WO2022181247A1 - 炭素膜 - Google Patents

炭素膜 Download PDF

Info

Publication number
WO2022181247A1
WO2022181247A1 PCT/JP2022/003691 JP2022003691W WO2022181247A1 WO 2022181247 A1 WO2022181247 A1 WO 2022181247A1 JP 2022003691 W JP2022003691 W JP 2022003691W WO 2022181247 A1 WO2022181247 A1 WO 2022181247A1
Authority
WO
WIPO (PCT)
Prior art keywords
cnt
carbon film
less
cnts
carbon
Prior art date
Application number
PCT/JP2022/003691
Other languages
English (en)
French (fr)
Inventor
智子 山岸
慶久 武山
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2023502221A priority Critical patent/JPWO2022181247A1/ja
Publication of WO2022181247A1 publication Critical patent/WO2022181247A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields

Definitions

  • the present invention relates to carbon films.
  • CNT carbon nanotubes
  • Patent Document 1 a carbon nanotube aggregate having a pore size of 400 nm or more and 1500 nm or less measured by a mercury intrusion method and having a region of 10 nm or more where the Log differential pore volume is 0.006 cm 3 /g or less is used. Therefore, a carbon film having excellent mechanical strength is formed.
  • an object of the present invention is to provide a carbon film having excellent electromagnetic wave shielding performance.
  • the inventors have made extensive studies to achieve the above objectives.
  • the present inventors then investigated microscopic properties of carbon films formed using aggregates of carbon nanotubes.
  • the inventors of the present invention have found that predetermined parameters obtained by performing predetermined data processing on the ultra-small angle X-ray scattering curve (profile) of the surface of the carbon film composed of aggregates of carbon nanotubes satisfy predetermined conditions.
  • the inventors have newly found that the carbon film can shield electromagnetic waves satisfactorily, and completed the present invention.
  • an object of the present invention is to advantageously solve the above-described problems, and the carbon film of the present invention is a carbon film made of an aggregate of carbon nanotubes, wherein at least one surface of the carbon film has
  • the fractal dimension in the wave number range of 0.001 (1/ ⁇ ) to 0.01 (1/ ⁇ ) is 2 It is characterized by being above 3 or less.
  • the carbon film has excellent electromagnetic wave shielding performance.
  • the ultra-small angle X-ray scattering profile of the surface of the carbon film can be obtained by the method described in Examples.
  • the fitting of the ultra-small angle X-ray scattering profile using the Beaucage equation can be performed by the method described in the Examples.
  • the carbon film of the present invention has a scattering profile obtained by measuring the surface of the carbon film by an ultra-small angle X-ray scattering method, and fitting it to the Beaucage formula gives a value of 0.01 (1/ ⁇ ) or more and 0.1 ( 1/ ⁇ ) or less, the persistence length of the CNT is preferably 250 ⁇ or less.
  • the scattering profile obtained by measuring the surface of the carbon film by the ultra-small angle X-ray scattering method is fitted to the Beaucage formula, If the persistence length of CNT is 250 ⁇ or less, the carbon film will have better electromagnetic wave shielding performance.
  • the carbon film of the present invention is preferably a self-supporting film.
  • the carbon film, which is a self-supporting film is excellent in handleability, and when used as an electromagnetic wave shielding sheet, for example, can increase the degree of freedom in arranging the sheet.
  • the term "self-supporting membrane” refers to a membrane that can maintain its shape by itself without being damaged without the presence of a support.
  • the carbon film of the present invention preferably has a thickness of 5 ⁇ m or more and 200 ⁇ m or less. If the thickness is 5 ⁇ m or more, the carbon film can have sufficient mechanical strength and exhibit even better electromagnetic wave shielding performance. On the other hand, if the thickness is 200 ⁇ m or less, the weight of the carbon film can be reduced.
  • the "thickness" of the carbon film can be measured using the method described in Examples.
  • the carbon film of the present invention preferably has a transmission attenuation factor of 20 dB or more at at least one frequency within the range of 1 GHz to 10 GHz.
  • a carbon film having a transmission attenuation factor of 20 dB or more at at least one frequency in the range of 1 GHz to 10 GHz has excellent electromagnetic wave shielding performance.
  • the transmission attenuation factor can be measured by the method described in Examples.
  • FIG. 4 shows an SEM image of the surface of the carbon film of Comparative Example 1.
  • FIG. 4 shows a graph obtained by fitting the ultra-small angle X-ray scattering profile of the surface of the carbon film of Example 1 to the Beaucage equation.
  • 4 shows a graph obtained by fitting the ultra-small angle X-ray scattering profile of the surface of the carbon film of Comparative Example 1 to the Beaucage equation.
  • An SEM image of a CNT aggregate according to one example is shown.
  • FIG. 4 shows an FIR resonance chart obtained for a CNT aggregate according to an example;
  • FIG. A pore distribution curve of a CNT aggregate according to one example is shown.
  • An SEM image of a CNT aggregate according to one example is shown.
  • 8B shows a two-dimensional spatial frequency spectrum of the SEM image of FIG. 8A; Schematic configuration of a CNT production apparatus used in Examples 1 and 2 is shown. Schematic configuration of a CNT production apparatus used in Examples 3 and 4 is shown.
  • the carbon film of the present invention is a carbon film composed of aggregates of carbon nanotubes, and the scattering profile obtained by performing ultra-small angle X-ray scattering measurement on at least one surface of the carbon film is expressed by the general formula (I ), the fractal dimension is 2 or more and 3 or less in the wavenumber range of 0.001 (1/ ⁇ ) or more and 0.01 (1/ ⁇ ) or less.
  • a carbon film having such characteristics is excellent in electromagnetic wave shielding performance. Therefore, the carbon film of the present invention can be advantageously used as, for example, an electromagnetic wave shielding sheet, although it is not particularly limited.
  • the carbon film of the present invention is preferably a self-supporting film. This is because, if the carbon film is a self-supporting film, such a carbon film is excellent in handleability and, for example, when used as an electromagnetic wave shielding sheet, the sheet can be arranged with a high degree of freedom.
  • the carbon nanotube assembly that constitutes the carbon film of the present invention is composed of a plurality of carbon nanotubes.
  • the carbon film of the present invention may contain, for example, CNT aggregates and components other than CNTs that are unavoidably mixed in during the manufacturing process of the carbon film, but the ratio of CNTs in the carbon film is 95% by mass or more. is preferably 98% by mass or more, more preferably 99% by mass or more, particularly preferably 99.5% by mass or more, and 100% by mass (i.e., carbon It is most preferred that the membrane consists only of CNTs.
  • the distribution when a scattering profile obtained by performing ultra-small angle X-ray scattering measurement on at least one surface of the carbon film is fitted to the Beaucage equation, the distribution is 0.001 (1/ ⁇ ) or more and 0.001 (1/ ⁇ ) or more.
  • the fractal dimension in the wavenumber range of 01 (1/ ⁇ ) or less is required to be 2 or more and 3 or less.
  • the surface of the carbon film is subjected to ultra-small angle X-ray scattering measurement to obtain a scattering image.
  • the ultra-small angle X-ray scattering measurement is performed with wave number q: 0.0004 (1/ ⁇ ) to 0.3 (1/ ⁇ ), X-ray source: CuK ⁇ , X-ray tube voltage: 45 kV, tube current: 200 mA. , slit width: 10 mm, scan step: 0.0006 deg, scan range: 0 to 0.5 deg, scan speed: 0.034 deg/min, X-ray detector: two-dimensional semiconductor detector. Then, a scattering profile is obtained with the wave number q on the horizontal axis and the scattering intensity I(q) on the vertical axis.
  • the Beaucage formula represented by the following general formula (I) with a wavenumber range of 0.0004 (1/ ⁇ ) to 0.3 (1/ ⁇ ) Fitting is performed using
  • q is the wavenumber (1/ ⁇ )
  • I(q) is the scattering intensity at wavenumber q
  • Bkgd is the background
  • G i and B i are proportionality constants
  • P i is the fractal dimension at hierarchy i.
  • R g,i is the length of the structure at layer i
  • N is the number of layers.
  • the fractal dimension P i in each layer i can be obtained by fitting the scattering profile using the general formula (I).
  • the fractal dimension is 2 or more and 3 or less.
  • the scattering (R g,1 ) derived from the diameter of one CNT is 0.01 (1/ ⁇ ) In the wave number range of 0.1 (1/ ⁇ ) or less, (2) the scattering (R g,2 ) derived from the persistence length of one CNT is 0.0001 (1/ ⁇ ) or more and 0.01 (1/ ⁇ ) In the following wavenumber range, (3) CNT bundle-derived scattering (R g,3 ) is observed. Also, in the scattering profile, the surface roughness (P 3 ) of the CNT bundle can be analyzed from the slope between scattering (R g,2 ) and scattering (R g,3 ).
  • the fractal dimension is an index indicating the surface roughness of the CNT bundle forming the carbon film, and the fractal dimension in the wavenumber range of 0.001 (1/ ⁇ ) to 0.01 (1/ ⁇ ) is 2 or more.
  • the carbon film of the present invention can exhibit excellent electromagnetic shielding performance. It is speculated that When the fractal dimension in the wave number range of 0.001 (1/ ⁇ ) to 0.01 (1/ ⁇ ) exceeds 3, the surface of the CNT bundle becomes smoother and the wavy structure is not well formed, so the wavy structure It is presumed that irregular reflection of electromagnetic waves is less likely to occur in the gap between them, and the electromagnetic wave shielding performance deteriorates. In addition, if the fractal dimension in the wavenumber range of 0.001 (1/ ⁇ ) to 0.01 (1/ ⁇ ) is less than 2, it is presumed that the CNT bundle will not be formed and the electromagnetic wave shielding performance will deteriorate.
  • FIG. 1 is an SEM image of the surface of the carbon film according to Example 1.
  • FIG. 2 is an SEM image of the surface of the carbon film according to Comparative Example 1.
  • FIG. 1 a wavy structure is formed on the surface of the carbon film of Example 1, which has a fractal dimension of 2 or more and 3 or less within a predetermined wavenumber range.
  • the carbon film of Comparative Example 1 which has a fractal dimension greater than 3 within a given wavenumber range, has a relatively smooth surface and does not have the wavy structure of Example 1. . Therefore, in the carbon film of Comparative Example 1, electromagnetic waves are less likely to be irregularly reflected on the surface of the carbon film, and the energy of the electromagnetic waves entering the carbon film is less likely to be attenuated.
  • the fractal dimension P i in general formula (I) corresponds to the absolute value of the slope of the straight line portion of the graph obtained by fitting the scattering profile to the Beaucage equation.
  • FIG. 3 shows a graph obtained by fitting the ultra-small angle X-ray scattering profile of the surface of the carbon film of Example 1 to the Beaucage equation.
  • FIG. 4 shows a graph obtained by fitting the ultra-small angle X-ray scattering profile of the surface of the carbon film of Comparative Example 1 to the Beaucage equation.
  • the slope of the linear portion in the wave number range of 0.001 (1/ ⁇ ) or more and 0.01 (1/ ⁇ ) or less is 0.001 (1/ ⁇ ) or more and 0.01 (1 / ⁇ ) less than the slope of the linear portion in the range of wavenumbers below. That is, in the graph of Comparative Example 1 in FIG. 4, the slope of the linear portion in the wave number range of 0.001 (1/ ⁇ ) to 0.01 (1/ ⁇ ) is steep, and the fractal dimension is closer to 4. (ie, the surface is smoother).
  • the carbon film of the present invention has a fractal dimension of 2 It is preferably 0.1 or more, more preferably 2.3 or more, and preferably 2.95 or less. Furthermore, in the carbon film of the present invention, the fractal dimension on both sides of the carbon film is 2 or more and 3 or less in the wavenumber range of 0.001 (1/ ⁇ ) or more and 0.01 (1/ ⁇ ) or less. is preferred.
  • the fractal dimension adjusts the CNT dispersion conditions (dispersion strength, dispersion time, presence or absence of a dispersant, etc.) when preparing the CNT dispersion liquid described later, and the CNT bundle length described later. etc. can be controlled.
  • the CNT bundle length can be changed by changing the rotational speed (rpm) and/or dispersion time of the stirrer blade and/or the shape of the stirrer blade.
  • the persistence length of CNTs in the wave number range of 0.01 (1/ ⁇ ) to 0.1 (1/ ⁇ ) is preferably 250 ⁇ or less, more preferably 225 ⁇ or less, and further preferably 200 ⁇ or less. preferable.
  • the lower limit of the persistence length of CNTs in the wave number range of 0.01 (1/ ⁇ ) or more and 0.1 (1/ ⁇ ) or less is not particularly limited, the persistence length of CNTs is usually 10 ⁇ or more.
  • the persistence length of the CNTs obtained on both surfaces of the carbon film is 250 ⁇ or less in the wave number range of 0.01 (1/ ⁇ ) or more and 0.1 (1/ ⁇ ) or less. is preferred.
  • the persistence length of CNT can be obtained in the same manner as the fractal dimension described above. Specifically, as described above, the surface of the carbon film is subjected to ultra-small angle X-ray scattering measurement to obtain a scattering profile. Then, the obtained scattering profile is fitted to the Beaucage equation represented by general formula (I) as described above.
  • R g,2 in layer 2 can be the persistence length of the CNT.
  • the CNT persistence length R g,2 represents the persistence length of the CNT in stratum 2 .
  • the CNT retention length indicates the tendency of the CNT to maintain its linearity in terms of length, in other words, the length between adjacent bent portions (length between kinks) in one CNT. ing.
  • the persistence length of the CNTs of the present invention electromagnetic waves penetrate between the CNTs and are irregularly reflected between the CNTs, attenuating the energy of the electromagnetic waves, and as a result, the carbon film can exhibit excellent electromagnetic shielding performance. guessed.
  • the persistence length of the CNTs is determined, for example, by adjusting the dispersion conditions (dispersion strength, dispersion time, presence or absence of a dispersant, etc.) of the CNTs when preparing the CNT dispersion liquid described later, and the CNTs described later. It can be controlled by controlling the bundle length or the like. For example, when dispersing CNTs using a stirrer blade, the CNT bundle length can be changed by changing the rotational speed (rpm) and/or dispersion time of the stirrer blade and/or the shape of the stirrer blade.
  • the carbon film of the present invention preferably has a transmission attenuation rate of 20 dB or more at at least one frequency in the range of 1 GHz or more and 10 GHz or less, and preferably has a transmission attenuation rate of 20 dB or more in the entire range of 1 GHz or more and 10 GHz or less. More preferably, it is 25 dB or more over the entire range from 1 GHz to 10 GHz.
  • a carbon film having a transmission attenuation factor of 20 dB or more in all of the above ranges is more excellent in electromagnetic wave shielding performance, and can be used more advantageously as an electromagnetic wave shielding sheet.
  • the thickness of the carbon film of the present invention is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, preferably 200 ⁇ m or less, and more preferably 150 ⁇ m or less. If the thickness is 5 ⁇ m or more, the carbon film can have sufficient mechanical strength and exhibit even better electromagnetic wave shielding performance. On the other hand, if the thickness is 200 ⁇ m or less, the weight of the carbon film can be reduced.
  • the carbon film of the present invention is formed into a carbon film by forming a carbon nanotube aggregate into a film, Using a CNT aggregate that satisfies at least one of conditions (1) to (3) described below as the CNT aggregate; Prior to film formation of the CNT aggregate, subjecting the CNT aggregate to a dry pulverization treatment; can be produced by satisfying at least one of
  • CNT aggregate ⁇ CNT aggregate>
  • a novel CNT aggregate that satisfies at least one of the conditions (1) to (3) as the CNT aggregate used for preparing the carbon film.
  • a carbon film made of a CNT aggregate that satisfies at least one of the following conditions (1) to (3) has excellent electromagnetic wave shielding performance.
  • At least one peak in the two-dimensional spatial frequency spectrum of the electron microscope image of the aggregate of carbon nanotubes exists in the range of 1 ⁇ m ⁇ 1 to 100 ⁇ m ⁇ 1 .
  • FIG. 5 shows a scanning electron microscope (SEM) image of an example of a CNT aggregate that satisfies at least one of (1) to (3) above.
  • SEM scanning electron microscope
  • the condition (1) is "a carbon nanotube dispersion obtained by dispersing aggregates of carbon nanotubes so that the bundle length is 10 ⁇ m or more.
  • the carbon nanotube dispersion At least one peak based on the plasmon resonance of is present in the wavenumber range of more than 300 cm ⁇ 1 and 2000 cm ⁇ 1 or less.
  • a strong absorption characteristic in the far-infrared region has been widely known as an optical characteristic of CNTs. Such strong absorption properties in the far-infrared region are believed to be due to the diameter and length of CNTs.
  • the absorption characteristics in the far-infrared region more specifically, the relationship between the peak based on the plasmon resonance of CNTs and the length of CNTs is described in non-patent literature (T. Morimoto et al., “Length-Dependent Plasmon Resonance in Single-Walled Carbon Nanotubes”, pp 9897-9904, Vol.8, No.10, ACS NANO, 2014).
  • the present inventors detected peaks based on the plasmon resonance of CNTs in the spectrum obtained by Fourier transform infrared spectroscopic analysis based on the studies described in the above non-patent literature and on their own knowledge.
