WO2022181296A1 - Oil separator and compressor for cryogenic refrigerator - Google Patents

Oil separator and compressor for cryogenic refrigerator Download PDF

Info

Publication number
WO2022181296A1
WO2022181296A1 PCT/JP2022/004514 JP2022004514W WO2022181296A1 WO 2022181296 A1 WO2022181296 A1 WO 2022181296A1 JP 2022004514 W JP2022004514 W JP 2022004514W WO 2022181296 A1 WO2022181296 A1 WO 2022181296A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil separator
refrigerant gas
filter element
oil
container
Prior art date
Application number
PCT/JP2022/004514
Other languages
French (fr)
Japanese (ja)
Inventor
祐貴 大谷
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to CN202280012480.6A priority Critical patent/CN116802444A/en
Publication of WO2022181296A1 publication Critical patent/WO2022181296A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/04Measures to avoid lubricant contaminating the pumped fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point

Definitions

  • the present invention relates to an oil separator and a cryogenic refrigerator compressor.
  • Refrigerant gas compressors used in cryogenic refrigerators often have an oil separator and an adsorber to remove oil from the compressed and pressurized refrigerant gas.
  • the refrigerant gas entering the oil separator contains some oil. Most of the oil is separated from the refrigerant gas by the oil separator, but a small amount of oil may flow out from the oil separator together with the refrigerant gas. It is adsorbed by the adsorber and removed from the refrigerant gas.
  • the inventor recognized that the filter element in the oil separator had room for improvement from the viewpoint of manufacturing cost reduction.
  • One exemplary objective of certain aspects of the present invention is to reduce manufacturing costs for filter elements within oil separators.
  • the oil separator comprises an oil separator container, a refrigerant gas introduction pipe inserted from the top of the oil separator container and introducing refrigerant gas into the oil separator container, and an oil separator arranged in the oil separator container.
  • the filter element defining an outer cavity between itself and the oil separator container, the filter element having an inner cavity connected to a refrigerant gas introduction pipe and through which refrigerant gas is introduced from the refrigerant gas introduction pipe, the refrigerant flowing from the inner cavity to the outer cavity.
  • a filter element for separating oil from gas The filter element has a lower dish attached to its lower end, and the oil separator container is joined to the lower dish at its bottom.
  • the oil separator comprises an oil separator container, a refrigerant gas introduction pipe inserted from the top of the oil separator container and introducing refrigerant gas into the oil separator container, and an oil separator arranged in the oil separator container.
  • the filter element defining an outer cavity between itself and the oil separator container, the filter element having an inner cavity connected to a refrigerant gas introduction pipe and through which refrigerant gas is introduced from the refrigerant gas introduction pipe, the refrigerant flowing from the inner cavity to the outer cavity.
  • a filter element for separating oil from gas The filter element is attached to its upper end and has an upper dish-shaped body having a concave portion recessed toward the inner cavity. and recesses.
  • a cryogenic refrigerator compressor includes any one of the oil separators described above.
  • manufacturing costs can be reduced for the filter element in the oil separator.
  • FIG. 1 is a diagram schematically showing a cryogenic refrigerator according to an embodiment
  • FIG. It is a sectional view showing roughly an oil separator concerning an embodiment.
  • FIG. 1 is a diagram schematically showing a cryogenic refrigerator according to an embodiment.
  • the cryogenic refrigerator 10 includes a compressor 12 and a cold head 14.
  • the compressor 12 is configured to recover the refrigerant gas of the cryogenic refrigerator 10 from the cold head 14 , pressurize the recovered refrigerant gas, and supply the refrigerant gas to the cold head 14 again.
  • Compressor 12 is also referred to as a compressor unit.
  • the cold head 14, also called an expander has a room temperature section 14a and a cold section 14b, also called a cooling stage.
  • Compressor 12 and cold head 14 constitute a refrigeration cycle of cryogenic refrigerator 10, which cools low temperature section 14b to a desired cryogenic temperature.
  • the refrigerant gas also called working gas, is typically helium gas, although other suitable gases may be used.
  • Cryogenic refrigerator 10 is illustratively a single stage or two stage Gifford-McMahon (GM) refrigerator, but may also be a pulse tube refrigerator, Stirling refrigerator, or other type of cryogenic refrigerator. It may be a refrigerator.
  • the coldhead 14 has a different configuration depending on the type of cryogenic refrigerator 10 , but the compressor 12 can have the configuration described below regardless of the type of cryogenic refrigerator 10 .
  • the pressure of the refrigerant gas supplied from the compressor 12 to the cold head 14 and the pressure of the refrigerant gas recovered from the cold head 14 to the compressor 12 are both significantly higher than the atmospheric pressure. It can be called a second high voltage.
  • the first high pressure and the second high pressure are also simply referred to as high pressure and low pressure, respectively.
  • the high pressure is eg 2-3 MPa.
  • the low pressure is for example 0.5-1.5 MPa, for example about 0.8 MPa.
  • the compressor 12 includes a compressor body 16, an oil line 18, an oil separator 20, and an adsorber 21.
  • the compressor 12 also includes a discharge port 22 , a suction port 24 , a discharge flow path 26 , a suction flow path 28 , a storage tank 30 , a bypass valve 32 , a refrigerant gas cooling section 34 and an oil cooling section 36 .
  • the compressor main body 16 is configured to internally compress the refrigerant gas sucked from its suction port and discharge it from its discharge port.
  • the compressor main body 16 may be, for example, a scroll type, rotary type, or other pump that pressurizes the refrigerant gas.
  • Compressor body 16 may be configured to deliver a fixed, constant refrigerant gas flow rate. Alternatively, the compressor main body 16 may be configured to vary the flow rate of the discharged refrigerant gas.
  • Compressor body 16 is sometimes referred to as a compression capsule.
  • the compressor body 16 uses oil for cooling and lubrication, and the sucked refrigerant gas is directly exposed to this oil inside the compressor body 16 . Therefore, the refrigerant gas is sent out from the discharge port in a state in which oil is slightly mixed.
  • the oil line 18 includes an oil circulation line 18a and an oil return line 18b.
  • the oil circulation line 18a has an oil cooling portion 36, and is configured such that oil flowing out of the compressor main body 16 is cooled by the oil cooling portion 36 and flows into the compressor main body 16 again.
  • the oil circulation line 18a is provided with an orifice for controlling the flow rate of oil flowing therein. Further, the oil circulation line 18a may be provided with a filter for removing dust contained in the oil.
  • the oil return line 18 b connects the oil separator 20 to the suction flow path 28 in order to return the oil collected by the oil separator 20 to the compressor body 16 .
  • a filter for removing dust contained in the oil separated by the oil separator 20 and an orifice for controlling the amount of oil returned to the compressor body 16 may be provided in the middle of the oil return line 18b.
  • the oil separator 20 is provided to separate the oil mixed in the refrigerant gas from the refrigerant gas as it passes through the compressor body 16 .
  • the oil separator 20 is connected to the discharge port of the compressor main body 16 through the upstream portion 26a of the discharge passage 26. As shown in FIG. Further, the oil separator 20 is connected to the discharge port 22 through the downstream portion 26b of the discharge flow path 26. As shown in FIG. Details of the oil separator 20 will be described later.
  • the adsorber 21 is provided to remove, for example, vaporized oil and other contaminants remaining in the refrigerant gas from the refrigerant gas by adsorption.
  • Adsorber 21 is arranged in the middle of downstream portion 26 b of discharge channel 26 .
  • the discharge port 22 is a refrigerant gas outlet installed in the compressor housing 38 for sending out the refrigerant gas pressurized to a high pressure by the compressor body 16 from the compressor 12, and the suction port 24 is a low pressure refrigerant gas outlet.
  • a refrigerant gas inlet located in the compressor housing 38 for receiving the gas into the compressor 12 .
  • the compressor housing 38 accommodates each component of the compressor 12 such as the compressor main body 16 and the oil separator 20 .
  • a discharge port of the compressor body 16 is connected to the discharge port 22 by a discharge channel 26
  • a suction port 24 is connected to a suction port of the compressor body 16 by a suction channel 28 .
  • the storage tank 30 is provided as a volume for removing pulsation contained in the low pressure refrigerant gas returning from the cold head 14 to the compressor 12 .
  • the storage tank 30 is arranged in the suction flow path 28 .
  • the bypass valve 32 connects the discharge passage 26 to the suction passage 28 so as to bypass the compressor body 16 .
  • the bypass valve 32 branches from the downstream portion 26 b of the discharge flow path 26 between the oil separator 20 and the adsorber 21 and is connected to the suction flow path 28 between the compressor body 16 and the storage tank 30 .
  • the bypass valve 32 is provided for refrigerant gas flow rate control and/or for pressure equalization between the discharge passage 26 and the suction passage 28 when the compressor 12 is stopped.
  • the refrigerant gas cooling unit 34 and the oil cooling unit 36 constitute a cooling system that cools the compressor 12 using a cooling medium such as cooling water.
  • the refrigerant gas cooling part 34 is arranged in the upstream part 26 a of the discharge passage 26 and is provided to cool the high-pressure refrigerant gas heated by the heat of compression generated as the refrigerant gas is compressed in the compressor main body 16 . ing.
  • the refrigerant gas cooling unit 34 cools the refrigerant gas by heat exchange between the refrigerant gas and the cooling medium.
  • the oil cooling portion 36 cools the oil by heat exchange between the oil flowing out from the compressor main body 16 and the cooling medium.
  • a cooling medium is supplied to the compressor 12 from the outside, passes through the refrigerant gas cooling section 34 and the oil cooling section 36, and is discharged to the outside of the compressor 12. As shown in FIG. In this way, the heat of compression generated in the compressor body 16 is removed out of the compressor 12 along with the cooling medium.
  • the cooling medium may be cooled by, for example, a chiller (not shown) and supplied again.
  • the cryogenic refrigerator 10 also includes a high pressure port 40 and a low pressure port 41 in the room temperature section 14 a of the cold head 14 .
  • the high pressure port 40 is connected to the discharge port 22 by a high pressure pipe 42 and the low pressure port 41 is connected to the suction port 24 by a low pressure pipe 43 .
  • refrigerant gas recovered from the cold head 14 into the compressor 12 flows from the low pressure port 41 through the low pressure pipe 43 into the suction port 24 of the compressor 12 .
  • the refrigerant gas passes through the storage tank 30 on the suction flow path 28 and is recovered to the suction port of the compressor main body 16 .
  • Refrigerant gas is compressed by the compressor main body 16 and raised in pressure.
  • Refrigerant gas sent out from the discharge port of the compressor main body 16 passes through the refrigerant gas cooling portion 34 on the discharge passage 26 , the oil separator 20 , and the adsorber 21 and exits the compressor 12 from the discharge port 22 .
  • Refrigerant gas is supplied to the inside of the cold head 14 through the high pressure pipe 42 and the high pressure port 40 .
  • FIG. 2 is a cross-sectional view schematically showing the oil separator 20 according to the embodiment.
  • the oil separator 20 includes an oil separator container 44 and a filter element 46.
  • a filter element 46 is positioned within the oil separator container 44 and defines an outer cavity 48 therebetween.
  • the filter element 46 also has an inner cavity 50 into which refrigerant gas is introduced to separate the oil from the refrigerant gas flowing from the inner cavity 50 to the outer cavity 48 .
  • the oil separator 20 is configured as a vertical oil separator.
  • the oil separator 20 has an elongated cylindrical shape and is installed in the compressor 12 so that its longitudinal direction is aligned with the vertical direction.
  • the refrigerant gas cleaned by the filter element 46 is discharged from the upper portion of the oil separator 20 to the outside of the oil separator 20 .
  • the oil separated from the refrigerant gas by the filter element 46 flows vertically down inside or on the surface of the filter element 46 and is collected from the bottom of the oil separator 20 .
  • the oil separator container 44 is a cylindrical container that defines the outer shape of the oil separator 20, and includes a container cylindrical portion 44a, a container upper lid 44b, and a container lower lid 44c.
  • a container upper lid 44b is fixed to the upper end of the container tubular portion 44a, and a container lower lid 44c is fixed to the lower end of the container tubular portion 44a.
  • the container upper lid 44b and the container lower lid 44c are each fixed to the container cylindrical portion 44a by, for example, welding, and the oil separator container 44 is an airtight container.
  • a refrigerant gas inlet pipe 52, a refrigerant gas outlet pipe 54, and a return oil pipe 56 are provided on the container upper lid 44b.
  • the refrigerant gas introduction pipe 52 corresponds to a portion where the upstream portion 26a of the discharge passage 26 shown in FIG.
  • the refrigerant gas lead-out pipe 54 corresponds to a portion where the downstream portion 26b of the discharge flow path 26 is connected to the oil separator 20 .
  • the return oil pipe 56 corresponds to a portion where the oil return line 18 b of the oil line 18 connects to the oil separator 20 .
  • the refrigerant gas introduction pipe 52 is inserted from the top of the oil separator container 44 and introduces the refrigerant gas into the oil separator container 44 .
  • the refrigerant gas introduction pipe 52 is provided through the container top lid 44b.
  • Refrigerant gas introduction pipe 52 extends along the central axis of oil separator 20 .
  • a refrigerant gas introduction pipe 52 passing through the container top lid 44b extends to the inner cavity 50 of the filter element 46 and is connected to the inner cavity 50 .
  • Refrigerant gas is introduced from the outside of the oil separator 20 into the inner cavity 50 of the filter element 46 through the refrigerant gas introduction pipe 52 .
  • the refrigerant gas introduction pipe 52 extends to the vicinity of the bottom of the inner cavity 50.
  • the tip 52a of the refrigerant gas introduction pipe 52 is positioned below half the height of the inner cavity 50 as described above, the tip 52a of the refrigerant gas introduction pipe 52 is positioned half the height of the inner cavity 50.
  • the amount of oil discharged from the refrigerant gas lead-out pipe 54 without being separated and collected from the refrigerant gas by the oil separator 20 (also referred to as the amount of oil rise) tends to be smaller than when positioned above.
  • the refrigerant gas lead-out pipe 54 is provided through the container upper lid 44b.
  • the refrigerant gas lead-out pipe 54 passing through the container top cover 44b opens in the outer cavity 48 near the container top cover 44b, for example, between the container top cover 44b and the filter element 46 in the axial direction of the oil separator 20.
