided in the middle of the second communication path 15 . An open valve (solenoid valve) 16 is provided in the branch path. By opening the release valve 16, the second communication path 15 is opened to the atmosphere, and air escapes from the second communication path 15. Therefore, the pressure in the second communication path 15 decreases, and the first The differential pressure between the communication passage 14 and the second communication passage 15 increases more than the actual differential pressure across the combustion air pressure reducing member 8 in the air supply passage 30 . A pressure reducing section (orifice) 17 is provided downstream of the open valve 16 . The decompression part 17 prevents the air from being released excessively when the release valve 16 is opened.
 第1の状態から第1の状態よりも燃焼量が大きい第2の状態へ移行させる際には、燃焼用空気減圧部材8の前後の差圧に応じて後追いで燃料の供給量が増えていくため、実際の燃料の供給量に対して燃焼用空気の量が多くなり酸素濃度が高く過剰となる傾向にある。これに対して、本実施の形態においては、第1の状態から第1の状態よりも燃焼量が大きい第2の状態へ移行させる際に、開放弁16を開状態として、第1連通路内と第2連通路内との差圧を増大させる。このように、第2連通路15に開放弁16を設けて開状態とするという簡単な構造・動作により差圧を増大させることができる。差圧が増大することにより、燃料供給量調整弁12の開度が大きくなり、燃料の供給量が増大し、燃焼用空気の酸素濃度を相対的に低下させることができる。 When shifting from the first state to the second state in which the amount of combustion is greater than that of the first state, the amount of fuel supply is gradually increased in accordance with the differential pressure across the combustion air pressure reducing member 8. Therefore, the amount of combustion air increases with respect to the actual amount of fuel supplied, and the oxygen concentration tends to be high and excessive. On the other hand, in the present embodiment, when the first state is changed to the second state in which the amount of combustion is larger than that of the first state, the open valve 16 is opened so that and the pressure difference between the inside of the second communication passage. Thus, the differential pressure can be increased by a simple structure and operation of providing the open valve 16 in the second communication passage 15 and opening it. As the differential pressure increases, the degree of opening of the fuel supply amount control valve 12 increases, the amount of fuel supplied increases, and the oxygen concentration of the combustion air can be relatively reduced.
 本実施の形態における、第1の状態から当該第1の状態よりも燃焼量が大きい第2の状態へ移行させる例としては、(1)第1の状態が燃焼開始前の着火待ち状態であり、第2の状態が燃焼開始時の状態(例えば、メイントライ、低燃焼状態など)である例(以下、「燃焼開始時」ともいう)と、(2)第1の状態が、第2の状態よりも小さい燃焼量で燃焼している状態である例(以下、「高燃焼移行時」ともいう)、すなわち第1の状態が低燃焼状態で、第2の状態が高燃焼状態である例とが挙げられる。 In the present embodiment, as an example of shifting from the first state to the second state in which the amount of combustion is greater than that of the first state, (1) the first state is an ignition waiting state before the start of combustion; , an example in which the second state is the state at the start of combustion (for example, main try, low combustion state, etc.) (hereinafter also referred to as "at the start of combustion"), and (2) the first state is the second state An example of a state in which the combustion amount is smaller than the state (hereinafter also referred to as "high combustion transition time"), that is, an example in which the first state is a low combustion state and the second state is a high combustion state and
 開放弁16が設けられていない場合の燃焼開始時には、前述したとおり、酸素濃度が高く過剰となる傾向にあり、多段着火や着火音の原因になりやすい。このため、本実施形態における燃焼開始時においては、開放弁16を開状態として第1連通路内と第2連通路内との差圧を増大させることにより、燃料の供給量を増大させて燃焼用空気の酸素濃度を相対的に低下させることで安定した着火を行うことが可能となる。なお、着火が完了した後においては、開放弁16を閉状態とし、空気供給路30内の燃焼用空気減圧部材8の前後の実際の差圧に応じて燃料が供給されることになり、その結果、燃焼中においては燃焼用空気の酸素濃度が高い状態となる。 At the start of combustion when the release valve 16 is not provided, as described above, the oxygen concentration tends to be high and excessive, which is likely to cause multi-stage ignition and ignition noise. Therefore, at the start of combustion in the present embodiment, by opening the open valve 16 and increasing the differential pressure between the first communication passage and the second communication passage, the amount of fuel supplied is increased for combustion. Stable ignition can be achieved by relatively lowering the oxygen concentration of the operating air. After the ignition is completed, the open valve 16 is closed, and fuel is supplied according to the actual differential pressure across the combustion air pressure reducing member 8 in the air supply passage 30. As a result, the oxygen concentration of the combustion air becomes high during combustion.
 また、燃焼中であっても、酸素濃度が相対的に高い状態のまま高燃焼移行を行うと、燃料よりも空気の流量が先に増大するために燃焼不良が起こりやすくなる。このため、高燃焼移行時においては、開放弁16を開状態として第1連通路内と第2連通路内との差圧を増大させることにより、燃料の供給量を増大させて燃焼用空気の酸素濃度を相対的に低下させることで安定した高燃焼移行を行うことが可能となる。なお、高燃焼移行が完了した後においては、開放弁16を閉状態とし、空気供給路30内の燃焼用空気減圧部材8の前後の実際の差圧に応じて燃料が供給されることになり、燃焼用空気の酸素濃度が高い状態となる。 Also, even during combustion, if the high combustion transition is performed while the oxygen concentration is relatively high, poor combustion is likely to occur because the flow rate of air increases before the fuel. Therefore, at the time of transition to high combustion, by opening the release valve 16 and increasing the differential pressure between the first and second communication passages, the fuel supply amount is increased and the combustion air is supplied. By relatively lowering the oxygen concentration, it is possible to achieve a stable high combustion transition. After the high combustion transition is completed, the open valve 16 is closed, and fuel is supplied according to the actual differential pressure across the combustion air pressure reducing member 8 in the air supply passage 30. , the oxygen concentration of the combustion air becomes high.