  • the positions where the defects are detected may be affected in some way by the distance between the defect points in the CNTs. Then, the present inventors found that the detected position of the peak based on the plasmon resonance of the CNT can serve as an index corresponding to the path between the bending points in the CNT having a wave-like structure, and the above conditions (1) is set.
  • the wave number is in the range of more than 300 cm ⁇ 1 and 2000 cm ⁇ 1 or less, preferably in the range of 500 cm ⁇ 1 or more and 2000 cm ⁇ 1 or less, more preferably in the range of 700 cm ⁇ 1 or more and 2000 cm ⁇ 1 or less, If there is a peak based on plasmon resonance of CNTs, such CNTs can exhibit good electromagnetic wave shielding performance when formed into a carbon film.
  • FIG. 6 shows a spectrum (FIR resonance chart) obtained by Fourier transform infrared spectroscopic analysis of a CNT aggregate according to one example.
  • a spectrum FIR resonance chart
  • FIG. 6 shows a spectrum (FIR resonance chart) obtained by Fourier transform infrared spectroscopic analysis of a CNT aggregate according to one example.
  • FIG. 6 in the obtained spectrum, in addition to the relatively gentle peaks based on the plasmon resonance of the CNT dispersion, there are sharp peaks near wavenumbers of 840 cm ⁇ 1 , 1300 cm ⁇ 1 , and 1700 cm ⁇ 1 . is confirmed. These sharp peaks do not correspond to "peaks based on plasmon resonance of carbon nanotube dispersion", and each corresponds to infrared absorption derived from functional groups.
  • the sharp peak near wavenumber 840 cm is attributed to CH out - of-plane bending vibration; the sharp peak near wavenumber 1300 cm is attributed to epoxy three - membered ring stretching vibration; wavenumber 1700 cm.
  • a peak similar to the S1 peak is detected. set the upper limit for determination of the presence or absence of a peak based on plasmon resonance of the CNT dispersion under condition (1) to 2000 ⁇ 1 cm or less.
  • condition (1) in obtaining a spectrum by Fourier transform infrared spectroscopy, it is necessary to obtain a CNT dispersion by dispersing the CNT aggregates so that the bundle length is 10 ⁇ m or more.
  • a CNT aggregate, water, and a surfactant for example, sodium dodecylbenzenesulfonate
  • a surfactant for example, sodium dodecylbenzenesulfonate
  • the bundle length of the CNT dispersion can be obtained by analyzing it with a wet image analysis type particle size measuring device. Such a measuring device calculates the area of each dispersion from the image obtained by photographing the CNT dispersion, and the diameter of the circle having the calculated area (hereinafter also referred to as the ISO area diameter). ) can be obtained.
  • the bundle length of each dispersion is defined as the value of the ISO circle diameter thus obtained.
  • Condition (2) defines that "the maximum peak in the pore distribution curve is in the range of pore diameters greater than 100 nm and less than 400 nm.”
  • the pore size distribution of the aggregate of carbon nanotubes can be obtained from the adsorption isotherm of liquid nitrogen at 77K based on the BJH method.
  • the fact that the peak in the pore distribution curve obtained by measuring the carbon nanotube aggregate is in the range of more than 100 nm means that there are voids of a certain size between the CNTs in the carbon nanotube aggregate, and the CNTs are It means that it is not in an excessively densely agglomerated state.
  • the upper limit of 400 nm is the measurement limit of the measuring device (BELSORP-mini II) used in the examples.
  • the value of the log differential pore volume at the maximum peak of the pore distribution curve of the CNT aggregate is preferably 2.0 cm 3 /g or more.
  • Condition (3) stipulates that "at least one peak in the two-dimensional spatial frequency spectrum of the electron microscope image of the aggregate of carbon nanotubes exists in the range of 1 ⁇ m -1 to 100 ⁇ m -1 ".
  • the sufficiency of such conditions can be determined in the following manner. First, the CNT aggregate to be determined is magnified (e.g., 10,000 times) using an electron microscope (e.g., field emission scanning electron microscope), and a plurality of electron microscope images ( For example, 10 sheets) are obtained. A plurality of electron microscope images obtained are subjected to fast Fourier transform (FFT) processing to obtain a two-dimensional spatial frequency spectrum.
  • FFT fast Fourier transform
  • a two-dimensional spatial frequency spectrum obtained for each of a plurality of electron microscope images is binarized to obtain an average value of peak positions appearing on the highest frequency side.
  • the average value of the obtained peak positions was within the range of 1 ⁇ m ⁇ 1 or more and 100 ⁇ m ⁇ 1 or less, it was determined that the condition (3) was satisfied.
  • the "peak" used in the above determination a clear peak obtained by executing the isolated point extraction process (that is, the inverse operation of the isolated point removal) is used. Therefore, if a clear peak is not obtained within the range of 1 ⁇ m ⁇ 1 to 100 ⁇ m ⁇ 1 when the isolated point extraction process is performed, it is determined that the condition (3) is not satisfied.
  • the peak of the two-dimensional spatial frequency spectrum exists in the range of 2.6 ⁇ m ⁇ 1 or more and 100 ⁇ m ⁇ 1 or less.
  • the CNT aggregate preferably satisfies at least two of the above conditions (1) to (3), and (1) to (3). It is more preferable to satisfy all the conditions.
  • the CNT aggregate that can be used for forming the carbon film of the present invention preferably has the following properties in addition to the above conditions (1) to (3).
  • the CNT aggregate preferably has a total specific surface area by the BET method of 600 m 2 /g or more, more preferably 800 m 2 /g or more, preferably 2600 m 2 /g or less, more preferably 1400 m 2 /g or less. is. Furthermore, it is preferable that it is 1300 m ⁇ 2 >/g or more in the thing which carried out the opening process. According to the CNT aggregate having a high specific surface area, electromagnetic waves can be diffusely reflected more favorably inside the carbon film, and as a result, the electromagnetic wave shielding performance of the carbon film can be further improved.
  • the CNT aggregate mainly contains single-walled CNTs, and may also include double-walled CNTs and multi-walled CNTs to the extent that the functions are not impaired.
  • the total specific surface area of CNTs measured by the BET method can be measured using, for example, a BET specific surface area measuring device conforming to JIS Z8830.
  • the average height of the CNTs forming the CNT aggregate is preferably 10 ⁇ m or more and 10 cm or less, more preferably 100 ⁇ m or more and 2 cm or less.
  • the average height of the CNTs constituting the CNT aggregate is 10 ⁇ m or more, aggregation with adjacent CNT bundles can be prevented and the CNTs can be easily dispersed. If the average height of the CNTs constituting the CNT aggregate is 10 ⁇ m or more, it becomes easy to form a network between CNTs, and the CNTs can be suitably used in applications requiring electrical conductivity or mechanical strength.
  • the formation can be performed in a short time, so that the adhesion of carbon-based impurities can be suppressed and the specific surface area can be improved. If the average height of the CNTs constituting the CNT aggregate is 2 cm or less, the CNTs can be dispersed more easily.
  • the average height of CNTs can be obtained by measuring the height of 100 randomly selected CNTs using a scanning electron microscope (SEM).
  • the tap bulk density of the CNT aggregate is preferably 0.001 g/cm 3 or more and 0.2 g/cm 3 or less.
  • a CNT aggregate having such a density range does not excessively strengthen the bonds between CNTs, so that it is excellent in dispersibility and can be molded into various shapes. If the tapped bulk density of the CNT aggregate is 0.2 g/cm 3 or less, the bonds between the CNTs become weak, so that when the CNT aggregate is stirred in a solvent or the like, it becomes easy to uniformly disperse it. Further, when the tap bulk density of the CNT aggregate is 0.001 g/cm 3 or more, the integrity of the CNT aggregate is improved and handling is facilitated.
  • the tapped bulk density is the apparent bulk density in a state in which the powdery CNT aggregates are filled in a container, and then the gaps between the powder particles are reduced by tapping or vibration to close-pack.
  • the average outer diameter of the CNTs constituting the CNT aggregate is preferably 0.5 nm or more, more preferably 1.0 nm or more, preferably 15.0 nm or less, and 10.0 nm or less. is more preferably 5.0 nm or less. If the average outer diameter of CNTs is 0.5 nm or more, bundling of CNTs can be reduced, and a high specific surface area can be maintained. If the average outer diameter of CNTs is 15.0 nm or less, the multilayer CNT ratio can be reduced and a high specific surface area can be maintained.
  • the average outer diameter of CNTs can be obtained by measuring the diameter (outer diameter) of 100 randomly selected CNTs using a transmission electron microscope (TEM). The average diameter (Av) and standard deviation ( ⁇ ) of CNTs may be adjusted by changing the production method and production conditions of CNTs, or by combining multiple types of CNTs obtained by different production methods. good too.
  • the G/D ratio of the CNT aggregate is preferably 1 or more and 50 or less.
  • a CNT aggregate with a G/D ratio of less than 1 is considered to have low crystallinity of single-walled CNTs, a large amount of dirt such as amorphous carbon, and a large content of multi-walled CNTs.
  • CNT aggregates with a G/D ratio of more than 50 have high linearity, CNTs tend to form bundles with few gaps, and the specific surface area may decrease.
  • the G/D ratio is an index commonly used to evaluate the quality of CNTs.
  • G band Near 1600 cm ⁇ 1
  • D band Near 1350 cm ⁇ 1
  • G band Vibrational modes called G band (near 1600 cm ⁇ 1 ) and D band (near 1350 cm ⁇ 1 ) are observed in the Raman spectrum of CNTs measured by a Raman spectrometer.
  • the G band is a vibrational mode derived from the hexagonal lattice structure of graphite, which is the cylindrical surface of CNT
  • the D band is a vibrational mode derived from amorphous sites. Therefore, a CNT with a higher peak intensity ratio (G/D ratio) between the G band and the D band can be evaluated as having higher crystallinity (linearity).
  • the purity of the CNT aggregates is as high as possible.
  • the purity is the carbon purity, and is a value indicating what percentage of the mass of the CNT aggregate is composed of carbon.
  • the purity is less than 95% by mass, it will be difficult to obtain a specific surface area exceeding 1000 m 2 /g without the opening treatment.
  • the carbon purity is less than 95% by mass due to metal impurities, the metal impurities react with oxygen during the opening process, preventing the opening of the CNTs.
  • the purity of single-walled CNTs is preferably 95% by mass or more.
  • a predetermined CNT aggregate that satisfies at least one of the above conditions (1) to (3) has a purity of usually 98% by mass or more, preferably 99.9% by mass, even without purification treatment. It can be as above. Impurities are hardly mixed in the CNT aggregate, and various characteristics inherent to CNT can be fully exhibited.
  • the carbon purity of the CNT aggregate can be obtained from elemental analysis using fluorescent X-rays, thermogravimetric analysis (TGA), or the like.
  • a method for producing a CNT aggregate is not particularly limited, and production conditions can be adjusted according to desired properties.
  • the conditions during the growth of the CNT aggregate must satisfy all of the following (a) to (c). It is necessary to meet (a) The growth rate of CNT aggregates is 5 ⁇ m/min or more. (b) The catalyst activation material concentration in the growth atmosphere of the CNT aggregate is 4% by volume or more. (c) An obstacle exists in the growing direction of the CNTs forming the CNT aggregate during the growth of the CNT aggregate.
  • a CNT aggregate that satisfies at least one of the above conditions (1) to (3) can be efficiently produced by a production method that satisfies all of the above (a) to (c). Furthermore, in this production method, there is no particular limitation as long as the above conditions (a) to (c) are satisfied during the growth of the CNT aggregate, and known methods such as the fluidized bed method, the moving bed method and the fixed bed method are used.
  • a CNT synthesis process according to can be employed.
  • the fluidized bed method means a synthesis method for synthesizing CNTs while fluidizing a granular carrier supporting a catalyst for synthesizing CNTs (hereinafter also referred to as a granular catalyst carrier).
  • the moving bed method and the fixed bed method mean synthesis methods for synthesizing CNTs without fluidizing a carrier (particulate carrier or plate-shaped carrier) supporting a catalyst.
  • a production method that satisfies all of the above-described (a) to (c) includes a catalyst carrier forming step of forming a catalyst carrier, and a catalyst carrier obtained in the catalyst carrier forming step. It includes a CNT synthesis step of synthesizing CNTs and a recovery step of recovering the CNTs synthesized in the CNT synthesis step. Then, the step of forming a supported catalyst can be carried out according to a known wet or dry catalyst supporting method. Also, the recovery step can be carried out using a known separation and recovery device such as a classifier.
  • the CNT synthesis step In the CNT synthesis process, all of the above conditions (a) to (c) are satisfied during CNT growth. Specifically, by appropriately adjusting the concentration and temperature of the raw material gas serving as the carbon source in the CNT growth atmosphere, the condition (a) that "the growth rate of the aggregate of carbon nanotubes is 5 ⁇ m/min or more" is satisfied. be able to.
  • the raw material gas serving as a carbon source is not particularly limited, and hydrocarbon gases such as methane, ethane, ethylene, propane, butane, pentane, hexane, heptane, propylene and acetylene; Gases of lower alcohols; as well as mixtures thereof can also be used.
  • this raw material gas may be diluted with an inert gas.
  • the growth rate of the CNT aggregates is preferably 10 ⁇ m/min or more.
  • the temperature can be adjusted in the range of 400° C. or higher and 1100° C. or lower, for example.
  • the raw material gas serving as a carbon source contain ethylene.
  • ethylene By heating ethylene in a predetermined temperature range (700° C. or higher and 900° C. or lower), the decomposition reaction of ethylene is promoted, and when the decomposition gas comes into contact with the catalyst, CNTs can grow at high speed.
  • the thermal decomposition time is too long, the decomposition reaction of ethylene proceeds too much, causing deactivation of the catalyst and adhesion of carbon impurities to the CNT aggregates.
  • the thermal decomposition time is preferably in the range of 0.5 seconds to 10 seconds with respect to the ethylene concentration in the range of 0.1 volume % to 40 volume %.
  • Thermal decomposition time (heating channel volume)/ ⁇ (source gas flow rate) x (273.15+T)/273.15 ⁇
  • the heated channel volume is the volume of the channel heated to a predetermined temperature T° C. through which the raw material gas passes before coming into contact with the catalyst, and the raw material gas flow rate is the flow rate at 0° C. and 1 atm.
  • the concentration of the catalyst activation material in the growth atmosphere of the carbon nanotube aggregate is preferably 5% by volume or more.
  • the catalyst activation material is not particularly limited, and water, oxygen, ozone, acid gases, nitrogen oxides, carbon monoxide and carbon dioxide, and other low-carbon oxygen-containing compounds; ethanol, methanol and other alcohols; tetrahydrofuran; Ethers such as acetone; ketones such as acetone; aldehydes; esters; and mixtures thereof.
  • carbon dioxide is preferred.
  • Substances containing both carbon and oxygen, such as carbon monoxide and alcohols, may function as both a raw material gas and a catalyst activating substance.
  • carbon monoxide acts as a catalyst activating substance when combined with a more reactive raw material gas such as ethylene, and acts as a raw material gas when combined with a catalyst activating substance that exhibits a large catalytic activation effect even in a small amount such as water. .
  • the CNT synthesizing step is carried out by, for example, supplying gas from below to fluidize the particulate catalyst support while supplying raw material gas.
  • the raw material gas may be supplied while the particulate catalyst carrier is continuously conveyed by screw rotation.
  • a catalyst carrier has a carrier and a catalyst supported on the surface of the carrier, and the carrier is a portion forming a matrix structure for supporting the catalyst by adhering, fixing, forming a film, or forming it on the surface of the carrier.
  • the carrier alone may be used, or the carrier with an underlayer provided with an arbitrary underlayer for favorably supporting the catalyst on the surface of the carrier may be used.
  • the shape of the carrier is preferably particulate, and the volume average particle diameter of the carrier is preferably 1 mm or less, more preferably 0.7 mm or less, and further preferably 0.4 mm or less. Preferably, it is 0.05 mm or more.
  • the growing CNT bundle will be thin, which is advantageous for forming a wavy structure.
  • the apparent density of the particles is preferably 3.8 g/cm 3 or more, more preferably 5.8 g/cm 3 or more, and preferably 8 g/cm 3 or less. If the particle density is equal to or higher than the above lower limit, the force applied to the growing CNT bundle increases, which is advantageous for forming a wavy structure.
  • the material of the carrier is preferably a metal oxide containing at least one of Al and Zr. Among them, zirconia beads containing Zr with a large amount of elements are particularly preferable.
  • examples of the method for supporting the catalyst on the surface of the particulate carrier include a method using a rotary drum coating apparatus equipped with a substantially cylindrical rotary drum. .
  • the solution containing the components that can constitute the underlayer is applied to the particulate carrier. It is sprayed onto the surface of the carrier and dried to arrange the underlayer on the surface of the carrier. According to such a method, the catalyst layer and the underlayer can be formed relatively easily and evenly.
  • the “formation step” for reducing the catalyst supported on the catalyst support is performed prior to the “growth step” performed so as to satisfy the above conditions (a) to (c).
  • a “cooling process” can be performed to cool the catalyst carrier on which the CNTs have grown.
  • the atmosphere containing the catalyst carrier is used as a reducing gas atmosphere, and at least one of the reducing gas atmosphere and the catalyst carrier is heated to reduce and atomize the catalyst supported on the catalyst carrier. do.
  • the temperature of the catalyst carrier or reducing gas atmosphere in the formation step is preferably 400° C. or higher and 1100° C. or lower.
  • the execution time of the formation process may be 3 minutes or more and 120 minutes or less.
  • the reducing gas for example, hydrogen gas, ammonia gas, water vapor, and mixed gas thereof can be used.
  • the reducing gas may be a mixed gas in which these gases are mixed with an inert gas such as helium gas, argon gas, or nitrogen gas.
  • the catalyst carrier on which the CNTs have grown is cooled in an inert gas environment.
  • the inert gas an inert gas similar to the inert gas that can be used in the growth process can be used.
  • the temperature of the catalyst carrier on which the CNTs have grown is preferably lowered to 400° C. or lower, more preferably 200° C. or lower.
  • dry pulverization treatment means pulverization treatment in a state in which the object to be pulverized does not substantially contain a solvent (for example, a solid content concentration of 95% or more).
  • the pulverizing device that can be used for the dry pulverizing treatment is not particularly limited as long as it can apply a physical load to the assembly of fine structures by stirring or the like.
  • a mixer with rotating blades can be used as such a device.
  • pulverization conditions are not particularly limited.
  • the rotational speed is preferably 500 rpm or more and 5000 rpm or less
  • the pulverization time is preferably 10 seconds or more and 20 minutes or less.
  • the carbon film of the present invention can be obtained by forming a CNT aggregate into a film.
  • the method for forming the CNT aggregate into a film is not particularly limited, but a CNT dispersion is prepared by dispersing the CNT aggregate in a dispersion medium such as water or an organic solvent, and at least the dispersion medium is removed from the CNT dispersion. A method of removing a part is preferably mentioned.
  • the method for preparing the CNT dispersion is not particularly limited, the CNT aggregate can be prepared by a known dispersion method such as a dispersion method using stirring blades, a dispersion method using ultrasonic waves, and a dispersion method using shear force. It can be obtained by dispersing in a dispersion medium by the method of.
  • preferable conditions for each dispersion method for obtaining the carbon film of the present invention are as follows.
  • the CNTs are dispersed in the dispersion medium at a rotation speed of the stirring blade of 1500 rpm or more and 12500 rpm or less, more preferably 2000 rpm or more and 10000 rpm or less, for 1 minute or more and 120 minutes or less, more preferably. is preferably performed for 5 minutes or more and 100 minutes or less.
  • Dispersion using a stirring blade can be performed using a known dispersing device having a stirring blade.
  • the CNTs are preferably dispersed in the dispersion medium at a frequency of 50 kHz or more and 500 kHz or less, 1 minute or more and 120 minutes or less, more preferably 2 minutes or more and 100 minutes or less.
  • Dispersion using ultrasonic waves can be performed using a known ultrasonic disperser.
  • the CNTs are appropriately dispersed in the CNT dispersion.
  • the CNT dispersion is dispersant-free.
  • the CNT dispersion consists essentially of CNTs and a dispersion medium.
  • the phrase "the CNT dispersion consists essentially of CNTs and a dispersion medium” means that 99.9% by mass or more of the components of the CNT dispersion are CNTs and the unavoidable It means that it consists of impurities, a dispersion medium, and unavoidable impurities associated with the dispersion medium.
  • Methods for removing the dispersion medium from the CNT dispersion include known methods such as filtration and drying.
  • the filtration method is not particularly limited, and known filtration methods such as natural filtration, vacuum filtration (suction filtration), pressure filtration, and centrifugal filtration can be used.
  • a known drying method such as a hot air drying method, a vacuum drying method, a hot roll drying method, an infrared irradiation method, or the like can be used.
  • the drying temperature is not particularly limited, but usually room temperature to 200° C.
  • the drying time is not particularly limited, but is usually from 1 hour to 48 hours. Also, drying can be performed on a known substrate, although not particularly limited.
  • the carbon membrane of the present invention can be obtained by further drying a membrane-like filtrate (primary sheet) obtained by filtering a CNT dispersion.
  • a test piece was obtained by cutting a carbon film prepared as described below into a 1.5 cm square. Then, the obtained test piece was subjected to ultra-small angle X-ray scattering measurement under the following conditions to obtain a scattering image.
  • a scattering profile was obtained for the scattering image obtained by ultra-small angle X-ray scattering measurement according to the above.
  • Igor Pro 8 manufactured by WaveMetrics
  • the obtained scattering profile is represented by the above general formula (I).
  • Table 1 shows the values of the fractal dimension P 3 and the persistence length R g,2 of the CNT.
  • FT-IR ⁇ Fourier transform infrared spectroscopy
  • FIG. 6 shows an FIR resonance chart of the FIR spectrum of the CNT aggregate prepared in Example 1. As shown in FIG. 6, an optical density peak was observed above 300 cm ⁇ 1 . On the other hand, in the CNT aggregates used in Comparative Examples 1 to 3, no optical density peak was observed above 300 cm ⁇ 1 .
  • the plasmon peak top position was obtained from an approximated curve by polynomial fitting using drawing software.
  • CNT bundle length measurement> For each dispersion prepared by FT-IR measurement, the CNTs present in the dispersion were measured using a flow-type particle image analyzer (manufactured by Jusco International Co., Ltd., a circulation-type image analysis particle size distribution analyzer "CF-3000"). The ISO circle diameter average value of the dispersion was measured, and the obtained value was defined as the CNT bundle length.
  • the analysis conditions were as follows.
  • CNT aggregate ⁇ Creation of pore distribution curve (CNT aggregate)>
  • the adsorption isotherm was measured using BELSORP-miniII (manufactured by Microtrack Bell) at 77 K using liquid nitrogen (adsorption equilibrium time was 500 seconds).
  • vacuum degassing was performed at 100° C. for 12 hours.
  • the pore distribution curve of each sample was obtained from the adsorption amount of this adsorption isotherm by the BJH method.
  • FIG. 7 in the CNT aggregates of Examples 1 to 4, the maximum log differential pore volume peak was confirmed in the region of pore diameters of 100 nm or more.
  • the measurement range of the pore diameter was 1 nm or more and less than 400 nm.
  • FIG. 8A is one of ten images acquired of the prepared CNT aggregates
  • FIG. 8B is the two-dimensional spatial frequency spectrum acquired for such an image.
  • the components closer to the center correspond to low frequency components
  • the components located farther out from the center correspond to higher frequency components.
  • the arrow indicates the peak position (3 ⁇ m ⁇ 1 ) of the highest wave number among the clear peaks detected in the region of 1 to 100 ⁇ m ⁇ 1 .
  • ⁇ Thickness> The thickness of the carbon film was measured using a "Digimatic standard outside micrometer" manufactured by Mitutoyo.
  • the reflection coefficient S11 and the transmission coefficient S21 were measured by the microstrip line method conforming to IEC-62333-2, and the transmission attenuation rate "dB" was calculated as the electromagnetic wave shielding performance. Then, the electromagnetic wave shielding performance [dB] at measurement frequencies of 2.5 MHz, 4.5 MHz and 7.5 MHz was evaluated according to the following criteria. The larger the transmission attenuation factor [dB] at a certain frequency, the better the electromagnetic shielding performance of the carbon film at that frequency.
  • B Transmission attenuation rate is 20 dB or more and less than 25 dB
  • C Transmission attenuation rate is less than 20 dB
  • Example 1 ⁇ Preparation of CNT aggregate> The CNTs used in Example 1 were produced by adopting the fluidized bed method in the CNT synthesis process.
  • FIG. 9 shows a schematic configuration of the CNT manufacturing apparatus used. A CNT manufacturing apparatus 100 shown in FIG. Synthetic quartz was used as the material of the reaction tube 102 and the dispersion plate 103 .
  • Zirconia (zirconium dioxide) beads (ZrO 2 , volume average particle diameter D50: 350 ⁇ m) as a carrier are put into a rotating drum coating device, and while the zirconia beads are stirred (20 rpm), an aluminum-containing solution is sprayed with a spray gun.
  • An aluminum-containing coating film was formed on the zirconia beads by spraying (amount of spray 3 g/min, spray time 940 seconds, spray air pressure 10 MPa) and drying while supplying compressed air (300 L/min) into the rotating drum. .
  • a calcination treatment was performed at 480° C. for 45 minutes to produce primary catalyst particles having an aluminum oxide layer formed thereon.
  • the primary catalyst particles were put into another rotary drum coating device and stirred (20 rpm) while the iron catalyst solution was sprayed with a spray gun (spray amount 2 g / minute, spray time 480 seconds, spray air pressure 5 MPa ) and dried while supplying compressed air (300 L/min) into the rotating drum to form an iron-containing coating film on the primary catalyst particles.
  • a calcination treatment was performed at 220° C. for 20 minutes to produce a catalyst carrier on which an iron oxide layer was further formed.
  • the conditions of each process included in the CNT synthesis process were set as follows.
  • the CNT aggregates synthesized on the catalyst carrier were separated and recovered using a forced vortex classifier (rotational speed: 3500 rpm, air volume: 3.5 Nm 3 /min). The recovery rate of CNT aggregates was 99%.
  • the characteristics of the CNT aggregate produced by this example are tap bulk density: 0.01 g/cm 3 , average CNT height: 200 ⁇ m, BET specific surface area: 800 m 2 /g, average outer diameter: 4.0 nm, The carbon purity was 99%.
  • Example 2 A 150 ⁇ m-thick carbon film (free-standing film) was obtained in the same manner as in Example 1, except that the CNT dispersion was obtained by stirring at 3000 rpm for 10 minutes. Various measurements and data analysis were performed on the obtained carbon film, and the electromagnetic wave shielding performance was evaluated. Table 1 shows the results.
  • Example 3 ⁇ Preparation of CNT aggregate>
  • the CNT aggregates used in Example 3 were produced in the CNT synthesizing process by a method of supplying raw material gas while continuously transporting a particulate catalyst carrier by rotating a screw.
  • FIG. 10 shows a schematic configuration of a CNT aggregate manufacturing apparatus 200 used.
  • a CNT aggregate manufacturing apparatus 200 shown in FIG. 204 and a gas mixture prevention device 203 for preventing gas from mixing between the formation unit 202 and the growth unit 204 .
  • the CNT aggregate manufacturing apparatus 200 includes an inlet purge device 201 arranged in the front stage of the formation unit 202, an outlet purge device 205 arranged in the rear stage of the growth unit 204, and further arranged in the rear stage of the outlet purge device 205.
  • the cooling unit 206 and other components are provided.
  • the formation unit 202 includes a formation furnace 202a for holding reducing gas, a reducing gas injection device 202b for injecting the reducing gas, a heating device 202c for heating at least one of the catalyst and the reducing gas, and gas in the furnace. It is composed of an exhaust device 202d and the like for discharging to the outside of the system.
  • the gas mixture prevention device 203 includes an exhaust device 203a and a purge gas injection device 203b that injects a purge gas (seal gas).
  • the growth unit 204 includes a growth furnace 204a for maintaining the source gas environment, a source gas injection device 204b for injecting the source gas, a heating device 204c for heating at least one of the catalyst and the source gas, An exhaust device 204d or the like for discharging gas to the outside of the system is provided.
  • An inlet purge device 201 is attached to a connecting portion 209 that connects an antechamber 213, which is a component for introducing a substrate 211 into the system via a hopper 212, and a formation furnace 202a.
  • the cooling unit 206 includes a cooling container 206a for holding inert gas, and a water-cooling cooling device 206b arranged so as to surround the inner space of the cooling container 206a.
  • the transport unit 207 is a unit that continuously transports the base material 211 by screw rotation. It is implemented by a screw vane 207a and a driving device 207b capable of rotating the screw vane to a state in which the substrate conveying capability can be exhibited.
  • the heating device 214 is configured to be able to heat the inside of the system at a temperature lower than the heating temperature in the formation unit, and heats the vicinity of the driving device 207b.
  • the primary catalyst particles were put into another rotary drum type coating device and stirred (20 rpm) while the iron catalyst solution was sprayed with a spray gun (spray amount: 2 g/min, spray time: 480 seconds, spray air pressure: 5 MPa). ) and dried while supplying compressed air (300 L/min) into the rotating drum to form an iron-containing coating film on the primary catalyst particles.
  • a baking treatment was performed at 220° C. for 20 minutes to produce a substrate on which an iron oxide layer was further formed.
  • ⁇ CNT synthesis process>> The base material having a catalyst on its surface prepared in this way was put into the feeder hopper of the manufacturing apparatus, and while being conveyed by the screw conveyor, the formation process, the growth process, and the cooling process were performed in order to manufacture a CNT aggregate. .
  • Purge gas Nitrogen 40 sLm Formation unit Furnace temperature: 800°C ⁇ Reducing gas: nitrogen 6 sLm, hydrogen 54 sLm ⁇ Displacement: 60sLm ⁇ Processing time: 20 minutes Gas contamination prevention device ⁇ Purge gas: 20 sLm ⁇ Displacement volume of exhaust system: 62sLm Growth unit Furnace temperature: 830°C ⁇ Raw material gas: nitrogen 15 sLm, ethylene 5 sLm, carbon dioxide 1 sLm, hydrogen 3 sLm ⁇ Displacement: 47sLm ⁇ Processing time: 10 minutes Outlet purge device ⁇ Purge gas: Nitrogen 45 sLm Cooling unit ⁇ Cooling temperature: Room temperature ⁇ Exhaust volume: 10 sLm (natural exhaust from the gap) Continuous production was performed under the above conditions.
  • the characteristics of the CNT aggregate produced in this example are, as typical values, tap bulk density: 0.02 g/cm 3 , average CNT length: 150 ⁇ m, BET-specific surface area: 900 m 2 /g, average outer diameter: 4.0 nm and a carbon purity of 99%. .
  • Example 4 In preparation of the CNT dispersion liquid, an ultrasonic dispersing machine (manufactured by Bransonic, tabletop ultrasonic cleaner) was used for dispersion treatment at a frequency of 40 kHz for 10 minutes. A carbon film (self-supporting film) having a thickness of 100 ⁇ m was obtained in the same manner as in Example 3 except for this point. Various measurements and data analysis were performed on the obtained carbon film, and the electromagnetic wave shielding performance was evaluated. Table 1 shows the results.
  • Example 1 A carbon film (self-supporting film) with a thickness of 100 ⁇ m was obtained in the same manner as in Example 1, except that SGCNT (product name “ZEONANO SG101”, manufactured by Nippon Zeon Co., Ltd.) was used as the CNT aggregate. Various measurements and data analysis were performed on the obtained carbon film, and the electromagnetic wave shielding performance was evaluated. Table 1 shows the results. This SGCNT does not satisfy the conditions (1) to (3).
  • Comparative example 2 A 150 ⁇ m-thick carbon film (freestanding membrane) was obtained. Various measurements and data analysis were performed on the obtained carbon film, and the electromagnetic wave shielding performance was evaluated. Table 1 shows the results.
  • Example 3 A carbon film (free-standing film) with a thickness of 150 ⁇ m was obtained in the same manner as in Example 1, except that a CNT aggregate (product name “K-nanos 100T”, manufactured by KNANO GRAPHENE COMPANY) was used. Various measurements and data analysis were performed on the obtained carbon film, and the electromagnetic wave shielding performance was evaluated. Table 1 shows the results. K-nanos 100T does not satisfy the above conditions (1) to (3).
  • the carbon films of Examples 1 to 3 which have a fractal dimension of 2 or more and 3 or less in the following wavenumber range, have a transmission attenuation rate of 25 dB or more at any measurement frequency, and are excellent in electromagnetic shielding performance.
  • CNT production device 101 heater 102 reaction tube 103 dispersion plate 104 reducing gas/raw material gas introduction port 105 exhaust port 106 gas heating acceleration unit 107 catalyst carrier 200
  • CNT aggregate production device 201 inlet purge device 202 formation unit 202a formation furnace 202b reduction Gas injection device 202c Heating device 202d Exhaust device 203 Gas mixture prevention device 203a Exhaust device 203b Purge gas injection device 204 Growth unit 204a Growth furnace 204b Source gas injection device 204c Heating device 204d Exhaust device 205 Outlet purge device 206 Cooling unit 206a Cooling container 206b Water cooling Cooling device 207 Conveying unit 207a Screw blade 207b Driving device 208-210 Connecting part 211 Base material 212 Hopper 214 Heating device

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本発明は、電磁波シールド性能に優れる炭素膜を提供することを目的とする。本発明の炭素膜は、カーボンナノチューブ集合体からなる炭素膜であって、前記炭素膜の少なくとも一方の表面に対して超小角X線散乱測定を行って得られる散乱プロファイルをBeaucageの式にフィッティングしたとき、0.001(1/Å)以上0.01(1/Å)以下の波数範囲におけるフラクタル次元が2以上3以下であることを特徴とする。

Description

炭素膜
 本発明は、炭素膜に関するものである。
 近年、導電性、熱伝導性および機械的特性に優れる材料として、カーボンナノチューブ(以下、「CNT」と称することがある。)が注目されている。しかし、CNTは直径がナノメートルサイズの微細な構造体であるため、単体では取り扱い性や加工性が悪い。そこで、取り扱い性や加工性を確保して各種用途に用いるべく、複数本のCNTからなる集合体(以下、「カーボンナノチューブ集合体」と称する。)を膜化して炭素膜を形成することが従来から行われている(例えば、特許文献1参照)。
 特許文献1では、水銀圧入法により測定される、ボアサイズが400nm以上1500nm以下の細孔が、Log微分細孔容積0.006cm/g以下となる10nm以上の領域を備えるカーボンナノチューブ集合体を用いて、機械的強度に優れる炭素膜が形成されている。
特開2018-145027号公報
 ここで近年、炭素膜の用途として、電磁波シールドが注目されている。しかしながら、上記従来の炭素膜の電磁波を遮断する性能、すなわち、電磁波シールド性能には、一層の向上の余地があった。
 そこで、本発明は、電磁波シールド性能に優れる炭素膜の提供を目的とする。
 本発明者らは、上記目的を達成するために鋭意検討を重ねた。そして、本発明者らは、カーボンナノチューブ集合体を用いて形成される炭素膜の微小性状について検討した。その結果、本発明者らは、カーボンナノチューブ集合体からなる炭素膜の表面の超小角X線散乱曲線(プロファイル)に対して所定のデータ処理を行って得られる所定のパラメータが所定の条件を満たす場合に、炭素膜が電磁波を良好に遮蔽し得ることを新たに見出し、本発明を完成させた。
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の炭素膜は、カーボンナノチューブ集合体からなる炭素膜であって、前記炭素膜の少なくとも一方の表面に対して超小角X線散乱測定を行って得られる散乱プロファイルをBeaucageの式にフィッティングしたとき、0.001(1/Å)以上0.01(1/Å)以下の波数範囲におけるフラクタル次元が2以上3以下であることを特徴とする。
 炭素膜の表面を超小角X線散乱測定して得られる散乱プロファイルをBeaucageの式にフィッティングしたときに0.001(1/Å)以上0.01(1/Å)以下の波数範囲におけるフラクタル次元が2以上3以下であれば、かかる炭素膜は電磁波シールド性能に優れる。
 なお、本発明において、炭素膜の表面の超小角X線散乱プロファイルは実施例に記載された方法で得ることができる。また、超小角X線散乱プロファイルのBeaucageの式を用いたフィッティングは実施例に記載された方法で行うことができる。
 また、本発明の炭素膜は、炭素膜の表面を超小角X線散乱法により測定して得られる散乱プロファイルをBeaucageの式にフィッティングしたとき、0.01(1/Å)以上0.1(1/Å)以下の波数範囲におけるCNTの持続長が250Å以下であることが好ましい。炭素膜の表面を超小角X線散乱法により測定して得られる散乱プロファイルをBeaucageの式にフィッティングしたとき、0.01(1/Å)以上0.1(1/Å)以下の波数範囲におけるCNTの持続長が250Å以下であれば、かかる炭素膜は電磁波シールド性能に一層優れる。
 また、本発明の炭素膜は自立膜であることが好ましい。自立膜である炭素膜はハンドリング性に優れ、例えば電磁波遮蔽シートとして用いるに際して、当該シートの配置の自由度を高めることができる。
 なお、本発明において、「自立膜」とは、支持体が存在せずとも破損せずに、単独で膜形状を維持し得る膜をいう。
 また、本発明の炭素膜は、厚みが5μm以上200μm以下であることが好ましい。厚みが5μm以上であれば、炭素膜は十分な機械的強度を有し得ると共に、一層優れた電磁波シールド性能を発揮することができる。一方、厚みが200μm以下であれば、炭素膜を軽量化することができる。
 なお、本発明において、炭素膜の「厚み」は、実施例に記載の方法を用いて測定することができる。
 また、本発明の炭素膜は、1GHz以上10GHz以下の範囲内の少なくとも1つの周波数における伝送減衰率が20dB以上であることが好ましい。1GHz以上10GHz以下の範囲内の少なくとも1つの周波数における伝送減衰率が20dB以上である炭素膜は、電磁波シールド性能に優れている。
 なお、本発明において、伝送減衰率は実施例に記載の方法により測定することができる。
 本発明によれば、電磁波シールド性能に優れる炭素膜を提供することができる。
実施例1の炭素膜の表面のSEM画像を示す。 比較例1の炭素膜の表面のSEM画像を示す。 実施例1の炭素膜の表面の超小角X線散乱プロファイルをBeaucageの式にフィッティングして得られたグラフを示す。 比較例1の炭素膜の表面の超小角X線散乱プロファイルをBeaucageの式にフィッティングして得られたグラフを示す。 一例にかかるCNT集合体のSEM画像を示す。 一例にかかるCNT集合体について取得したFIR共鳴チャートを示す。 一例にかかるCNT集合体の細孔分布曲線を示す。 一例にかかるCNT集合体のSEM画像を示す。 図8AのSEM画像の二次元空間周波数スペクトルを示す。 実施例1~2で使用したCNT製造装置の概略構成を示す。 実施例3~4で使用したCNT製造装置の概略構成を示す。
 以下、本発明の実施形態について詳細に説明する。
(炭素膜)
 本発明の炭素膜は、カーボンナノチューブ集合体からなる炭素膜であって、前記炭素膜の少なくとも一方の表面に対して超小角X線散乱測定を行って得られる散乱プロファイルを後述の一般式(I)で表されるBeaucageの式にフィッティングしたとき、0.001(1/Å)以上0.01(1/Å)以下の波数範囲におけるフラクタル次元が2以上3以下であることを特徴とする。このような特徴を有する炭素膜は、電磁波シールド性能に優れる。そのため、本発明の炭素膜は、特に限定されないが、例えば電磁波遮蔽シートとして有利に使用することができる。そして、本発明の炭素膜は自立膜であることが好ましい。炭素膜が自立膜であれば、かかる炭素膜はハンドリング性に優れ、例えば電磁波遮蔽シートとして用いるに際して、当該シートの配置の自由度が高いからである。
 本発明の炭素膜を構成するカーボンナノチューブ集合体は複数本のカーボンナノチューブで構成されるものである。本発明の炭素膜は、例えば、CNT集合体および炭素膜の製造過程において不可避に混入するCNT以外の成分を含んでいてもよいが、炭素膜中に占めるCNTの割合は、95質量%以上であることが好ましく、98質量%以上であることがより好ましく、99質量%以上であることが更に好ましく、99.5質量%以上であることが特に好ましく、100質量%であること(即ち、炭素膜がCNTのみからなること)が最も好ましい。
 本発明の炭素膜は、炭素膜の少なくとも一方の表面に対して超小角X線散乱測定を行って得られる散乱プロファイルをBeaucageの式にフィッティングしたとき、0.001(1/Å)以上0.01(1/Å)以下の波数範囲におけるフラクタル次元が2以上3以下であることを必要とする。
 以下、炭素膜の超小角X線散乱プロファイルに対してBeaucageの式をフィッティングしてフラクタル次元を求める方法を説明する。
<超小角X線散乱測定>
 まず、炭素膜の表面に対して超小角X線散乱測定を行って、散乱像を得る。本発明において、超小角X線散乱測定は、波数q:0.0004(1/Å)~0.3(1/Å)、X線源:CuKα、X線管電圧:45kV、管電流:200mA、スリット幅:10mm、スキャンステップ:0.0006deg、スキャン範囲:0~0.5deg、スキャンスピード::0.034deg/min、X線検出器:2次元半導体検出器の条件で行う。そして、波数qを横軸、散乱強度I(q)を縦軸にした散乱プロファイルを得る。
<散乱プロファイルのフィッティング>
 次いで、上記の散乱プロファイルに対して、Beaucageの式を用いてフィッティングを行う。散乱プロファイルのBeaucageの式を用いたフィッティングは従来公知であり、例えばG. Beaucage, J. Appl. Cryst., 28, 717 (1995)に記載された方法に従って行うことができる。フィッティングは、解析ソフトウェアとして、例えば、Igor Pro 8(WaveMetrics社製)を使用することにより行うことができる。
 具体的には、得られた散乱プロファイルに対して、波数範囲を0.0004(1/Å)~0.3(1/Å)として、下記一般式(I)で表されるBeaucageの式を用いてフィッティングを行う。
Figure JPOXMLDOC01-appb-M000001
 上記一般式(I)において、qは波数(1/Å)、I(q)は波数qにおける散乱強度、Bkgdはバックグラウンド、GおよびBは比例定数、Pは階層iにおけるフラクタル次元、Rg,iは階層iにおける構造の長さ、Nは階層数を表す。
 以上のように、散乱プロファイルを、上記一般式(I)を用いてフィッティングすることにより、各階層iにおける、フラクタル次元Pを得ることができる。
 そして、本発明では、i=3の場合のフラクタル次元Pが2以上3以下の範囲内であれば「0.001(1/Å)以上0.01(1/Å)以下の波数範囲でフラクタル次元が2以上3以下である」と判断される。
 本発明に係るカーボンナノチューブの炭素膜における超小角X線散乱のプロファイルでは、(1)CNT1本の直径由来の散乱(Rg,1)、(2)CNT1本の持続長由来の散乱(Rg,2)、および、(3)CNTのバンドル径由来の散乱(Rg,3)が観測され得る。このように3つの散乱が観測されることから、階層数を3としてフィッティングすることが好ましい。例えば、0.1(1/Å)以上0.3(1/Å)以下の波数範囲では(1)CNT1本の直径由来の散乱(Rg,1)が、0.01(1/Å)以上0.1(1/Å)以下の波数範囲では(2)CNT1本の持続長由来の散乱(Rg,2)が、0.0001(1/Å)以上0.01(1/Å)以下の波数範囲では(3)CNTバンドル由来の散乱(Rg,3)が、観測される。また、散乱プロファイルにおいて、散乱(Rg,2)と散乱(Rg,3)の間の傾きからCNTバンドルの表面粗さ(P)を解析できる。
 炭素膜の少なくとも一方の表面に対して超小角X線散乱測定を行って得られる散乱プロファイルをBeaucageの式にフィッティングしたとき、0.001(1/Å)以上0.01(1/Å)以下の波数範囲におけるフラクタル次元が2以上3以下である炭素膜が優れた電磁波シールド性能を発揮し得る理由は定かではないが、以下のとおりであると推察される。すなわち、フラクタル次元は炭素膜を形成するCNTのバンドルの表面粗さを示す指標であり、0.001(1/Å)以上0.01(1/Å)以下の波数範囲のフラクタル次元が2以上3以下であるCNTバンドルの表面には波状構造が良好に形成されているものと推察される。そして、かかる波状構造間の間隙にて良好に電磁波が乱反射されることにより炭素膜に侵入した電磁波のエネルギーが減衰し、それにより、本発明の炭素膜は、優れた電磁波シールド性能を発揮し得ると推察される。
 0.001(1/Å)以上0.01(1/Å)以下の波数範囲のフラクタル次元が3を超えると、CNTバンドルの表面はより滑らかになり波状構造が良好に形成されないため、波状構造間の間隙にて電磁波の乱反射が発生しにくくなり、電磁波シールド性能が悪化すると推察される。また、0.001(1/Å)以上0.01(1/Å)以下の波数範囲のフラクタル次元が2未満では、CNTバンドルが形成されなくなり、電磁波シールド性能が悪化すると推察される。
 以下、図1および図2を参照して、本発明の炭素膜が有する波状構造を説明する。図1は、実施例1にかかる炭素膜の表面のSEM画像である。図2は、比較例1にかかる炭素膜の表面のSEM画像である。図1に示すように、所定の波数範囲内でフラクタル次元が2以上3以下である実施例1の炭素膜の表面には波状構造が形成されている。これに対して、所定の波数範囲内のフラクタル次元が3超である比較例1の炭素膜は、比較的滑らかな表面を有しており、実施例1のような波状構造は有していない。そのため、比較例1の炭素膜では、電磁波が炭素膜表面で乱反射され難いため炭素膜に侵入した電磁波のエネルギーが減衰しにくく、その結果、電磁波シールド性能に劣るものと推察される。
 なお、一般式(I)におけるフラクタル次元Pは、散乱プロファイルをBeaucageの式にフィッティングして得られたグラフの直線部分の傾きの絶対値に相当するものである。図3は、実施例1の炭素膜の表面の超小角X線散乱プロファイルをBeaucageの式にフィッティングして得られたグラフを示す。図4は、比較例1の炭素膜の表面の超小角X線散乱プロファイルをBeaucageの式にフィッティングして得られたグラフを示す。図3において、0.001(1/Å)以上0.01(1/Å)以下の波数の範囲の直線部分の傾きは、図4の0.001(1/Å)以上0.01(1/Å)以下の波数の範囲の直線部分の傾きよりも小さい。つまり、図4の比較例1のグラフでは、0.001(1/Å)以上0.01(1/Å)以下の波数の範囲の直線部分の傾きが急峻であり、フラクタル次元が4により近いこと(すなわち、表面がより滑らかであること)がわかる。
 そして、本発明の炭素膜は、電磁波シールド性能の一層の向上の観点から、上述のフラクタル次元が、0.001(1/Å)以上0.01(1/Å)以下の波数範囲において、2.1以上であることが好ましく、2.3以上であることがより好ましく、また、2.95以下であることが好ましい。さらに、本発明の炭素膜は、炭素膜の両面について、上記フラクタル次元が、0.001(1/Å)以上0.01(1/Å)以下の波数範囲において、2以上3以下であることが好ましい。
 本発明の炭素膜において、上記フラクタル次元は、例えば、後述するCNT分散液を調製する際のCNTの分散条件(分散強度、分散時間、分散剤の有無など)を調節し、後述するCNTバンドル長などを制御することにより制御することができる。例えば攪拌羽を用いてCNTの分散を行う場合、CNTバンドル長さは攪拌羽の回転速度(rpm)および/または分散時間および/または撹拌羽の形状を変更することにより変更することができる。
 また、本発明の炭素膜は、電磁波シールド性能の一層の向上の観点から、炭素膜の少なくとも一方の表面を超小角X線散乱測定して得られる散乱プロファイルをBeaucageの式にフィッティングしたとき、0.01(1/Å)以上0.1(1/Å)以下の波数範囲におけるCNTの持続長が250Å以下であることが好ましく、225Å以下であることがより好ましく、200Å以下であることがさらに好ましい。0.01(1/Å)以上0.1(1/Å)以下の波数範囲におけるCNTの持続長の下限は特に限定されないが、通常、CNTの持続長は10Å以上である。さらに、本発明の炭素膜は、炭素膜の両面について求めた上記CNTの持続長が、0.01(1/Å)以上0.1(1/Å)以下の波数範囲において、250Å以下であることが好ましい。
 ここで、CNTの持続長は、上述したフラクタル次元と同様にして得ることができる。具体的には、上述のようにして炭素膜の表面に対して超小角X線散乱測定して散乱プロファイルを得る。そして、得られた散乱プロファイルを上述のように一般式(I)で表されるBeaucageの式にフィッティングする。階層数を3として解析した際に、階層2におけるRg,2をCNTの持続長とすることができる。
 CNTの持続長Rg,2は、階層2におけるCNTの持続長を表す。CNTの持続長は、CNTが直線性を持続する傾向を長さで表すものであり、換言すれば、1本のCNTにおける、隣接する屈曲部分間の長さ(キンク間の長さ)を示している。本発明のCNTの持続長の範囲内では、電磁波がCNT間に侵入しCNT間で乱反射されることにより電磁波のエネルギーが減衰し、その結果、炭素膜により優れた電磁波シールド性能が発揮され得ると推察される。
 そして、本発明では、一般式(I)において、i=1の場合およびi=2の場合のCNTの持続長Rg,1、Rg,2が250Å以下あれば「0.01(1/Å)以上0.1(1/Å)以下の波数範囲におけるCNTの持続長が250Å以下である」と判断される。
 本発明の炭素膜において、上記CNTの持続長は、例えば、後述するCNT分散液を調製する際のCNTの分散条件(分散強度、分散時間、分散剤の有無など)を調節し、後述するCNTバンドル長などを制御することに制御することができる。例えば攪拌羽を用いてCNTの分散を行う場合、CNTバンドル長さは攪拌羽の回転速度(rpm)および/または分散時間および/または撹拌羽の形状を変更することにより変更することができる。
<電磁波シールド性能>
 本発明の炭素膜は、1GHz以上10GHz以下の範囲の少なくとも1つの周波数における伝送減衰率が20dB以上であることが好ましく、1GHz以上10GHz以下の範囲の全部において伝送減衰率が20dB以上であることがより好ましく、1GHz以上10GHz以下の範囲の全部において25dB以上であることが更に好ましい。上述した範囲の全てにおける伝送減衰率が20dB以上である炭素膜は、電磁波シールド性能に一層優れているため、電磁波遮断シートとしてより有利に使用することができる。
<厚み>
 本発明の炭素膜の厚みは、5μm以上であることが好ましく、10μm以上であることがより好ましく、200μm以下であることが好ましく、150μm以下であることがより好ましい。厚みが5μm以上であれば、炭素膜は十分な機械的強度を有し得ると共に、一層優れた電磁波シールド性能を発揮することができる。一方、厚みが200μm以下であれば、炭素膜を軽量化することができる。
(炭素膜の製造方法)
 本発明の炭素膜は、カーボンナノチューブ集合体を膜化して炭素膜とするに際し、
 CNT集合体として、後述する(1)~(3)の少なくとも何れかの条件を満たすCNT集合体を用いること、
 CNT集合体の膜化に先んじて、当該CNT集合体に対して乾式粉砕処理を施すこと、
 の少なくとも1つを満たすことで作製することができる。
<CNT集合体>
 ここで、炭素膜の調製に用いるCNT集合体としては(1)~(3)の条件のうち少なくとも1つを満たす新規のCNT集合体を用いることが好ましい。以下の(1)~(3)の条件のうち少なくとも1つを満たすCNT集合体よりなる炭素膜は、電磁波シールド性能に優れる。
 (1)カーボンナノチューブ集合体を、バンドル長が10μm以上になるように分散させて得たカーボンナノチューブ分散体について、フーリエ変換赤外分光分析して得たスペクトルにおいて、カーボンナノチューブ分散体のプラズモン共鳴に基づくピークが、波数300cm-1超2000cm-1以下の範囲に、少なくとも1つ存在する。
 (2)カーボンナノチューブ集合体について、液体窒素の77Kでの吸着等温線から、Barrett-Joyner-Halenda法に基づいて得られる、細孔径とLog微分細孔容積との関係を示す細孔分布曲線における最大のピークが、細孔径100nm超400nm未満の範囲にある。
 (3)カーボンナノチューブ集合体の電子顕微鏡画像の二次元空間周波数スペクトルのピークが、1μm-1以上100μm-1以下の範囲に少なくとも1つ存在する。
 上記条件(1)~(3)のうちの少なくとも1つを満たすCNT集合体よりなる炭素膜が電磁波シールド性能に優れる理由は明らかではないが、以下の通りであると推察される。図5に、上記(1)~(3)のうちの少なくとも1つを満たすCNT集合体の一例の走査型電子顕微鏡(SEM)画像を示す。図5に示すように、上記条件(1)~(3)のうちの少なくとも満たすCNT集合体を構成するCNTは、波状構造を有する。かかる「波状構造」に起因して、CNT集合体を構成する各CNT間において、電磁波が乱反射すると考えられる。かかる乱反射の過程で、電磁波のエネルギーが失われ、その結果が高い電磁波シールド性能に反映されると推察される。以下、本発明のCNT集合体が満たし得る上記条件(1)~(3)について、それぞれ詳述する。
<<条件(1)>>
 条件(1)は、「カーボンナノチューブ集合体を、バンドル長が10μm以上になるように分散させて得たカーボンナノチューブ分散体について、フーリエ変換赤外分光分析して得たスペクトルにおいて、カーボンナノチューブ分散体のプラズモン共鳴に基づくピークが、波数300cm-1超2000cm-1以下の範囲に、少なくとも1つ存在する。」ことを規定する。ここで、従来から、CNTの光学特性として、遠赤外領域における強い吸収特性が広く知られている。かかる遠赤外領域における強い吸収特性は、CNTの直径および長さに起因ものであると考えられている。なお、遠赤外線領域における吸収特性、より具体的には、CNTのプラズモン共鳴に基づくピークと、CNTの長さとの関係については、非特許文献(T.Morimoto et.al., “Length-Dependent Plasmon Resonance in Single-Walled Carbon Nanotubes”, pp 9897-9904, Vol.8, No.10, ACS NANO, 2014)にて詳細に検討されている。本発明者らは、上記非特許文献に記載されたような検討内容、および、独自の知見に基づいて、フーリエ変換赤外分光分析して得たスペクトルにおいて、CNTのプラズモン共鳴に基づくピークの検出される位置が、CNTにおける欠陥点の間の距離により何らかの影響を受け得ると推測し、検証を行った。そして、本発明者らは、CNTのプラズモン共鳴に基づくピークの検出される位置が、波状構造を有するCNTにおける屈曲点間の道のりに対応する指標としての役割を果たし得ることを見出し、上記の条件(1)を設定した。
 条件(1)において、波数300cm-1超2000cm-1以下の範囲に、好ましくは波数500cm-1以上2000cm-1以下の範囲に、より好ましくは波数700cm-1以上2000cm-1以下の範囲に、CNTのプラズモン共鳴に基づくピークが存在していれば、かかるCNTは炭素膜を形成した場合に良好な電磁波シールド性能を呈し得る。
 図6に、一例に係るCNT集合体をフーリエ変換赤外分光分析して得られたスペクトル(FIR共鳴チャート)を示す。図6より明らかなように、得られたスペクトルにおいて、CNT分散体のプラズモン共鳴に基づく比較的緩やかなピーク以外に、波数840cm-1付近、1300cm-1付近、および1700cm-1付近に、鋭いピークが確認されることが分かる。これらの鋭いピークは、「カーボンナノチューブ分散体のプラズモン共鳴に基づくピーク」には該当せず、それぞれが、官能基由来の赤外吸収に対応している。より具体的には、波数840cm-1付近の鋭いピークは、C-H面外変角振動に起因し;波数1300cm-1付近の鋭いピークは、エポキシ三員環伸縮振動に起因し;波数1700cm-1付近の鋭いピークは、C=O伸縮振動に起因する。なお、波数2000cm-1超の領域では、プラズモン共鳴とは別に、上記したT.Morimotoらによる非特許文献でも言及されているように、S1ピークに類するピークが検出されるため、本発明者らは、条件(1)におけるCNT分散体のプラズモン共鳴に基づくピークの有無の判定上限を2000-1cm以下とした。
 ここで、条件(1)において、フーリエ変換赤外分光分析によるスペクトルを取得するにあたり、バンドル長が10μm以上になるように、CNT集合体を分散させることにより、CNT分散体を得る必要がある。ここで、例えば、CNT集合体、水、および界面活性剤(例えば、ドデシルベンゼンスルホン酸ナトリウム)を適切な比率で配合して、超音波等により所定時間にわたり撹拌処理することで、水中に、バンドル長が10μm以上であるCNT分散体が分散されてなる分散液を得ることができる。
 CNT分散体のバンドル長は、湿式画像解析型の粒度測定装置により解析することで、得ることができる。かかる測定装置は、CNT分散体を撮影して得られた画像から、各分散体の面積を算出して、算出した面積を有する円の直径(以下、ISO円径(ISO area diameter)とも称することがある)を得ることができる。そして、本明細書では、各分散体のバンドル長は、このようにして得られるISO円径の値であるものとして、定義した。
<<条件(2)>>
 条件(2)は、「細孔分布曲線における最大のピークが、細孔径100nm超400nm未満の範囲にある。」ことを規定する。カーボンナノチューブ集合体の細孔分布は、液体窒素の77Kでの吸着等温線から、BJH法に基づいて求めることができる。そして、カーボンナノチューブ集合体について測定して得た細孔分布曲線におけるピークが100nm超の範囲にあるということは、カーボンナノチューブ集合体において、CNT間にある程度の大きさの空隙が存在し、CNTが過度に過密に凝集した状態となっていないことを意味する。なお、上限の400nmは、実施例で用いた測定装置(BELSORP-mini II)における測定限界である。
 ここで、炭素膜の電磁波シールド性能を更に向上させる観点から、CNT集合体の細孔分布曲線の最大のピークにおけるLog微分細孔容積の値は、2.0cm/g以上であることが好ましい。
<<条件(3)>>
 条件(3)は、「カーボンナノチューブ集合体の電子顕微鏡画像の二次元空間周波数スペクトルのピークが、1μm-1以上100μm-1以下の範囲に少なくとも1つ存在する。」ことを規定する。かかる条件の充足性は、下記の要領で判定することができる。まず、判定対象であるCNT集合体を、電子顕微鏡(例えば、電解放射走査型電子顕微鏡)を用いて拡大観察(例えば、1万倍)して、1cm四方の視野で電子顕微鏡画像を複数枚(例えば、10枚)取得する。得られた複数枚の電子顕微鏡画像について、高速フーリエ変換(FFT)処理を行い、二次元空間周波数スペクトルを得る。複数枚の電子顕微鏡画像のそれぞれについて得られた二次元空間周波数スペクトルを二値化処理して、最も高周波数側に出るピーク位置の平均値を求める。得られたピーク位置の平均値が1μm-1以上100μm-1以下の範囲内である場合には、条件(3)を満たすとして判定した。ここで、上記の判定において用いる「ピーク」としては、孤立点の抽出処理(即ち、孤立点除去の逆操作)を実施して得られた明確なピークを用いるものとする。従って、孤立点の抽出処理を実施した際に1μm-1以上100μm-1以下の範囲内にて明確なピークが得られない場合には、条件(3)は満たさないものとして判定する。
 ここで、炭素膜の電磁波シールド性能を更に向上させる観点から、二次元空間周波数スペクトルのピークが、2.6μm-1以上100μm-1以下の範囲に存在することが好ましい。
 そして、炭素膜の電磁波シールド性能を更に向上させる観点から、CNT集合体は、上記(1)~(3)の条件のうちを少なくとも2つを満たすことが好ましく、(1)~(3)の条件全てを満たすことがより好ましい。
<<その他の性状>>
 なお、本発明の炭素膜の形成に使用し得るCNT集合体は、上記(1)~(3)の条件以外にも、以下の性状を有することが好ましい。
 例えば、CNT集合体は、BET法による全比表面積が、好ましくは600m/g以上、より好ましくは800m/g以上であり、好ましくは2600m/g以下、より好ましくは1400m/g以下である。さらに開口処理したものにあっては、1300m/g以上であることが好ましい。高い比表面積を有するCNT集合体によれば、炭素膜内部にて電磁波を一層良好に乱反射させることができ、その結果、炭素膜の電磁波シールド性能を更に向上させることができる。CNT集合体は、単層CNTを主として、機能を損なわない程度に、2層CNTと多層CNTを含んでもよい。CNTのBET法による全比表面積は、例えば、JIS Z8830に準拠した、BET比表面積測定装置を用いて測定できる。
 また、CNT集合体を構成するCNTの平均高さは、10μm以上10cm以下であることが好ましく、100μm以上2cm以下であることがより好ましい。CNT集合体を構成するCNTの平均高さが10μm以上あると、隣接するCNTバンドルとの凝集を防ぎ、容易に分散させることが可能になる。CNT集合体を構成するCNTの平均高さが10μm以上であれば、CNT同士のネットワークを形成し易くなり、導電性または機械強度が必要とされる用途において好適に用いることができる。CNT集合体を構成するCNTの平均高さが10cm以下であると、生成を短時間で行なえるため炭素系不純物の付着を抑制でき比表面積を向上できる。CNT集合体を構成するCNTの平均高さが2cm以下であればより容易に分散させることが可能になる。なお、CNTの平均高さは、走査型電子顕微鏡(SEM)を用いて無作為に選択したCNT100本の高さを測定して求めることができる。
 CNT集合体のタップかさ密度は、0.001g/cm以上0.2g/cm以下であることが好ましい。このような密度範囲にあるCNT集合体は、CNT同士の結びつきが過度に強まらないため、分散性に優れており、様々な形状に成形加工することが可能である。CNT集合体のタップかさ密度が0.2g/cm以下であれば、CNT同士の結びつきが弱くなるので、CNT集合体を溶媒などに撹拌した際に、均質に分散させることが容易になる。また、CNT集合体のタップかさ密度が0.001g/cm以上であれば、CNT集合体の一体性が向上されハンドリングが容易になる。タップかさ密度とは、粉体状のCNT集合体を容器に充填した後、タッピングまたは振動等により粉体粒子間の空隙を減少させ、密充填させた状態での見かけかさ密度である。
 さらに、CNT集合体を構成するCNTの平均外径は、0.5nm以上であることが好ましく、1.0nm以上であることが更に好ましく、15.0nm以下であることが好ましく、10.0nm以下であることがより好ましく、5.0nm以下であることが更に好ましい。CNTの平均外径が0.5nm以上であれば、CNT同士のバンドル化が低減でき、高い比表面積を維持できる。CNTの平均外径が15.0nm以下であれば、多層CNT比率を低減でき、高い比表面積を維持することができる。ここで、CNTの平均外径は、透過型電子顕微鏡(TEM)を用いて無作為に選択したCNT100本の直径(外径)を測定して求めることができる。CNTの平均直径(Av)および標準偏差(σ)は、CNTの製造方法や製造条件を変更することにより調整してもよいし、異なる製法で得られたCNTを複数種類組み合わせることにより調整してもよい。
 CNT集合体のG/D比は1以上50以下であることが好ましい。G/D比が1に満たないCNT集合体は、単層CNTの結晶性が低く、アモルファスカーボンなどの汚れが多い上、多層CNTの含有量が多いことが考えられる。反対にG/D比が50を超えるCNT集合体は直線性が高く、CNTが隙間の少ないバンドルを形成しやすく、比表面積が減少する可能性がある。G/D比とはCNTの品質を評価するのに一般的に用いられている指標である。ラマン分光装置によって測定されるCNTのラマンスペクトルには、Gバンド(1600cm-1付近)とDバンド(1350cm-1付近)と呼ばれる振動モードが観測される。GバンドはCNTの円筒面であるグラファイトの六方格子構造由来の振動モードであり、Dバンドは非晶箇所に由来する振動モードである。よって、GバンドとDバンドのピーク強度比(G/D比)が高いものほど、結晶性(直線性)の高いCNTと評価できる。
 高い比表面積を得るため、CNT集合体の純度は極力高いことが望ましい。ここでいう純度とは、炭素純度であり、CNT集合体の質量の何パーセントが炭素で構成されているかを示す値である。高い比表面積を得る上での純度に上限はないが、製造上、99.9999質量%以上のCNT集合体を得ることは困難である。純度が95質量%に満たないと、開口処理されてない状態で、1000m/gを超える比表面積を得ることが困難となる。さらに、金属不純物を含んで炭素純度が95質量%に満たないと、開口処理において金属不純物が酸素と反応などしてCNTの開口を妨げるため、結果として、比表面積の拡大が困難となる。これらの点から、単層CNTの純度は95質量%以上であることが好ましい。
 上述した(1)~(3)の条件の少なくとも何れかを満たす所定のCNT集合体は、精製処理を行わなくても、その純度は、通常、98質量%以上、好ましくは99.9質量%以上とすることができる。当該CNT集合体には不純物が殆ど混入しておらず、CNT本来の諸特性を充分に発揮することができる。CNT集合体の炭素純度は、蛍光X線を用いた元素分析や熱重量測定分析(TGA)等から得ることができる。
<<CNT集合体の製造方法>>
 CNT集合体を製造する方法は特に限定されず、所望の性状に応じて製造条件を調整することができる。例えば、上述した(1)~(3)の条件の少なくとも何れかを満たすCNT集合体を製造するに際しては、CNT集合体の成長時の条件が、下記の(a)~(c)の全てを満たすことが必要である。
 (a)CNT集合体の成長速度が5μm/分以上である。
 (b)CNT集合体の成長雰囲気における触媒賦活物質濃度が4体積%以上である。
 (c)CNT集合体の成長時に、CNT集合体を構成するCNTの成長方向に障害物が存在する。
 そして、上述した(a)~(c)の全てを満たす製造方法により、上述した(1)~(3)の条件の少なくとも何れかを満たすCNT集合体を効率的に製造することができる。さらに、かかる製造方法では、CNT集合体の成長時に上記条件(a)~(c)が満たされる限りにおいて特に限定されることなく、流動層法、移動層法および固定層法等の既知の方途に従うCNT合成工程を採用することができる。ここで、流動層法とは、CNTを合成するための触媒を担持した粒状の担体(以下、粒状触媒担持体とも称する)を流動化させながら、CNTを合成する合成方法を意味する。また、移動層法および固定層法とは、触媒を担持した担体(粒子状担体或いは板状担体)を流動させることなく、CNTを合成する合成方法を意味する。
 一例において、上述した(a)~(c)の全てを満たす製造方法は、触媒担持体を形成する触媒担持体形成工程と、かかる触媒担持体形成工程にて得られた触媒担持体を用いてCNTを合成するCNT合成工程と、かかるCNT合成工程で合成されたCNTを回収する回収工程と、を含む。そして、触媒担持体形成工程は、湿式または乾式の既知の触媒担持法に従って、実施することができる。また、回収工程は分級装置などの既知の分離回収装置を用いて実施することができる。
[CNT合成工程]
 CNT合成工程では、CNTの成長時に、上記の条件(a)~(c)を全て満たすようにする。具体的には、CNT成長雰囲気における、炭素源となる原料ガスの濃度および温度等を適宜調節すること「カーボンナノチューブ集合体の成長速度が5μm/分以上である。」という条件(a)を満たすことができる。ここで、炭素源となる原料ガスとしては、特に限定されることなく、メタン、エタン、エチレン、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、プロピレンおよびアセチレンなどの炭化水素のガス;メタノール、エタノールなどの低級アルコールのガス;ならびに、これらの混合物も使用可能である。また、この原料ガスは、不活性ガスで希釈されていてもよい。また、得られるCNT集合体の分散性を一層高めつつ炭素膜の電磁波シールド性能を更に向上させる観点から、CNT集合体の成長速度は、10μm/分以上であることが好ましい。なお、温度は、例えば、400℃以上1100℃以下の範囲で調節することができる。
 CNT成長雰囲気下にて、炭素源となる原料ガスはエチレンを含むことが好ましい。エチレンを所定の温度範囲(700℃以上900℃以下)の範囲で加熱することで、エチレンの分解反応が促進され、その分解ガスが触媒と接触した際に、CNTの高速成長が可能になる。しかしながら、熱分解時間が長すぎると、エチレンの分解反応が進みすぎ、触媒の失活やCNT集合体への炭素不純物付着を引き起こす。本発明のCNT集合体製造においては、エチレン濃度0.1体積%以上40体積%以下の範囲に対して、熱分解時間0.5秒以上10秒以下の範囲が好ましい。0.5秒未満ではエチレンの熱分解が不足し、高比表面積なCNT集合体を高速に成長させることが困難になる。10秒より長いと、エチレンの分解が進み過ぎ、炭素不純物が多く発生し、触媒失活やCNT集合体の品質低下を引き起こしてしまう。熱分解時間は以下の式から計算する。
(熱分解時間)=(加熱流路体積)/{(原料ガス流量)×(273.15+T)/273.15}
 ここで加熱流路体積とは、原料ガスが触媒に接触する前に通過する、所定温度T℃に加熱された流路の体積であり、原料ガス流量は0℃、1atmにおける流量である。
 また、CNT成長時に供給する触媒賦活物質の供給速度を適宜調節することで、「カーボンナノチューブ集合体の成長雰囲気における触媒賦活物質濃度が4体積%以上である。」という条件(b)を満たすことができる。炭素膜の電磁波シールド性能を更に向上させる観点から、CNT集合体の成長雰囲気における触媒賦活物質濃度は、5体積%以上であることが好ましい。触媒賦活物質としては、特に限定されることなく、水、酸素、オゾン、酸性ガス、酸化窒素、一酸化炭素および二酸化炭素などの低炭素数の含酸素化合物;エタノール、メタノールなどのアルコール類;テトラヒドロフランなどのエーテル類;アセトンなどのケトン類;アルデヒド類;エステル類;ならびにこれらの混合物が挙げられる。この中でも、二酸化炭素が好適である。なお、一酸化炭素やアルコール類など、炭素と酸素の両方を含む物質は、原料ガスと触媒賦活物質との両方の機能を有する場合がある。例えば一酸化炭素は、エチレンなどのより反応性の高い原料ガスと組み合わせれば触媒賦活物質として作用し、水などの微量でも大きな触媒賦活作用を示す触媒賦活物質と組み合わせれば原料ガスとして作用する。
 さらにまた、CNT合成工程において流動層法を選択すること或いは、移動層法や固定層法において触媒担持体の配置間隔を調節することにより、「カーボンナノチューブ集合体の合成時に、カーボンナノチューブ集合体を構成するカーボンナノチューブの成長方向に障害物が存在する。」という条件(c)を満たすことができる。
 ここで、前記流動層法にてCNTを合成する際には、CNT合成工程は、例えば、下方からガスを供給して粒子状の触媒担持体を流動させつつ、原料ガスを供給して実施してもよいし、粒子状の触媒担持体をスクリュー回転によって連続的に搬送しながら、原料ガスを供給して実施してもよい。
 触媒担持体は担体と当該担体の表面に担持された触媒とを有し、担体は当該担体表面に触媒を付着、固定、成膜、または形成などして担持するための母体構造を成す部分である。担体の構造としては、当該担体のみでも良く、当該担体の表面上に触媒を良好に担持するための任意の下地層を設けた下地層付き担体でも良い。担体の形状は粒子状であることが好ましく、その粒子径は、体積平均粒子径で1mm以下であることが好ましく、0.7mm以下であることがより好ましく、0.4mm以下であることが更に好ましく、0.05mm以上であることが好ましい。粒子径が上記上限以下であれば、成長するCNTバンドルが細くなり、波状構造を形成するに有利になる。粒子密度は、見かけ密度で3.8g/cm以上であることが好ましく、5.8g/cm以上であることがより好ましく、8g/cm以下であることが好ましい。粒子密度が上記下限以上であれば、成長中のCNTバンドルに加わる力が高まり、波状構造を形成するに有利になる。担体の材質は、AlおよびZrの内の何れか1種以上の元素を含む金属酸化物であることが好ましい。中でも、大きな元素量をもったZrを含むジルコニアビーズが特に好ましい。
 例えば、粒子状の担体を用いる場合において、粒子状の担体の表面に触媒を担持させる方法としては、例えば、略円筒状の回転ドラムを備える回転ドラム式塗工装置を用いる方法を挙げることができる。なお、粒子状の担体の表面に下地層を配置してから触媒を担持させる場合には、触媒溶液を噴霧し乾燥することに先立って、下地層を構成し得る成分を含む溶液を粒子状の担体表面に噴霧し乾燥して担体表面に下地層を配置する。このような方法によれば、触媒層や下地層を比較的簡単で、且つむらなく形成することができる。
 そして、CNT合成工程では、上記条件(a)~(c)を満たすようにして実施される「成長工程」に先立って、触媒担持体に担持された触媒を還元する「フォーメーション工程」を実施するとともに、成長工程を終了させた後に、CNTが成長した触媒担持体を冷却する「冷却工程」を実施することができる。「フォーメーション工程」では、例えば、触媒担持体を含む雰囲気を還元ガス雰囲気として、かかる還元ガス雰囲気または触媒担持体のうち少なくとも一方を加熱して、触媒担持体に担持された触媒を還元および微粒子化する。フォーメーション工程における触媒担持体または還元ガス雰囲気の温度は、好ましくは400℃以上1100℃以下である。また、フォーメーション工程の実施時間は、3分以上120分以下であり得る。なお、還元ガスとしては、例えば、水素ガス、アンモニアガス、水蒸気およびそれらの混合ガスを用いることができる。また、還元ガスは、これらのガスをヘリウムガス、アルゴンガス、窒素ガス等の不活性ガスと混合した混合ガスでもよい。一方、「冷却工程」では、CNTが成長した触媒担持体を不活性ガス環境下において冷却する。ここで、不活性ガスとしては、成長工程で使用し得る不活性ガスと同様の不活性ガスを使用し得る。また、冷却工程では、CNTが成長した触媒担持体の温度は、好ましくは400℃以下、さらに好ましくは200℃以下まで低下させる。
<乾式粉砕処理>
 本発明の炭素膜を得るに際し、必要に応じて、膜化前のCNT集合体に対し乾式粉砕処理を施すことができる。なお、本発明において「乾式粉砕処理」とは、粉砕対象が実質的に溶媒を含有しない状態(例えば、固形分濃度が95%以上の状態)での粉砕処理を意味する。
 乾式粉砕処理に使用し得る粉砕装置としては、微細な構造体からなる集合体に対し、撹拌などにより物理的負荷をかけ得る装置であれば特に限定されない。このような装置としては、回転羽を備えるミキサーを使用することができる。
 また粉砕条件は特に限定されない。例えば、粉砕装置として回転羽を備えるミキサーを用いる場合、回転速度は、500rpm以上5000rpm以下であることが好ましく、粉砕時間は10秒以上20分以下であることが好ましい。
<膜化>
 CNT集合体を膜化することで、本発明の炭素膜を得ることができる。ここで、CNT集合体を膜化する方法は特に限定されないが、CNT集合体を水または有機溶媒などの分散媒に分散させることでCNT分散液を調製し、当該CNT分散液から少なくとも分散媒の一部を除去する方法が好ましく挙げられる。
 CNT分散液の調製方法は、特に限定されないが、CNT分散液は、CNT集合体を、撹拌羽を用いた分散方法、超音波を用いた分散方法、およびせん断力を用いた分散方法などの既知の方法で分散媒中に分散させることにより得ることができる。
 ここで、本発明の炭素膜を得るための各分散方法の好ましい条件は以下のとおりある。
 攪拌羽を用いた分散方法を使用する場合、CNTの分散媒中における分散は、攪拌羽の回転速度を1500rpm以上12500rpm以下、より好ましくは2000rpm以上10000rpm以下として、1分間以上120分間以下、より好ましくは5分間以上100分間以下行うことが好ましい。攪拌羽を用いた分散は、攪拌羽を有する公知の分散装置を用いて行うことができる。
 超音波を用いた分散方法を使用する場合、CNTの分散媒中における分散は、周波数を50kHz以上500kHz以下、1分間以上120分間以下、より好ましくは2分間以上100分間以下行うことが好ましい。超音波を用いた分散は、公知の超音波分散機を用いて行うことができる。
 また、得られる炭素膜の電磁波シールド性能を一層高める観点から、CNT分散液中にて、CNTが適度に分散していることが好ましい。好ましくは、CNT分散液が分散剤を非含有であることが好ましい。言い換えると、CNT分散液が、実質的にCNTおよび分散媒のみからなることが好ましい。なお、本明細書において、「CNT分散液が、実質的にCNTおよび分散媒のみからなる」とは、CNT分散液の構成成分の99.9質量%以上が、CNTとCNTに付随する不可避的不純物、および分散媒および分散媒に付随する不可避的不純物からなることを意味する。
 そして、CNT分散液から分散媒を除去する方法としては、濾過、乾燥等の既知の方法が挙げられる。
 濾過の方法としては、特に限定されることなく、自然濾過、減圧濾過(吸引濾過)、加圧濾過、遠心濾過などの既知の濾過方法を用いることができる。
 乾燥の方法としては、熱風乾燥法、真空乾燥法、熱ロール乾燥法、赤外線照射法等の既知の乾燥方法を用いることができる。乾燥温度は、特に限定されないが、通常、室温~200℃、乾燥時間は、特に限定されないが、通常、1時間以上48時間以内である。また、乾燥は、特に限定されないが、既知の基材上で行うことができる。
 これらの中でも、分散媒の除去には少なくとも乾燥を採用することが好ましい。
 なお、上記濾過と乾燥を組み合わせて用いることもできる。例えば、CNT分散液を濾過して得られた膜状の濾物(一次シート)を、更に乾燥することにより、本発明の炭素膜を得ることができる。
 以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 なお、実施例および比較例において、各種測定および評価は、以下のとおりに実施した。
<超小角X線散乱測定>
 後述のように作製した炭素膜を1.5cm角に切り出して試験片を得た。そして、得られた試験片について下記条件で超小角X線散乱測定を行い、散乱像を得た。
[測定条件]
 X線源:CuKα
 管電圧:45kV
 管電流:200mA
 スキャンタイプ:2θ
 スキャンモード:0D(連続) 
 スキャン範囲:-0.01~0.5 
 スキャンステップ:0.0006 
 スキャンスピード:0.034°/min
 光学系:プライマリビーム:標準、
 入射光学ユニット:Ge(220) 
 受光光学ユニット1:U-SAXS 
 CBOType:Type2
 選択スリット:PB
 ISS:ソラースリットopen
 q(波数)範囲:0.0004(1/Å)~0.3(1/Å)
 検出器:HyPix3000 
<超小角X線散乱測定により得られたデータのデータ処理>
 上記に従って超小角X線散乱測定して得た散乱像について、散乱プロファイルを得た。解析ソフトウェアとしてIgor Pro 8(WaveMetrics社製)を用い、波数範囲を0.0004(1/Å)~0.3(1/Å)として、得られた散乱プロファイルを上記一般式(I)で表されるBeaucageの式にフィッティングし、各階層iにおけるフラクタル次元P、および、CNTの持続長Rg,i(Å)を求めた。なお、階層数はN=3とした。ここで、フィッティングは、実測の散乱プロファイルと計算値の誤差を示す
Figure JPOXMLDOC01-appb-M000002
の値が5以下となるように行った。当該値が5以下の場合、良好にフィッティングできたと言える。フラクタル次元P、CNTの持続長Rg,2の値を表1に示す。
<フーリエ変換赤外分光分析(FT-IR)>
 CNT集合体10mgに対して、界面活性剤としてのドデシルベンゼンスルホン酸ナトリウムを1質量%の濃度で含有する水100gを加え、超音波バスを用いて45Hzで1分間撹拌して、各CNT集合体の分散液100mlを得た。
 後述する手順にしたがって調製した各分散液について、同組成の溶媒を用いて2倍希釈し、それぞれシリコン基板上に滴下し乾燥させた後、フーリエ変換赤外分光光度計を用いて、プラズモン遠赤外(FIR)共鳴ピークにより、プラズモン実効長を測定した。プラズモン実効長については、表1に示す。また、図6に、実施例1で準備したCNT集合体のFIRスペクトルのFIR共鳴チャートを示す。図6に示すように、300cm-1超に光学濃度のピークが認められた。一方、比較例1~3で使用したCNT集合体では、300cm-1超に光学濃度のピークが認められなかった。なお、プラズモンピークトップ位置は作図ソフトウェアを用いて多項式フィットによる近似曲線から取得した。
<CNTバンドル長さ測定>
 FT-IR測定にて作製の各分散液について、フロー式粒子画像解析装置(ジャスコインタナショナル社製、循環型画像解析粒度分布計「CF-3000」)を用いて、分散液中に存在するCNT分散体のISO円径平均値を測定し、得られた値をCNTバンドル長さとした。解析条件は以下とした。
[解析条件]
 ・注入量:50ml(サンプリング容量1.2%)
 ・フローセルスペーサー:1000μm
 ・フロントレンズ倍率:2倍
 ・テレセントリックレンズ倍率0.75倍
 ・ピクセル当たりの長さ:2.3μm/pixel
 各分散液について、循環させながら同条件で4回測定を行い、それらの算術平均値を求めた。
<細孔分布曲線の作成(CNT集合体)>
 CNT集合体10mg以上について、吸着等温線をBELSORP-miniII(マイクロトラックベル製)を用いて77Kで液体窒素を用いて計測した(吸着平衡時間は500秒とした)。前処理として、100℃で12時間、真空脱気を行った。この吸着等温線の吸着量からBJH法により各サンプルの細孔分布曲線を得た。その結果を図7に示す。図7に示すように、実施例1~4のCNT集合体は細孔径100nm以上の領域にLog微分細孔容積の最大のピークが確認された。
 なお、CNT集合体の細孔分布曲線の作成に際し、細孔径の測定範囲は1nm以上400nm未満とした。
(電子顕微鏡画像の二次元空間周波数スペクトル解析)
 後述する手順に従って準備したCNT集合体について、0.01mgをカーボンテープ上に乗せブロワーで吹いて余分なCNTを除去して試料を作製し、電解放射走査型電子顕微鏡にて1万倍で観察し、任意に抽出した1cm四方の視野で写真を10枚撮影した。撮影した10枚の電子顕微鏡画像について、それぞれ、高速フーリエ変換処理を行い、二次元空間周波数スペクトルを得た。得られた二次元空間周波数スペクトルのそれぞれについて、2値化処理を行い、最も外側(高周波数側)に出るピーク位置を求めて、平均値を得た。なお、2値化処理に際しては、高速フーリエ変換処理を経て得られた数値について、0.75超の値を1とし、その他の値をゼロとした。図8Aは、準備したCNT集合体について取得した10枚の画像のうちの一枚であり、図8Bは、かかる画像について取得した二次元空間周波数スペクトルである。図8Bにおいて、より中心に近い成分が低周波成分を意味し、中心からより外側に位置する成分が、より高周波の成分に対応する。図中、矢印にて、1~100μm-1の領域に検出された明瞭なピークのうち、最も高波数のピーク位置(3μm-1)を示す。
<厚み>
 炭素膜の厚みは、ミツトヨ社製「デジマチック標準外側マイクロメータ」を用いて測定した。
<電磁波シールド性能>
 炭素膜について、IEC-62333-2に準拠したマイクロストリップライン法により、反射係数S11および透過係数S21を測定し、電磁波シールド性能として、伝送減衰率「dB」を算出した。
 そして、測定周波数2.5MHz、4.5MHz、および7.5MHzにおける電磁波シールド性能[dB]について、以下の基準により評価した。ある周波数での伝送減衰率[dB]の値が大きいほど、炭素膜が当該周波数での電磁波シールド性能に優れることを示す。
 A:伝送減衰率が25dB以上である
 B:伝送減衰率が20dB以上25dB未満である
 C:伝送減衰率が20dB未満である
(実施例1)
<CNT集合体の準備>
 実施例1で使用したCNTは、CNT合成工程において流動層法を採用して製造した。用いたCNT製造装置の概略構成を図9に示す。図9に示すCNT製造装置100はヒーター101、反応管102、分散板103、還元ガス/原料ガス導入口104、排気口105、ガス加熱促進部106から構成される。反応管102および分散板103の材質は合成石英を使用した。
<<触媒担持体形成工程>>
 触媒担持体形成工程を以下に説明する。担体としてのジルコニア(二酸化ジルコニウム)ビーズ(ZrO、体積平均粒子径D50:350μm)を、回転ドラム式塗工装置に投入し、ジルコニアビーズを撹拌(20rpm)させながら、アルミニウム含有溶液をスプレーガンによりスプレー噴霧(噴霧量3g/分間、噴霧時間940秒間、スプレー空気圧10MPa)しつつ、圧縮空気(300L/分)を回転ドラム内に供給しながら乾燥させ、アルミニウム含有塗膜をジルコニアビーズ上に形成した。次に、480℃で45分間焼成処理を行い、酸化アルミニウム層が形成された一次触媒粒子を作製した。さらに、その一次触媒粒子を別の回転ドラム式塗工装置に投入し撹拌(20rpm)させながら、鉄触媒溶液をスプレーガンによりスプレー噴霧し(噴霧量2g/分間、噴霧時間480秒間、スプレー空気圧5MPa)しつつ、圧縮空気(300L/分)を回転ドラム内に供給しながら乾燥させ、鉄含有塗膜を一次触媒粒子上に形成した。次に、220℃で20分間焼成処理を行って、酸化鉄層がさらに形成された触媒担持体を作製した。
<<CNT合成工程>>
 このようにして作製した触媒担持体300gをCNT製造装置100の反応管102内に投入し、ガスを流通させることで触媒担持体107を流動化させながら、フォーメーション工程、成長工程、冷却工程の順に処理を行い、CNT集合体を製造した。なお、CNT合成工程に含まれる各工程の条件は以下のように設定した。
[フォーメーション工程]
 ・設定温度:800℃
 ・還元ガス:窒素3sLm、水素22sLm
 ・処理時間:25分
[成長工程]
 ・設定温度:800℃
 ・原料ガス:窒素15sLm、エチレン5sLm、二酸化炭素2sLm、水素3sLm
 ・処理時間:10分
 ・原料ガス熱分解時間:0.65秒
[冷却工程]
 ・冷却温度:室温
 ・パージガス:窒素25sLm
 触媒担持体上に合成されたCNT集合体は強制渦式分級装置(回転数3500rpm、空気風量3.5Nm/分)を用いて分離回収を行った。CNT集合体の回収率は99%であった。
 本実施例によって製造される、CNT集合体の特性は、タップかさ密度:0.01g/cm、CNT平均高さ:200μm、BET比表面積:800m/g、平均外径:4.0nm、炭素純度99%であった。
 上記のようにして得られたCNT集合体1gに水1000gを加え、超高速乳化分散装置(製品名「ラボ・リューション(登録商標)」、シンキー社製)で回転速度:7500rpmで30分間撹拌して、CNT分散液を得た。
 得られたCNT分散液を基材上に塗布した。基材上の塗膜を温度80℃で24時間にわたり真空乾燥し、基材上に炭素膜を形成した。その後、炭素膜を基材から剥離して、厚み150μmの炭素膜(自立膜)を得た。得られた炭素膜について、各種測定およびデータ解析を行い、また、電磁波シールド性能を評価した。結果を表1に示す。
(実施例2)
 3000rpmで10分間撹拌してCNT分散液を得た以外は、実施例1と同様にして、厚み150μmの炭素膜(自立膜)を得た。得られた炭素膜について、各種測定およびデータ解析を行い、また電磁波シールド性能を評価した。結果を表1に示す。
(実施例3)
<CNT集合体の準備>
 実施例3で使用したCNT集合体は、CNT合成工程において、粒子状の触媒担持体をスクリュー回転によって連続的に搬送しながら原料ガスを供給する方法にて作製したものである。
 用いたCNT集合体製造装置200の概略構成を図10に示す。図10に示すCNT集合体製造装置200は、フォーメーションユニット202、成長ユニット204、フォーメーションユニット202から成長ユニット204を通過するまでの間に基材を搬送する搬送ユニット207と、フォーメーションユニット202と成長ユニット204とを相互に空間的に接続する接続部208と、フォーメーションユニット202と成長ユニット204との間でガスが相互に混入することを防止するガス混入防止装置203とを備える。さらに、CNT集合体製造装置200は、フォーメーションユニット202の前段に配置された入口パージ装置201、成長ユニット204の後段に配置された出口パージ装置205、さらには、出口パージ装置205の後段に配置された冷却ユニット206等の構成部を備える。フォーメーションユニット202は、還元ガスを保持するためのフォーメーション炉202a、還元ガスを噴射するための還元ガス噴射装置202b、触媒と還元ガスの少なくとも一方を加熱するための加熱装置202c、炉内のガスを系外へと排出する排気装置202d等により構成されている。ガス混入防止装置203は、排気装置203a、パージガス(シールガス)を噴射するパージガス噴射装置203bを備える。成長ユニット204は、原料ガス環境を保持するための成長炉204a、原料ガスを噴射するための原料ガス噴射装置204b、触媒及び原料ガスのうち少なくとも一方を加熱するための加熱装置204c、炉内のガスを系外へと排出する排気装置204d等を備える。入口パージ装置201が、ホッパー212を介して系内に基材211を導入する構成部である前室213とフォーメーション炉202aとを接続する接続部209に対して取り付けられている。冷却ユニット206は、不活性ガスを保持するための冷却容器206a、及び冷却容器206a内空間を囲むように配置した水冷冷却装置206bを備える。搬送ユニット207は、、基材211をスクリュー回転によって連続的に搬送するユニットである。スクリュー羽根207a、および、かかるスクリュー羽根を回転させて基材搬送能を発揮せしめる状態としうる駆動装置207bにより実装される。加熱装置214は、フォーメーションユニットにおける加温温度よりも低温で系内を加熱可能に構成され、駆動装置207b付近を加熱する。
<触媒層形成工程>
 基材としてのジルコニア(二酸化ジルコニウム)ビーズ(ZrO、体積平均粒子径D50:650μm)を、回転ドラム式塗工装置に投入し、ジルコニアビーズを攪拌(20rpm)させながら、アルミニウム含有溶液をスプレーガンによりスプレー噴霧(噴霧量3g/分間、噴霧時間940秒間、スプレー空気圧10MPa)しつつ、圧縮空気(300L/分)を回転ドラム内に供給しながら乾燥させ、アルミニウム含有塗膜をジルコニアビーズ上に形成した。次に、480℃で45分間焼成処理を行い、酸化アルミニウム層が形成された一次触媒粒子を作製した。さらに、その一次触媒粒子を別の回転ドラム式塗工装置に投入し攪拌(20rpm)させながら、鉄触媒溶液をスプレーガンによりスプレー噴霧し(噴霧量2g/分間、噴霧時間480秒間、スプレー空気圧5MPa)しつつ、圧縮空気(300L/分)を回転ドラム内に供給しながら乾燥させ、鉄含有塗膜を一次触媒粒子上に形成した。次に、220℃で20分間焼成処理を行って、酸化鉄層がさらに形成された基材を作製した。
<<CNT合成工程>>
 このようにして作製した表面に触媒を有する基材を製造装置のフィーダーホッパーに投入し、スクリューコンベアで搬送しながら、フォーメーション工程、成長工程、冷却工程の順に処理を行い、CNT集合体を製造した。
<フォーメーション工程~冷却工程>
 CNT集合体製造装置の入口パージ装置、フォーメーションユニット、ガス混入防止装置、成長ユニット、出口パージ装置、冷却ユニットの各条件は以下のように設定した。
フィーダーホッパー
 ・フィード速度:1.25kg/h
 ・排気量:10sLm(隙間から自然排気)
入口パージ装置
 ・パージガス: 窒素40sLm
フォーメーションユニット
 ・炉内温度:800℃
 ・還元ガス:窒素6sLm、水素54sLm
 ・排気量:60sLm
 ・処理時間:20分
ガス混入防止装置
 ・パージガス:20sLm
 ・排気装置の排気量:62sLm
成長ユニット
 ・炉内温度:830℃
 ・原料ガス:窒素15sLm、エチレン5sLm、二酸化炭素1sLm、水素3sLm
 ・排気量:47sLm
 ・処理時間:10分
出口パージ装置
 ・パージガス:窒素45sLm
冷却ユニット
 ・冷却温度:室温
 ・排気量:10sLm(隙間から自然排気)
以上の条件で連続製造を行った。
<分離回収工程>
 基材上に合成されたCNT集合体は強制渦式分級装置(回転数2300rpm、空気風量3.5Nm/分)を用いて分離回収を行った。CNT集合体の回収率は96%であった。
 本実施例によって製造されたCNT集合体の特性は、典型値として、タップかさ密度:0.02g/cm、CNT平均長さ:150μm、BET-比表面積:900m/g、平均外径:4.0nm、炭素純度99%であった。。
 上記のようにして得られたCNT集合体1gに水1000gを加え、超高速乳化分散装置(製品名「ラボ・リューション(登録商標)」、シンキー社製)で回転速度:3000rpmで10分間撹拌して、CNT分散液を得た。
 得られたCNT分散液を基材上に塗布した。基材上の塗膜を温度80℃で24時間にわたり真空乾燥し、基材上に炭素膜を形成した。その後、炭素膜を基材から剥離して、厚み150μmの炭素膜(自立膜)を得た。得られた炭素膜について、各種測定およびデータ解析を行い、また電磁波シールド性能を評価した。結果を表1に示す。
(実施例4)
 CNT分散液の調製にあたり、超音波分散機(ブランソニック社製、卓上型超音波洗浄器)を用いて、周波数40kHzで10分間分散処理した。かかる点以外は実施例3と同様にして厚み100μmの炭素膜(自立膜)を得た。得られた炭素膜について、各種測定およびデータ解析を行い、また電磁波シールド性能を評価した。結果を表1に示す。
(比較例1)
 CNT集合体として、SGCNT(製品名「ZEONANO SG101」、日本ゼオン社製)を使用した以外は、実施例1と同様にして厚み100μmの炭素膜(自立膜)を得た。得られた炭素膜について各種測定およびデータ解析を行い、また電磁波シールド性能を評価した。結果を表1に示す。本SGCNTは前記条件(1)~(3)を満たさない。
(比較例2)
 ジェットミル(吉田機械興業(株)社製、ナノヴェイタ)を用いて、条件100MPaで15分間分散処理してCNT分散液を得た以外は、比較例1と同様にして厚み150μmの炭素膜(自立膜)を得た。得られた炭素膜について、各種測定およびデータ解析を行い、また電磁波シールド性能を評価した。結果を表1に示す。
(比較例3)
 CNT集合体として、(製品名「K-nanos 100T」、KNANO GRAPHENE COMPANY社製)を使用した以外は、実施例1と同様にして厚み150μmの炭素膜(自立膜)を得た。得られた炭素膜について、各種測定およびデータ解析を行い、また電磁波シールド性能を評価した。結果を表1に示す。K-nanos 100Tは前記条件(1)~(3)を満たさない。
Figure JPOXMLDOC01-appb-T000003
 表1より、炭素膜の表面に対して超小角X線散乱法測定を行って得られる散乱プロファイルをBeaucageの式にフィッティングしたとき、0.001(1/Å)以上0.01(1/Å)以下の波数範囲におけるフラクタル次元が2以上3以下である実施例1~3の炭素膜は、いずれの測定周波数においても伝送減衰率が25dB以上であり、電磁波シールド性能に優れることがわかる。これに対して、炭素膜の表面に対して超小角X線散乱法測定を行って得られる散乱プロファイルをBeaucageの式にフィッティングしたとき、0.001(1/Å)以上0.01(1/Å)以下の波数範囲におけるフラクタル次元が2以上3以下ではない比較例1~3の炭素膜は、少なくともいずれかの測定周波数において伝送減衰率が20dB未満であり、電磁波シールド性能に劣ることがわかる。
 本発明によれば、電磁波シールド性能に優れる炭素膜を提供することができる。
100 CNT製造装置
101 ヒーター
102 反応管
103 分散板
104 還元ガス/原料ガス導入口
105 排気口
106 ガス加熱促進部
107 触媒担持体
200 CNT集合体製造装置
201 入口パージ装置
202 フォーメーションユニット
202a フォーメーション炉
202b 還元ガス噴射装置
202c 加熱装置
202d 排気装置
203 ガス混入防止装置
203a 排気装置
203b パージガス噴射装置
204 成長ユニット
204a 成長炉
204b 原料ガス噴射装置
204c 加熱装置
204d 排気装置
205 出口パージ装置
206 冷却ユニット
206a 冷却容器
206b 水冷冷却装置
207 搬送ユニット
207a スクリュー羽根
207b 駆動装置
208~210 接続部
211 基材
212 ホッパー
214 加熱装置
 

Claims (5)

  1.  カーボンナノチューブ集合体からなる炭素膜であって、
     前記炭素膜の少なくとも一方の表面に対して超小角X線散乱測定を行って得られる散乱プロファイルをBeaucageの式にフィッティングしたとき、0.001(1/Å)以上0.01(1/Å)以下の波数範囲におけるフラクタル次元が2以上3以下である、炭素膜。
  2.  前記炭素膜の少なくとも一方の表面に対して超小角X線散乱測定を行って得られる散乱プロファイルを前記Beaucageの式にフィッティングしたとき、0.01(1/Å)以上0.1(1/Å)以下の波数範囲におけるカーボンナノチューブの持続長が250Å以下である、請求項1に記載の炭素膜。
  3.  自立膜である、請求項1または2に記載の炭素膜。
  4.  厚みが5μm以上200μm以下である、請求項1~3のいずれか一項に記載の炭素膜。
  5.  1GHz以上10GHz以下の範囲内の少なくとも1つの周波数における伝送減衰率が20dB以上である、請求項1~4のいずれか一項に記載の炭素膜。
PCT/JP2022/003691 2021-02-26 2022-01-31 炭素膜 WO2022181247A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023502221A JPWO2022181247A1 (ja) 2021-02-26 2022-01-31

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021031205 2021-02-26
JP2021-031205 2021-02-26

Publications (1)

Publication Number Publication Date
WO2022181247A1 true WO2022181247A1 (ja) 2022-09-01

Family

ID=83048110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003691 WO2022181247A1 (ja) 2021-02-26 2022-01-31 炭素膜

Country Status (2)

Country Link
JP (1) JPWO2022181247A1 (ja)
WO (1) WO2022181247A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016108175A (ja) * 2014-12-04 2016-06-20 日立化成株式会社 カーボンナノチューブの製造方法
WO2018066574A1 (ja) * 2016-10-04 2018-04-12 日本ゼオン株式会社 電磁波シールド構造体およびその製造方法
JP2018145027A (ja) * 2017-03-02 2018-09-20 国立研究開発法人産業技術総合研究所 カーボンナノチューブ集合体およびカーボンナノチューブ膜
WO2020158692A1 (ja) * 2019-01-28 2020-08-06 日本ゼオン株式会社 電磁波吸収シート
WO2021172078A1 (ja) * 2020-02-28 2021-09-02 日本ゼオン株式会社 カーボンナノチューブ集合体及びその製造方法
WO2021193667A1 (ja) * 2020-03-26 2021-09-30 日本ゼオン株式会社 高圧水素機器用ガスシール部材および高圧水素機器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016108175A (ja) * 2014-12-04 2016-06-20 日立化成株式会社 カーボンナノチューブの製造方法
WO2018066574A1 (ja) * 2016-10-04 2018-04-12 日本ゼオン株式会社 電磁波シールド構造体およびその製造方法
JP2018145027A (ja) * 2017-03-02 2018-09-20 国立研究開発法人産業技術総合研究所 カーボンナノチューブ集合体およびカーボンナノチューブ膜
WO2020158692A1 (ja) * 2019-01-28 2020-08-06 日本ゼオン株式会社 電磁波吸収シート
WO2021172078A1 (ja) * 2020-02-28 2021-09-02 日本ゼオン株式会社 カーボンナノチューブ集合体及びその製造方法
WO2021193667A1 (ja) * 2020-03-26 2021-09-30 日本ゼオン株式会社 高圧水素機器用ガスシール部材および高圧水素機器

Also Published As

Publication number Publication date
JPWO2022181247A1 (ja) 2022-09-01

Similar Documents

Publication Publication Date Title
Rajabi et al. Room temperature synthesis of boehmite and crystallization of nanoparticles: effect of concentration and ultrasound
WO2022114235A1 (ja) 炭素膜
WO2010101205A1 (ja) カーボンナノチューブ含有組成物、カーボンナノチューブ製造用触媒体およびカーボンナノチューブ水性分散液
WO2017022229A1 (ja) 複合樹脂材料、スラリー、複合樹脂材料成形体、及びスラリーの製造方法
JP5194455B2 (ja) 気相成長炭素繊維製造用触媒及び気相成長炭素繊維
WO2021172141A1 (ja) 炭素膜
US20190352186A1 (en) Process for producing integral graphene films from functionalized graphene sheets
WO2022181247A1 (ja) 炭素膜
WO2022209831A1 (ja) 炭素膜
Guo et al. A Simple method to prepare multi-walled carbon nanotube/ZnO nanoparticle composites
WO2022114237A1 (ja) 炭素膜
WO2021172078A1 (ja) カーボンナノチューブ集合体及びその製造方法
Zhao et al. Synthesis, Raman scattering, and infrared spectra of large-scale GaN nanorods
WO2022114236A1 (ja) 炭素膜
JP5110059B2 (ja) 微細な炭素繊維および微細な炭素短繊維
Ohashi et al. Growth of vertically aligned single-walled carbon nanotubes with metallic chirality through faceted FePt-Au catalysts
Schäffel et al. Carbon nanotubes grown from individual gas phase prepared iron catalyst particles
Geng et al. Temperature Threshold and Water role in cVD growth of single-Walled carbon nanotubes
Qiu et al. Well-aligned ZnO nanocolumns grown by reactive electron beam evaporation
Kuthirummal et al. Synthesis and characterization of Ar-annealed zinc oxide nanostructures
WO2023162937A1 (ja) カーボンナノチューブ分散液、積層体、カーボンナノチューブ分散液の製造方法、および炭素膜の製造方法
Yamada et al. Vertically-aligned carbon nanotube growth using closely packed iron oxide nanoparticles
JP2023124728A (ja) エラストマー組成物、架橋物および成形体
WO2023153182A1 (ja) 酸化カーボンナノチューブおよびその製造方法、ならびに、酸化カーボンナノチューブ分散液
Ge et al. Study on the controllable scale-up growth of vertically-aligned carbon nanotube arrays

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22759288

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023502221

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22759288

Country of ref document: EP

Kind code of ref document: A1