  • Refrigerant gas flowing from the inner cavity 50 through the filter element 46 to the outer cavity 48 is discharged to the outside of the oil separator 20 through the refrigerant gas lead-out pipe 54 .
  • the return oil pipe 56 is provided through the container upper lid 44b.
  • a return oil pipe 56 passing through the container upper lid 44b extends along the container cylindrical portion 44a to the vicinity of the container lower lid 44c.
  • the return oil pipe 56 opens in the outer cavity 48 near the lower container lid 44c, for example, between the filter element 46 and the lower container lid 44c in the axial direction of the oil separator 20. As shown in FIG. Oil separated from the refrigerant gas by the filter element 46 is discharged to the outside of the oil separator 20 through the return oil pipe 56 .
  • the filter element 46 includes a filter body 58, and a lower dish-shaped body 60 and an upper dish-shaped body 62 that sandwich the filter body 58 from above and below.
  • the filter body 58 includes an inner cylinder member 58a, a filter member 58b, and an outer cylinder member 58c.
  • the lower dish-shaped body 60 is attached to the lower end of the filter body 58 and joined to the bottom of the oil separator container 44, for example, the container lower lid 44c.
  • the upper dish-shaped body 62 is attached to the upper end of the filter body 58 and joined to the refrigerant gas introduction pipe 52 .
  • the refrigerant gas introduction pipe 52 extends through the central portion of the upper dish-shaped body 62 and into the inner cavity 50 .
  • the upper dish-shaped body 62 and the lower dish-shaped body 60 are disc-shaped members made of metal such as stainless steel.
  • the filter element 46 is joined to the oil separator container 44 by fitting.
  • the lower dish-shaped body 60 has a first fitting portion 60a
  • the bottom portion of the oil separator container 44 has a second fitting portion 64 that fits with the first fitting portion 60a.
  • the first fitting portion 60 a is formed in the lower dish-shaped body 60 as a concave portion recessed toward the inner cavity 50 .
  • the second fitting portion 64 is a convex portion protruding upward from the center portion of the container lower lid 44c of the oil separator container 44 .
  • the lower dish-shaped body 60 and the upper dish-shaped body 62 may be formed, for example, by pressing a metal plate.
  • the second fitting portion 64 is prepared as a component separate from the container lower lid 44c of the oil separator container 44, and may be fixed to the container lower lid 44c by an appropriate method such as screwing or spot welding. Alternatively, the second fitting portion 64 may be formed integrally with the container bottom lid 44c by, for example, cutting a base material.
  • the upper dish-shaped body 62 is attached to the upper end of the filter body 58 and has a concave portion 62a recessed toward the inner cavity 50.
  • the refrigerant gas introduction pipe 52 is inserted into the inner cavity 50 from the recess 62a of the upper dish-shaped body 62 and is bonded to the upper dish-shaped body 62 at the recess 62a.
  • An insertion hole for inserting the refrigerant gas introduction pipe 52 into the inner cavity 50 is formed in the bottom surface of the recess 62a, and the refrigerant gas introduction pipe 52 inserted here is adhered to the side surface of the recess 62a.
  • Agent 66 is filled.
  • the adhesive 66 may be a sealing agent such as an epoxy adhesive or a silicon adhesive.
  • the upper dish-shaped body 62 has the same shape as the lower dish-shaped body 60 except that the concave portion 62a of the upper dish-shaped body 62 has an insertion hole for the refrigerant gas introduction pipe 52 .
  • this can be used as the upper dish-shaped body 62 . Since the same parts as the lower dish-shaped body 60 can be used for the upper dish-shaped body 62, the manufacturing cost can be reduced as compared with the case where they are designed as separate parts.
  • the lower dish-shaped body 60 and the upper dish-shaped body 62 are respectively adhered to the upper and lower portions of the filter body 58 with an adhesive, for example.
  • Adhesive-impregnated portions 68 are formed in the upper and lower portions of the filter member 58b.
  • the adhesive may be an epoxy-based adhesive, a silicone-based adhesive, or the like, which has sealing properties. Thereby, it is possible to prevent the occurrence of gaps between the filter body 58 and the upper dish-shaped body 62 and between the filter body 58 and the lower dish-shaped body 60 . It is possible to prevent the refrigerant gas introduced into the inner cavity 50 from the refrigerant gas introduction pipe 52 and the oil separated from the refrigerant gas and liquefied from flowing out to the outer cavity 48 through the gap while containing the oil.
  • the lower dish-shaped body 60 has an annular depression that serves as a reservoir for the adhesive between the outer edge 60b of the lower dish-shaped body 60 and the first fitting portion 60a.
  • the first fitting portion 60a acts as an inner wall to prevent the adhesive from entering the inner cavity 50, and the outer edge 60b serves as an adhesive. Acts as an outer dike to prevent leakage to the outside.
  • the end (lower end) of the filter body 58 is inserted into this adhesive receiving tray, and the filter body 58 is adhered to the lower dish-shaped body 60 .
  • the height of the first fitting portion 60a (and the height of the outer edge 60b) in the axial direction of the oil separator 20 (vertical direction in the figure) is higher than the height of the adhesive-impregnated portion 68. It's becoming Further, the adhesive-impregnated portion 68 is radially sandwiched between the first fitting portion 60a and the outer edge 60b.
  • the height of the first fitting portion 60a in the axial direction is the same as or slightly higher than the height of the outer edge 60b, the penetration of the adhesive into the inner cavity 50 can be more reliably suppressed.
  • the upper plate-like body 62 is also formed with an annular recess serving as a receiving tray for the adhesive between the outer edge 62b and the recess 62a. 58 is adhered to the upper plate-like body 62 .
  • the inner tubular member 58a of the filter body 58 is a tubular (for example, cylindrical) member formed of a punching plate made of stainless steel or carbon steel, for example.
  • the inner cylindrical member 58 a is arranged coaxially with the central axis of the oil separator 20 so as to surround the refrigerant gas lead-out pipe 54 .
  • the inner cylindrical member 58a is provided to support the filter member 58b from inside.
  • the internal space of the inner cylinder member 58 a is the inner cavity 50 , and the inner cavity 50 is surrounded by the inner cylinder member 58 a, the upper dish-shaped body 62 and the lower dish-shaped body 60 .
  • the filter member 58b has a cylindrical shape and surrounds the inner cavity 50.
  • the filter member 58b is also arranged coaxially with the central axis of the oil separator 20 .
  • the filter member 58b has the inner cylinder member 58a as a core, and is provided by winding a filter material in a cylindrical shape around the inner cylinder member 58a. Filter member 58 b occupies most of the volume of filter body 58 .
  • the filter member 58b is made of mineral fiber such as glass wool or other filter material.
  • the outer cylindrical member 58c is a tubular (for example, cylindrical) member formed of a punching plate made of stainless steel or carbon steel, for example, and is arranged coaxially with the central axis of the oil separator 20 so as to surround the filter member 58b. .
  • the outer cavity 48 is adjacent just outside the outer cylinder member 58c.
  • the outer cylinder member 58c reinforces the filter member 58b from the outside, and the inner cylinder member 58a reinforces the filter member 58b from the inside.
  • the inner cylindrical member 58a and the outer cylindrical member 58c are perforated plates, and a wire mesh, a plate provided with slits, a member in which bars are arranged in a lattice, or the like, can be used as a filter without hindering the flow of gas. Any structure may be used as long as it supports the member 58b.
  • Refrigerant gas (G, OL) mixed with oil flows from the refrigerant gas introduction pipe 52 into the inner cavity 50 of the filter element 46 .
  • Refrigerant gas G and oil OL are separated by the filter body 58 .
  • Refrigerant gas G is delivered from the oil separator 20 through the refrigerant gas lead-out pipe 54 .
  • Oil OL flows down to the bottom of oil separator container 44 and is collected through return oil pipe 56 .
  • the filter element is suspended and supported in the oil separator container only by the refrigerant gas introduction pipe. Therefore, there is a concern that the filter element may shake within the oil separator container or hit the side of the container due to a strong external force during assembly of the oil separator or transportation to the site where it is used.
  • the filter element may be provided with ribs projecting radially outward from the side surface of the filter element toward the side surface of the oil separator container, or vice versa. may be attached to the oil separator container to regulate the amount of displacement of the filter element due to shaking.
  • the filter element may receive an axial load when the pressure loss of the gas passing through the filter element becomes excessive for some reason.
  • a support bar may be provided that axially connects the upper and lower ends of the filter element.
  • the filter element 46 has a lower dish-shaped body 60 attached to its lower end.
  • the oil separator container 44 is joined to the lower dish-shaped body 60 at its bottom.
  • the lower dish 60 has a first fitting portion 60a
  • the bottom of the oil separator container 44 has a second fitting portion 64 that fits with the first fitting portion 60a.
  • the filter element 46 is supported by the refrigerant gas introduction pipe 52 at its upper end, and is also supported at its lower end by the fitting between the first fitting portion 60a and the second fitting portion 64. As shown in FIG. As a result, vibrations that may occur in the filter element 46 can be suppressed. It can also withstand axial loads that may occur on the filter element 46 . Compared to the case where additional members such as ribs and support bars are provided as described above, anti-vibration countermeasures can be realized with a simple structure, and manufacturing costs can be suppressed.
  • the filter element 46 is attached to its upper end and provided with an upper plate-like body 62 having a concave portion 62 a recessed toward the inner cavity 50 .
  • the refrigerant gas introduction pipe 52 is inserted into the inner cavity 50 from the recess 62a of the upper dish-shaped body 62 and is bonded to the upper dish-shaped body 62 at the recess 62a.
  • the refrigerant gas introduction pipe is often attached to the upper end of the filter element by welding.
  • an additional member is required, such as providing an auxiliary plate for welding on the upper end of the filter element.
  • the refrigerant gas introduction pipe 52 can be adhered to the upper dish-shaped body 62, and such an additional member is not required. Therefore, the manufacturing cost can be suppressed.
  • the first fitting portion 60 a is formed in the lower dish-shaped body 60 as a concave portion recessed toward the inner cavity 50 .
  • the filter body 58 extrudes some of the adhesive into the inner cavity 50 causing the adhesive to build up in the inner cavity 50 .
  • the tip 52a of the refrigerant gas introduction pipe 52 is arranged sufficiently close to the bottom of the inner cavity 50, there is a concern that the swelling adhesive may reach the tip 52a and further block the tip 52a. In this way, when the surface facing the tip 52a is covered with adhesive, the distance between this facing surface (that is, the surface of the solidified adhesive) and the tip 52a depends on the amount of adhesive applied and how the bonding work is performed. Depends. To prevent the tip 52a from reaching the adhesive, it is necessary to raise the tip 52a to some extent. The tip 52a is separated from the bottom of the inner cavity 50, and the performance of the oil separator 20 may be affected.
  • the tip 52a of the refrigerant gas introduction pipe 52 faces the first fitting portion 60a, and the height of the first fitting portion 60a is higher than the adhesive impregnated portion 68.
  • the upper surface of the first fitting portion 60a facing the tip 52a is not covered with the adhesive and is exposed to the inner cavity 50.
  • the tip 52a can be positioned closer to the bottom of the inner cavity 50, which as described above is the oil separator 20. This leads to improved performance.
  • the refrigerant gas introduction pipe 52 may be provided with a positioning portion 52b.
  • the positioning portion 52 b protrudes radially outward from the outer peripheral surface of the refrigerant gas introduction pipe 52 .
  • the positioning portion 52 b may be formed in a flange shape around the entire circumference of the refrigerant gas introduction pipe 52 . Only by abutting the positioning portion 52b against the concave portion 62a, the tip 52a can be easily arranged at a specified distance from the upper surface of the first fitting portion 60a.
  • the positioning portion 52b is not limited to a specific shape.
  • the refrigerant gas introduction pipe 52 may have a large diameter at the top and a small diameter at the bottom, and the step between the large diameter portion and the small diameter portion may abut against the concave portion 62 a of the upper plate-like body 62 .
  • the second fitting portion 64 is a cylindrical convex portion protruding from the container lower lid 44c, but the second fitting portion 64 may have other shapes.
  • the second fitting portion 64 may have a large diameter portion protruding from the container bottom lid 44c and a small diameter portion further projecting from the large diameter portion, and the small diameter portion fits with the first fitting portion 60a. may be combined.
  • the upper surface of the large diameter portion may contact the lower surface of the lower dish 60 around the first fitting portion 60 a to support the filter element 46 .
  • the joining position by fitting the lower dish-shaped body 60 and the container lower lid 44c is not limited to the central portion of the lower dish-shaped body 60, but may be on the outer peripheral portion of the lower dish-shaped body 60.
  • the first fitting portion 60a may be formed in the lower dish-shaped body 60 as a recess outside the inner cavity 50 and recessed toward the filter member 58b.
  • the second fitting portion 64 may be a convex portion projecting upward from the lower lid 44c of the oil separator container 44 at a position corresponding to the first fitting portion 60a.
  • the first fitting portion 60a is a concave portion and the second fitting portion 64 is a convex portion.
  • the portion 64 may be a recess.
  • the first fitting portion 60a may be a projection projecting from the lower dish-shaped body 60 toward the container bottom lid 44c, and the second fitting portion 64 may be a recess formed in the container bottom lid 44c.
  • the joint between the lower portion of the filter element 46 and the bottom portion of the oil separator container 44 is not limited to a fitting structure.
  • the joint between the lower portion of the filter element 46 and the bottom of the oil separator container 44 is such that the lower surface of the filter element 46 (eg lower dish 60) and the bottom surface of the oil separator container 44 (eg container Support may be provided by contact with the lower lid 44c).
  • the present invention can be used in the fields of oil separators and compressors for cryogenic refrigerators.
  • cryogenic refrigerator 10 cryogenic refrigerator, 12 compressor, 20 oil separator, 44 oil separator container, 46 filter element, 48 outer cavity, 50 inner cavity, 52 refrigerant gas introduction pipe, 60 lower dish-shaped body, 62 upper dish-shaped body.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Compressor (AREA)