 差圧増大制御を開始するタイミング、すなわち開放弁16を開状態へと切り替えるタイミングは、第2の状態へ移行させるための移行処理を開始するまでの所定タイミングに定められている。例えば、燃焼開始時に際して開放弁16を開状態へと切り替えるタイミングは、バーナ20への着火処理を開始するまでのタイミングであればよく、バーナ20への着火処理を開始するタイミングや、バーナ20への着火処理を開始する所定時間前となるタイミング、パージ中のタイミングや、パージが終了したタイミングなどであってもよい。高燃焼移行時に際して開放弁16を開状態へと切り替えるタイミングは、高燃焼状態への移行処理を開始するまでのタイミングであればよく、高燃焼状態への移行処理を開始するタイミングや、高燃焼状態への移行処理を開始する所定時間前となるタイミングなどであってもよい。なお、所定時間は、開放弁16を開状態へと切り替える制御を開始してから完全に開状態となるまでに要する時間よりも長い時間であればよい。 The timing of starting the differential pressure increase control, that is, the timing of switching the open valve 16 to the open state, is set to a predetermined timing until the transition processing for shifting to the second state is started. For example, the timing of switching the open valve 16 to the open state at the start of combustion may be the timing until the ignition processing of the burner 20 is started. The timing may be a predetermined time before starting the ignition process, the timing during the purge, or the timing when the purge is completed. The timing of switching the open valve 16 to the open state at the time of transition to the high combustion state may be the timing until the transition processing to the high combustion state is started. The timing may be a predetermined time before the state transition processing is started. It should be noted that the predetermined time may be longer than the time required from the start of the control for switching the open valve 16 to the open state until it is completely opened.
 一方、差圧増大制御を終了するタイミング、すなわち開放弁16を閉状態へと切り替えるタイミングは、移行処理中の所定タイミングや、移行処理が終了したタイミングなど、第2の状態での燃焼が安定しているタイミングであればよい。例えば、燃焼開始時に際して開放弁16を閉状態へと切り替えるタイミングは、バーナ20への着火判定において着火ありと判定されたタイミングや、メイントライが終了したタイミングなどであってもよい。また、高燃焼移行時に際して開放弁16を閉状態へと切り替えるタイミングは、例えば、高燃焼状態への移行処理を開始してから所定時間経過したタイミングや、高燃焼状態への移行処理を完了したタイミングなどであってもよい。 On the other hand, the timing at which the differential pressure increase control is terminated, that is, the timing at which the open valve 16 is switched to the closed state is the predetermined timing during the transition processing, the timing at which the transition processing is completed, or the like, when the combustion in the second state is stabilized. Any timing is acceptable. For example, the timing at which the open valve 16 is switched to the closed state at the start of combustion may be the timing at which it is determined that the burner 20 is ignited, or the timing at which the main try ends. Further, the timing of switching the open valve 16 to the closed state at the time of transition to the high combustion state is, for example, the timing when a predetermined time has passed since the transition processing to the high combustion state was started, or the timing when the transition processing to the high combustion state has been completed. It may be timing or the like.
 開放弁16が閉状態に制御されることにより、第2連通路15は大気に開放されていない状態となり、第2連通路15から空気が抜けることはなくなる。このため、第1連通路内と第2連通路内との差圧が、空気供給路30内の燃焼用空気減圧部材8の前後の差圧(本来の差圧)となる。これにより、空気供給路30内の燃焼用空気減圧部材8の前後の差圧に応じて燃料供給量調整弁12の開度が小さくなるよう制御され、燃料の供給量が減少し、燃焼用空気の酸素濃度が相対的に増加する(例えば、燃焼状態に応じて設計されている酸素濃度となる)。 By controlling the open valve 16 to the closed state, the second communication path 15 is not open to the atmosphere, and air will not escape from the second communication path 15 . Therefore, the differential pressure between the first communication passage and the second communication passage becomes the differential pressure (original differential pressure) across the combustion air pressure reducing member 8 in the air supply passage 30 . As a result, the opening degree of the fuel supply amount adjusting valve 12 is controlled to decrease according to the differential pressure across the combustion air pressure reducing member 8 in the air supply passage 30, the amount of fuel supplied decreases, and the combustion air relative increase in oxygen concentration (for example, it becomes the oxygen concentration designed according to the combustion state).
 制御部6は、供給される燃焼用空気の流量が、設定された燃焼量に応じた流量となるように空気供給部である送風機3およびダンパ7を制御して、燃焼用空気の供給流量を調整する。また、制御部6は、ボイラ1の状態(例えば、燃焼状態等)に応じて開放弁16を制御する。また、制御部6は、差圧増大制御を行う差圧増大制御手段、および、差圧減少制御を行う差圧減少制御手段として機能し得る。 The control unit 6 controls the blower 3 and the damper 7, which are the air supply units, so that the flow rate of the supplied combustion air becomes the flow rate corresponding to the set combustion amount, thereby adjusting the supply flow rate of the combustion air. adjust. Further, the control unit 6 controls the open valve 16 according to the state of the boiler 1 (for example, combustion state). Further, the control unit 6 can function as differential pressure increase control means for performing differential pressure increase control and differential pressure decrease control means for performing differential pressure decrease control.
 <移行処理について>
 図2は、ボイラの移行処理の一例を示すフローチャートである。これらの移行処理は、制御部6により実行される。図2(a)は、燃焼開始時のメイントライ移行処理の一例を説明するためのフローチャートである。
<About migration process>
FIG. 2 is a flow chart showing an example of a boiler transfer process. These transition processes are executed by the control unit 6 . FIG. 2(a) is a flowchart for explaining an example of a main try transition process at the start of combustion.
 ステップS01では、燃焼開始前に行われるパージが完了したか否かが判定される。パージが完了したと判定された場合には、ステップS02に進み、パージが完了していないと判定された場合には、ステップS01に戻る。  In step S01, it is determined whether or not the purge performed before the start of combustion has been completed. If it is determined that the purge has been completed, the process proceeds to step S02, and if it is determined that the purge has not been completed, the process returns to step S01.
 ステップS02では、開放弁16を開状態に制御し、ステップS03に進む。これにより、第2連通路15内の圧力が低下し、第1連通路内と第2連通路内との差圧が空気供給路30内の燃焼用空気減圧部材8の前後における本来の差圧よりも増大する。当該差圧が増大することで、燃料供給量調整弁12の開度が大きくなるよう制御され、燃料の供給量が増大し、燃焼用空気の酸素濃度が相対的に低下する。 In step S02, the open valve 16 is controlled to open, and the process proceeds to step S03. As a result, the pressure in the second communication passage 15 decreases, and the differential pressure between the first and second communication passages becomes equal to the original differential pressure in the air supply passage 30 before and after the combustion air pressure reducing member 8 . increases more than As the differential pressure increases, the opening degree of the fuel supply amount control valve 12 is controlled to increase, the amount of fuel supplied increases, and the oxygen concentration of the combustion air relatively decreases.
 ステップS03では、着火待ちの状態からメイントライへ移行するための移行処理が行われる。メイントライへ移行するための移行処理では、燃焼用空気の流量をメイントライ時の流量にするための処理や、バーナ20に着火するための処理、着火したか否かを判定する処理などが行われる。 In step S03, transition processing is performed to transition from the ignition waiting state to the main try. In the transition processing for transitioning to the main try, processing for setting the flow rate of the combustion air to the flow rate for the main try, processing for igniting the burner 20, processing for determining whether or not the ignition has occurred, and the like are performed. will be
 ステップS04では、バーナ20への着火が完了してメイントライが終了したか否かが判定される。メイントライが終了したと判定された場合には、ステップS05に進み、メイントライが終了していないと判定された場合には、ステップS04に戻る。 In step S04, it is determined whether or not the ignition of the burner 20 has been completed and the main try has ended. If it is determined that the main try has ended, the process proceeds to step S05, and if it is determined that the main try has not ended, the process returns to step S04.
 ステップS05では、開放弁16が閉状態に制御され、メイントライ移行処理を終了する。これにより、第1連通路内と第2連通路内との差圧が、空気供給路30内の燃焼用空気減圧部材8の前後の差圧(本来の差圧)となる。その結果、開放弁16が開状態であるときと比べて、空気供給路30内の燃焼用空気減圧部材8の前後の差圧に応じて燃料供給量調整弁12の開度が小さくなるよう制御され、燃料の供給量が減少し、燃焼用空気の酸素濃度が相対的に増加する(例えば、燃焼状態に応じて設計されている酸素濃度となる)。 In step S05, the open valve 16 is controlled to be closed, and the main try transition processing ends. As a result, the differential pressure between the first communication passage and the second communication passage becomes the differential pressure (original differential pressure) across the combustion air pressure reducing member 8 in the air supply passage 30 . As a result, compared to when the open valve 16 is open, control is performed so that the degree of opening of the fuel supply amount adjusting valve 12 becomes smaller according to the differential pressure across the combustion air pressure reducing member 8 in the air supply passage 30. As a result, the amount of fuel supplied decreases, and the oxygen concentration of the combustion air relatively increases (for example, the oxygen concentration is designed according to the combustion state).
 図2(b)は、高燃焼移行時の移行処理の一例を説明するためのフローチャートである。ステップS11では、高燃焼移行のタイミングであるか否かが判定される。高燃焼移行のタイミングであると判定された場合には、ステップS12に進み、高燃焼移行のタイミングではないと判定された場合にはステップS11に戻る。 FIG. 2(b) is a flow chart for explaining an example of transition processing during transition to high combustion. In step S11, it is determined whether or not it is time to transition to high combustion. If it is determined that it is time to transition to high combustion, the process proceeds to step S12, and if it is determined that it is not time to transition to high combustion, the process returns to step S11.
 ステップS12では、開放弁16が開状態に制御され、ステップS13に進む。これにより、第2連通路15内の圧力が低下し、第1連通路内と第2連通路内との差圧が空気供給路30内の燃焼用空気減圧部材8の前後における本来の差圧よりも増大する。当該差圧が増大することで、燃料供給量調整弁12の開度が大きくなるよう制御され、燃料の供給量が増大し、燃焼用空気の酸素濃度が相対的に低下する。 In step S12, the open valve 16 is controlled to open, and the process proceeds to step S13. As a result, the pressure in the second communication passage 15 decreases, and the differential pressure between the first and second communication passages becomes equal to the original differential pressure in the air supply passage 30 before and after the combustion air pressure reducing member 8 . increases more than As the differential pressure increases, the opening degree of the fuel supply amount control valve 12 is controlled to increase, the amount of fuel supplied increases, and the oxygen concentration of the combustion air relatively decreases.
 ステップS13では、低燃焼状態から高燃焼状態へ移行するための移行処理が行われる。高燃焼状態へ移行するための移行処理では、燃焼用空気の流量を高燃焼状態時の流量にするための処理などが行われる。 In step S13, transition processing for transitioning from the low combustion state to the high combustion state is performed. In the transition processing for transitioning to the high combustion state, processing for adjusting the flow rate of the combustion air to the flow rate for the high combustion state is performed.
 ステップS14では、高燃焼状態への移行が終了したか否かが判定される。高燃焼状態への移行が終了したと判定された場合には、ステップS15に進み、高燃焼状態への移行が終了していないと判定された場合には、ステップS14に戻る。 In step S14, it is determined whether or not the transition to the high combustion state has ended. If it is determined that the transition to the high combustion state has ended, the process proceeds to step S15, and if it is determined that the transition to the high combustion state has not ended, the process returns to step S14.
 ステップS15では、開放弁16が閉状態に制御され、高燃焼状態への移行処理を終了する。これにより、第1連通路内と第2連通路内との差圧が、空気供給路30内の燃焼用空気減圧部材8の前後の差圧(本来の差圧)となる。その結果、開放弁16が開状態であるときと比べて、空気供給路30内の燃焼用空気減圧部材8の前後の差圧に応じて燃料供給量調整弁12の開度が小さくなるよう制御され、燃料の供給量が減少し、燃焼用空気の酸素濃度が相対的に増加する(例えば、燃焼状態に応じて設計されている酸素濃度となる)。 In step S15, the open valve 16 is controlled to be closed, and the transition processing to the high combustion state ends. As a result, the differential pressure between the first communication passage and the second communication passage becomes the differential pressure (original differential pressure) across the combustion air pressure reducing member 8 in the air supply passage 30 . As a result, compared to when the open valve 16 is open, control is performed so that the degree of opening of the fuel supply amount adjusting valve 12 becomes smaller according to the differential pressure across the combustion air pressure reducing member 8 in the air supply passage 30. As a result, the amount of fuel supplied decreases, and the oxygen concentration of the combustion air relatively increases (for example, the oxygen concentration is designed according to the combustion state).
 上記の実施の形態では、図2(a)のステップS01~S05および図2(b)のステップS11~S15で示すように、第1の状態から当該第1の状態よりも燃焼量が大きい第2の状態へ移行させる際に、第1連通路14内と第2連通路15内との差圧を増大させる差圧増大制御を行う。このため、第1の状態から燃焼量が大きい第2の状態へ移行させる際に第1連通路内と第2連通路内との差圧を増大させることにより、燃料の供給量を増大させることができる。その結果、コストを抑えて第2の状態への移行時の酸素濃度を適正に調整できる。また、燃料供給圧力が低い場合にも適用できる。 In the above embodiment, as shown in steps S01 to S05 in FIG. 2A and steps S11 to S15 in FIG. When shifting to state 2, differential pressure increase control is performed to increase the differential pressure between the first communication passage 14 and the second communication passage 15 . Therefore, when shifting from the first state to the second state in which the amount of combustion is large, the amount of fuel supplied can be increased by increasing the differential pressure between the first communication passage and the second communication passage. can be done. As a result, it is possible to appropriately adjust the oxygen concentration at the time of transition to the second state while suppressing costs. It can also be applied when the fuel supply pressure is low.
 また、第2連通路15の途中に設けられた分岐路に開放弁16を備えるため、開放弁16を設けて開状態とするという簡単な構造・動作により差圧を増大させることができる。また、開放弁16の下流側に減圧部としてオリフィス17が設けられているため、差圧を増大させ過ぎてしまうことを防止できる。 In addition, since the branch passage provided in the middle of the second communication passage 15 is provided with the open valve 16, the differential pressure can be increased by a simple structure and operation of opening the open valve 16 by providing the open valve 16. Further, since the orifice 17 is provided as a pressure reducing portion downstream of the open valve 16, it is possible to prevent the differential pressure from being excessively increased.
 また、開放弁16を開状態へ切り替える制御は、図2(a)のステップS02および図2(b)のステップS12で示すように、それぞれメイントライ移行処理および高燃焼移行処理を開始するまでに開始される。このため、酸素濃度を調整した状態で移行処理を開始できる。 Further, the control for switching the open valve 16 to the open state is performed by the time the main try transition process and the high combustion transition process are started, respectively, as shown in step S02 of FIG. 2(a) and step S12 of FIG. 2(b). be started. Therefore, the transition process can be started with the oxygen concentration adjusted.
 また、図2(a)で示すように、燃焼開始前の着火待ち状態から燃焼開始する場合には、安定した着火を行うことができる。さらに、図2(b)で示すように、低燃焼状態から高燃焼状態に移行する場合には、安定した状態を維持しながら燃焼量が大きな高燃焼状態に移行できる。 Also, as shown in FIG. 2(a), stable ignition can be achieved when combustion is started from an ignition waiting state before combustion is started. Furthermore, as shown in FIG. 2(b), when the low combustion state transitions to the high combustion state, it is possible to shift to the high combustion state in which the combustion amount is large while maintaining a stable state.
 [第2の実施形態]
 次に、図3を参照して、本発明の第2の実施形態について説明する。本発明の第1の実施形態と共通の内容についての説明は省略し、異なる点について説明する。第1の実施形態にかかるボイラにおいては、第1の状態から当該第1の状態よりも燃焼量が大きい第2の状態へ移行させる際に、第1連通路内と第2連通路内との差圧を増大させる差圧増大制御を行う例を示したが、第2の実施形態にかかるボイラにおいては、第1の状態よりも燃焼量が大きい第2の状態から第1の状態へ移行させる際に、第1連通路内と第2連通路内との差圧を減少させる差圧減少制御を行う点において異なる例を示す。
[Second embodiment]
A second embodiment of the present invention will now be described with reference to FIG. A description of the contents common to the first embodiment of the present invention will be omitted, and different points will be described. In the boiler according to the first embodiment, when shifting from the first state to the second state in which the amount of combustion is greater than that of the first state, the inside of the first communication passage and the inside of the second communication passage Although an example of performing differential pressure increase control to increase the differential pressure has been shown, in the boiler according to the second embodiment, the second state in which the combustion amount is larger than the first state is shifted to the first state. A different example is shown in that differential pressure reduction control is performed to reduce the differential pressure between the first communication passage and the second communication passage.
 第1の実施形態にかかるボイラでは、図1に示すように、第2連通路15の途中に分岐路が設けられていたが、第2の実施形態にかかるボイラでは、図3に示すように、第1連通路14の途中に分岐路が設けられている。分岐路には、開放弁(電磁弁)18が設けられている。開放弁18を開状態にすることにより、第1連通路14が大気に開放された状態となり、第1連通路14から空気が抜けるため、第1連通路15内の圧力が低下し、空気供給路30内の燃焼用空気減圧部材8の前後の差圧が減少する。開放弁18の下流には、減圧部(オリフィス)19が設けられている。減圧部19は、開放弁18を開状態にした際に空気が過剰に抜けてしまうことを防止する。 In the boiler according to the first embodiment, as shown in FIG. 1, the branch path was provided in the middle of the second communication path 15, but in the boiler according to the second embodiment, as shown in FIG. , a branch path is provided in the middle of the first communication path 14 . An open valve (solenoid valve) 18 is provided in the branch path. By opening the open valve 18, the first communication path 14 is opened to the atmosphere, and air is released from the first communication path 14. Therefore, the pressure in the first communication path 15 decreases, and the air is supplied. The differential pressure across the combustion air pressure reducing member 8 in passage 30 is reduced. A pressure reducing section (orifice) 19 is provided downstream of the open valve 18 . The decompression unit 19 prevents excessive air leakage when the release valve 18 is opened.
 第1の状態よりも燃焼量が大きい第2の状態から第1の状態へ移行させる際には、燃焼用空気減圧部材8の前後の差圧に応じて後追いで燃料の供給量が減少するため、実際の燃料の供給量に対して燃焼用空気の量が少なく酸素濃度が低くなり過ぎる傾向にある。これに対して、本実施の形態においては、第1の状態(第1実施の形態で例示した低燃焼状態)よりも燃焼量が大きい第2の状態(第1実施の形態で例示した高燃焼状態)から、第1の状態へ移行させる際(以下、「低燃焼移行時」ともいう)に、開放弁18を開状態として、第1連通路内と第2連通路内との差圧を減少させる。このように、第1連通路14に開放弁18を設けて開状態とするという簡単な構造・動作により差圧を減少させることができる。差圧が減少することにより、燃料供給量調整弁12の開度が小さくなり、燃料の供給量が減少し、燃焼用空気の酸素濃度を相対的に増加させることができる。これにより、安定した状態を維持しつつ低燃焼移行を行うことができる。なお、低燃焼移行が完了した後においては、開放弁18を閉状態とし、空気供給路30内の燃焼用空気減圧部材8の前後の実際の差圧に応じて燃料が供給されることになる。 When shifting from the second state in which the combustion amount is larger than that in the first state to the first state, the amount of fuel supply is reduced according to the differential pressure across the combustion air pressure reducing member 8. , the amount of combustion air is small relative to the actual amount of fuel supplied, and the oxygen concentration tends to be too low. On the other hand, in the present embodiment, the second state (high combustion state) to the first state (hereinafter also referred to as "during transition to low combustion"), the release valve 18 is opened to reduce the pressure difference between the first communication passage and the second communication passage. Decrease. In this way, the differential pressure can be reduced by the simple structure and operation of providing the open valve 18 in the first communication passage 14 and opening it. As the differential pressure decreases, the degree of opening of the fuel supply amount control valve 12 decreases, the amount of fuel supplied decreases, and the oxygen concentration of the combustion air can be relatively increased. As a result, low combustion transition can be performed while maintaining a stable state. After the low combustion transition is completed, the open valve 18 is closed, and fuel is supplied according to the actual differential pressure across the combustion air pressure reducing member 8 in the air supply passage 30. .
 差圧減少制御を開始するタイミング、すなわち開放弁18を開状態へと切り替えるタイミングは、第1の状態へ移行させるための移行処理を開始するまでの所定タイミングに定められている。例えば、低燃焼移行時に際して開放弁18を開状態へと切り替えるタイミングは、低燃焼状態への移行処理を開始するまでのタイミングであればよく、低燃焼状態への移行処理を開始するタイミングや、低燃焼状態への移行処理を開始する所定時間前となるタイミングなどであってもよい。なお、所定時間は、開放弁18を開状態へと切り替える制御を開始してから完全に開状態となるまでに要する時間よりも長い時間であればよい。 The timing of starting the differential pressure reduction control, that is, the timing of switching the open valve 18 to the open state, is set to a predetermined timing until the transition processing for shifting to the first state is started. For example, the timing at which the open valve 18 is switched to the open state at the time of transition to the low combustion state may be the timing until the transition processing to the low combustion state is started. The timing may be a predetermined time before the start of the transition process to the low combustion state. It should be noted that the predetermined time may be longer than the time required from the start of the control for switching the open valve 18 to the open state until it is completely opened.
 一方、差圧減少制御を終了するタイミング、すなわち開放弁18を閉状態へと切り替えるタイミングは、移行処理中の所定タイミングや、移行処理が終了したタイミングなど、第1の状態での燃焼が安定しているタイミングであればよい。例えば、低燃焼移行時に際して開放弁18を閉状態へと切り替えるタイミングは、低燃焼状態への移行処理を開始してから所定時間経過したタイミングや、低燃焼状態への移行処理を完了したタイミングなどであってもよい。 On the other hand, the timing at which the differential pressure reduction control is terminated, that is, the timing at which the open valve 18 is switched to the closed state is the predetermined timing during the transition processing, the timing at which the transition processing is completed, or the like, when the combustion in the first state is stabilized. Any timing is acceptable. For example, the timing at which the open valve 18 is switched to the closed state at the time of the transition to the low combustion state is the timing after a predetermined time has elapsed since the transition processing to the low combustion state was started, the timing at which the transition processing to the low combustion state has been completed, or the like. may be
 開放弁18が閉状態に制御されることにより、第1連通路14は大気に開放されていない状態となり、第1連通路14から空気が抜けることはなくなる。このため、第1連通路内と第2連通路内との差圧が、空気供給路30内の燃焼用空気減圧部材8の前後の差圧(本来の差圧)となる。これにより、空気供給路30内の燃焼用空気減圧部材8の前後の差圧に応じて燃料供給量調整弁12の開度が大きくなるよう制御され、燃料の供給量が増加し、燃焼用空気の酸素濃度が相対的に減少する(例えば、燃焼状態に応じて設計されている酸素濃度となる)。 By controlling the open valve 18 to the closed state, the first communication path 14 is not open to the atmosphere, and air will not escape from the first communication path 14 . Therefore, the differential pressure between the first communication passage and the second communication passage becomes the differential pressure (original differential pressure) across the combustion air pressure reducing member 8 in the air supply passage 30 . As a result, the opening degree of the fuel supply amount adjusting valve 12 is controlled to increase according to the differential pressure across the combustion air pressure reducing member 8 in the air supply passage 30, the amount of fuel supplied increases, and the combustion air increases. The oxygen concentration of is relatively decreased (for example, it becomes the oxygen concentration designed according to the combustion state).
 上記の実施の形態では、第2の状態から燃焼量が小さい第1の状態へ移行させる際に、第1連通路14内と第2連通路15内との差圧を減少させる差圧減少制御を行う。このため、第2の状態から燃焼量が小さい第1の状態へ移行させる際に第1連通路内と第2連通路内との差圧を減少させることにより、燃料の供給量を減少させることができる。その結果、コストを抑えて第1の状態への移行時の酸素濃度を適正に調整できる。また、燃料供給圧力が低い場合にも適用できる。 In the above embodiment, the differential pressure reduction control reduces the differential pressure between the first communication passage 14 and the second communication passage 15 when shifting from the second state to the first state where the combustion amount is small. I do. For this reason, when shifting from the second state to the first state in which the combustion amount is small, the amount of fuel supplied is reduced by reducing the differential pressure between the first communication passage and the second communication passage. can be done. As a result, it is possible to appropriately adjust the oxygen concentration at the time of transition to the first state while suppressing costs. It can also be applied when the fuel supply pressure is low.
 本発明は、上記の実施の形態に限られず、種々の変形、応用が可能である。以下、本発明に適用可能な上記の実施の形態の変形例などについて説明する。 The present invention is not limited to the above embodiments, and various modifications and applications are possible. Modifications of the above embodiments applicable to the present invention will be described below.
 上記の第1の実施の形態と、第2の実施の形態とを各々別個に説明したが、これに限らず、第1の実施の形態で説明した差圧増大制御と、第2の実施の形態で説明した差圧減少制御とのいずれをも実行するようにしてもよい。つまり、第1の状態から燃焼量が大きい第2の状態へ移行させる際には、差圧増大制御を行い、第1の状態よりも燃焼量が大きい第2の状態から第1の状態へ移行させる際には、差圧減少制御を行うボイラであってもよい。 Although the above-mentioned first embodiment and second embodiment have been described separately, the differential pressure increase control described in the first embodiment and the second embodiment are not limited to this. You may make it perform both the differential pressure reduction control demonstrated by the form. That is, when shifting from the first state to the second state where the combustion amount is large, the differential pressure increase control is performed, and the second state where the combustion amount is larger than the first state is shifted to the first state. The boiler may be a boiler that performs differential pressure reduction control.
 上記の実施の形態において開放弁16の下流にオリフィスを設けた例について説明したが、開放弁16の下流に減圧部を設けるものであればオリフィスに限らず、例えば、ニードルバルブであってもよい。また、開放弁16の開口が小さく、空気を過剰に抜けさせてしまう虞がない場合には、下流に減圧部を設けないものであってもよい。 In the above embodiment, an example in which an orifice is provided downstream of the open valve 16 has been described. . Further, if the opening of the open valve 16 is small and there is no risk of excessive air leakage, the downstream pressure reduction section may not be provided.
 上記の実施の形態では、燃焼用空気減圧部材8としてパンチングメタルを使用したが、これに限らず、空気の減圧が可能で、空気の流量と圧損が比例する部材であればよい。 In the above embodiment, a punching metal is used as the combustion air decompression member 8, but it is not limited to this, and any member that can decompress the air and has a proportional air flow rate and pressure loss may be used.
 上記の実施の形態におけるボイラ1は、低燃焼段階および高燃焼段階の2段階で制御する例について説明した。しかし、これに限らず、低燃焼段階、中燃焼段階および高燃焼段階の3段階で制御するものであってもよいし、任意の負荷率となるように比例制御するものであってもよい。 An example of controlling the boiler 1 in the above embodiment in two stages, a low combustion stage and a high combustion stage, has been described. However, the present invention is not limited to this, and may be controlled in three stages of a low combustion stage, an intermediate combustion stage, and a high combustion stage, or may be proportionally controlled so as to achieve an arbitrary load factor.
 上記の実施の形態におけるボイラ1は、ガバナを用いて制御するが、燃料供給量調整弁12を制御部6による電子制御により制御することもできる。電子制御による制御により制御する場合には、燃焼用空気減圧部材8の前後の差圧を検知し、差圧情報を出力する空気量検知部を制御部6と電気的に接続し、空気量検知部からの差圧情報を制御部6に入力する。制御部6は、内部にメモリ、タイマ、および演算処理部を含むコンピュータにより実現され、空気量検知部から入力される差圧情報に基づいて、燃焼の段階に応じて、燃料供給量調整弁12の開度を調整する。制御部6は、メモリに予め記憶された開度調整情報に基づいて、燃料供給量調整弁12に対して開度を特定するための開度特定信号を送信する。これにより、燃料供給量調整弁12は、燃焼用空気減圧部材8の前後の差圧に応じた開度に制御されて、ボイラ本体2に供給する燃料の流量を調整することができる。なお、開度調整情報とは、例えば、差圧に応じて燃料供給量調整弁12の開度を特定可能なテーブルであってもよく、また差圧に応じて燃料供給量調整弁12の開度を特定するための演算式であってもよい。この場合、制御部6は、例えば、第1の状態から燃焼量が大きい第2の状態へ移行させる際には空気量検知部から入力される差圧情報から特定される差圧に所定値を増大させた値に応じた開度に燃料供給量調整弁12を制御し、第1の状態よりも燃焼量が大きい第2の状態から第1の状態へ移行させる際には空気量検知部から入力される差圧情報から特定される差圧から所定値を減少させた値に応じた開度に燃料供給量調整弁12を制御するようにしてもよい。 Although the boiler 1 in the above embodiment is controlled using a governor, the fuel supply amount adjustment valve 12 can also be electronically controlled by the control unit 6. In the case of electronic control, an air amount detection unit that detects a differential pressure across the combustion air pressure reducing member 8 and outputs differential pressure information is electrically connected to the control unit 6 to detect the air amount. The differential pressure information from the unit is input to the control unit 6 . The control unit 6 is realized by a computer including a memory, a timer, and an arithmetic processing unit inside, and operates the fuel supply amount adjustment valve 12 according to the stage of combustion based on differential pressure information input from the air amount detection unit. adjust the opening of the The control unit 6 transmits an opening degree specifying signal for specifying the opening degree to the fuel supply amount adjusting valve 12 based on the opening degree adjustment information stored in advance in the memory. As a result, the fuel supply amount adjustment valve 12 is controlled to have an opening degree corresponding to the differential pressure across the combustion air pressure reducing member 8 , thereby adjusting the flow rate of the fuel supplied to the boiler main body 2 . The opening degree adjustment information may be, for example, a table that can specify the degree of opening of the fuel supply amount adjustment valve 12 according to the pressure difference, or the opening degree of the fuel supply amount adjustment valve 12 according to the pressure difference. It may be an arithmetic expression for specifying the degree. In this case, for example, when the first state is changed to the second state where the combustion amount is large, the control unit 6 sets the differential pressure specified from the differential pressure information input from the air amount detection unit to a predetermined value. The fuel supply amount adjusting valve 12 is controlled to the degree of opening corresponding to the increased value, and when shifting from the second state in which the combustion amount is larger than the first state to the first state, the air amount detection unit The fuel supply amount adjusting valve 12 may be controlled to an opening degree corresponding to a value obtained by subtracting a predetermined value from the differential pressure specified from the input differential pressure information.
 今回開示された実施の形態はすべての点で例示であって制限的なものでないと考えられるべきである。この発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered illustrative in all respects and not restrictive. The scope of the present invention is indicated by the scope of the claims rather than the above description, and is intended to include all modifications within the meaning and range of equivalents of the scope of the claims.
 1  ボイラ
 2  ボイラ本体
 3  送風機
 4  排気通路
 5  燃料供給ライン
 6  制御部
 7  ダンパ
 8  燃焼用空気減圧部材
 11 開閉弁
 12 燃料供給量調整弁
 13 分岐路
 14 第1連通路
 15 第2連通路
 16 開放弁
 17 減圧部
 18 開放弁
 19 減圧部
 20 バーナ
 30 空気供給路
 
 
REFERENCE SIGNS LIST 1 boiler 2 boiler main body 3 fan 4 exhaust passage 5 fuel supply line 6 control unit 7 damper 8 combustion air pressure reducing member 11 opening/closing valve 12 fuel supply amount adjusting valve 13 branch passage 14 first communication passage 15 second communication passage 16 opening valve 17 decompression section 18 release valve 19 decompression section 20 burner 30 air supply path

Claims (7)

  1.  送風路を介してボイラ本体内へ空気を送り込む送風機と、
     前記送風路の第1位置において連通する第1連通路と、
     前記送風路の前記第1位置よりも下流側の第2位置において連通する第2連通路と、
     前記第1連通路内と前記第2連通路内との差圧に応じて、前記ボイラ本体に供給する燃料の流量を調整する流量調整部と、
     第1の状態から当該第1の状態よりも燃焼量が大きい第2の状態へ移行させる際に、前記第1連通路内と前記第2連通路内との差圧を増大させる差圧増大制御を行う差圧増大制御手段とを備える、ボイラ。
    an air blower for sending air into the boiler body through the air passage;
    a first communication passage that communicates at a first position of the air passage;
    a second communication path communicating at a second position on the downstream side of the first position of the air passage;
    a flow rate adjustment unit that adjusts the flow rate of the fuel supplied to the boiler main body according to the differential pressure between the first communication path and the second communication path;
    Differential pressure increase control for increasing the differential pressure between the first communication passage and the second communication passage when shifting from the first state to a second state in which the amount of combustion is greater than that of the first state. and differential pressure increase control means for performing
  2.  前記第2連通路の圧力を外部に開放するための開放弁を備え、
     前記差圧増大制御は、前記開放弁を開状態にすることにより、前記第1連通路内と前記第2連通路内との差圧を増大させる制御である、請求項1に記載のボイラ。
    A release valve for releasing the pressure of the second communication passage to the outside,
    2. The boiler according to claim 1, wherein said differential pressure increase control is control to increase the differential pressure between said first communication passage and said second communication passage by opening said open valve.
  3.  前記開放弁の下流側には減圧部が設けられている、請求項2に記載のボイラ。 The boiler according to claim 2, wherein a pressure reducing section is provided on the downstream side of the open valve.
  4.  前記差圧増大制御手段は、前記第2の状態へ移行させるための移行処理を開始するまでの所定タイミングにおいて前記差圧増大制御を開始する、請求項1~請求項3のいずれかに記載のボイラ。 4. The differential pressure increase control means according to any one of claims 1 to 3, wherein said differential pressure increase control means starts said differential pressure increase control at a predetermined timing before starting transition processing for shifting to said second state. boiler.
  5.  前記第1の状態は、燃焼開始前の着火待ち状態であり、
     前記第2の状態は、燃焼開始時の状態である、請求項1~請求項4のいずれかに記載のボイラ。
    The first state is an ignition waiting state before combustion starts,
    The boiler according to any one of claims 1 to 4, wherein said second state is a state at the start of combustion.
  6.  前記第1の状態は、前記第2の状態よりも小さい燃焼量で燃焼している状態である、請求項1~請求項4のいずれかに記載のボイラ。 The boiler according to any one of claims 1 to 4, wherein said first state is a state of combustion with a smaller combustion amount than said second state.
  7.  送風路を介してボイラ本体内へ空気を送り込む送風機と、
     前記送風路の第1位置において連通する第1連通路と、
     前記送風路の前記第1位置よりも下流側の第2位置において連通する第2連通路と、
     前記第1連通路内と前記第2連通路内との差圧に応じて、前記ボイラ本体に供給する燃料の流量を調整する流量調整部と、
     第1の状態よりも燃焼量が大きい第2の状態から前記第1の状態へ移行させる際に、前記第1連通路内と前記第2連通路内との差圧を減少させる差圧減少制御を行う差圧減少制御手段とを備える、ボイラ。
     
     
    an air blower for sending air into the boiler body through the air passage;
    a first communication passage that communicates at a first position of the air passage;
    a second communication path communicating at a second position on the downstream side of the first position of the air passage;
    a flow rate adjustment unit that adjusts the flow rate of the fuel supplied to the boiler main body according to the differential pressure between the first communication path and the second communication path;
    Differential pressure reduction control for reducing the differential pressure between the first communication passage and the second communication passage when shifting from a second state in which the amount of combustion is greater than that of the first state to the first state. differential pressure reduction control means for performing

PCT/JP2022/005820 2021-02-24 2022-02-15 Boiler WO2022181382A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021027755 2021-02-24
JP2021-027755 2021-02-24

Publications (1)

Publication Number Publication Date
WO2022181382A1 true WO2022181382A1 (en) 2022-09-01

Family

ID=83049288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/005820 WO2022181382A1 (en) 2021-02-24 2022-02-15 Boiler

Country Status (1)

Country Link
WO (1) WO2022181382A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015017786A (en) * 2013-07-12 2015-01-29 リンナイ株式会社 Hot air heater
JP2019211134A (en) * 2018-06-01 2019-12-12 三浦工業株式会社 boiler

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015017786A (en) * 2013-07-12 2015-01-29 リンナイ株式会社 Hot air heater
JP2019211134A (en) * 2018-06-01 2019-12-12 三浦工業株式会社 boiler

Similar Documents

Publication Publication Date Title
WO2022181382A1 (en) Boiler
JP7102953B2 (en) boiler
KR101271107B1 (en) Boiler
JP4238819B2 (en) Combustion equipment
JP3820621B2 (en) Control device for heat source system
JP4057491B2 (en) Combustion device for increasing / decreasing fan rotation speed and ventilation path flow area
JP2005147558A (en) Boiler performing low combustion by small-capacity burner
US5319919A (en) Method for controlling gas turbine combustor
JP2023034570A (en) boiler
JP7070090B2 (en) boiler
JP3335282B2 (en) Air volume adjustment method using boiler inverter device
JP3309734B2 (en) Combustion equipment
JP3022250B2 (en) Blow control method for three-position combustion control boiler
JP2022047101A (en) boiler
JP2006138561A (en) Combustion apparatus
JP4256928B2 (en) Combustion air supply control device
JP4206617B2 (en) Desulfurization ventilator control method for boiler plant
JPH07145928A (en) Method and apparatus for controlling fuel gas
JP2019039636A (en) Control method of hydrogen gas combustion burner
JP3131805B2 (en) Fuel distribution control device for gas turbine combustor
JP2001241653A (en) Combustion equipment
JPH1163490A (en) Control method for combustor
JPS63273724A (en) Cross limit circuit for low o2 combustion
JPH11148606A (en) Boiler capable of controlling combustion waste gas circulation amount
JPH116614A (en) Control method of ventilation upon closing shift of desulfurization bypass damper for desulfurizing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22759421

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22759421

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP