WO2022181343A1 - Cooling device - Google Patents

Cooling device Download PDF

Info

Publication number
WO2022181343A1
WO2022181343A1 PCT/JP2022/005181 JP2022005181W WO2022181343A1 WO 2022181343 A1 WO2022181343 A1 WO 2022181343A1 JP 2022005181 W JP2022005181 W JP 2022005181W WO 2022181343 A1 WO2022181343 A1 WO 2022181343A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat pipes
flow path
cooling device
heat pipe
Prior art date
Application number
PCT/JP2022/005181
Other languages
French (fr)
Japanese (ja)
Inventor
和宏 西川
雅昭 花野
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN202280017129.6A priority Critical patent/CN116917685A/en
Publication of WO2022181343A1 publication Critical patent/WO2022181343A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to cooling devices.
  • cooling devices having heat pipes are known.
  • cooling devices with heat pipes are used as heat sinks for vehicles.
  • Conventional cooling devices have multiple heat pipes.
  • the heat pipes extend in a predetermined direction and are arranged in a direction perpendicular to the predetermined direction (see Patent Document 1, for example).
  • a conventional heat pipe has a working fluid in the interior space.
  • the heat pipe In order to seal this working fluid in the internal space, the heat pipe has, for example, a seal at one end.
  • the sealing part is, for example, a welded part and a part with a low cooling function. For this reason, there is a possibility that the heat source will be insufficiently cooled in the sealed portion of the heat pipe and its surroundings.
  • An object of the present invention is to cool a heat source well when using a heat pipe.
  • An exemplary cooling device of the present invention comprises a channel through which a coolant flows and a plurality of heat pipes.
  • the heat pipes extend from the upstream side toward the downstream side of the channel and are arranged in a direction perpendicular to the direction in which the heat pipes extend.
  • the heat pipe has a housing with an interior space in which the working fluid is placed, and a sealing portion that seals the working fluid in the interior space. At least one seal is positioned upstream of the flow path.
  • the heat source can be well cooled when the heat pipe is used.
  • FIG. 1 is an exploded perspective view of a cooling device according to an embodiment.
  • FIG. 2 is a perspective view when the cooling device according to the embodiment is viewed from below.
  • FIG. 3 is a cross-sectional view of the support plate according to the embodiment.
  • FIG. 4 is a cross-sectional view of the heat pipe according to the embodiment.
  • FIG. 5 is a schematic diagram showing an arrangement pattern of heat pipes according to the embodiment.
  • FIG. 6 is a schematic diagram showing a first modification of the arrangement pattern of the heat pipes.
  • FIG. 7 is a schematic diagram showing a second modification of the arrangement pattern of the heat pipes.
  • FIG. 8 is a plan view when an upper plate having pin fins according to a modification is viewed from above.
  • the vertical direction is defined such that the side on which the cooling device 100 is arranged with respect to the heat source 200 is the top, and the side on which the heat source 200 is arranged with respect to the cooling device 100 is the bottom. Note that this definition of the vertical direction does not limit the actual orientation and positional relationship of each component.
  • FIG. 1 is an exploded perspective view of a cooling device 100 according to an embodiment.
  • FIG. 2 is a perspective view when the cooling device 100 according to the embodiment is viewed from below.
  • a heat source 200 cooled by the cooling device 100 is illustrated.
  • a cooling device 100 is a device that cools a plurality of heat sources 200 .
  • the number of heat sources 200 assigned to a single cooling device 100 is not particularly limited. For example, multiple heat sources 200 are arranged in one direction.
  • Heat source 200 is, for example, an inverter power transistor.
  • An inverter is provided, for example, in a traction motor for driving wheels of a vehicle.
  • the power transistor is, for example, an IGBT (Insulated Gate Bipolar Transistor).
  • the cooling device 100 includes a channel 10 through which a coolant flows.
  • a coolant is, for example, a liquid.
  • the cooling device 100 also includes a cover 1 .
  • the cover 1 is, for example, a member called a water jacket.
  • the cover 1 is arranged above the upper plate 2 .
  • the upper plate 2 has a substantially rectangular shape when viewed from above and below.
  • a cover 1 covers the upper surface of the upper plate 2 .
  • the cover 1 has channels 10 in its inner region. In other words, channel 10 is provided in the region between cover 1 and upper plate 2 . Coolant flows along the upper surface of the upper plate 2 in the area between the cover 1 and the upper plate 2 .
  • the cover 1 has an upper wall portion 11 and side wall portions 12 .
  • the upper wall portion 11 has a substantially rectangular shape when viewed in the vertical direction.
  • the side wall portion 12 extends downward from the outer edge of the upper wall portion 11 .
  • a lower end of the side wall portion 12 contacts the upper surface of the upper plate 2 .
  • the lower ends of the side walls 12 are joined to the upper surface of the upper plate 2 .
  • the cover 1 has a supply port 101 through which the coolant is supplied to the upstream side of the channel 10 . Further, the cover 1 has a discharge port 102 through which the refrigerant is discharged on the downstream side of the flow path 10 .
  • the coolant flows from the supply port 101 side of the cover 1 toward the discharge port 102 side.
  • the cover 1 has a supply port 101 and a discharge port 102 in the upper wall portion 11 .
  • the cover 1 has a supply port 101 on one side in the longitudinal direction of the upper wall portion 11 and a discharge port 102 on the other side when viewed from above and below.
  • the supply port 101 and the discharge port 102 are through-holes that vertically pass through the upper wall portion 11 .
  • the supply port 101 and the discharge port 102 may be provided in the side wall portion 12 .
  • Tubes (not shown) are arranged at the supply port 101 and the discharge port 102 . Then, the coolant is supplied to the region between the cover 1 and the upper plate 2, that is, the flow path 10, through the tube on the supply port 101 side. Also, the coolant is discharged from the region between the cover 1 and the upper plate 2, that is, the flow path 10, through the tube on the discharge port 102 side.
  • the cooling device 100 also includes fins 3 . Fins 3 protrude upward from the upper surface of upper plate 2 .
  • the upper plate 2 has fins 3 on its upper surface. Fins 3 may be integral with upper plate 2 .
  • the number of fins 3 is plural.
  • Fins 3 extend from the upstream side of channel 10 toward the downstream side.
  • the fins 3 are flat. Fins 3 extend parallel to the longitudinal direction of upper plate 2 . Further, the fins 3 are arranged at intervals in the lateral direction of the upper plate 2 .
  • Fins 3 are arranged in the area between the cover 1 and the top plate 2 .
  • the fins 3 are arranged in the area through which the coolant flows.
  • the area between the fins 3 adjacent to each other in the lateral direction of the upper plate 2 becomes the flow path 10 .
  • the cooling device 100 has a support plate 4 .
  • the cooling device 100 also includes a plurality of heat pipes 5 .
  • a metal such as copper is used.
  • a metal such as copper is used.
  • a support plate 4 supports the heat pipes 5 .
  • the support plate 4 has a support area 40 .
  • the support plate 4 contacts the heat pipes 5 at support areas 40 .
  • the support area 40 is an area of the upper surface of the support plate 4 . That is, the heat pipes 5 are arranged on the upper surface of the support plate 4 . In other words, the support plate 4 supports the heat pipes 5 on the upper surface.
  • the support plate 4 has a substantially rectangular shape whose longitudinal direction is the same as the longitudinal direction of the upper plate 2 and whose lateral direction is the same as the lateral direction of the upper plate 2 when viewed from above. That is, the fins 3 extend parallel to the longitudinal direction of the support plate 4 and are arranged at intervals in the lateral direction of the support plate 4 . In this configuration, the coolant flowing through the flow path 10 is directed from one side of the support plate 4 in the longitudinal direction to the other side. In other words, one longitudinal side of the support plate 4 is the upstream side of the channel 10 , and the other longitudinal side is the downstream side of the channel 10 .
  • a support plate 4 is arranged below the upper plate 2 .
  • the upper plate 2 is arranged above the heat pipes 5 . That is, the heat pipe 5 is covered with the upper plate 2 from above. For example, heat pipes 5 contact upper plate 2 .
  • a heat source 200 is arranged below the support plate 4 .
  • the heat sources 200 are arranged at intervals in the longitudinal direction of the support plate 4 . That is, the longitudinal direction of the support plate 4 is the direction in which the heat sources 200 are arranged. Moreover, the heat source 200 contacts the lower surface of the support plate 4, for example. Note that the heat source 200 may indirectly contact the lower surface of the support plate 4 via, for example, a thermal sheet.
  • first direction the longitudinal direction of the support plate 4
  • second direction the lateral direction of the support plate 4
  • first direction is denoted by D1
  • D2 the second direction
  • the heat pipe 5 extends from the upstream side toward the downstream side of the flow path 10 .
  • the heat pipe 5 extends linearly in a direction parallel to the first direction D1 when viewed from above.
  • the heat pipes 5 extend in the same direction as the fins 3 .
  • heat pipe 5 extends in the direction in which heat sources 200 are arranged.
  • the cooling device 100 In the configuration in which the coolant flows in the direction in which the fins 3 extend, by extending the heat pipes 5 in the same direction as the fins 3, the cooling device 100 having the heat pipes 5 extending from the upstream side to the downstream side of the flow path 10 can be easily obtained. can be obtained. In the configuration in which the heat pipes 5 extend in the direction in which the heat sources 200 are arranged, all the heat sources 200 can overlap the heat pipes 5 when viewed from above and below, so all the heat sources 200 can be cooled well.
  • the heat pipes 5 are arranged in a direction perpendicular to the direction in which the heat pipes 5 extend. Note that the heat pipe 5 extends in the first direction D1. That is, the heat pipes 5 are arranged in the second direction D2 orthogonal to the first direction D1.
  • the cross-sectional shape of the heat pipe 5 cut along the second direction D2 is a flat shape elongated in the second direction D2.
  • the cross-sectional shape of the heat pipe 5 is not particularly limited.
  • a cross-sectional shape of the heat pipe 5 cut along the second direction D2 may be circular.
  • FIG. 3 is a cross-sectional view of the support plate 4 according to the embodiment.
  • FIG. 3 shows a cross-sectional structure when the support plate 4 is cut along the second direction D2.
  • the heat pipe 5 is indicated by a dashed line.
  • the support plate 4 has a plurality of support portions 41 supporting the plurality of heat pipes 5 in the support area 40 .
  • the support portion 41 is a concave portion recessed downward from the upper surface of the support plate 4 .
  • the support portion 41 extends linearly in the first direction D1. That is, the support portion 41 extends in the same direction as the heat pipe 5 extends. Further, the support portions 41 are arranged at intervals in the second direction D2.
  • One heat pipe 5 is arranged on each support portion 41 . At least part of the heat pipe 5 arranged on the support portion 41 contacts the inner surface of the support portion 41, that is, the inner surface of the recess. Note that the heat pipe 5 may indirectly contact the inner surface of the support portion 41 via, for example, a thermally conductive adhesive member.
  • FIG. 4 is a cross-sectional view of the heat pipe 5 according to the embodiment.
  • FIG. 4 shows a cross-sectional structure when the heat pipe 5 is cut along the first direction D1. Note that FIG. 4 shows the sealing portion 52 of the heat pipe 5 and its surroundings in an enlarged manner.
  • the heat pipe 5 has a housing 51 and a sealing portion 52 .
  • the housing 51 is a tubular body extending in the first direction D1.
  • the housing 51 has an interior space 50 in which the hydraulic fluid is arranged.
  • the working fluid is pure water, for example. Alcohol or the like can also be used as the working fluid.
  • the sealing portion 52 seals the working fluid in the internal space 50 .
  • the heat pipe 5 has a capillary structure on the inner wall. That is, the internal space 50 of the heat pipe 5 is a space surrounded by a capillary structure.
  • the working fluid is vaporized in the heating portion of the heat pipe 5 and the vaporized working fluid moves to the upstream side of the flow path 10 .
  • the upstream side of the flow path 10 is the side to which the low-temperature coolant is supplied. That is, the vaporized working fluid moves to the low temperature portion of the heat pipe 5 .
  • the working fluid is liquefied at the low temperature portion of the heat pipe 5 and moves to the heating portion of the heat pipe 5 by capillary action. Heat is transported by the movement of the working fluid in this way.
  • a pipe with one end open is prepared as the material for the heat pipe 5 .
  • a working fluid is injected into the internal space of the material pipe, and then sealed.
  • the opening at one end of the material pipe is closed by welding.
  • the hydraulic fluid injected into the internal space of the material pipe is sealed.
  • heat pipe 5 having sealing portion 52 at one end is formed. That is, the sealing portion 52 is a processed portion processed to seal the working fluid in the internal space 50 .
  • the sealing method is not particularly limited. The shape and size of the sealing portion 52 vary depending on the sealing method.
  • FIG. 5 is a schematic diagram showing an arrangement pattern of the heat pipes 5 according to the embodiment.
  • the sealing portion 52 is indicated by a hatched pattern
  • the heat source 200 is indicated by a dashed line.
  • the left side in the first direction D1 in FIG. 5 is the upstream side of the flow channel 10, and the right side in the first direction D1 in FIG.
  • the number of heat pipes 5 is not particularly limited.
  • the number of heat pipes 5 may be more or less than seven.
  • the number of heat pipes 5 may be odd or even.
  • the heat pipes 5 are arranged at intervals in the second direction D2.
  • the sealed portion 52 is a welded portion, and is a portion where heat is not substantially transported by the working fluid. That is, the sealing portion 52 is a portion secured as a welding margin for sealing the hydraulic fluid, and has a low cooling function.
  • At least one sealing portion 52 is arranged on the upstream side of the channel 10 . That is, at least one sealing portion 52 is arranged on one side in the first direction D1, which is the upstream side of the channel 10 .
  • a low-function portion having a low cooling function can be arranged on the upstream side of the flow path 10 .
  • the heat source 200 located on the downstream side of the flow path 10 heat is smoothly transported to the upstream side of the flow path 10 .
  • the heat source 200 positioned on the downstream side of the flow path 10 can be cooled well compared to a configuration in which all the sealing portions 52 of the heat pipes 5 are arranged on the downstream side of the flow path 10 . That is, when the heat pipe 5 is used, the heat source 200 can be well cooled.
  • a region of the cooling device 100 on the upstream side of the flow path 10 is a region where the low-temperature coolant continues to be supplied, and has a lower temperature than a region on the downstream side of the flow path 10 . Therefore, by arranging the sealing portion 52 of the heat pipe 5 on the upstream side of the flow path 10, even if the sealing portion 52 does not function, the heat source 200 located in the sealing portion 52 and its periphery, that is, The heat source 200 positioned on the upstream side of the flow path 10 can be well cooled.
  • the heat pipe 5 having the sealing portion 52 on the upstream side of the flow path 10 and the heat pipe 5 having the sealing portion 52 on the downstream side of the flow path 10 are mixed.
  • the plurality of heat pipes 5 includes first heat pipes 5A and second heat pipes 5B.
  • the first heat pipe 5 ⁇ /b>A is the heat pipe 5 having the sealing portion 52 on the upstream side of the flow path 10 .
  • the second heat pipe 5B is the heat pipe 5 having the sealing portion 52 on the downstream side of the flow path 10.
  • the sealing portions 52 of all the heat pipes 5 may be arranged upstream of the flow path 10 .
  • the heat of the heat source 200 located downstream of the flow path 10 is smoothly transferred to the upstream side of the flow path 10, i. can be transported.
  • the heat of the heat source 200 located upstream of the flow path 10 can be smoothly transported to the upstream side of the flow path 10, that is, the low temperature section, by the second heat pipe 5B.
  • the plurality of heat sources 200 including the heat source 200 located downstream of the flow path 10 and the heat source 200 located upstream of the flow path 10 can be evenly cooled.
  • first heat pipes 5A For example, more than half of the plurality of heat pipes 5 are first heat pipes 5A. When the number of heat pipes 5 is odd, the number of first heat pipes 5A is greater than the number of second heat pipes 5B. If the total number of heat pipes 5 is seven, the number of first heat pipes 5A is four or more. When the number of heat pipes 5 is even, the number of first heat pipes 5A is the same as or greater than the number of second heat pipes 5B.
  • the sealing portions 52 of more than half of the heat pipes 5 are arranged on the upstream side of the flow path 10 . That is, the number of heat pipes 5 in which the low-function parts are arranged downstream of the flow path 10 is reduced. Thereby, the heat source 200 located downstream of the flow path 10 can be cooled satisfactorily.
  • the support plate 4 has a mixed region 401 in at least part of the support region 40 .
  • a mixed region 401 is a region where the first heat pipe 5A and the second heat pipe 5B are mixed.
  • the mixed area 401 is an area in which the first heat pipes 5A and the second heat pipes 5B are alternately arranged.
  • the first heat pipes 5A having the first number as one unit and the second heat pipes 5B having the second number as one unit are alternately arranged in the second direction D2.
  • the mixed region 401 includes a first heat pipe 5A capable of smoothly transporting the heat of the heat source 200 located downstream of the flow path 10 to the low temperature section and a heat pipe 5A capable of smoothly transporting the heat of the heat source 200 located upstream of the flow path 10 to the low temperature area.
  • a second heat pipe 5B that can be transported to a part is mixed.
  • the support plate 4 has a mixed area 401 over the entire support area 40 .
  • the support region 40 does not have a region where the first heat pipes 5A exceeding the first number are arranged continuously. Further, in the support area 40, there is no area in which the second heat pipes 5B exceeding the second number are continuously arranged. In other words, the area where the first heat pipes 5A and the second heat pipes 5B are alternately arranged reaches from one end of the support area 40 to the other end in the second direction D2.
  • a plurality of heat sources 200 including the heat source 200 positioned downstream of the flow path 10 and the heat source 200 positioned upstream of the flow path 10 are distributed over the entire support area 40 . can be cooled evenly.
  • first number and the second number are not particularly limited.
  • the first number and the second number may be the same number.
  • the first number and the second number may be one.
  • the same number of the first heat pipes 5A and the second heat pipes 5B are alternately arranged.
  • the first heat pipes 5A and the second heat pipes 5B are alternately arranged one by one.
  • the heat sources 200 positioned downstream of the flow path 10 and the heat sources 200 positioned upstream of the flow path 10 In addition to being able to evenly cool the plurality of heat sources 200 including , cooling unevenness in the second direction D2 can be suppressed.
  • the first heat pipes 5A and the second heat pipes 5B one by one in the mixed region 401 uneven cooling in the second direction D2 can be further suppressed.
  • the configuration in which the first heat pipes 5A and the second heat pipes 5B are alternately arranged can reduce the difference in cooling performance between one side and the other side in the second direction D2. That is, cooling unevenness in the second direction D2 can be suppressed.
  • FIG. 6 is a schematic diagram showing a first modification of the arrangement pattern of the heat pipes 5 .
  • FIG. 7 is a schematic diagram showing a second modification of the arrangement pattern of the heat pipes 5.
  • the sealing portion 52 is indicated by a hatched pattern. 6 and 7 respectively show 11 and 13 heat pipes 5 for convenience, but the number of heat pipes 5 is not particularly limited.
  • the left side in the first direction D1 in FIGS. 6 and 7 is the upstream side of the flow channel 10, and the right side in the first direction D1 in FIGS.
  • the arrangement pattern of the heat pipes 5 can be changed according to the size of the cooling device 100, installation location, application, object to be cooled, and the like. Also, the arrangement pattern of the heat pipes 5 can be changed according to the total number, shape and material of the heat pipes 5 .
  • the heat source 200 located on the downstream side of the flow path 10 can be cooled well compared to the configuration in which all the sealing portions 52 of the heat pipes 5 are arranged on the downstream side of the flow path 10. can be obtained.
  • FIGS. 6 and 7 Modifications of the arrangement pattern of the heat pipes 5 will be described below with reference to FIGS. 6 and 7.
  • FIG. 6 and 7 The modified examples shown in FIGS. 6 and 7 are only examples, and various other modified examples can be adopted.
  • the support plate 4 has a mixed region 401 over the entire support region 40 .
  • the first number and the second number are not the same.
  • the first number is two and the second number is one. That is, two first heat pipes 5A and one second heat pipe 5B are alternately arranged in the second direction D2.
  • first number and the second number can be changed as appropriate.
  • each of the first number and the second number may be plural.
  • the first number may be smaller than the second number.
  • the support plate 4 has a mixed region 401 and a non-mixed region 402 in the support region 40.
  • the second modification shown in FIG. Only one of the first heat pipe 5A and the second heat pipe 5B is arranged in the non-mixed area 402 .
  • the non-mixed area 402 only the first heat pipes 5A are arranged.
  • the support plate 4 has non-mixed areas 402 on one side and the other side in the second direction D2.
  • the support plate 4 has a mixed region 401 between the non-mixed region 402 on one side and the non-mixed region 402 on the other side in the second direction D2. That is, the support plate 4 has the mixed region 401 in the central portion in the second direction D2.
  • the second heat pipes 5B may be arranged in the non-mixed area 402 .
  • the regions on both sides in the second direction D2 may be the mixed regions 401, and the central portion in the second direction D2 may be the non-mixed region 402.
  • FIG. a plurality of mixed areas 401 and a plurality of non-mixed areas 402 may exist.
  • FIG. 8 is a plan view of the upper plate 2 having the pin fins 30 according to the modification as viewed from above.
  • the cover 1 is indicated by dashed lines.
  • the fin 3 according to the embodiment is a plate-shaped member linearly extending in the first direction D1. Therefore, in the embodiment, the channel 10 extends parallel to the first direction D1.
  • the cooling device 100 includes pin fins 30 as shown in FIG.
  • a pin fin 30 according to a modification has a plurality of pins 31 .
  • the pins 31 of the pin fins 30 protrude upward from the upper surface of the upper plate 2 . That is, the pin 31 protrudes in a direction perpendicular to the direction in which the heat pipes 5 extend and the direction in which the heat pipes 5 are arranged.
  • the coolant flows so as to weave between the pins 31 of the pin fins 30 . Therefore, the coolant easily spreads in the second direction D2. However, the coolant supplied from supply port 101 of cover 1 is finally discharged from discharge port 102 of cover 1 . That is, even when the pin fins 30 are used, one side in the first direction D1 is the upstream side of the channel 10 and the other side in the first direction D1 is the downstream side of the channel 10 .
  • the heat pipe 5 is extended in the first direction D1, and the sealing portion 52 is arranged on one side of the first direction D1, that is, on the supply port 101 side.
  • a low-function portion of the pipe 5 can be placed upstream of the flow path 10 .
  • the present invention can be used, for example, for cooling various heat sources such as IGBTs.

Abstract

This cooling device comprises a flow path through which a refrigerant flows, and a plurality of heat pipes. The heat pipes extend from the upstream side of the flow path toward the downstream side thereof, and are arrayed in a direction orthogonal to the direction in which the heat pipes extend. The heat pipes each have a casing that has an internal space in which a working fluid is disposed, and a sealing part that seals the working fluid in the internal space. At least one of the sealing parts is disposed on the upstream side of the flow path.

Description

冷却装置Cooling system
本発明は、冷却装置に関する。 The present invention relates to cooling devices.
従来、ヒートパイプを有する冷却装置が知られている。たとえば、ヒートパイプを有する冷却装置は、車両搭載用ヒートシンクとして用いられる。従来の冷却装置は、複数のヒートパイプを有する。ヒートパイプは、所定方向に延び、かつ、所定方向と直交する方向に配列される(たとえば、特許文献1参照)。 2. Description of the Related Art Conventionally, cooling devices having heat pipes are known. For example, cooling devices with heat pipes are used as heat sinks for vehicles. Conventional cooling devices have multiple heat pipes. The heat pipes extend in a predetermined direction and are arranged in a direction perpendicular to the predetermined direction (see Patent Document 1, for example).
日本国公開公報特開2006-278923Japanese Unexamined Patent Publication No. 2006-278923
従来のヒートパイプは、作動液を内部空間に有する。この作動液を内部空間に封止するため、ヒートパイプは、たとえば、一方端に封止部を有する。封止部は、たとえば、溶接された部分であり、冷却機能が低い部分である。このため、ヒートパイプの封止部およびその周辺では、熱源の冷却が不十分になる可能性がある。  A conventional heat pipe has a working fluid in the interior space. In order to seal this working fluid in the internal space, the heat pipe has, for example, a seal at one end. The sealing part is, for example, a welded part and a part with a low cooling function. For this reason, there is a possibility that the heat source will be insufficiently cooled in the sealed portion of the heat pipe and its surroundings. 
本発明は、ヒートパイプを用いる場合において、熱源を良好に冷却することを目的とする。 An object of the present invention is to cool a heat source well when using a heat pipe.
本発明の例示的な冷却装置は、冷媒が流れる流路と、複数のヒートパイプと、を備える。ヒートパイプは、流路の上流側から下流側に向かって延び、かつ、ヒートパイプが延びる方向と直交する方向に配列される。ヒートパイプは、作動液が配置される内部空間を有する筐体と、作動液を内部空間に封止する封止部と、を有する。少なくとも1つの封止部は、流路の上流側に配置される。 An exemplary cooling device of the present invention comprises a channel through which a coolant flows and a plurality of heat pipes. The heat pipes extend from the upstream side toward the downstream side of the channel and are arranged in a direction perpendicular to the direction in which the heat pipes extend. The heat pipe has a housing with an interior space in which the working fluid is placed, and a sealing portion that seals the working fluid in the interior space. At least one seal is positioned upstream of the flow path.
本発明の例示的な冷却装置によれば、ヒートパイプを用いる場合において、熱源を良好に冷却できる。 According to the exemplary cooling device of the present invention, the heat source can be well cooled when the heat pipe is used.
図1は、実施形態に係る冷却装置の分解斜視図である。FIG. 1 is an exploded perspective view of a cooling device according to an embodiment. 図2は、実施形態に係る冷却装置を下方から見た場合の斜視図である。FIG. 2 is a perspective view when the cooling device according to the embodiment is viewed from below. 図3は、実施形態に係る支持プレートの断面図である。FIG. 3 is a cross-sectional view of the support plate according to the embodiment. 図4は、実施形態に係るヒートパイプの断面図である。FIG. 4 is a cross-sectional view of the heat pipe according to the embodiment. 図5は、実施形態に係るヒートパイプの配列パターンを示す模式図である。FIG. 5 is a schematic diagram showing an arrangement pattern of heat pipes according to the embodiment. 図6は、ヒートパイプの配列パターンの第1変形例を示す模式図である。FIG. 6 is a schematic diagram showing a first modification of the arrangement pattern of the heat pipes. 図7は、ヒートパイプの配列パターンの第2変形例を示す模式図である。FIG. 7 is a schematic diagram showing a second modification of the arrangement pattern of the heat pipes. 図8は、変形例に係るピンフィンを有する上プレートを上方から見た場合の平面図である。FIG. 8 is a plan view when an upper plate having pin fins according to a modification is viewed from above.
以下、本発明の例示的な実施形態について、図面を参照しながら説明する。  Exemplary embodiments of the invention are described below with reference to the drawings. 
本明細書では、熱源200に対して冷却装置100が配置される側を上とし、冷却装置100に対して熱源200が配置される側を下として、上下方向を定義する。なお、この上下方向の定義は、各構成要素の実際の向きおよび位置関係を限定するものではない。  In this specification, the vertical direction is defined such that the side on which the cooling device 100 is arranged with respect to the heat source 200 is the top, and the side on which the heat source 200 is arranged with respect to the cooling device 100 is the bottom. Note that this definition of the vertical direction does not limit the actual orientation and positional relationship of each component. 
<1.冷却装置の概略構成> 図1は、実施形態に係る冷却装置100の分解斜視図である。図2は、実施形態に係る冷却装置100を下方から見た場合の斜視図である。図2では、冷却装置100により冷却される熱源200を図示する。  <1. Schematic Configuration of Cooling Device> FIG. 1 is an exploded perspective view of a cooling device 100 according to an embodiment. FIG. 2 is a perspective view when the cooling device 100 according to the embodiment is viewed from below. In FIG. 2, a heat source 200 cooled by the cooling device 100 is illustrated. 
冷却装置100は、複数の熱源200を冷却する装置である。単一の冷却装置100に割り当てられる熱源200の個数は特に限定されない。たとえば、複数の熱源200は、一方向に配列される。  A cooling device 100 is a device that cools a plurality of heat sources 200 . The number of heat sources 200 assigned to a single cooling device 100 is not particularly limited. For example, multiple heat sources 200 are arranged in one direction. 
熱源200は、たとえば、インバータのパワートランジスタである。インバータは、たとえば、車両の車輪を駆動するためのトラクションモータに設けられる。パワートランジスタは、たとえば、IGBT(Insulated Gate Bipolar Transistor)である。  Heat source 200 is, for example, an inverter power transistor. An inverter is provided, for example, in a traction motor for driving wheels of a vehicle. The power transistor is, for example, an IGBT (Insulated Gate Bipolar Transistor). 
冷却装置100は、冷媒が流れる流路10を備える。冷媒は、たとえば、液体である。また、冷却装置100は、カバー1を備える。カバー1は、たとえば、ウォータージャケットと呼ばれる部材である。  The cooling device 100 includes a channel 10 through which a coolant flows. A coolant is, for example, a liquid. The cooling device 100 also includes a cover 1 . The cover 1 is, for example, a member called a water jacket. 
カバー1は、上プレート2の上側に配置される。上プレート2は、上下方向から見て略矩形状である。カバー1は、上プレート2の上面を覆う。カバー1は、流路10を内側領域に有する。言い換えると、流路10は、カバー1と上プレート2との間の領域に設けられる。冷媒は、カバー1と上プレート2との間の領域を上プレート2の上面に沿って流れる。  The cover 1 is arranged above the upper plate 2 . The upper plate 2 has a substantially rectangular shape when viewed from above and below. A cover 1 covers the upper surface of the upper plate 2 . The cover 1 has channels 10 in its inner region. In other words, channel 10 is provided in the region between cover 1 and upper plate 2 . Coolant flows along the upper surface of the upper plate 2 in the area between the cover 1 and the upper plate 2 . 
カバー1は、上壁部11と側壁部12とを有する。上壁部11は、上下方向から見て略矩形状である。側壁部12は、上壁部11の外縁から下方に延びる。側壁部12の下端は、上プレート2の上面に接触する。たとえば、側壁部12の下端は、上プレート2の上面に接合される。  The cover 1 has an upper wall portion 11 and side wall portions 12 . The upper wall portion 11 has a substantially rectangular shape when viewed in the vertical direction. The side wall portion 12 extends downward from the outer edge of the upper wall portion 11 . A lower end of the side wall portion 12 contacts the upper surface of the upper plate 2 . For example, the lower ends of the side walls 12 are joined to the upper surface of the upper plate 2 . 
カバー1は、流路10の上流側に冷媒が供給される供給口101を有する。また、カバー1は、流路10の下流側に冷媒が排出される排出口102を有する。冷媒は、カバー1の供給口101側から排出口102側に向けて流れる。供給口101および排出口102を有するカバー1を用いることにより、冷媒が流れる方向を任意に設定できる。このため、容易に、後述するヒートパイプ5が延びる方向の一方側を流路10の上流側とし、他方側を流路10の下流側とすることができる。言い換えると、容易に、ヒートパイプ5を流路10の上流側から下流側に向かって延びるように配置できる。  The cover 1 has a supply port 101 through which the coolant is supplied to the upstream side of the channel 10 . Further, the cover 1 has a discharge port 102 through which the refrigerant is discharged on the downstream side of the flow path 10 . The coolant flows from the supply port 101 side of the cover 1 toward the discharge port 102 side. By using the cover 1 having the supply port 101 and the discharge port 102, the direction in which the coolant flows can be arbitrarily set. Therefore, one side in the direction in which the heat pipe 5 extends, which will be described later, can be easily set as the upstream side of the flow path 10 , and the other side can be set as the downstream side of the flow path 10 . In other words, the heat pipe 5 can be easily arranged to extend from the upstream side to the downstream side of the channel 10 . 
カバー1は、供給口101および排出口102を上壁部11に有する。カバー1は、たとえば、上下方向から見て、上壁部11の長手方向の一方側に供給口101を有し、他方側に排出口102を有する。供給口101および排出口102は、貫通孔であり、上壁部11を上下方向に貫通する。なお、供給口101および排出口102は、側壁部12に設けられてもよい。  The cover 1 has a supply port 101 and a discharge port 102 in the upper wall portion 11 . For example, the cover 1 has a supply port 101 on one side in the longitudinal direction of the upper wall portion 11 and a discharge port 102 on the other side when viewed from above and below. The supply port 101 and the discharge port 102 are through-holes that vertically pass through the upper wall portion 11 . Note that the supply port 101 and the discharge port 102 may be provided in the side wall portion 12 . 
なお、供給口101および排出口102には、チューブ(図示せず)が配置される。そして、供給口101側のチューブを介して、カバー1と上プレート2との間の領域、すなわち、流路10に冷媒が供給される。また、排出口102側のチューブを介して、カバー1と上プレート2との間の領域、すなわち、流路10から冷媒が排出される。  Tubes (not shown) are arranged at the supply port 101 and the discharge port 102 . Then, the coolant is supplied to the region between the cover 1 and the upper plate 2, that is, the flow path 10, through the tube on the supply port 101 side. Also, the coolant is discharged from the region between the cover 1 and the upper plate 2, that is, the flow path 10, through the tube on the discharge port 102 side. 
また、冷却装置100は、フィン3を備える。フィン3は、上プレート2の上面から上方に突出する。言い換えると、上プレート2は、フィン3を上面に有する。フィン3は、上プレート2と一体であってもよい。たとえば、フィン3の個数は複数である。  The cooling device 100 also includes fins 3 . Fins 3 protrude upward from the upper surface of upper plate 2 . In other words, the upper plate 2 has fins 3 on its upper surface. Fins 3 may be integral with upper plate 2 . For example, the number of fins 3 is plural. 
フィン3は、流路10の上流側から下流側に向かって延びる。たとえば、フィン3は、平板状である。そして、フィン3は、上プレート2の長手方向と平行に延びる。また、フィン3は、上プレート2の短手方向に間隔を隔てて配列される。  Fins 3 extend from the upstream side of channel 10 toward the downstream side. For example, the fins 3 are flat. Fins 3 extend parallel to the longitudinal direction of upper plate 2 . Further, the fins 3 are arranged at intervals in the lateral direction of the upper plate 2 . 
 フィン3は、カバー1と上プレート2との間の領域に配置される。言い換えると、フィ
ン3は、冷媒が流れる領域に配置される。その結果、上プレート2の短手方向に隣り合うフィン3間の領域が流路10となる。 
Fins 3 are arranged in the area between the cover 1 and the top plate 2 . In other words, the fins 3 are arranged in the area through which the coolant flows. As a result, the area between the fins 3 adjacent to each other in the lateral direction of the upper plate 2 becomes the flow path 10 .
ここで、冷却装置100は、支持プレート4を備える。また、冷却装置100は、複数のヒートパイプ5を備える。支持プレート4の構成材料としては、たとえば、銅などの金属が用いられる。ヒートパイプ5の構成材料としては、たとえば、銅などの金属が用いられる。  Here, the cooling device 100 has a support plate 4 . The cooling device 100 also includes a plurality of heat pipes 5 . As a constituent material of the support plate 4, for example, a metal such as copper is used. As a constituent material of the heat pipe 5, for example, a metal such as copper is used. 
支持プレート4は、ヒートパイプ5を支持する。具体的には、支持プレート4は、支持領域40を有する。支持プレート4は、支持領域40でヒートパイプ5と接触する。支持領域40は、支持プレート4の上面の一領域である。すなわち、ヒートパイプ5は、支持プレート4の上面に配置される。言い換えると、支持プレート4は、ヒートパイプ5を上面で支持する。  A support plate 4 supports the heat pipes 5 . Specifically, the support plate 4 has a support area 40 . The support plate 4 contacts the heat pipes 5 at support areas 40 . The support area 40 is an area of the upper surface of the support plate 4 . That is, the heat pipes 5 are arranged on the upper surface of the support plate 4 . In other words, the support plate 4 supports the heat pipes 5 on the upper surface. 
支持プレート4は、上下方向から見て、上プレート2の長手方向と同方向を長手方向とし、上プレート2の短手方向と同方向を短手方向とする略矩形状である。すなわち、フィン3は、支持プレート4の長手方向と平行に延び、かつ、支持プレート4の短手方向に間隔を隔てて配列される。この構成では、流路10を流れる冷媒は、支持プレート4の長手方向の一方側から他方側に向かう。言い換えると、支持プレート4の長手方向の一方側が流路10の上流側であり、長手方向の他方側が流路10の下流側である。  The support plate 4 has a substantially rectangular shape whose longitudinal direction is the same as the longitudinal direction of the upper plate 2 and whose lateral direction is the same as the lateral direction of the upper plate 2 when viewed from above. That is, the fins 3 extend parallel to the longitudinal direction of the support plate 4 and are arranged at intervals in the lateral direction of the support plate 4 . In this configuration, the coolant flowing through the flow path 10 is directed from one side of the support plate 4 in the longitudinal direction to the other side. In other words, one longitudinal side of the support plate 4 is the upstream side of the channel 10 , and the other longitudinal side is the downstream side of the channel 10 . 
支持プレート4は、上プレート2の下方に配置される。これにより、ヒートパイプ5の上方に上プレート2が配置される。すなわち、ヒートパイプ5は、上プレート2によって上方から覆われる。たとえば、ヒートパイプ5は、上プレート2に接触する。  A support plate 4 is arranged below the upper plate 2 . Thereby, the upper plate 2 is arranged above the heat pipes 5 . That is, the heat pipe 5 is covered with the upper plate 2 from above. For example, heat pipes 5 contact upper plate 2 . 
熱源200は、支持プレート4の下側に配置される。熱源200は、支持プレート4の長手方向に間隔を隔てて配列される。すなわち、支持プレート4の長手方向が熱源200の配列方向となる。また、熱源200は、たとえば、支持プレート4の下面に接触する。なお、熱源200は、たとえば、サーマルシートなどを介して支持プレート4の下面に間接的に接触してもよい。  A heat source 200 is arranged below the support plate 4 . The heat sources 200 are arranged at intervals in the longitudinal direction of the support plate 4 . That is, the longitudinal direction of the support plate 4 is the direction in which the heat sources 200 are arranged. Moreover, the heat source 200 contacts the lower surface of the support plate 4, for example. Note that the heat source 200 may indirectly contact the lower surface of the support plate 4 via, for example, a thermal sheet. 
以下、本明細書では、支持プレート4の長手方向を「第1方向」と呼び、支持プレート4の短手方向を「第2方向」と呼ぶ。また、第1方向に符号D1を付し、第2方向に符号D2を付す。第1方向D1および第2方向D2は、上下方向と直交する。  Hereinafter, in this specification, the longitudinal direction of the support plate 4 will be referred to as the "first direction", and the lateral direction of the support plate 4 will be referred to as the "second direction". Also, the first direction is denoted by D1, and the second direction is denoted by D2. The first direction D1 and the second direction D2 are orthogonal to the vertical direction. 
ヒートパイプ5は、流路10の上流側から下流側に向かって延びる。たとえば、ヒートパイプ5は、上下方向から見て、第1方向D1と平行な方向に直線状に延びる。言い換えると、ヒートパイプ5は、フィン3と同方向に延びる。さらに言い換えると、ヒートパイプ5は、熱源200が配列する方向に延びる。  The heat pipe 5 extends from the upstream side toward the downstream side of the flow path 10 . For example, the heat pipe 5 extends linearly in a direction parallel to the first direction D1 when viewed from above. In other words, the heat pipes 5 extend in the same direction as the fins 3 . In other words, heat pipe 5 extends in the direction in which heat sources 200 are arranged. 
フィン3が延びる方向に冷媒を流す構成では、ヒートパイプ5をフィン3と同方向に延ばすことにより、容易に、流路10の上流側から下流側に向かって延びるヒートパイプ5を備える冷却装置100を得ることができる。ヒートパイプ5が熱源200の配列方向に延びる構成では、上下方向から見て、全ての熱源200をヒートパイプ5と重ねることができるので、全ての熱源200を良好に冷却できる。  In the configuration in which the coolant flows in the direction in which the fins 3 extend, by extending the heat pipes 5 in the same direction as the fins 3, the cooling device 100 having the heat pipes 5 extending from the upstream side to the downstream side of the flow path 10 can be easily obtained. can be obtained. In the configuration in which the heat pipes 5 extend in the direction in which the heat sources 200 are arranged, all the heat sources 200 can overlap the heat pipes 5 when viewed from above and below, so all the heat sources 200 can be cooled well. 
また、ヒートパイプ5は、ヒートパイプ5が延びる方向と直交する方向に配列される。なお、ヒートパイプ5は、第1方向D1に延びる。すなわち、ヒートパイプ5は、第1方向D1と直交する第2方向D2に配列される。  Also, the heat pipes 5 are arranged in a direction perpendicular to the direction in which the heat pipes 5 extend. Note that the heat pipe 5 extends in the first direction D1. That is, the heat pipes 5 are arranged in the second direction D2 orthogonal to the first direction D1. 
たとえば、ヒートパイプ5の第2方向D2に沿って切断した断面形状は、第2方向D2に長い扁平形状である。ただし、ヒートパイプ5の断面形状は特に限定されない。ヒートパイプ5の第2方向D2に沿って切断した断面形状は、円形状であってもよい。  For example, the cross-sectional shape of the heat pipe 5 cut along the second direction D2 is a flat shape elongated in the second direction D2. However, the cross-sectional shape of the heat pipe 5 is not particularly limited. A cross-sectional shape of the heat pipe 5 cut along the second direction D2 may be circular. 
<2.支持プレートの構成> 図3は、実施形態に係る支持プレート4の断面図である。図3では、支持プレート4を第2方向D2に沿って切断した場合の断面構造を示す。また、図3では、ヒートパイプ5を破線で示す。  <2. Configuration of Support Plate> FIG. 3 is a cross-sectional view of the support plate 4 according to the embodiment. FIG. 3 shows a cross-sectional structure when the support plate 4 is cut along the second direction D2. Moreover, in FIG. 3, the heat pipe 5 is indicated by a dashed line. 
支持プレート4は、複数のヒートパイプ5をそれぞれ支持する複数の支持部41を支持領域40に有する。支持部41は、支持プレート4の上面から下方に凹む凹部である。支持部41は、第1方向D1に直線状に延びる。すなわち、支持部41は、ヒートパイプ5が延びる方向と同方向に延びる。また、支持部41は、第2方向D2に間隔を隔てて配列される。  The support plate 4 has a plurality of support portions 41 supporting the plurality of heat pipes 5 in the support area 40 . The support portion 41 is a concave portion recessed downward from the upper surface of the support plate 4 . The support portion 41 extends linearly in the first direction D1. That is, the support portion 41 extends in the same direction as the heat pipe 5 extends. Further, the support portions 41 are arranged at intervals in the second direction D2. 
支持部41には、ヒートパイプ5が1つずつ配置される。支持部41に配置されるヒートパイプ5の少なくとも一部は、支持部41の内面、すなわち、凹部の内面に接触する。なお、ヒートパイプ5は、たとえば、熱伝導性接着部材などを介して支持部41の内面に間接的に接触してもよい。  One heat pipe 5 is arranged on each support portion 41 . At least part of the heat pipe 5 arranged on the support portion 41 contacts the inner surface of the support portion 41, that is, the inner surface of the recess. Note that the heat pipe 5 may indirectly contact the inner surface of the support portion 41 via, for example, a thermally conductive adhesive member. 
<3.ヒートパイプの構成> 図4は、実施形態に係るヒートパイプ5の断面図である。図4では、ヒートパイプ5を第1方向D1に沿って切断した場合の断面構造を示す。なお、図4では、ヒートパイプ5の封止部52およびその周辺を拡大して示す。  <3. Configuration of Heat Pipe> FIG. 4 is a cross-sectional view of the heat pipe 5 according to the embodiment. FIG. 4 shows a cross-sectional structure when the heat pipe 5 is cut along the first direction D1. Note that FIG. 4 shows the sealing portion 52 of the heat pipe 5 and its surroundings in an enlarged manner. 
ヒートパイプ5は、筐体51と、封止部52とを有する。筐体51は、第1方向D1に延びる筒状体である。筐体51は、作動液が配置される内部空間50を有する。作動液は、たとえば、純水である。作動液としてアルコールなどを用いることもできる。封止部52は、内部空間50に作動液を封止する。  The heat pipe 5 has a housing 51 and a sealing portion 52 . The housing 51 is a tubular body extending in the first direction D1. The housing 51 has an interior space 50 in which the hydraulic fluid is arranged. The working fluid is pure water, for example. Alcohol or the like can also be used as the working fluid. The sealing portion 52 seals the working fluid in the internal space 50 . 
ここで、ヒートパイプ5は、内壁に毛細管構造を有する。すなわち、ヒートパイプ5の内部空間50は、毛細管構造で囲まれた空間である。ヒートパイプ5が熱源200の熱によって加熱すると、ヒートパイプ5の加熱部で作動液が気化し、気化した作動液が流路10の上流側に移動する。流路10の上流側は、低温の冷媒が供給される側である。すなわち、気化した作動液は、ヒートパイプ5の低温部に移動する。そして、ヒートパイプ5の低温部で作動液が液化し、毛細管現象でヒートパイプ5の加熱部に移動する。このようにして作動液が移動することにより、熱が輸送される。  Here, the heat pipe 5 has a capillary structure on the inner wall. That is, the internal space 50 of the heat pipe 5 is a space surrounded by a capillary structure. When the heat pipe 5 is heated by the heat of the heat source 200 , the working fluid is vaporized in the heating portion of the heat pipe 5 and the vaporized working fluid moves to the upstream side of the flow path 10 . The upstream side of the flow path 10 is the side to which the low-temperature coolant is supplied. That is, the vaporized working fluid moves to the low temperature portion of the heat pipe 5 . Then, the working fluid is liquefied at the low temperature portion of the heat pipe 5 and moves to the heating portion of the heat pipe 5 by capillary action. Heat is transported by the movement of the working fluid in this way. 
たとえば、ヒートパイプ5の製造では、一方端が開口されたパイプがヒートパイプ5の素材として準備される。そして、素材パイプの内部空間に作動液が注入され、その後、封止される。たとえば、素材パイプの一方端の開口は、溶接されることにより、塞がれる。これにより、素材パイプの内部空間に注入された作動液が封止される。その結果、封止部52を一方端に有するヒートパイプ5が形成される。すなわち、封止部52は、内部空間50の作動液を封止するために加工された加工部である。なお、封止方法は特に限定されない。封止部52の形状および大きさは封止方法によって変わる。  For example, in manufacturing the heat pipe 5 , a pipe with one end open is prepared as the material for the heat pipe 5 . A working fluid is injected into the internal space of the material pipe, and then sealed. For example, the opening at one end of the material pipe is closed by welding. As a result, the hydraulic fluid injected into the internal space of the material pipe is sealed. As a result, heat pipe 5 having sealing portion 52 at one end is formed. That is, the sealing portion 52 is a processed portion processed to seal the working fluid in the internal space 50 . In addition, the sealing method is not particularly limited. The shape and size of the sealing portion 52 vary depending on the sealing method. 
<4-1.ヒートパイプの配列パターン> 図5は、実施形態に係るヒートパイプ5の配列パターンを示す模式図である。なお、図5では、封止部52をハッチング柄で示し、熱源200を破線で示す。また、以下の説明では、図5における第1方向D1の左側を流路10の上流側とし、図5における第1方向D1の右側を流路10の下流側とする。  <4-1. Arrangement Pattern of Heat Pipes> FIG. 5 is a schematic diagram showing an arrangement pattern of the heat pipes 5 according to the embodiment. In FIG. 5, the sealing portion 52 is indicated by a hatched pattern, and the heat source 200 is indicated by a dashed line. Further, in the following description, the left side in the first direction D1 in FIG. 5 is the upstream side of the flow channel 10, and the right side in the first direction D1 in FIG. 
また、図5では、便宜上、7本のヒートパイプ5を図示するが、ヒートパイプ5の個数は特に限定されない。ヒートパイプ5の個数は、7本よりも多くてもよいし少なくてもよい。さらに、ヒートパイプ5の個数が奇数であってもよいし偶数であってもよい。  In addition, although seven heat pipes 5 are shown in FIG. 5 for convenience, the number of heat pipes 5 is not particularly limited. The number of heat pipes 5 may be more or less than seven. Furthermore, the number of heat pipes 5 may be odd or even. 
ヒートパイプ5は、第2方向D2に間隔を隔てて配列される。ここで、封止部52は、溶接された部分であり、作動液による熱の輸送が略行われない部分である。すなわち、封止部52は、作動液を封止するための溶接代として確保された部分であり、冷却機能が低い部分である。  The heat pipes 5 are arranged at intervals in the second direction D2. Here, the sealed portion 52 is a welded portion, and is a portion where heat is not substantially transported by the working fluid. That is, the sealing portion 52 is a portion secured as a welding margin for sealing the hydraulic fluid, and has a low cooling function. 
そこで、少なくとも1つの封止部52は、流路10の上流側に配置される。すなわち、少なくとも1つの封止部52は、流路10の上流側である第1方向D1の一方側に配置される。この構成では、少なくとも1つのヒートパイプ5については、冷却機能の低い低機能部分を流路10の上流側に配置できる。  Therefore, at least one sealing portion 52 is arranged on the upstream side of the channel 10 . That is, at least one sealing portion 52 is arranged on one side in the first direction D1, which is the upstream side of the channel 10 . In this configuration, for at least one heat pipe 5 , a low-function portion having a low cooling function can be arranged on the upstream side of the flow path 10 . 
流路10の上流側に封止部52が配置されるヒートパイプ5では、冷却機能の低い低機能部分が流路10の下流側に存在しないので、流路10の下流側に位置する熱源200の熱がスムーズに流路10の上流側に輸送される。その結果、全てのヒートパイプ5の封止部52が流路10の下流側に配置される構成に比べて、流路10の下流側に位置する熱源200を良好に冷却できる。すなわち、ヒートパイプ5を用いる場合において、熱源200を良好に冷却できる。  In the heat pipe 5 in which the sealing portion 52 is arranged on the upstream side of the flow path 10, a low-function portion having a low cooling function does not exist on the downstream side of the flow path 10, so the heat source 200 located on the downstream side of the flow path 10 heat is smoothly transported to the upstream side of the flow path 10 . As a result, the heat source 200 positioned on the downstream side of the flow path 10 can be cooled well compared to a configuration in which all the sealing portions 52 of the heat pipes 5 are arranged on the downstream side of the flow path 10 . That is, when the heat pipe 5 is used, the heat source 200 can be well cooled. 
なお、冷却装置100のうち流路10の上流側の領域は、温度の低い冷媒が供給され続ける領域であり、流路10の下流側の領域よりも温度が低い領域である。このため、ヒートパイプ5の封止部52を流路10の上流側に配置することにより、封止部52が機能しなくても、封止部52およびその周辺に位置する熱源200、すなわち、流路10の上流側に位置する熱源200を良好に冷却できる。  Note that a region of the cooling device 100 on the upstream side of the flow path 10 is a region where the low-temperature coolant continues to be supplied, and has a lower temperature than a region on the downstream side of the flow path 10 . Therefore, by arranging the sealing portion 52 of the heat pipe 5 on the upstream side of the flow path 10, even if the sealing portion 52 does not function, the heat source 200 located in the sealing portion 52 and its periphery, that is, The heat source 200 positioned on the upstream side of the flow path 10 can be well cooled. 
ここで、冷却装置100には、流路10の上流側に封止部52を有するヒートパイプ5と流路10の下流側に封止部52を有するヒートパイプ5とが混在する。具体的には、複数のヒートパイプ5は、第1ヒートパイプ5Aと、第2ヒートパイプ5Bとを含む。第1ヒートパイプ5Aは、流路10の上流側に封止部52を有するヒートパイプ5である。第2ヒートパイプ5Bは、流路10の下流側に封止部52を有するヒートパイプ5である。変形例として、全てのヒートパイプ5の封止部52が流路10の上流側に配置されてもよい。  Here, in the cooling device 100, the heat pipe 5 having the sealing portion 52 on the upstream side of the flow path 10 and the heat pipe 5 having the sealing portion 52 on the downstream side of the flow path 10 are mixed. Specifically, the plurality of heat pipes 5 includes first heat pipes 5A and second heat pipes 5B. The first heat pipe 5</b>A is the heat pipe 5 having the sealing portion 52 on the upstream side of the flow path 10 . The second heat pipe 5B is the heat pipe 5 having the sealing portion 52 on the downstream side of the flow path 10. As shown in FIG. As a modification, the sealing portions 52 of all the heat pipes 5 may be arranged upstream of the flow path 10 . 
第1ヒートパイプ5Aと第2ヒートパイプ5Bとが混在する構成では、流路10の下流側に位置する熱源200の熱を第1ヒートパイプ5Aでスムーズに流路10の上流側すなわち低温部に輸送できる。流路10の上流側に位置する熱源200の熱については、第2ヒートパイプ5Bでスムーズに流路10の上流側すなわち低温部に輸送できる。これにより、流路10の下流側に位置する熱源200および流路10の上流側に位置する熱源200を含む複数の熱源200をムラなく冷却できる。  In the configuration in which the first heat pipe 5A and the second heat pipe 5B are mixed, the heat of the heat source 200 located downstream of the flow path 10 is smoothly transferred to the upstream side of the flow path 10, i. can be transported. The heat of the heat source 200 located upstream of the flow path 10 can be smoothly transported to the upstream side of the flow path 10, that is, the low temperature section, by the second heat pipe 5B. Thereby, the plurality of heat sources 200 including the heat source 200 located downstream of the flow path 10 and the heat source 200 located upstream of the flow path 10 can be evenly cooled. 
たとえば、複数のヒートパイプ5のうち半分以上が第1ヒートパイプ5Aである。ヒートパイプ5の本数が奇数である場合、第1ヒートパイプ5Aの本数は、第2ヒートパイプ5Bの本数よりも多くなる。ヒートパイプ5の総数が7本であれば、第1ヒートパイプ5Aは4本以上である。ヒートパイプ5の本数が偶数である場合には、第1ヒートパイプ5Aの本数は、第2ヒートパイプ5Bの本数と同じ、または、第2ヒートパイプ5Bの本数よりも多くなる。  For example, more than half of the plurality of heat pipes 5 are first heat pipes 5A. When the number of heat pipes 5 is odd, the number of first heat pipes 5A is greater than the number of second heat pipes 5B. If the total number of heat pipes 5 is seven, the number of first heat pipes 5A is four or more. When the number of heat pipes 5 is even, the number of first heat pipes 5A is the same as or greater than the number of second heat pipes 5B. 
複数のヒートパイプ5のうち半分以上を第1ヒートパイプ5Aとすることにより、半分以上のヒートパイプ5の封止部52が流路10の上流側に配置される。すなわち、流路10の下流側に低機能部分が配置されるヒートパイプ5の本数が少なくなる。これにより、流路10の下流側に位置する熱源200を良好に冷却できる。  By setting more than half of the plurality of heat pipes 5 as the first heat pipes 5</b>A, the sealing portions 52 of more than half of the heat pipes 5 are arranged on the upstream side of the flow path 10 . That is, the number of heat pipes 5 in which the low-function parts are arranged downstream of the flow path 10 is reduced. Thereby, the heat source 200 located downstream of the flow path 10 can be cooled satisfactorily. 
また、支持プレート4は、支持領域40の少なくとも一部に混在領域401を有する。混在領域401は、第1ヒートパイプ5Aと第2ヒートパイプ5Bとが混在する領域である。具体的には、混在領域401は、第1ヒートパイプ5Aと第2ヒートパイプ5Bとが交互に配列される領域である。混在領域401では、第1本数を一単位とする第1ヒートパイプ5Aと第2本数を一単位とする第2ヒートパイプ5Bとが第2方向D2に交互に配列される。  Further, the support plate 4 has a mixed region 401 in at least part of the support region 40 . A mixed region 401 is a region where the first heat pipe 5A and the second heat pipe 5B are mixed. Specifically, the mixed area 401 is an area in which the first heat pipes 5A and the second heat pipes 5B are alternately arranged. In the mixed region 401, the first heat pipes 5A having the first number as one unit and the second heat pipes 5B having the second number as one unit are alternately arranged in the second direction D2. 
混在領域401には、流路10の下流側に位置する熱源200の熱をスムーズに低温部に輸送できる第1ヒートパイプ5Aおよび流路10の上流側に位置する熱源200の熱をスムーズに低温部に輸送できる第2ヒートパイプ5Bが混在する。この構成では、複数の熱源200を混在領域401に対して重ねることにより、流路10の下流側に位置する熱源200および流路10の上流側に位置する熱源200を含む複数の熱源200をムラなく冷却できる。  The mixed region 401 includes a first heat pipe 5A capable of smoothly transporting the heat of the heat source 200 located downstream of the flow path 10 to the low temperature section and a heat pipe 5A capable of smoothly transporting the heat of the heat source 200 located upstream of the flow path 10 to the low temperature area. A second heat pipe 5B that can be transported to a part is mixed. In this configuration, by overlapping the plurality of heat sources 200 with respect to the mixed region 401, the plurality of heat sources 200 including the heat source 200 located downstream of the flow path 10 and the heat source 200 located upstream of the flow path 10 are unevenly distributed. can be cooled without 
支持プレート4は、支持領域40の全域に混在領域401を有する。具体的には、支持領域
40には、第1本数を超える第1ヒートパイプ5Aが連続して配列される領域が存在しない。また、支持領域40には、第2本数を超える第2ヒートパイプ5Bが連続して配列される領域が存在しない。言い換えると、第1ヒートパイプ5Aと第2ヒートパイプ5Bとが交互に配列される領域が支持領域40の第2方向D2の一方端部から他方端部にまで達する。 
The support plate 4 has a mixed area 401 over the entire support area 40 . Specifically, the support region 40 does not have a region where the first heat pipes 5A exceeding the first number are arranged continuously. Further, in the support area 40, there is no area in which the second heat pipes 5B exceeding the second number are continuously arranged. In other words, the area where the first heat pipes 5A and the second heat pipes 5B are alternately arranged reaches from one end of the support area 40 to the other end in the second direction D2.
支持領域40の全域を混在領域401とすることにより、支持領域40の全域にわたって、流路10の下流側に位置する熱源200および流路10の上流側に位置する熱源200を含む複数の熱源200をムラなく冷却できる。  By setting the entire support area 40 as the mixed area 401 , a plurality of heat sources 200 including the heat source 200 positioned downstream of the flow path 10 and the heat source 200 positioned upstream of the flow path 10 are distributed over the entire support area 40 . can be cooled evenly. 
なお、第1本数および第2本数は特に限定されない。第1本数と第2本数とが同数であってもよい。また、第1本数と第2本数とが1本であってもよい。実施形態では、混在領域401において、第1ヒートパイプ5Aと第2ヒートパイプ5Bとが同数ずつ交互に配列される。具体的には、混在領域401において、第1ヒートパイプ5Aと第2ヒートパイプ5Bとが1本ずつ交互に配列される。  Note that the first number and the second number are not particularly limited. The first number and the second number may be the same number. Also, the first number and the second number may be one. In the embodiment, in the mixed region 401, the same number of the first heat pipes 5A and the second heat pipes 5B are alternately arranged. Specifically, in the mixed region 401, the first heat pipes 5A and the second heat pipes 5B are alternately arranged one by one. 
混在領域401において、第1ヒートパイプ5Aと第2ヒートパイプ5Bとを同数ずつ交互に配列することにより、流路10の下流側に位置する熱源200および流路10の上流側に位置する熱源200を含む複数の熱源200をムラなく冷却できることに加え、第2方向D2の冷却ムラを抑制できる。混在領域401において、第1ヒートパイプ5Aと第2ヒートパイプ5Bとを1本ずつ交互に配列することにより、第2方向D2の冷却ムラをより抑制できる。  By alternately arranging the same number of the first heat pipes 5A and the second heat pipes 5B in the mixed region 401, the heat sources 200 positioned downstream of the flow path 10 and the heat sources 200 positioned upstream of the flow path 10 In addition to being able to evenly cool the plurality of heat sources 200 including , cooling unevenness in the second direction D2 can be suppressed. By alternately arranging the first heat pipes 5A and the second heat pipes 5B one by one in the mixed region 401, uneven cooling in the second direction D2 can be further suppressed. 
具体的には、図示しないが、ヒートパイプ5が7本の場合において、4本の第1ヒートパイプ5Aが第2方向D2の一方側に配置され、3本の第2ヒートパイプ5Bが第2方向D2の他方側に配置されるとする。この場合には、第2方向D2の一方側の冷却性能よりも他方側の冷却性能が悪くなる可能性がある。一方で、第1ヒートパイプ5Aと第2ヒートパイプ5Bとを交互に配列する構成では、第2方向D2の一方側と他方側との間の冷却性能の差を小さくできる。すなわち、第2方向D2の冷却ムラを抑制できる。  Specifically, although not shown, when the number of heat pipes 5 is seven, the four first heat pipes 5A are arranged on one side in the second direction D2, and the three second heat pipes 5B are arranged on the second side. Assume that it is arranged on the other side of the direction D2. In this case, the cooling performance on one side in the second direction D2 may be worse than the cooling performance on the other side. On the other hand, the configuration in which the first heat pipes 5A and the second heat pipes 5B are alternately arranged can reduce the difference in cooling performance between one side and the other side in the second direction D2. That is, cooling unevenness in the second direction D2 can be suppressed. 
<4-2.配列パターンの変形例> 図6は、ヒートパイプ5の配列パターンの第1変形例を示す模式図である。図7は、ヒートパイプ5の配列パターンの第2変形例を示す模式図である。図6および図7では、封止部52をハッチング柄で示す。なお、図6および図7では、それぞれ、便宜上、11本および13本のヒートパイプ5を図示するが、ヒートパイプ5の本数は特に限定されない。また、以下の説明では、図6および図7における第1方向D1の左側を流路10の上流側とし、図6および図7における第1方向D1の右側を流路10の下流側とする。  <4-2. Modification of Arrangement Pattern> FIG. 6 is a schematic diagram showing a first modification of the arrangement pattern of the heat pipes 5 . FIG. 7 is a schematic diagram showing a second modification of the arrangement pattern of the heat pipes 5. As shown in FIG. 6 and 7, the sealing portion 52 is indicated by a hatched pattern. 6 and 7 respectively show 11 and 13 heat pipes 5 for convenience, but the number of heat pipes 5 is not particularly limited. Further, in the following description, the left side in the first direction D1 in FIGS. 6 and 7 is the upstream side of the flow channel 10, and the right side in the first direction D1 in FIGS. 
ヒートパイプ5の配列パターンは、冷却装置100の大きさ、設置場所、用途および冷却対象などに応じて、変更可能である。また、ヒートパイプ5の配列パターンは、ヒートパイプ5の総数、形状および材質などに応じて、変更可能である。  The arrangement pattern of the heat pipes 5 can be changed according to the size of the cooling device 100, installation location, application, object to be cooled, and the like. Also, the arrangement pattern of the heat pipes 5 can be changed according to the total number, shape and material of the heat pipes 5 . 
ここで、ヒートパイプ5の配列パターンに関し、図5に示す実施形態の配列パターンとは異なっても、少なくとも1つの封止部52が流路10の上流側に配置されていれば、図5に示す実施形態と同様、全てのヒートパイプ5の封止部52が流路10の下流側に配置される構成に比べて、流路10の下流側に位置する熱源200を良好に冷却できるという効果を得ることができる。  Here, regarding the arrangement pattern of the heat pipes 5, even if it differs from the arrangement pattern of the embodiment shown in FIG. Similar to the embodiment shown, the heat source 200 located on the downstream side of the flow path 10 can be cooled well compared to the configuration in which all the sealing portions 52 of the heat pipes 5 are arranged on the downstream side of the flow path 10. can be obtained. 
以下、図6および図7を参照し、ヒートパイプ5の配列パターンの変形例について説明する。なお、図6および図7に示す変形例は一例にすぎず、この他にも種々の変形例を採用できる。  Modifications of the arrangement pattern of the heat pipes 5 will be described below with reference to FIGS. 6 and 7. FIG. The modified examples shown in FIGS. 6 and 7 are only examples, and various other modified examples can be adopted. 
図6に示す第1変形例では、支持プレート4は、支持領域40の全域に混在領域401を有する。ただし、第1変形例では、第1本数と第2本数とが同数ではない。たとえば、第1本数は2本であり、第2本数は1本である。すなわち、2本の第1ヒートパイプ5Aと1本の第2ヒートパイプ5Bとが第2方向D2に交互に配列される。  In the first modification shown in FIG. 6, the support plate 4 has a mixed region 401 over the entire support region 40 . However, in the first modified example, the first number and the second number are not the same. For example, the first number is two and the second number is one. That is, two first heat pipes 5A and one second heat pipe 5B are alternately arranged in the second direction D2. 
なお、第1本数および第2本数は、適宜変更可能である。たとえば、ヒートパイプ5の総数が多い場合には、第1本数および第2本数をそれぞれ複数としてもよい。また、第1本数を第2本数よりも少なくしてもよい。  Note that the first number and the second number can be changed as appropriate. For example, when the total number of heat pipes 5 is large, each of the first number and the second number may be plural. Also, the first number may be smaller than the second number. 
図7に示す第2変形例では、支持プレート4は、混在領域401と非混在領域402とを支持領域40に有する。非混在領域402には、第1ヒートパイプ5Aおよび第2ヒートパイプ5Bの一方のみが配置される。たとえば、非混在領域402には、第1ヒートパイプ5Aのみが配置される。  In the second modification shown in FIG. 7, the support plate 4 has a mixed region 401 and a non-mixed region 402 in the support region 40. In the second modification shown in FIG. Only one of the first heat pipe 5A and the second heat pipe 5B is arranged in the non-mixed area 402 . For example, in the non-mixed area 402, only the first heat pipes 5A are arranged. 
たとえば、支持プレート4は、第2方向D2の一方側および他方側にそれぞれ非混在領域402を有する。そして、支持プレート4は、第2方向D2の一方側の非混在領域402と他方側の非混在領域402との間に混在領域401を有する。すなわち、支持プレート4は、第2方向D2の中央部に混在領域401を有する。  For example, the support plate 4 has non-mixed areas 402 on one side and the other side in the second direction D2. The support plate 4 has a mixed region 401 between the non-mixed region 402 on one side and the non-mixed region 402 on the other side in the second direction D2. That is, the support plate 4 has the mixed region 401 in the central portion in the second direction D2. 
なお、非混在領域402には、第2ヒートパイプ5Bのみが配置されてもよい。また、第2方向D2の両側の領域を混在領域401とし、第2方向D2の中央部を非混在領域402としてもよい。また、混在領域401および非混在領域402がそれぞれ複数ずつ存在してもよい。  Note that only the second heat pipes 5B may be arranged in the non-mixed area 402 . Also, the regions on both sides in the second direction D2 may be the mixed regions 401, and the central portion in the second direction D2 may be the non-mixed region 402. FIG. Also, a plurality of mixed areas 401 and a plurality of non-mixed areas 402 may exist. 
<5.ピンフィン> 図8は、変形例に係るピンフィン30を有する上プレート2を上方から見た場合の平面図である。図8では、カバー1を破線で示す。  <5. Pin Fins> FIG. 8 is a plan view of the upper plate 2 having the pin fins 30 according to the modification as viewed from above. In FIG. 8, the cover 1 is indicated by dashed lines. 
実施形態(図1参照)に係るフィン3は、第1方向D1に直線的に延びる板状の部材である。このため、実施形態では、流路10は、第1方向D1に平行に延びる。一方で、変形例では、図8に示すように、冷却装置100は、ピンフィン30を備える。変形例に係るピンフィン30は、複数のピン31を有する。ピンフィン30のピン31は、上プレート2の上面から上方に突出する。すなわち、ピン31は、ヒートパイプ5が延びる方向およびヒートパイプ5が配列される方向と直交する方向に突出する。  The fin 3 according to the embodiment (see FIG. 1) is a plate-shaped member linearly extending in the first direction D1. Therefore, in the embodiment, the channel 10 extends parallel to the first direction D1. On the other hand, in a modification, the cooling device 100 includes pin fins 30 as shown in FIG. A pin fin 30 according to a modification has a plurality of pins 31 . The pins 31 of the pin fins 30 protrude upward from the upper surface of the upper plate 2 . That is, the pin 31 protrudes in a direction perpendicular to the direction in which the heat pipes 5 extend and the direction in which the heat pipes 5 are arranged. 
変形例では、ピンフィン30のピン31間をぬうように冷媒が流れる。このため、冷媒が第2方向D2に広がり易い。しかし、カバー1の供給口101から供給される冷媒は、最終的には、カバー1の排出口102から排出される。すなわち、ピンフィン30を用いる場合であっても、第1方向D1の一方側が流路10の上流側であり、第1方向D1の他方側が流路10の下流側である。  In the modified example, the coolant flows so as to weave between the pins 31 of the pin fins 30 . Therefore, the coolant easily spreads in the second direction D2. However, the coolant supplied from supply port 101 of cover 1 is finally discharged from discharge port 102 of cover 1 . That is, even when the pin fins 30 are used, one side in the first direction D1 is the upstream side of the channel 10 and the other side in the first direction D1 is the downstream side of the channel 10 . 
これにより、ピンフィン30を用いる場合であっても、ヒートパイプ5を第1方向D1に延ばし、第1方向D1の一方側、すなわち、供給口101側に封止部52を配置することにより、ヒートパイプ5の低機能部分が流路10の上流側に配置された状態にできる。  As a result, even when the pin fins 30 are used, the heat pipe 5 is extended in the first direction D1, and the sealing portion 52 is arranged on one side of the first direction D1, that is, on the supply port 101 side. A low-function portion of the pipe 5 can be placed upstream of the flow path 10 . 
<6.その他> 以上、本発明の実施形態について説明した。なお、本発明の範囲は上述の実施形態に限定されない。本発明は、発明の主旨を逸脱しない範囲で種々の変更を加えて実施することができる。また、上述の実施形態は適宜任意に組み合わせることができる。  <6. Others> Above, the embodiments of the present invention have been described. It should be noted that the scope of the present invention is not limited to the above-described embodiments. The present invention can be implemented with various modifications without departing from the gist of the invention. Moreover, the above-described embodiments can be combined arbitrarily as appropriate. 
本発明は、たとえば、IGBTなど各種熱源の冷却に利用できる。 INDUSTRIAL APPLICABILITY The present invention can be used, for example, for cooling various heat sources such as IGBTs.
1 カバー 3 フィン 4 支持プレート 5 ヒートパイプ 5A 第1ヒートパイプ 5B 第2ヒートパイプ 10 流路 30 ピンフィン 31 ピン 40 支持領域 50 内部空間 51 筐体 52 封止部 100 冷却装置 101 供給口 102 排出口 200 熱源 401 混在領域 1 Cover 3 Fin 4 Support plate 5 Heat pipe 5A First heat pipe 5B Second heat pipe 10 Channel 30 Pin fin 31 Pin 40 Support area 50 Internal space 51 Housing 52 Sealing part 100 Cooling device 101 Supply port 102 Discharge port 200 Heat source 401 mixed area

Claims (11)

  1. 冷媒が流れる流路と、



     複数のヒートパイプと、を備え、



     前記ヒートパイプは、前記流路の上流側から下流側に向かって延び、かつ、前記ヒートパイプが延びる方向と直交する方向に配列され、



     前記ヒートパイプは、



      作動液が配置される内部空間を有する筐体と、



      前記内部空間に前記作動液を封止する封止部と、を有し、



     少なくとも1つの前記封止部は、前記流路の上流側に配置される、冷却装置。
    a channel through which the coolant flows;



    a plurality of heat pipes;



    The heat pipes extend from the upstream side to the downstream side of the flow path and are arranged in a direction orthogonal to the direction in which the heat pipes extend,



    The heat pipe is



    a housing having an internal space in which the hydraulic fluid is placed;



    a sealing portion that seals the working fluid in the internal space;



    The cooling device, wherein at least one of said seals is arranged upstream of said flow path.
  2. 前記流路を内側領域に有するカバーを備え、



     前記カバーは、



      前記流路の上流側に前記冷媒が供給される供給口と、



      前記流路の下流側に前記冷媒が排出される排出口と、を有する、請求項1に記載の冷却装置。
    A cover having the flow path in an inner region,



    The cover is



    a supply port through which the coolant is supplied to the upstream side of the flow path;



    2. The cooling device according to claim 1, further comprising an outlet through which said coolant is discharged on the downstream side of said flow path.
  3. 複数の熱源を冷却する冷却装置であって、



     前記ヒートパイプは、前記熱源が配列する方向に延びる、請求項1または2に記載の冷却装置。
    A cooling device for cooling a plurality of heat sources,



    3. The cooling device according to claim 1, wherein said heat pipe extends in a direction in which said heat sources are arranged.
  4. 前記流路の上流側から下流側に向かって延びるフィンを備え、



     前記ヒートパイプは、前記フィンと同方向に延びる、請求項1~3のいずれか1項に記載の冷却装置。
    A fin extending from the upstream side toward the downstream side of the flow path,



    The cooling device according to any one of claims 1 to 3, wherein the heat pipe extends in the same direction as the fins.
  5. 複数のピンを有するピンフィンを備え、



     前記ピンは、前記ヒートパイプが延びる方向および前記ヒートパイプが配列される方向と直交する方向に突出する、請求項1~3のいずれか1項に記載の冷却装置。
    a pin fin having a plurality of pins;



    The cooling device according to any one of claims 1 to 3, wherein the pins protrude in a direction perpendicular to the direction in which the heat pipes extend and the direction in which the heat pipes are arranged.
  6. 複数の前記ヒートパイプは、



      前記流路の上流側に前記封止部を有する第1ヒートパイプと、



      前記流路の下流側に前記封止部を有する第2ヒートパイプと、を含む、請求項1~5のいずれか1項に記載の冷却装置。
    the plurality of heat pipes,



    a first heat pipe having the sealing portion upstream of the flow path;



    The cooling device according to any one of claims 1 to 5, further comprising a second heat pipe having said sealing portion on the downstream side of said flow path.
  7. 複数の前記ヒートパイプのうち半分以上が前記第1ヒートパイプである、請求項6に記載の冷却装置。 7. The cooling device according to claim 6, wherein more than half of said plurality of heat pipes are said first heat pipes.
  8. 前記ヒートパイプと接触する支持領域を有する支持プレートを備え、



     前記支持プレートは、前記第1ヒートパイプと前記第2ヒートパイプとが交互に配列される混在領域を前記支持領域の少なくとも一部に有する、請求項1~7のいずれか1項に記載の冷却装置。
    a support plate having a support area in contact with the heat pipe;



    The cooling according to any one of claims 1 to 7, wherein the support plate has, in at least part of the support area, a mixed area in which the first heat pipes and the second heat pipes are alternately arranged. Device.
  9. 前記支持プレートは、前記支持領域の全域に前記混在領域を有する、請求項8に記載の冷却装置。 9. The cooling device according to claim 8, wherein said support plate has said mixed area over said support area.
  10. 前記混在領域において、前記第1ヒートパイプと前記第2ヒートパイプとが同数ずつ交互に配列される、請求項8または9に記載の冷却装置。 10. The cooling device according to claim 8, wherein the same number of said first heat pipes and said second heat pipes are alternately arranged in said mixed area.
  11. 前記混在領域において、前記第1ヒートパイプと前記第2ヒートパイプとが1本ずつ交互に配列される、請求項10に記載の冷却装置。 11. The cooling device according to claim 10, wherein the first heat pipes and the second heat pipes are alternately arranged in the mixed area.
PCT/JP2022/005181 2021-02-25 2022-02-09 Cooling device WO2022181343A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280017129.6A CN116917685A (en) 2021-02-25 2022-02-09 cooling device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021028274 2021-02-25
JP2021-028274 2021-02-25

Publications (1)

Publication Number Publication Date
WO2022181343A1 true WO2022181343A1 (en) 2022-09-01

Family

ID=83049154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/005181 WO2022181343A1 (en) 2021-02-25 2022-02-09 Cooling device

Country Status (2)

Country Link
CN (1) CN116917685A (en)
WO (1) WO2022181343A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06209060A (en) * 1992-10-15 1994-07-26 Sun Microsyst Inc Device and method for cooling semiconductor chip
JP2005180723A (en) * 2003-12-16 2005-07-07 Toshiba Home Technology Corp End sealing method for heat pipe
JP3138847U (en) * 2007-10-18 2008-01-24 水谷電機工業株式会社 Heat pipe radiator
US20080035310A1 (en) * 2006-08-09 2008-02-14 Hul-Chun Hsu Isothermal Plate Module
JP2009024996A (en) * 2008-08-21 2009-02-05 Toshiba Home Technology Corp Method of manufacturing heat pipe
JP2009198173A (en) * 2003-09-12 2009-09-03 Furukawa Electric Co Ltd:The Heat sink with heat pipes and method for manufacturing the same
WO2011105364A1 (en) * 2010-02-26 2011-09-01 古河電気工業株式会社 Heat sink
JP3170213U (en) * 2011-06-24 2011-09-08 水谷電機工業株式会社 Radiator
JP2015038396A (en) * 2012-12-21 2015-02-26 古河電気工業株式会社 Heat sink
EP2858464A1 (en) * 2013-10-03 2015-04-08 ABB Oy Electric apparatus
JP2020106245A (en) * 2018-12-28 2020-07-09 古河電気工業株式会社 Heat sink

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06209060A (en) * 1992-10-15 1994-07-26 Sun Microsyst Inc Device and method for cooling semiconductor chip
JP2009198173A (en) * 2003-09-12 2009-09-03 Furukawa Electric Co Ltd:The Heat sink with heat pipes and method for manufacturing the same
JP2005180723A (en) * 2003-12-16 2005-07-07 Toshiba Home Technology Corp End sealing method for heat pipe
US20080035310A1 (en) * 2006-08-09 2008-02-14 Hul-Chun Hsu Isothermal Plate Module
JP3138847U (en) * 2007-10-18 2008-01-24 水谷電機工業株式会社 Heat pipe radiator
JP2009024996A (en) * 2008-08-21 2009-02-05 Toshiba Home Technology Corp Method of manufacturing heat pipe
WO2011105364A1 (en) * 2010-02-26 2011-09-01 古河電気工業株式会社 Heat sink
JP3170213U (en) * 2011-06-24 2011-09-08 水谷電機工業株式会社 Radiator
JP2015038396A (en) * 2012-12-21 2015-02-26 古河電気工業株式会社 Heat sink
EP2858464A1 (en) * 2013-10-03 2015-04-08 ABB Oy Electric apparatus
JP2020106245A (en) * 2018-12-28 2020-07-09 古河電気工業株式会社 Heat sink

Also Published As

Publication number Publication date
CN116917685A (en) 2023-10-20

Similar Documents

Publication Publication Date Title
US9562728B2 (en) Cooling device with corrugated fins in communication with serpentine fluid passageway
KR101488591B1 (en) Semiconductor unit
US9657997B2 (en) Cooling device with cooling passage for liquid refrigerant and juxtaposed fin assembly
US20150189791A1 (en) Radiator for liquid-cooled-type cooling device and method of manufacturing the same
US20090114373A1 (en) Heat exchanger
WO2006075614A1 (en) Heat sink and cooling unit using same
US8405204B2 (en) Semiconductor package with package main body cooling structure using coolant, and semiconductor package assembly with the semiconductor package and coolant circulating structure
US10928141B2 (en) Heat exchanger for cooling multiple layers of electronic modules
JPH0624279A (en) Cooling device for electric automobile
JP2015225953A (en) Liquid-cooled cooler
JP2013254787A (en) Heat exchanger and manufacturing method of the same
WO2018209828A1 (en) Liquid cooling heat dissipation device and motor controller
JP2018107365A (en) Radiator for liquid-cooled cooler and manufacturing method thereof
WO2022181343A1 (en) Cooling device
WO2022181344A1 (en) Cooling device
WO2022181345A1 (en) Cooling device
US20210066166A1 (en) Liquid-cooling-type cooler
JP2010016295A (en) Semiconductor device
JP7160216B2 (en) semiconductor equipment
JP2014063870A (en) Semiconductor cooling device
EP3832785A1 (en) Cooler
CN215984138U (en) Heat radiating member and cooling device having the same
JP2011208814A (en) Water-cooling jacket
JP2021196087A (en) Heat conductive member and cooler comprising the same
CN215578520U (en) Heat dissipation member and cooling device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22759382

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280017129.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22759382

Country of ref document: EP

Kind code of ref document: A1