Abstract

This oil separator (20) comprises: an oil separator container (44); a refrigerant gas introduction pipe (52) which is inserted from above the oil separator container (44) and introduces a refrigerant gas into the oil separator container (44); and a filter element (46) which is disposed inside the oil separator container (44) and defines an outer cavity (48) between the oil separator container (44) and the filter element, the filter element (46) having an inner cavity (50) which is connected to the refrigerant gas introduction pipe (52) and to which the refrigerant gas is introduced from the refrigerant gas introduction pipe (52), and separating oil from the refrigerant gas flowing to the outer cavity (48) from the inner cavity (50). The filter element (46) comprises a lower plate-shaped body (60) attached to the lower end thereof, and the oil separator container (44) is joined to the lower plate-shaped body (60) at the bottom part thereof.

Description

オイルセパレータおよび極低温冷凍機用圧縮機Compressors for oil separators and cryogenic refrigerators
 本発明は、オイルセパレータおよび極低温冷凍機用圧縮機に関する。 The present invention relates to an oil separator and a cryogenic refrigerator compressor.
 極低温冷凍機に使用される冷媒ガスの圧縮機は、圧縮され昇圧された冷媒ガスからオイルを除去するために、多くの場合、オイルセパレータとアドゾーバを有する。オイルセパレータに流入する冷媒ガスにはいくらかのオイルが混入している。大半のオイルはオイルセパレータによって冷媒ガスから分離されるが、オイルセパレータから冷媒ガスとともに微量のオイルが流出しうる。これはアドゾーバで吸着され、冷媒ガスから除去される。 Refrigerant gas compressors used in cryogenic refrigerators often have an oil separator and an adsorber to remove oil from the compressed and pressurized refrigerant gas. The refrigerant gas entering the oil separator contains some oil. Most of the oil is separated from the refrigerant gas by the oil separator, but a small amount of oil may flow out from the oil separator together with the refrigerant gas. It is adsorbed by the adsorber and removed from the refrigerant gas.
特開2012-202635号公報JP 2012-202635 A
 本発明者は、上記の圧縮機を検討し、オイルセパレータ内のフィルターエレメントに関して、製造コスト低減の観点から改善の余地があることを認識した。 After studying the above compressor, the inventor recognized that the filter element in the oil separator had room for improvement from the viewpoint of manufacturing cost reduction.
 本発明のある態様の例示的な目的のひとつは、オイルセパレータ内のフィルターエレメントに関して製造コストを低減することにある。 One exemplary objective of certain aspects of the present invention is to reduce manufacturing costs for filter elements within oil separators.
 本発明のある態様によると、オイルセパレータは、オイルセパレータ容器と、オイルセパレータ容器の上部から挿し込まれ、オイルセパレータ容器内に冷媒ガスを導入する冷媒ガス導入管と、オイルセパレータ容器内に配置され、オイルセパレータ容器との間に外側空洞を定めるフィルターエレメントであって、冷媒ガス導入管に接続され冷媒ガス導入管から冷媒ガスが導入される内側空洞を有し、内側空洞から外側空洞に流れる冷媒ガスからオイルを分離するフィルターエレメントと、を備える。フィルターエレメントは、その下端に取り付けられた下皿状体を備え、オイルセパレータ容器は、その底部で下皿状体と接合されている。 According to one aspect of the present invention, the oil separator comprises an oil separator container, a refrigerant gas introduction pipe inserted from the top of the oil separator container and introducing refrigerant gas into the oil separator container, and an oil separator arranged in the oil separator container. , the filter element defining an outer cavity between itself and the oil separator container, the filter element having an inner cavity connected to a refrigerant gas introduction pipe and through which refrigerant gas is introduced from the refrigerant gas introduction pipe, the refrigerant flowing from the inner cavity to the outer cavity. a filter element for separating oil from gas. The filter element has a lower dish attached to its lower end, and the oil separator container is joined to the lower dish at its bottom.
 本発明のある態様によると、オイルセパレータは、オイルセパレータ容器と、オイルセパレータ容器の上部から挿し込まれ、オイルセパレータ容器内に冷媒ガスを導入する冷媒ガス導入管と、オイルセパレータ容器内に配置され、オイルセパレータ容器との間に外側空洞を定めるフィルターエレメントであって、冷媒ガス導入管に接続され冷媒ガス導入管から冷媒ガスが導入される内側空洞を有し、内側空洞から外側空洞に流れる冷媒ガスからオイルを分離するフィルターエレメントと、を備える。フィルターエレメントは、その上端に取り付けられ、内側空洞に向かって凹んだ凹部を有する上皿状体を備え、冷媒ガス導入管が、上皿状体の凹部から内側空洞に挿し込まれ上皿状体と凹部で接着されている。 According to one aspect of the present invention, the oil separator comprises an oil separator container, a refrigerant gas introduction pipe inserted from the top of the oil separator container and introducing refrigerant gas into the oil separator container, and an oil separator arranged in the oil separator container. , the filter element defining an outer cavity between itself and the oil separator container, the filter element having an inner cavity connected to a refrigerant gas introduction pipe and through which refrigerant gas is introduced from the refrigerant gas introduction pipe, the refrigerant flowing from the inner cavity to the outer cavity. a filter element for separating oil from gas. The filter element is attached to its upper end and has an upper dish-shaped body having a concave portion recessed toward the inner cavity. and recesses.
 本発明のある態様によると、極低温冷凍機用圧縮機は、上述のいずれかのオイルセパレータを備える。 According to an aspect of the present invention, a cryogenic refrigerator compressor includes any one of the oil separators described above.
 本発明によれば、オイルセパレータ内のフィルターエレメントに関して製造コストを低減することができる。 According to the present invention, manufacturing costs can be reduced for the filter element in the oil separator.
実施の形態に係る極低温冷凍機を概略的に示す図である。1 is a diagram schematically showing a cryogenic refrigerator according to an embodiment; FIG. 実施の形態に係るオイルセパレータを概略的に示す断面図である。It is a sectional view showing roughly an oil separator concerning an embodiment.
 以下、図面を参照しながら、本発明を実施するための形態について詳細に説明する。説明および図面において同一または同等の構成要素、部材、処理には同一の符号を付し、重複する説明は適宜省略する。図示される各部の縮尺や形状は、説明を容易にするために便宜的に設定されており、特に言及がない限り限定的に解釈されるものではない。実施の形態は例示であり、本発明の範囲を何ら限定するものではない。実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. In the description and drawings, the same or equivalent components, members, and processes are denoted by the same reference numerals, and overlapping descriptions are omitted as appropriate. The scales and shapes of the illustrated parts are set for convenience in order to facilitate explanation, and should not be construed as limiting unless otherwise specified. The embodiment is an example and does not limit the scope of the present invention. All features and combinations thereof described in the embodiments are not necessarily essential to the invention.
 図1は、実施の形態に係る極低温冷凍機を概略的に示す図である。 FIG. 1 is a diagram schematically showing a cryogenic refrigerator according to an embodiment.
 極低温冷凍機10は、圧縮機12と、コールドヘッド14とを備える。圧縮機12は、極低温冷凍機10の冷媒ガスをコールドヘッド14から回収し、回収した冷媒ガスを昇圧して、再び冷媒ガスをコールドヘッド14に供給するよう構成されている。圧縮機12は、圧縮機ユニットとも称される。コールドヘッド14は、膨張機とも称され、室温部14aと、冷却ステージとも称される低温部14bとを有する。圧縮機12とコールドヘッド14により極低温冷凍機10の冷凍サイクルが構成され、それにより低温部14bが所望の極低温に冷却される。冷媒ガスは、作動ガスとも称され、通例はヘリウムガスであるが、適切な他のガスが用いられてもよい。 The cryogenic refrigerator 10 includes a compressor 12 and a cold head 14. The compressor 12 is configured to recover the refrigerant gas of the cryogenic refrigerator 10 from the cold head 14 , pressurize the recovered refrigerant gas, and supply the refrigerant gas to the cold head 14 again. Compressor 12 is also referred to as a compressor unit. The cold head 14, also called an expander, has a room temperature section 14a and a cold section 14b, also called a cooling stage. Compressor 12 and cold head 14 constitute a refrigeration cycle of cryogenic refrigerator 10, which cools low temperature section 14b to a desired cryogenic temperature. The refrigerant gas, also called working gas, is typically helium gas, although other suitable gases may be used.
 極低温冷凍機10は、一例として、単段式または二段式のギフォード・マクマホン(Gifford-McMahon;GM)冷凍機であるが、パルス管冷凍機、スターリング冷凍機、またはそのほかのタイプの極低温冷凍機であってもよい。コールドヘッド14は、極低温冷凍機10のタイプに応じて異なる構成を有するが、圧縮機12は、極低温冷凍機10のタイプによらず、以下に説明する構成を用いることができる。 Cryogenic refrigerator 10 is illustratively a single stage or two stage Gifford-McMahon (GM) refrigerator, but may also be a pulse tube refrigerator, Stirling refrigerator, or other type of cryogenic refrigerator. It may be a refrigerator. The coldhead 14 has a different configuration depending on the type of cryogenic refrigerator 10 , but the compressor 12 can have the configuration described below regardless of the type of cryogenic refrigerator 10 .
 なお、一般に、圧縮機12からコールドヘッド14に供給される冷媒ガスの圧力と、コールドヘッド14から圧縮機12に回収される冷媒ガスの圧力は、ともに大気圧よりかなり高く、それぞれ第1高圧及び第2高圧と呼ぶことができる。説明の便宜上、第1高圧及び第2高圧はそれぞれ単に高圧及び低圧とも呼ばれる。典型的には、高圧は例えば2~3MPaである。低圧は例えば0.5~1.5MPaであり、例えば約0.8MPaである。 In general, the pressure of the refrigerant gas supplied from the compressor 12 to the cold head 14 and the pressure of the refrigerant gas recovered from the cold head 14 to the compressor 12 are both significantly higher than the atmospheric pressure. It can be called a second high voltage. For convenience of explanation, the first high pressure and the second high pressure are also simply referred to as high pressure and low pressure, respectively. Typically the high pressure is eg 2-3 MPa. The low pressure is for example 0.5-1.5 MPa, for example about 0.8 MPa.
 圧縮機12は、圧縮機本体16、オイルライン18、オイルセパレータ20、アドゾーバ21を備える。また、圧縮機12は、吐出ポート22、吸入ポート24、吐出流路26、吸入流路28、ストレージタンク30、バイパス弁32、冷媒ガス冷却部34、オイル冷却部36を備える。 The compressor 12 includes a compressor body 16, an oil line 18, an oil separator 20, and an adsorber 21. The compressor 12 also includes a discharge port 22 , a suction port 24 , a discharge flow path 26 , a suction flow path 28 , a storage tank 30 , a bypass valve 32 , a refrigerant gas cooling section 34 and an oil cooling section 36 .
 圧縮機本体16は、その吸入口から吸入される冷媒ガスを内部で圧縮して吐出口から吐出するよう構成されている。圧縮機本体16は、例えば、スクロール方式、ロータリ式、または冷媒ガスを昇圧するそのほかのポンプであってもよい。圧縮機本体16は、固定された一定の冷媒ガス流量を吐出するよう構成されていてもよい。あるいは、圧縮機本体16は、吐出する冷媒ガス流量を可変とするよう構成されていてもよい。圧縮機本体16は、圧縮カプセルと称されることもある。 The compressor main body 16 is configured to internally compress the refrigerant gas sucked from its suction port and discharge it from its discharge port. The compressor main body 16 may be, for example, a scroll type, rotary type, or other pump that pressurizes the refrigerant gas. Compressor body 16 may be configured to deliver a fixed, constant refrigerant gas flow rate. Alternatively, the compressor main body 16 may be configured to vary the flow rate of the discharged refrigerant gas. Compressor body 16 is sometimes referred to as a compression capsule.
 圧縮機本体16では冷却と潤滑のためにオイルが使用され、吸入された冷媒ガスは圧縮機本体16内でこのオイルに直接さらされる。よって、冷媒ガスは、オイルが若干混入した状態で吐出口から送出される。 The compressor body 16 uses oil for cooling and lubrication, and the sucked refrigerant gas is directly exposed to this oil inside the compressor body 16 . Therefore, the refrigerant gas is sent out from the discharge port in a state in which oil is slightly mixed.
 オイルライン18は、オイル循環ライン18aと、オイル戻りライン18bとを備える。オイル循環ライン18aは、オイル冷却部36を有し、圧縮機本体16から流出するオイルがオイル冷却部36により冷却され再び圧縮機本体16に流入するように構成されている。オイル循環ライン18aには、内部を流れるオイル流量を制御するオリフィスが設けられている。また、オイル循環ライン18aには、オイルに含まれる塵埃を除去するフィルターが設けられてもよい。オイル戻りライン18bは、オイルセパレータ20で回収されたオイルを圧縮機本体16に戻すために、オイルセパレータ20を吸入流路28に接続する。オイル戻りライン18bの途中には、オイルセパレータ20で分離されたオイルに含まれる塵埃を除去するフィルターと、圧縮機本体16へのオイルの戻り量を制御するオリフィスが設けられてもよい。 The oil line 18 includes an oil circulation line 18a and an oil return line 18b. The oil circulation line 18a has an oil cooling portion 36, and is configured such that oil flowing out of the compressor main body 16 is cooled by the oil cooling portion 36 and flows into the compressor main body 16 again. The oil circulation line 18a is provided with an orifice for controlling the flow rate of oil flowing therein. Further, the oil circulation line 18a may be provided with a filter for removing dust contained in the oil. The oil return line 18 b connects the oil separator 20 to the suction flow path 28 in order to return the oil collected by the oil separator 20 to the compressor body 16 . A filter for removing dust contained in the oil separated by the oil separator 20 and an orifice for controlling the amount of oil returned to the compressor body 16 may be provided in the middle of the oil return line 18b.
 オイルセパレータ20は、圧縮機本体16を通ることによって冷媒ガスに混入するオイルを冷媒ガスから分離するために設けられている。オイルセパレータ20は、吐出流路26の上流部26aを通じて圧縮機本体16の吐出口に接続されている。また、オイルセパレータ20は、吐出流路26の下流部26bを通じて吐出ポート22に接続されている。オイルセパレータ20の詳細については後述する。 The oil separator 20 is provided to separate the oil mixed in the refrigerant gas from the refrigerant gas as it passes through the compressor body 16 . The oil separator 20 is connected to the discharge port of the compressor main body 16 through the upstream portion 26a of the discharge passage 26. As shown in FIG. Further, the oil separator 20 is connected to the discharge port 22 through the downstream portion 26b of the discharge flow path 26. As shown in FIG. Details of the oil separator 20 will be described later.
 アドゾーバ21は、冷媒ガスに残留している例えば気化したオイルそのほかの汚染成分を冷媒ガスから吸着により除去するために設けられている。アドゾーバ21は、吐出流路26の下流部26bの途中に配置されている。 The adsorber 21 is provided to remove, for example, vaporized oil and other contaminants remaining in the refrigerant gas from the refrigerant gas by adsorption. Adsorber 21 is arranged in the middle of downstream portion 26 b of discharge channel 26 .
 吐出ポート22は、圧縮機本体16により高圧に昇圧された冷媒ガスを圧縮機12から送出するために圧縮機筐体38に設置された冷媒ガスの出口であり、吸入ポート24は、低圧の冷媒ガスを圧縮機12に受け入れるために圧縮機筐体38に設置された冷媒ガスの入口である。圧縮機筐体38には、圧縮機本体16やオイルセパレータ20など圧縮機12の各構成要素が収容されている。圧縮機本体16の吐出口が吐出流路26により吐出ポート22に接続され、吸入ポート24が吸入流路28により圧縮機本体16の吸入口に接続されている。 The discharge port 22 is a refrigerant gas outlet installed in the compressor housing 38 for sending out the refrigerant gas pressurized to a high pressure by the compressor body 16 from the compressor 12, and the suction port 24 is a low pressure refrigerant gas outlet. A refrigerant gas inlet located in the compressor housing 38 for receiving the gas into the compressor 12 . The compressor housing 38 accommodates each component of the compressor 12 such as the compressor main body 16 and the oil separator 20 . A discharge port of the compressor body 16 is connected to the discharge port 22 by a discharge channel 26 , and a suction port 24 is connected to a suction port of the compressor body 16 by a suction channel 28 .
 ストレージタンク30は、コールドヘッド14から圧縮機12へと戻る低圧の冷媒ガスに含まれる脈動を除去するための容積として設けられている。ストレージタンク30は、吸入流路28に配置されている。 The storage tank 30 is provided as a volume for removing pulsation contained in the low pressure refrigerant gas returning from the cold head 14 to the compressor 12 . The storage tank 30 is arranged in the suction flow path 28 .
 バイパス弁32は、圧縮機本体16を迂回するように吐出流路26を吸入流路28に接続する。一例として、バイパス弁32は、オイルセパレータ20とアドゾーバ21の間で吐出流路26の下流部26bから分岐し、圧縮機本体16とストレージタンク30の間で吸入流路28に接続される。バイパス弁32は、冷媒ガス流量制御のために、及び/または、圧縮機12を停止する際の吐出流路26と吸入流路28との均圧化のために設けられている。 The bypass valve 32 connects the discharge passage 26 to the suction passage 28 so as to bypass the compressor body 16 . As an example, the bypass valve 32 branches from the downstream portion 26 b of the discharge flow path 26 between the oil separator 20 and the adsorber 21 and is connected to the suction flow path 28 between the compressor body 16 and the storage tank 30 . The bypass valve 32 is provided for refrigerant gas flow rate control and/or for pressure equalization between the discharge passage 26 and the suction passage 28 when the compressor 12 is stopped.
 冷媒ガス冷却部34及びオイル冷却部36は、例えば冷却水などの冷却媒体を用いて圧縮機12を冷却する冷却系を構成する。冷媒ガス冷却部34は、吐出流路26の上流部26aに配置され、圧縮機本体16での冷媒ガスの圧縮に伴って生じる圧縮熱により加熱された高圧の冷媒ガスを冷却するために設けられている。冷媒ガス冷却部34は、冷媒ガスと冷却媒体との熱交換により冷媒ガスを冷却する。また、オイル冷却部36は、圧縮機本体16から流出するオイルと冷却媒体との熱交換によりオイルを冷却する。冷却媒体は、外部から圧縮機12に供給され、冷媒ガス冷却部34とオイル冷却部36を経て、圧縮機12の外部に排出される。このようにして、圧縮機本体16で生じる圧縮熱は、冷却媒体とともに圧縮機12の外へと除去される。なお、冷却媒体は、例えばチラー(図示せず)により冷却され、再び供給されてもよい。 The refrigerant gas cooling unit 34 and the oil cooling unit 36 constitute a cooling system that cools the compressor 12 using a cooling medium such as cooling water. The refrigerant gas cooling part 34 is arranged in the upstream part 26 a of the discharge passage 26 and is provided to cool the high-pressure refrigerant gas heated by the heat of compression generated as the refrigerant gas is compressed in the compressor main body 16 . ing. The refrigerant gas cooling unit 34 cools the refrigerant gas by heat exchange between the refrigerant gas and the cooling medium. Further, the oil cooling portion 36 cools the oil by heat exchange between the oil flowing out from the compressor main body 16 and the cooling medium. A cooling medium is supplied to the compressor 12 from the outside, passes through the refrigerant gas cooling section 34 and the oil cooling section 36, and is discharged to the outside of the compressor 12. As shown in FIG. In this way, the heat of compression generated in the compressor body 16 is removed out of the compressor 12 along with the cooling medium. The cooling medium may be cooled by, for example, a chiller (not shown) and supplied again.
 また、極低温冷凍機10は、コールドヘッド14の室温部14aに高圧ポート40と低圧ポート41とを備える。高圧ポート40は、高圧配管42によって吐出ポート22に接続され、低圧ポート41は、低圧配管43によって吸入ポート24に接続されている。 The cryogenic refrigerator 10 also includes a high pressure port 40 and a low pressure port 41 in the room temperature section 14 a of the cold head 14 . The high pressure port 40 is connected to the discharge port 22 by a high pressure pipe 42 and the low pressure port 41 is connected to the suction port 24 by a low pressure pipe 43 .
 したがって、コールドヘッド14から圧縮機12に回収される冷媒ガスは、低圧ポート41から低圧配管43を通じて圧縮機12の吸入ポート24に流入する。冷媒ガスは、吸入流路28上のストレージタンク30を経て、圧縮機本体16の吸入口へと回収される。冷媒ガスは、圧縮機本体16によって圧縮され昇圧される。圧縮機本体16の吐出口から送出される冷媒ガスは、吐出流路26上の冷媒ガス冷却部34、オイルセパレータ20、アドゾーバ21を経て、吐出ポート22から圧縮機12を出る。冷媒ガスは、高圧配管42と高圧ポート40を経てコールドヘッド14の内部に供給される。 Therefore, refrigerant gas recovered from the cold head 14 into the compressor 12 flows from the low pressure port 41 through the low pressure pipe 43 into the suction port 24 of the compressor 12 . The refrigerant gas passes through the storage tank 30 on the suction flow path 28 and is recovered to the suction port of the compressor main body 16 . Refrigerant gas is compressed by the compressor main body 16 and raised in pressure. Refrigerant gas sent out from the discharge port of the compressor main body 16 passes through the refrigerant gas cooling portion 34 on the discharge passage 26 , the oil separator 20 , and the adsorber 21 and exits the compressor 12 from the discharge port 22 . Refrigerant gas is supplied to the inside of the cold head 14 through the high pressure pipe 42 and the high pressure port 40 .
 図2は、実施の形態に係るオイルセパレータ20を概略的に示す断面図である。 FIG. 2 is a cross-sectional view schematically showing the oil separator 20 according to the embodiment.
 オイルセパレータ20は、オイルセパレータ容器44と、フィルターエレメント46とを備える。フィルターエレメント46は、オイルセパレータ容器44の中に配置され、オイルセパレータ容器44との間に外側空洞48を定める。また、フィルターエレメント46は、冷媒ガスが導入される内側空洞50を有し、内側空洞50から外側空洞48に流れる冷媒ガスからオイルを分離する。 The oil separator 20 includes an oil separator container 44 and a filter element 46. A filter element 46 is positioned within the oil separator container 44 and defines an outer cavity 48 therebetween. The filter element 46 also has an inner cavity 50 into which refrigerant gas is introduced to separate the oil from the refrigerant gas flowing from the inner cavity 50 to the outer cavity 48 .
 オイルセパレータ20は、縦型のオイルセパレータとして構成されている。オイルセパレータ20は、細長く延びた筒型の形状を有し、その長手方向を鉛直方向に一致させるようにして圧縮機12に設置される。図1に示される圧縮機本体16から流入する冷媒ガス(いくらかのオイルが混入している)は、オイルセパレータ20の上部から導入される。フィルターエレメント46によって清浄化された冷媒ガスは、オイルセパレータ20の上部からオイルセパレータ20の外部に排出される。フィルターエレメント46によって冷媒ガスから分離されたオイルは、フィルターエレメント46の内部または表面を鉛直方向に流下し、オイルセパレータ20の底部から回収される。 The oil separator 20 is configured as a vertical oil separator. The oil separator 20 has an elongated cylindrical shape and is installed in the compressor 12 so that its longitudinal direction is aligned with the vertical direction. Refrigerant gas (entrained with some oil) entering from the compressor body 16 shown in FIG. The refrigerant gas cleaned by the filter element 46 is discharged from the upper portion of the oil separator 20 to the outside of the oil separator 20 . The oil separated from the refrigerant gas by the filter element 46 flows vertically down inside or on the surface of the filter element 46 and is collected from the bottom of the oil separator 20 .
 オイルセパレータ容器44は、オイルセパレータ20の外形を定める円筒状の容器であり、容器筒部44a、容器上蓋44b、容器下蓋44cを備える。容器上蓋44bが容器筒部44aの上端に固定され、容器下蓋44cが容器筒部44aの下端に固定されている。容器上蓋44bと容器下蓋44cはそれぞれ、例えば溶接により容器筒部44aに固定され、オイルセパレータ容器44は、気密容器となっている。 The oil separator container 44 is a cylindrical container that defines the outer shape of the oil separator 20, and includes a container cylindrical portion 44a, a container upper lid 44b, and a container lower lid 44c. A container upper lid 44b is fixed to the upper end of the container tubular portion 44a, and a container lower lid 44c is fixed to the lower end of the container tubular portion 44a. The container upper lid 44b and the container lower lid 44c are each fixed to the container cylindrical portion 44a by, for example, welding, and the oil separator container 44 is an airtight container.
 容器上蓋44bには、冷媒ガス導入管52、冷媒ガス導出管54及び戻りオイル管56が設けられている。冷媒ガス導入管52は、図1に示される吐出流路26の上流部26aがオイルセパレータ20に接続する部分に相当する。冷媒ガス導出管54は、吐出流路26の下流部26bがオイルセパレータ20に接続する部分に相当する。戻りオイル管56は、オイルライン18のオイル戻りライン18bがオイルセパレータ20に接続する部分に相当する。 A refrigerant gas inlet pipe 52, a refrigerant gas outlet pipe 54, and a return oil pipe 56 are provided on the container upper lid 44b. The refrigerant gas introduction pipe 52 corresponds to a portion where the upstream portion 26a of the discharge passage 26 shown in FIG. The refrigerant gas lead-out pipe 54 corresponds to a portion where the downstream portion 26b of the discharge flow path 26 is connected to the oil separator 20 . The return oil pipe 56 corresponds to a portion where the oil return line 18 b of the oil line 18 connects to the oil separator 20 .
 冷媒ガス導入管52は、オイルセパレータ容器44の上部から挿し込まれ、オイルセパレータ容器44内に冷媒ガスを導入する。冷媒ガス導入管52は、容器上蓋44bを貫通して設けられている。冷媒ガス導入管52は、オイルセパレータ20の中心軸に沿って延びている。容器上蓋44bを貫通した冷媒ガス導入管52は、フィルターエレメント46の内側空洞50まで延び、内側空洞50に接続されている。冷媒ガス導入管52を通じて、オイルセパレータ20の外部からフィルターエレメント46の内側空洞50へと冷媒ガスが導入される。 The refrigerant gas introduction pipe 52 is inserted from the top of the oil separator container 44 and introduces the refrigerant gas into the oil separator container 44 . The refrigerant gas introduction pipe 52 is provided through the container top lid 44b. Refrigerant gas introduction pipe 52 extends along the central axis of oil separator 20 . A refrigerant gas introduction pipe 52 passing through the container top lid 44b extends to the inner cavity 50 of the filter element 46 and is connected to the inner cavity 50 . Refrigerant gas is introduced from the outside of the oil separator 20 into the inner cavity 50 of the filter element 46 through the refrigerant gas introduction pipe 52 .
 図2に示される例においては、冷媒ガス導入管52は、内側空洞50の底部近傍まで延びている。このように冷媒ガス導入管52の先端52aが内側空洞50の高さの半分よりも下側に位置する場合には、逆に冷媒ガス導入管52の先端52aが内側空洞50の高さの半分よりも上側に位置する場合に比べて、オイルセパレータ20で冷媒ガスから分離・回収されずに冷媒ガス導出管54から排出されるオイル量(オイル上がり量とも呼ばれる)が少なくなる傾向にある。 In the example shown in FIG. 2, the refrigerant gas introduction pipe 52 extends to the vicinity of the bottom of the inner cavity 50. When the tip 52a of the refrigerant gas introduction pipe 52 is positioned below half the height of the inner cavity 50 as described above, the tip 52a of the refrigerant gas introduction pipe 52 is positioned half the height of the inner cavity 50. The amount of oil discharged from the refrigerant gas lead-out pipe 54 without being separated and collected from the refrigerant gas by the oil separator 20 (also referred to as the amount of oil rise) tends to be smaller than when positioned above.
 冷媒ガス導出管54は、容器上蓋44bを貫通して設けられている。容器上蓋44bを貫通した冷媒ガス導出管54は、外側空洞48において容器上蓋44bの近傍、例えば、オイルセパレータ20の軸方向において容器上蓋44bとフィルターエレメント46との間で、開口している。内側空洞50からフィルターエレメント46を通過して外側空洞48に流れる冷媒ガスは、冷媒ガス導出管54からオイルセパレータ20の外部に排出される。 The refrigerant gas lead-out pipe 54 is provided through the container upper lid 44b. The refrigerant gas lead-out pipe 54 passing through the container top cover 44b opens in the outer cavity 48 near the container top cover 44b, for example, between the container top cover 44b and the filter element 46 in the axial direction of the oil separator 20. Refrigerant gas flowing from the inner cavity 50 through the filter element 46 to the outer cavity 48 is discharged to the outside of the oil separator 20 through the refrigerant gas lead-out pipe 54 .
 戻りオイル管56は、容器上蓋44bを貫通して設けられている。容器上蓋44bを貫通した戻りオイル管56は、容器筒部44aに沿って容器下蓋44cの近傍まで延びている。戻りオイル管56は、外側空洞48において容器下蓋44cの近傍、例えば、オイルセパレータ20の軸方向においてフィルターエレメント46と容器下蓋44cの間で、開口している。フィルターエレメント46によって冷媒ガスから分離したオイルは、戻りオイル管56からオイルセパレータ20の外部に排出される。 The return oil pipe 56 is provided through the container upper lid 44b. A return oil pipe 56 passing through the container upper lid 44b extends along the container cylindrical portion 44a to the vicinity of the container lower lid 44c. The return oil pipe 56 opens in the outer cavity 48 near the lower container lid 44c, for example, between the filter element 46 and the lower container lid 44c in the axial direction of the oil separator 20. As shown in FIG. Oil separated from the refrigerant gas by the filter element 46 is discharged to the outside of the oil separator 20 through the return oil pipe 56 .
 フィルターエレメント46は、フィルター体58と、フィルター体58を上下に挟む下皿状体60及び上皿状体62とを備える。フィルター体58は、内筒部材58a、フィルター部材58b、外筒部材58cを備える。 The filter element 46 includes a filter body 58, and a lower dish-shaped body 60 and an upper dish-shaped body 62 that sandwich the filter body 58 from above and below. The filter body 58 includes an inner cylinder member 58a, a filter member 58b, and an outer cylinder member 58c.
 下皿状体60は、フィルター体58の下端に取り付けられ、オイルセパレータ容器44の底部、例えば容器下蓋44cと接合されている。上皿状体62は、フィルター体58の上端に取り付けられ、冷媒ガス導入管52と接合されている。冷媒ガス導入管52は、上皿状体62の中心部を貫通して内側空洞50へと延びている。上皿状体62及び下皿状体60は、それぞれ、例えばステンレスなど金属で形成された円板状の部材である。 The lower dish-shaped body 60 is attached to the lower end of the filter body 58 and joined to the bottom of the oil separator container 44, for example, the container lower lid 44c. The upper dish-shaped body 62 is attached to the upper end of the filter body 58 and joined to the refrigerant gas introduction pipe 52 . The refrigerant gas introduction pipe 52 extends through the central portion of the upper dish-shaped body 62 and into the inner cavity 50 . The upper dish-shaped body 62 and the lower dish-shaped body 60 are disc-shaped members made of metal such as stainless steel.
 フィルターエレメント46は、オイルセパレータ容器44とはめ合いにより接合されている。具体的には、下皿状体60は、第1はめ合い部60aを有し、オイルセパレータ容器44の底部は、第1はめ合い部60aとはめ合わされる第2はめ合い部64を有する。第1はめ合い部60aは、内側空洞50に向かって凹んだ凹部として下皿状体60に形成されている。第2はめ合い部64は、オイルセパレータ容器44の容器下蓋44cの中心部から上方に突き出した凸部である。 The filter element 46 is joined to the oil separator container 44 by fitting. Specifically, the lower dish-shaped body 60 has a first fitting portion 60a, and the bottom portion of the oil separator container 44 has a second fitting portion 64 that fits with the first fitting portion 60a. The first fitting portion 60 a is formed in the lower dish-shaped body 60 as a concave portion recessed toward the inner cavity 50 . The second fitting portion 64 is a convex portion protruding upward from the center portion of the container lower lid 44c of the oil separator container 44 .
 下皿状体60及び上皿状体62は、例えば、金属板のプレス加工により形成されてもよい。第2はめ合い部64は、オイルセパレータ容器44の容器下蓋44cとは別の部品として用意され、例えばねじ止め、スポット溶接など適宜の方法により容器下蓋44cに固定されてもよい。あるいは、第2はめ合い部64は、例えば母材からの削り出しにより、容器下蓋44cと一体成形されてもよい。 The lower dish-shaped body 60 and the upper dish-shaped body 62 may be formed, for example, by pressing a metal plate. The second fitting portion 64 is prepared as a component separate from the container lower lid 44c of the oil separator container 44, and may be fixed to the container lower lid 44c by an appropriate method such as screwing or spot welding. Alternatively, the second fitting portion 64 may be formed integrally with the container bottom lid 44c by, for example, cutting a base material.
 上皿状体62は、フィルター体58の上端に取り付けられ、内側空洞50に向かって凹んだ凹部62aを有する。冷媒ガス導入管52は、上皿状体62の凹部62aから内側空洞50に挿し込まれ上皿状体62と凹部62aで接着されている。凹部62aの底面には、冷媒ガス導入管52を内側空洞50に挿し込むための挿入穴が形成されており、ここに挿し込まれた冷媒ガス導入管52と凹部62aの側面との間に接着剤66が充填される。接着剤66は、エポキシ系接着剤やシリコン系接着剤など密閉性を有するものであってもよい。 The upper dish-shaped body 62 is attached to the upper end of the filter body 58 and has a concave portion 62a recessed toward the inner cavity 50. The refrigerant gas introduction pipe 52 is inserted into the inner cavity 50 from the recess 62a of the upper dish-shaped body 62 and is bonded to the upper dish-shaped body 62 at the recess 62a. An insertion hole for inserting the refrigerant gas introduction pipe 52 into the inner cavity 50 is formed in the bottom surface of the recess 62a, and the refrigerant gas introduction pipe 52 inserted here is adhered to the side surface of the recess 62a. Agent 66 is filled. The adhesive 66 may be a sealing agent such as an epoxy adhesive or a silicon adhesive.
 この実施の形態では、上皿状体62の凹部62aに冷媒ガス導入管52の挿入穴があることを除いて、上皿状体62は、下皿状体60と同一形状を有する。下皿状体60の第1はめ合い部60aに貫通穴を開けることにより、これを上皿状体62として用いることができる。下皿状体60と同じ部品を上皿状体62に利用することができるので、それぞれを別々の部品として設計する場合に比べて、製造コストの低減につながりうる。 In this embodiment, the upper dish-shaped body 62 has the same shape as the lower dish-shaped body 60 except that the concave portion 62a of the upper dish-shaped body 62 has an insertion hole for the refrigerant gas introduction pipe 52 . By forming a through hole in the first fitting portion 60 a of the lower dish-shaped body 60 , this can be used as the upper dish-shaped body 62 . Since the same parts as the lower dish-shaped body 60 can be used for the upper dish-shaped body 62, the manufacturing cost can be reduced as compared with the case where they are designed as separate parts.
 下皿状体60と上皿状体62は、それぞれフィルター体58の上部及び下部に例えば接着剤により接着されている。フィルター部材58bの上部と下部には接着剤含浸部68が形成される。接着剤は、上述の接着剤66と同様に、エポキシ系接着剤やシリコン系接着剤など密閉性を有するものであってもよい。これにより、フィルター体58と上皿状体62との間、及び、フィルター体58と下皿状体60との間に隙間が発生することを防止できる。冷媒ガス導入管52から内側空洞50に導入された冷媒ガスや冷媒ガスから分離され液化したオイルが、オイルを含んだまま隙間を通って外側空洞48に流出することを防止できる。 The lower dish-shaped body 60 and the upper dish-shaped body 62 are respectively adhered to the upper and lower portions of the filter body 58 with an adhesive, for example. Adhesive-impregnated portions 68 are formed in the upper and lower portions of the filter member 58b. As with the adhesive 66 described above, the adhesive may be an epoxy-based adhesive, a silicone-based adhesive, or the like, which has sealing properties. Thereby, it is possible to prevent the occurrence of gaps between the filter body 58 and the upper dish-shaped body 62 and between the filter body 58 and the lower dish-shaped body 60 . It is possible to prevent the refrigerant gas introduced into the inner cavity 50 from the refrigerant gas introduction pipe 52 and the oil separated from the refrigerant gas and liquefied from flowing out to the outer cavity 48 through the gap while containing the oil.
 下皿状体60には、下皿状体60の外縁60bと第1はめ合い部60aとの間に接着剤の受け皿となる円環状の凹みが形成されている。この凹みに製造段階において未硬化の液状の接着剤が塗布されるとき、第1はめ合い部60aが接着剤の内側空洞50への侵入を防ぐための内堤として働き、外縁60bが接着剤の外側への漏出を防ぐための外堤として働く。この接着剤受け皿にフィルター体58の端部(下端)が差し込まれ、フィルター体58が下皿状体60と接着される。よって、図示されるように、オイルセパレータ20の軸方向(図において上下方向)における第1はめ合い部60aの高さ(及び外縁60bの高さ)は、接着剤含浸部68の高さよりも高くなっている。また、接着剤含浸部68は、径方向に第1はめ合い部60aと外縁60bに挟まれている。 The lower dish-shaped body 60 has an annular depression that serves as a reservoir for the adhesive between the outer edge 60b of the lower dish-shaped body 60 and the first fitting portion 60a. When an uncured liquid adhesive is applied to this recess in the manufacturing stage, the first fitting portion 60a acts as an inner wall to prevent the adhesive from entering the inner cavity 50, and the outer edge 60b serves as an adhesive. Acts as an outer dike to prevent leakage to the outside. The end (lower end) of the filter body 58 is inserted into this adhesive receiving tray, and the filter body 58 is adhered to the lower dish-shaped body 60 . Therefore, as illustrated, the height of the first fitting portion 60a (and the height of the outer edge 60b) in the axial direction of the oil separator 20 (vertical direction in the figure) is higher than the height of the adhesive-impregnated portion 68. It's becoming Further, the adhesive-impregnated portion 68 is radially sandwiched between the first fitting portion 60a and the outer edge 60b.
 なお、軸方向における第1はめ合い部60aの高さは、外縁60bの高さと同じもしくはそれよりもいくらか高くすることで、接着剤の内側空洞50への侵入をより確実に抑制することができる。 By setting the height of the first fitting portion 60a in the axial direction to be the same as or slightly higher than the height of the outer edge 60b, the penetration of the adhesive into the inner cavity 50 can be more reliably suppressed. .
 同様に、上皿状体62にも、外縁62bと凹部62aとの間に接着剤の受け皿となる円環状の凹みが形成され、ここに接着剤が塗布されフィルター体58が差し込まれ、フィルター体58が上皿状体62と接着される。 Similarly, the upper plate-like body 62 is also formed with an annular recess serving as a receiving tray for the adhesive between the outer edge 62b and the recess 62a. 58 is adhered to the upper plate-like body 62 .
 フィルター体58の内筒部材58aは、例えばステンレスや炭素鋼よりなるパンチングプレートから形成された筒状(例えば円筒状)の部材である。内筒部材58aは、冷媒ガス導出管54を囲むようにしてオイルセパレータ20の中心軸と同軸に配置されている。内筒部材58aは、フィルター部材58bを内側から支持するために設けられている。内筒部材58aの内部空間が内側空洞50であり、内側空洞50は、内筒部材58aと上皿状体62と下皿状体60とにより囲まれている。 The inner tubular member 58a of the filter body 58 is a tubular (for example, cylindrical) member formed of a punching plate made of stainless steel or carbon steel, for example. The inner cylindrical member 58 a is arranged coaxially with the central axis of the oil separator 20 so as to surround the refrigerant gas lead-out pipe 54 . The inner cylindrical member 58a is provided to support the filter member 58b from inside. The internal space of the inner cylinder member 58 a is the inner cavity 50 , and the inner cavity 50 is surrounded by the inner cylinder member 58 a, the upper dish-shaped body 62 and the lower dish-shaped body 60 .
 フィルター部材58bは、筒状の形状を有し、内側空洞50を囲んでいる。フィルター部材58bも、オイルセパレータ20の中心軸と同軸に配置されている。フィルター部材58bは、内筒部材58aを芯とし、内筒部材58aの周りに、フィルター材を円筒形状に巻回すように配置して設けられている。フィルター部材58bがフィルター体58の大半の体積を占める。フィルター部材58bは、例えばグラスウールなどの鉱物繊維またはその他のフィルター材で形成されている。 The filter member 58b has a cylindrical shape and surrounds the inner cavity 50. The filter member 58b is also arranged coaxially with the central axis of the oil separator 20 . The filter member 58b has the inner cylinder member 58a as a core, and is provided by winding a filter material in a cylindrical shape around the inner cylinder member 58a. Filter member 58 b occupies most of the volume of filter body 58 . The filter member 58b is made of mineral fiber such as glass wool or other filter material.
 外筒部材58cは、例えばステンレスや炭素鋼よりなるパンチングプレートから形成された筒状(例えば円筒状)の部材であり、フィルター部材58bを囲むようにしてオイルセパレータ20の中心軸と同軸に配置されている。外筒部材58cのすぐ外側に外側空洞48が隣接している。外筒部材58cがフィルター部材58bを外側から補強し、内筒部材58aがフィルター部材58bを内側から補強している。なお、内筒部材58aおよび外筒部材58cが多孔板であることは必須ではなく、金網、スリットを設けた板、棒材を格子状に並べた部材など、ガスの流れを阻害せずにフィルター部材58bを支持する構造であれば、どのようなものであってもよい。 The outer cylindrical member 58c is a tubular (for example, cylindrical) member formed of a punching plate made of stainless steel or carbon steel, for example, and is arranged coaxially with the central axis of the oil separator 20 so as to surround the filter member 58b. . The outer cavity 48 is adjacent just outside the outer cylinder member 58c. The outer cylinder member 58c reinforces the filter member 58b from the outside, and the inner cylinder member 58a reinforces the filter member 58b from the inside. It should be noted that it is not essential that the inner cylindrical member 58a and the outer cylindrical member 58c are perforated plates, and a wire mesh, a plate provided with slits, a member in which bars are arranged in a lattice, or the like, can be used as a filter without hindering the flow of gas. Any structure may be used as long as it supports the member 58b.
 図2においては、理解を容易にするために、オイルセパレータ20内での冷媒ガスの流れを白色の矢印Gで示し、オイルの流れを濃色の矢印OLで示す。オイルが混入した冷媒ガス(G,OL)が冷媒ガス導入管52からフィルターエレメント46の内側空洞50に流入する。フィルター体58によって冷媒ガスGとオイルOLに分離される。冷媒ガスGは、冷媒ガス導出管54を通じてオイルセパレータ20から送出される。オイルOLは、オイルセパレータ容器44の底部に流下し、戻りオイル管56を通じて回収される。 In FIG. 2, for ease of understanding, the flow of refrigerant gas within the oil separator 20 is indicated by a white arrow G, and the flow of oil is indicated by a dark arrow OL. Refrigerant gas (G, OL) mixed with oil flows from the refrigerant gas introduction pipe 52 into the inner cavity 50 of the filter element 46 . Refrigerant gas G and oil OL are separated by the filter body 58 . Refrigerant gas G is delivered from the oil separator 20 through the refrigerant gas lead-out pipe 54 . Oil OL flows down to the bottom of oil separator container 44 and is collected through return oil pipe 56 .
 ところで、既存のオイルセパレータでは、フィルターエレメントが冷媒ガス導入管のみによってオイルセパレータ容器内に吊り下げ支持されている。そのため、オイルセパレータの組立中や、使用される現場への輸送中に、強い外力を受けてフィルターエレメントがオイルセパレータ容器内で振れたり容器側面に当たったりすることが懸念される。 By the way, in the existing oil separator, the filter element is suspended and supported in the oil separator container only by the refrigerant gas introduction pipe. Therefore, there is a concern that the filter element may shake within the oil separator container or hit the side of the container due to a strong external force during assembly of the oil separator or transportation to the site where it is used.
 これを避けるために、オイルセパレータに補強部材を付加することが考えられる。例えば、フィルターエレメントの側面からオイルセパレータ容器の側面に向かって径方向外向きに突出したリブをフィルターエレメントに取り付けたり、あるいは、逆にオイルセパレータ容器の側面からフィルターエレメントの側面に向かって突出したリブをオイルセパレータ容器に取り付けたりして、振れによるフィルターエレメントの変位量が規制されてもよい。 In order to avoid this, it is conceivable to add a reinforcing member to the oil separator. For example, the filter element may be provided with ribs projecting radially outward from the side surface of the filter element toward the side surface of the oil separator container, or vice versa. may be attached to the oil separator container to regulate the amount of displacement of the filter element due to shaking.
 あるいは、何らかの理由でフィルターエレメントを通過するガスの圧力損失が過大になったときに、フィルターエレメントが軸方向の荷重を受けることが懸念される。このような荷重に耐えるために、フィルターエレメントの上端と下端を軸方向につなぐサポートバーが設けられてもよい。 Alternatively, there is concern that the filter element may receive an axial load when the pressure loss of the gas passing through the filter element becomes excessive for some reason. To withstand such loads, a support bar may be provided that axially connects the upper and lower ends of the filter element.
 しかしながら、このような振れ止めや荷重への対策はオイルセパレータの部品点数を増加させるので、製造コストを増加させることになる。 However, such anti-vibration and load countermeasures increase the number of parts of the oil separator, resulting in an increase in manufacturing costs.
 実施の形態に係るオイルセパレータ20では、フィルターエレメント46が、その下端に取り付けられた下皿状体60を備える。オイルセパレータ容器44は、その底部で下皿状体60と接合されている。接合のために、下皿状体60は、第1はめ合い部60aを有し、オイルセパレータ容器44の底部は、第1はめ合い部60aとはめ合わされる第2はめ合い部64を有する。 In the oil separator 20 according to the embodiment, the filter element 46 has a lower dish-shaped body 60 attached to its lower end. The oil separator container 44 is joined to the lower dish-shaped body 60 at its bottom. For joining purposes, the lower dish 60 has a first fitting portion 60a, and the bottom of the oil separator container 44 has a second fitting portion 64 that fits with the first fitting portion 60a.
 このようにして、フィルターエレメント46は、その上端での冷媒ガス導入管52による支持に加えて、下端で第1はめ合い部60aと第2はめ合い部64のはめ合いにより支持される。これにより、フィルターエレメント46に生じうる振動を抑制することができる。また、フィルターエレメント46に生じうる軸方向の荷重に耐えることができる。上述のようにリブやサポートバーなど追加の部材を設ける場合に比べて、振れ止め対策を簡易な構造で実現することができ、製造コストを抑えられる。 In this way, the filter element 46 is supported by the refrigerant gas introduction pipe 52 at its upper end, and is also supported at its lower end by the fitting between the first fitting portion 60a and the second fitting portion 64. As shown in FIG. As a result, vibrations that may occur in the filter element 46 can be suppressed. It can also withstand axial loads that may occur on the filter element 46 . Compared to the case where additional members such as ribs and support bars are provided as described above, anti-vibration countermeasures can be realized with a simple structure, and manufacturing costs can be suppressed.
 また、実施の形態に係るオイルセパレータ20では、フィルターエレメント46が、その上端に取り付けられ、内側空洞50に向かって凹んだ凹部62aを有する上皿状体62を備える。冷媒ガス導入管52が上皿状体62の凹部62aから内側空洞50に挿し込まれ上皿状体62と凹部62aで接着されている。 In addition, in the oil separator 20 according to the embodiment, the filter element 46 is attached to its upper end and provided with an upper plate-like body 62 having a concave portion 62 a recessed toward the inner cavity 50 . The refrigerant gas introduction pipe 52 is inserted into the inner cavity 50 from the recess 62a of the upper dish-shaped body 62 and is bonded to the upper dish-shaped body 62 at the recess 62a.
 既存のオイルセパレータでは冷媒ガス導入管が溶接によりフィルターエレメントの上端部に取り付けられることが多い。この場合、フィルターエレメントの上端部に溶接用の補助プレートを設ける等、追加の部材を要する。しかしながら、実施の形態によると、冷媒ガス導入管52が上皿状体62に接着することができ、そうした追加部材は不要である。そのため、製造コストを抑えられる。 In existing oil separators, the refrigerant gas introduction pipe is often attached to the upper end of the filter element by welding. In this case, an additional member is required, such as providing an auxiliary plate for welding on the upper end of the filter element. However, according to the embodiment, the refrigerant gas introduction pipe 52 can be adhered to the upper dish-shaped body 62, and such an additional member is not required. Therefore, the manufacturing cost can be suppressed.
 また、溶接の場合には接着とは別の追加工程となるのに対して、冷媒ガス導入管52の上皿状体62への接着と接着剤の乾燥は、フィルター部材58bの下皿状体60及び上皿状体62への接着及び乾燥と同時に行うことができる。これも製造コストの低減につながる。 In addition, in the case of welding, an additional process separate from the bonding process is performed. This can be done at the same time as bonding to 60 and upper dish 62 and drying. This also leads to a reduction in manufacturing costs.
 加えて、冷媒ガス導入管52の上皿状体62への接着は、フィルターエレメント46の下端とオイルセパレータ容器44の底部の接合と併用することにより、接着剤66への応力集中を抑えることができる。 In addition, by bonding the refrigerant gas introduction pipe 52 to the upper dish-shaped body 62 together with bonding the lower end of the filter element 46 and the bottom of the oil separator container 44, stress concentration on the adhesive 66 can be suppressed. can.
 さらに、実施の形態に係るオイルセパレータ20では、第1はめ合い部60aは、内側空洞50に向かって凹んだ凹部として下皿状体60に形成されている。この場合、冷媒ガス導入管52の先端52aをオイルセパレータ20の底部に近づけて配置することが容易になる。これは上述のように、オイルセパレータ20のオイル分離性能を向上させる。 Furthermore, in the oil separator 20 according to the embodiment, the first fitting portion 60 a is formed in the lower dish-shaped body 60 as a concave portion recessed toward the inner cavity 50 . In this case, it becomes easy to dispose the tip 52 a of the refrigerant gas introduction pipe 52 close to the bottom of the oil separator 20 . This improves the oil separation performance of the oil separator 20 as described above.
 仮に、下皿状体60に第1はめ合い部60aが無く、下皿状体60が平坦であった場合には、接着のためにフィルター体58を下皿状体60に押し付けるとき、フィルター体58が接着剤の一部を内側空洞50に押し出し、接着剤が内側空洞50で盛り上がることになる。冷媒ガス導入管52の先端52aを内側空洞50の底部に十分に近づけて配置した場合、盛り上がる接着剤が先端52aに達し、さらには先端52aを塞ぐことが懸念される。このように、先端52aと対向する面が接着剤で覆われる場合には、この対向面(つまり固化した接着剤の表面)と先端52aの距離は、接着剤の塗布量や接着作業の仕方に左右される。先端52aが接着剤に達することのないように、先端52aをある程度上方に引き上げて配置する必要がある。先端52aが内側空洞50の底部から離れることになり、オイルセパレータ20の性能に影響が生じうる。 If the lower dish-shaped body 60 does not have the first fitting portion 60a and the lower dish-shaped body 60 is flat, when the filter body 58 is pressed against the lower dish-shaped body 60 for adhesion, the filter body 58 extrudes some of the adhesive into the inner cavity 50 causing the adhesive to build up in the inner cavity 50 . If the tip 52a of the refrigerant gas introduction pipe 52 is arranged sufficiently close to the bottom of the inner cavity 50, there is a concern that the swelling adhesive may reach the tip 52a and further block the tip 52a. In this way, when the surface facing the tip 52a is covered with adhesive, the distance between this facing surface (that is, the surface of the solidified adhesive) and the tip 52a depends on the amount of adhesive applied and how the bonding work is performed. Depends. To prevent the tip 52a from reaching the adhesive, it is necessary to raise the tip 52a to some extent. The tip 52a is separated from the bottom of the inner cavity 50, and the performance of the oil separator 20 may be affected.
 しかし、この実施の形態では、冷媒ガス導入管52の先端52aが第1はめ合い部60aと対向し、第1はめ合い部60aの高さが接着剤含浸部68よりも高くなっている。これにより、先端52aと対向する第1はめ合い部60aの上面は接着剤で覆われず、内側空洞50に露出される。先端52aと対向する第1はめ合い部60aの上面から接着剤が排除されているので、先端52aを内側空洞50の底部により近づけて配置することができ、これは上述のようにオイルセパレータ20の性能向上につながる。 However, in this embodiment, the tip 52a of the refrigerant gas introduction pipe 52 faces the first fitting portion 60a, and the height of the first fitting portion 60a is higher than the adhesive impregnated portion 68. As a result, the upper surface of the first fitting portion 60a facing the tip 52a is not covered with the adhesive and is exposed to the inner cavity 50. As shown in FIG. Since the adhesive has been removed from the upper surface of the first mating portion 60a opposite the tip 52a, the tip 52a can be positioned closer to the bottom of the inner cavity 50, which as described above is the oil separator 20. This leads to improved performance.
 冷媒ガス導入管52には、位置決め部52bが設けられていてもよい。位置決め部52bは、冷媒ガス導入管52の外周面から径方向外向きに突出している。位置決め部52bは、冷媒ガス導入管52の全周にフランジ状に形成されていてもよい。位置決め部52bを凹部62aに突き当てるだけで、第1はめ合い部60aの上面から規定の距離に先端52aを簡単に配置することができる。 The refrigerant gas introduction pipe 52 may be provided with a positioning portion 52b. The positioning portion 52 b protrudes radially outward from the outer peripheral surface of the refrigerant gas introduction pipe 52 . The positioning portion 52 b may be formed in a flange shape around the entire circumference of the refrigerant gas introduction pipe 52 . Only by abutting the positioning portion 52b against the concave portion 62a, the tip 52a can be easily arranged at a specified distance from the upper surface of the first fitting portion 60a.
 なお、位置決め部52bは、特定の形状には限定されない。例えば、冷媒ガス導入管52は、上部で大径とされ下部で小径とされ、これら大径部および小径部間の段差が上皿状体62の凹部62aに突き当てられてもよい。 It should be noted that the positioning portion 52b is not limited to a specific shape. For example, the refrigerant gas introduction pipe 52 may have a large diameter at the top and a small diameter at the bottom, and the step between the large diameter portion and the small diameter portion may abut against the concave portion 62 a of the upper plate-like body 62 .
 以上、本発明を実施例にもとづいて説明した。本発明は上記実施形態に限定されず、種々の設計変更が可能であり、様々な変形例が可能であること、またそうした変形例も本発明の範囲にあることは、当業者に理解されるところである。ある実施の形態に関連して説明した種々の特徴は、他の実施の形態にも適用可能である。組合せによって生じる新たな実施の形態は、組み合わされる実施の形態それぞれの効果をあわせもつ。 The present invention has been described above based on the examples. It should be understood by those skilled in the art that the present invention is not limited to the above embodiments, and that various design changes and modifications are possible, and that such modifications are within the scope of the present invention. By the way. Various features described in relation to one embodiment are also applicable to other embodiments. A new embodiment resulting from combination has the effects of each of the combined embodiments.
 上述の実施の形態では、第2はめ合い部64は、容器下蓋44cから突出した円柱状の凸部とされているが、第2はめ合い部64は、他の形状を有してもよい。例えば、第2はめ合い部64は、容器下蓋44cから突出した大径部とこの大径部からさらに突出した小径部とを有してもよく、小径部が第1はめ合い部60aとはめ合わされてもよい。大径部の上面が第1はめ合い部60aの周りで下皿状体60の下面と接触しフィルターエレメント46を支持してもよい。 In the above-described embodiment, the second fitting portion 64 is a cylindrical convex portion protruding from the container lower lid 44c, but the second fitting portion 64 may have other shapes. . For example, the second fitting portion 64 may have a large diameter portion protruding from the container bottom lid 44c and a small diameter portion further projecting from the large diameter portion, and the small diameter portion fits with the first fitting portion 60a. may be combined. The upper surface of the large diameter portion may contact the lower surface of the lower dish 60 around the first fitting portion 60 a to support the filter element 46 .
 下皿状体60と容器下蓋44cとのはめ合いによる接合位置は、下皿状体60の中心部には限られず、下皿状体60の外周部にあってもよい。例えば、第1はめ合い部60aが、内側空洞50よりも外側で、フィルター部材58bに向かって凹んだ凹部として下皿状体60に形成されてもよい。第2はめ合い部64は、オイルセパレータ容器44の容器下蓋44cから第1はめ合い部60aに対応する位置で上方に突き出した凸部であってもよい。 The joining position by fitting the lower dish-shaped body 60 and the container lower lid 44c is not limited to the central portion of the lower dish-shaped body 60, but may be on the outer peripheral portion of the lower dish-shaped body 60. For example, the first fitting portion 60a may be formed in the lower dish-shaped body 60 as a recess outside the inner cavity 50 and recessed toward the filter member 58b. The second fitting portion 64 may be a convex portion projecting upward from the lower lid 44c of the oil separator container 44 at a position corresponding to the first fitting portion 60a.
 上述の実施の形態では、第1はめ合い部60aが凹部であり、第2はめ合い部64が凸部であるが、逆に、第1はめ合い部60aが凸部であり、第2はめ合い部64が凹部であってもよい。第1はめ合い部60aは、下皿状体60から容器下蓋44cに向かって突き出した凸部であってもよく、第2はめ合い部64は、容器下蓋44cに形成された凹部であってもよい。 In the above-described embodiment, the first fitting portion 60a is a concave portion and the second fitting portion 64 is a convex portion. The portion 64 may be a recess. The first fitting portion 60a may be a projection projecting from the lower dish-shaped body 60 toward the container bottom lid 44c, and the second fitting portion 64 may be a recess formed in the container bottom lid 44c. may
 フィルターエレメント46の下部とオイルセパレータ容器44の底部との接合は、はめ合い構造には限られない。例えば、フィルターエレメント46の下部とオイルセパレータ容器44の底部との接合は、これらが互いに固定される限り、フィルターエレメント46の下面(例えば下皿状体60)とオイルセパレータ容器44の底面(例えば容器下蓋44c)との接触による支持であってもよい。 The joint between the lower portion of the filter element 46 and the bottom portion of the oil separator container 44 is not limited to a fitting structure. For example, the joint between the lower portion of the filter element 46 and the bottom of the oil separator container 44 is such that the lower surface of the filter element 46 (eg lower dish 60) and the bottom surface of the oil separator container 44 (eg container Support may be provided by contact with the lower lid 44c).
 実施の形態にもとづき、具体的な語句を用いて本発明を説明したが、実施の形態は、本発明の原理、応用の一側面を示しているにすぎず、実施の形態には、請求の範囲に規定された本発明の思想を逸脱しない範囲において、多くの変形例や配置の変更が認められる。 Although the present invention has been described using specific terms based on the embodiment, the embodiment only shows one aspect of the principle and application of the present invention, and the embodiment does not include the claims. Many variations and rearrangements are permissible without departing from the spirit of the invention as defined in its scope.
 本発明は、オイルセパレータおよび極低温冷凍機用圧縮機の分野における利用が可能である。 The present invention can be used in the fields of oil separators and compressors for cryogenic refrigerators.
 10 極低温冷凍機、 12 圧縮機、 20 オイルセパレータ、 44 オイルセパレータ容器、 46 フィルターエレメント、 48 外側空洞、 50 内側空洞、 52 冷媒ガス導入管、 60 下皿状体、 62 上皿状体。 10 cryogenic refrigerator, 12 compressor, 20 oil separator, 44 oil separator container, 46 filter element, 48 outer cavity, 50 inner cavity, 52 refrigerant gas introduction pipe, 60 lower dish-shaped body, 62 upper dish-shaped body.

Claims (12)

  1.  オイルセパレータ容器と、
     前記オイルセパレータ容器の上部から挿し込まれ、前記オイルセパレータ容器内に冷媒ガスを導入する冷媒ガス導入管と、
     前記オイルセパレータ容器内に配置され、前記オイルセパレータ容器との間に外側空洞を定めるフィルターエレメントであって、前記冷媒ガス導入管に接続され前記冷媒ガス導入管から前記冷媒ガスが導入される内側空洞を有し、前記内側空洞から前記外側空洞に流れる前記冷媒ガスからオイルを分離するフィルターエレメントと、を備え、
     前記フィルターエレメントは、その下端に取り付けられた下皿状体を備え、前記オイルセパレータ容器は、その底部で前記下皿状体と接合されていることを特徴とするオイルセパレータ。
    an oil separator container;
    a refrigerant gas introduction pipe that is inserted from the top of the oil separator container and introduces refrigerant gas into the oil separator container;
    A filter element disposed within the oil separator container and defining an outer cavity between itself and the oil separator container, the filter element being connected to the refrigerant gas introduction pipe and into which the refrigerant gas is introduced from the refrigerant gas introduction pipe. a filter element for separating oil from the refrigerant gas flowing from the inner cavity to the outer cavity;
    An oil separator, wherein said filter element has a lower dish-shaped body attached to its lower end, and said oil separator container is joined to said lower dish-shaped body at its bottom.
  2.  前記下皿状体は、第1はめ合い部を有し、前記オイルセパレータ容器の底部は、前記第1はめ合い部とはめ合わされる第2はめ合い部を有することを特徴とする請求項1に記載のオイルセパレータ。 2. The lower dish-shaped body has a first fitting portion, and the bottom portion of the oil separator container has a second fitting portion that fits with the first fitting portion. Oil separator as described.
  3.  前記第1はめ合い部は、前記内側空洞に向かって凹んだ凹部として前記下皿状体に形成されていることを特徴とする請求項2に記載のオイルセパレータ。 The oil separator according to claim 2, wherein the first fitting portion is formed in the lower dish-shaped body as a concave portion recessed toward the inner cavity.
  4.  前記第2はめ合い部は、前記オイルセパレータ容器の容器下蓋から前記下皿状体の前記凹部へと突き出した凸部を有することを特徴とする請求項3に記載のオイルセパレータ。 The oil separator according to claim 3, wherein the second fitting portion has a projection projecting from the bottom cover of the oil separator container to the recess of the lower dish-shaped body.
  5.  前記第2はめ合い部は、前記第1はめ合い部の周りで前記下皿状体の下面と接触し前記フィルターエレメントを支持することを特徴とする請求項2から4のいずれかに記載のオイルセパレータ。 5. The oil according to any one of claims 2 to 4, wherein the second fitting portion is in contact with the lower surface of the lower dish-shaped body around the first fitting portion to support the filter element. separator.
  6.  前記フィルターエレメントは、接着剤含浸部を下端に有するフィルター体を備え、
     前記下皿状体は、前記第1はめ合い部との間に円環状の凹みを形成する外縁を有し、前記接着剤含浸部が前記円環状の凹みに収められていることを特徴とする請求項2から5のいずれかに記載のオイルセパレータ。
    The filter element comprises a filter body having an adhesive-impregnated portion at its lower end,
    The lower dish-shaped body has an outer edge forming an annular recess between itself and the first fitting portion, and the adhesive-impregnated portion is housed in the annular recess. The oil separator according to any one of claims 2 to 5.
  7.  前記下皿状体の前記第1はめ合い部と前記外縁の高さが、前記接着剤含浸部の高さよりも高いことを特徴とする請求項6に記載のオイルセパレータ。 The oil separator according to claim 6, wherein the first fitting portion and the outer edge of the lower dish-shaped body are higher than the adhesive-impregnated portion.
  8.  前記フィルターエレメントは、その上端に取り付けられ、前記内側空洞に向かって凹んだ凹部を有する上皿状体を備え、前記冷媒ガス導入管が、前記上皿状体の前記凹部から前記内側空洞に挿し込まれ前記上皿状体と前記凹部で接着されていることを特徴とする請求項1から7のいずれかに記載のオイルセパレータ。 The filter element has an upper plate-like body attached to its upper end and having a concave portion recessed toward the inner cavity, and the refrigerant gas introduction pipe is inserted into the inner cavity from the concave portion of the upper plate-like body. 8. The oil separator according to any one of claims 1 to 7, wherein the oil separator is inserted and adhered to the upper dish-shaped body at the recess.
  9.  前記冷媒ガス導入管は、前記上皿状体の前記凹部に突き当てられて前記冷媒ガスの先端を前記下皿状体から規定の距離に位置決めする位置決め部を有することを特徴とする請求項8に記載のオイルセパレータ。 8. The refrigerant gas introduction pipe has a positioning portion that abuts against the concave portion of the upper dish-shaped body to position the tip of the refrigerant gas at a specified distance from the lower dish-shaped body. oil separator described in .
  10.  オイルセパレータ容器と、
     前記オイルセパレータ容器の上部から挿し込まれ、前記オイルセパレータ容器内に冷媒ガスを導入する冷媒ガス導入管と、
     前記オイルセパレータ容器内に配置され、前記オイルセパレータ容器との間に外側空洞を定めるフィルターエレメントであって、前記冷媒ガス導入管に接続され前記冷媒ガス導入管から前記冷媒ガスが導入される内側空洞を有し、前記内側空洞から前記外側空洞に流れる前記冷媒ガスからオイルを分離するフィルターエレメントと、を備え、
     前記フィルターエレメントは、その上端に取り付けられ、前記内側空洞に向かって凹んだ凹部を有する上皿状体を備え、前記冷媒ガス導入管が、前記上皿状体の前記凹部から前記内側空洞に挿し込まれ前記上皿状体と前記凹部で接着されていることを特徴とするオイルセパレータ。
    an oil separator container;
    a refrigerant gas introduction pipe that is inserted from the top of the oil separator container and introduces refrigerant gas into the oil separator container;
    A filter element disposed within the oil separator container and defining an outer cavity between itself and the oil separator container, the filter element being connected to the refrigerant gas introduction pipe and into which the refrigerant gas is introduced from the refrigerant gas introduction pipe. a filter element for separating oil from the refrigerant gas flowing from the inner cavity to the outer cavity;
    The filter element has an upper plate-like body attached to its upper end and having a concave portion recessed toward the inner cavity, and the refrigerant gas introduction pipe is inserted into the inner cavity from the concave portion of the upper plate-like body. An oil separator characterized in that the oil separator is embedded and adhered to the upper plate-like body at the recess.
  11.  前記オイルセパレータ容器は、前記フィルターエレメントの下部を支持する底面を備えることを特徴とする請求項10に記載のオイルセパレータ。 The oil separator according to claim 10, wherein the oil separator container has a bottom surface that supports the lower part of the filter element.
  12.  請求項1から11のいずれかに記載のオイルセパレータを備えることを特徴とする極低温冷凍機用圧縮機。 A cryogenic refrigerator compressor comprising the oil separator according to any one of claims 1 to 11.
PCT/JP2022/004514 2021-02-24 2022-02-04 Oil separator and compressor for cryogenic refrigerator WO2022181296A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280012480.6A CN116802444A (en) 2021-02-24 2022-02-04 Oil separator and compressor for ultralow temperature refrigerator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-027394 2021-02-24
JP2021027394 2021-02-24

Publications (1)

Publication Number Publication Date
WO2022181296A1 true WO2022181296A1 (en) 2022-09-01

Family

ID=83048240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004514 WO2022181296A1 (en) 2021-02-24 2022-02-04 Oil separator and compressor for cryogenic refrigerator

Country Status (3)

Country Link
CN (1) CN116802444A (en)
TW (1) TW202234003A (en)
WO (1) WO2022181296A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4516994A (en) * 1984-04-11 1985-05-14 Vilter Manufacturing Corporation Apparatus for separating liquid droplets from gas
JP2008039222A (en) * 2006-08-02 2008-02-21 Sumitomo Heavy Ind Ltd Oil separator and compressor for cold storage unit-type refrigerating machine
JP2017154071A (en) * 2016-03-01 2017-09-07 Smc株式会社 Filter element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4516994A (en) * 1984-04-11 1985-05-14 Vilter Manufacturing Corporation Apparatus for separating liquid droplets from gas
JP2008039222A (en) * 2006-08-02 2008-02-21 Sumitomo Heavy Ind Ltd Oil separator and compressor for cold storage unit-type refrigerating machine
JP2017154071A (en) * 2016-03-01 2017-09-07 Smc株式会社 Filter element

Also Published As

Publication number Publication date
CN116802444A (en) 2023-09-22
TW202234003A (en) 2022-09-01

Similar Documents

Publication Publication Date Title
US7381032B2 (en) Hermetic compressor and freezing air-conditioning system
CN102734123B (en) Cryopump system, compressor, and method for regenerating cryopumps
JP5367750B2 (en) Oil separator
CN101598128A (en) The manufacture method of twin-tub rotation-type hermetic type compressor and twin-tub rotation-type hermetic type compressor
JP2008175066A (en) Compressor
JP4398959B2 (en) Compressor for oil separator and regenerator type refrigerator
KR102178065B1 (en) A linear compressor
US20080219868A1 (en) Linear Compressor Cylinder and Head Construction
WO2022181296A1 (en) Oil separator and compressor for cryogenic refrigerator
CN111664612B (en) Oil separator, filter element, and compressor for ultra-low temperature refrigerator
US11215387B2 (en) Accumulator
JP2004116343A (en) Accumulator for cooler compressor
WO2022176652A1 (en) Compressor for ultra-low-temperature freezer, and adsorber unit
KR102100674B1 (en) Linear compressor
JP2001073946A (en) Hermetic electric compressor
JP2007292340A (en) Oil separator and compressor for cold storage unit-type refrigerating machine
CN1312405C (en) Vibration absorber of closed compressor liquid storage tank
JP6501876B2 (en) Compressor muffler
CN218376902U (en) Compressor
JPS63173882A (en) Scroll compressor
US11644030B2 (en) Linear compressor
KR100186468B1 (en) Accumulator of closed type rotary compressor
CN116292183A (en) Compressor and air conditioner using same
KR100524729B1 (en) Assembly structure for stirling refrigerator and method thereof
KR20200091710A (en) Linear compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22759336

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280012480.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22759336

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP