WO2022181075A1 - Polymer compound and light-emitting element using same - Google Patents

Polymer compound and light-emitting element using same Download PDF

Info

Publication number
WO2022181075A1
WO2022181075A1 PCT/JP2022/000483 JP2022000483W WO2022181075A1 WO 2022181075 A1 WO2022181075 A1 WO 2022181075A1 JP 2022000483 W JP2022000483 W JP 2022000483W WO 2022181075 A1 WO2022181075 A1 WO 2022181075A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
groups
structural unit
substituent
Prior art date
Application number
PCT/JP2022/000483
Other languages
French (fr)
Japanese (ja)
Inventor
元章 臼井
智裕 道堯
敦資 麻野
慎也 田中
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2022181075A1 publication Critical patent/WO2022181075A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/10Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aromatic carbon atoms, e.g. polyphenylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region

Definitions

  • the present invention relates to a polymer compound and a light emitting device using the same.
  • Patent Document 1 describes a polymer compound containing a structural unit represented by the following formula.
  • an object of the present invention is to provide a polymer compound useful for manufacturing a light-emitting device having excellent luminance lifetime.
  • the present invention provides the following [1] to [15].
  • Polymer compounds including [In the formula, a and b each independently represents an integer of 0 to 3;
  • R 1 and R 2 each independently represent an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group or a halogen atom;
  • the group may have a substituent.
  • R 1 and R 2 When multiple R 1 and R 2 are present, they may be the same or different.
  • R 0 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group or a halogen atom, and these groups are substituents may have A plurality of R 0 may be the same or different. However, at least one of R 0 represents a group represented by formula (D—C). ] [In the formula, mDA1 represents an integer of 2 or more and 10 or less. Ar DA1 represents an optionally substituted arylene group. A plurality of Ar DA1 may be the same or different. TDA represents an aryl group optionally having a substituent.
  • n 1 or 2; c and d each independently represent an integer of 0 to 4; e represents an integer of 0 to 5; When there are multiple c, d and e, they may be the same or different.
  • RA represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group or a halogen atom, and these groups are substituents may have R 3 , R 4 and R 5 each independently represent an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group or a halogen atom; , these groups may have a substituent.
  • R 3 , R 4 and R 5 When multiple R 3 , R 4 and R 5 are present, they may be the same or different.
  • [6] The polymer compound according to [5], wherein n is 2.
  • [8] The polymer compound according to any one of [1] to [7], wherein the second structural unit comprises a structural unit represented by formula (Y).
  • Ar Y represents an arylene group, a divalent heterocyclic group, or a divalent group in which at least one arylene group and at least one divalent heterocyclic group are directly bonded, The group may have a substituent.
  • the structural unit represented by the formula (Y) is different from the structural unit represented by the formula (0).
  • the structural unit represented by the formula (Y) is a structural unit represented by the formula (Y-1), a structural unit represented by the formula (Y-2), and a structure represented by the formula (Y-3).
  • R Y1 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent .
  • a plurality of R Y1 may be the same or different, and adjacent R Y1 may be bonded to each other to form a ring together with the carbon atoms to which they are bonded.
  • RY1 has the same meaning as above.
  • RY2 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent.
  • a plurality of RY2 may be the same or different, and the RY2 may be bonded to each other to form a ring together with the carbon atoms to which they are bonded.
  • [In the formula, RY1 and XY1 have the same meanings as described above. ]
  • [In the formula, RY1 has the same meaning as above.
  • RY3 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent.
  • RY1 has the same meaning as above.
  • RY4 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent.
  • a 1 and a 2 each independently represent an integer of 0 or more.
  • Ar 1 X1 and Ar 2 X3 each independently represent an arylene group or a divalent heterocyclic group, and these groups may have a substituent.
  • Ar X2 and Ar X4 each independently represent an arylene group, a divalent heterocyclic group, or a divalent group in which at least one arylene group and at least one divalent heterocyclic group are directly bonded; and these groups may have a substituent.
  • Ar X2 and Ar X4 When multiple Ar X2 and Ar X4 are present, they may be the same or different.
  • R X1 , R X2 and R X3 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. When multiple R X2 and R X3 are present, they may be the same or different.
  • the cross-linking group is a cross-linking group selected from X group of cross-linking groups.
  • R XL represents a methylene group, an oxygen atom or a sulfur atom
  • n XL represents an integer of 0 to 5.
  • R XL represents a methylene group, an oxygen atom or a sulfur atom
  • n XL represents an integer of 0 to 5.
  • R XL represents a methylene group, an oxygen atom or a sulfur atom
  • n XL represents an integer of 0 to 5.
  • R XL represents a methylene group, an oxygen atom or a sulfur atom
  • *1 represents the binding position.
  • These bridging groups may have substituents, and when there are multiple substituents, they may be the same or different, and are bonded to each other to form a ring together with the atoms to which they are bonded.
  • nA represents an integer of 0 to 5, n represents 1 or 2;
  • Ar 3 represents an aromatic hydrocarbon group or a heterocyclic group, and these groups may have a substituent.
  • L A represents an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, a group represented by -NR'-, an oxygen atom or a sulfur atom, and these groups have a substituent; good too.
  • R' represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent.
  • L A When multiple L A are present, they may be the same or different.
  • X represents a cross-linking group selected from X group of cross-linking groups. When there are multiple X's, they may be the same or different.
  • mA represents an integer of 0 to 5
  • m represents an integer of 1 to 4
  • c represents an integer of 0 or 1.
  • multiple mA When multiple mA are present, they may be the same or different.
  • Ar 5 represents an aromatic hydrocarbon group, a heterocyclic group, or a group in which at least one aromatic hydrocarbon ring and at least one heterocyclic ring are directly bonded, and these groups have a substituent may be
  • Ar 4 and Ar 6 each independently represent an arylene group or a divalent heterocyclic group, and these groups may have a substituent.
  • each of Ar 4 , Ar 5 and Ar 6 is bonded directly or through an oxygen atom or a sulfur atom to a group other than the group bonded to the nitrogen atom to which the group is bonded to form a ring; may be K A represents an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, a group represented by -NR'-, an oxygen atom or a sulfur atom, and these groups have a substituent; good too.
  • R' represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent.
  • K A represents an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, a group represented by -NR'-, an oxygen atom or a sulfur atom, and these groups have a substituent; good too.
  • R' represents
  • X' represents a bridging group selected from the bridging group X group, a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. However, at least one X' is a cross-linking group selected from the X group of cross-linking groups.
  • [14] selected from the group consisting of the polymer compound according to any one of [1] to [13], a hole transport material, a hole injection material, an electron transport material, an electron injection material, a light emitting material, an antioxidant and a solvent and at least one.
  • a polymer compound useful for manufacturing a light-emitting device with excellent luminance life it is possible to provide a polymer compound useful for manufacturing a light-emitting device with excellent luminance life. Moreover, according to the present invention, a composition and a light-emitting device containing the polymer compound can be provided.
  • Room temperature means 25°C.
  • Me is a methyl group
  • Et is an ethyl group
  • Bu is a butyl group
  • i-Pr is an isopropyl group
  • t-Bu is a tert-butyl group.
  • a hydrogen atom may be a deuterium atom or a protium atom.
  • solid lines representing bonds with the central metal mean covalent bonds or coordinate bonds.
  • a "low-molecular-weight compound” means a compound having no molecular weight distribution and a molecular weight of 1 ⁇ 10 4 or less.
  • a “polymer compound” means a polymer having a molecular weight distribution and a polystyrene-equivalent number average molecular weight of 1 ⁇ 10 3 or more (for example, 1 ⁇ 10 3 to 1 ⁇ 10 8 ).
  • a “structural unit” means a unit that exists at least one in a polymer compound. Two or more structural units contained in a polymer compound are generally called “repeating units".
  • the polymer compound may be a block copolymer, a random copolymer, an alternating copolymer, a graft copolymer, or other forms.
  • the terminal group of the polymer compound is preferably a stable group, because if the polymerization active group remains as it is, the light-emitting properties may deteriorate when the polymer compound is used for the production of a light-emitting device.
  • the terminal group of the polymer compound is preferably a group conjugated to the main chain, for example, an aryl group or a monovalent heterocyclic group that binds to the main chain of the polymer compound via a carbon-carbon bond. is mentioned.
  • the "alkyl group” may be either linear or branched.
  • the number of carbon atoms in the linear alkyl group is generally 1-50, preferably 1-30, more preferably 1-20, not including the number of carbon atoms in the substituents.
  • the number of carbon atoms in the branched alkyl group is generally 3-50, preferably 3-30, more preferably 4-20, not including the number of carbon atoms in the substituent.
  • the alkyl group may have a substituent.
  • alkyl groups include methyl group, ethyl group, propyl group, isopropyl group, butyl group, 2-butyl group, isobutyl group, tert-butyl group, pentyl group, isoamyl group, 2-ethylbutyl group, hexyl group and heptyl. octyl, 2-ethylhexyl, 3-propylheptyl, decyl, 3,7-dimethyloctyl, 2-ethyloctyl, 2-hexyldecyl and dodecyl groups.
  • alkyl groups are groups in which some or all of the hydrogen atoms in these groups are substituted with substituents (e.g., cycloalkyl groups, alkoxy groups, cycloalkoxy groups, aryl groups, fluorine atoms, etc.) (e.g., trifluoromethyl group, pentafluoroethyl group, perfluorobutyl group, perfluorohexyl group, perfluorooctyl group, 3-phenylpropyl group, 3-(4-methylphenyl)propyl group, 3-(3,5-di -hexylphenyl)propyl group, 6-ethyloxyhexyl group).
  • substituents e.g., cycloalkyl groups, alkoxy groups, cycloalkoxy groups, aryl groups, fluorine atoms, etc.
  • substituents e.g., cycloalkyl groups, alkoxy groups, cyclo
  • the number of carbon atoms in the "cycloalkyl group” is usually 3 to 50, preferably 3 to 30, more preferably 4 to 20, not including the number of carbon atoms in substituents.
  • a cycloalkyl group may have a substituent.
  • Cycloalkyl groups include, for example, cyclohexyl groups and groups in which some or all of the hydrogen atoms in the groups are substituted with substituents.
  • alkenyl group may be either linear or branched.
  • the straight-chain alkenyl group usually has 2 to 30 carbon atoms, preferably 3 to 20 carbon atoms, not including the carbon atoms of the substituents.
  • the number of carbon atoms in the branched alkenyl group is usually 3-30, preferably 4-20, not including the number of carbon atoms in the substituents.
  • the alkenyl group may have a substituent.
  • alkenyl groups include vinyl group, 1-propenyl group, 2-propenyl group, 2-butenyl group, 3-butenyl group, 3-pentenyl group, 4-pentenyl group, 1-hexenyl group, 5-hexenyl group, 7-octenyl groups and groups in which some or all of the hydrogen atoms in these groups are substituted with substituents.
  • the number of carbon atoms in the "cycloalkenyl group” is usually 3-30, preferably 4-20, not including the number of carbon atoms in the substituents.
  • a cycloalkenyl group may have a substituent.
  • Cycloalkenyl groups include, for example, 5-cyclohexenyl groups and groups in which some or all of the hydrogen atoms in these groups have been substituted with substituents.
  • alkynyl group may be either linear or branched.
  • the straight-chain alkynyl group usually has 2 to 20 carbon atoms, preferably 3 to 20 carbon atoms, not including substituent carbon atoms.
  • the number of carbon atoms in the branched alkynyl group is usually 4-30, preferably 4-20, not including the carbon atoms of the substituents.
  • the alkynyl group may have a substituent.
  • alkynyl groups include ethynyl, 1-propynyl, 2-propynyl, 2-butynyl, 3-butynyl, 3-pentynyl, 4-pentynyl, 1-hexynyl, 5-hexynyl, and groups in which some or all of the hydrogen atoms in these groups have been substituted with substituents.
  • the number of carbon atoms in the "cycloalkynyl group” is usually 4-30, preferably 4-20, not including the carbon atoms of the substituents.
  • a cycloalkynyl group may have a substituent.
  • Cycloalkynyl groups include, for example, 5-cyclohexynyl groups and groups in which some or all of the hydrogen atoms in these groups have been substituted with substituents.
  • alkoxy group may be either linear or branched.
  • the straight-chain alkoxy group usually has 1 to 40 carbon atoms, preferably 4 to 10 carbon atoms, not including the carbon atoms of the substituents.
  • the number of carbon atoms in the branched alkoxy group is usually 3-40, preferably 4-10, not including the number of carbon atoms in the substituents.
  • the alkoxy group may have a substituent.
  • Alkoxy groups include, for example, methoxy, ethoxy, propyloxy, isopropyloxy, butyloxy, isobutyloxy, tert-butyloxy, pentyloxy, hexyloxy, heptyloxy, octyloxy, 2 -Ethylhexyloxy group, nonyloxy group, decyloxy group, 3,7-dimethyloctyloxy group, lauryloxy group, and some or all of the hydrogen atoms in these groups are substituted groups (e.g., cycloalkyl groups, alkoxy groups, cycloalkoxy group, aryl group, fluorine atom, etc.).
  • substituted groups e.g., cycloalkyl groups, alkoxy groups, cycloalkoxy group, aryl group, fluorine atom, etc.
  • the number of carbon atoms in the "cycloalkoxy group” is usually 3-40, preferably 4-10, not including the number of carbon atoms in the substituents.
  • a cycloalkoxy group may have a substituent.
  • Cycloalkoxy groups include, for example, cyclohexyloxy groups and groups in which some or all of the hydrogen atoms in the groups are substituted with substituents.
  • the number of carbon atoms in the "aryloxy group” is usually 6-60, preferably 6-48, not including the number of carbon atoms in the substituents.
  • the aryloxy group may have a substituent.
  • aryloxy groups include phenoxy, 1-naphthyloxy, 2-naphthyloxy, 1-anthracenyloxy, 9-anthracenyloxy, 1-pyrenyloxy groups, and these groups.
  • Examples thereof include groups in which some or all of hydrogen atoms are substituted with substituents (eg, alkyl groups, cycloalkyl groups, alkoxy groups, cycloalkoxy groups, fluorine atoms, etc.).
  • “Aromatic hydrocarbon group” means a group obtained by removing one or more hydrogen atoms directly bonded to carbon atoms constituting a ring from an aromatic hydrocarbon.
  • a group obtained by removing one hydrogen atom directly bonded to a carbon atom constituting a ring from an aromatic hydrocarbon is also referred to as an "aryl group”.
  • a group obtained by removing two hydrogen atoms directly bonded to carbon atoms forming a ring from an aromatic hydrocarbon is also referred to as an "arylene group”.
  • the number of carbon atoms in the aromatic hydrocarbon group is generally 6-60, preferably 6-40, more preferably 6-20, not including the number of carbon atoms in the substituents.
  • aromatic hydrocarbon group includes, for example, monocyclic aromatic hydrocarbons (e.g., benzene), or polycyclic aromatic hydrocarbons (e.g., naphthalene, indene, naphthoquinone, indenone and tetralone; tricyclic aromatic hydrocarbons such as anthracene, phenanthrene, dihydrophenanthrene, fluorene, anthraquinone, phenanthoquinone and fluorenone; benzoanthracene, benzophenanthrene, benzofluorene, pyrene and tetracyclic aromatic hydrocarbons such as fluoranthene; pentacyclic aromatic hydrocarbons such as dibenzoanthracene, dibenzophenanthrene, dibenzofluorene, indenofluorene, perylene and benzofluoranthene; hexacyclic aromatic hydrocarbons such as spirobifluorene aromatic hydrocarbon
  • Aryl groups include, for example, phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group, 9-anthracenyl group, 1-pyrenyl group, 2-pyrenyl group, 4-pyrenyl group, 2-fluorenyl group, 3-fluorenyl group, 4-fluorenyl group, 2-phenylphenyl group, 3-phenylphenyl group, 4-phenylphenyl group, and some or all of the hydrogen atoms in these groups are substituents ( Examples thereof include groups substituted with alkyl groups, cycloalkyl groups, alkoxy groups, cycloalkoxy groups, fluorine atoms, etc.).
  • arylene groups include phenylene, naphthalenediyl, anthracenediyl, phenanthenediyl, dihydrophenanthenediyl, naphthacenediyl, fluorenediyl, pyrenediyl, perylenediyl, chrysenediyl groups, and Groups in which some or all of the hydrogen atoms are substituted with substituents are included.
  • the arylene group includes groups in which multiple of these groups are bonded.
  • Arylene groups are preferably groups represented by formulas (A-1) to (A-20).
  • R and Ra each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group.
  • Plural R and R a may be the same or different, and R a may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • a “heterocyclic group” means a group obtained by removing one or more hydrogen atoms directly bonded to atoms (carbon atoms or heteroatoms) constituting a ring from a heterocyclic compound.
  • an "aromatic heterocyclic group” which is a group obtained by removing one or more hydrogen atoms directly bonded to atoms constituting a ring from an aromatic heterocyclic compound, is preferred.
  • a group obtained by removing p hydrogen atoms (p represents an integer of 1 or more) directly bonded to atoms constituting a ring from a heterocyclic compound is also referred to as a "p-valent heterocyclic group".
  • a group obtained by removing p hydrogen atoms directly bonded to atoms constituting a ring from an aromatic heterocyclic compound is also referred to as a "p-valent aromatic heterocyclic group".
  • aromatic heterocyclic compounds include oxadiazole, thiadiazole, thiazole, oxazole, thiophene, pyrrole, phosphole, furan, pyridine, pyrazine, pyrimidine, triazine, pyridazine, quinoline, isoquinoline, carbazole, dibenzophosphole Compounds in which the heterocycle itself exhibits aromaticity, such as phenoxazine, phenothiazine, dibenzoborol, dibenzosilole, benzopyran, etc., even if the heterocycle itself does not exhibit aromaticity, the heterocyclic ring is condensed with an aromatic ring.
  • heterocyclic groups include, for example, monocyclic heterocyclic compounds such as furan, thiophene, oxadiazole, thiadiazole, pyrrole, diazole, triazole, tetrazole, pyridine, diazabenzene and triazine, or Polycyclic heterocyclic compounds (e.g.
  • Heterocyclic groups include groups in which multiple of these groups are bonded.
  • a heterocyclic group may have a substituent (eg, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a fluorine atom, etc.).
  • the monovalent heterocyclic group includes, for example, thienyl, pyrrolyl, furyl, pyridyl, piperidinyl, quinolinyl, isoquinolinyl, pyrimidinyl, triazinyl, and part of the hydrogen atoms in these groups, or Examples include groups that are entirely substituted with substituents (eg, alkyl groups, cycloalkyl groups, alkoxy groups, cycloalkoxy groups) and the like.
  • substituents eg, alkyl groups, cycloalkyl groups, alkoxy groups, cycloalkoxy groups
  • the number of carbon atoms in the divalent heterocyclic group is usually 2 to 60, preferably 3 to 20, more preferably 4 to 15, not including the number of carbon atoms in the substituents.
  • divalent heterocyclic groups include pyridine, diazabenzene, triazine, azanaphthalene, diazanaphthalene, carbazole, dibenzofuran, dibenzothiophene, dibenzosilole, phenoxazine, phenothiazine, acridine, dihydroacridine, furan, thiophene, azole, A divalent group obtained by removing two hydrogen atoms among hydrogen atoms directly bonded to carbon atoms or heteroatoms constituting a ring from diazole or triazole.
  • Divalent heterocyclic groups include groups in which multiple of these groups are bonded.
  • the divalent heterocyclic group is preferably a group represented by formulas (AA-1) to (AA-34).
  • R and Ra represent the same meanings as described above.
  • Halogen atom means a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • the "amino group” may have a substituent, preferably a substituted amino group (that is, a secondary amino group or a tertiary amino group, more preferably a tertiary amino group).
  • Preferred substituents for the amino group are alkyl groups, cycloalkyl groups, aryl groups and monovalent heterocyclic groups, and these groups may have substituents.
  • the amino group has a plurality of substituents, they may be the same or different, and may be bonded to each other to form a ring together with the nitrogen atom to which each is bonded.
  • Substituted amino groups include, for example, a dialkylamino group, a dicycloalkylamino group, a diarylamino group, and those in which some or all of the hydrogen atoms are substituted (e.g., an alkyl group, a cycloalkyl group, an alkoxy group , a cycloalkoxy group, an aryl group, a fluorine atom, etc.).
  • substituted amino groups include dimethylamino group, diethylamino group, diphenylamino group, bis(methylphenyl)amino group, bis(3,5-di-tert-butylphenyl)amino group, and hydrogen in these groups.
  • Examples thereof include groups in which some or all of the atoms are substituted with substituents (eg, alkyl groups, cycloalkyl groups, alkoxy groups, cycloalkoxy groups, aryl groups, fluorine atoms, etc.).
  • substituents eg, alkyl groups, cycloalkyl groups, alkoxy groups, cycloalkoxy groups, aryl groups, fluorine atoms, etc.
  • a “crosslinking group” is a group capable of forming a new bond by subjecting it to heating, ultraviolet irradiation, near-ultraviolet irradiation, visible light irradiation, infrared irradiation, radical reaction, or the like.
  • the cross-linking group is a cross-linking group selected from Group X of cross-linking groups (that is, cross-linking groups represented by formulas (XL-1) to (XL-19)). (Crosslinking group X group)
  • R XL represents a methylene group, an oxygen atom or a sulfur atom
  • n XL represents an integer of 0 to 5.
  • R XL represents a methylene group, an oxygen atom or a sulfur atom
  • n XL represents an integer of 0 to 5.
  • R XL represents a methylene group, an oxygen atom or a sulfur atom
  • n XL represents an integer of 0 to 5.
  • R XL represents a methylene group, an oxygen atom or a sulfur atom
  • *1 represents the binding position.
  • These bridging groups may have substituents, and when there are multiple substituents, they may be the same or different, and are bonded to each other to form a ring together with the atoms to which they are bonded. may ]
  • the "substituent” includes, for example, a halogen atom, a cyano group, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, an alkoxy group, a cycloalkoxy group, an aryloxy group, an amino group, a substituted amino group, Alkenyl groups, cycloalkenyl groups, alkynyl groups, cycloalkynyl groups and the like can be mentioned.
  • a substituent may be a bridging group.
  • the polymer compound of the present embodiment includes a first structural unit represented by formula (0) and a second structural unit other than the first structural unit.
  • the second structural unit is selected from the group consisting of a structural unit represented by formula (Y), a structural unit represented by formula (X), and a structural unit having a cross-linking group. It preferably contains at least one selected structural unit.
  • R 0 is preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably an alkyl group or a cycloalkyl group, since the light-emitting device of the present embodiment has a superior luminance lifetime. or an aryl group, more preferably an aryl group, and these groups may have a substituent.
  • R 0 may have is preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group or a halogen atom.
  • an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group is more preferable
  • an alkyl group, a cycloalkyl group or an aryl group is more preferable, and these groups further have a substituent. good too.
  • a is preferably 0 or 1, more preferably 0, because the light-emitting element of this embodiment has a superior luminance lifetime.
  • b is preferably 0 or 1, more preferably 0, since the light-emitting element of this embodiment has a superior luminance lifetime.
  • R 1 and R 2 are preferably an alkyl group, a cycloalkyl group, or an aryl group, more preferably an alkyl group or a cycloalkyl group, since the light-emitting device of the present embodiment has a superior luminance lifetime.
  • the group may have a substituent.
  • Examples and preferred ranges of substituents that R 1 and R 2 may have are the same as examples and preferred ranges of substituents that R 0 may have.
  • m DA1 is preferably 2 to 5, more preferably 2 to 4, even more preferably 2 to 3, and 2, since the light emitting element of the present embodiment has a more excellent luminance life. is particularly preferred.
  • the aryl group in TDA is preferably a phenyl group, a naphthyl group, anthracenyl group, a phenanthrenyl group, a dihydrophenanthrenyl group, a fluorenyl group, a spirobifluorenyl group or a pyrenyl group, and a phenyl group, a naphthyl group or a fluorenyl group. is more preferred, and a phenyl group is even more preferred, and these groups may have a substituent.
  • the substituent that TDA may have is preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group or a halogen atom.
  • an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group is more preferable
  • an alkyl group, a cycloalkyl group or an aryl group is more preferable
  • an alkyl group or a cycloalkyl group is particularly preferable, and these
  • the group may further have a substituent.
  • Substituents that TDA may further have include alkyl groups, cycloalkyl groups, alkoxy groups, cycloalkoxy groups, aryl groups, aryloxy groups, and monovalent heterocyclic rings.
  • a group, a substituted amino group or a halogen atom is preferable, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group is more preferable, an alkyl group or a cycloalkyl group is more preferable, and these groups are further It may have a substituent, but preferably has no substituent.
  • the arylene group for Ar DA1 is preferably a phenylene group, a naphthalenediyl group, anthracenediyl group, a phenanthenediyl group, a dihydrophenanthenediyl group, a naphthacenediyl group, a fluorenediyl group or a pyrenediyl group, and a phenylene group, a naphthalenediyl group or a An orangeyl group is more preferable, and a phenylene group is more preferable, and these groups may have a substituent.
  • Examples and preferred ranges of substituents that Ar DA1 may have are the same as examples and preferred ranges of substituents that T DA may have.
  • Examples and preferred ranges of the substituents that the substituents that Ar DA1 may further have are the substituents that the substituents that T DA may further have Same as examples and preferred ranges.
  • the structural unit represented by formula (0) is preferably a structural unit represented by formula (0-1).
  • the structural unit represented by formula (0) is more preferably a structural unit represented by formula (1).
  • n is more preferably 2 because the light-emitting element of this embodiment has a superior luminance lifetime.
  • c and d are preferably 0 to 2, more preferably 0 or 1, and still more preferably 0, because the light-emitting element of the present embodiment has a superior luminance lifetime.
  • e is preferably 0 to 3, more preferably 0 to 2, and even more preferably 0 or 1, since the light-emitting element of the present embodiment has a superior luminance life.
  • RA is preferably an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, more preferably an alkyl group or a cycloalkyl group, since the light-emitting device of the present embodiment has a superior luminance lifetime. or an aryl group, more preferably an alkyl group or a cycloalkyl group, and these groups may have a substituent.
  • the substituent that RA may have is preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group or a halogen atom.
  • an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group is more preferable
  • an alkyl group, a cycloalkyl group or an aryl group is more preferable
  • an aryl group is particularly preferable, and these groups are further substituted
  • You may have a group.
  • the aryl group includes a phenyl group, a naphthyl group, an anthracenyl group, a phenanthrenyl group, a dihydrophenanthrenyl group, a fluorenyl group, a spirobifluorenyl group, or a pyrenyl group. is preferred, a phenyl group, a naphthyl group or a fluorenyl group is more preferred, a phenyl group or a fluorenyl group is even more preferred, and a fluorenyl group is particularly preferred, and these groups may have a substituent.
  • R 3 and R 4 are preferably an alkyl group, a cycloalkyl group, or an aryl group, more preferably an alkyl group or a cycloalkyl group, since the light-emitting device of the present embodiment has a superior luminance lifetime.
  • the group may have a substituent.
  • Examples and preferred ranges of substituents that R 3 and R 4 may have are the same as examples and preferred ranges of substituents that Ar DA1 may have.
  • R 5 is preferably an alkyl group, a cycloalkyl group or an aryl group, more preferably an alkyl group or a cycloalkyl group, since the light-emitting device of the present embodiment has a superior luminance lifetime, and these groups are substituted You may have a group.
  • Examples and preferred ranges of substituents that R 5 may have are the same as examples and preferred ranges of substituents that TDA may have.
  • the structural unit represented by formula (1) is preferably a structural unit represented by formula (1-1), more preferably a structural unit represented by formula (1-2).
  • a structural unit represented by formula (5) is more preferable.
  • the content of the first structural unit is preferably It is 0.5 to 90 mol %, more preferably 5 to 80 mol %, still more preferably 10 to 70 mol %.
  • structural unit represented by formula (0) include structural units represented by formulas (0-101) to (0-137).
  • Only one type of the first structural unit may be contained in the polymer compound, or two or more types may be contained.
  • Examples of the second structural unit include a structural unit represented by formula (Y), a structural unit represented by formula (X), and a structural unit having a cross-linking group.
  • the arylene group represented by Ar Y1 is more preferably represented by formula (A-1), formula (A-6), formula (A-7), formula (A-9) to formula (A-11), formula ( A-13) or a group represented by formula (A-19), more preferably formula (A-1), formula (A-7), formula (A-9) or formula (A-19) These groups may have a substituent.
  • the divalent heterocyclic group represented by Ar Y1 is more preferably formula (AA-4), formula (AA-10), formula (AA-13), formula (AA-15), formula (AA-18) ) or a group represented by formula (AA-20), more preferably represented by formula (AA-4), formula (AA-10), formula (AA-18) or formula (AA-20) groups, and these groups may have a substituent.
  • a more preferred range of the arylene group and the divalent heterocyclic group in the divalent group represented by Ar Y1 in which at least one arylene group and at least one divalent heterocyclic group are directly bonded more preferably The range is the same as the more preferred range and the more preferred range of the arylene group and divalent heterocyclic group represented by Ar Y1 described above, respectively.
  • At least one arylene group represented by Ar Y1 and at least one divalent heterocyclic group are directly bonded
  • at least Examples thereof include the same divalent groups in which one arylene group and at least one divalent heterocyclic group are directly bonded.
  • the substituent that the group represented by Ar Y1 may have is preferably an alkyl group, a cycloalkyl group or an aryl group, and these groups may further have a substituent.
  • Examples of structural units represented by formula (Y) include structural units represented by formulas (Y-1) to (Y-10). Is preferably a structural unit represented by formulas (Y-1) to (Y-3), and from the viewpoint of electron transport properties, preferably represented by formulas (Y-4) to (Y-7) From the viewpoint of hole transport properties, structural units represented by formulas (Y-8) to (Y-10) are preferred.
  • R Y1 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent .
  • a plurality of R Y1 may be the same or different, and adjacent R Y1 may be bonded to each other to form a ring together with the carbon atoms to which they are bonded.
  • R Y1 is preferably a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group, and these groups may have a substituent.
  • the structural unit represented by formula (Y-1) is preferably a structural unit represented by formula (Y-1').
  • R Y11 represents an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent.
  • a plurality of RY11 may be the same or different.
  • R Y11 is preferably an alkyl group, a cycloalkyl group or an aryl group, more preferably an alkyl group or a cycloalkyl group, and these groups may have a substituent.
  • RY1 has the same meaning as above.
  • RY2 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent.
  • a plurality of RY2 may be the same or different, and the RY2 may be bonded to each other to form a ring together with the carbon atoms to which they are bonded.
  • R Y2 is preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably an alkyl group, a cycloalkyl group or an aryl group, and these groups have a substituent.
  • the combination of two R Y2 in the group represented by —C(R Y2 ) 2 — is preferably both an alkyl group or a cycloalkyl group, both an aryl group, and both a monovalent a cyclic group, or one of which is an alkyl group or a cycloalkyl group and the other is an aryl group or a monovalent heterocyclic group, more preferably one is an alkyl group or a cycloalkyl group and the other is an aryl group; may have a substituent.
  • R Y2 may be bonded to each other to form a ring together with the atoms to which they are bonded, and when R Y2 forms a ring, the group represented by -C(R Y2 ) 2 - is preferably a group represented by formulas (Y-A1) to (Y-A5), more preferably a group represented by formula (Y-A4), these groups having a substituent You may have
  • R Y2 in the group represented by -C(R Y2 ) 2 -C(R Y2 ) 2 - are preferably optionally substituted alkyl groups or cycloalkyl groups is.
  • a plurality of R Y2 may be bonded to each other to form a ring together with the atoms to which they are bonded, and when R Y2 forms a ring, -C(R Y2 ) 2 -C(R Y2 ) 2 -
  • the group represented is preferably a group represented by formulas (Y-B1) to (Y-B5), more preferably a group represented by formula (Y-B3), and these groups are It may have a substituent.
  • the structural unit represented by formula (Y-2) is preferably a structural unit represented by formula (Y-2').
  • the structural unit represented by formula (Y-3) is preferably a structural unit represented by formula (Y-3').
  • RY1 has the same meaning as above.
  • RY3 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent.
  • R Y3 is preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or a monovalent heterocyclic group, more preferably an aryl group, and these groups have a substituent.
  • the structural unit represented by formula (Y-4) is preferably a structural unit represented by formula (Y-4′), and the structural unit represented by formula (Y-6) is represented by formula (Y -6') is preferred.
  • RY1 has the same meaning as above.
  • RY4 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent.
  • R Y4 is preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or a monovalent heterocyclic group, more preferably an aryl group, and these groups have a substituent.
  • Examples of structural units represented by formula (Y) include structural units composed of arylene groups represented by formulas (Y-101) to (Y-141), formulas (Y-201) to (Y- 209), at least one arylene group and at least one divalent heterocyclic ring represented by formulas (Y-301) to (Y-306)
  • a structural unit composed of a divalent group directly bonded to a group is exemplified.
  • the content of the structural unit represented by the formula (Y) in which Ar 2 Y1 is an arylene group is the structural unit contained in the polymer compound because the luminance life of the light-emitting device of the present embodiment is superior. is preferably 0.5 to 80 mol %, more preferably 30 to 60 mol %, based on the total amount of
  • Structural unit represented by formula (Y), wherein Ar Y1 is a divalent heterocyclic group, or a divalent in which at least one arylene group and at least one divalent heterocyclic group are directly bonded is preferably 0.5 to 40 mol% with respect to the total amount of the structural units contained in the polymer compound, because the light-emitting device of the present embodiment has excellent charge transport properties. Yes, more preferably 3 to 30 mol%.
  • the structural unit represented by the formula (Y) may be contained in one type or two or more types in the polymer compound.
  • aX1 is preferably 2 or less, and more preferably 1, because the light-emitting element of this embodiment has a superior luminance lifetime.
  • aX2 is preferably 2 or less, and more preferably 0, since the light-emitting element of this embodiment has a superior luminance lifetime.
  • R X1 , R X2 and R X3 are preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably an aryl group, and these groups have a substituent; good too.
  • Arylene groups represented by Ar X1 and Ar X3 are more preferably groups represented by formula (A-1) or formula (A-9), more preferably represented by formula (A-1) groups, and these groups may have a substituent.
  • the divalent heterocyclic groups represented by Ar X1 and Ar X3 are more preferably represented by formula (AA-1), formula (AA-2) or formulas (AA-7) to (AA-26). These groups may have a substituent.
  • Ar 1 X1 and Ar 2 X3 are preferably optionally substituted arylene groups.
  • Arylene groups represented by Ar X2 and Ar X4 are more preferably represented by formula (A-1), formula (A-6), formula (A-7), formula (A-9) to formula (A-11) or a group represented by formula (A-19), and these groups may have a substituent.
  • the more preferable range of the bivalent heterocyclic groups represented by Ar 1 X2 and Ar 2 X4 is the same as the more preferable range of the bivalent heterocyclic groups represented by Ar 1 X1 and Ar 2 X3 .
  • a more preferred range of the arylene group and the divalent heterocyclic group in the divalent group in which at least one arylene group and at least one divalent heterocyclic group represented by Ar X2 and Ar X4 are directly bonded The more preferable range is the same as the more preferable range and the more preferable range of the arylene group and the divalent heterocyclic group represented by Ar 1 X1 and Ar 2 X3 , respectively.
  • Examples of the divalent group in which at least one arylene group and at least one divalent heterocyclic group represented by Ar X2 and Ar X4 are directly bonded include groups represented by the following formulae. , these may have a substituent.
  • R XX represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent.
  • R XX is preferably an alkyl group, a cycloalkyl group or an aryl group, and these groups may have a substituent.
  • Ar X2 and Ar X4 are preferably arylene groups optionally having substituents.
  • the substituents that the groups represented by Ar X1 to Ar X4 and R X1 to R X3 may have are preferably alkyl groups, cycloalkyl groups or aryl groups, and these groups further have substituents. You may have
  • the structural unit represented by formula (X) is preferably a structural unit represented by formula (X-1) to formula (X-7), more preferably a structural unit represented by formula (X-3) to formula (X -7), more preferably structural units represented by formulas (X-3) to (X-6).
  • R X4 and R X5 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a halogen atom, a monovalent heterocyclic group, or a cyano represents a group, and these groups may have a substituent.
  • Multiple R X4 may be the same or different.
  • a plurality of R 1 X5 may be the same or different, and adjacent R 1 X5 may be bonded to each other to form a ring together with the carbon atoms to which they are bonded.
  • Examples of the structural unit represented by formula (X) include structural units represented by formulas (X1-1) to (X1-23), preferably formulas (X1-6) to (X1 -14).
  • the content of the structural unit represented by the formula (X) is preferably 0.1 to 50 mol% with respect to the total amount of the structural units contained in the polymer compound, since the hole transport property is excellent. It is more preferably 1 to 40 mol %, still more preferably 5 to 30 mol %.
  • the polymer compound of the present embodiment may contain only one kind of structural unit represented by formula (X), or may contain two or more kinds thereof.
  • the structural unit having a cross-linking group is preferably a structural unit having a cross-linking group selected from Group X of cross-linking groups. ') is more preferred.
  • nA represents an integer of 0 to 5, n represents 1 or 2; Ar 3 represents an aromatic hydrocarbon group or a heterocyclic group, and these groups may have a substituent.
  • L A represents an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, a group represented by -NR'-, an oxygen atom or a sulfur atom, and these groups have a substituent; good too.
  • R' represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent.
  • X represents a cross-linking group selected from X group of cross-linking groups. When there are multiple X's, they may be the same or different.
  • mA represents an integer of 0 to 5
  • m represents an integer of 1 to 4
  • c represents an integer of 0 or 1.
  • Ar 5 represents an aromatic hydrocarbon group, a heterocyclic group, or a group in which at least one aromatic hydrocarbon ring and at least one heterocyclic ring are directly bonded, and these groups have a substituent
  • Ar 4 and Ar 6 each independently represent an arylene group or a divalent heterocyclic group, and these groups may have a substituent.
  • each of Ar 4 , Ar 5 and Ar 6 is bonded directly or through an oxygen atom or a sulfur atom to a group other than the group bonded to the nitrogen atom to which the group is bonded to form a ring; may be K A represents an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, a group represented by -NR'-, an oxygen atom or a sulfur atom, and these groups have a substituent; good too.
  • R' represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent.
  • K A represents an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, a group represented by -NR'-, an oxygen atom or a sulfur atom, and these groups have a substituent; good too.
  • R' represents
  • X' represents a bridging group selected from the bridging group X group, a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. However, at least one X' is a cross-linking group selected from the X group of cross-linking groups.
  • cross-linking group selected from the cross-linking group X since the polymer compound of the present embodiment has excellent cross-linking properties, formula (XL-1), formula (XL-3), formula (XL-5), formula (XL -7), a cross-linking group represented by formula (XL-16) or formula (XL-17) is preferred, and a cross-linking group represented by formula (XL-1) or formula (XL-17) is preferred.
  • nA is preferably 0 or 1, more preferably 0, since the light-emitting element of this embodiment has a superior luminance lifetime.
  • n is preferably 2 because the light-emitting element of this embodiment has a more excellent luminance lifetime.
  • Ar 3 is preferably an aromatic hydrocarbon group which may have a substituent, since the light-emitting device of this embodiment has a more excellent luminance lifetime.
  • the number of carbon atoms in the aromatic hydrocarbon group represented by Ar 3 is usually 6 to 60, preferably 6 to 30, more preferably 6 to 18, not including the number of carbon atoms in the substituents. be.
  • the arylene group portion excluding the n substituents of the aromatic hydrocarbon group represented by Ar 3 is preferably a group represented by formulas (A-1) to (A-20), More preferably, a group represented by formula (A-1), formula (A-2), formula (A-6) to formula (A-10), formula (A-19) or formula (A-20) and more preferably a group represented by formula (A-1), formula (A-2), formula (A-7), formula (A-9) or formula (A-19), The group may have a substituent.
  • the number of carbon atoms in the heterocyclic group represented by Ar 3 is usually 2 to 60, preferably 3 to 30, more preferably 4 to 18, not including the number of carbon atoms in substituents.
  • the divalent heterocyclic group moiety excluding n substituents of the heterocyclic group represented by Ar 3 is preferably a group represented by formulas (AA-1) to (AA-34). be.
  • the aromatic hydrocarbon group and heterocyclic group represented by Ar 3 may have a substituent, and examples of the substituent include an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy groups, halogen atoms, monovalent heterocyclic groups and cyano groups.
  • the alkylene group represented by LA generally has 1 to 20 carbon atoms, preferably 1 to 15 carbon atoms, more preferably 1 to 10 carbon atoms, not including the number of carbon atoms in the substituent.
  • the cycloalkylene group represented by LA usually has 3 to 20 carbon atoms not including the number of carbon atoms in the substituent.
  • the alkylene group and cycloalkylene group may have a substituent, and examples thereof include methylene group, ethylene group, propylene group, butylene group, hexylene group, cyclohexylene group and octylene group.
  • the alkylene group and cycloalkylene group represented by LA may have a substituent.
  • substituents which the alkylene group and the cycloalkylene group may have include an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, a halogen atom and a cyano group.
  • the arylene group represented by LA may have a substituent.
  • Arylene groups include o-phenylene, m-phenylene and p-phenylene.
  • substituents that the arylene group may have include alkyl groups, cycloalkyl groups, alkoxy groups, cycloalkoxy groups, aryl groups, aryloxy groups, monovalent heterocyclic groups, halogen atoms, cyano groups and bridges.
  • a bridging group selected from group X may be mentioned.
  • L A is preferably a phenylene group or an alkylene group because it facilitates production of the polymer compound of the present embodiment, and these groups may have a substituent.
  • the cross-linking group represented by X since the polymer compound of the present embodiment has excellent cross-linking properties, the cross-linking group of Formula (XL-1), Formula (XL-3), Formula (XL-5) or Formula (XL-5) is preferable.
  • -7) a cross-linking group represented by formula (XL-16) or formula (XL-17), more preferably a cross-linking group represented by formula (XL-1) or formula (XL-17) .
  • the content of the structural unit represented by formula (2) is preferably 0 with respect to the total amount of the structural units contained in the polymer compound. .5 to 50 mol %, more preferably 3 to 30 mol %, still more preferably 3 to 20 mol %.
  • the structural unit represented by the formula (2) may be contained in one type or two or more types in the polymer compound.
  • mA is preferably 0 or 1, more preferably 0, since the light-emitting element of this embodiment has a superior luminance lifetime.
  • m is preferably 2 because the light-emitting element of this embodiment has a more excellent luminance lifetime.
  • c is preferably 0, since the production of the polymer compound of the present embodiment is facilitated and the luminance lifetime of the light emitting device of the present embodiment is more excellent.
  • Ar 5 is preferably an aromatic hydrocarbon group which may have a substituent, since the light-emitting device of this embodiment has a more excellent luminance lifetime.
  • Definitions and examples of the divalent heterocyclic group moiety excluding m substituents of the heterocyclic group represented by Ar 5 are defined in the definition of the divalent heterocyclic group represented by Ar X2 in the formula (X). and examples are the same.
  • Definitions and examples of the divalent group excluding m substituents of the group represented by Ar 5 in which at least one aromatic hydrocarbon ring and at least one heterocyclic ring are directly bonded are represented by the formula (X) is the same as the definition and examples of the divalent group in which at least one arylene group represented by Ar X2 and at least one divalent heterocyclic group are directly bonded.
  • Ar 4 and Ar 6 are preferably an arylene group optionally having a substituent, since the light-emitting device of this embodiment has a more excellent luminance lifetime.
  • the definitions and examples of the arylene groups represented by Ar 4 and Ar 6 are the same as the definitions and examples of the arylene groups represented by Ar X1 and Ar X3 in formula (X).
  • the definitions and examples of the bivalent heterocyclic groups represented by Ar 4 and Ar 6 are the same as the definitions and examples of the bivalent heterocyclic groups represented by Ar X1 and Ar X3 in formula (X).
  • the groups represented by Ar 4 , Ar 5 and Ar 6 may have a substituent, and examples of the substituent include an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, Halogen atoms, monovalent heterocyclic groups and cyano groups are included.
  • alkylene group, cycloalkylene group, arylene group, and divalent heterocyclic group represented by K A respectively refer to the alkylene group, cycloalkylene group, arylene group, and divalent heterocyclic group represented by LA . It is the same as the definition and examples of ring group.
  • KA is preferably a phenylene group or a methylene group, since this facilitates the production of the polymer compound of the present embodiment.
  • the cross-linking group represented by X′ since the polymer compound of the present embodiment has excellent cross-linking properties, the cross-linking group represented by the formula (XL-1), the formula (XL-3), the formula (XL-5), the formula ( XL-7), a cross-linking group represented by formula (XL-16) or formula (XL-17), more preferably a cross-linking group represented by formula (XL-1) or formula (XL-17) be.
  • the content of the structural unit represented by the formula (2′) is such that the polymer compound of the present embodiment has excellent stability and the polymer compound of the present embodiment has excellent crosslinkability, so that it is contained in the polymer compound. It is preferably 0.5 to 50 mol %, more preferably 3 to 30 mol %, still more preferably 3 to 20 mol %, relative to the total amount of the constituent units.
  • the structural unit represented by formula (2') may be contained in only one type or may be contained in two or more types in the polymer compound.
  • Examples of structural units represented by formula (2) include structural units represented by formulas (2-1) to (2-30), and structural units represented by formula (2′) include includes, for example, structural units represented by formulas (2′-1) to (2′-9).
  • structural units represented by formulas (2-1) to (2-30) are preferable, and more preferably formula (2-1 ) to structural units represented by formula (2-15), formula (2-19), formula (2-20), formula (2-23), formula (2-25) or formula (2-30) and more preferably structural units represented by formulas (2-1) to (2-9) or (2-30).
  • polymer compound of the present embodiment examples include polymer compounds P-1 to P-12 shown in Table 1.
  • other structural units mean structural units other than the structural units represented by formula (0), formula (X), formula (Y), formula (2) and formula (2'). .
  • the terminal group of the polymer compound of the present embodiment is preferable because if the polymerization active group remains as it is, there is a possibility that the light emitting property and the luminance life will be reduced when the polymer compound is used for the production of a light emitting device.
  • the terminal group is preferably a group that is conjugated to the main chain, and includes a group that is bonded to an aryl group or a monovalent heterocyclic group via a carbon-carbon bond.
  • the polymer compound of the present embodiment may be any of a block copolymer, a random copolymer, an alternating copolymer, and a graft copolymer, or may be in other forms. It is preferably a copolymer obtained by copolymerizing raw material monomers.
  • the polymer compound of the present embodiment includes, for example, a compound represented by the formula (M-0), a compound represented by the formula (M-Y), a compound represented by the formula (MX), and a compound represented by the formula ( It can be produced by condensation polymerization of at least one compound selected from the group consisting of the compound represented by M-2) and the compound represented by formula (M-2′).
  • the compounds used for producing the polymer compound of the present embodiment may be collectively referred to as "raw material monomer".
  • Z C1 to Z C10 each independently represent a group selected from the group consisting of substituent group A and substituent group B.
  • Z C1 , Z C2 , Z C3 , Z C4 , Z C5 and Z C6 are groups selected from substituent group A, Z C7 , Z C8 , Z C9 and Z C10 are from substituent group B Select the group of choice.
  • Z C1 , Z C2 , Z C3 , Z C4 , Z C5 and Z C6 are groups selected from Substituent Group B
  • Z C7 , Z C8 , Z C9 and Z C10 are from Substituent Group A Select the group of choice.
  • R C2 represents a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group, and these groups may have a substituent.
  • R C2 may be the same or different, and may be linked to each other to form a ring structure together with the oxygen atoms to which they are attached.); - A group represented by BF 3 Q' (wherein Q' represents Li, Na, K, Rb or Cs); -MgY' (Wherein, Y' represents a chlorine atom, a bromine atom or an iodine atom.) A group represented by; -ZnY'' (Wherein, Y'' represents a chlorine atom, a bromine atom or an iodine atom.); and —Sn(R C3 ) 3 (In the formula, R C3 represents a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group, and these groups may have a substituent. Multiple R C3 may be the same or different, and may be linked to each other to form a ring structure together with the tin atom to which each is attached.).
  • Examples of the group represented by -B(OR C2 ) 2 include groups represented by the following formulae.
  • a compound having a group selected from substituent group A and a compound having a group selected from substituent group B are subjected to condensation polymerization by a known coupling reaction to form a group selected from substituent group A and substituent group B.
  • the carbon atoms bonded to the group selected from are bonded to each other. Therefore, if a compound having two groups selected from the substituent group A and a compound having two groups selected from the substituent group B are subjected to a known coupling reaction, condensation polymerization of these compounds can be performed.
  • a polymer can be obtained.
  • Condensation polymerization is usually carried out in the presence of a catalyst, a base and a solvent, but if necessary, it may be carried out in the presence of a phase transfer catalyst.
  • catalysts include bis(triphenylphosphine)palladium(II) dichloride, bis(tris-o-methoxyphenylphosphine)palladium(II) dichloride, tetrakis(triphenylphosphine)palladium(0), tris(dibenzylideneacetone ) dipalladium(0), palladium complexes such as palladium acetate, tetrakis(triphenylphosphine)nickel(0), [1,3-bis(diphenylphosphino)propane)nickel(II) dichloride, bis(1,4- transition metal complexes such as nickel complexes such as cyclooctadiene)nickel(0); Complexes having ligands such as 1,3-bis(diphenylphosphino)propane and bipyridyl can be mentioned.
  • a catalyst may be used individually by 1 type, or may use 2 or more types together.
  • the amount of catalyst used is usually 0.00001 to 3 molar equivalents as the amount of transition metal relative to the total number of moles of raw material monomers.
  • bases and phase transfer catalysts include inorganic bases such as sodium carbonate, potassium carbonate, cesium carbonate, potassium fluoride, cesium fluoride, and tripotassium phosphate; organic bases such as butylammonium; and phase transfer catalysts such as tetrabutylammonium chloride and tetrabutylammonium bromide. Each of the base and the phase transfer catalyst may be used alone or in combination of two or more.
  • the amount of the base and the phase transfer catalyst used is usually 0.001 to 100 molar equivalents relative to the total number of moles of the raw material monomers.
  • solvents examples include organic solvents such as toluene, xylene, mesitylene, tetrahydrofuran, 1,4-dioxane, dimethoxyethane, N,N-dimethylacetamide, N,N-dimethylformamide, and water.
  • organic solvents such as toluene, xylene, mesitylene, tetrahydrofuran, 1,4-dioxane, dimethoxyethane, N,N-dimethylacetamide, N,N-dimethylformamide, and water.
  • a solvent may be used individually by 1 type, or may use 2 or more types together.
  • the amount of solvent used is usually 10 to 100,000 parts by mass with respect to the total of 100 parts by mass of raw material monomers.
  • the reaction temperature for condensation polymerization is usually -100 to 200°C.
  • the condensation polymerization reaction time is usually 1 hour or more.
  • the post-treatment of the polymerization reaction is performed by a known method, for example, a method of removing water-soluble impurities by liquid separation, adding the reaction solution after the polymerization reaction to a lower alcohol such as methanol, filtering the deposited precipitate, and drying it. method, etc., shall be used singly or in combination.
  • a method of removing water-soluble impurities by liquid separation adding the reaction solution after the polymerization reaction to a lower alcohol such as methanol, filtering the deposited precipitate, and drying it.
  • a lower alcohol such as methanol
  • filtering the deposited precipitate and drying it.
  • method, etc. shall be used singly or in combination.
  • the purity of the polymer compound is low, it can be purified by conventional methods such as crystallization, reprecipitation, continuous extraction using a Soxhlet extractor, and column chromatography.
  • composition of the present embodiment comprises at least one material selected from the group consisting of a hole-transporting material, a hole-injecting material, an electron-transporting material, an electron-injecting material, a light-emitting material, an antioxidant, and a solvent; and a polymer compound of
  • a composition containing a polymer compound and a solvent of the present embodiment (hereinafter sometimes referred to as "ink") is suitable for producing a light-emitting device using a printing method such as an inkjet printing method or a nozzle printing method. .
  • the viscosity of the ink may be adjusted depending on the type of printing method, but when applying to a printing method such as an inkjet printing method in which a solution passes through an ejection device, it is necessary to prevent clogging and flight deflection during ejection. , preferably 1 to 20 mPa ⁇ s at 25°C.
  • the solvent contained in the ink is preferably a solvent capable of dissolving or uniformly dispersing the solid content in the ink.
  • solvents include chlorine solvents such as 1,2-dichloroethane, 1,1,2-trichloroethane, chlorobenzene and o-dichlorobenzene; ether solvents such as tetrahydrofuran, dioxane, anisole and 4-methylanisole; Aromatic hydrocarbon solvents such as xylene, mesitylene, ethylbenzene, n-hexylbenzene, cyclohexylbenzene; cyclohexane, methylcyclohexane, n-pentane, n-hexane, n-heptane, n-octane, n-nonane, n- Aliphatic hydrocarbon solvents such as decane, n-dodecane and bicyclohexyl; ketone solvents
  • polyhydric alcohol solvents such as ethylene glycol, glycerin, and 1,2-hexanediol; alcohol solvents such as isopropyl alcohol and cyclohexanol; sulfoxide solvents such as dimethyl sulfoxide; N-methyl-2-pyrrolidone, N , and N-dimethylformamide.
  • a solvent may be used individually by 1 type, or may use 2 or more types together.
  • the blending amount of the solvent is usually 1,000 to 100,000 parts by mass, preferably 2,000 to 20,000 parts by mass, based on 100 parts by mass of the polymer compound of the present embodiment.
  • the hole-transporting material is classified into a low-molecular-weight compound and a high-molecular-weight compound, preferably a high-molecular-weight compound, and more preferably a high-molecular-weight compound having a cross-linking group.
  • Polymer compounds include, for example, polyvinylcarbazole and its derivatives; polyarylene and its derivatives having an aromatic amine structure in the side chain or main chain.
  • a polymer compound may be a compound having an electron-accepting site attached thereto.
  • electron-accepting moieties include fullerene, tetrafluorotetracyanoquinodimethane, tetracyanoethylene, trinitrofluorenone and the like, preferably fullerene.
  • the compounding amount of the hole transport material is usually 1 to 400 parts by mass, preferably 5 to 150 parts by mass, with respect to 100 parts by mass of the polymer compound of the present embodiment. .
  • the hole-transporting materials may be used singly or in combination of two or more.
  • Electron transport materials are classified into low-molecular-weight compounds and high-molecular-weight compounds.
  • the electron transport material may have a cross-linking group.
  • low-molecular-weight compounds include metal complexes having 8-hydroxyquinoline as a ligand, oxadiazole, anthraquinodimethane, benzoquinone, naphthoquinone, anthraquinone, tetracyanoanthraquinodimethane, fluorenone, diphenyldicyanoethylene, and , diphenoquinone, and derivatives thereof.
  • polymer compounds examples include polyphenylene, polyfluorene, and derivatives thereof.
  • the polymeric compounds may be doped with metals.
  • the amount of the electron-transporting material is usually 1-400 parts by mass, preferably 5-150 parts by mass, per 100 parts by mass of the polymer compound of the present embodiment.
  • the electron transport material may be used singly or in combination of two or more.
  • Hole-injecting materials and electron-injecting materials are classified into low-molecular-weight compounds and high-molecular-weight compounds, respectively.
  • the hole-injecting material and the electron-injecting material may have cross-linking groups.
  • low-molecular compounds examples include metal phthalocyanines such as copper phthalocyanine; carbon; metal oxides such as molybdenum and tungsten; and metal fluorides such as lithium fluoride, sodium fluoride, cesium fluoride, and potassium fluoride.
  • metal phthalocyanines such as copper phthalocyanine
  • carbon such as carbon
  • metal oxides such as molybdenum and tungsten
  • metal fluorides such as lithium fluoride, sodium fluoride, cesium fluoride, and potassium fluoride.
  • Polymer compounds include, for example, polyaniline, polythiophene, polypyrrole, polyphenylene vinylene, polythienylene vinylene, polyquinoline, polyquinoxaline, and derivatives thereof; polymers containing an aromatic amine structure in the main chain or side chain; of conductive polymers.
  • the compounding amount of the hole-injecting material and the electron-injecting material is usually 1 to 400 parts by mass, preferably 5 parts by mass, relative to 100 parts by mass of the polymer compound of the present embodiment. ⁇ 150 parts by mass.
  • Each of the hole injection material and the electron injection material may be used alone or in combination of two or more.
  • the electrical conductivity of the conductive polymer is preferably between 1 ⁇ 10 ⁇ 5 S/cm and 1 ⁇ 10 3 S/cm.
  • the conductive polymer can be doped with an appropriate amount of ions in order to set the electrical conductivity of the conductive polymer within this range.
  • the types of ions to be doped are anions for hole-injection materials and cations for electron-injection materials.
  • anions include polystyrene sulfonate ions, alkylbenzene sulfonate ions, and camphor sulfonate ions.
  • cations include lithium ion, sodium ion, potassium ion, and tetrabutylammonium ion.
  • the ions to be doped may be one kind or two or more kinds.
  • Light-emitting materials are classified into low-molecular-weight compounds and high-molecular-weight compounds.
  • the luminescent material may have a cross-linking group.
  • low-molecular-weight compounds examples include naphthalene and its derivatives, anthracene and its derivatives, perylene and its derivatives, and triplet emission complexes with iridium, platinum, or europium as the central metal.
  • Polymer compounds include, for example, phenylene group, naphthalenediyl group, fluorenediyl group, phenanthrenediyl group, dihydrophenanthrenediyl group, group represented by formula (X), carbazoldiyl group, phenoxazinediyl group, phenothiazinediyl , anthracenediyl group, pyrenediyl group, and the like.
  • the light-emitting material may contain a low-molecular-weight compound and a high-molecular-weight compound, preferably a triplet light-emitting complex and a high-molecular-weight compound.
  • Iridium complexes such as metal complexes represented by formulas Ir-1 to Ir-5 are preferable as triplet light-emitting complexes.
  • R D1 to R D8 , R D11 to R D20 , R D21 to R D26 and R D31 to R D37 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryl It represents an oxy group, a monovalent heterocyclic group or a halogen atom, and these groups may have a substituent.
  • R D1 to R D8 , R D11 to R D20 , R D21 to R D26 and R D31 to R D37 may be the same or different.
  • a D1 and A D2 each independently represents a carbon atom, an oxygen atom or a nitrogen atom that bonds to an iridium atom; may be atoms constituting a ring.
  • n D1 represents 1, 2 or 3; n D2 represents 1 or 2; ]
  • At least one of R D1 to R D8 is preferably a group represented by formula (DA).
  • At least one of R D11 to R D20 is preferably a group represented by formula (DA).
  • R D1 to R D8 and R D11 to R D20 is a group represented by formula (DA).
  • R 21 to R 26 is a group represented by formula (DA).
  • At least one of R D31 to R D37 is preferably a group represented by formula (DA).
  • m DA1 , m DA2 and m DA3 each independently represent an integer of 0 or more.
  • GDA represents a nitrogen atom, an aromatic hydrocarbon group or a heterocyclic group, and these groups may have a substituent.
  • Ar DA1 , Ar DA2 and Ar DA3 each independently represent an arylene group or a divalent heterocyclic group, and these groups may have a substituent.
  • TDA represents an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. Multiple TDAs may be the same or different.
  • m DA1 , m DA2 and m DA3 are usually integers of 10 or less, preferably 5 or less, more preferably 0 or 1.
  • m DA1 , m DA2 and m DA3 are preferably the same integer.
  • GDA is preferably a group represented by formulas (GDA-11) to (GDA-15), and these groups may have a substituent.
  • RDA represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or a monovalent heterocyclic group, and these groups may further have a substituent. When there are multiple RDAs , they may be the same or different.
  • RDA is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group or a cycloalkoxy group, more preferably a hydrogen atom, an alkyl group or a cycloalkyl group, and these groups have substituents.
  • Ar DA1 , Ar DA2 and Ar DA3 are preferably groups represented by formulas (ArDA-1) to (ArDA-3).
  • R DA has the same meaning as above.
  • RDB represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. If there are multiple RDBs , they may be the same or different. ]
  • TDA is preferably a group represented by formulas (TDA-1) to (TDA-3).
  • R DA and R DB have the same meanings as described above. ]
  • the group represented by formula (DA) is preferably a group represented by formulas (DA1) to (DA3).
  • R p1 , R p2 and R p3 each independently represent an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group or a halogen atom. When there are multiple R p1 and R p2 , they may be the same or different.
  • np1 represents an integer of 0 to 5
  • np2 represents an integer of 0 to 3
  • np3 represents 0 or 1.
  • a plurality of np1 may be the same or different.
  • np1 is preferably an integer of 0 to 3, more preferably an integer of 1 to 3, and still more preferably 1.
  • np2 is preferably 0 or 1, more preferably 0.
  • np3 is preferably zero.
  • R p1 , R p2 and R p3 are preferably alkyl groups or cycloalkyl groups.
  • anionic bidentate ligand represented by -A D1 ---A D2 - examples include ligands represented by the following formulae.
  • metal complexes represented by formula Ir-1 metal complexes represented by formulas Ir-11 to Ir-13 are preferable.
  • metal complex represented by Formula Ir-2 a metal complex represented by Formula Ir-21 is preferable.
  • metal complex represented by Formula Ir-3 metal complexes represented by Formulas Ir-31 to Ir-33 are preferred.
  • metal complex represented by Formula Ir-4 metal complexes represented by Formulas Ir-41 to Ir-43 are preferable.
  • metal complex represented by Formula Ir-5 metal complexes represented by Formulas Ir-51 to Ir-53 are preferable.
  • n D2 represents 1 or 2; D represents a group represented by formula (DA).
  • a plurality of D may be the same or different.
  • RDC represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. Multiple RDCs may be the same or different.
  • RDD represents an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. Multiple RDDs may be the same or different.
  • triplet light-emitting complexes examples include the metal complexes shown below.
  • the content of the luminescent material is usually 0.1-400 parts by mass with respect to 100 parts by mass of the polymer compound of the present embodiment.
  • the antioxidant may be any compound that is soluble in the same solvent as the polymer compound of the present embodiment and does not inhibit light emission and charge transport. Examples thereof include phenolic antioxidants and phosphorus antioxidants. .
  • the amount of the antioxidant compounded is usually 0.001 to 10 parts by mass with respect to 100 parts by mass of the polymer compound of this embodiment.
  • the antioxidants may be used singly or in combination of two or more.
  • the film contains the polymer compound of the present embodiment or a crosslinked product of the polymer compound of the present embodiment.
  • the film also includes an insolubilized film in which the polymer compound of the present embodiment is insolubilized in a solvent by crosslinking.
  • the insolubilized film is a film obtained by cross-linking the polymer compound of the present embodiment with an external stimulus such as heating or light irradiation. Since the insolubilized film is substantially insoluble in a solvent, it can be suitably used for lamination of light-emitting devices.
  • the heating temperature for cross-linking the film is usually 25 to 300°C, preferably 50 to 250°C, more preferably 150 to 200°C, because the luminous efficiency is improved.
  • the types of light used for light irradiation for cross-linking the film are, for example, ultraviolet light, near-ultraviolet light, and visible light.
  • the film is suitable as a light-emitting layer, hole-transporting layer or hole-injecting layer in a light-emitting device.
  • the film is formed by using ink, for example, spin coating, casting, micro gravure coating, gravure coating, bar coating, roll coating, wire bar coating, dip coating, spray coating, screen printing. , flexographic printing, offset printing, inkjet printing, capillary coating, and nozzle coating.
  • the thickness of the film is usually 1 nm to 10 ⁇ m.
  • the light-emitting device of the present embodiment is a light-emitting device such as organic electroluminescence obtained using the polymer compound of the present embodiment.
  • the configuration of the light-emitting device of this embodiment includes, for example, a configuration having electrodes consisting of an anode and a cathode, and a layer obtained using the polymer compound of this embodiment provided between the electrodes.
  • the layer obtained using the polymer compound of the present embodiment is usually one or more layers selected from a light-emitting layer, a hole transport layer, a hole injection layer, an electron transport layer, and an electron injection layer. layer. These layers each contain a light-emitting material, a hole-transporting material, a hole-injecting material, an electron-transporting material, and an electron-injecting material. These layers are formed by dissolving the light-emitting material, the hole-transporting material, the hole-injecting material, the electron-transporting material, and the electron-injecting material in the above-described solvent, preparing an ink, and using the ink in the same manner as in the above-described film formation. method.
  • a light-emitting element has a light-emitting layer between an anode and a cathode.
  • the light emitting device of the present embodiment preferably has at least one layer of a hole injection layer and a hole transport layer between the anode and the light emitting layer.
  • Materials for the hole-transporting layer, the electron-transporting layer, the light-emitting layer, the hole-injecting layer, and the electron-injecting layer include, in addition to the polymer compound of the present embodiment, the above-described hole-transporting material, electron-transporting material, Light-emitting materials, hole-injecting materials, and electron-injecting materials are included.
  • the material for the hole-transport layer, the material for the electron-transport layer, and the material for the light-emitting layer are used in forming the hole-transport layer, the electron-transport layer, and the layers adjacent to the light-emitting layer, respectively, in the fabrication of the light-emitting device. It is preferred that the material has cross-linking groups to avoid dissolving the material in the solvent when dissolved in the solvent. After forming each layer using a material having a cross-linking group, the layer can be made insoluble by cross-linking the cross-linking group.
  • each layer such as the light-emitting layer, the hole transport layer, the electron transport layer, the hole injection layer, and the electron injection layer
  • a low molecular compound for example, vacuum from powder A vapor deposition method
  • a method of forming a film from a solution or a molten state, and a method of forming a film from a solution or a molten state can be used when using a polymer compound.
  • the order, number, and thickness of the layers to be laminated should be adjusted in consideration of the luminous efficiency and device life.
  • the substrate in the light emitting device may be a substrate on which an electrode can be formed and which does not change chemically when the organic layer is formed.
  • the electrodes furthest from the substrate be transparent or translucent.
  • Examples of materials for the anode include conductive metal oxides and translucent metals, preferably indium oxide, zinc oxide, tin oxide; indium-tin-oxide (ITO), indium-zinc-oxide, etc. conductive compounds of; silver-palladium-copper composite (APC); NESA, gold, platinum, silver, copper.
  • conductive metal oxides and translucent metals preferably indium oxide, zinc oxide, tin oxide; indium-tin-oxide (ITO), indium-zinc-oxide, etc.
  • cathode materials include metals such as lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, aluminum, zinc, and indium; alloys of two or more of them; alloys of one or more species with one or more of silver, copper, manganese, titanium, cobalt, nickel, tungsten, tin; and graphite and graphite intercalation compounds.
  • alloys include magnesium-silver alloys, magnesium-indium alloys, magnesium-aluminum alloys, indium-silver alloys, lithium-aluminum alloys, lithium-magnesium alloys, lithium-indium alloys, and calcium-aluminum alloys.
  • Each of the anode and the cathode may have a laminated structure of two or more layers.
  • the light-emitting device of this embodiment is useful for, for example, displays and lighting.
  • the polystyrene-equivalent number average molecular weight (Mn) and polystyrene-equivalent weight average molecular weight (Mw) of the polymer compound were determined by any of the following size exclusion chromatography (SEC) using tetrahydrofuran as a moving bed. obtained by The SEC measurement conditions are as follows.
  • a polymer compound to be measured was dissolved in tetrahydrofuran at a concentration of about 0.05% by mass, and 10 ⁇ L was injected into SEC. The mobile phase was run at a flow rate of 1.0 mL/min.
  • PLgel MIXED-B manufactured by Polymer Laboratories
  • a UV-VIS detector manufactured by Tosoh, trade name: UV-8320GPC was used as a detector.
  • NMR was measured by the following method. 5 to 10 mg of a measurement sample is added to about 0.5 mL of heavy chloroform (CDCl 3 ), heavy tetrahydrofuran, heavy dimethylsulfoxide, heavy acetone, heavy N,N-dimethylformamide, heavy toluene, heavy methanol, heavy ethanol, heavy 2-propanol. Alternatively, it was dissolved in methylene dichloride and measured using an NMR device (manufactured by Agilent, trade name: INOVA300 or MERCURY 400VX).
  • HPLC high performance liquid chromatography
  • the column used was Kaseisorb LC ODS 2000 (manufactured by Tokyo Kasei Kogyo) or an ODS column with equivalent performance.
  • a photodiode array detector manufactured by Shimadzu Corporation, trade name: SPD-M20A was used as the detector.
  • TLC-MS was measured by the following method.
  • a measurement sample is dissolved in any solvent of toluene, tetrahydrofuran or chloroform at an arbitrary concentration, applied to a DART TLC plate (manufactured by Techno Applications, trade name: YSK5-100), and subjected to TLC-MS (JEOL Ltd.
  • the measurement was performed using a JMS-T100TD (The AccuTOF TLC) manufactured by Manufacture, trade name.
  • the helium gas temperature during measurement was adjusted in the range of 200 to 400.degree.
  • the obtained organic layer was washed with ion-exchanged water, filtered, and the obtained filtrate was concentrated under reduced pressure to obtain a crude product.
  • the resulting crude product was purified by silica gel column chromatography (n-hexane solvent) and dried at 50° C. under reduced pressure to obtain compound 1A (278.2 g).
  • the HPLC area percentage value of compound 1A was 99.5% or more.
  • the polymer compound IP1 has a structural unit derived from the compound PM1, a structural unit derived from the compound PM2, a structural unit derived from the compound PM3, and a structural unit derived from the compound PM4. It is a copolymer composed of derived structural units in a molar ratio of 50:30:12.5:7.5.
  • Step 1 Synthesis of polymer compound P1 (Step 1) After making the inside of the reaction vessel an inert gas atmosphere, compound PM5 (1.28372 g), compound 1D (0.89649 g), compound PM3 (0.19881 g) , compound PM8 (0.07961 g), compound PM9 (0.20980 g), dichlorobis(tris-o-methoxyphenylphosphine)palladium (1.58 mg) and toluene (30 mL) were added and heated to 80°C. (Step 2) A 20% by mass tetraethylammonium hydroxide aqueous solution (20 mL) was added dropwise to the reaction solution, and the mixture was refluxed for 3 hours.
  • phenylboronic acid (89.5 mg) and dichlorobis(tris-o-methoxyphenylphosphine)palladium (1.61 mg) were added thereto and refluxed for 3 hours. After that, the reaction solution was cooled to room temperature, the aqueous layer was removed, and the mixture was washed once with ion-exchanged water, once with a 0.15% by mass aqueous sodium N,N-diethyldithiocarbamate solution, and twice with 10% by mass hydrochloric acid. , and washed twice with a 3% by mass aqueous ammonia solution and twice with deionized water.
  • the obtained solution was dehydrated under reduced pressure to obtain a toluene solution from which water was removed.
  • This toluene solution was purified by passing through an alumina column through which toluene had been passed in advance. When the purified liquid was added dropwise to methanol and stirred, a precipitate was formed. The precipitate was collected by filtration and dried to obtain polymer compound P1 (1.45 g).
  • the Mn of the polymer compound P1 was 9.5 ⁇ 10 4 and the Mw was 2.2 ⁇ 10 5 .
  • the polymer compound P1 has a structural unit derived from the compound PM5, a structural unit derived from the compound 1D, a structural unit derived from the compound PM3, and a structural unit derived from the compound PM8. It is a copolymer composed of structural units derived from compound PM9 and structural units derived from compound PM9 in a molar ratio of 50:32:10:3:5.
  • Step 1 Synthesis of polymer compound P2 (Step 1) in the synthesis of polymer compound P1 was performed as follows: "After the inside of the reaction vessel was set to an inert gas atmosphere, compound PM5 (1.29934 g) and compound PM7 (0.29934 g) were added. 90788 g), compound PM3 (0.19700 g), compound PM8 (0.07888 g), compound PM9 (0.20792 g), dichlorobis(tris-o-methoxyphenylphosphine) palladium (1.54 mg) and toluene (30 mL) were added.
  • polymer compound P2 was obtained in the same manner as in the synthesis of polymer compound P1.
  • the Mn of the polymer compound P2 was 8.0 ⁇ 10 4 and the Mw was 1.9 ⁇ 10 5 .
  • the polymer compound P2 has a structural unit derived from the compound PM5, a structural unit derived from the compound PM7, a structural unit derived from the compound PM3, and a structural unit derived from the compound PM8. It is a copolymer composed of structural units derived from compound PM9 and structural units derived from compound PM9 in a molar ratio of 50:32:10:3:5.
  • the polymer compound P3 has a structural unit derived from the compound PM5, a structural unit derived from the compound PM6, a structural unit derived from the compound PM3, and a structural unit derived from the compound PM8. It is a copolymer composed of structural units derived from compound PM9 and structural units derived from compound PM9 in a molar ratio of 50:32:10:3:5.
  • Step 1 Synthesis of polymer compound P4 (Step 1) in the synthesis of polymer compound P1 was performed by changing the inside of the reaction vessel to an inert gas atmosphere, followed by compound PM10 (1.00964 g) and compound 2C (1.00964 g). 56606 g), compound PM12 (0.26264 g), dichlorobis(tris-o-methoxyphenylphosphine) palladium (1.82 mg) and toluene (30 mL) were added and heated to 80° C. After the reaction, phenylboronic acid was added thereto.
  • the polymer compound P4 has a structural unit derived from the compound PM10, a structural unit derived from the compound 2C, and a structural unit derived from the compound PM12 of 50: It is a copolymer composed in a molar ratio of 40:10.
  • Step 1 Synthesis of polymer compound P5 (Step 1) in the synthesis of polymer compound P1 was performed as follows: "After the inside of the reaction vessel was set to an inert gas atmosphere, compound PM10 (3.61834 g), compound 3C (4. 38134 g), compound PM12 (0.97496 g), dichlorobis(tris-o-methoxyphenylphosphine) palladium (6.72 mg) and toluene (90 mL) were added and heated to 80° C. The reaction solution was added with 20% by mass hydroxylation.
  • the polymer compound P5 has a structural unit derived from the compound PM10, a structural unit derived from the compound 3C, and a structural unit derived from the compound PM12 of 50: It is a copolymer composed in a molar ratio of 40:10.
  • Step 1 Synthesis of polymer compound P6 (Step 1) in the synthesis of polymer compound P1 was performed as follows: "After the inside of the reaction vessel was set to an inert gas atmosphere, compound PM10 (0.98952 g), compound 4D (1. 56892 g), compound PM12 (0.26007 g), dichlorobis(tris-o-methoxyphenylphosphine) palladium (1.82 mg) and toluene (45 mL) were added and heated to 80° C. The reaction solution was added with 20% by mass hydroxylation.
  • polymer compound P6 was obtained in the same manner as in the synthesis of polymer compound P1, except that the content was refluxed for 3 hours.
  • the Mn of the polymer compound P6 was 1.1 ⁇ 10 5 and the Mw was 2.2 ⁇ 10 5 .
  • the polymer compound P6 has a structural unit derived from the compound PM10, a structural unit derived from the compound 4D, and a structural unit derived from the compound PM12 of 50: It is a copolymer composed in a molar ratio of 40:10.
  • Step 1 Synthesis of polymer compound P7 (Step 1) in the synthesis of polymer compound P1 was performed as follows: "After the inside of the reaction vessel was set to an inert gas atmosphere, compound PM10 (0.88797 g), compound 5D (1. 63526 g), compound PM12 (0.23338 g), dichlorobis(tris-o-methoxyphenylphosphine) palladium (1.61 mg) and toluene (45 mL) were added and heated to 80° C. The reaction solution was added with 20% by mass hydroxylation.
  • polymer compound P7 was obtained in the same manner as in the synthesis of polymer compound P1, except that the content was refluxed for 3 hours.
  • the Mn of the polymer compound P7 was 1.0 ⁇ 10 5 and the Mw was 2.0 ⁇ 10 5 .
  • the polymer compound P7 has a structural unit derived from the compound PM10, a structural unit derived from the compound 5D, and a structural unit derived from the compound PM12 of 50: It is a copolymer composed in a molar ratio of 40:10.
  • Step 1 Synthesis of polymer compound P8 (Step 1) in the synthesis of polymer compound P1 was performed by changing the reaction vessel to an inert gas atmosphere, followed by compound PM10 (3.18058 g) and compound PM7 (4.18058 g). 53300 g), compound PM12 (0.90461 g), dichlorobis(tris-o-methoxyphenylphosphine) palladium (6.72 mg) and toluene (90 mL) were added and heated to 80° C. The reaction solution was added with 20% by mass hydroxylation.
  • the polymer compound P8 has a structural unit derived from the compound PM10, a structural unit derived from the compound PM7, and a structural unit derived from the compound PM12 of 50: It is a copolymer composed in a molar ratio of 40:10.
  • Step 1 Synthesis of polymer compound P9 (Step 1) in the synthesis of polymer compound P1 was changed to "After the inside of the reaction vessel was made into an inert gas atmosphere, compound PM10 (3.08001 g), compound 6B (4. 66435 g), compound PM12 (0.82990 g), dichlorobis(tris-o-methoxyphenylphosphine) palladium (6.72 mg) and toluene (90 mL) were added and heated to 80° C. The reaction solution was added with 20% by mass hydroxide.
  • the polymer compound P9 has a structural unit derived from the compound PM10, a structural unit derived from the compound 6B, and a structural unit derived from the compound PM12, which is 50: It is a copolymer composed in a molar ratio of 40:10.
  • the theoretical value obtained from the amount of the charged raw material has a ratio of structural units derived from the compound PM10, structural units derived from PM11, and structural units derived from the compound PM12 at 50:40. : 10 molar ratio.
  • Step 1 Synthesis of polymer compound P11 (Step 1) in the synthesis of polymer compound P1 was performed as follows: "After the inside of the reaction vessel was set to an inert gas atmosphere, compound 2D (1.46367 g) and compound PM2 (0.46367 g) were added. 78716 g), compound PM3 (0.19928 g), compound PM4 (0.11534 g), dichlorobis(tris-o-methoxyphenylphosphine) palladium (1.27 mg) and toluene (30 mL) were added and heated to 80°C. 2.00 g of polymer compound P11 was obtained in the same manner as in the synthesis of polymer compound P1, except that The Mn of the polymer compound P11 was 1.0 ⁇ 10 5 and the Mw was 2.2 ⁇ 10 5 .
  • the polymer compound P11 has a structural unit derived from the compound 2D, a structural unit derived from the compound PM2, a structural unit derived from the compound PM3, and a structural unit derived from the compound PM4. It is a copolymer composed of derived structural units in a molar ratio of 50:30:12.5:7.5.
  • Example D1 Production and evaluation of light emitting device D1 (formation of anode and hole injection layer)
  • An anode was formed by attaching an ITO film with a thickness of 45 nm to a glass substrate by a sputtering method.
  • a film of ND-3202 manufactured by Nissan Chemical Industries, Ltd.
  • ND-3202 manufactured by Nissan Chemical Industries, Ltd.
  • a hole injection layer was thus formed.
  • Polymer compound IP1 was dissolved in xylene at a concentration of 0.6% by mass.
  • a film having a thickness of 20 nm was formed on the hole injection layer by a spin coating method, and was heated on a hot plate at 200° C. for 30 minutes in a nitrogen gas atmosphere. A pore transport layer was formed.
  • Polymer compound P1 was dissolved in xylene at a concentration of 1.2% by mass.
  • a film having a thickness of 60 nm was formed on the hole transport layer by a spin coating method, and light was emitted by heating on a hot plate at 170° C. for 10 minutes in a nitrogen gas atmosphere. formed a layer.
  • Example CD1 Production and Evaluation of Light-Emitting Device CD1
  • a light-emitting device CD1 was produced in the same manner as in Example D1, except that polymer compound P2 was used instead of polymer compound P1 in Example D1.
  • EL light emission having the maximum peak wavelength of the emission spectrum at 460 nm was observed. It was driven at a constant current with an initial luminance of 1000 cd/m 2 and LT70 was measured. Table 2 shows the results.
  • Example CD2 Production and Evaluation of Light-Emitting Device CD2
  • a light-emitting device CD1 was produced in the same manner as in Example D1, except that polymer compound P3 was used instead of polymer compound P1 in Example D1.
  • EL light emission having the maximum peak wavelength of the emission spectrum at 460 nm was observed. It was driven at a constant current with an initial luminance of 1000 cd/m 2 and LT70 was measured. Table 2 shows the results.
  • Example D2 Production and Evaluation of Light-Emitting Device D2 (Formation of Anode and Hole-Injection Layer)
  • An anode was formed by attaching an ITO film with a thickness of 45 nm to a glass substrate by a sputtering method.
  • a film of ND-3202 manufactured by Nissan Chemical Industries, Ltd.
  • ND-3202 manufactured by Nissan Chemical Industries, Ltd.
  • a hole injection layer was thus formed.
  • Polymer compound IP1 was dissolved in xylene at a concentration of 0.6% by mass.
  • a film having a thickness of 20 nm was formed on the hole injection layer by a spin coating method, and was heated on a hot plate at 200° C. for 30 minutes in a nitrogen gas atmosphere. A pore transport layer was formed.
  • a film having a thickness of 60 nm was formed on the hole transport layer by a spin coating method, and a light emitting layer was formed by heating at 170° C.
  • Example D3 Production and Evaluation of Light-Emitting Device D3
  • a light-emitting device D3 was produced in the same manner as in Example D2, except that polymer compound P5 was used instead of polymer compound P4 in Example D2.
  • EL light emission having the maximum peak wavelength of the emission spectrum at 520 nm was observed. It was driven at a constant current with an initial luminance of 8000 cd/m 2 and LT80 was measured. Table 3 shows the results.
  • Example D4 Production and Evaluation of Light-Emitting Device D4
  • a light-emitting device D4 was produced in the same manner as in Example D2, except that polymer compound P6 was used instead of polymer compound P4 in Example D2.
  • EL light emission having the maximum peak wavelength of the emission spectrum at 520 nm was observed. It was driven at a constant current with an initial luminance of 8000 cd/m 2 and LT80 was measured. Table 3 shows the results.
  • Example D5 Production and Evaluation of Light-Emitting Device D5
  • a light-emitting device D5 was produced in the same manner as in Example D2, except that polymer compound P7 was used instead of polymer compound P4 in Example D2.
  • a voltage to the light emitting element D5 EL light emission having the maximum peak wavelength of the emission spectrum at 520 nm was observed. It was driven at a constant current with an initial luminance of 8000 cd/m 2 and LT80 was measured. Table 3 shows the results.
  • Example CD3 Production and Evaluation of Light-Emitting Device CD3
  • a light-emitting device CD3 was produced in the same manner as in Example D2, except that polymer compound P8 was used instead of polymer compound P4 in Example D2.
  • EL light emission having the maximum peak wavelength of the emission spectrum at 520 nm was observed. It was driven at a constant current with an initial luminance of 8000 cd/m 2 and LT80 was measured. Table 3 shows the results.
  • Example CD4 Production and Evaluation of Light-Emitting Device CD4
  • a light-emitting device CD4 was produced in the same manner as in Example D2, except that polymer compound P9 was used instead of polymer compound P4 in Example D2.
  • EL light emission having the maximum peak wavelength of the emission spectrum at 520 nm was observed. It was driven at a constant current with an initial luminance of 8000 cd/m 2 and LT80 was measured. Table 3 shows the results.
  • Example CD5 Production and Evaluation of Light-Emitting Device CD5
  • a light-emitting device CD5 was produced in the same manner as in Example D2, except that polymer compound P10 was used instead of polymer compound P4 in Example D2.
  • EL light emission having the maximum peak wavelength of the emission spectrum at 520 nm was observed. It was driven at a constant current with an initial luminance of 8000 cd/m 2 and LT80 was measured. Table 3 shows the results.
  • Example D6 Production and Evaluation of Light Emitting Device D6 Comparative Example CD2 was carried out except that the heating temperature of the hole injection layer in Comparative Example CD2 was set to 250°C and the polymer compound P11 was used instead of the polymer compound IP1.
  • a light-emitting device D6 was fabricated in the same manner as above. By applying a voltage to the light emitting element D6, EL light emission having the maximum peak wavelength of the emission spectrum at 460 nm was observed. It was driven at a constant current with an initial luminance of 1000 cd/m 2 and LT80 was measured. Table 4 shows the results.
  • the present invention it is possible to provide a polymer compound useful for manufacturing a light-emitting device with excellent luminance life, a composition containing the polymer compound, and a light-emitting device.

Abstract

Provided is a polymer compound that can be used to produce a light-emitting element that has an excellent luminance lifetime. A polymer compound that includes a first structural unit that is represented by formula (0) and a second structural unit that is not the first structural unit. (In the formula, a and b each independently represent an integer from 0 to 3, R1 and R2 each independently represent an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group, or a halogen atom, any of which may have a substituent, and R0 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group, or a halogen atom, any of which may have a substituent, at least one R0 being a group represented by formula (D-C).)

Description

高分子化合物及びそれを用いた発光素子Polymer compound and light-emitting device using the same
 本発明は、高分子化合物及びそれを用いた発光素子に関する。 The present invention relates to a polymer compound and a light emitting device using the same.
 有機エレクトロルミネッセンス素子等の発光素子は、ディスプレイ及び照明の用途に好適に使用することができる。発光素子に用いるための材料として、例えば、特許文献1には、下記式で表される構成単位を含む高分子化合物が記載されている。 A light-emitting element such as an organic electroluminescence element can be suitably used for display and lighting applications. As a material for use in a light-emitting device, for example, Patent Document 1 describes a polymer compound containing a structural unit represented by the following formula.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
特開2011-174061号公報JP 2011-174061 A
 しかし、上記の高分子化合物を用いて製造される発光素子は、輝度寿命が必ずしも十分ではなかった。
 そこで本発明は、輝度寿命に優れる発光素子の製造に有用な高分子化合物を提供することを目的とする。
However, the light-emitting device manufactured using the polymer compound described above does not necessarily have a sufficient luminance lifetime.
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a polymer compound useful for manufacturing a light-emitting device having excellent luminance lifetime.
 本発明は、以下の[1]~[15]を提供する。
[1]
 式(0)で表される第一の構成単位と、
 前記第一の構成単位以外の構成単位である第二の構成単位と、
を含む、高分子化合物。
Figure JPOXMLDOC01-appb-C000018

[式中、
 a及びbは、それぞれ独立に、0~3の整数を表す。
 R及びRは、それぞれ独立に、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。R及びRが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。
 Rは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。複数存在するRは、同一でも異なっていてもよい。
 但し、Rの少なくとも1つは、式(D-C)で表される基を表す。]
Figure JPOXMLDOC01-appb-C000019

[式中、
 mDA1は、2以上10以下の整数を表す。
 ArDA1は、置換基を有していてもよいアリーレン基を表す。複数存在するArDA1は、同一でも異なっていてもよい。
 TDAは、置換基を有していてもよいアリール基を表す。]
[2]
 前記第一の構成単位が、式(0-1)で表される構成単位である、[1]に記載の高分子化合物。
Figure JPOXMLDOC01-appb-C000020

[式中、a、b、R、R及びRは、前記と同じ意味を表す。]
[3]
 前記ArDA1が、置換基を有していてもよいフェニレン基である、[1]又は[2]に記載の高分子化合物。
[4]
 前記TDAが、置換基を有していてもよいフェニル基である、[1]~[3]のいずれかに記載の高分子化合物。
[5]
 前記第一の構成単位が、式(1)で表される構成単位である、[1]~[4]のいずれかに記載の高分子化合物。
Figure JPOXMLDOC01-appb-C000021

[式中、
 a、b、R及びRは、前記と同じ意味を表す。
 nは、1又は2を表す。
 c及びdは、それぞれ独立に、0~4の整数を表す。eは、0~5の整数を表す。c、d及びeが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。
 Rは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。
 R、R及びRは、それぞれ独立に、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。R、R及びRが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。]
[6]
 前記nが2である、[5]に記載の高分子化合物。
[7]
 前記第一の構成単位が、式(5)で表される構成単位である、[1]~[6]のいずれかに記載の高分子化合物。
Figure JPOXMLDOC01-appb-C000022

[式中、e及びRは、前記と同じ意味を表す。]
[8]
 前記第二の構成単位が、式(Y)で表される構成単位を含む、[1]~[7]のいずれかに記載の高分子化合物。
Figure JPOXMLDOC01-appb-C000023

[式中、ArY1は、アリーレン基、2価の複素環基、又は、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基を表し、これらの基は置換基を有していてもよい。但し、式(Y)で表される構成単位は、前記式(0)で表される構成単位とは異なる。]
[9]
 前記式(Y)で表される構成単位が、式(Y-1)で表される構成単位、式(Y-2)で表される構成単位、式(Y-3)で表される構成単位、式(Y-4)で表される構成単位、式(Y-5)で表される構成単位、式(Y-6)で表される構成単位、式(Y-7)で表される構成単位、式(Y-8)で表される構成単位、式(Y-9)で表される構成単位及び式(Y-10)で表される構成単位からなる群より選択される少なくとも一種の構成単位を含む、[8]に記載の高分子化合物。
Figure JPOXMLDOC01-appb-C000024

[式中、RY1は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRY1は、同一でも異なっていてもよく、隣接するRY1同士は互いに結合して、それぞれが結合する炭素原子と共に環を形成していてもよい。]
Figure JPOXMLDOC01-appb-C000025

[式中、
 RY1は、前記と同じ意味を表す。
 XY1は、-C(RY2-、-C(RY2)=C(RY2)-又は-C(RY2-C(RY2-で表される基を表す。RY2は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRY2は、同一でも異なっていてもよく、RY2同士は互いに結合して、それぞれが結合する炭素原子と共に環を形成していてもよい。]
Figure JPOXMLDOC01-appb-C000026

[式中、RY1及びXY1は、前記と同じ意味を表す。]
Figure JPOXMLDOC01-appb-C000027

Figure JPOXMLDOC01-appb-C000028

[式中、
 RY1は、前記と同じ意味を表す。
 RY3は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。]
Figure JPOXMLDOC01-appb-C000029

[式中、
 RY1は、前記を同じ意味を表す。
 RY4は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。]
[10]
 前記第二の構成単位が、式(X)で表される構成単位を含む、[1]~[9]のいずれかに記載の高分子化合物。
Figure JPOXMLDOC01-appb-C000030

[式中、
 a及びaは、それぞれ独立に、0以上の整数を表す。
 ArX1及びArX3は、それぞれ独立に、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。
 ArX2及びArX4は、それぞれ独立に、アリーレン基、2価の複素環基、又は、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基を表し、これらの基は置換基を有していてもよい。ArX2及びArX4が複数存在する場合、それらは同一でも異なっていてもよい。
 RX1、RX2及びRX3は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。RX2及びRX3が複数存在する場合、それらは同一でも異なっていてもよい。]
[11]
 前記第二の構成単位が、架橋基を有する構成単位を含む、[1]~[10]のいずれかに記載の高分子化合物。
[12]
 前記架橋基が、架橋基X群から選ばれる架橋基である、[11]に記載の高分子化合物。
(架橋基X群)
Figure JPOXMLDOC01-appb-C000031

[式中、RXLは、メチレン基、酸素原子又は硫黄原子を表し、nXLは、0~5の整数を表す。RXLが複数存在する場合、それらは同一でも異なっていてもよい。nXLが複数存在する場合、それらは同一でも異なっていてもよい。*1は結合位置を表す。これらの架橋基は置換基を有していてもよく、該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。]
[13]
 前記架橋基を有する構成単位が、式(2)で表される構成単位又は式(2’)で表される構成単位である、[12]に記載の高分子化合物。
Figure JPOXMLDOC01-appb-C000032

[式中、
 nAは0~5の整数を表し、nは1又は2を表す。
 Arは、芳香族炭化水素基又は複素環基を表し、これらの基は置換基を有していてもよい。
 Lは、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-NR’-で表される基、酸素原子又は硫黄原子を表し、これらの基は置換基を有していてもよい。R’は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。Lが複数存在する場合、それらは同一でも異なっていてもよい。
 Xは、架橋基X群から選ばれる架橋基を表す。Xが複数存在する場合、それらは同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000033

[式中、
 mAは0~5の整数を表し、mは1~4の整数を表し、cは0又は1の整数を表す。mAが複数存在する場合、それらは同一でも異なっていてもよい。
 Arは、芳香族炭化水素基、複素環基、又は、少なくとも1種の芳香族炭化水素環と少なくとも1種の複素環とが直接結合した基を表し、これらの基は置換基を有していてもよい。
 Ar及びArは、それぞれ独立に、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。
 Ar、Ar及びArはそれぞれ、当該基が結合している窒素原子に結合している当該基以外の基と、直接又は酸素原子もしくは硫黄原子を介して結合して、環を形成していてもよい。
 Kは、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-NR’-で表される基、酸素原子又は硫黄原子を表し、これらの基は置換基を有していてもよい。R’は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。Kが複数存在する場合、それらは同一でも異なっていてもよい。
 X’は、架橋基X群から選ばれる架橋基、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。但し、少なくとも1つのX’は、架橋基X群から選ばれる架橋基である。]
[14]
 [1]~[13]のいずれかに記載の高分子化合物と、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料、酸化防止剤及び溶媒からなる群より選ばれる少なくとも1種と、を含有する、組成物。
[15]
 [1]~[13]のいずれかに記載の高分子化合物、及び、[11]~[13]のいずれかに記載の高分子化合物の架橋体からなる群より選択される少なくとも1種を含有する、発光素子。
The present invention provides the following [1] to [15].
[1]
a first structural unit represented by formula (0);
a second structural unit that is a structural unit other than the first structural unit;
Polymer compounds, including
Figure JPOXMLDOC01-appb-C000018

[In the formula,
a and b each independently represents an integer of 0 to 3;
R 1 and R 2 each independently represent an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group or a halogen atom; The group may have a substituent. When multiple R 1 and R 2 are present, they may be the same or different.
R 0 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group or a halogen atom, and these groups are substituents may have A plurality of R 0 may be the same or different.
However, at least one of R 0 represents a group represented by formula (D—C). ]
Figure JPOXMLDOC01-appb-C000019

[In the formula,
mDA1 represents an integer of 2 or more and 10 or less.
Ar DA1 represents an optionally substituted arylene group. A plurality of Ar DA1 may be the same or different.
TDA represents an aryl group optionally having a substituent. ]
[2]
The polymer compound according to [1], wherein the first structural unit is a structural unit represented by formula (0-1).
Figure JPOXMLDOC01-appb-C000020

[wherein, a, b, R 1 , R 2 and R 0 have the same meanings as defined above. ]
[3]
The polymer compound according to [1] or [2], wherein the Ar DA1 is a phenylene group optionally having a substituent.
[4]
The polymer compound according to any one of [1] to [3], wherein the TDA is a phenyl group which may have a substituent.
[5]
The polymer compound according to any one of [1] to [4], wherein the first structural unit is a structural unit represented by formula (1).
Figure JPOXMLDOC01-appb-C000021

[In the formula,
a, b, R1 and R2 have the same meanings as above.
n represents 1 or 2;
c and d each independently represent an integer of 0 to 4; e represents an integer of 0 to 5; When there are multiple c, d and e, they may be the same or different.
RA represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group or a halogen atom, and these groups are substituents may have
R 3 , R 4 and R 5 each independently represent an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group or a halogen atom; , these groups may have a substituent. When multiple R 3 , R 4 and R 5 are present, they may be the same or different. ]
[6]
The polymer compound according to [5], wherein n is 2.
[7]
The polymer compound according to any one of [1] to [6], wherein the first structural unit is a structural unit represented by formula (5).
Figure JPOXMLDOC01-appb-C000022

[In the formula, e and R 5 have the same meanings as described above. ]
[8]
The polymer compound according to any one of [1] to [7], wherein the second structural unit comprises a structural unit represented by formula (Y).
Figure JPOXMLDOC01-appb-C000023

[Wherein, Ar Y represents an arylene group, a divalent heterocyclic group, or a divalent group in which at least one arylene group and at least one divalent heterocyclic group are directly bonded, The group may have a substituent. However, the structural unit represented by the formula (Y) is different from the structural unit represented by the formula (0). ]
[9]
The structural unit represented by the formula (Y) is a structural unit represented by the formula (Y-1), a structural unit represented by the formula (Y-2), and a structure represented by the formula (Y-3). unit, a structural unit represented by formula (Y-4), a structural unit represented by formula (Y-5), a structural unit represented by formula (Y-6), a structural unit represented by formula (Y-7) at least selected from the group consisting of a structural unit represented by the formula (Y-8), a structural unit represented by the formula (Y-9) and a structural unit represented by the formula (Y-10) The polymer compound according to [8], containing one type of structural unit.
Figure JPOXMLDOC01-appb-C000024

[In the formula, R Y1 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent . A plurality of R Y1 may be the same or different, and adjacent R Y1 may be bonded to each other to form a ring together with the carbon atoms to which they are bonded. ]
Figure JPOXMLDOC01-appb-C000025

[In the formula,
RY1 has the same meaning as above.
X Y1 represents a group represented by -C(R Y2 ) 2 -, -C(R Y2 )=C(R Y2 )- or -C(R Y2 ) 2 -C(R Y2 ) 2 -. RY2 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. A plurality of RY2 may be the same or different, and the RY2 may be bonded to each other to form a ring together with the carbon atoms to which they are bonded. ]
Figure JPOXMLDOC01-appb-C000026

[In the formula, RY1 and XY1 have the same meanings as described above. ]
Figure JPOXMLDOC01-appb-C000027

Figure JPOXMLDOC01-appb-C000028

[In the formula,
RY1 has the same meaning as above.
RY3 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. ]
Figure JPOXMLDOC01-appb-C000029

[In the formula,
RY1 has the same meaning as above.
RY4 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. ]
[10]
The polymer compound according to any one of [1] to [9], wherein the second structural unit comprises a structural unit represented by formula (X).
Figure JPOXMLDOC01-appb-C000030

[In the formula,
a 1 and a 2 each independently represent an integer of 0 or more.
Ar 1 X1 and Ar 2 X3 each independently represent an arylene group or a divalent heterocyclic group, and these groups may have a substituent.
Ar X2 and Ar X4 each independently represent an arylene group, a divalent heterocyclic group, or a divalent group in which at least one arylene group and at least one divalent heterocyclic group are directly bonded; and these groups may have a substituent. When multiple Ar X2 and Ar X4 are present, they may be the same or different.
R X1 , R X2 and R X3 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. When multiple R X2 and R X3 are present, they may be the same or different. ]
[11]
The polymer compound according to any one of [1] to [10], wherein the second structural unit includes a structural unit having a crosslinkable group.
[12]
The polymer compound according to [11], wherein the cross-linking group is a cross-linking group selected from X group of cross-linking groups.
(Crosslinking group X group)
Figure JPOXMLDOC01-appb-C000031

[In the formula, R XL represents a methylene group, an oxygen atom or a sulfur atom, and n XL represents an integer of 0 to 5. When multiple R XL are present, they may be the same or different. When multiple nXL are present, they may be the same or different. *1 represents the binding position. These bridging groups may have substituents, and when there are multiple substituents, they may be the same or different, and are bonded to each other to form a ring together with the atoms to which they are bonded. may ]
[13]
The polymer compound according to [12], wherein the structural unit having the crosslinkable group is a structural unit represented by formula (2) or a structural unit represented by formula (2').
Figure JPOXMLDOC01-appb-C000032

[In the formula,
nA represents an integer of 0 to 5, n represents 1 or 2;
Ar 3 represents an aromatic hydrocarbon group or a heterocyclic group, and these groups may have a substituent.
L A represents an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, a group represented by -NR'-, an oxygen atom or a sulfur atom, and these groups have a substituent; good too. R' represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. When multiple L A are present, they may be the same or different.
X represents a cross-linking group selected from X group of cross-linking groups. When there are multiple X's, they may be the same or different. ]
Figure JPOXMLDOC01-appb-C000033

[In the formula,
mA represents an integer of 0 to 5, m represents an integer of 1 to 4, and c represents an integer of 0 or 1. When multiple mA are present, they may be the same or different.
Ar 5 represents an aromatic hydrocarbon group, a heterocyclic group, or a group in which at least one aromatic hydrocarbon ring and at least one heterocyclic ring are directly bonded, and these groups have a substituent may be
Ar 4 and Ar 6 each independently represent an arylene group or a divalent heterocyclic group, and these groups may have a substituent.
each of Ar 4 , Ar 5 and Ar 6 is bonded directly or through an oxygen atom or a sulfur atom to a group other than the group bonded to the nitrogen atom to which the group is bonded to form a ring; may be
K A represents an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, a group represented by -NR'-, an oxygen atom or a sulfur atom, and these groups have a substituent; good too. R' represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. When multiple K A are present, they may be the same or different.
X' represents a bridging group selected from the bridging group X group, a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. However, at least one X' is a cross-linking group selected from the X group of cross-linking groups. ]
[14]
selected from the group consisting of the polymer compound according to any one of [1] to [13], a hole transport material, a hole injection material, an electron transport material, an electron injection material, a light emitting material, an antioxidant and a solvent and at least one.
[15]
At least one selected from the group consisting of the polymer compound according to any one of [1] to [13] and the crosslinked product of the polymer compound according to any one of [11] to [13]. light-emitting element.
 本発明によれば、輝度寿命に優れる発光素子の製造に有用な高分子化合物を提供することができる。また、本発明によれば、該高分子化合物を含有する組成物及び発光素子を提供することができる。 According to the present invention, it is possible to provide a polymer compound useful for manufacturing a light-emitting device with excellent luminance life. Moreover, according to the present invention, a composition and a light-emitting device containing the polymer compound can be provided.
 以下、本発明の好適な実施形態について詳細に説明する。 A preferred embodiment of the present invention will be described in detail below.
 <共通する用語の説明>
 本明細書で共通して用いられる用語は、特記しない限り、以下の意味である。
<Description of common terms>
Terms commonly used in this specification have the following meanings unless otherwise specified.
 「室温」とは、25℃を意味する。
 Meはメチル基、Etはエチル基、Buはブチル基、i-Prはイソプロピル基、t-Buはtert-ブチル基を表す。
 水素原子は、重水素原子であっても、軽水素原子であってもよい。
 金属錯体を表す式中、中心金属との結合を表す実線は、共有結合又は配位結合を意味する。
"Room temperature" means 25°C.
Me is a methyl group, Et is an ethyl group, Bu is a butyl group, i-Pr is an isopropyl group, and t-Bu is a tert-butyl group.
A hydrogen atom may be a deuterium atom or a protium atom.
In the formulas representing the metal complexes, solid lines representing bonds with the central metal mean covalent bonds or coordinate bonds.
 「低分子化合物」とは、分子量分布を有さず、分子量が1×10以下の化合物を意味する。
 「高分子化合物」とは、分子量分布を有し、ポリスチレン換算の数平均分子量が1×10以上(例えば、1×10~1×10)である重合体を意味する。
 「構成単位」とは、高分子化合物中に1個以上存在する単位を意味する。高分子化合物中に2個以上含まれる構成単位は、一般に、「繰り返し単位」とも呼ばれる。
 高分子化合物は、ブロック共重合体、ランダム共重合体、交互共重合体、グラフト共重合体のいずれであってもよいし、その他の態様であってもよい。
 高分子化合物の末端基は、重合活性基がそのまま残っていると、高分子化合物を発光素子の作製に用いた場合、発光特性が低下する可能性があるので、好ましくは安定な基である。高分子化合物の末端基としては、好ましくは主鎖と共役結合している基であり、例えば、炭素-炭素結合を介して高分子化合物の主鎖と結合するアリール基又は1価の複素環基が挙げられる。
A "low-molecular-weight compound" means a compound having no molecular weight distribution and a molecular weight of 1×10 4 or less.
A “polymer compound” means a polymer having a molecular weight distribution and a polystyrene-equivalent number average molecular weight of 1×10 3 or more (for example, 1×10 3 to 1×10 8 ).
A "structural unit" means a unit that exists at least one in a polymer compound. Two or more structural units contained in a polymer compound are generally called "repeating units".
The polymer compound may be a block copolymer, a random copolymer, an alternating copolymer, a graft copolymer, or other forms.
The terminal group of the polymer compound is preferably a stable group, because if the polymerization active group remains as it is, the light-emitting properties may deteriorate when the polymer compound is used for the production of a light-emitting device. The terminal group of the polymer compound is preferably a group conjugated to the main chain, for example, an aryl group or a monovalent heterocyclic group that binds to the main chain of the polymer compound via a carbon-carbon bond. is mentioned.
 「アルキル基」は、直鎖及び分岐のいずれでもよい。直鎖のアルキル基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~50であり、好ましくは1~30であり、より好ましくは1~20である。分岐のアルキル基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~50であり、好ましくは3~30であり、より好ましくは4~20である。
 アルキル基は、置換基を有していてもよい。アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、2-ブチル基、イソブチル基、tert-ブチル基、ペンチル基、イソアミル基、2-エチルブチル基、ヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、3-プロピルヘプチル基、デシル基、3,7-ジメチルオクチル基、2-エチルオクチル基、2-ヘキシルデシル基及びドデシル基が挙げられる。また、アルキル基は、これらの基における水素原子の一部又は全部が、置換基(例えば、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等)で置換された基(例えば、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロブチル基、パーフルオロヘキシル基、パーフルオロオクチル基、3-フェニルプロピル基、3-(4-メチルフェニル)プロピル基、3-(3,5-ジ-ヘキシルフェニル)プロピル基、6-エチルオキシヘキシル基)であってもよい。
The "alkyl group" may be either linear or branched. The number of carbon atoms in the linear alkyl group is generally 1-50, preferably 1-30, more preferably 1-20, not including the number of carbon atoms in the substituents. The number of carbon atoms in the branched alkyl group is generally 3-50, preferably 3-30, more preferably 4-20, not including the number of carbon atoms in the substituent.
The alkyl group may have a substituent. Examples of alkyl groups include methyl group, ethyl group, propyl group, isopropyl group, butyl group, 2-butyl group, isobutyl group, tert-butyl group, pentyl group, isoamyl group, 2-ethylbutyl group, hexyl group and heptyl. octyl, 2-ethylhexyl, 3-propylheptyl, decyl, 3,7-dimethyloctyl, 2-ethyloctyl, 2-hexyldecyl and dodecyl groups. In addition, alkyl groups are groups in which some or all of the hydrogen atoms in these groups are substituted with substituents (e.g., cycloalkyl groups, alkoxy groups, cycloalkoxy groups, aryl groups, fluorine atoms, etc.) (e.g., trifluoromethyl group, pentafluoroethyl group, perfluorobutyl group, perfluorohexyl group, perfluorooctyl group, 3-phenylpropyl group, 3-(4-methylphenyl)propyl group, 3-(3,5-di -hexylphenyl)propyl group, 6-ethyloxyhexyl group).
 「シクロアルキル基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3~50であり、好ましくは3~30であり、より好ましくは4~20である。
 シクロアルキル基は、置換基を有していてもよい。シクロアルキル基としては、例えば、シクロヘキシル基、及び、該基における水素原子の一部又は全部が置換基で置換された基が挙げられる。
The number of carbon atoms in the "cycloalkyl group" is usually 3 to 50, preferably 3 to 30, more preferably 4 to 20, not including the number of carbon atoms in substituents.
A cycloalkyl group may have a substituent. Cycloalkyl groups include, for example, cyclohexyl groups and groups in which some or all of the hydrogen atoms in the groups are substituted with substituents.
 「アルケニル基」は、直鎖及び分岐のいずれでもよい。直鎖のアルケニル基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~30であり、好ましくは3~20である。分岐のアルケニル基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~30であり、好ましくは4~20である。
 アルケニル基は、置換基を有していてもよい。アルケニル基としては、例えば、ビニル基、1-プロペニル基、2-プロペニル基、2-ブテニル基、3-ブテニル基、3-ペンテニル基、4-ペンテニル基、1-ヘキセニル基、5-ヘキセニル基、7-オクテニル基、及び、これらの基における水素原子の一部又は全部が置換基で置換された基が挙げられる。
An "alkenyl group" may be either linear or branched. The straight-chain alkenyl group usually has 2 to 30 carbon atoms, preferably 3 to 20 carbon atoms, not including the carbon atoms of the substituents. The number of carbon atoms in the branched alkenyl group is usually 3-30, preferably 4-20, not including the number of carbon atoms in the substituents.
The alkenyl group may have a substituent. Examples of alkenyl groups include vinyl group, 1-propenyl group, 2-propenyl group, 2-butenyl group, 3-butenyl group, 3-pentenyl group, 4-pentenyl group, 1-hexenyl group, 5-hexenyl group, 7-octenyl groups and groups in which some or all of the hydrogen atoms in these groups are substituted with substituents.
 「シクロアルケニル基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3~30であり、好ましくは4~20である。
 シクロアルケニル基は、置換基を有していてもよい。シクロアルケニル基としては、例えば、5-シクロヘキセニル基及び、これらの基における水素原子の一部又は全部が置換基で置換された基が挙げられる。
The number of carbon atoms in the "cycloalkenyl group" is usually 3-30, preferably 4-20, not including the number of carbon atoms in the substituents.
A cycloalkenyl group may have a substituent. Cycloalkenyl groups include, for example, 5-cyclohexenyl groups and groups in which some or all of the hydrogen atoms in these groups have been substituted with substituents.
 「アルキニル基」は、直鎖及び分岐のいずれでもよい。直鎖のアルキニル基の炭素原子数は、置換基の炭素原子を含めないで、通常2~20であり、好ましくは3~20である。分岐のアルキニル基の炭素原子数は、置換基の炭素原子を含めないで、通常4~30であり、好ましくは4~20である。
 アルキニル基は、置換基を有していてもよい。アルキニル基としては、例えば、エチニル基、1-プロピニル基、2-プロピニル基、2-ブチニル基、3-ブチニル基、3-ペンチニル基、4-ペンチニル基、1-ヘキシニル基、5-ヘキシニル基、及び、これらの基における水素原子の一部又は全部が置換基で置換された基が挙げられる。
An "alkynyl group" may be either linear or branched. The straight-chain alkynyl group usually has 2 to 20 carbon atoms, preferably 3 to 20 carbon atoms, not including substituent carbon atoms. The number of carbon atoms in the branched alkynyl group is usually 4-30, preferably 4-20, not including the carbon atoms of the substituents.
The alkynyl group may have a substituent. Examples of alkynyl groups include ethynyl, 1-propynyl, 2-propynyl, 2-butynyl, 3-butynyl, 3-pentynyl, 4-pentynyl, 1-hexynyl, 5-hexynyl, and groups in which some or all of the hydrogen atoms in these groups have been substituted with substituents.
 「シクロアルキニル基」の炭素原子数は、置換基の炭素原子を含めないで、通常4~30であり、好ましくは4~20である。
 シクロアルキニル基は、置換基を有していてもよい。シクロアルキニル基としては、例えば、5-シクロヘキシニル基及び、これらの基における水素原子の一部又は全部が置換基で置換された基が挙げられる。
The number of carbon atoms in the "cycloalkynyl group" is usually 4-30, preferably 4-20, not including the carbon atoms of the substituents.
A cycloalkynyl group may have a substituent. Cycloalkynyl groups include, for example, 5-cyclohexynyl groups and groups in which some or all of the hydrogen atoms in these groups have been substituted with substituents.
 「アルコキシ基」は、直鎖及び分岐のいずれでもよい。直鎖のアルコキシ基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~40であり、好ましくは4~10である。分岐のアルコキシ基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~40であり、好ましくは4~10である。
 アルコキシ基は、置換基を有していてもよい。アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブチルオキシ基、イソブチルオキシ基、tert-ブチルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2-エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7-ジメチルオクチルオキシ基、ラウリルオキシ基、及び、これらの基における水素原子の一部又は全部が置換基(例えば、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等)で置換された基が挙げられる。
An "alkoxy group" may be either linear or branched. The straight-chain alkoxy group usually has 1 to 40 carbon atoms, preferably 4 to 10 carbon atoms, not including the carbon atoms of the substituents. The number of carbon atoms in the branched alkoxy group is usually 3-40, preferably 4-10, not including the number of carbon atoms in the substituents.
The alkoxy group may have a substituent. Alkoxy groups include, for example, methoxy, ethoxy, propyloxy, isopropyloxy, butyloxy, isobutyloxy, tert-butyloxy, pentyloxy, hexyloxy, heptyloxy, octyloxy, 2 -Ethylhexyloxy group, nonyloxy group, decyloxy group, 3,7-dimethyloctyloxy group, lauryloxy group, and some or all of the hydrogen atoms in these groups are substituted groups (e.g., cycloalkyl groups, alkoxy groups, cycloalkoxy group, aryl group, fluorine atom, etc.).
 「シクロアルコキシ基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3~40であり、好ましくは4~10である。
 シクロアルコキシ基は、置換基を有していてもよい。シクロアルコキシ基としては、例えば、シクロヘキシルオキシ基、及び、該基における水素原子の一部又は全部が置換基で置換された基が挙げられる。
The number of carbon atoms in the "cycloalkoxy group" is usually 3-40, preferably 4-10, not including the number of carbon atoms in the substituents.
A cycloalkoxy group may have a substituent. Cycloalkoxy groups include, for example, cyclohexyloxy groups and groups in which some or all of the hydrogen atoms in the groups are substituted with substituents.
 「アリールオキシ基」の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~48である。
 アリールオキシ基は、置換基を有していてもよい。アリールオキシ基としては、例えば、フェノキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基、1-アントラセニルオキシ基、9-アントラセニルオキシ基、1-ピレニルオキシ基、及び、これらの基における水素原子の一部又は全部が置換基(例えば、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、フッ素原子等)で置換された基が挙げられる。
The number of carbon atoms in the "aryloxy group" is usually 6-60, preferably 6-48, not including the number of carbon atoms in the substituents.
The aryloxy group may have a substituent. Examples of aryloxy groups include phenoxy, 1-naphthyloxy, 2-naphthyloxy, 1-anthracenyloxy, 9-anthracenyloxy, 1-pyrenyloxy groups, and these groups. Examples thereof include groups in which some or all of hydrogen atoms are substituted with substituents (eg, alkyl groups, cycloalkyl groups, alkoxy groups, cycloalkoxy groups, fluorine atoms, etc.).
 「芳香族炭化水素基」は、芳香族炭化水素から環を構成する炭素原子に直接結合する水素原子1個以上を除いた基を意味する。芳香族炭化水素から環を構成する炭素原子に直接結合する水素原子1個を除いた基を「アリール基」ともいう。芳香族炭化水素から環を構成する炭素原子に直接結合する水素原子2個を除いた基を「アリーレン基」ともいう。
 芳香族炭化水素基の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~40であり、より好ましくは6~20である。
 「芳香族炭化水素基」としては、例えば、単環式の芳香族炭化水素(例えば、ベンゼンが挙げられる。)、又は、多環式の芳香族炭化水素(例えば、ナフタレン、インデン、ナフトキノン、インデノン及びテトラロン等の2環式の芳香族炭化水素;アントラセン、フェナントレン、ジヒドロフェナントレン、フルオレン、アントラキノン、フェナントキノン及びフルオレノン等の3環式の芳香族炭化水素;ベンゾアントラセン、ベンゾフェナントレン、ベンゾフルオレン、ピレン及びフルオランテン等の4環式の芳香族炭化水素;ジベンゾアントラセン、ジベンゾフェナントレン、ジベンゾフルオレン、インデノフルオレン、ペリレン及びベンゾフルオランテン等の5環式の芳香族炭化水素;スピロビフルオレン等の6環式の芳香族炭化水素;並びに、ベンゾスピロビフルオレン及びアセナフトフルオランテン等の7環式の芳香族炭化水素が挙げられる。)から、環を構成する炭素原子に直接結合する水素原子1個以上を除いた基が挙げられる。芳香族炭化水素基は、これらの基が複数結合した基を含む。芳香族炭化水素基は置換基を有していてもよい。
“Aromatic hydrocarbon group” means a group obtained by removing one or more hydrogen atoms directly bonded to carbon atoms constituting a ring from an aromatic hydrocarbon. A group obtained by removing one hydrogen atom directly bonded to a carbon atom constituting a ring from an aromatic hydrocarbon is also referred to as an "aryl group". A group obtained by removing two hydrogen atoms directly bonded to carbon atoms forming a ring from an aromatic hydrocarbon is also referred to as an "arylene group".
The number of carbon atoms in the aromatic hydrocarbon group is generally 6-60, preferably 6-40, more preferably 6-20, not including the number of carbon atoms in the substituents.
The "aromatic hydrocarbon group" includes, for example, monocyclic aromatic hydrocarbons (e.g., benzene), or polycyclic aromatic hydrocarbons (e.g., naphthalene, indene, naphthoquinone, indenone and tetralone; tricyclic aromatic hydrocarbons such as anthracene, phenanthrene, dihydrophenanthrene, fluorene, anthraquinone, phenanthoquinone and fluorenone; benzoanthracene, benzophenanthrene, benzofluorene, pyrene and tetracyclic aromatic hydrocarbons such as fluoranthene; pentacyclic aromatic hydrocarbons such as dibenzoanthracene, dibenzophenanthrene, dibenzofluorene, indenofluorene, perylene and benzofluoranthene; hexacyclic aromatic hydrocarbons such as spirobifluorene aromatic hydrocarbons of the formula; and heptacyclic aromatic hydrocarbons such as benzospirobifluorene and acenaphthofluoranthene), one hydrogen atom directly bonded to a carbon atom constituting the ring Groups other than the above may be mentioned. Aromatic hydrocarbon groups include groups in which a plurality of these groups are bonded. The aromatic hydrocarbon group may have a substituent.
 アリール基としては、例えば、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、1-ピレニル基、2-ピレニル基、4-ピレニル基、2-フルオレニル基、3-フルオレニル基、4-フルオレニル基、2-フェニルフェニル基、3-フェニルフェニル基、4-フェニルフェニル基、及び、これらの基における水素原子の一部又は全部が置換基(例えば、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、フッ素原子等)で置換された基が挙げられる。 Aryl groups include, for example, phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group, 9-anthracenyl group, 1-pyrenyl group, 2-pyrenyl group, 4-pyrenyl group, 2-fluorenyl group, 3-fluorenyl group, 4-fluorenyl group, 2-phenylphenyl group, 3-phenylphenyl group, 4-phenylphenyl group, and some or all of the hydrogen atoms in these groups are substituents ( Examples thereof include groups substituted with alkyl groups, cycloalkyl groups, alkoxy groups, cycloalkoxy groups, fluorine atoms, etc.).
 アリーレン基としては、例えば、フェニレン基、ナフタレンジイル基、アントラセンジイル基、フェナントレンジイル基、ジヒドロフェナントレンジイル基、ナフタセンジイル基、フルオレンジイル基、ピレンジイル基、ペリレンジイル基、クリセンジイル基、及び、これらの基における水素原子の一部又は全部が置換基で置換された基が挙げられる。アリーレン基は、これらの基が複数結合した基を含む。アリーレン基は、好ましくは、式(A-1)~式(A-20)で表される基である。 Examples of arylene groups include phenylene, naphthalenediyl, anthracenediyl, phenanthenediyl, dihydrophenanthenediyl, naphthacenediyl, fluorenediyl, pyrenediyl, perylenediyl, chrysenediyl groups, and Groups in which some or all of the hydrogen atoms are substituted with substituents are included. The arylene group includes groups in which multiple of these groups are bonded. Arylene groups are preferably groups represented by formulas (A-1) to (A-20).
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037

[式中、R及びRは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表す。複数存在するR及びRは、各々、同一でも異なっていてもよく、R同士は互いに結合して、それぞれが結合する原子と共に環を形成していてもよい。]
Figure JPOXMLDOC01-appb-C000037

[In the formula, R and Ra each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group. Plural R and R a may be the same or different, and R a may be bonded to each other to form a ring together with the atoms to which they are bonded. ]
 「複素環基」とは、複素環式化合物から環を構成する原子(炭素原子又はヘテロ原子)に直接結合する水素原子1個以上を除いた基を意味する。複素環基の中でも、芳香族複素環式化合物から環を構成する原子に直接結合する水素原子1個以上を除いた基である「芳香族複素環基」が好ましい。複素環式化合物から環を構成する原子に直接結合する水素原子p個(pは、1以上の整数を表す。)を除いた基を「p価の複素環基」ともいう。芳香族複素環式化合物から環を構成する原子に直接結合する水素原子p個を除いた基を「p価の芳香族複素環基」ともいう。
 「芳香族複素環式化合物」としては、例えば、オキサジアゾール、チアジアゾール、チアゾール、オキサゾール、チオフェン、ピロール、ホスホール、フラン、ピリジン、ピラジン、ピリミジン、トリアジン、ピリダジン、キノリン、イソキノリン、カルバゾール、ジベンゾホスホール等の複素環自体が芳香族性を示す化合物、及び、フェノキサジン、フェノチアジン、ジベンゾボロール、ジベンゾシロール、ベンゾピラン等の複素環自体は芳香族性を示さなくとも、複素環に芳香環が縮環されている化合物が挙げられる。
 複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~60であり、好ましくは2~40であり、より好ましくは3~20である。複素環基のヘテロ原子数は、置換基のヘテロ原子数を含めないで、通常1~30であり、好ましくは1~10であり、より好ましくは1~5であり、更に好ましくは1~3である。
 複素環基としては、例えば、単環式の複素環式化合物(例えば、フラン、チオフェン、オキサジアゾール、チアジアゾール、ピロール、ジアゾール、トリアゾール、テトラゾール、ピリジン、ジアザベンゼン及びトリアジンが挙げられる。)、又は、多環式の複素環式化合物(例えば、アザナフタレン、ジアザナフタレン、ベンゾフラン、ベンゾチオフェン、インドール、アザインドール、ジアザインドール、ベンゾジアゾール、ベンゾチアジアゾール、ベンゾトリアゾール、ベンゾチオフェンジオキシド、ベンゾチオフェンオキシド及びベンゾピラノン等の2環式の複素環式化合物;ジベンゾフラン、ジベンゾチオフェン、ジベンゾチオフェンジオキシド、ジベンゾチオフェンオキシド、ジベンゾピラノン、ジベンゾボロール、ジベンゾシロール、ジベンゾホスホール、ジベンゾセレノフェン、カルバゾール、アザカルバゾール、ジアザカルバゾール、フェノキサジン、フェノチアジン、9,10-ジヒドロアクリジン、5,10-ジヒドロフェナジン、アクリドン、フェナザボリン、フェノホスファジン、フェノセレナジン、フェナザシリン、アザアントラセン、ジアザアントラセン、アザフェナントレン及びジアザフェナントレン等の3環式の複素環式化合物;ヘキサアザトリフェニレン、ベンゾカルバゾール、アザベンゾカルバゾール、ジアザベンゾカルバゾール、ベンゾナフトフラン及びベンゾナフトチオフェン等の4環式の複素環式化合物;ジベンゾカルバゾール、インドロカルバゾール、インデノカルバゾール、アザインドロカルバゾール、ジアザインドロカルバゾール、アザインデノカルバゾール及びジアザインデノカルバゾール等の5環式の複素環式化合物;カルバゾロカルバゾール、ベンゾインドロカルバゾール及びベンゾインデノカルバゾール等の6環式の複素環式化合物;並びに、ジベンゾインドロカルバゾール及びジベンゾインデノカルバゾール等の7環式の複素環式化合物が挙げられる。)から、環を構成する原子に直接結合する水素原子1個以上を除いた基が挙げられる。複素環基は、これらの基が複数結合した基を含む。複素環基は置換基(例えば、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等)を有していてもよい。
A “heterocyclic group” means a group obtained by removing one or more hydrogen atoms directly bonded to atoms (carbon atoms or heteroatoms) constituting a ring from a heterocyclic compound. Among the heterocyclic groups, an "aromatic heterocyclic group", which is a group obtained by removing one or more hydrogen atoms directly bonded to atoms constituting a ring from an aromatic heterocyclic compound, is preferred. A group obtained by removing p hydrogen atoms (p represents an integer of 1 or more) directly bonded to atoms constituting a ring from a heterocyclic compound is also referred to as a "p-valent heterocyclic group". A group obtained by removing p hydrogen atoms directly bonded to atoms constituting a ring from an aromatic heterocyclic compound is also referred to as a "p-valent aromatic heterocyclic group".
Examples of "aromatic heterocyclic compounds" include oxadiazole, thiadiazole, thiazole, oxazole, thiophene, pyrrole, phosphole, furan, pyridine, pyrazine, pyrimidine, triazine, pyridazine, quinoline, isoquinoline, carbazole, dibenzophosphole Compounds in which the heterocycle itself exhibits aromaticity, such as phenoxazine, phenothiazine, dibenzoborol, dibenzosilole, benzopyran, etc., even if the heterocycle itself does not exhibit aromaticity, the heterocyclic ring is condensed with an aromatic ring. compounds that are
The number of carbon atoms in the heterocyclic group is generally 1-60, preferably 2-40, more preferably 3-20, not including the number of carbon atoms in the substituent. The number of heteroatoms in the heterocyclic group, not including the number of heteroatoms in the substituent, is usually 1 to 30, preferably 1 to 10, more preferably 1 to 5, and still more preferably 1 to 3. is.
Heterocyclic groups include, for example, monocyclic heterocyclic compounds such as furan, thiophene, oxadiazole, thiadiazole, pyrrole, diazole, triazole, tetrazole, pyridine, diazabenzene and triazine, or Polycyclic heterocyclic compounds (e.g. azanaphthalene, diazanaphthalene, benzofuran, benzothiophene, indole, azaindole, diazaindole, benzodiazole, benzothiadiazole, benzotriazole, benzothiophene dioxide, benzothiophene oxide and bicyclic heterocyclic compounds such as benzopyranone; dibenzofuran, dibenzothiophene, dibenzothiophene dioxide, dibenzothiophene oxide, dibenzopyranone, dibenzoborol, dibenzosilol, dibenzophosphole, dibenzoselenophene, carbazole, azacarbazole , diazacarbazole, phenoxazine, phenothiazine, 9,10-dihydroacridine, 5,10-dihydrophenazine, acridone, phenazaborine, phenophosphadine, phenoselenazine, phenazacillin, azaanthracene, diazaanthracene, azaphenanthrene and diaza tricyclic heterocyclic compounds such as phenanthrene; tetracyclic heterocyclic compounds such as hexaazatriphenylene, benzocarbazole, azabenzocarbazole, diazabenzocarbazole, benzonaphthofuran and benzonaphthothiophene; dibenzocarbazole, India Pentacyclic heterocyclic compounds such as locarbazole, indenocarbazole, azaindolocarbazole, diazaindolocarbazole, azaindenocarbazole and diazaindenocarbazole; carbazolocarbazole, benzoindolocarbazole and benzoindenocarbazole Hexacyclic heterocyclic compounds such as; and heptacyclic heterocyclic compounds such as dibenzoindolocarbazole and dibenzoindenocarbazole. Groups excluding one or more may be mentioned. Heterocyclic groups include groups in which multiple of these groups are bonded. A heterocyclic group may have a substituent (eg, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a fluorine atom, etc.).
 1価の複素環基としては、例えば、チエニル基、ピロリル基、フリル基、ピリジル基、ピペリジニル基、キノリニル基、イソキノリニル基、ピリミジニル基、トリアジニル基、及び、これらの基における水素原子の一部又は全部が置換基(例えば、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基)等で置換された基が挙げられる。 The monovalent heterocyclic group includes, for example, thienyl, pyrrolyl, furyl, pyridyl, piperidinyl, quinolinyl, isoquinolinyl, pyrimidinyl, triazinyl, and part of the hydrogen atoms in these groups, or Examples include groups that are entirely substituted with substituents (eg, alkyl groups, cycloalkyl groups, alkoxy groups, cycloalkoxy groups) and the like.
 2価の複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常、2~60であり、好ましくは3~20であり、より好ましくは4~15である。
 2価の複素環基としては、例えば、ピリジン、ジアザベンゼン、トリアジン、アザナフタレン、ジアザナフタレン、カルバゾール、ジベンゾフラン、ジベンゾチオフェン、ジベンゾシロール、フェノキサジン、フェノチアジン、アクリジン、ジヒドロアクリジン、フラン、チオフェン、アゾール、ジアゾール又はトリアゾールから、環を構成する炭素原子又はヘテロ原子に直接結合している水素原子のうち2個の水素原子を除いた2価の基が挙げられる。2価の複素環基は、これらの基が複数結合した基を含む。2価の複素環基は、好ましくは、式(AA-1)~式(AA-34)で表される基である。
The number of carbon atoms in the divalent heterocyclic group is usually 2 to 60, preferably 3 to 20, more preferably 4 to 15, not including the number of carbon atoms in the substituents.
Examples of divalent heterocyclic groups include pyridine, diazabenzene, triazine, azanaphthalene, diazanaphthalene, carbazole, dibenzofuran, dibenzothiophene, dibenzosilole, phenoxazine, phenothiazine, acridine, dihydroacridine, furan, thiophene, azole, A divalent group obtained by removing two hydrogen atoms among hydrogen atoms directly bonded to carbon atoms or heteroatoms constituting a ring from diazole or triazole. Divalent heterocyclic groups include groups in which multiple of these groups are bonded. The divalent heterocyclic group is preferably a group represented by formulas (AA-1) to (AA-34).
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044

[式中、R及びRは、前記と同じ意味を表す。]
Figure JPOXMLDOC01-appb-C000044

[In the formula, R and Ra represent the same meanings as described above. ]
 「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子又はヨウ素原子を示す。 "Halogen atom" means a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
 「アミノ基」は、置換基を有していてもよく、置換アミノ基(すなわち、第2級アミノ基又は第3級アミノ基、より好ましくは第3級アミノ基)が好ましい。アミノ基が有する置換基としては、アルキル基、シクロアルキル基、アリール基又は1価の複素環基が好ましく、これらの基は置換基を有していてもよい。アミノ基が有する置換基が複数存在する場合、それらは同一で異なっていてもよく、互いに結合して、それぞれが結合する窒素原子とともに環を形成していてもよい。
 置換アミノ基としては、例えば、ジアルキルアミノ基、ジシクロアルキルアミノ基、ジアリールアミノ基、及び、これらの基における水素原子の一部又は全部が置換基(例えば、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等)で置換された基が挙げられる。
 置換アミノ基としては、例えば、ジメチルアミノ基、ジエチルアミノ基、ジフェニルアミノ基、ビス(メチルフェニル)アミノ基、ビス(3,5-ジ-tert-ブチルフェニル)アミノ基、及び、これらの基における水素原子の一部又は全部が置換基(例えば、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等)で置換された基が挙げられる。
The "amino group" may have a substituent, preferably a substituted amino group (that is, a secondary amino group or a tertiary amino group, more preferably a tertiary amino group). Preferred substituents for the amino group are alkyl groups, cycloalkyl groups, aryl groups and monovalent heterocyclic groups, and these groups may have substituents. When the amino group has a plurality of substituents, they may be the same or different, and may be bonded to each other to form a ring together with the nitrogen atom to which each is bonded.
Substituted amino groups include, for example, a dialkylamino group, a dicycloalkylamino group, a diarylamino group, and those in which some or all of the hydrogen atoms are substituted (e.g., an alkyl group, a cycloalkyl group, an alkoxy group , a cycloalkoxy group, an aryl group, a fluorine atom, etc.).
Examples of substituted amino groups include dimethylamino group, diethylamino group, diphenylamino group, bis(methylphenyl)amino group, bis(3,5-di-tert-butylphenyl)amino group, and hydrogen in these groups. Examples thereof include groups in which some or all of the atoms are substituted with substituents (eg, alkyl groups, cycloalkyl groups, alkoxy groups, cycloalkoxy groups, aryl groups, fluorine atoms, etc.).
 「架橋基」とは、加熱、紫外線照射、近紫外線照射、可視光照射、赤外線照射、ラジカル反応等に供することにより、新たな結合を生成することが可能な基である。架橋基としては、架橋基X群から選ばれる架橋基(すなわち、式(XL-1)~式(XL-19)で表される架橋基である。
(架橋基X群)
A “crosslinking group” is a group capable of forming a new bond by subjecting it to heating, ultraviolet irradiation, near-ultraviolet irradiation, visible light irradiation, infrared irradiation, radical reaction, or the like. The cross-linking group is a cross-linking group selected from Group X of cross-linking groups (that is, cross-linking groups represented by formulas (XL-1) to (XL-19)).
(Crosslinking group X group)
Figure JPOXMLDOC01-appb-C000045

[式中、RXLは、メチレン基、酸素原子又は硫黄原子を表し、nXLは、0~5の整数を表す。RXLが複数存在する場合、それらは同一でも異なっていてもよい。nXLが複数存在する場合、それらは同一でも異なっていてもよい。*1は結合位置を表す。これらの架橋基は置換基を有していてもよく、該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。]
Figure JPOXMLDOC01-appb-C000045

[In the formula, R XL represents a methylene group, an oxygen atom or a sulfur atom, and n XL represents an integer of 0 to 5. When multiple R XL are present, they may be the same or different. When multiple nXL are present, they may be the same or different. *1 represents the binding position. These bridging groups may have substituents, and when there are multiple substituents, they may be the same or different, and are bonded to each other to form a ring together with the atoms to which they are bonded. may ]
 「置換基」としては、例えば、ハロゲン原子、シアノ基、アルキル基、シクロアルキル基、アリール基、1価の複素環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アミノ基、置換アミノ基、アルケニル基、シクロアルケニル基、アルキニル基、シクロアルキニル基等が挙げられる。置換基は架橋基であってもよい。 The "substituent" includes, for example, a halogen atom, a cyano group, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, an alkoxy group, a cycloalkoxy group, an aryloxy group, an amino group, a substituted amino group, Alkenyl groups, cycloalkenyl groups, alkynyl groups, cycloalkynyl groups and the like can be mentioned. A substituent may be a bridging group.
 <高分子化合物>
 本実施形態の高分子化合物は、式(0)で表される第一の構成単位と、当該第一の構成単位以外の構成単位である第二の構成単位と、を含む。
<Polymer compound>
The polymer compound of the present embodiment includes a first structural unit represented by formula (0) and a second structural unit other than the first structural unit.
 本実施形態の高分子化合物は、第二の構成単位として、式(Y)で表される構成単位、式(X)で表される構成単位、及び、架橋基を有する構成単位からなる群より選択される少なくとも1つの構成単位を含むことが好ましい。 In the polymer compound of the present embodiment, the second structural unit is selected from the group consisting of a structural unit represented by formula (Y), a structural unit represented by formula (X), and a structural unit having a cross-linking group. It preferably contains at least one selected structural unit.
<第一の構成単位>
 [式(0)で表される構成単位]
 Rは、本実施形態の発光素子の輝度寿命がより優れるので、好ましくは、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくは、アルキル基、シクロアルキル基又はアリール基であり、更に好ましくは、アリール基であり、これらの基は置換基を有していてもよい。
<First structural unit>
[Structural Unit Represented by Formula (0)]
R 0 is preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably an alkyl group or a cycloalkyl group, since the light-emitting device of the present embodiment has a superior luminance lifetime. or an aryl group, more preferably an aryl group, and these groups may have a substituent.
 Rが有していてもよい置換基としては、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子が好ましく、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基がより好ましく、アルキル基、シクロアルキル基又はアリール基が更に好ましく、これらの基は更に置換基を有していてもよい。 The substituent that R 0 may have is preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group or a halogen atom. , an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group is more preferable, an alkyl group, a cycloalkyl group or an aryl group is more preferable, and these groups further have a substituent. good too.
 aは、本実施形態の発光素子の輝度寿命がより優れるので、0又は1であることが好ましく、0であることがより好ましい。 a is preferably 0 or 1, more preferably 0, because the light-emitting element of this embodiment has a superior luminance lifetime.
 bは、本実施形態の発光素子の輝度寿命がより優れるので、0又は1であることが好ましく、0であることがより好ましい。 b is preferably 0 or 1, more preferably 0, since the light-emitting element of this embodiment has a superior luminance lifetime.
 R及びRは、本実施形態の発光素子の輝度寿命がより優れるので、好ましくは、アルキル基、シクロアルキル基又はアリール基であり、より好ましくはアルキル基又はシクロアルキル基であり、これらの基は置換基を有していてもよい。 R 1 and R 2 are preferably an alkyl group, a cycloalkyl group, or an aryl group, more preferably an alkyl group or a cycloalkyl group, since the light-emitting device of the present embodiment has a superior luminance lifetime. The group may have a substituent.
 R及びRが有していてもよい置換基の例及び好ましい範囲は、Rが有していてもよい置換基の例及び好ましい範囲と同じである。 Examples and preferred ranges of substituents that R 1 and R 2 may have are the same as examples and preferred ranges of substituents that R 0 may have.
 mDA1は、本実施形態の発光素子の輝度寿命がより優れるので、2~5であることが好ましく、2~4であることがより好ましく、2~3であることが更に好ましく、2であることが特に好ましい。 m DA1 is preferably 2 to 5, more preferably 2 to 4, even more preferably 2 to 3, and 2, since the light emitting element of the present embodiment has a more excellent luminance life. is particularly preferred.
 TDAにおけるアリール基としては、フェニル基、ナフチル基、アントラセニル基、フェナントレニル基、ジヒドロフェナントレニル基、フルオレニル基、スピロビフルオレニル基又はピレニル基が好ましく、フェニル基、ナフチル基又はフルオレニル基がより好ましく、フェニル基が更に好ましく、これらの基は置換基を有していてもよい。 The aryl group in TDA is preferably a phenyl group, a naphthyl group, anthracenyl group, a phenanthrenyl group, a dihydrophenanthrenyl group, a fluorenyl group, a spirobifluorenyl group or a pyrenyl group, and a phenyl group, a naphthyl group or a fluorenyl group. is more preferred, and a phenyl group is even more preferred, and these groups may have a substituent.
 TDAが有していてもよい置換基としては、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子が好ましく、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基がより好ましく、アルキル基、シクロアルキル基又はアリール基が更に好ましく、アルキル基又はシクロアルキル基が特に好ましく、これらの基は更に置換基を有していてもよい。 The substituent that TDA may have is preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group or a halogen atom. , an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group is more preferable, an alkyl group, a cycloalkyl group or an aryl group is more preferable, an alkyl group or a cycloalkyl group is particularly preferable, and these The group may further have a substituent.
 TDAが有していてもよい置換基が更に有していてもよい置換基としては、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子が好ましく、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基がより好ましく、アルキル基又はシクロアルキル基が更に好ましく、これらの基は更に置換基を有していてもよいが、更に置換基を有さないことが好ましい。 Substituents that TDA may further have include alkyl groups, cycloalkyl groups, alkoxy groups, cycloalkoxy groups, aryl groups, aryloxy groups, and monovalent heterocyclic rings. A group, a substituted amino group or a halogen atom is preferable, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group is more preferable, an alkyl group or a cycloalkyl group is more preferable, and these groups are further It may have a substituent, but preferably has no substituent.
 ArDA1におけるアリーレン基としては、フェニレン基、ナフタレンジイル基、アントラセンジイル基、フェナントレンジイル基、ジヒドロフェナントレンジイル基、ナフタセンジイル基、フルオレンジイル基又はピレンジイル基が好ましく、フェニレン基、ナフタレンジイル基、又はフルオレンジイル基より好ましく、フェニレン基が更に好ましく、これらの基は置換基を有していてもよい。 The arylene group for Ar DA1 is preferably a phenylene group, a naphthalenediyl group, anthracenediyl group, a phenanthenediyl group, a dihydrophenanthenediyl group, a naphthacenediyl group, a fluorenediyl group or a pyrenediyl group, and a phenylene group, a naphthalenediyl group or a An orangeyl group is more preferable, and a phenylene group is more preferable, and these groups may have a substituent.
 ArDA1が有していてもよい置換基の例及び好ましい範囲は、TDAが有していてもよい置換基の例及び好ましい範囲と同じである。 Examples and preferred ranges of substituents that Ar DA1 may have are the same as examples and preferred ranges of substituents that T DA may have.
 ArDA1が有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲は、TDAが有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲と同じである。 Examples and preferred ranges of the substituents that the substituents that Ar DA1 may further have are the substituents that the substituents that T DA may further have Same as examples and preferred ranges.
 式(0)で表される構成単位としては、式(0-1)で表される構成単位が好ましい。 The structural unit represented by formula (0) is preferably a structural unit represented by formula (0-1).
 式(0)で表される構成単位としては、式(1)で表される構成単位がより好ましい。 The structural unit represented by formula (0) is more preferably a structural unit represented by formula (1).
 [式(1)で表される構成単位]
 nは、本実施形態の発光素子の輝度寿命がより優れるので、2であることがより好ましい。
[Structural Unit Represented by Formula (1)]
n is more preferably 2 because the light-emitting element of this embodiment has a superior luminance lifetime.
 c及びdは、本実施形態の発光素子の輝度寿命がより優れるので、0~2であることが好ましく、0又は1であることがより好ましく、0であることが更に好ましい。 c and d are preferably 0 to 2, more preferably 0 or 1, and still more preferably 0, because the light-emitting element of the present embodiment has a superior luminance lifetime.
 eは、本実施形態の発光素子の輝度寿命がより優れるので、0~3であることが好ましく、0~2であることがより好ましく、0又は1であることが更に好ましい。 e is preferably 0 to 3, more preferably 0 to 2, and even more preferably 0 or 1, since the light-emitting element of the present embodiment has a superior luminance life.
 Rは、本実施形態の発光素子の輝度寿命がより優れるので、好ましくは、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくは、アルキル基、シクロアルキル基又はアリール基であり、更に好ましくは、アルキル基又はシクロアルキル基であり、これらの基は置換基を有していてもよい。 RA is preferably an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, more preferably an alkyl group or a cycloalkyl group, since the light-emitting device of the present embodiment has a superior luminance lifetime. or an aryl group, more preferably an alkyl group or a cycloalkyl group, and these groups may have a substituent.
 Rが有していてもよい置換基としては、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子が好ましく、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基がより好ましく、アルキル基、シクロアルキル基又はアリール基が更に好ましく、アリール基が特に好ましく、これらの基は更に置換基を有していてもよい。 The substituent that RA may have is preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group or a halogen atom. , an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group is more preferable, an alkyl group, a cycloalkyl group or an aryl group is more preferable, an aryl group is particularly preferable, and these groups are further substituted You may have a group.
 Rが有していてもよい置換基のうち、アリール基としては、フェニル基、ナフチル基、アントラセニル基、フェナントレニル基、ジヒドロフェナントレニル基、フルオレニル基、スピロビフルオレニル基又はピレニル基が好ましく、フェニル基、ナフチル基又はフルオレニル基がより好ましく、フェニル基又はフルオレニル基が更に好ましく、フルオレニル基が特に好ましく、これらの基は置換基を有していてもよい。 Among the substituents that RA may have, the aryl group includes a phenyl group, a naphthyl group, an anthracenyl group, a phenanthrenyl group, a dihydrophenanthrenyl group, a fluorenyl group, a spirobifluorenyl group, or a pyrenyl group. is preferred, a phenyl group, a naphthyl group or a fluorenyl group is more preferred, a phenyl group or a fluorenyl group is even more preferred, and a fluorenyl group is particularly preferred, and these groups may have a substituent.
 Rが有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲は、TDAが有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲と同じである。 Examples and preferred ranges of the substituents which the substituents which R A may further have are the substituents which the substituents which T DA may further have Same as examples and preferred ranges.
 R及びRは、本実施形態の発光素子の輝度寿命がより優れるので、好ましくは、アルキル基、シクロアルキル基又はアリール基であり、より好ましくはアルキル基又はシクロアルキル基であり、これらの基は置換基を有していてもよい。 R 3 and R 4 are preferably an alkyl group, a cycloalkyl group, or an aryl group, more preferably an alkyl group or a cycloalkyl group, since the light-emitting device of the present embodiment has a superior luminance lifetime. The group may have a substituent.
 R及びRが有していてもよい置換基の例及び好ましい範囲は、ArDA1が有していてもよい置換基の例及び好ましい範囲と同じである。 Examples and preferred ranges of substituents that R 3 and R 4 may have are the same as examples and preferred ranges of substituents that Ar DA1 may have.
 Rは、本実施形態の発光素子の輝度寿命がより優れるので、好ましくは、アルキル基、シクロアルキル基又はアリール基であり、より好ましくはアルキル基又はシクロアルキル基であり、これらの基は置換基を有していてもよい。 R 5 is preferably an alkyl group, a cycloalkyl group or an aryl group, more preferably an alkyl group or a cycloalkyl group, since the light-emitting device of the present embodiment has a superior luminance lifetime, and these groups are substituted You may have a group.
 Rが有していてもよい置換基の例及び好ましい範囲は、TDAが有していてもよい置換基の例及び好ましい範囲と同じである。 Examples and preferred ranges of substituents that R 5 may have are the same as examples and preferred ranges of substituents that TDA may have.
 式(1)で表される構成単位は、式(1-1)で表される構成単位であることが好ましく、式(1-2)で表される構成単位であることがより好ましい。 The structural unit represented by formula (1) is preferably a structural unit represented by formula (1-1), more preferably a structural unit represented by formula (1-2).
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
 式(0)で表される構成単位としては、式(5)で表される構成単位が更に好ましい。 As the structural unit represented by formula (0), a structural unit represented by formula (5) is more preferable.
 本実施形態の高分子化合物において、第一の構成単位の含有量は、本実施形態の発光素子の輝度寿命がより優れるので、高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.5~90モル%であり、より好ましくは5~80モル%であり、更に好ましくは10~70モル%である。 In the polymer compound of the present embodiment, the content of the first structural unit is preferably It is 0.5 to 90 mol %, more preferably 5 to 80 mol %, still more preferably 10 to 70 mol %.
 式(0)で表される構成単位の具体例としては、式(0-101)~式(0-137)で表される構成単位が挙げられる。 Specific examples of the structural unit represented by formula (0) include structural units represented by formulas (0-101) to (0-137).
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
 第一の構成単位は、高分子化合物中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。 Only one type of the first structural unit may be contained in the polymer compound, or two or more types may be contained.
<第二の構成単位>
 第二の構成単位としては、例えば、式(Y)で表される構成単位、式(X)で表される構成単位、及び、架橋基を有する構成単位が挙げられる。
<Second structural unit>
Examples of the second structural unit include a structural unit represented by formula (Y), a structural unit represented by formula (X), and a structural unit having a cross-linking group.
 [式(Y)で表される構成単位]
 ArY1で表されるアリーレン基は、より好ましくは式(A-1)、式(A-6)、式(A-7)、式(A-9)~式(A-11)、式(A-13)又は式(A-19)で表される基であり、更に好ましくは式(A-1)、式(A-7)、式(A-9)又は式(A-19)で表される基であり、これらの基は置換基を有していてもよい。
[Structural Unit Represented by Formula (Y)]
The arylene group represented by Ar Y1 is more preferably represented by formula (A-1), formula (A-6), formula (A-7), formula (A-9) to formula (A-11), formula ( A-13) or a group represented by formula (A-19), more preferably formula (A-1), formula (A-7), formula (A-9) or formula (A-19) These groups may have a substituent.
 ArY1で表される2価の複素環基は、より好ましくは式(AA-4)、式(AA-10)、式(AA-13)、式(AA-15)、式(AA-18)又は式(AA-20)で表される基であり、更に好ましくは式(AA-4)、式(AA-10)、式(AA-18)又は式(AA-20)で表される基であり、これらの基は置換基を有していてもよい。 The divalent heterocyclic group represented by Ar Y1 is more preferably formula (AA-4), formula (AA-10), formula (AA-13), formula (AA-15), formula (AA-18) ) or a group represented by formula (AA-20), more preferably represented by formula (AA-4), formula (AA-10), formula (AA-18) or formula (AA-20) groups, and these groups may have a substituent.
 ArY1で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基における、アリーレン基及び2価の複素環基のより好ましい範囲、更に好ましい範囲は、それぞれ、前述のArY1で表されるアリーレン基及び2価の複素環基のより好ましい範囲、更に好ましい範囲と同様である。 A more preferred range of the arylene group and the divalent heterocyclic group in the divalent group represented by Ar Y1 in which at least one arylene group and at least one divalent heterocyclic group are directly bonded, more preferably The range is the same as the more preferred range and the more preferred range of the arylene group and divalent heterocyclic group represented by Ar Y1 described above, respectively.
 ArY1で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基としては、式(X)のArX2及びArX4で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基と同様のものが挙げられる。 As the divalent group in which at least one arylene group represented by Ar Y1 and at least one divalent heterocyclic group are directly bonded, at least Examples thereof include the same divalent groups in which one arylene group and at least one divalent heterocyclic group are directly bonded.
 ArY1で表される基が有してもよい置換基は、好ましくはアルキル基、シクロアルキル基又はアリール基であり、これらの基は更に置換基を有していてもよい。 The substituent that the group represented by Ar Y1 may have is preferably an alkyl group, a cycloalkyl group or an aryl group, and these groups may further have a substituent.
 式(Y)で表される構成単位としては、例えば、式(Y-1)~式(Y-10)で表される構成単位が挙げられ、本実施形態の発光素子の輝度寿命の観点からは、好ましくは式(Y-1)~式(Y-3)で表される構成単位であり、電子輸送性の観点からは、好ましくは式(Y-4)~式(Y-7)で表される構成単位であり、正孔輸送性の観点からは、好ましくは式(Y-8)~式(Y-10)で表される構成単位である。 Examples of structural units represented by formula (Y) include structural units represented by formulas (Y-1) to (Y-10). Is preferably a structural unit represented by formulas (Y-1) to (Y-3), and from the viewpoint of electron transport properties, preferably represented by formulas (Y-4) to (Y-7) From the viewpoint of hole transport properties, structural units represented by formulas (Y-8) to (Y-10) are preferred.
 (式(Y-1)で表される構成単位) (Constituent unit represented by formula (Y-1))
Figure JPOXMLDOC01-appb-C000067

[式中、RY1は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRY1は、同一でも異なっていてもよく、隣接するRY1同士は互いに結合して、それぞれが結合する炭素原子と共に環を形成していてもよい。]
Figure JPOXMLDOC01-appb-C000067

[In the formula, R Y1 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent . A plurality of R Y1 may be the same or different, and adjacent R Y1 may be bonded to each other to form a ring together with the carbon atoms to which they are bonded. ]
 RY1は、好ましくは水素原子、アルキル基、シクロアルキル基又はアリール基であり、これらの基は置換基を有していてもよい。 R Y1 is preferably a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group, and these groups may have a substituent.
 式(Y-1)で表される構成単位は、好ましくは、式(Y-1’)で表される構成単位である。 The structural unit represented by formula (Y-1) is preferably a structural unit represented by formula (Y-1').
Figure JPOXMLDOC01-appb-C000068

[式中、RY11は、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRY11は、同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000068

[In the formula, R Y11 represents an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent. A plurality of RY11 may be the same or different. ]
 RY11は、好ましくは、アルキル基、シクロアルキル基又はアリール基であり、より好ましくは、アルキル基又はシクロアルキル基であり、これらの基は置換基を有していてもよい。 R Y11 is preferably an alkyl group, a cycloalkyl group or an aryl group, more preferably an alkyl group or a cycloalkyl group, and these groups may have a substituent.
 (式(Y-2)で表される構成単位) (Constituent unit represented by formula (Y-2))
Figure JPOXMLDOC01-appb-C000069

[式中、
 RY1は、前記と同じ意味を表す。
 XY1は、-C(RY2-、-C(RY2)=C(RY2)-又は-C(RY2-C(RY2-で表される基を表す。RY2は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRY2は、同一でも異なっていてもよく、RY2同士は互いに結合して、それぞれが結合する炭素原子と共に環を形成していてもよい。]
Figure JPOXMLDOC01-appb-C000069

[In the formula,
RY1 has the same meaning as above.
X Y1 represents a group represented by -C(R Y2 ) 2 -, -C(R Y2 )=C(R Y2 )- or -C(R Y2 ) 2 -C(R Y2 ) 2 -. RY2 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. A plurality of RY2 may be the same or different, and the RY2 may be bonded to each other to form a ring together with the carbon atoms to which they are bonded. ]
 RY2は、好ましくはアルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくはアルキル基、シクロアルキル基又はアリール基であり、これらの基は置換基を有していてもよい。 R Y2 is preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably an alkyl group, a cycloalkyl group or an aryl group, and these groups have a substituent. may
 XY1において、-C(RY2-で表される基中の2個のRY2の組み合わせは、好ましくは双方がアルキル基若しくはシクロアルキル基、双方がアリール基、双方が1価の複素環基、又は、一方がアルキル基若しくはシクロアルキル基で他方がアリール基若しくは1価の複素環基であり、より好ましくは一方がアルキル基若しくはシクロアルキル基で他方がアリール基であり、これらの基は置換基を有していてもよい。2個存在するRY2は互いに結合して、それぞれが結合する原子と共に環を形成していてもよく、RY2が環を形成する場合、-C(RY2-で表される基としては、好ましくは式(Y-A1)~式(Y-A5)で表される基であり、より好ましくは式(Y-A4)で表される基であり、これらの基は置換基を有していてもよい。 In X Y1 , the combination of two R Y2 in the group represented by —C(R Y2 ) 2 — is preferably both an alkyl group or a cycloalkyl group, both an aryl group, and both a monovalent a cyclic group, or one of which is an alkyl group or a cycloalkyl group and the other is an aryl group or a monovalent heterocyclic group, more preferably one is an alkyl group or a cycloalkyl group and the other is an aryl group; may have a substituent. Two R Y2 may be bonded to each other to form a ring together with the atoms to which they are bonded, and when R Y2 forms a ring, the group represented by -C(R Y2 ) 2 - is preferably a group represented by formulas (Y-A1) to (Y-A5), more preferably a group represented by formula (Y-A4), these groups having a substituent You may have
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000070
 XY1において、-C(RY2)=C(RY2)-で表される基中の2個のRY2の組み合わせは、好ましくは双方がアルキル基若しくはシクロアルキル基、又は、一方がアルキル基若しくはシクロアルキル基で他方がアリール基であり、これらの基は置換基を有していてもよい。 In X Y1 , the combination of two R Y2 in the group represented by -C(R Y2 )=C(R Y2 )- is preferably both alkyl groups or cycloalkyl groups, or one of them is an alkyl group Alternatively, it is a cycloalkyl group and the other is an aryl group, and these groups may have a substituent.
 XY1において、-C(RY2-C(RY2-で表される基中の4個のRY2は、好ましくは置換基を有していてもよいアルキル基又はシクロアルキル基である。複数あるRY2は互いに結合して、それぞれが結合する原子と共に環を形成していてもよく、RY2が環を形成する場合、-C(RY2-C(RY2-で表される基は、好ましくは式(Y-B1)~式(Y-B5)で表される基であり、より好ましくは式(Y-B3)で表される基であり、これらの基は置換基を有していてもよい。 In X Y1 , four R Y2 in the group represented by -C(R Y2 ) 2 -C(R Y2 ) 2 - are preferably optionally substituted alkyl groups or cycloalkyl groups is. A plurality of R Y2 may be bonded to each other to form a ring together with the atoms to which they are bonded, and when R Y2 forms a ring, -C(R Y2 ) 2 -C(R Y2 ) 2 - The group represented is preferably a group represented by formulas (Y-B1) to (Y-B5), more preferably a group represented by formula (Y-B3), and these groups are It may have a substituent.
Figure JPOXMLDOC01-appb-C000071

[式中、RY2は、前記と同じ意味を表す。]
Figure JPOXMLDOC01-appb-C000071

[In the formula, RY2 has the same meaning as described above. ]
 式(Y-2)で表される構成単位は、式(Y-2’)で表される構成単位であることが好ましい。 The structural unit represented by formula (Y-2) is preferably a structural unit represented by formula (Y-2').
Figure JPOXMLDOC01-appb-C000072

[式中、RY1及びXY1は、前記と同じ意味を表す。]
Figure JPOXMLDOC01-appb-C000072

[In the formula, RY1 and XY1 have the same meanings as described above. ]
 (式(Y-3)で表される構成単位) (Constituent unit represented by formula (Y-3))
Figure JPOXMLDOC01-appb-C000073

[式中、RY1及びXY1は、前記と同じ意味を表す。]
Figure JPOXMLDOC01-appb-C000073

[In the formula, RY1 and XY1 have the same meanings as described above. ]
 式(Y-3)で表される構成単位は、式(Y-3’)で表される構成単位であることが好ましい。 The structural unit represented by formula (Y-3) is preferably a structural unit represented by formula (Y-3').
Figure JPOXMLDOC01-appb-C000074

[式中、RY11及びXY1は前記と同じ意味を表す。]
Figure JPOXMLDOC01-appb-C000074

[In the formula, RY11 and XY1 have the same meanings as described above. ]
 (式(Y-4)~式(Y-7)で表される構成単位) (Constituent units represented by formulas (Y-4) to (Y-7))
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076

[式中、
 RY1は、前記と同じ意味を表す。
 RY3は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。]
Figure JPOXMLDOC01-appb-C000076

[In the formula,
RY1 has the same meaning as above.
RY3 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. ]
 RY3は、好ましくはアルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基であり、より好ましくはアリール基であり、これらの基は置換基を有していてもよい。 R Y3 is preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or a monovalent heterocyclic group, more preferably an aryl group, and these groups have a substituent. may
 式(Y-4)で表される構成単位は、式(Y-4’)で表される構成単位であることが好ましく、式(Y-6)で表される構成単位は、式(Y-6’)で表される構成単位であることが好ましい。 The structural unit represented by formula (Y-4) is preferably a structural unit represented by formula (Y-4′), and the structural unit represented by formula (Y-6) is represented by formula (Y -6') is preferred.
Figure JPOXMLDOC01-appb-C000077

[式中、RY1及びRY3は、前記と同じ意味を表す。]
Figure JPOXMLDOC01-appb-C000077

[In the formula, R Y1 and R Y3 have the same meanings as described above. ]
 (式(Y-8)~式(Y-10)で表される構成単位) (Constituent units represented by formulas (Y-8) to (Y-10))
Figure JPOXMLDOC01-appb-C000078

[式中、
 RY1は、前記を同じ意味を表す。
 RY4は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。]
Figure JPOXMLDOC01-appb-C000078

[In the formula,
RY1 has the same meaning as above.
RY4 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. ]
 RY4は、好ましくはアルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基であり、より好ましくはアリール基であり、これらの基は置換基を有していてもよい。 R Y4 is preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or a monovalent heterocyclic group, more preferably an aryl group, and these groups have a substituent. may
 式(Y)で表される構成単位としては、例えば、式(Y-101)~式(Y-141)で表されるアリーレン基からなる構成単位、式(Y-201)~式(Y-209)で表される2価の複素環基からなる構成単位、式(Y-301)~式(Y-306)で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基からなる構成単位が挙げられる。 Examples of structural units represented by formula (Y) include structural units composed of arylene groups represented by formulas (Y-101) to (Y-141), formulas (Y-201) to (Y- 209), at least one arylene group and at least one divalent heterocyclic ring represented by formulas (Y-301) to (Y-306) A structural unit composed of a divalent group directly bonded to a group is exemplified.
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000091
 式(Y)で表される構成単位であって、ArY1がアリーレン基である構成単位の含有量は、本実施形態の発光素子の輝度寿命がより優れるので、高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.5~80モル%であり、より好ましくは30~60モル%である。 The content of the structural unit represented by the formula (Y) in which Ar 2 Y1 is an arylene group is the structural unit contained in the polymer compound because the luminance life of the light-emitting device of the present embodiment is superior. is preferably 0.5 to 80 mol %, more preferably 30 to 60 mol %, based on the total amount of
 式(Y)で表される構成単位であって、ArY1が2価の複素環基、又は、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基である構成単位の含有量は、本実施形態の発光素子の電荷輸送性が優れるので、高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.5~40モル%であり、より好ましくは3~30モル%である。 Structural unit represented by formula (Y), wherein Ar Y1 is a divalent heterocyclic group, or a divalent in which at least one arylene group and at least one divalent heterocyclic group are directly bonded is preferably 0.5 to 40 mol% with respect to the total amount of the structural units contained in the polymer compound, because the light-emitting device of the present embodiment has excellent charge transport properties. Yes, more preferably 3 to 30 mol%.
 式(Y)で表される構成単位は、高分子化合物中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。 The structural unit represented by the formula (Y) may be contained in one type or two or more types in the polymer compound.
 [式(X)で表される構成単位]
 aX1は、本実施形態の発光素子の輝度寿命がより優れるので、好ましくは2以下であり、より好ましくは1である。
[Structural Unit Represented by Formula (X)]
aX1 is preferably 2 or less, and more preferably 1, because the light-emitting element of this embodiment has a superior luminance lifetime.
 aX2は、本実施形態の発光素子の輝度寿命がより優れるので、好ましくは2以下であり、より好ましくは0である。 aX2 is preferably 2 or less, and more preferably 0, since the light-emitting element of this embodiment has a superior luminance lifetime.
 RX1、RX2及びRX3は、好ましくはアルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくはアリール基であり、これらの基は置換基を有していてもよい。 R X1 , R X2 and R X3 are preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably an aryl group, and these groups have a substituent; good too.
 ArX1及びArX3で表されるアリーレン基は、より好ましくは式(A-1)又は式(A-9)で表される基であり、更に好ましくは式(A-1)で表される基であり、これらの基は置換基を有していてもよい。 Arylene groups represented by Ar X1 and Ar X3 are more preferably groups represented by formula (A-1) or formula (A-9), more preferably represented by formula (A-1) groups, and these groups may have a substituent.
 ArX1及びArX3で表される2価の複素環基は、より好ましくは式(AA-1)、式(AA-2)又は式(AA-7)~式(AA-26)で表される基であり、これらの基は置換基を有していてもよい。 The divalent heterocyclic groups represented by Ar X1 and Ar X3 are more preferably represented by formula (AA-1), formula (AA-2) or formulas (AA-7) to (AA-26). These groups may have a substituent.
 ArX1及びArX3は、好ましくは置換基を有していてもよいアリーレン基である。 Ar 1 X1 and Ar 2 X3 are preferably optionally substituted arylene groups.
 ArX2及びArX4で表されるアリーレン基は、より好ましくは式(A-1)、式(A-6)、式(A-7)、式(A-9)~式(A-11)又は式(A-19)で表される基であり、これらの基は置換基を有していてもよい。 Arylene groups represented by Ar X2 and Ar X4 are more preferably represented by formula (A-1), formula (A-6), formula (A-7), formula (A-9) to formula (A-11) or a group represented by formula (A-19), and these groups may have a substituent.
 ArX2及びArX4で表される2価の複素環基のより好ましい範囲は、ArX1及びArX3で表される2価の複素環基のより好ましい範囲と同じである。 The more preferable range of the bivalent heterocyclic groups represented by Ar 1 X2 and Ar 2 X4 is the same as the more preferable range of the bivalent heterocyclic groups represented by Ar 1 X1 and Ar 2 X3 .
 ArX2及びArX4で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基における、アリーレン基及び2価の複素環基のより好ましい範囲、更に好ましい範囲は、それぞれ、ArX1及びArX3で表されるアリーレン基及び2価の複素環基のより好ましい範囲、更に好ましい範囲と同じである。 A more preferred range of the arylene group and the divalent heterocyclic group in the divalent group in which at least one arylene group and at least one divalent heterocyclic group represented by Ar X2 and Ar X4 are directly bonded The more preferable range is the same as the more preferable range and the more preferable range of the arylene group and the divalent heterocyclic group represented by Ar 1 X1 and Ar 2 X3 , respectively.
 ArX2及びArX4で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基としては、例えば、下記式で表される基が挙げられ、これらは置換基を有していてもよい。 Examples of the divalent group in which at least one arylene group and at least one divalent heterocyclic group represented by Ar X2 and Ar X4 are directly bonded include groups represented by the following formulae. , these may have a substituent.
Figure JPOXMLDOC01-appb-C000092

[式中、RXXは、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。]
Figure JPOXMLDOC01-appb-C000092

[In the formula, R XX represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. ]
 RXXは、好ましくはアルキル基、シクロアルキル基又はアリール基であり、これらの基は置換基を有していてもよい。 R XX is preferably an alkyl group, a cycloalkyl group or an aryl group, and these groups may have a substituent.
 ArX2及びArX4は、好ましくは置換基を有していてもよいアリーレン基である。 Ar X2 and Ar X4 are preferably arylene groups optionally having substituents.
 ArX1~ArX4及びRX1~RX3で表される基が有してもよい置換基としては、好ましくはアルキル基、シクロアルキル基又はアリール基であり、これらの基は更に置換基を有していてもよい。 The substituents that the groups represented by Ar X1 to Ar X4 and R X1 to R X3 may have are preferably alkyl groups, cycloalkyl groups or aryl groups, and these groups further have substituents. You may have
 式(X)で表される構成単位としては、好ましくは式(X-1)~式(X-7)で表される構成単位であり、より好ましくは式(X-3)~式(X-7)で表される構成単位であり、更に好ましくは式(X-3)~式(X-6)で表される構成単位である。 The structural unit represented by formula (X) is preferably a structural unit represented by formula (X-1) to formula (X-7), more preferably a structural unit represented by formula (X-3) to formula (X -7), more preferably structural units represented by formulas (X-3) to (X-6).
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000096

[式中、RX4及びRX5は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、ハロゲン原子、1価の複素環基又はシアノ基を表し、これらの基は置換基を有していてもよい。複数存在するRX4は、同一でも異なっていてもよい。複数存在するRX5は、同一でも異なっていてもよく、隣接するRX5同士は互いに結合して、それぞれが結合する炭素原子と共に環を形成していてもよい。]
Figure JPOXMLDOC01-appb-C000096

[Wherein, R X4 and R X5 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a halogen atom, a monovalent heterocyclic group, or a cyano represents a group, and these groups may have a substituent. Multiple R X4 may be the same or different. A plurality of R 1 X5 may be the same or different, and adjacent R 1 X5 may be bonded to each other to form a ring together with the carbon atoms to which they are bonded. ]
 式(X)で表される構成単位としては、例えば、式(X1-1)~式(X1-23)で表される構成単位が挙げられ、好ましくは式(X1-6)~式(X1-14)で表される構成単位である。 Examples of the structural unit represented by formula (X) include structural units represented by formulas (X1-1) to (X1-23), preferably formulas (X1-6) to (X1 -14).
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000103
 式(X)で表される構成単位の含有量は、正孔輸送性が優れるので、高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.1~50モル%であり、より好ましくは1~40モル%であり、更に好ましくは5~30モル%である。 The content of the structural unit represented by the formula (X) is preferably 0.1 to 50 mol% with respect to the total amount of the structural units contained in the polymer compound, since the hole transport property is excellent. It is more preferably 1 to 40 mol %, still more preferably 5 to 30 mol %.
 本実施形態の高分子化合物において、式(X)で表される構成単位は、1種のみ含まれていても、2種以上含まれていてもよい。 The polymer compound of the present embodiment may contain only one kind of structural unit represented by formula (X), or may contain two or more kinds thereof.
 [架橋基を有する構成単位]
 本実施形態の高分子化合物において、架橋基を有する構成単位は、架橋基X群から選ばれる架橋基を有する構成単位であることが好ましく、式(2)で表される構成単位又は式(2’)で表される構成単位であることがより好ましい。
[Structural Unit Having a Crosslinking Group]
In the polymer compound of the present embodiment, the structural unit having a cross-linking group is preferably a structural unit having a cross-linking group selected from Group X of cross-linking groups. ') is more preferred.
Figure JPOXMLDOC01-appb-C000104

[式中、
 nAは0~5の整数を表し、nは1又は2を表す。
 Arは、芳香族炭化水素基又は複素環基を表し、これらの基は置換基を有していてもよい。
 Lは、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-NR’-で表される基、酸素原子又は硫黄原子を表し、これらの基は置換基を有していてもよい。R’は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。Lが複数存在する場合、それらは同一でも異なっていてもよい。
 Xは、架橋基X群から選ばれる架橋基を表す。Xが複数存在する場合、それらは同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000104

[In the formula,
nA represents an integer of 0 to 5, n represents 1 or 2;
Ar 3 represents an aromatic hydrocarbon group or a heterocyclic group, and these groups may have a substituent.
L A represents an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, a group represented by -NR'-, an oxygen atom or a sulfur atom, and these groups have a substituent; good too. R' represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. When multiple L A are present, they may be the same or different.
X represents a cross-linking group selected from X group of cross-linking groups. When there are multiple X's, they may be the same or different. ]
Figure JPOXMLDOC01-appb-C000105

[式中、
 mAは0~5の整数を表し、mは1~4の整数を表し、cは0又は1の整数を表す。mAが複数存在する場合、それらは同一でも異なっていてもよい。
 Arは、芳香族炭化水素基、複素環基、又は、少なくとも1種の芳香族炭化水素環と少なくとも1種の複素環とが直接結合した基を表し、これらの基は置換基を有していてもよい。
 Ar及びArは、それぞれ独立に、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。
 Ar、Ar及びArはそれぞれ、当該基が結合している窒素原子に結合している当該基以外の基と、直接又は酸素原子もしくは硫黄原子を介して結合して、環を形成していてもよい。
 Kは、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-NR’-で表される基、酸素原子又は硫黄原子を表し、これらの基は置換基を有していてもよい。R’は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。Kが複数存在する場合、それらは同一でも異なっていてもよい。
 X’は、架橋基X群から選ばれる架橋基、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。但し、少なくとも1つのX’は、架橋基X群から選ばれる架橋基である。]
Figure JPOXMLDOC01-appb-C000105

[In the formula,
mA represents an integer of 0 to 5, m represents an integer of 1 to 4, and c represents an integer of 0 or 1. When multiple mA are present, they may be the same or different.
Ar 5 represents an aromatic hydrocarbon group, a heterocyclic group, or a group in which at least one aromatic hydrocarbon ring and at least one heterocyclic ring are directly bonded, and these groups have a substituent may be
Ar 4 and Ar 6 each independently represent an arylene group or a divalent heterocyclic group, and these groups may have a substituent.
each of Ar 4 , Ar 5 and Ar 6 is bonded directly or through an oxygen atom or a sulfur atom to a group other than the group bonded to the nitrogen atom to which the group is bonded to form a ring; may be
K A represents an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, a group represented by -NR'-, an oxygen atom or a sulfur atom, and these groups have a substituent; good too. R' represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. When multiple K A are present, they may be the same or different.
X' represents a bridging group selected from the bridging group X group, a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. However, at least one X' is a cross-linking group selected from the X group of cross-linking groups. ]
 架橋基X群から選ばれる架橋基としては、本実施形態の高分子化合物の架橋性が優れるので、式(XL-1)、式(XL-3)、式(XL-5)、式(XL-7)、式(XL-16)又は式(XL-17)で表される架橋基が好ましく、式(XL-1)又は式(XL-17)で表される架橋基が好ましい。 As the cross-linking group selected from the cross-linking group X, since the polymer compound of the present embodiment has excellent cross-linking properties, formula (XL-1), formula (XL-3), formula (XL-5), formula (XL -7), a cross-linking group represented by formula (XL-16) or formula (XL-17) is preferred, and a cross-linking group represented by formula (XL-1) or formula (XL-17) is preferred.
 (式(2)で表される構成単位)
 nAは、本実施形態の発光素子の輝度寿命がより優れるので、好ましくは0又は1であり、より好ましくは0である。
(Structural Unit Represented by Formula (2))
nA is preferably 0 or 1, more preferably 0, since the light-emitting element of this embodiment has a superior luminance lifetime.
 nは、本実施形態の発光素子の輝度寿命がより優れるので、好ましくは2である。 n is preferably 2 because the light-emitting element of this embodiment has a more excellent luminance lifetime.
 Arは、本実施形態の発光素子の輝度寿命がより優れるので、好ましくは置換基を有していてもよい芳香族炭化水素基である。 Ar 3 is preferably an aromatic hydrocarbon group which may have a substituent, since the light-emitting device of this embodiment has a more excellent luminance lifetime.
 Arで表される芳香族炭化水素基の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~30であり、より好ましくは6~18である。
 Arで表される芳香族炭化水素基のn個の置換基を除いたアリーレン基部分としては、好ましくは、式(A-1)~式(A-20)で表される基であり、より好ましくは、式(A-1)、式(A-2)、式(A-6)~式(A-10)、式(A-19)又は式(A-20)で表される基であり、更に好ましくは、式(A-1)、式(A-2)、式(A-7)、式(A-9)又は式(A-19)で表される基であり、これらの基は置換基を有していてもよい。
The number of carbon atoms in the aromatic hydrocarbon group represented by Ar 3 is usually 6 to 60, preferably 6 to 30, more preferably 6 to 18, not including the number of carbon atoms in the substituents. be.
The arylene group portion excluding the n substituents of the aromatic hydrocarbon group represented by Ar 3 is preferably a group represented by formulas (A-1) to (A-20), More preferably, a group represented by formula (A-1), formula (A-2), formula (A-6) to formula (A-10), formula (A-19) or formula (A-20) and more preferably a group represented by formula (A-1), formula (A-2), formula (A-7), formula (A-9) or formula (A-19), The group may have a substituent.
 Arで表される複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~60であり、好ましくは3~30であり、より好ましくは4~18である。
 Arで表される複素環基のn個の置換基を除いた2価の複素環基部分としては、好ましくは、式(AA-1)~式(AA-34)で表される基である。
The number of carbon atoms in the heterocyclic group represented by Ar 3 is usually 2 to 60, preferably 3 to 30, more preferably 4 to 18, not including the number of carbon atoms in substituents.
The divalent heterocyclic group moiety excluding n substituents of the heterocyclic group represented by Ar 3 is preferably a group represented by formulas (AA-1) to (AA-34). be.
 Arで表される芳香族炭化水素基及び複素環基は置換基を有していてもよく、置換基としては、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、ハロゲン原子、1価の複素環基及びシアノ基が挙げられる。 The aromatic hydrocarbon group and heterocyclic group represented by Ar 3 may have a substituent, and examples of the substituent include an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy groups, halogen atoms, monovalent heterocyclic groups and cyano groups.
 Lで表されるアルキレン基は、置換基の炭素原子数を含めないで、通常1~20であり、好ましくは1~15であり、より好ましくは1~10である。Lで表されるシクロアルキレン基は、置換基の炭素原子数を含めないで、通常3~20である。
 アルキレン基及びシクロアルキレン基は、置換基を有していてもよく、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ヘキシレン基、シクロヘキシレン基、オクチレン基が挙げられる。
The alkylene group represented by LA generally has 1 to 20 carbon atoms, preferably 1 to 15 carbon atoms, more preferably 1 to 10 carbon atoms, not including the number of carbon atoms in the substituent. The cycloalkylene group represented by LA usually has 3 to 20 carbon atoms not including the number of carbon atoms in the substituent.
The alkylene group and cycloalkylene group may have a substituent, and examples thereof include methylene group, ethylene group, propylene group, butylene group, hexylene group, cyclohexylene group and octylene group.
 Lで表されるアルキレン基及びシクロアルキレン基は、置換基を有していてもよい。アルキレン基及びシクロアルキレン基が有していてもよい置換基としては、例えば、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、ハロゲン原子及びシアノ基が挙げられる。 The alkylene group and cycloalkylene group represented by LA may have a substituent. Examples of substituents which the alkylene group and the cycloalkylene group may have include an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, a halogen atom and a cyano group.
 Lで表されるアリーレン基は、置換基を有していてもよい。アリーレン基としては、o-フェニレン、m-フェニレン、p-フェニレンが挙げられる。アリーレン基が有してもよい置換基としては、例えば、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、ハロゲン原子、シアノ基及び架橋基X群から選ばれる架橋基が挙げられる。 The arylene group represented by LA may have a substituent. Arylene groups include o-phenylene, m-phenylene and p-phenylene. Examples of substituents that the arylene group may have include alkyl groups, cycloalkyl groups, alkoxy groups, cycloalkoxy groups, aryl groups, aryloxy groups, monovalent heterocyclic groups, halogen atoms, cyano groups and bridges. A bridging group selected from group X may be mentioned.
 Lは、本実施形態の高分子化合物の製造が容易になるため、好ましくはフェニレン基又はアルキレン基であり、これらの基は置換基を有していてもよい。 L A is preferably a phenylene group or an alkylene group because it facilitates production of the polymer compound of the present embodiment, and these groups may have a substituent.
 Xで表される架橋基としては、本実施形態の高分子化合物の架橋性が優れるので、好ましくは式(XL-1)、式(XL-3)、式(XL-5)、式(XL-7)、式(XL-16)又は式(XL-17)で表される架橋基であり、より好ましくは式(XL-1)又は式(XL-17)で表される架橋基である。 As the cross-linking group represented by X, since the polymer compound of the present embodiment has excellent cross-linking properties, the cross-linking group of Formula (XL-1), Formula (XL-3), Formula (XL-5) or Formula (XL-5) is preferable. -7), a cross-linking group represented by formula (XL-16) or formula (XL-17), more preferably a cross-linking group represented by formula (XL-1) or formula (XL-17) .
 式(2)で表される構成単位の含有量は、本実施形態の高分子化合物の安定性及び架橋性が優れるので、高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.5~50モル%であり、より好ましくは3~30モル%であり、更に好ましくは3~20モル%である。 Since the polymer compound of the present embodiment has excellent stability and crosslinkability, the content of the structural unit represented by formula (2) is preferably 0 with respect to the total amount of the structural units contained in the polymer compound. .5 to 50 mol %, more preferably 3 to 30 mol %, still more preferably 3 to 20 mol %.
 式(2)で表される構成単位は、高分子化合物中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。 The structural unit represented by the formula (2) may be contained in one type or two or more types in the polymer compound.
 (式(2’)で表される構成単位)
 mAは、本実施形態の発光素子の輝度寿命がより優れるので、好ましくは0又は1であり、より好ましくは0である。
(Structural Unit Represented by Formula (2′))
mA is preferably 0 or 1, more preferably 0, since the light-emitting element of this embodiment has a superior luminance lifetime.
 mは、本実施形態の発光素子の輝度寿命がより優れるので、好ましくは2である。 m is preferably 2 because the light-emitting element of this embodiment has a more excellent luminance lifetime.
 cは、本実施形態の高分子化合物の製造が容易になり、かつ、本実施形態の発光素子の輝度寿命がより優れるので、好ましくは0である。 c is preferably 0, since the production of the polymer compound of the present embodiment is facilitated and the luminance lifetime of the light emitting device of the present embodiment is more excellent.
 Arは、本実施形態の発光素子の輝度寿命がより優れるので、好ましくは置換基を有していてもよい芳香族炭化水素基である。 Ar 5 is preferably an aromatic hydrocarbon group which may have a substituent, since the light-emitting device of this embodiment has a more excellent luminance lifetime.
 Arで表される芳香族炭化水素基のm個の置換基を除いたアリーレン基部分の定義や例は、式(X)におけるArX2で表されるアリーレン基の定義や例と同じである。 Definitions and examples of the arylene group moiety excluding m substituents of the aromatic hydrocarbon group represented by Ar 5 are the same as definitions and examples of the arylene group represented by Ar X2 in formula (X). .
 Arで表される複素環基のm個の置換基を除いた2価の複素環基部分の定義や例は、式(X)におけるArX2で表される2価の複素環基の定義や例と同じである。 Definitions and examples of the divalent heterocyclic group moiety excluding m substituents of the heterocyclic group represented by Ar 5 are defined in the definition of the divalent heterocyclic group represented by Ar X2 in the formula (X). and examples are the same.
 Arで表される少なくとも1種の芳香族炭化水素環と少なくとも1種の複素環が直接結合した基のm個の置換基を除いた2価の基の定義や例は、式(X)におけるArX2で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基の定義や例と同じである。 Definitions and examples of the divalent group excluding m substituents of the group represented by Ar 5 in which at least one aromatic hydrocarbon ring and at least one heterocyclic ring are directly bonded are represented by the formula (X) is the same as the definition and examples of the divalent group in which at least one arylene group represented by Ar X2 and at least one divalent heterocyclic group are directly bonded.
 Ar及びArは、本実施形態の発光素子の輝度寿命がより優れるので、好ましくは置換基を有していてもよいアリーレン基である。 Ar 4 and Ar 6 are preferably an arylene group optionally having a substituent, since the light-emitting device of this embodiment has a more excellent luminance lifetime.
 Ar及びArで表されるアリーレン基の定義や例は、式(X)におけるArX1及びArX3で表されるアリーレン基の定義や例と同じである。 The definitions and examples of the arylene groups represented by Ar 4 and Ar 6 are the same as the definitions and examples of the arylene groups represented by Ar X1 and Ar X3 in formula (X).
 Ar及びArで表される2価の複素環基の定義や例は、式(X)におけるArX1及びArX3で表される2価の複素環基の定義や例と同じである。 The definitions and examples of the bivalent heterocyclic groups represented by Ar 4 and Ar 6 are the same as the definitions and examples of the bivalent heterocyclic groups represented by Ar X1 and Ar X3 in formula (X).
 Ar、Ar及びArで表される基は置換基を有していてもよく、置換基としては、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、ハロゲン原子、1価の複素環基及びシアノ基が挙げられる。 The groups represented by Ar 4 , Ar 5 and Ar 6 may have a substituent, and examples of the substituent include an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, Halogen atoms, monovalent heterocyclic groups and cyano groups are included.
 Kで表されるアルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基の定義や例は、それぞれ、Lで表されるアルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基の定義や例と同じである。 Definitions and examples of the alkylene group, cycloalkylene group, arylene group, and divalent heterocyclic group represented by K A respectively refer to the alkylene group, cycloalkylene group, arylene group, and divalent heterocyclic group represented by LA . It is the same as the definition and examples of ring group.
 Kは、本実施形態の高分子化合物の製造が容易になるので、フェニレン基又はメチレン基であることが好ましい。 KA is preferably a phenylene group or a methylene group, since this facilitates the production of the polymer compound of the present embodiment.
 X’で表される架橋基としては、本実施形態の高分子化合物の架橋性が優れるので、好ましくは式(XL-1)、式(XL-3)、式(XL-5)、式(XL-7)、式(XL-16)又は式(XL-17)で表される架橋基であり、より好ましくは式(XL-1)又は式(XL-17)で表される架橋基である。 As the cross-linking group represented by X′, since the polymer compound of the present embodiment has excellent cross-linking properties, the cross-linking group represented by the formula (XL-1), the formula (XL-3), the formula (XL-5), the formula ( XL-7), a cross-linking group represented by formula (XL-16) or formula (XL-17), more preferably a cross-linking group represented by formula (XL-1) or formula (XL-17) be.
 式(2’)で表される構成単位の含有量は、本実施形態の高分子化合物の安定性が優れ、かつ、本実施形態の高分子化合物の架橋性が優れるので、高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.5~50モル%であり、より好ましくは3~30モル%であり、更に好ましくは3~20モル%である。 The content of the structural unit represented by the formula (2′) is such that the polymer compound of the present embodiment has excellent stability and the polymer compound of the present embodiment has excellent crosslinkability, so that it is contained in the polymer compound. It is preferably 0.5 to 50 mol %, more preferably 3 to 30 mol %, still more preferably 3 to 20 mol %, relative to the total amount of the constituent units.
 式(2’)で表される構成単位は、高分子化合物中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。 The structural unit represented by formula (2') may be contained in only one type or may be contained in two or more types in the polymer compound.
 (式(2)又は(2’))で表される構成単位の好ましい態様)
 式(2)で表される構成単位としては、例えば、式(2-1)~式(2-30)で表される構成単位が挙げられ、式(2’)で表される構成単位としては、例えば、式(2’-1)~式(2’-9)で表される構成単位が挙げられる。これらの中でも、本実施形態の高分子化合物の架橋性が優れるので、好ましくは式(2-1)~式(2-30)で表される構成単位であり、より好ましくは式(2-1)~式(2-15)、式(2-19)、式(2-20)、式(2-23)、式(2-25)又は式(2-30)で表される構成単位であり、更に好ましくは式(2-1)~式(2-9)又は式(2-30)で表される構成単位である。
(Preferred Embodiment of Structural Unit Represented by Formula (2) or (2′)))
Examples of structural units represented by formula (2) include structural units represented by formulas (2-1) to (2-30), and structural units represented by formula (2′) include includes, for example, structural units represented by formulas (2′-1) to (2′-9). Among these, structural units represented by formulas (2-1) to (2-30) are preferable, and more preferably formula (2-1 ) to structural units represented by formula (2-15), formula (2-19), formula (2-20), formula (2-23), formula (2-25) or formula (2-30) and more preferably structural units represented by formulas (2-1) to (2-9) or (2-30).
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000108
 本実施形態の高分子化合物としては、例えば、表1に示す高分子化合物P-1~P-12が挙げられる。ここで、「その他の構成単位」とは、式(0)、式(X)、式(Y)、式(2)及び式(2’)で表される構成単位以外の構成単位を意味する。 Examples of the polymer compound of the present embodiment include polymer compounds P-1 to P-12 shown in Table 1. Here, "other structural units" mean structural units other than the structural units represented by formula (0), formula (X), formula (Y), formula (2) and formula (2'). .
Figure JPOXMLDOC01-appb-T000109

[表中、p、q、r、s、t及びuは、各構成単位のモル比率を表す。p+q+r+s+t+u=100であり、かつ、70≦p+q+r+s+t≦100である。]
Figure JPOXMLDOC01-appb-T000109

[In the table, p, q, r, s, t and u represent the molar ratio of each structural unit. p+q+r+s+t+u=100 and 70≦p+q+r+s+t≦100. ]
 高分子化合物P-1~P-12における、式(0)、式(X)、式(Y)、式(2)及び式(2’)で表される構成単位の例及び好ましい範囲は、上述のとおりである。 Examples and preferred ranges of structural units represented by formula (0), formula (X), formula (Y), formula (2) and formula (2′) in the polymer compounds P-1 to P-12 are As mentioned above.
 本実施形態の高分子化合物の末端基は、重合活性基がそのまま残っていると、高分子化合物を発光素子の作製に用いた場合に発光特性や輝度寿命が低下する可能性があるので、好ましくは安定な基である。この末端基としては、主鎖と共役結合している基が好ましく、炭素-炭素結合を介してアリール基又は1価の複素環基と結合している基が挙げられる。 The terminal group of the polymer compound of the present embodiment is preferable because if the polymerization active group remains as it is, there is a possibility that the light emitting property and the luminance life will be reduced when the polymer compound is used for the production of a light emitting device. is a stable group. The terminal group is preferably a group that is conjugated to the main chain, and includes a group that is bonded to an aryl group or a monovalent heterocyclic group via a carbon-carbon bond.
 本実施形態の高分子化合物は、ブロック共重合体、ランダム共重合体、交互共重合体、グラフト共重合体のいずれであってもよいし、その他の態様であってもよいが、複数種の原料モノマーを共重合してなる共重合体であることが好ましい。 The polymer compound of the present embodiment may be any of a block copolymer, a random copolymer, an alternating copolymer, and a graft copolymer, or may be in other forms. It is preferably a copolymer obtained by copolymerizing raw material monomers.
 <高分子化合物の製造方法>
 次に、本実施形態の高分子化合物の製造方法について説明する。
<Method for producing polymer compound>
Next, a method for producing the polymer compound of the present embodiment will be described.
 本実施形態の高分子化合物は、例えば、式(M-0)で表される化合物と、式(M-Y)で表される化合物、式(M-X)で表される化合物、式(M-2)で表される化合物及び式(M-2’)で表される化合物からなる群から選ばれる少なくとも一種の化合物と、を縮合重合させることにより製造することができる。本明細書において、本実施形態の高分子化合物の製造に使用される化合物を総称して、「原料モノマー」ということがある。 The polymer compound of the present embodiment includes, for example, a compound represented by the formula (M-0), a compound represented by the formula (M-Y), a compound represented by the formula (MX), and a compound represented by the formula ( It can be produced by condensation polymerization of at least one compound selected from the group consisting of the compound represented by M-2) and the compound represented by formula (M-2′). In this specification, the compounds used for producing the polymer compound of the present embodiment may be collectively referred to as "raw material monomer".
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000114

[式中、
 a、R、ArY1、a、a、nA、n、Ar、L、X、mA、m、c、Ar~Ar、K、X’、ArY1、a、a、ArX1~ArX4及びRX1~RX3は、前記と同じ意味を表す。
 ZC1~ZC10は、それぞれ独立に、置換基A群及び置換基B群からなる群から選ばれる基を表す。]
Figure JPOXMLDOC01-appb-C000114

[In the formula,
a 0 , R 0 , Ar Y1 , a 1 , a 2 , nA, n, Ar 3 , L A , X, mA, m, c, Ar 4 to Ar 6 , K A , X′, Ar Y1 , a 1 , a 2 , Ar X1 to Ar X4 and R X1 to R X3 have the same meanings as above.
Z C1 to Z C10 each independently represent a group selected from the group consisting of substituent group A and substituent group B. ]
 例えば、ZC1、ZC2、ZC3、ZC4、ZC5及びZC6が置換基A群から選ばれる基である場合、ZC7、ZC8、ZC9及びZC10は、置換基B群から選ばれる基を選択する。 For example, when Z C1 , Z C2 , Z C3 , Z C4 , Z C5 and Z C6 are groups selected from substituent group A, Z C7 , Z C8 , Z C9 and Z C10 are from substituent group B Select the group of choice.
 例えば、ZC1、ZC2、ZC3、ZC4、ZC5及びZC6が置換基B群から選ばれる基である場合、ZC7、ZC8、ZC9及びZC10は、置換基A群から選ばれる基を選択する。 For example, when Z C1 , Z C2 , Z C3 , Z C4 , Z C5 and Z C6 are groups selected from Substituent Group B, Z C7 , Z C8 , Z C9 and Z C10 are from Substituent Group A Select the group of choice.
 <置換基A群>
 塩素原子、臭素原子、ヨウ素原子、-O-S(=O)C1(式中、RC1は、アルキル基、シクロアルキル基又はアリール基を表し、これらの基は置換基を有していてもよい。)で表される基。
<Substituent Group A>
chlorine atom, bromine atom, iodine atom, —O—S(=O) 2 R C1 (wherein R C1 represents an alkyl group, a cycloalkyl group or an aryl group, and these groups have substituents; may be used.).
 <置換基B群>
 -B(ORC2(式中、RC2は、水素原子、アルキル基、シクロアルキル基又はアリール基を表し、これらの基は置換基を有していてもよい。複数存在するRC2は同一でも異なっていてもよく、互いに連結して、それぞれが結合する酸素原子とともに環構造を形成していてもよい。)で表される基;
 -BFQ’(式中、Q’は、Li、Na、K、Rb又はCsを表す。)で表される基;
 -MgY’(式中、Y’は、塩素原子、臭素原子又はヨウ素原子を表す。)で表される基;
 -ZnY’’(式中、Y’’は、塩素原子、臭素原子又はヨウ素原子を表す。)で表される基;及び、
 -Sn(RC3(式中、RC3は、水素原子、アルキル基、シクロアルキル基又はアリール基を表し、これらの基は置換基を有していてもよい。複数存在するRC3は同一でも異なっていてもよく、互いに連結して、それぞれが結合するスズ原子とともに環構造を形成していてもよい。)で表される基。
<Substituent Group B>
—B(OR C2 ) 2 (In the formula, R C2 represents a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group, and these groups may have a substituent. Multiple R C2 may be the same or different, and may be linked to each other to form a ring structure together with the oxygen atoms to which they are attached.);
- A group represented by BF 3 Q' (wherein Q' represents Li, Na, K, Rb or Cs);
-MgY' (Wherein, Y' represents a chlorine atom, a bromine atom or an iodine atom.) A group represented by;
-ZnY'' (Wherein, Y'' represents a chlorine atom, a bromine atom or an iodine atom.); and
—Sn(R C3 ) 3 (In the formula, R C3 represents a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group, and these groups may have a substituent. Multiple R C3 may be the same or different, and may be linked to each other to form a ring structure together with the tin atom to which each is attached.).
 -B(ORC2で表される基としては、下記式で表される基が例示される。 Examples of the group represented by -B(OR C2 ) 2 include groups represented by the following formulae.
Figure JPOXMLDOC01-appb-C000115
Figure JPOXMLDOC01-appb-C000115
 置換基A群から選ばれる基を有する化合物と置換基B群から選ばれる基を有する化合物とは、公知のカップリング反応により縮合重合して、置換基A群から選ばれる基及び置換基B群から選ばれる基と結合する炭素原子同士が結合する。そのため、置換基A群から選ばれる基を2個有する化合物と、置換基B群から選ばれる基を2個有する化合物を公知のカップリング反応に供すれば、縮合重合により、これらの化合物の縮合重合体を得ることができる。 A compound having a group selected from substituent group A and a compound having a group selected from substituent group B are subjected to condensation polymerization by a known coupling reaction to form a group selected from substituent group A and substituent group B. The carbon atoms bonded to the group selected from are bonded to each other. Therefore, if a compound having two groups selected from the substituent group A and a compound having two groups selected from the substituent group B are subjected to a known coupling reaction, condensation polymerization of these compounds can be performed. A polymer can be obtained.
 縮合重合は、通常、触媒、塩基及び溶媒の存在下で行なわれるが、必要に応じて、相間移動触媒を共存させて行ってもよい。 Condensation polymerization is usually carried out in the presence of a catalyst, a base and a solvent, but if necessary, it may be carried out in the presence of a phase transfer catalyst.
 触媒としては、例えば、ビス(トリフェニルホスフィン)パラジウム(II)ジクロリド、ビス(トリス-o-メトキシフェニルホスフィン)パラジウム(II)ジクロリド、テトラキス(トリフェニルホスフィン)パラジウム(0)、トリス(ジベンジリデンアセトン)ジパラジウム(0)、酢酸パラジウム等のパラジウム錯体、テトラキス(トリフェニルホスフィン)ニッケル(0)、[1,3-ビス(ジフェニルホスフィノ)プロパン)ニッケル(II)ジクロリド、ビス(1,4-シクロオクタジエン)ニッケル(0)等のニッケル錯体等の遷移金属錯体;これらの遷移金属錯体が、更にトリフェニルホスフィン、トリ(o-トリル)ホスフィン、トリ(tert-ブチル)ホスフィン、トリシクロヘキシルホスフィン、1,3-ビス(ジフェニルホスフィノ)プロパン、ビピリジル等の配位子を有する錯体が挙げられる。触媒は、一種単独で用いても二種以上を併用してもよい。 Examples of catalysts include bis(triphenylphosphine)palladium(II) dichloride, bis(tris-o-methoxyphenylphosphine)palladium(II) dichloride, tetrakis(triphenylphosphine)palladium(0), tris(dibenzylideneacetone ) dipalladium(0), palladium complexes such as palladium acetate, tetrakis(triphenylphosphine)nickel(0), [1,3-bis(diphenylphosphino)propane)nickel(II) dichloride, bis(1,4- transition metal complexes such as nickel complexes such as cyclooctadiene)nickel(0); Complexes having ligands such as 1,3-bis(diphenylphosphino)propane and bipyridyl can be mentioned. A catalyst may be used individually by 1 type, or may use 2 or more types together.
 触媒の使用量は、原料モノマーのモル数の合計に対する遷移金属の量として、通常、0.00001~3モル当量である。 The amount of catalyst used is usually 0.00001 to 3 molar equivalents as the amount of transition metal relative to the total number of moles of raw material monomers.
 塩基及び相間移動触媒としては、例えば、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、フッ化カリウム、フッ化セシウム、リン酸三カリウム等の無機塩基;フッ化テトラブチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラブチルアンモニウム等の有機塩基;塩化テトラブチルアンモニウム、臭化テトラブチルアンモニウム等の相間移動触媒が挙げられる。塩基及び相間移動触媒は、それぞれ、一種単独で用いても二種以上を併用してもよい。 Examples of bases and phase transfer catalysts include inorganic bases such as sodium carbonate, potassium carbonate, cesium carbonate, potassium fluoride, cesium fluoride, and tripotassium phosphate; organic bases such as butylammonium; and phase transfer catalysts such as tetrabutylammonium chloride and tetrabutylammonium bromide. Each of the base and the phase transfer catalyst may be used alone or in combination of two or more.
 塩基及び相間移動触媒の使用量は、それぞれ、原料モノマーの合計モル数に対して、通常0.001~100モル当量である。 The amount of the base and the phase transfer catalyst used is usually 0.001 to 100 molar equivalents relative to the total number of moles of the raw material monomers.
 溶媒としては、例えば、トルエン、キシレン、メシチレン、テトラヒドロフラン、1,4-ジオキサン、ジメトキシエタン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等の有機溶媒、水が挙げられる。溶媒は、一種単独で用いても二種以上を併用してもよい。 Examples of solvents include organic solvents such as toluene, xylene, mesitylene, tetrahydrofuran, 1,4-dioxane, dimethoxyethane, N,N-dimethylacetamide, N,N-dimethylformamide, and water. A solvent may be used individually by 1 type, or may use 2 or more types together.
 溶媒の使用量は、通常、原料モノマーの合計100質量部に対して、10~100000質量部である。 The amount of solvent used is usually 10 to 100,000 parts by mass with respect to the total of 100 parts by mass of raw material monomers.
 縮合重合の反応温度は、通常-100~200℃である。縮合重合の反応時間は、通常1時間以上である。 The reaction temperature for condensation polymerization is usually -100 to 200°C. The condensation polymerization reaction time is usually 1 hour or more.
 重合反応の後処理は、公知の方法、例えば、分液により水溶性不純物を除去する方法、メタノール等の低級アルコールに重合反応後の反応液を加えて、析出させた沈殿を濾過した後、乾燥させる方法等を単独、又は組み合わせて行う。高分子化合物の純度が低い場合、例えば、晶析、再沈殿、ソックスレー抽出器による連続抽出、カラムクロマトグラフィー等の通常の方法にて精製することができる。 The post-treatment of the polymerization reaction is performed by a known method, for example, a method of removing water-soluble impurities by liquid separation, adding the reaction solution after the polymerization reaction to a lower alcohol such as methanol, filtering the deposited precipitate, and drying it. method, etc., shall be used singly or in combination. When the purity of the polymer compound is low, it can be purified by conventional methods such as crystallization, reprecipitation, continuous extraction using a Soxhlet extractor, and column chromatography.
 <組成物>
 本実施形態の組成物は、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料、酸化防止剤及び溶媒からなる群から選ばれる少なくとも1種の材料と、本実施形態の高分子化合物とを含有する。
<Composition>
The composition of the present embodiment comprises at least one material selected from the group consisting of a hole-transporting material, a hole-injecting material, an electron-transporting material, an electron-injecting material, a light-emitting material, an antioxidant, and a solvent; and a polymer compound of
 本実施形態の高分子化合物及び溶媒を含有する組成物(以下、「インク」ということがある。)は、インクジェットプリント法、ノズルプリント法等の印刷法を用いた発光素子の作製に好適である。 A composition containing a polymer compound and a solvent of the present embodiment (hereinafter sometimes referred to as "ink") is suitable for producing a light-emitting device using a printing method such as an inkjet printing method or a nozzle printing method. .
 インクの粘度は、印刷法の種類によって調整すればよいが、インクジェットプリント法等の溶液が吐出装置を経由する印刷法に適用する場合には、吐出時の目づまりと飛行曲がりを防止するために、好ましくは25℃において1~20mPa・sである。 The viscosity of the ink may be adjusted depending on the type of printing method, but when applying to a printing method such as an inkjet printing method in which a solution passes through an ejection device, it is necessary to prevent clogging and flight deflection during ejection. , preferably 1 to 20 mPa·s at 25°C.
 インクに含まれる溶媒は、該インク中の固形分を溶解又は均一に分散できる溶媒が好ましい。溶媒としては、例えば、1,2-ジクロロエタン、1,1,2-トリクロロエタン、クロロベンゼン、o-ジクロロベンゼン等の塩素系溶媒;テトラヒドロフラン、ジオキサン、アニソール、4-メチルアニソール等のエーテル系溶媒;トルエン、キシレン、メシチレン、エチルベンゼン、n-ヘキシルベンゼン、シクロヘキシルベンゼン等の芳香族炭化水素系溶媒;シクロヘキサン、メチルシクロヘキサン、n-ペンタン、n-ヘキサン、n-へプタン、n-オクタン、n-ノナン、n-デカン、n-ドデカン、ビシクロヘキシル等の脂肪族炭化水素系溶媒;アセトン、メチルエチルケトン、シクロヘキサノン、アセトフェノン等のケトン系溶媒;酢酸エチル、酢酸ブチル、エチルセルソルブアセテート、安息香酸メチル、酢酸フェニル等のエステル系溶媒;エチレングリコール、グリセリン、1,2-ヘキサンジオール等の多価アルコール系溶媒;イソプロピルアルコール、シクロヘキサノール等のアルコール系溶媒;ジメチルスルホキシド等のスルホキシド系溶媒;N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド等のアミド系溶媒が挙げられる。溶媒は、一種単独で用いても二種以上を併用してもよい。 The solvent contained in the ink is preferably a solvent capable of dissolving or uniformly dispersing the solid content in the ink. Examples of solvents include chlorine solvents such as 1,2-dichloroethane, 1,1,2-trichloroethane, chlorobenzene and o-dichlorobenzene; ether solvents such as tetrahydrofuran, dioxane, anisole and 4-methylanisole; Aromatic hydrocarbon solvents such as xylene, mesitylene, ethylbenzene, n-hexylbenzene, cyclohexylbenzene; cyclohexane, methylcyclohexane, n-pentane, n-hexane, n-heptane, n-octane, n-nonane, n- Aliphatic hydrocarbon solvents such as decane, n-dodecane and bicyclohexyl; ketone solvents such as acetone, methyl ethyl ketone, cyclohexanone and acetophenone; esters such as ethyl acetate, butyl acetate, ethyl cellosolve acetate, methyl benzoate and phenyl acetate. polyhydric alcohol solvents such as ethylene glycol, glycerin, and 1,2-hexanediol; alcohol solvents such as isopropyl alcohol and cyclohexanol; sulfoxide solvents such as dimethyl sulfoxide; N-methyl-2-pyrrolidone, N , and N-dimethylformamide. A solvent may be used individually by 1 type, or may use 2 or more types together.
 インクにおいて、溶媒の配合量は、本実施形態の高分子化合物100質量部に対して、通常、1000~100000質量部であり、好ましくは2000~20000質量部である。 In the ink, the blending amount of the solvent is usually 1,000 to 100,000 parts by mass, preferably 2,000 to 20,000 parts by mass, based on 100 parts by mass of the polymer compound of the present embodiment.
 [正孔輸送材料]
 正孔輸送材料は、低分子化合物と高分子化合物とに分類され、高分子化合物が好ましく、架橋基を有する高分子化合物がより好ましい。
[Hole transport material]
The hole-transporting material is classified into a low-molecular-weight compound and a high-molecular-weight compound, preferably a high-molecular-weight compound, and more preferably a high-molecular-weight compound having a cross-linking group.
 高分子化合物としては、例えば、ポリビニルカルバゾール及びその誘導体;側鎖又は主鎖に芳香族アミン構造を有するポリアリーレン及びその誘導体が挙げられる。高分子化合物は、電子受容性部位が結合された化合物でもよい。電子受容性部位としては、例えば、フラーレン、テトラフルオロテトラシアノキノジメタン、テトラシアノエチレン、トリニトロフルオレノン等が挙げられ、好ましくはフラーレンである。 Polymer compounds include, for example, polyvinylcarbazole and its derivatives; polyarylene and its derivatives having an aromatic amine structure in the side chain or main chain. A polymer compound may be a compound having an electron-accepting site attached thereto. Examples of electron-accepting moieties include fullerene, tetrafluorotetracyanoquinodimethane, tetracyanoethylene, trinitrofluorenone and the like, preferably fullerene.
 本実施形態の組成物において、正孔輸送材料の配合量は、本実施形態の高分子化合物100質量部に対して、通常、1~400質量部であり、好ましくは5~150質量部である。 In the composition of the present embodiment, the compounding amount of the hole transport material is usually 1 to 400 parts by mass, preferably 5 to 150 parts by mass, with respect to 100 parts by mass of the polymer compound of the present embodiment. .
 正孔輸送材料は、一種単独で用いても二種以上を併用してもよい。 The hole-transporting materials may be used singly or in combination of two or more.
 [電子輸送材料]
 電子輸送材料は、低分子化合物と高分子化合物とに分類される。電子輸送材料は、架橋基を有していてもよい。
[Electron transport material]
Electron transport materials are classified into low-molecular-weight compounds and high-molecular-weight compounds. The electron transport material may have a cross-linking group.
 低分子化合物としては、例えば、8-ヒドロキシキノリンを配位子とする金属錯体、オキサジアゾール、アントラキノジメタン、ベンゾキノン、ナフトキノン、アントラキノン、テトラシアノアントラキノジメタン、フルオレノン、ジフェニルジシアノエチレン、及び、ジフェノキノン、並びに、これらの誘導体が挙げられる。 Examples of low-molecular-weight compounds include metal complexes having 8-hydroxyquinoline as a ligand, oxadiazole, anthraquinodimethane, benzoquinone, naphthoquinone, anthraquinone, tetracyanoanthraquinodimethane, fluorenone, diphenyldicyanoethylene, and , diphenoquinone, and derivatives thereof.
 高分子化合物としては、例えば、ポリフェニレン、ポリフルオレン、及び、これらの誘導体が挙げられる。高分子化合物は、金属でドープされていてもよい。 Examples of polymer compounds include polyphenylene, polyfluorene, and derivatives thereof. The polymeric compounds may be doped with metals.
 本実施形態の組成物において、電子輸送材料の配合量は、本実施形態の高分子化合物100質量部に対して、通常、1~400質量部であり、好ましくは5~150質量部である。 In the composition of the present embodiment, the amount of the electron-transporting material is usually 1-400 parts by mass, preferably 5-150 parts by mass, per 100 parts by mass of the polymer compound of the present embodiment.
 電子輸送材料は、一種単独で用いても二種以上を併用してもよい。 The electron transport material may be used singly or in combination of two or more.
 [正孔注入材料及び電子注入材料]
 正孔注入材料及び電子注入材料は、各々、低分子化合物と高分子化合物とに分類される。正孔注入材料及び電子注入材料は、架橋基を有していてもよい。
[Hole injection material and electron injection material]
Hole-injecting materials and electron-injecting materials are classified into low-molecular-weight compounds and high-molecular-weight compounds, respectively. The hole-injecting material and the electron-injecting material may have cross-linking groups.
 低分子化合物としては、例えば、銅フタロシアニン等の金属フタロシアニン;カーボン;モリブデン、タングステン等の金属酸化物;フッ化リチウム、フッ化ナトリウム、フッ化セシウム、フッ化カリウム等の金属フッ化物が挙げられる。 Examples of low-molecular compounds include metal phthalocyanines such as copper phthalocyanine; carbon; metal oxides such as molybdenum and tungsten; and metal fluorides such as lithium fluoride, sodium fluoride, cesium fluoride, and potassium fluoride.
 高分子化合物としては、例えば、ポリアニリン、ポリチオフェン、ポリピロール、ポリフェニレンビニレン、ポリチエニレンビニレン、ポリキノリン、及び、ポリキノキサリン、並びに、これらの誘導体;芳香族アミン構造を主鎖又は側鎖に含む重合体等の導電性高分子が挙げられる。 Polymer compounds include, for example, polyaniline, polythiophene, polypyrrole, polyphenylene vinylene, polythienylene vinylene, polyquinoline, polyquinoxaline, and derivatives thereof; polymers containing an aromatic amine structure in the main chain or side chain; of conductive polymers.
 本実施形態の組成物において、正孔注入材料及び電子注入材料の配合量は、各々、本実施形態の高分子化合物100質量部に対して、通常、1~400質量部であり、好ましくは5~150質量部である。 In the composition of the present embodiment, the compounding amount of the hole-injecting material and the electron-injecting material is usually 1 to 400 parts by mass, preferably 5 parts by mass, relative to 100 parts by mass of the polymer compound of the present embodiment. ~150 parts by mass.
 正孔注入材料及び電子注入材料は、各々、一種単独で用いても二種以上を併用してもよい。 Each of the hole injection material and the electron injection material may be used alone or in combination of two or more.
 [イオンドープ]
 正孔注入材料又は電子注入材料が導電性高分子を含む場合、導電性高分子の電気伝導度は、好ましくは、1×10-5S/cm~1×10S/cmである。導電性高分子の電気伝導度をかかる範囲とするために、導電性高分子に適量のイオンをドープすることができる。
[Ion doping]
When the hole-injecting material or electron-injecting material comprises a conductive polymer, the electrical conductivity of the conductive polymer is preferably between 1×10 −5 S/cm and 1×10 3 S/cm. The conductive polymer can be doped with an appropriate amount of ions in order to set the electrical conductivity of the conductive polymer within this range.
 ドープするイオンの種類は、正孔注入材料であればアニオン、電子注入材料であればカチオンである。アニオンとしては、例えば、ポリスチレンスルホン酸イオン、アルキルベンゼンスルホン酸イオン、樟脳スルホン酸イオンが挙げられる。カチオンとしては、例えば、リチウムイオン、ナトリウムイオン、カリウムイオン、テトラブチルアンモニウムイオンが挙げられる。 The types of ions to be doped are anions for hole-injection materials and cations for electron-injection materials. Examples of anions include polystyrene sulfonate ions, alkylbenzene sulfonate ions, and camphor sulfonate ions. Examples of cations include lithium ion, sodium ion, potassium ion, and tetrabutylammonium ion.
 ドープするイオンは、一種のみでも二種以上でもよい。 The ions to be doped may be one kind or two or more kinds.
 [発光材料]
 発光材料は、低分子化合物と高分子化合物とに分類される。発光材料は、架橋基を有していてもよい。
[Light emitting material]
Light-emitting materials are classified into low-molecular-weight compounds and high-molecular-weight compounds. The luminescent material may have a cross-linking group.
 低分子化合物としては、例えば、ナフタレン及びその誘導体、アントラセン及びその誘導体、ペリレン及びその誘導体、並びに、イリジウム、白金又はユーロピウムを中心金属とする三重項発光錯体が挙げられる。 Examples of low-molecular-weight compounds include naphthalene and its derivatives, anthracene and its derivatives, perylene and its derivatives, and triplet emission complexes with iridium, platinum, or europium as the central metal.
 高分子化合物としては、例えば、フェニレン基、ナフタレンジイル基、フルオレンジイル基、フェナントレンジイル基、ジヒドロフェナントレンジイル基、式(X)で表される基、カルバゾールジイル基、フェノキサジンジイル基、フェノチアジンジイル基、アントラセンジイル基、ピレンジイル基等を含む高分子化合物が挙げられる。 Polymer compounds include, for example, phenylene group, naphthalenediyl group, fluorenediyl group, phenanthrenediyl group, dihydrophenanthrenediyl group, group represented by formula (X), carbazoldiyl group, phenoxazinediyl group, phenothiazinediyl , anthracenediyl group, pyrenediyl group, and the like.
 発光材料は、低分子化合物及び高分子化合物を含んでいてもよく、好ましくは、三重項発光錯体及び高分子化合物を含む。 The light-emitting material may contain a low-molecular-weight compound and a high-molecular-weight compound, preferably a triplet light-emitting complex and a high-molecular-weight compound.
 三重項発光錯体としては、式Ir-1~式Ir-5で表される金属錯体等のイリジウム錯体が好ましい。 Iridium complexes such as metal complexes represented by formulas Ir-1 to Ir-5 are preferable as triplet light-emitting complexes.
Figure JPOXMLDOC01-appb-C000116
Figure JPOXMLDOC01-appb-C000116
Figure JPOXMLDOC01-appb-C000117
Figure JPOXMLDOC01-appb-C000117
Figure JPOXMLDOC01-appb-C000118

[式中、
 RD1~RD8、RD11~RD20、RD21~RD26及びRD31~RD37は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。RD1~RD8、RD11~RD20、RD21~RD26及びRD31~RD37が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。
 -AD1---AD2-は、アニオン性の2座配位子を表し、AD1及びAD2は、それぞれ独立に、イリジウム原子と結合する炭素原子、酸素原子又は窒素原子を表し、これらの原子は環を構成する原子であってもよい。-AD1---AD2-が複数存在する場合、それらは同一でも異なっていてもよい。
 nD1は、1、2又は3を表し、nD2は、1又は2を表す。]
Figure JPOXMLDOC01-appb-C000118

[In the formula,
R D1 to R D8 , R D11 to R D20 , R D21 to R D26 and R D31 to R D37 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryl It represents an oxy group, a monovalent heterocyclic group or a halogen atom, and these groups may have a substituent. When a plurality of R D1 to R D8 , R D11 to R D20 , R D21 to R D26 and R D31 to R D37 are present, they may be the same or different.
-A D1 ---A D2 - represents an anionic bidentate ligand, A D1 and A D2 each independently represents a carbon atom, an oxygen atom or a nitrogen atom that bonds to an iridium atom; may be atoms constituting a ring. When there are a plurality of -A D1 ---A D2 -, they may be the same or different.
n D1 represents 1, 2 or 3; n D2 represents 1 or 2; ]
 式Ir-1で表される金属錯体において、RD1~RD8の少なくとも1つは、好ましくは、式(D-A)で表される基である。 In the metal complex represented by formula Ir-1, at least one of R D1 to R D8 is preferably a group represented by formula (DA).
 式Ir-2で表される金属錯体において、好ましくはRD11~RD20の少なくとも1つは式(D-A)で表される基である。 In the metal complex represented by formula Ir-2, at least one of R D11 to R D20 is preferably a group represented by formula (DA).
 式Ir-3で表される金属錯体において、好ましくはRD1~RD8及びRD11~RD20の少なくとも1つは式(D-A)で表される基である。 In the metal complex represented by formula Ir-3, preferably at least one of R D1 to R D8 and R D11 to R D20 is a group represented by formula (DA).
 式Ir-4で表される金属錯体において、好ましくはR21~RD26の少なくとも1つは式(D-A)で表される基である。 In the metal complex represented by formula Ir-4, preferably at least one of R 21 to R 26 is a group represented by formula (DA).
 式Ir-5で表される金属錯体において、好ましくはRD31~RD37の少なくとも1つは式(D-A)で表される基である。 In the metal complex represented by formula Ir-5, at least one of R D31 to R D37 is preferably a group represented by formula (DA).
Figure JPOXMLDOC01-appb-C000119

[式中、
 mDA1、mDA2及びmDA3は、それぞれ独立に、0以上の整数を表す。
 GDAは、窒素原子、芳香族炭化水素基又は複素環基を表し、これらの基は置換基を有していてもよい。
 ArDA1、ArDA2及びArDA3は、それぞれ独立に、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。ArDA1、ArDA2及びArDA3が複数ある場合、それらはそれぞれ同一でも異なっていてもよい。
 TDAは、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるTDAは、同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000119

[In the formula,
m DA1 , m DA2 and m DA3 each independently represent an integer of 0 or more.
GDA represents a nitrogen atom, an aromatic hydrocarbon group or a heterocyclic group, and these groups may have a substituent.
Ar DA1 , Ar DA2 and Ar DA3 each independently represent an arylene group or a divalent heterocyclic group, and these groups may have a substituent. When there are multiple Ar DA1 , Ar DA2 and Ar DA3 , they may be the same or different.
TDA represents an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. Multiple TDAs may be the same or different. ]
 mDA1、mDA2及びmDA3は、通常10以下の整数であり、好ましくは5以下の整数であり、より好ましくは0又は1である。mDA1、mDA2及びmDA3は、同一の整数であることが好ましい。 m DA1 , m DA2 and m DA3 are usually integers of 10 or less, preferably 5 or less, more preferably 0 or 1. m DA1 , m DA2 and m DA3 are preferably the same integer.
 GDAは、好ましくは式(GDA-11)~式(GDA-15)で表される基であり、これらの基は置換基を有していてもよい。 GDA is preferably a group represented by formulas (GDA-11) to (GDA-15), and these groups may have a substituent.
Figure JPOXMLDOC01-appb-C000120

[式中、
 *、**及び***は、各々、ArDA1、ArDA2及びArDA3との結合を表す。
 RDAは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は更に置換基を有していてもよい。RDAが複数ある場合、それらは同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000120

[In the formula,
*, ** and *** represent binding to Ar DA1 , Ar DA2 and Ar DA3 , respectively.
RDA represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or a monovalent heterocyclic group, and these groups may further have a substituent. When there are multiple RDAs , they may be the same or different. ]
 RDAは、好ましくは水素原子、アルキル基、シクロアルキル基、アルコキシ基又はシクロアルコキシ基であり、より好ましくは水素原子、アルキル基又はシクロアルキル基であり、これらの基は置換基を有していてもよい。 RDA is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group or a cycloalkoxy group, more preferably a hydrogen atom, an alkyl group or a cycloalkyl group, and these groups have substituents. may
 ArDA1、ArDA2及びArDA3は、好ましくは式(ArDA-1)~式(ArDA-3)で表される基である。 Ar DA1 , Ar DA2 and Ar DA3 are preferably groups represented by formulas (ArDA-1) to (ArDA-3).
Figure JPOXMLDOC01-appb-C000121

[式中、
 RDAは、前記と同じ意味を表す。
 RDBは、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。RDBが複数ある場合、それらは同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000121

[In the formula,
R DA has the same meaning as above.
RDB represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. If there are multiple RDBs , they may be the same or different. ]
 TDAは、好ましくは式(TDA-1)~式(TDA-3)で表される基である。 TDA is preferably a group represented by formulas (TDA-1) to (TDA-3).
Figure JPOXMLDOC01-appb-C000122

[式中、RDA及びRDBは、前記と同じ意味を表す。]
Figure JPOXMLDOC01-appb-C000122

[In the formula, R DA and R DB have the same meanings as described above. ]
 式(D-A)で表される基は、好ましくは式(D-A1)~式(D-A3)で表される基である。 The group represented by formula (DA) is preferably a group represented by formulas (DA1) to (DA3).
Figure JPOXMLDOC01-appb-C000123

[式中、
 Rp1、Rp2及びRp3は、それぞれ独立に、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基又はハロゲン原子を表す。Rp1及びRp2が複数ある場合、それらはそれぞれ同一であっても異なっていてもよい。
 np1は、0~5の整数を表し、np2は0~3の整数を表し、np3は0又は1を表す。複数あるnp1は、同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000123

[In the formula,
R p1 , R p2 and R p3 each independently represent an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group or a halogen atom. When there are multiple R p1 and R p2 , they may be the same or different.
np1 represents an integer of 0 to 5, np2 represents an integer of 0 to 3, and np3 represents 0 or 1. A plurality of np1 may be the same or different. ]
 np1は、好ましくは0~3の整数であり、より好ましくは1~3の整数であり、更に好ましくは1である。np2は、好ましくは0又は1であり、より好ましくは0である。np3は好ましくは0である。 np1 is preferably an integer of 0 to 3, more preferably an integer of 1 to 3, and still more preferably 1. np2 is preferably 0 or 1, more preferably 0. np3 is preferably zero.
 Rp1、Rp2及びRp3は、好ましくはアルキル基又はシクロアルキル基である。 R p1 , R p2 and R p3 are preferably alkyl groups or cycloalkyl groups.
 -AD1---AD2-で表されるアニオン性の2座配位子としては、例えば、下記式で表される配位子が挙げられる。 Examples of the anionic bidentate ligand represented by -A D1 ---A D2 - include ligands represented by the following formulae.
Figure JPOXMLDOC01-appb-C000124

[式中、*は、Irと結合する部位を表す。]
Figure JPOXMLDOC01-appb-C000124

[In the formula, * represents a site that binds to Ir. ]
 式Ir-1で表される金属錯体としては、式Ir-11~式Ir-13で表される金属錯体が好ましい。式Ir-2で表される金属錯体としては、式Ir-21で表される金属錯体が好ましい。式Ir-3で表される金属錯体としては、式Ir-31~式Ir-33で表される金属錯体が好ましい。式Ir-4で表される金属錯体としては、式Ir-41~式Ir-43で表される金属錯体が好ましい。式Ir-5で表される金属錯体としては、式Ir-51~式Ir-53で表される金属錯体が好ましい。 As the metal complex represented by formula Ir-1, metal complexes represented by formulas Ir-11 to Ir-13 are preferable. As the metal complex represented by Formula Ir-2, a metal complex represented by Formula Ir-21 is preferable. As the metal complex represented by Formula Ir-3, metal complexes represented by Formulas Ir-31 to Ir-33 are preferred. As the metal complex represented by Formula Ir-4, metal complexes represented by Formulas Ir-41 to Ir-43 are preferable. As the metal complex represented by Formula Ir-5, metal complexes represented by Formulas Ir-51 to Ir-53 are preferable.
Figure JPOXMLDOC01-appb-C000125
Figure JPOXMLDOC01-appb-C000125
Figure JPOXMLDOC01-appb-C000126
Figure JPOXMLDOC01-appb-C000126
Figure JPOXMLDOC01-appb-C000127
Figure JPOXMLDOC01-appb-C000127
Figure JPOXMLDOC01-appb-C000128
Figure JPOXMLDOC01-appb-C000128
Figure JPOXMLDOC01-appb-C000129

[式中、
 nD2は、1又は2を表す。
 Dは、式(D-A)で表される基を表す。複数存在するDは、同一でも異なっていてもよい。
 RDCは、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRDCは、同一でも異なっていてもよい。
 RDDは、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRDDは、同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000129

[In the formula,
n D2 represents 1 or 2;
D represents a group represented by formula (DA). A plurality of D may be the same or different.
RDC represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. Multiple RDCs may be the same or different.
RDD represents an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. Multiple RDDs may be the same or different. ]
 三重項発光錯体としては、例えば、以下に示す金属錯体が挙げられる。 Examples of triplet light-emitting complexes include the metal complexes shown below.
Figure JPOXMLDOC01-appb-C000130
Figure JPOXMLDOC01-appb-C000130
Figure JPOXMLDOC01-appb-C000131
Figure JPOXMLDOC01-appb-C000131
Figure JPOXMLDOC01-appb-C000132
Figure JPOXMLDOC01-appb-C000132
Figure JPOXMLDOC01-appb-C000133
Figure JPOXMLDOC01-appb-C000133
Figure JPOXMLDOC01-appb-C000134
Figure JPOXMLDOC01-appb-C000134
 本実施形態の組成物において、発光材料の含有量は、本実施形態の高分子化合物100質量部に対して、通常、0.1~400質量部である。 In the composition of the present embodiment, the content of the luminescent material is usually 0.1-400 parts by mass with respect to 100 parts by mass of the polymer compound of the present embodiment.
 [酸化防止剤]
 酸化防止剤は、本実施形態の高分子化合物と同じ溶媒に可溶であり、発光及び電荷輸送を阻害しない化合物であればよく、例えば、フェノール系酸化防止剤、リン系酸化防止剤が挙げられる。
[Antioxidant]
The antioxidant may be any compound that is soluble in the same solvent as the polymer compound of the present embodiment and does not inhibit light emission and charge transport. Examples thereof include phenolic antioxidants and phosphorus antioxidants. .
 本実施形態の組成物において、酸化防止剤の配合量は、本実施形態の高分子化合物100質量部に対して、通常、0.001~10質量部である。 In the composition of this embodiment, the amount of the antioxidant compounded is usually 0.001 to 10 parts by mass with respect to 100 parts by mass of the polymer compound of this embodiment.
 酸化防止剤は、一種単独で用いても二種以上を併用してもよい。 The antioxidants may be used singly or in combination of two or more.
 <膜>
 膜は、本実施形態の高分子化合物、又は、本実施形態の高分子化合物の架橋体を含有する。
<Membrane>
The film contains the polymer compound of the present embodiment or a crosslinked product of the polymer compound of the present embodiment.
 すなわち、膜には、本実施形態の高分子化合物を架橋により溶媒に対して不溶化させた、不溶化膜も含まれる。不溶化膜は、本実施形態の高分子化合物を加熱、光照射等の外部刺激により架橋させて得られる膜である。不溶化膜は、溶媒に実質的に不溶であるため、発光素子の積層化に好適に使用することができる。 That is, the film also includes an insolubilized film in which the polymer compound of the present embodiment is insolubilized in a solvent by crosslinking. The insolubilized film is a film obtained by cross-linking the polymer compound of the present embodiment with an external stimulus such as heating or light irradiation. Since the insolubilized film is substantially insoluble in a solvent, it can be suitably used for lamination of light-emitting devices.
 膜を架橋させるための加熱の温度は、通常、25~300℃であり、発光効率が良好になるので、好ましくは50~250℃であり、より好ましくは150~200℃である。 The heating temperature for cross-linking the film is usually 25 to 300°C, preferably 50 to 250°C, more preferably 150 to 200°C, because the luminous efficiency is improved.
 膜を架橋させるための光照射に用いられる光の種類は、例えば、紫外光、近紫外光、可視光である。 The types of light used for light irradiation for cross-linking the film are, for example, ultraviolet light, near-ultraviolet light, and visible light.
 膜は、発光素子における発光層、正孔輸送層又は正孔注入層として好適である。 The film is suitable as a light-emitting layer, hole-transporting layer or hole-injecting layer in a light-emitting device.
 膜は、インクを用いて、例えば、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイヤーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、キャピラリ-コート法、ノズルコート法により作製することができる。 The film is formed by using ink, for example, spin coating, casting, micro gravure coating, gravure coating, bar coating, roll coating, wire bar coating, dip coating, spray coating, screen printing. , flexographic printing, offset printing, inkjet printing, capillary coating, and nozzle coating.
 膜の厚さは、通常、1nm~10μmである。 The thickness of the film is usually 1 nm to 10 μm.
 <発光素子>
 本実施形態の発光素子は、本実施形態の高分子化合物を用いて得られる有機エレクトロルミネッセンス等の発光素子であり、該発光素子には、例えば、本実施形態の高分子化合物を含む発光素子、本実施形態の高分子化合物が分子内、分子間、又は、それらの両方で架橋した架橋体を含む発光素子がある。
<Light emitting element>
The light-emitting device of the present embodiment is a light-emitting device such as organic electroluminescence obtained using the polymer compound of the present embodiment. There is a light emitting device including a crosslinked product in which the polymer compound of the present embodiment is crosslinked intramolecularly, intermolecularly, or both.
 本実施形態の発光素子の構成としては、例えば、陽極及び陰極からなる電極と、該電極間に設けられた本実施形態の高分子化合物を用いて得られる層とを有する構成が挙げられる。 The configuration of the light-emitting device of this embodiment includes, for example, a configuration having electrodes consisting of an anode and a cathode, and a layer obtained using the polymer compound of this embodiment provided between the electrodes.
 [層構成]
 本実施形態の高分子化合物を用いて得られる層は、通常、発光層、正孔輸送層、正孔注入層、電子輸送層、電子注入層の1種以上の層であり、好ましくは、発光層である。これらの層は、各々、発光材料、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料を含む。これらの層は、各々、発光材料、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料を、上述した溶媒に溶解させ、インクを調製して用い、上述した膜の作製と同じ方法を用いて形成することができる。
[Layer structure]
The layer obtained using the polymer compound of the present embodiment is usually one or more layers selected from a light-emitting layer, a hole transport layer, a hole injection layer, an electron transport layer, and an electron injection layer. layer. These layers each contain a light-emitting material, a hole-transporting material, a hole-injecting material, an electron-transporting material, and an electron-injecting material. These layers are formed by dissolving the light-emitting material, the hole-transporting material, the hole-injecting material, the electron-transporting material, and the electron-injecting material in the above-described solvent, preparing an ink, and using the ink in the same manner as in the above-described film formation. method.
 発光素子は、陽極と陰極の間に発光層を有する。本実施形態の発光素子は、正孔注入性及び正孔輸送性の観点からは、陽極と発光層との間に、正孔注入層及び正孔輸送層の少なくとも1層を有することが好ましく、電子注入性及び電子輸送性の観点からは、陰極と発光層の間に、電子注入層及び電子輸送層の少なくとも1層を有することが好ましい。
 正孔輸送層、電子輸送層、発光層、正孔注入層、及び、電子注入層の材料としては、本実施形態の高分子化合物の他、各々、上述した正孔輸送材料、電子輸送材料、発光材料、正孔注入材料、及び、電子注入材料が挙げられる。
A light-emitting element has a light-emitting layer between an anode and a cathode. From the viewpoint of hole injection and hole transport properties, the light emitting device of the present embodiment preferably has at least one layer of a hole injection layer and a hole transport layer between the anode and the light emitting layer. From the viewpoint of electron injection and electron transport properties, it is preferable to have at least one layer of an electron injection layer and an electron transport layer between the cathode and the light emitting layer.
Materials for the hole-transporting layer, the electron-transporting layer, the light-emitting layer, the hole-injecting layer, and the electron-injecting layer include, in addition to the polymer compound of the present embodiment, the above-described hole-transporting material, electron-transporting material, Light-emitting materials, hole-injecting materials, and electron-injecting materials are included.
 正孔輸送層の材料、電子輸送層の材料、及び、発光層の材料は、発光素子の作製において、各々、正孔輸送層、電子輸送層、及び、発光層に隣接する層の形成時に使用される溶媒に溶解する場合、該溶媒に該材料が溶解することを回避するために、該材料が架橋基を有することが好ましい。架橋基を有する材料を用いて各層を形成した後、該架橋基を架橋させることにより、該層を不溶化させることができる。 The material for the hole-transport layer, the material for the electron-transport layer, and the material for the light-emitting layer are used in forming the hole-transport layer, the electron-transport layer, and the layers adjacent to the light-emitting layer, respectively, in the fabrication of the light-emitting device. It is preferred that the material has cross-linking groups to avoid dissolving the material in the solvent when dissolved in the solvent. After forming each layer using a material having a cross-linking group, the layer can be made insoluble by cross-linking the cross-linking group.
 本実施形態の発光素子において、発光層、正孔輸送層、電子輸送層、正孔注入層、電子注入層等の各層の形成方法としては、低分子化合物を用いる場合、例えば、粉末からの真空蒸着法、溶液又は溶融状態からの成膜による方法が挙げられ、高分子化合物を用いる場合、例えば、溶液又は溶融状態からの成膜による方法が挙げられる。 In the light-emitting device of the present embodiment, as a method for forming each layer such as the light-emitting layer, the hole transport layer, the electron transport layer, the hole injection layer, and the electron injection layer, when using a low molecular compound, for example, vacuum from powder A vapor deposition method, a method of forming a film from a solution or a molten state, and a method of forming a film from a solution or a molten state, for example, can be used when using a polymer compound.
 積層する層の順番、数、及び、厚さは、発光効率及び素子寿命を勘案して調整すればよい。 The order, number, and thickness of the layers to be laminated should be adjusted in consideration of the luminous efficiency and device life.
 [基板/電極]
 発光素子における基板は、電極を形成することができ、かつ、有機層を形成する際に化学的に変化しない基板であればよく、例えば、ガラス、プラスチック、シリコン等の材料からなる基板である。不透明な基板の場合には、基板から最も遠くにある電極が透明又は半透明であることが好ましい。
[Substrate/electrode]
The substrate in the light emitting device may be a substrate on which an electrode can be formed and which does not change chemically when the organic layer is formed. In the case of opaque substrates, it is preferred that the electrodes furthest from the substrate be transparent or translucent.
 陽極の材料としては、例えば、導電性の金属酸化物、半透明の金属が挙げられ、好ましくは、酸化インジウム、酸化亜鉛、酸化スズ;インジウム・スズ・オキサイド(ITO)、インジウム・亜鉛・オキサイド等の導電性化合物;銀とパラジウムと銅との複合体(APC);NESA、金、白金、銀、銅である。 Examples of materials for the anode include conductive metal oxides and translucent metals, preferably indium oxide, zinc oxide, tin oxide; indium-tin-oxide (ITO), indium-zinc-oxide, etc. conductive compounds of; silver-palladium-copper composite (APC); NESA, gold, platinum, silver, copper.
 陰極の材料としては、例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、亜鉛、インジウム等の金属;それらのうち2種以上の合金;それらのうち1種以上と、銀、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫のうち1種以上との合金;並びに、グラファイト及びグラファイト層間化合物が挙げられる。合金としては、例えば、マグネシウム-銀合金、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、インジウム-銀合金、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金、カルシウム-アルミニウム合金が挙げられる。
 陽極及び陰極は、各々、2層以上の積層構造としてもよい。
Examples of cathode materials include metals such as lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, aluminum, zinc, and indium; alloys of two or more of them; alloys of one or more species with one or more of silver, copper, manganese, titanium, cobalt, nickel, tungsten, tin; and graphite and graphite intercalation compounds. Examples of alloys include magnesium-silver alloys, magnesium-indium alloys, magnesium-aluminum alloys, indium-silver alloys, lithium-aluminum alloys, lithium-magnesium alloys, lithium-indium alloys, and calcium-aluminum alloys.
Each of the anode and the cathode may have a laminated structure of two or more layers.
 [用途]
 本実施形態の発光素子は、例えば、ディスプレイ、照明に有用である。
[Use]
The light-emitting device of this embodiment is useful for, for example, displays and lighting.
 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。 Although the preferred embodiments of the present invention have been described above, the present invention is not limited to the above embodiments.
 以下、実施例によって本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples.
 実施例において、高分子化合物のポリスチレン換算の数平均分子量(Mn)及びポリスチレン換算の重量平均分子量(Mw)は、移動層にテトラヒドロフランを用い、下記のサイズエクスクルージョンクロマトグラフィー(SEC)のいずれかにより求めた。なお、SECの測定条件は、次のとおりである。 In the examples, the polystyrene-equivalent number average molecular weight (Mn) and polystyrene-equivalent weight average molecular weight (Mw) of the polymer compound were determined by any of the following size exclusion chromatography (SEC) using tetrahydrofuran as a moving bed. obtained by The SEC measurement conditions are as follows.
 測定する高分子化合物を約0.05質量%の濃度でテトラヒドロフランに溶解させ、SECに10μL注入した。移動相は、1.0mL/分の流量で流した。カラムとして、PLgel MIXED-B(ポリマーラボラトリーズ製)を用いた。検出器にはUV-VIS検出器(東ソー製、商品名:UV-8320GPC)を用いた。 A polymer compound to be measured was dissolved in tetrahydrofuran at a concentration of about 0.05% by mass, and 10 μL was injected into SEC. The mobile phase was run at a flow rate of 1.0 mL/min. As a column, PLgel MIXED-B (manufactured by Polymer Laboratories) was used. A UV-VIS detector (manufactured by Tosoh, trade name: UV-8320GPC) was used as a detector.
 NMRは、下記の方法で測定した。
 5~10mgの測定試料を約0.5mLの重クロロホルム(CDCl)、重テトラヒドロフラン、重ジメチルスルホキシド、重アセトン、重N,N-ジメチルホルムアミド、重トルエン、重メタノール、重エタノール、重2-プロパノール又は重塩化メチレンに溶解させ、NMR装置(Agilent製、商品名:INOVA300又はMERCURY 400VX)を用いて測定した。
NMR was measured by the following method.
5 to 10 mg of a measurement sample is added to about 0.5 mL of heavy chloroform (CDCl 3 ), heavy tetrahydrofuran, heavy dimethylsulfoxide, heavy acetone, heavy N,N-dimethylformamide, heavy toluene, heavy methanol, heavy ethanol, heavy 2-propanol. Alternatively, it was dissolved in methylene dichloride and measured using an NMR device (manufactured by Agilent, trade name: INOVA300 or MERCURY 400VX).
 化合物の純度の指標として、高速液体クロマトグラフィー(HPLC)面積百分率の値を用いた。この値は、特に記載がない限り、HPLC(島津製作所製、商品名:LC-20A)でのUV=254nmにおける値とする。この際、測定する化合物は、0.01~0.2質量%の濃度になるようにテトラヒドロフラン又はクロロホルムに溶解させ、濃度に応じてHPLCに1~10μL注入した。HPLCの移動相には、アセトニトリル/テトラヒドロフランの比率を100/0~0/100(容積比)まで変化させながら用い、1.0mL/分の流量で流した。カラムは、Kaseisorb LC ODS 2000(東京化成工業製)又は同等の性能を有するODSカラムを用いた。検出器には、フォトダイオードアレイ検出器(島津製作所製、商品名:SPD-M20A)を用いた。 The value of high performance liquid chromatography (HPLC) area percentage was used as an indicator of the purity of the compound. Unless otherwise specified, this value is the value at UV=254 nm in HPLC (trade name: LC-20A, manufactured by Shimadzu Corporation). At this time, the compound to be measured was dissolved in tetrahydrofuran or chloroform to a concentration of 0.01 to 0.2% by mass, and 1 to 10 μL was injected into the HPLC depending on the concentration. Acetonitrile/tetrahydrofuran was used as the mobile phase for HPLC while changing the ratio from 100/0 to 0/100 (volume ratio), and flowed at a flow rate of 1.0 mL/min. The column used was Kaseisorb LC ODS 2000 (manufactured by Tokyo Kasei Kogyo) or an ODS column with equivalent performance. A photodiode array detector (manufactured by Shimadzu Corporation, trade name: SPD-M20A) was used as the detector.
 TLC-MSは、下記の方法で測定した。
 測定試料をトルエン、テトラヒドロフラン又はクロロホルムのいずれかの溶媒に任意の濃度で溶解させ、DART用TLCプレート(テクノアプリケーションズ社製、商品名:YSK5-100)上に塗布し、TLC-MS(日本電子社製、商品名:JMS-T100TD(The AccuTOF TLC))を用いて測定した。測定時のヘリウムガス温度は、200~400℃の範囲で調節した。
TLC-MS was measured by the following method.
A measurement sample is dissolved in any solvent of toluene, tetrahydrofuran or chloroform at an arbitrary concentration, applied to a DART TLC plate (manufactured by Techno Applications, trade name: YSK5-100), and subjected to TLC-MS (JEOL Ltd. The measurement was performed using a JMS-T100TD (The AccuTOF TLC) manufactured by Manufacture, trade name. The helium gas temperature during measurement was adjusted in the range of 200 to 400.degree.
 <合成例1> 化合物1Dの合成 <Synthesis example 1> Synthesis of compound 1D
Figure JPOXMLDOC01-appb-C000135
Figure JPOXMLDOC01-appb-C000135
 (Stage1:化合物1Aの合成)
 反応容器内を窒素雰囲気とした後、3-ブロモヨードベンゼン(300.0g)、3-ビフェニルボロン酸(200.0g)、テトラキス(トリフェニルホスフィン)パラジウム(0)(22.2g)、炭酸カリウム(418.8g)、イオン交換水(1600mL)、エタノール(800mL)、及びトルエン(1600mL)を加え、75℃で9時間撹拌した。得られた反応液を室温まで冷却した後、セライトを敷いたろ過器でろ過を行い、得られたろ液から水層を除去した。得られた有機層をイオン交換水で洗浄後、ろ過し、得られたろ液を減圧濃縮することにより、粗生成物を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(n-ヘキサン溶媒)により精製し、50℃で減圧乾燥させることにより、化合物1A(278.2g)を得た。化合物1AのHPLC面積百分率値は99.5%以上であった。
(Stage 1: Synthesis of compound 1A)
After making the inside of the reaction vessel a nitrogen atmosphere, 3-bromoiodobenzene (300.0 g), 3-biphenylboronic acid (200.0 g), tetrakis(triphenylphosphine) palladium (0) (22.2 g), potassium carbonate (418.8 g), ion-exchanged water (1600 mL), ethanol (800 mL) and toluene (1600 mL) were added and stirred at 75° C. for 9 hours. After the obtained reaction solution was cooled to room temperature, it was filtered through a filter covered with celite, and the aqueous layer was removed from the obtained filtrate. The obtained organic layer was washed with ion-exchanged water, filtered, and the obtained filtrate was concentrated under reduced pressure to obtain a crude product. The resulting crude product was purified by silica gel column chromatography (n-hexane solvent) and dried at 50° C. under reduced pressure to obtain compound 1A (278.2 g). The HPLC area percentage value of compound 1A was 99.5% or more.
 (Stage2:化合物1Cの合成)
 反応容器内を窒素雰囲気とした後、化合物1A(220.6g)、及びテトラヒドロフラン(1200mL)を加え、-70℃に冷却した。そこへ、1.0Msec-ブチルリチウムn-ヘキサン/シクロヘキサン溶液(697mL)をゆっくり加え、-70℃で1時間撹拌した。そこへ、化合物1B(120.0g)、及びテトラヒドロフラン(360mL)をゆっくり滴下し、その後、-65℃で1時間撹拌した。そこへ、メタノール(48mL)をゆっくり加えた後、得られた反応液を室温とし、イオン交換水(1800mL)とトルエン(1560mL)をゆっくり加え、水層を除去した。得られた有機層をイオン交換水で洗浄し、得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過した。得られたろ液を減圧濃縮することにより、粗生成物を得た。得られた粗生成物を、n-ヘプタンで洗浄した後、トルエンとn-ヘプタンで再結晶し、50℃で減圧乾燥させることにより、化合物1C(244.7g)を得た。化合物1CのLC面積百分率値は99.5%以上であった。
(Stage 2: Synthesis of compound 1C)
After creating a nitrogen atmosphere in the reaction vessel, compound 1A (220.6 g) and tetrahydrofuran (1200 mL) were added, and the mixture was cooled to -70°C. A 1.0 Msec-butyllithium n-hexane/cyclohexane solution (697 mL) was slowly added thereto, and the mixture was stirred at -70°C for 1 hour. Compound 1B (120.0 g) and tetrahydrofuran (360 mL) were slowly added dropwise thereto, followed by stirring at -65°C for 1 hour. After slowly adding methanol (48 mL) thereto, the resulting reaction solution was brought to room temperature, ion-exchanged water (1800 mL) and toluene (1560 mL) were slowly added, and the aqueous layer was removed. The obtained organic layer was washed with ion-exchanged water, dried with magnesium sulfate, and then filtered. The resulting filtrate was concentrated under reduced pressure to obtain a crude product. The resulting crude product was washed with n-heptane, recrystallized with toluene and n-heptane, and dried at 50° C. under reduced pressure to obtain compound 1C (244.7 g). The LC area percentage value of compound 1C was 99.5% or more.
 (Stage3:化合物1Dの合成)
 反応容器内を窒素雰囲気とした後、化合物1C(240.0g)、及びトルエン(7200mL)を加え、0℃に冷却した。そこへ、硫酸(44.4g)をゆっくりと加え、0℃で1時間撹拌した。その後、5℃に昇温し、更に4時間撹拌した。そこへ、イオン交換水(2400mL)をゆっくりと加え、得られた反応液を室温まで冷却した後、水層を除去した。得られた有機層をイオン交換水と炭酸水素ナトリウム水溶液で洗浄後、ろ過し、得られたろ液を減圧濃縮することにより、粗生成物を得た。得られた粗生成物を、トルエンとエタノールで再結晶し、50℃で減圧乾燥させることにより、化合物1D(197.4g)を得た。化合物1DのHPLC面積百分率値は99.5%以上であった。
(Stage 3: Synthesis of Compound 1D)
After making the inside of reaction container into nitrogen atmosphere, the compound 1C (240.0g) and toluene (7200 mL) were added, and it cooled at 0 degreeC. Sulfuric acid (44.4 g) was slowly added thereto, and the mixture was stirred at 0°C for 1 hour. After that, the temperature was raised to 5° C. and the mixture was further stirred for 4 hours. After slowly adding ion-exchanged water (2400 mL) thereto and cooling the resulting reaction solution to room temperature, the aqueous layer was removed. The resulting organic layer was washed with ion-exchanged water and an aqueous sodium hydrogencarbonate solution, filtered, and the obtained filtrate was concentrated under reduced pressure to obtain a crude product. The obtained crude product was recrystallized with toluene and ethanol and dried under reduced pressure at 50° C. to obtain compound 1D (197.4 g). The HPLC area percentage value of compound 1D was 99.5% or more.
 化合物1DのNMR測定の結果は以下のとおりであった。
 H-NMR(400MHz、CDCl)δ(ppm)=7.67-7.63(m、6H),7.59-7.53(m、10H),7.47-7.30(m、14H),7.29-7.18(m、2H).
The results of NMR measurement of compound 1D were as follows.
1 H-NMR (400 MHz, CD 2 Cl 2 ) δ (ppm) = 7.67-7.63 (m, 6H), 7.59-7.53 (m, 10H), 7.47-7.30 (m, 14H), 7.29-7.18 (m, 2H).
 <合成例2> 化合物2Dの合成 <Synthesis example 2> Synthesis of compound 2D
Figure JPOXMLDOC01-appb-C000136
Figure JPOXMLDOC01-appb-C000136
 (Stage1:化合物2Bの合成)
 反応容器内を窒素雰囲気とした後、化合物2A(90.2g)、及びテトラヒドロフラン(361mL)を加え、-70℃に冷却した。そこへ、1.0M sec-ブチルリチウムn-ヘキサン/シクロヘキサン溶液(224mL)をゆっくり加え、-70℃で1時間撹拌した。そこへ、化合物1B(36.1g)、及びテトラヒドロフラン(108mL)をゆっくり滴下し、その後、-65℃で1時間撹拌した。メタノール(14mL)をゆっくり加えた後、得られた反応液を室温とし、イオン交換水(542mL)とヘプタン(469mL)をゆっくり加え、水層を除去した。得られた有機層をイオン交換水で洗浄し、得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過した。得られたろ液を減圧濃縮することにより、粗生成物を得た。得られた粗生成物を、シリカゲルカラムクロマトグラフィー(トルエン及びn-ヘキサンの混合溶媒)により精製し、50℃で減圧乾燥させることにより、化合物2B(86.7g)を得た。化合物2BのLC面積百分率値は99.5%以上であった。
(Stage 1: synthesis of compound 2B)
After creating a nitrogen atmosphere in the reaction vessel, compound 2A (90.2 g) and tetrahydrofuran (361 mL) were added, and the mixture was cooled to -70°C. A 1.0 M sec-butyllithium n-hexane/cyclohexane solution (224 mL) was slowly added thereto, and the mixture was stirred at -70°C for 1 hour. Compound 1B (36.1 g) and tetrahydrofuran (108 mL) were slowly added dropwise thereto, followed by stirring at -65°C for 1 hour. After slowly adding methanol (14 mL), the resulting reaction solution was brought to room temperature, ion-exchanged water (542 mL) and heptane (469 mL) were slowly added, and the aqueous layer was removed. The obtained organic layer was washed with ion-exchanged water, dried with magnesium sulfate, and then filtered. The resulting filtrate was concentrated under reduced pressure to obtain a crude product. The resulting crude product was purified by silica gel column chromatography (mixed solvent of toluene and n-hexane) and dried at 50° C. under reduced pressure to obtain compound 2B (86.7 g). The LC area percentage value of compound 2B was 99.5% or more.
 (Stage2:化合物2Cの合成)
 反応容器内を窒素雰囲気とした後、化合物2B(86.3g)、及びトルエン(863mL)を加え、0℃に冷却した。そこへ、硫酸(8.7g)をゆっくりと加え、0℃で1時間撹拌した。イオン交換水(783mL)をゆっくりと加え、得られた反応液を室温まで冷却した後、水層を除去した。得られた有機層をイオン交換水で洗浄後、ろ過し、得られたろ液を減圧濃縮することにより、粗生成物を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(トルエン及びn-ヘキサンの混合溶媒)により精製し、50℃で減圧乾燥させることにより、化合物2C(64.1g)を得た。化合物2CのHPLC面積百分率値は99.5%以上であった。
 H-NMR(400MHz、CDCl)δ(ppm)=7.72-7.64(m、6H),7.60-7.49(m、8H),7.48-7.30(m、12H),7.24-7.14(m、4H),2.64(t、4H),1.70-1.60(m、4H),1.40-1.25(m、12H),0.89(t、6H).
(Stage 2: Synthesis of compound 2C)
After making the inside of reaction container into nitrogen atmosphere, the compound 2B (86.3g) and toluene (863 mL) were added, and it cooled at 0 degreeC. Sulfuric acid (8.7 g) was slowly added thereto, and the mixture was stirred at 0°C for 1 hour. After slowly adding ion-exchanged water (783 mL) and cooling the resulting reaction solution to room temperature, the aqueous layer was removed. The obtained organic layer was washed with ion-exchanged water, filtered, and the obtained filtrate was concentrated under reduced pressure to obtain a crude product. The resulting crude product was purified by silica gel column chromatography (mixed solvent of toluene and n-hexane) and dried at 50° C. under reduced pressure to obtain compound 2C (64.1 g). The HPLC area percentage value of compound 2C was greater than 99.5%.
1 H-NMR (400 MHz, CD 2 Cl 2 ) δ (ppm) = 7.72-7.64 (m, 6H), 7.60-7.49 (m, 8H), 7.48-7.30 (m, 12H), 7.24-7.14 (m, 4H), 2.64 (t, 4H), 1.70-1.60 (m, 4H), 1.40-1.25 (m , 12H), 0.89(t, 6H).
 (Stage3:化合物2Dの合成)
 反応容器内を窒素雰囲気とした後、化合物2C(25.4g)、ビス(ピナコラト)ジボロン(16.3g)、ジメトキシエタン(254mL)、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド・ジクロロメタン付加物(657mg)及び酢酸カリウム(15.8g)を加え、80℃で2時間撹拌した。得られた反応液にセライト(28.0g)を加えた後、シリカゲルを敷いたろ過器でろ過し、得られたろ液を減圧濃縮後することにより、粗生成物を得た。得られた粗生成物を、アセトニトリルで洗浄した後、トルエンと活性炭を加え、室温で30分攪拌した。その後、セライトを敷いたろ過器でろ過し、得られたろ液を減圧濃縮後、トルエンとアセトニトリルで再結晶し、50℃で減圧乾燥させることにより、化合物2D(23.3g)を白色固体として得た。化合物2DのHPLC面積百分率値は99.5%以上であった。
 H-NMR(400MHz、CDCl)δ(ppm)=7.88-7.81(m、6H),7.71-7.68(m、2H),7.59-7.50(m、6H),7.45-7.29(m、12H),7.25(d、2H),7.16(d、2H),2.64(t、4H),1.70-1.56(m、4H),1.40-1.25(m、36H),0.88(t、6H).
(Stage 3: Synthesis of Compound 2D)
After making the inside of the reaction vessel a nitrogen atmosphere, compound 2C (25.4 g), bis(pinacolato)diboron (16.3 g), dimethoxyethane (254 mL), [1,1′-bis(diphenylphosphino)ferrocene]palladium. (II) Dichloride/dichloromethane adduct (657 mg) and potassium acetate (15.8 g) were added and stirred at 80° C. for 2 hours. After adding celite (28.0 g) to the resulting reaction solution, the mixture was filtered through a filter lined with silica gel, and the obtained filtrate was concentrated under reduced pressure to obtain a crude product. After washing the resulting crude product with acetonitrile, toluene and activated carbon were added and the mixture was stirred at room temperature for 30 minutes. Then, it was filtered through a filter covered with celite, and the obtained filtrate was concentrated under reduced pressure, recrystallized with toluene and acetonitrile, and dried under reduced pressure at 50°C to obtain compound 2D (23.3 g) as a white solid. rice field. The HPLC area percentage value for compound 2D was greater than 99.5%.
1 H-NMR (400 MHz, CD 2 Cl 2 ) δ (ppm) = 7.88-7.81 (m, 6H), 7.71-7.68 (m, 2H), 7.59-7.50 (m, 6H), 7.45-7.29 (m, 12H), 7.25 (d, 2H), 7.16 (d, 2H), 2.64 (t, 4H), 1.70- 1.56 (m, 4H), 1.40-1.25 (m, 36H), 0.88 (t, 6H).
 <合成例3> 化合物3Cの合成 <Synthesis example 3> Synthesis of compound 3C
Figure JPOXMLDOC01-appb-C000137
Figure JPOXMLDOC01-appb-C000137
 (Stage1:化合物3Aの合成)
 反応容器内を不活性ガス雰囲気とした後、化合物2A(58.19g)及び脱水THF(600ml)を加え、-70℃に冷却してn-ブチルリチウム(1.64M n-ヘキサン溶液)86mlを滴下し、2時間保温した。2,7-ジブロモ-9-フルオレノン(40.00g)を加え、2時間保温した後、メタノールを滴下し、室温まで昇温した。トルエン(450ml)及びイオン交換水(450ml)を加え、分液した。有機層をイオン交換水(450ml)で2回分液洗浄し、硫酸マグネシウムを加え、脱水後、濾過し、得られた溶液を減圧濃縮し粗生成物を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(移動相はヘキサン及びトルエンの混合溶媒)にて精製し、化合物3A(75.5g)を得た。
(Stage 1: synthesis of compound 3A)
After creating an inert gas atmosphere in the reaction vessel, compound 2A (58.19 g) and dehydrated THF (600 ml) were added, cooled to -70°C, and 86 ml of n-butyllithium (1.64M n-hexane solution) was added. It was added dropwise and kept warm for 2 hours. After adding 2,7-dibromo-9-fluorenone (40.00 g) and keeping the temperature for 2 hours, methanol was added dropwise and the temperature was raised to room temperature. Toluene (450 ml) and ion-exchanged water (450 ml) were added and separated. The organic layer was separated and washed twice with ion-exchanged water (450 ml), magnesium sulfate was added, dehydrated, filtered, and the resulting solution was concentrated under reduced pressure to obtain a crude product. The resulting crude product was purified by silica gel column chromatography (mobile phase: mixed solvent of hexane and toluene) to obtain compound 3A (75.5 g).
 (Stage2:化合物3Bの合成)
 反応容器内を不活性ガス雰囲気とした後、化合物3A(67.90g)及び脱水ジクロロメタン(340ml)を加えて溶解させ、トリエチルシラン(25.0g)を加えた。0℃に冷却後、三フッ化ホウ素ジエチルエーテル錯体(41.71g)を滴下し、3時間保温した。ジクロロメタン(340ml)及びイオン交換水(340ml)を加え、分液後、有機層を5質量%炭酸水素ナトリウム水溶液(340ml)及びイオン交換水(340ml)で分液洗浄し、ヘプタン 340mlを加え、硫酸マグネシウムを加えて脱水後、得られた溶液を減圧濃縮し、化合物3B(66.10g)を得た。
(Stage 2: Synthesis of compound 3B)
After the reaction vessel was filled with an inert gas atmosphere, compound 3A (67.90 g) and dehydrated dichloromethane (340 ml) were added and dissolved, and triethylsilane (25.0 g) was added. After cooling to 0° C., boron trifluoride diethyl ether complex (41.71 g) was added dropwise, and the temperature was maintained for 3 hours. Dichloromethane (340 ml) and ion-exchanged water (340 ml) were added, and after liquid separation, the organic layer was separated and washed with 5% by mass aqueous sodium hydrogencarbonate solution (340 ml) and ion-exchanged water (340 ml), 340 ml of heptane was added, and sulfuric acid was added. After dehydration by adding magnesium, the resulting solution was concentrated under reduced pressure to obtain compound 3B (66.10 g).
 (Stage3:化合物3Cの合成)
 反応容器内を不活性ガス雰囲気とした後、化合物3B(21.02g)及び脱水THF(84ml)を加え、溶解させた。
 別途、不活性ガス雰囲気とした反応容器を用意し、水素化ナトリウム(60質量%、流動パラフィンに分散、1.47g)、脱水THF(63ml)、及び1-ブロモヘキサン(16.36g)を加え、この溶液に上記で調製した化合物3BのTHF溶液を滴下し、3時間撹拌した。そこに、トルエン(170ml)及びイオン交換水(85ml)を滴下し、分液後、有機層をイオン交換水(100ml)で2回分液洗浄した。そこに、硫酸マグネシウムを加えて脱水後、セライトを敷いたフィルターを通して濾過し、得られた溶液を減圧濃縮し、粗生成物を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(移動相はヘキサンおよびトルエンの混合溶媒)にて精製し、化合物3C(23.99g)を白色固体として得た。
 化合物3CのHPLC面積百分率値は99.5%以上であった。
(Stage 3: Synthesis of compound 3C)
After the reaction vessel was filled with an inert gas atmosphere, compound 3B (21.02 g) and dehydrated THF (84 ml) were added and dissolved.
Separately, a reaction vessel with an inert gas atmosphere was prepared, and sodium hydride (60% by mass, dispersed in liquid paraffin, 1.47 g), dehydrated THF (63 ml), and 1-bromohexane (16.36 g) were added. , the THF solution of compound 3B prepared above was added dropwise to this solution and stirred for 3 hours. Toluene (170 ml) and ion-exchanged water (85 ml) were added dropwise thereto, and after liquid separation, the organic layer was separated and washed twice with ion-exchanged water (100 ml). Magnesium sulfate was added thereto, dehydrated, filtered through a filter covered with celite, and the obtained solution was concentrated under reduced pressure to obtain a crude product. The resulting crude product was purified by silica gel column chromatography (mobile phase: mixed solvent of hexane and toluene) to obtain compound 3C (23.99 g) as a white solid.
The HPLC area percentage value of compound 3C was greater than 99.5%.
 <合成例4> 化合物4Cの合成 <Synthesis example 4> Synthesis of compound 4C
Figure JPOXMLDOC01-appb-C000138
Figure JPOXMLDOC01-appb-C000138
 (Stage1:化合物4Aの合成)
 反応容器内を不活性ガス雰囲気とした後、9-フェニル-9-フルオレノール(46.08g)及び脱水ジクロロメタン(370ml)を加えて溶解させ、トリエチルシラン(56.83g)を加えた。0℃に冷却後、三フッ化ホウ素ジエチルエーテル錯体(44.81g)を滴下し、2時間保温した。そこに、ジクロロメタン(230ml)及び5質量%炭酸ナトリウム水溶液(460ml)を加え、分液後、有機層をイオン交換水(100ml)で2回分液洗浄した。そこに、硫酸マグネシウムを加えて脱水後、得られた溶液を減圧濃縮し、粗生成物を得た。得られた粗生成物をトルエン及びアセトニトリルの混合溶媒を用いて晶析し、化合物4A(40.90g)を得た。
 TLC-MS(DART) m/z=243([M+H])(Exact Mass:242)
 H-NMR(CDCl,400MHz)δ(ppm)=5.05(1H、s)、7.07~7.10(2H、m)、7.19~7.29(5H、m)、7.31(2H、d)、7.37(2H、t)、7.80(2H、d)
(Stage 1: synthesis of compound 4A)
After the reaction vessel was filled with an inert gas atmosphere, 9-phenyl-9-fluorenol (46.08 g) and dehydrated dichloromethane (370 ml) were added and dissolved, and triethylsilane (56.83 g) was added. After cooling to 0° C., boron trifluoride diethyl ether complex (44.81 g) was added dropwise, and the temperature was maintained for 2 hours. Dichloromethane (230 ml) and 5% by mass aqueous sodium carbonate solution (460 ml) were added thereto, and after liquid separation, the organic layer was separated and washed twice with deionized water (100 ml). Magnesium sulfate was added thereto, and after dehydration, the resulting solution was concentrated under reduced pressure to obtain a crude product. The resulting crude product was crystallized using a mixed solvent of toluene and acetonitrile to obtain compound 4A (40.90 g).
TLC-MS (DART) m/z = 243 ([M+H] + ) (Exact Mass: 242)
1 H-NMR (CDCl 3 , 400 MHz) δ (ppm) = 5.05 (1H, s), 7.07-7.10 (2H, m), 7.19-7.29 (5H, m), 7.31 (2H, d), 7.37 (2H, t), 7.80 (2H, d)
 (Stage2:化合物4Bの合成)
 反応容器内を不活性ガス雰囲気とした後、化合物4A(29.00g)、1-ブロモ-6-クロロヘキサン(95.5g)、及び脱水THF(175ml)を加え、溶解させた。
 別途、不活性ガス雰囲気とした反応容器を用意し、水素化ナトリウム(60質量%、流動パラフィンに分散、5.27g)及び脱水THF(29ml)を加え、この溶液に上記で調製した化合物4AのTHF溶液を滴下し、20℃で8時間撹拌後、30℃で5時間撹拌した。そこに、トルエン(230ml)及びイオン交換水(115ml)を滴下し、分液後、有機層をイオン交換水(145ml)で3回分液洗浄した。そこに、硫酸マグネシウムを加えて脱水後、得られた溶液を減圧濃縮し、粗生成物を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(移動相はヘキサン及びトルエンの混合溶媒)にて精製し、化合物4B(41.58g)を得た。
 TLC-MS(DART) m/z=361([M+H])(Exact Mass:360)
 H-NMR(CDCl,400MHz)δ(ppm)=0.69~0.78(2H、m)、1.13~1.28(4H、m)、1.55~1.63(2H、m)、2.43~2.48(2H、m)、3.41(2H、t)、7.12~7.27(9H、m)、7.34(2H、dt)、7.75(2H、d)
(Stage 2: Synthesis of Compound 4B)
After the reaction vessel was filled with an inert gas atmosphere, compound 4A (29.00 g), 1-bromo-6-chlorohexane (95.5 g), and dehydrated THF (175 ml) were added and dissolved.
Separately, a reaction vessel with an inert gas atmosphere was prepared, sodium hydride (60% by mass, dispersed in liquid paraffin, 5.27 g) and dehydrated THF (29 ml) were added, and compound 4A prepared above was added to this solution. A THF solution was added dropwise, and the mixture was stirred at 20°C for 8 hours and then stirred at 30°C for 5 hours. Toluene (230 ml) and ion-exchanged water (115 ml) were added dropwise thereto, and after liquid separation, the organic layer was separated and washed three times with ion-exchanged water (145 ml). Magnesium sulfate was added thereto, and after dehydration, the resulting solution was concentrated under reduced pressure to obtain a crude product. The resulting crude product was purified by silica gel column chromatography (mobile phase: mixed solvent of hexane and toluene) to obtain compound 4B (41.58 g).
TLC-MS (DART) m/z = 361 ([M+H] + ) (Exact Mass: 360)
1 H-NMR (CDCl 3 , 400 MHz) δ (ppm) = 0.69-0.78 (2H, m), 1.13-1.28 (4H, m), 1.55-1.63 (2H , m), 2.43-2.48 (2H, m), 3.41 (2H, t), 7.12-7.27 (9H, m), 7.34 (2H, dt), 7. 75 (2H, d)
 (Stage3:化合物4Cの合成)
 反応容器内を不活性ガス雰囲気とした後、化合物4B(41.10g)、ヨウ化ナトリウム(85.42g)、及びアセトン(410ml)を加え、60℃で29時間保温した。20℃まで冷却後、イオン交換水(120ml)及びヘキサン(410ml)を加えて分液し、有機層をイオン交換水(120ml)で3回分液洗浄した。そこに、硫酸マグネシウムを加えて脱水後、得られた溶液を減圧濃縮し、粗生成物を得た。得られた粗生成物を、ヘプタンで再結晶し、化合物4C(46.11g)を得た。
 TLC-MS(DART) m/z=453([M+H])(Exact Mass:452)
 H-NMR(CDCl,400MHz)δ(ppm)=0.69~0.77(2H、m)、1.14~1.24(4H、m)、1.60~1.68(2H、m)、2.43~2.48(2H、m)、3.07(2H、t)、7.14~7.27(9H、m)、7.34(2H、dt)、7.75(2H、d)
(Stage 3: Synthesis of compound 4C)
After the reaction vessel was filled with an inert gas atmosphere, compound 4B (41.10 g), sodium iodide (85.42 g) and acetone (410 ml) were added, and the mixture was kept at 60°C for 29 hours. After cooling to 20° C., ion-exchanged water (120 ml) and hexane (410 ml) were added to separate the layers, and the organic layer was separated and washed three times with ion-exchanged water (120 ml). Magnesium sulfate was added thereto, and after dehydration, the resulting solution was concentrated under reduced pressure to obtain a crude product. The obtained crude product was recrystallized with heptane to obtain compound 4C (46.11 g).
TLC-MS (DART) m/z = 453 ([M+H] + ) (Exact Mass: 452)
1 H-NMR (CDCl 3 , 400 MHz) δ (ppm) = 0.69-0.77 (2H, m), 1.14-1.24 (4H, m), 1.60-1.68 (2H , m), 2.43-2.48 (2H, m), 3.07 (2H, t), 7.14-7.27 (9H, m), 7.34 (2H, dt), 7. 75 (2H, d)
 (Stage4:化合物4Dの合成)
 反応容器内を不活性ガス雰囲気とした後、化合物3B(21.00g)、化合物4C(16.42g)、及び脱水THF(125ml)を加え、溶解させた。
 別途、不活性ガス雰囲気とした反応容器を用意し、水素化ナトリウム(60質量%、流動パラフィンに分散、1.45g)、及び脱水DMF(53ml)を加え、0℃に冷却した。この溶液に上記で調製した化合物3B及び化合物4CのTHF溶液を滴下した後、25℃に昇温し3.5時間撹拌した。そこに、トルエン100ml及びイオン交換水100mlを滴下し、分液後、有機層をイオン交換水100mlで3回分液洗浄した。そこに、硫酸マグネシウムを加えて脱水後、得られた溶液を減圧濃縮し、粗生成物を得た。得られた粗生成物を逆相シリカゲルカラムクロマトグラフィー(移動相はアセトニトリル及び酢酸エチルの混合溶媒)にて精製し、化合物4D(25.56g)を白色固体として得た。化合物4DのHPLC面積百分率値は99.5%以上であった。
 TLC-MS(DART) m/z=958([M])(Exact Mass:958)
 H-NMR(CDCl,400MHz)δ(ppm)=0.53~0.64(4H、m)、0.89(3H、t)、0.93~1.04(4H、m)、1.28~1.41(6H、m)、1.61~1.70(2H、m)、2.31~2.37(4H、m)、2.67(2H、t)、7.00(1H、d)、7.10~7.23(11H、m)、7.27~7.38(6H、m)、7.40~7.49(7H、m)、7.53~7.57(3H、m)、7.66(1H、brs)、7.71(2H、d)
(Stage 4: Synthesis of Compound 4D)
After the reaction vessel was filled with an inert gas atmosphere, compound 3B (21.00 g), compound 4C (16.42 g), and dehydrated THF (125 ml) were added and dissolved.
Separately, a reaction vessel with an inert gas atmosphere was prepared, sodium hydride (60% by mass, dispersed in liquid paraffin, 1.45 g) and dehydrated DMF (53 ml) were added and cooled to 0°C. After the THF solution of compound 3B and compound 4C prepared above was added dropwise to this solution, the temperature was raised to 25° C. and the mixture was stirred for 3.5 hours. 100 ml of toluene and 100 ml of ion-exchanged water were added dropwise thereto, and after liquid separation, the organic layer was separated and washed three times with 100 ml of ion-exchanged water. Magnesium sulfate was added thereto, and after dehydration, the resulting solution was concentrated under reduced pressure to obtain a crude product. The resulting crude product was purified by reverse-phase silica gel column chromatography (mobile phase: mixed solvent of acetonitrile and ethyl acetate) to obtain compound 4D (25.56 g) as a white solid. The HPLC area percentage value of compound 4D was greater than 99.5%.
TLC-MS (DART) m/z = 958 ([M] + ) (Exact Mass: 958)
1 H-NMR (CDCl 3 , 400 MHz) δ (ppm) = 0.53-0.64 (4H, m), 0.89 (3H, t), 0.93-1.04 (4H, m), 1.28-1.41 (6H, m), 1.61-1.70 (2H, m), 2.31-2.37 (4H, m), 2.67 (2H, t), 7. 00 (1H, d), 7.10-7.23 (11H, m), 7.27-7.38 (6H, m), 7.40-7.49 (7H, m), 7.53- 7.57 (3H, m), 7.66 (1H, brs), 7.71 (2H, d)
 <合成例5> 化合物5Dの合成 <Synthesis example 5> Synthesis of compound 5D
Figure JPOXMLDOC01-appb-C000139
Figure JPOXMLDOC01-appb-C000139
 (Stage1:化合物5Aの合成)
 反応容器内を不活性ガス雰囲気とした後、化合物2A(120.01g)、脱水THF(1200ml)を加えて溶解させ、-70℃に冷却後、sec-ブチルリチウム(1.23M シクロヘキサン/n-ヘキサン溶液)310mlを滴下し、1.5時間保温した後、2-イソプロポキシ-4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン(73.95g)を滴下し、1時間保温した。0℃まで昇温し、メタノール(120ml)を滴下し、溶媒を減圧濃縮した。そこに、トルエンを加え、イオン交換水で3回分液洗浄した後、溶媒を減圧濃縮して粗生成物を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(移動相はヘキサン及びトルエンの混合溶媒)にて精製し、化合物5A(117.36g)を得た。
 TLC-MS(DART) m/z=440([M])(Exact Mass:440)
(Stage 1: synthesis of compound 5A)
After making the inside of the reaction vessel an inert gas atmosphere, compound 2A (120.01 g) and dehydrated THF (1200 ml) were added and dissolved. 310 ml of hexane solution) was added dropwise, and the mixture was kept warm for 1.5 hours. kept warm. The temperature was raised to 0° C., methanol (120 ml) was added dropwise, and the solvent was concentrated under reduced pressure. Toluene was added thereto, and the solution was separated and washed three times with ion-exchanged water, and then the solvent was concentrated under reduced pressure to obtain a crude product. The resulting crude product was purified by silica gel column chromatography (mobile phase: mixed solvent of hexane and toluene) to obtain compound 5A (117.36 g).
TLC-MS (DART) m/z = 440 ([M] + ) (Exact Mass: 440)
 (Stage2:化合物5Bの合成)
 反応容器内を不活性ガス雰囲気とした後、化合物5A(65.94g)、1-ブロモ-3-ヨードベンゼン(42.36g)、トルエン(500ml)、20質量%テトラエチルアンモニウムヒドロキシド水溶液(330g)、及びテトラキス(トリフェニルホスフィン)パラジウム(0)(3.45g)を加え、70℃で4時間保温した。室温まで冷却後、分液し、有機相を600mlの水で3回分液洗浄した。そこに、活性炭を加え、30分撹拌後、シリカゲルを敷いたフィルターを通して濾過した。得られた溶液を減圧濃縮し粗生成物を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(移動相はヘキサン及びトルエンの混合溶媒)にて精製し、化合物5B(66.02g)を得た。
 TLC-MS(DART) m/z=469([M])(Exact Mass:468)
(Stage 2: Synthesis of Compound 5B)
After making the inside of the reaction vessel an inert gas atmosphere, compound 5A (65.94 g), 1-bromo-3-iodobenzene (42.36 g), toluene (500 ml), 20 mass% tetraethylammonium hydroxide aqueous solution (330 g). , and tetrakis(triphenylphosphine)palladium(0) (3.45 g) were added, and the mixture was kept at 70° C. for 4 hours. After cooling to room temperature, the liquids were separated, and the organic phase was separated and washed three times with 600 ml of water. Activated carbon was added thereto, and after stirring for 30 minutes, the mixture was filtered through a filter covered with silica gel. The resulting solution was concentrated under reduced pressure to obtain a crude product. The resulting crude product was purified by silica gel column chromatography (mobile phase: mixed solvent of hexane and toluene) to obtain compound 5B (66.02 g).
TLC-MS (DART) m/z = 469 ([M] + ) (Exact Mass: 468)
 (Stage3:化合物5Cの合成)
 反応容器内を不活性ガス雰囲気とした後、化合物5B(41.03g)及び脱水THF(415ml)を加えて溶解させ、-70℃に冷却後、sec-ブチルリチウム(1.23M シクロヘキサン/n-ヘキサン溶液)70mlを滴下し、1.5時間保温した。化合物1B(14.40g)を脱水THF(73ml)に溶解させた溶液を滴下し、2時間保温した。そこに、メタノールを滴下後、室温まで昇温し溶媒を減圧濃縮した。トルエンを加え、イオン交換水で4回分液洗浄した後、硫酸マグネシウムを加えて脱水後、濾過し、得られた溶液を減圧濃縮し、粗生成物を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(移動相はヘキサン及びトルエンの混合溶媒)にて精製し、化合物5C(43.09g)を得た。
 TLC-MS(DART) m/z=1116([M])(Exact Mass:1116)
(Stage 3: Synthesis of Compound 5C)
After making the inside of the reaction vessel an inert gas atmosphere, compound 5B (41.03 g) and dehydrated THF (415 ml) were added and dissolved, cooled to -70°C, and sec-butyllithium (1.23M cyclohexane/n- 70 ml of hexane solution) was added dropwise, and the temperature was maintained for 1.5 hours. A solution of compound 1B (14.40 g) dissolved in dehydrated THF (73 ml) was added dropwise, and the mixture was kept warm for 2 hours. After methanol was added dropwise thereto, the temperature was raised to room temperature, and the solvent was concentrated under reduced pressure. Toluene was added, and the solution was separated and washed four times with ion-exchanged water, then magnesium sulfate was added for dehydration, and the solution was filtered. The resulting solution was concentrated under reduced pressure to obtain a crude product. The resulting crude product was purified by silica gel column chromatography (mobile phase: mixed solvent of hexane and toluene) to obtain compound 5C (43.09 g).
TLC-MS (DART) m/z = 1116 ([M] + ) (Exact Mass: 1116)
 (Stage4:化合物5Dの合成)
 反応容器内を不活性ガス雰囲気とした後、化合物5C(42.95g)及びトルエン(445ml)を加えて溶解させ、0℃に冷却後、濃硫酸(4.02g)を滴下し、3時間撹拌した。そこに、イオン交換水(430ml)及び5質量%炭酸水素ナトリウム水溶液(430ml)でそれぞれ分液洗浄した。そこに、活性炭及び硫酸マグネシウムを加えて1時間撹拌後、シリカゲルを敷いたフィルターを通して濾過した。得られた溶液を減圧濃縮し、粗生成物を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(移動相はヘキサン及びトルエンの混合溶媒)及びヘプタンとエタノールで再結晶し、化合物5D(36.95g)を白色固体として得た。化合物5DのHPLC面積百分率値は99.5%以上であった。
 TLC-MS(DART) m/z=1099([M])(Exact Mass:1098)
(Stage 4: Synthesis of compound 5D)
After creating an inert gas atmosphere in the reaction vessel, compound 5C (42.95 g) and toluene (445 ml) were added and dissolved, cooled to 0°C, concentrated sulfuric acid (4.02 g) was added dropwise, and the mixture was stirred for 3 hours. did. There, ion-exchanged water (430 ml) and 5% by mass aqueous sodium hydrogencarbonate solution (430 ml) were separately washed. Activated carbon and magnesium sulfate were added thereto, and after stirring for 1 hour, the mixture was filtered through a filter covered with silica gel. The resulting solution was concentrated under reduced pressure to obtain a crude product. The obtained crude product was recrystallized by silica gel column chromatography (mobile phase is a mixed solvent of hexane and toluene) and heptane and ethanol to obtain compound 5D (36.95 g) as a white solid. The HPLC area percentage value of compound 5D was greater than 99.5%.
TLC-MS (DART) m/z = 1099 ([M] + ) (Exact Mass: 1098)
 <合成例6> 化合物6Bの合成 <Synthesis example 6> Synthesis of compound 6B
Figure JPOXMLDOC01-appb-C000140
Figure JPOXMLDOC01-appb-C000140
 (Stage1:化合物6Bの合成)
 反応容器内を窒素雰囲気とした後、水素化ナトリウム(1.3g)、及びN,N-ジメチルホルムアミド(49.2mL)を加え、25℃で撹拌した。そこへ、あらかじめ混合、溶解させた化合物6A(21.0g)、化合物4A(7.2g)、及びテトラヒドロフラン(105mL)をゆっくり加え、55℃で2時間撹拌した。得られた反応液を室温まで冷却した後、トルエン(168mL)及びイオン交換水(84mL)を加えて混合し、セライトを敷いたろ過器でろ過を行い、得られたろ液から水層を除去した。得られた有機層をイオン交換水で洗浄後、ろ過し、得られたろ液を減圧濃縮し粗生成物を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(移動相はヘキサン及びトルエンの混合溶媒)及びトルエンとメタノールで再結晶し、減圧乾燥させることにより、化合物6B(20.3g)を白色固体として得た。化合物6BのHPLC面積百分率値は99.5%以上であった。
 H-NMR(400MHz、CDCl)δ(ppm)=7.73-7.71(d、2H),7.54-7.52(d、2H),7.44-7.42(m、2H),7.37-7.30(m、2H),7.24-7.23(dd、2H),7.21-7.19(m、3H),7.17-7.12(m、6H),6.82(s、1H),6.65-6.65(d、2H),2.47-2.43(t、4H),2.36-2.32(m、2H),2.28-2.24(m、2H),1.52-1.46(m、4H),1.25(m、12H),0.97-0.96(m、4H),0.88-0.84(t、6H),0.59-0.52(d、4H)
(Stage 1: synthesis of compound 6B)
After the reaction vessel was filled with a nitrogen atmosphere, sodium hydride (1.3 g) and N,N-dimethylformamide (49.2 mL) were added and stirred at 25°C. Compound 6A (21.0 g), compound 4A (7.2 g) and tetrahydrofuran (105 mL), which had been mixed and dissolved in advance, were slowly added thereto and stirred at 55° C. for 2 hours. After cooling the resulting reaction solution to room temperature, toluene (168 mL) and ion-exchanged water (84 mL) were added and mixed, and the mixture was filtered through a filter covered with celite, and the aqueous layer was removed from the resulting filtrate. . The obtained organic layer was washed with ion-exchanged water, filtered, and the obtained filtrate was concentrated under reduced pressure to obtain a crude product. The obtained crude product was recrystallized by silica gel column chromatography (mobile phase is a mixed solvent of hexane and toluene) and toluene and methanol, and dried under reduced pressure to obtain compound 6B (20.3 g) as a white solid. . The HPLC area percentage value of compound 6B was greater than 99.5%.
1 H-NMR (400 MHz, CDCl 3 ) δ (ppm) = 7.73-7.71 (d, 2H), 7.54-7.52 (d, 2H), 7.44-7.42 (m , 2H), 7.37-7.30 (m, 2H), 7.24-7.23 (dd, 2H), 7.21-7.19 (m, 3H), 7.17-7.12 (m, 6H), 6.82 (s, 1H), 6.65-6.65 (d, 2H), 2.47-2.43 (t, 4H), 2.36-2.32 (m , 2H), 2.28-2.24 (m, 2H), 1.52-1.46 (m, 4H), 1.25 (m, 12H), 0.97-0.96 (m, 4H) ), 0.88-0.84 (t, 6H), 0.59-0.52 (d, 4H)
 <合成例PM1~PM9:化合物PM1~PM9の合成及び入手>
 化合物PM1及びPM5は、特開2011-174062号公報に記載の方法に従って合成した。
 化合物PM2は、国際公報第2005/049546号に記載の方法に従って合成した。
 化合物PM3は、国際公報第2002/045184号に記載の方法に従って合成した。
 化合物PM4は、特開2008-106241号公報に記載の方法に従って合成した。
 化合物PM6は、特開2012-144722号公報に記載の方法に従って合成した。
 化合物PM7は、国際公開第2002/092723号に記載の方法に従って合成した。
 化合物PM8は、特開2004-143419号公報に記載の方法に従って合成した。
 化合物PM9は、特開2010-031259号公報に記載の方法に従って合成した。
<Synthesis Examples PM1 to PM9: Synthesis and acquisition of compounds PM1 to PM9>
Compounds PM1 and PM5 were synthesized according to the method described in JP-A-2011-174062.
Compound PM2 was synthesized according to the method described in WO 2005/049546.
Compound PM3 was synthesized according to the method described in WO 2002/045184.
Compound PM4 was synthesized according to the method described in JP-A-2008-106241.
Compound PM6 was synthesized according to the method described in JP-A-2012-144722.
Compound PM7 was synthesized according to the method described in WO2002/092723.
Compound PM8 was synthesized according to the method described in JP-A-2004-143419.
Compound PM9 was synthesized according to the method described in JP-A-2010-031259.
Figure JPOXMLDOC01-appb-C000141
Figure JPOXMLDOC01-appb-C000141
Figure JPOXMLDOC01-appb-C000142
Figure JPOXMLDOC01-appb-C000142
Figure JPOXMLDOC01-appb-C000143
Figure JPOXMLDOC01-appb-C000143
 <合成例PM10~PM12:化合物PM10~PM12の合成及び入手>
 化合物PM10及び化合物PM12は、特開2010-189630号公報に記載の方法に従って合成した。
 化合物PM11は、国際公報第2012/086671号に記載の方法に従って合成した。
<Synthesis Examples PM10 to PM12: Synthesis and acquisition of compounds PM10 to PM12>
Compound PM10 and compound PM12 were synthesized according to the method described in JP-A-2010-189630.
Compound PM11 was synthesized according to the method described in WO 2012/086671.
Figure JPOXMLDOC01-appb-C000144
Figure JPOXMLDOC01-appb-C000144
 <合成例G1> 燐光発光性化合物G1の合成
 燐光発光性化合物G1は、国際公開第2009/131255号に記載の方法に従って合成した。
<Synthesis Example G1> Synthesis of Phosphorescent Compound G1 Phosphorescent compound G1 was synthesized according to the method described in International Publication No. 2009/131255.
Figure JPOXMLDOC01-appb-C000145
Figure JPOXMLDOC01-appb-C000145
 <合成例2> 高分子化合物IP1の合成
 高分子化合物IP1は、化合物PM1と、化合物PM2と、化合物PM3と、化合物PM4を用いて、特開2012-144722号公報に記載の方法で合成した。
<Synthesis Example 2> Synthesis of polymer compound IP1 Polymer compound IP1 was synthesized by the method described in JP-A-2012-144722 using compound PM1, compound PM2, compound PM3, and compound PM4.
 高分子化合物IP1は、仕込み原料の量から求めた理論値では、化合物PM1から誘導される構成単位と、化合物PM2から誘導される構成単位と、化合物PM3から誘導される構成単位と、化合物PM4から誘導される構成単位とが、50:30:12.5:7.5のモル比で構成されてなる共重合体である。 According to the theoretical values obtained from the amounts of the raw materials, the polymer compound IP1 has a structural unit derived from the compound PM1, a structural unit derived from the compound PM2, a structural unit derived from the compound PM3, and a structural unit derived from the compound PM4. It is a copolymer composed of derived structural units in a molar ratio of 50:30:12.5:7.5.
 <実施例1> 高分子化合物P1の合成
 (工程1)反応容器内を不活性ガス雰囲気とした後、化合物PM5(1.28372g)、化合物1D(0.89649g)、化合物PM3(0.19881g)、化合物PM8(0.07961g)、化合物PM9(0.20980g)、ジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(1.58mg)及びトルエン(30mL)を加え、80℃に加熱した。
 (工程2)反応液に、20質量%水酸化テトラエチルアンモニウム水溶液(20mL)を滴下し、3時間還流させた。反応後、そこに、フェニルボロン酸(89.5mg)及びジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(1.61mg)を加え、3間還流させた。その後、反応液を室温まで冷却し、水層を除去した後、イオン交換水で1回、0.15質量%N、N-ジエチルジチオカルバミド酸ナトリウム水溶液で1回、10質量%塩酸で2回、3質量%アンモニア水溶液で2回、イオン交換水で2回洗浄した。得られた溶液を減圧脱水することで水分を除去したトルエン溶液を得た。このトルエン溶液を、予めトルエンを通液したアルミナカラムに通すことにより精製した。精製液をメタノールに滴下し、撹拌したところ、沈殿が生じたので、沈殿物をろ取し、乾燥させることにより、高分子化合物P1(1.45g)を得た。高分子化合物P1のMnは9.5×10であり、Mwは2.2×10であった。
<Example 1> Synthesis of polymer compound P1 (Step 1) After making the inside of the reaction vessel an inert gas atmosphere, compound PM5 (1.28372 g), compound 1D (0.89649 g), compound PM3 (0.19881 g) , compound PM8 (0.07961 g), compound PM9 (0.20980 g), dichlorobis(tris-o-methoxyphenylphosphine)palladium (1.58 mg) and toluene (30 mL) were added and heated to 80°C.
(Step 2) A 20% by mass tetraethylammonium hydroxide aqueous solution (20 mL) was added dropwise to the reaction solution, and the mixture was refluxed for 3 hours. After the reaction, phenylboronic acid (89.5 mg) and dichlorobis(tris-o-methoxyphenylphosphine)palladium (1.61 mg) were added thereto and refluxed for 3 hours. After that, the reaction solution was cooled to room temperature, the aqueous layer was removed, and the mixture was washed once with ion-exchanged water, once with a 0.15% by mass aqueous sodium N,N-diethyldithiocarbamate solution, and twice with 10% by mass hydrochloric acid. , and washed twice with a 3% by mass aqueous ammonia solution and twice with deionized water. The obtained solution was dehydrated under reduced pressure to obtain a toluene solution from which water was removed. This toluene solution was purified by passing through an alumina column through which toluene had been passed in advance. When the purified liquid was added dropwise to methanol and stirred, a precipitate was formed. The precipitate was collected by filtration and dried to obtain polymer compound P1 (1.45 g). The Mn of the polymer compound P1 was 9.5×10 4 and the Mw was 2.2×10 5 .
 高分子化合物P1は、仕込み原料の量から求めた理論値では、化合物PM5から誘導される構成単位と、化合物1Dから誘導される構成単位と、化合物PM3から誘導される構成単位と、化合物PM8から誘導される構成単位と、化合物PM9から誘導される構成単位とが、50:32:10:3:5のモル比で構成されてなる共重合体である。 According to the theoretical values obtained from the amounts of the raw materials, the polymer compound P1 has a structural unit derived from the compound PM5, a structural unit derived from the compound 1D, a structural unit derived from the compound PM3, and a structural unit derived from the compound PM8. It is a copolymer composed of structural units derived from compound PM9 and structural units derived from compound PM9 in a molar ratio of 50:32:10:3:5.
 <比較例1> 高分子化合物P2の合成
 高分子化合物P1の合成における(工程1)を、「反応容器内を不活性ガス雰囲気とした後、化合物PM5(1.29934g)、化合物PM7(0.90788g)、化合物PM3(0.19700g)、化合物PM8(0.07888g)、化合物PM9(0.20792g)、ジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(1.54mg)及びトルエン(30mL)を加え、80℃に加熱した。」としたこと以外は、高分子化合物P1の合成と同様にして、高分子化合物P2を1.48g得た。高分子化合物P2のMnは8.0×10であり、Mwは1.9×10であった。
<Comparative Example 1> Synthesis of polymer compound P2 (Step 1) in the synthesis of polymer compound P1 was performed as follows: "After the inside of the reaction vessel was set to an inert gas atmosphere, compound PM5 (1.29934 g) and compound PM7 (0.29934 g) were added. 90788 g), compound PM3 (0.19700 g), compound PM8 (0.07888 g), compound PM9 (0.20792 g), dichlorobis(tris-o-methoxyphenylphosphine) palladium (1.54 mg) and toluene (30 mL) were added. , and heated to 80° C.”, 1.48 g of polymer compound P2 was obtained in the same manner as in the synthesis of polymer compound P1. The Mn of the polymer compound P2 was 8.0×10 4 and the Mw was 1.9×10 5 .
 高分子化合物P2は、仕込み原料の量から求めた理論値では、化合物PM5から誘導される構成単位と、化合物PM7から誘導される構成単位と、化合物PM3から誘導される構成単位と、化合物PM8から誘導される構成単位と、化合物PM9から誘導される構成単位とが、50:32:10:3:5のモル比で構成されてなる共重合体である。 According to the theoretical values obtained from the amounts of the raw materials, the polymer compound P2 has a structural unit derived from the compound PM5, a structural unit derived from the compound PM7, a structural unit derived from the compound PM3, and a structural unit derived from the compound PM8. It is a copolymer composed of structural units derived from compound PM9 and structural units derived from compound PM9 in a molar ratio of 50:32:10:3:5.
 <比較例2> 高分子化合物P3の合成
 高分子化合物P3は、単量体PM5と、単量体PM6と、単量体PM3と、単量体PM8と、単量体PM9を用いて、特開2012-144722号公報に記載の方法に従って合成した。
<Comparative Example 2> Synthesis of polymer compound P3 Polymer compound P3 was prepared by It was synthesized according to the method described in JP-A-2012-144722.
 高分子化合物P3は、仕込み原料の量から求めた理論値では、化合物PM5から誘導される構成単位と、化合物PM6から誘導される構成単位と、化合物PM3から誘導される構成単位と、化合物PM8から誘導される構成単位と、化合物PM9から誘導される構成単位とが、50:32:10:3:5のモル比で構成されてなる共重合体である。 According to the theoretical values obtained from the amounts of the raw materials, the polymer compound P3 has a structural unit derived from the compound PM5, a structural unit derived from the compound PM6, a structural unit derived from the compound PM3, and a structural unit derived from the compound PM8. It is a copolymer composed of structural units derived from compound PM9 and structural units derived from compound PM9 in a molar ratio of 50:32:10:3:5.
 <実施例2> 高分子化合物P4の合成
 高分子化合物P1の合成における(工程1)を、「反応容器内を不活性ガス雰囲気とした後、化合物PM10(1.00964g)、化合物2C(1.56606g)、化合物PM12(0.26264g)、ジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(1.82mg)及びトルエン(30mL)を加え、80℃に加熱した。反応後、そこに、フェニルボロン酸(0.10g)及びジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(1.82mg)を加え、3時間還流させた。」としたこと以外は、高分子化合物P1の合成と同様にして、高分子化合物P4を1.43g得た。高分子化合物P4のMnは1.0×10であり、Mwは2.1×10であった。
<Example 2> Synthesis of polymer compound P4 (Step 1) in the synthesis of polymer compound P1 was performed by changing the inside of the reaction vessel to an inert gas atmosphere, followed by compound PM10 (1.00964 g) and compound 2C (1.00964 g). 56606 g), compound PM12 (0.26264 g), dichlorobis(tris-o-methoxyphenylphosphine) palladium (1.82 mg) and toluene (30 mL) were added and heated to 80° C. After the reaction, phenylboronic acid was added thereto. (0.10 g) and dichlorobis(tris-o-methoxyphenylphosphine) palladium (1.82 mg) were added and refluxed for 3 hours. 1.43 g of molecular compound P4 was obtained. The Mn of the polymer compound P4 was 1.0×10 5 and the Mw was 2.1×10 5 .
 高分子化合物P4は、仕込み原料の量から求めた理論値では、化合物PM10から誘導される構成単位と、化合物2Cから誘導される構成単位と、化合物PM12から誘導される構成単位とが、50:40:10のモル比で構成されてなる共重合体である。 According to the theoretical values obtained from the amounts of the raw materials charged, the polymer compound P4 has a structural unit derived from the compound PM10, a structural unit derived from the compound 2C, and a structural unit derived from the compound PM12 of 50: It is a copolymer composed in a molar ratio of 40:10.
 <実施例3> 高分子化合物P5の合成
 高分子化合物P1の合成における(工程1)を、「反応容器内を不活性ガス雰囲気とした後、化合物PM10(3.61834g)、化合物3C(4.38134g)、化合物PM12(0.97496g)、ジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(6.72mg)及びトルエン(90mL)を加え、80℃に加熱した。反応液に、20質量%水酸化テトラエチルアンモニウム水溶液(60mL)を滴下し、3時間還流させた。反応後、そこに、フェニルボロン酸(0.37g)及びジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(6.72mg)を加え、3時間還流させた。」としたこと以外は、高分子化合物P1の合成と同様にして、高分子化合物P5を4.76g得た。高分子化合物P5のMnは1.3×10であり、Mwは3.1×10であった。
<Example 3> Synthesis of polymer compound P5 (Step 1) in the synthesis of polymer compound P1 was performed as follows: "After the inside of the reaction vessel was set to an inert gas atmosphere, compound PM10 (3.61834 g), compound 3C (4. 38134 g), compound PM12 (0.97496 g), dichlorobis(tris-o-methoxyphenylphosphine) palladium (6.72 mg) and toluene (90 mL) were added and heated to 80° C. The reaction solution was added with 20% by mass hydroxylation. An aqueous tetraethylammonium solution (60 mL) was added dropwise and refluxed for 3 hours, after which phenylboronic acid (0.37 g) and dichlorobis(tris-o-methoxyphenylphosphine)palladium (6.72 mg) were added. The mixture was refluxed for 3 hours." Except that, 4.76 g of polymer compound P5 was obtained in the same manner as in the synthesis of polymer compound P1. The Mn of the polymer compound P5 was 1.3×10 5 and the Mw was 3.1×10 5 .
 高分子化合物P5は、仕込み原料の量から求めた理論値では、化合物PM10から誘導される構成単位と、化合物3Cから誘導される構成単位と、化合物PM12から誘導される構成単位とが、50:40:10のモル比で構成されてなる共重合体である。 According to the theoretical values obtained from the amounts of the raw materials charged, the polymer compound P5 has a structural unit derived from the compound PM10, a structural unit derived from the compound 3C, and a structural unit derived from the compound PM12 of 50: It is a copolymer composed in a molar ratio of 40:10.
 <実施例4> 高分子化合物P6の合成
 高分子化合物P1の合成における(工程1)を、「反応容器内を不活性ガス雰囲気とした後、化合物PM10(0.98952g)、化合物4D(1.56892g)、化合物PM12(0.26007g)、ジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(1.82mg)及びトルエン(45mL)を加え、80℃に加熱した。反応液に、20質量%水酸化テトラエチルアンモニウム水溶液(30mL)を滴下し、3時間還流させた。反応後、そこに、フェニルボロン酸(0.10g)及びジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(1.82mg)を加え、3時間還流させた。」としたこと以外は、高分子化合物P1の合成と同様にして、高分子化合物P6を1.30g得た。高分子化合物P6のMnは1.1×10であり、Mwは2.2×10であった。
<Example 4> Synthesis of polymer compound P6 (Step 1) in the synthesis of polymer compound P1 was performed as follows: "After the inside of the reaction vessel was set to an inert gas atmosphere, compound PM10 (0.98952 g), compound 4D (1. 56892 g), compound PM12 (0.26007 g), dichlorobis(tris-o-methoxyphenylphosphine) palladium (1.82 mg) and toluene (45 mL) were added and heated to 80° C. The reaction solution was added with 20% by mass hydroxylation. An aqueous tetraethylammonium solution (30 mL) was added dropwise and refluxed for 3 hours, after which phenylboronic acid (0.10 g) and dichlorobis(tris-o-methoxyphenylphosphine)palladium (1.82 mg) were added. 1.30 g of polymer compound P6 was obtained in the same manner as in the synthesis of polymer compound P1, except that the content was refluxed for 3 hours. The Mn of the polymer compound P6 was 1.1×10 5 and the Mw was 2.2×10 5 .
 高分子化合物P6は、仕込み原料の量から求めた理論値では、化合物PM10から誘導される構成単位と、化合物4Dから誘導される構成単位と、化合物PM12から誘導される構成単位とが、50:40:10のモル比で構成されてなる共重合体である。 According to the theoretical values obtained from the amounts of the raw materials charged, the polymer compound P6 has a structural unit derived from the compound PM10, a structural unit derived from the compound 4D, and a structural unit derived from the compound PM12 of 50: It is a copolymer composed in a molar ratio of 40:10.
 <実施例5> 高分子化合物P7の合成
 高分子化合物P1の合成における(工程1)を、「反応容器内を不活性ガス雰囲気とした後、化合物PM10(0.88797g)、化合物5D(1.63526g)、化合物PM12(0.23338g)、ジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(1.61mg)及びトルエン(45mL)を加え、80℃に加熱した。反応液に、20質量%水酸化テトラエチルアンモニウム水溶液(30mL)を滴下し、3時間還流させた。反応後、そこに、フェニルボロン酸(0.09g)及びジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(1.61mg)を加え、3時間還流させた。」としたこと以外は、高分子化合物P1の合成と同様にして、高分子化合物P7を1.29g得た。高分子化合物P7のMnは1.0×10であり、Mwは2.0×10であった。
<Example 5> Synthesis of polymer compound P7 (Step 1) in the synthesis of polymer compound P1 was performed as follows: "After the inside of the reaction vessel was set to an inert gas atmosphere, compound PM10 (0.88797 g), compound 5D (1. 63526 g), compound PM12 (0.23338 g), dichlorobis(tris-o-methoxyphenylphosphine) palladium (1.61 mg) and toluene (45 mL) were added and heated to 80° C. The reaction solution was added with 20% by mass hydroxylation. An aqueous tetraethylammonium solution (30 mL) was added dropwise and the mixture was refluxed for 3 hours, after which phenylboronic acid (0.09 g) and dichlorobis(tris-o-methoxyphenylphosphine)palladium (1.61 mg) were added. 1.29 g of polymer compound P7 was obtained in the same manner as in the synthesis of polymer compound P1, except that the content was refluxed for 3 hours. The Mn of the polymer compound P7 was 1.0×10 5 and the Mw was 2.0×10 5 .
 高分子化合物P7は、仕込み原料の量から求めた理論値では、化合物PM10から誘導される構成単位と、化合物5Dから誘導される構成単位と、化合物PM12から誘導される構成単位とが、50:40:10のモル比で構成されてなる共重合体である。 According to the theoretical values obtained from the amounts of the raw materials charged, the polymer compound P7 has a structural unit derived from the compound PM10, a structural unit derived from the compound 5D, and a structural unit derived from the compound PM12 of 50: It is a copolymer composed in a molar ratio of 40:10.
 <比較例3> 高分子化合物P8の合成
 高分子化合物P1の合成における(工程1)を、「反応容器内を不活性ガス雰囲気とした後、化合物PM10(3.18058g)、化合物PM7(4.53300g)、化合物PM12(0.90461g)、ジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(6.72mg)及びトルエン(90mL)を加え、80℃に加熱した。反応液に、20質量%水酸化テトラエチルアンモニウム水溶液(60mL)を滴下し、3時間還流させた。反応後、そこに、フェニルボロン酸(0.35g)及びジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(6.72mg)を加え、3時間還流させた。」としたこと以外は、高分子化合物P1の合成と同様にして、高分子化合物P8を4.69g得た。高分子化合物P8のMnは7.7×10であり、Mwは1.9×10であった。
<Comparative Example 3> Synthesis of polymer compound P8 (Step 1) in the synthesis of polymer compound P1 was performed by changing the reaction vessel to an inert gas atmosphere, followed by compound PM10 (3.18058 g) and compound PM7 (4.18058 g). 53300 g), compound PM12 (0.90461 g), dichlorobis(tris-o-methoxyphenylphosphine) palladium (6.72 mg) and toluene (90 mL) were added and heated to 80° C. The reaction solution was added with 20% by mass hydroxylation. An aqueous tetraethylammonium solution (60 mL) was added dropwise and the mixture was refluxed for 3 hours, after which phenylboronic acid (0.35 g) and dichlorobis(tris-o-methoxyphenylphosphine)palladium (6.72 mg) were added. The mixture was refluxed for 3 hours." Except that, 4.69 g of polymer compound P8 was obtained in the same manner as in the synthesis of polymer compound P1. The Mn of the polymer compound P8 was 7.7×10 4 and the Mw was 1.9×10 5 .
 高分子化合物P8は、仕込み原料の量から求めた理論値では、化合物PM10から誘導される構成単位と、化合物PM7から誘導される構成単位と、化合物PM12から誘導される構成単位とが、50:40:10のモル比で構成されてなる共重合体である。 According to the theoretical values obtained from the amount of the raw material charged, the polymer compound P8 has a structural unit derived from the compound PM10, a structural unit derived from the compound PM7, and a structural unit derived from the compound PM12 of 50: It is a copolymer composed in a molar ratio of 40:10.
 <比較例4> 高分子化合物P9の合成
 高分子化合物P1の合成における(工程1)を、「反応容器内を不活性ガス雰囲気とした後、化合物PM10(3.08001g)、化合物6B(4.66435g)、化合物PM12(0.82990g)、ジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(6.72mg)及びトルエン(90mL)を加え、80℃に加熱した。反応液に、20質量%水酸化テトラエチルアンモニウム水溶液(60mL)を滴下し、3時間還流させた。反応後、そこに、フェニルボロン酸(0.31g)及びジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(6.72mg)を加え、3時間還流させた。」としたこと以外は、高分子化合物P1の合成と同様にして、高分子化合物P9を5.17g得た。高分子化合物P9のMnは9.3×10であり、Mwは1.9×10であった。
<Comparative Example 4> Synthesis of polymer compound P9 (Step 1) in the synthesis of polymer compound P1 was changed to "After the inside of the reaction vessel was made into an inert gas atmosphere, compound PM10 (3.08001 g), compound 6B (4. 66435 g), compound PM12 (0.82990 g), dichlorobis(tris-o-methoxyphenylphosphine) palladium (6.72 mg) and toluene (90 mL) were added and heated to 80° C. The reaction solution was added with 20% by mass hydroxide. An aqueous tetraethylammonium solution (60 mL) was added dropwise and the mixture was refluxed for 3 hours, after which phenylboronic acid (0.31 g) and dichlorobis(tris-o-methoxyphenylphosphine)palladium (6.72 mg) were added. The mixture was refluxed for 3 hours." Except that, 5.17 g of polymer compound P9 was obtained in the same manner as in the synthesis of polymer compound P1. The Mn of the polymer compound P9 was 9.3×10 4 and the Mw was 1.9×10 5 .
 高分子化合物P9は、仕込み原料の量から求めた理論値では、化合物PM10から誘導される構成単位と、化合物6Bから誘導される構成単位と、化合物PM12から誘導される構成単位とが、50:40:10のモル比で構成されてなる共重合体である。 According to the theoretical values obtained from the amounts of the starting materials, the polymer compound P9 has a structural unit derived from the compound PM10, a structural unit derived from the compound 6B, and a structural unit derived from the compound PM12, which is 50: It is a copolymer composed in a molar ratio of 40:10.
 <比較例5> 高分子化合物P10の合成
 高分子化合物P10は、化合物PM10、化合物PM11及び化合物PM12を用いて、特開2012-036388号公報に記載の方法に従って合成した。高分子化合物P10のMnは9.6×10であり、Mwは2.2×10であった。
<Comparative Example 5> Synthesis of polymer compound P10 Polymer compound P10 was synthesized using compound PM10, compound PM11 and compound PM12 according to the method described in JP-A-2012-036388. The Mn of the polymer compound P10 was 9.6×10 4 and the Mw was 2.2×10 5 .
 高分子化合物P10は、仕込み原料の量から求めた理論値では、化合物PM10から誘導される構成単位と、PM11から誘導される構成単位と、化合物PM12から誘導される構成単位とが、50:40:10のモル比で構成されてなる共重合体である。 In the polymer compound P10, the theoretical value obtained from the amount of the charged raw material has a ratio of structural units derived from the compound PM10, structural units derived from PM11, and structural units derived from the compound PM12 at 50:40. : 10 molar ratio.
 <実施例6> 高分子化合物P11の合成
 高分子化合物P1の合成における(工程1)を、「反応容器内を不活性ガス雰囲気とした後、化合物2D(1.46367g)、化合物PM2(0.78716g)、化合物PM3(0.19928g)、化合物PM4(0.11534g)、ジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(1.27mg)及びトルエン(30mL)を加え、80℃に加熱した。」としたこと以外は、高分子化合物P1の合成と同様にして、高分子化合物P11を2.00g得た。高分子化合物P11のMnは1.0×10であり、Mwは2.2×10であった。
<Example 6> Synthesis of polymer compound P11 (Step 1) in the synthesis of polymer compound P1 was performed as follows: "After the inside of the reaction vessel was set to an inert gas atmosphere, compound 2D (1.46367 g) and compound PM2 (0.46367 g) were added. 78716 g), compound PM3 (0.19928 g), compound PM4 (0.11534 g), dichlorobis(tris-o-methoxyphenylphosphine) palladium (1.27 mg) and toluene (30 mL) were added and heated to 80°C. 2.00 g of polymer compound P11 was obtained in the same manner as in the synthesis of polymer compound P1, except that The Mn of the polymer compound P11 was 1.0×10 5 and the Mw was 2.2×10 5 .
 高分子化合物P11は、仕込み原料の量から求めた理論値では、化合物2Dから誘導される構成単位と、化合物PM2から誘導される構成単位と、化合物PM3から誘導される構成単位と、化合物PM4から誘導される構成単位とが、50:30:12.5:7.5のモル比で構成されてなる共重合体である。 According to the theoretical values obtained from the amounts of the raw materials, the polymer compound P11 has a structural unit derived from the compound 2D, a structural unit derived from the compound PM2, a structural unit derived from the compound PM3, and a structural unit derived from the compound PM4. It is a copolymer composed of derived structural units in a molar ratio of 50:30:12.5:7.5.
 <実施例D1> 発光素子D1の作製と評価
(陽極及び正孔注入層の形成)
 ガラス基板にスパッタ法により45nmの厚みでITO膜を付けることにより陽極を形成した。該陽極上に、正孔注入材料であるND-3202(日産化学工業製)をスピンコート法により35nmの厚さで成膜し、大気雰囲気下において、ホットプレート上で170℃、15分間加熱することにより正孔注入層を形成した。
(正孔輸送層の形成)
 キシレンに、高分子化合物IP1を0.6質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔注入層の上に、スピンコート法により20nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で200℃、30分間加熱することにより正孔輸送層を形成した。
(発光層の形成)
 キシレンに、高分子化合物P1を1.2質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔輸送層の上に、スピンコート法により60nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で170℃、10分加熱することにより発光層を形成した。
(陰極の形成)
 発光層を形成した基板を蒸着機内において、1×10-4Pa以下にまで減圧した後、陰極として、発光層の上に、フッ化ナトリウムを約7nm、次いで、フッ化ナトリウム層の上に、アルミニウムを約120nm蒸着した。蒸着後、ガラス基板を用いて封止することにより、発光素子D1を作製した。
(発光素子の評価)
 発光素子D1に電圧を印加することにより、460nmに発光スペクトルの最大ピーク波長を有するEL発光が観測された。初期輝度1000cd/mで定電流駆動させ、輝度が初期輝度の70%となるまでの時間(以下、「LT70」ともいう。)を測定した。結果を表2に示す。
<Example D1> Production and evaluation of light emitting device D1 (formation of anode and hole injection layer)
An anode was formed by attaching an ITO film with a thickness of 45 nm to a glass substrate by a sputtering method. On the anode, a film of ND-3202 (manufactured by Nissan Chemical Industries, Ltd.), which is a hole injection material, is formed with a thickness of 35 nm by spin coating, and heated on a hot plate at 170° C. for 15 minutes in an air atmosphere. A hole injection layer was thus formed.
(Formation of hole transport layer)
Polymer compound IP1 was dissolved in xylene at a concentration of 0.6% by mass. Using the obtained xylene solution, a film having a thickness of 20 nm was formed on the hole injection layer by a spin coating method, and was heated on a hot plate at 200° C. for 30 minutes in a nitrogen gas atmosphere. A pore transport layer was formed.
(Formation of light-emitting layer)
Polymer compound P1 was dissolved in xylene at a concentration of 1.2% by mass. Using the obtained xylene solution, a film having a thickness of 60 nm was formed on the hole transport layer by a spin coating method, and light was emitted by heating on a hot plate at 170° C. for 10 minutes in a nitrogen gas atmosphere. formed a layer.
(Formation of cathode)
After reducing the pressure of the substrate on which the light-emitting layer is formed to 1×10 −4 Pa or less in a vapor deposition machine, sodium fluoride of about 7 nm is deposited on the light-emitting layer as a cathode, and then on the sodium fluoride layer, About 120 nm of aluminum was evaporated. After vapor deposition, the light-emitting device D1 was produced by sealing with a glass substrate.
(Evaluation of Light Emitting Element)
By applying a voltage to the light emitting element D1, EL light emission having the maximum peak wavelength of the emission spectrum at 460 nm was observed. Constant current driving was performed at an initial luminance of 1000 cd/m 2 , and the time until the luminance reached 70% of the initial luminance (hereinafter also referred to as “LT70”) was measured. Table 2 shows the results.
 <比較例CD1> 発光素子CD1の作製と評価
 実施例D1における高分子化合物P1に代えて、高分子化合物P2を用いた以外は、実施例D1と同様にして、発光素子CD1を作製した。
 発光素子CD1に電圧を印加することにより、460nmに発光スペクトルの最大ピーク波長を有するEL発光が観測された。初期輝度1000cd/mで定電流駆動させ、LT70を測定した。結果を表2に示す。
<Comparative Example CD1> Production and Evaluation of Light-Emitting Device CD1 A light-emitting device CD1 was produced in the same manner as in Example D1, except that polymer compound P2 was used instead of polymer compound P1 in Example D1.
By applying a voltage to the light emitting element CD1, EL light emission having the maximum peak wavelength of the emission spectrum at 460 nm was observed. It was driven at a constant current with an initial luminance of 1000 cd/m 2 and LT70 was measured. Table 2 shows the results.
 <比較例CD2> 発光素子CD2の作製と評価
 実施例D1における高分子化合物P1に代えて、高分子化合物P3を用いた以外は、実施例D1と同様にして、発光素子CD1を作製した。
 発光素子CD2に電圧を印加することにより、460nmに発光スペクトルの最大ピーク波長を有するEL発光が観測された。初期輝度1000cd/mで定電流駆動させ、LT70を測定した。結果を表2に示す。
<Comparative Example CD2> Production and Evaluation of Light-Emitting Device CD2 A light-emitting device CD1 was produced in the same manner as in Example D1, except that polymer compound P3 was used instead of polymer compound P1 in Example D1.
By applying a voltage to the light emitting element CD2, EL light emission having the maximum peak wavelength of the emission spectrum at 460 nm was observed. It was driven at a constant current with an initial luminance of 1000 cd/m 2 and LT70 was measured. Table 2 shows the results.
Figure JPOXMLDOC01-appb-T000146
Figure JPOXMLDOC01-appb-T000146
 <実施例D2> 発光素子D2の作製と評価
(陽極及び正孔注入層の形成)
 ガラス基板にスパッタ法により45nmの厚みでITO膜を付けることにより陽極を形成した。該陽極上に、正孔注入材料であるND-3202(日産化学工業製)をスピンコート法により35nmの厚さで成膜し、大気雰囲気下において、ホットプレート上で250℃、15分間加熱することにより正孔注入層を形成した。
(正孔輸送層の形成)
 キシレンに、高分子化合物IP1を0.6質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔注入層の上に、スピンコート法により20nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で200℃、30分間加熱することにより正孔輸送層を形成した。
(発光層の形成)
 キシレンに、高分子化合物P4及び燐光発光性化合物G1(高分子化合物P4/燐光発光性化合物G1=60質量%/40質量%)を2.0質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔輸送層の上にスピンコート法により60nmの厚さで成膜し、窒素ガス雰囲気下において、170℃、10分間加熱させることにより発光層とした形成した。
(陰極の形成)
 発光層を形成した基板を蒸着機内において、1×10-4Pa以下にまで減圧した後、陰極として、発光層の上に、フッ化ナトリウムを約7nm、次いで、フッ化ナトリウム層の上に、アルミニウムを約120nm蒸着した。蒸着後、ガラス基板を用いて封止することにより、発光素子D2を作製した。
(発光素子の評価)
 発光素子D2に電圧を印加することにより、520nmに発光スペクトルの最大ピーク波長を有するEL発光が観測された。初期輝度8000cd/mで定電流駆動させ、LT80を測定した。結果を表3に示す。
<Example D2> Production and Evaluation of Light-Emitting Device D2 (Formation of Anode and Hole-Injection Layer)
An anode was formed by attaching an ITO film with a thickness of 45 nm to a glass substrate by a sputtering method. On the anode, a film of ND-3202 (manufactured by Nissan Chemical Industries, Ltd.), which is a hole injection material, is formed with a thickness of 35 nm by spin coating, and heated on a hot plate at 250° C. for 15 minutes in an air atmosphere. A hole injection layer was thus formed.
(Formation of hole transport layer)
Polymer compound IP1 was dissolved in xylene at a concentration of 0.6% by mass. Using the obtained xylene solution, a film having a thickness of 20 nm was formed on the hole injection layer by a spin coating method, and was heated on a hot plate at 200° C. for 30 minutes in a nitrogen gas atmosphere. A pore transport layer was formed.
(Formation of light-emitting layer)
Polymer compound P4 and phosphorescent compound G1 (polymer compound P4/phosphorescent compound G1=60% by mass/40% by mass) were dissolved in xylene at a concentration of 2.0% by mass. Using the obtained xylene solution, a film having a thickness of 60 nm was formed on the hole transport layer by a spin coating method, and a light emitting layer was formed by heating at 170° C. for 10 minutes in a nitrogen gas atmosphere. .
(Formation of cathode)
After reducing the pressure of the substrate on which the light-emitting layer is formed to 1×10 −4 Pa or less in a vapor deposition machine, sodium fluoride of about 7 nm is deposited on the light-emitting layer as a cathode, and then on the sodium fluoride layer, About 120 nm of aluminum was evaporated. After vapor deposition, the light-emitting device D2 was produced by sealing with a glass substrate.
(Evaluation of Light Emitting Element)
By applying a voltage to the light emitting element D2, EL light emission having the maximum peak wavelength of the emission spectrum at 520 nm was observed. It was driven at a constant current with an initial luminance of 8000 cd/m 2 and LT80 was measured. Table 3 shows the results.
 <実施例D3> 発光素子D3の作製と評価
 実施例D2における高分子化合物P4に代えて、高分子化合物P5を用いた以外は、実施例D2と同様にして、発光素子D3を作製した。
 発光素子D3に電圧を印加することにより、520nmに発光スペクトルの最大ピーク波長を有するEL発光が観測された。初期輝度8000cd/mで定電流駆動させ、LT80を測定した。結果を表3に示す。
<Example D3> Production and Evaluation of Light-Emitting Device D3 A light-emitting device D3 was produced in the same manner as in Example D2, except that polymer compound P5 was used instead of polymer compound P4 in Example D2.
By applying a voltage to the light emitting element D3, EL light emission having the maximum peak wavelength of the emission spectrum at 520 nm was observed. It was driven at a constant current with an initial luminance of 8000 cd/m 2 and LT80 was measured. Table 3 shows the results.
 <実施例D4> 発光素子D4の作製と評価
 実施例D2における高分子化合物P4に代えて、高分子化合物P6を用いた以外は、実施例D2と同様にして、発光素子D4を作製した。
 発光素子D4に電圧を印加することにより、520nmに発光スペクトルの最大ピーク波長を有するEL発光が観測された。初期輝度8000cd/mで定電流駆動させ、LT80を測定した。結果を表3に示す。
<Example D4> Production and Evaluation of Light-Emitting Device D4 A light-emitting device D4 was produced in the same manner as in Example D2, except that polymer compound P6 was used instead of polymer compound P4 in Example D2.
By applying a voltage to the light emitting element D4, EL light emission having the maximum peak wavelength of the emission spectrum at 520 nm was observed. It was driven at a constant current with an initial luminance of 8000 cd/m 2 and LT80 was measured. Table 3 shows the results.
 <実施例D5> 発光素子D5の作製と評価
 実施例D2における高分子化合物P4に代えて、高分子化合物P7を用いた以外は、実施例D2と同様にして、発光素子D5を作製した。
 発光素子D5に電圧を印加することにより、520nmに発光スペクトルの最大ピーク波長を有するEL発光が観測された。初期輝度8000cd/mで定電流駆動させ、LT80を測定した。結果を表3に示す。
<Example D5> Production and Evaluation of Light-Emitting Device D5 A light-emitting device D5 was produced in the same manner as in Example D2, except that polymer compound P7 was used instead of polymer compound P4 in Example D2.
By applying a voltage to the light emitting element D5, EL light emission having the maximum peak wavelength of the emission spectrum at 520 nm was observed. It was driven at a constant current with an initial luminance of 8000 cd/m 2 and LT80 was measured. Table 3 shows the results.
 <比較例CD3> 発光素子CD3の作製と評価
 実施例D2における高分子化合物P4に代えて、高分子化合物P8を用いた以外は、実施例D2と同様にして、発光素子CD3を作製した。
 発光素子CD3に電圧を印加することにより、520nmに発光スペクトルの最大ピーク波長を有するEL発光が観測された。初期輝度8000cd/mで定電流駆動させ、LT80を測定した。結果を表3に示す。
<Comparative Example CD3> Production and Evaluation of Light-Emitting Device CD3 A light-emitting device CD3 was produced in the same manner as in Example D2, except that polymer compound P8 was used instead of polymer compound P4 in Example D2.
By applying a voltage to the light emitting element CD3, EL light emission having the maximum peak wavelength of the emission spectrum at 520 nm was observed. It was driven at a constant current with an initial luminance of 8000 cd/m 2 and LT80 was measured. Table 3 shows the results.
 <比較例CD4> 発光素子CD4の作製と評価
 実施例D2における高分子化合物P4に代えて、高分子化合物P9を用いた以外は、実施例D2と同様にして、発光素子CD4を作製した。
 発光素子CD4に電圧を印加することにより、520nmに発光スペクトルの最大ピーク波長を有するEL発光が観測された。初期輝度8000cd/mで定電流駆動させ、LT80を測定した。結果を表3に示す。
<Comparative Example CD4> Production and Evaluation of Light-Emitting Device CD4 A light-emitting device CD4 was produced in the same manner as in Example D2, except that polymer compound P9 was used instead of polymer compound P4 in Example D2.
By applying a voltage to the light emitting element CD4, EL light emission having the maximum peak wavelength of the emission spectrum at 520 nm was observed. It was driven at a constant current with an initial luminance of 8000 cd/m 2 and LT80 was measured. Table 3 shows the results.
 <比較例CD5> 発光素子CD5の作製と評価
 実施例D2における高分子化合物P4に代えて、高分子化合物P10を用いた以外は、実施例D2と同様にして、発光素子CD5を作製した。
 発光素子CD5に電圧を印加することにより、520nmに発光スペクトルの最大ピーク波長を有するEL発光が観測された。初期輝度8000cd/mで定電流駆動させ、LT80を測定した。結果を表3に示す。
<Comparative Example CD5> Production and Evaluation of Light-Emitting Device CD5 A light-emitting device CD5 was produced in the same manner as in Example D2, except that polymer compound P10 was used instead of polymer compound P4 in Example D2.
By applying a voltage to the light emitting element CD5, EL light emission having the maximum peak wavelength of the emission spectrum at 520 nm was observed. It was driven at a constant current with an initial luminance of 8000 cd/m 2 and LT80 was measured. Table 3 shows the results.
Figure JPOXMLDOC01-appb-T000147
Figure JPOXMLDOC01-appb-T000147
 <実施例D6> 発光素子D6の作製と評価
 比較例CD2における正孔注入層の加熱温度を250℃とし、さらに高分子化合物IP1に代えて、高分子化合物P11を用いた以外は、比較例CD2と同様にして、発光素子D6を作製した。
 発光素子D6に電圧を印加することにより、460nmに発光スペクトルの最大ピーク波長を有するEL発光が観測された。初期輝度1000cd/mで定電流駆動させ、LT80を測定した。結果を表4に示す。
<Example D6> Production and Evaluation of Light Emitting Device D6 Comparative Example CD2 was carried out except that the heating temperature of the hole injection layer in Comparative Example CD2 was set to 250°C and the polymer compound P11 was used instead of the polymer compound IP1. A light-emitting device D6 was fabricated in the same manner as above.
By applying a voltage to the light emitting element D6, EL light emission having the maximum peak wavelength of the emission spectrum at 460 nm was observed. It was driven at a constant current with an initial luminance of 1000 cd/m 2 and LT80 was measured. Table 4 shows the results.
 <比較例CD6> 発光素子CD2の評価
 比較例CD2において作製した発光素子CD2に電圧を初期輝度1000cd/mで定電流駆動させ、LT80を測定した。結果を表4に示す。
<Comparative Example CD6> Evaluation of Light-Emitting Element CD2 The light-emitting element CD2 manufactured in Comparative Example CD2 was driven at a constant current with an initial luminance of 1000 cd/m 2 , and LT80 was measured. Table 4 shows the results.
Figure JPOXMLDOC01-appb-T000148
Figure JPOXMLDOC01-appb-T000148
 本発明によれば、輝度寿命に優れる発光素子の製造に有用な高分子化合物、該高分子化合物を含有する組成物及び発光素子を提供することができる。 According to the present invention, it is possible to provide a polymer compound useful for manufacturing a light-emitting device with excellent luminance life, a composition containing the polymer compound, and a light-emitting device.

Claims (15)

  1.  式(0)で表される第一の構成単位と、
     前記第一の構成単位以外の構成単位である第二の構成単位と、
    を含む、高分子化合物。
    Figure JPOXMLDOC01-appb-C000001

    [式中、
     a及びbは、それぞれ独立に、0~3の整数を表す。
     R及びRは、それぞれ独立に、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。R及びRが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。
     Rは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。複数存在するRは、同一でも異なっていてもよい。
     但し、Rの少なくとも1つは、式(D-C)で表される基を表す。]
    Figure JPOXMLDOC01-appb-C000002

    [式中、
     mDA1は、2以上10以下の整数を表す。
     ArDA1は、置換基を有していてもよいアリーレン基を表す。複数存在するArDA1は、同一でも異なっていてもよい。
     TDAは、置換基を有していてもよいアリール基を表す。]
    a first structural unit represented by formula (0);
    a second structural unit that is a structural unit other than the first structural unit;
    Polymer compounds, including
    Figure JPOXMLDOC01-appb-C000001

    [In the formula,
    a and b each independently represents an integer of 0 to 3;
    R 1 and R 2 each independently represent an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group or a halogen atom; The group may have a substituent. When multiple R 1 and R 2 are present, they may be the same or different.
    R 0 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group or a halogen atom, and these groups are substituents may have A plurality of R 0 may be the same or different.
    However, at least one of R 0 represents a group represented by formula (D—C). ]
    Figure JPOXMLDOC01-appb-C000002

    [In the formula,
    mDA1 represents an integer of 2 or more and 10 or less.
    Ar DA1 represents an optionally substituted arylene group. A plurality of Ar DA1 may be the same or different.
    TDA represents an aryl group optionally having a substituent. ]
  2.  前記第一の構成単位が、式(0-1)で表される構成単位である、請求項1に記載の高分子化合物。
    Figure JPOXMLDOC01-appb-C000003

    [式中、a、b、R、R及びRは、前記と同じ意味を表す。]
    2. The polymer compound according to claim 1, wherein the first structural unit is a structural unit represented by formula (0-1).
    Figure JPOXMLDOC01-appb-C000003

    [wherein, a, b, R 1 , R 2 and R 0 have the same meanings as defined above. ]
  3.  前記ArDA1が、置換基を有していてもよいフェニレン基である、請求項1又は2に記載の高分子化合物。 3. The polymer compound according to claim 1, wherein said Ar DA1 is a phenylene group which may have a substituent.
  4.  前記TDAが、置換基を有していてもよいフェニル基である、請求項1~3のいずれか一項に記載の高分子化合物。 The polymer compound according to any one of claims 1 to 3, wherein said TDA is a phenyl group which may have a substituent.
  5.  前記第一の構成単位が、式(1)で表される構成単位である、請求項1~4のいずれか一項に記載の高分子化合物。
    Figure JPOXMLDOC01-appb-C000004

    [式中、
     a、b、R及びRは、前記と同じ意味を表す。
     nは、1又は2を表す。
     c及びdは、それぞれ独立に、0~4の整数を表す。eは、0~5の整数を表す。c、d及びeが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。
     Rは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。
     R、R及びRは、それぞれ独立に、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。R、R及びRが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。]
    5. The polymer compound according to any one of claims 1 to 4, wherein the first structural unit is a structural unit represented by formula (1).
    Figure JPOXMLDOC01-appb-C000004

    [In the formula,
    a, b, R1 and R2 have the same meanings as above.
    n represents 1 or 2;
    c and d each independently represent an integer of 0 to 4; e represents an integer of 0 to 5; When there are multiple c, d and e, they may be the same or different.
    RA represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group or a halogen atom, and these groups are substituents may have
    R 3 , R 4 and R 5 each independently represent an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group or a halogen atom; , these groups may have a substituent. When multiple R 3 , R 4 and R 5 are present, they may be the same or different. ]
  6.  前記nが2である、請求項5に記載の高分子化合物。 The polymer compound according to claim 5, wherein said n is 2.
  7.  前記第一の構成単位が、式(5)で表される構成単位である、請求項1~6のいずれか一項に記載の高分子化合物。
    Figure JPOXMLDOC01-appb-C000005

    [式中、e及びRは、前記と同じ意味を表す。]
    The polymer compound according to any one of claims 1 to 6, wherein the first structural unit is a structural unit represented by formula (5).
    Figure JPOXMLDOC01-appb-C000005

    [In the formula, e and R 5 have the same meanings as described above. ]
  8.  前記第二の構成単位が、式(Y)で表される構成単位を含む、請求項1~7のいずれか一項に記載の高分子化合物。
    Figure JPOXMLDOC01-appb-C000006

    [式中、ArY1は、アリーレン基、2価の複素環基、又は、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基を表し、これらの基は置換基を有していてもよい。但し、式(Y)で表される構成単位は、前記式(0)で表される構成単位とは異なる。]
    The polymer compound according to any one of claims 1 to 7, wherein the second structural unit comprises a structural unit represented by formula (Y).
    Figure JPOXMLDOC01-appb-C000006

    [Wherein, Ar Y represents an arylene group, a divalent heterocyclic group, or a divalent group in which at least one arylene group and at least one divalent heterocyclic group are directly bonded, The group may have a substituent. However, the structural unit represented by the formula (Y) is different from the structural unit represented by the formula (0). ]
  9.  前記式(Y)で表される構成単位が、式(Y-1)で表される構成単位、式(Y-2)で表される構成単位、式(Y-3)で表される構成単位、式(Y-4)で表される構成単位、式(Y-5)で表される構成単位、式(Y-6)で表される構成単位、式(Y-7)で表される構成単位、式(Y-8)で表される構成単位、式(Y-9)で表される構成単位及び式(Y-10)で表される構成単位からなる群より選択される少なくとも一種の構成単位を含む、請求項8に記載の高分子化合物。
    Figure JPOXMLDOC01-appb-C000007

    [式中、RY1は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRY1は、同一でも異なっていてもよく、隣接するRY1同士は互いに結合して、それぞれが結合する炭素原子と共に環を形成していてもよい。]
    Figure JPOXMLDOC01-appb-C000008

    [式中、
     RY1は、前記と同じ意味を表す。
     XY1は、-C(RY2-、-C(RY2)=C(RY2)-又は-C(RY2-C(RY2-で表される基を表す。RY2は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRY2は、同一でも異なっていてもよく、RY2同士は互いに結合して、それぞれが結合する炭素原子と共に環を形成していてもよい。]
    Figure JPOXMLDOC01-appb-C000009

    [式中、RY1及びXY1は、前記と同じ意味を表す。]
    Figure JPOXMLDOC01-appb-C000010

    Figure JPOXMLDOC01-appb-C000011

    [式中、
     RY1は、前記と同じ意味を表す。
     RY3は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。]
    Figure JPOXMLDOC01-appb-C000012

    [式中、
     RY1は、前記を同じ意味を表す。
     RY4は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。]
    The structural unit represented by the formula (Y) is a structural unit represented by the formula (Y-1), a structural unit represented by the formula (Y-2), and a structure represented by the formula (Y-3). unit, a structural unit represented by formula (Y-4), a structural unit represented by formula (Y-5), a structural unit represented by formula (Y-6), a structural unit represented by formula (Y-7) at least selected from the group consisting of a structural unit represented by the formula (Y-8), a structural unit represented by the formula (Y-9) and a structural unit represented by the formula (Y-10) 9. The polymeric compound according to claim 8, comprising one kind of constitutional unit.
    Figure JPOXMLDOC01-appb-C000007

    [In the formula, R Y1 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent . A plurality of R Y1 may be the same or different, and adjacent R Y1 may be bonded to each other to form a ring together with the carbon atoms to which they are bonded. ]
    Figure JPOXMLDOC01-appb-C000008

    [In the formula,
    RY1 has the same meaning as above.
    X Y1 represents a group represented by -C(R Y2 ) 2 -, -C(R Y2 )=C(R Y2 )- or -C(R Y2 ) 2 -C(R Y2 ) 2 -. RY2 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. A plurality of RY2 may be the same or different, and the RY2 may be bonded to each other to form a ring together with the carbon atoms to which they are bonded. ]
    Figure JPOXMLDOC01-appb-C000009

    [In the formula, RY1 and XY1 have the same meanings as described above. ]
    Figure JPOXMLDOC01-appb-C000010

    Figure JPOXMLDOC01-appb-C000011

    [In the formula,
    RY1 has the same meaning as above.
    RY3 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. ]
    Figure JPOXMLDOC01-appb-C000012

    [In the formula,
    RY1 has the same meaning as above.
    RY4 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. ]
  10.  前記第二の構成単位が、式(X)で表される構成単位を含む、請求項1~9のいずれか一項に記載の高分子化合物。
    Figure JPOXMLDOC01-appb-C000013

    [式中、
     a及びaは、それぞれ独立に、0以上の整数を表す。
     ArX1及びArX3は、それぞれ独立に、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。
     ArX2及びArX4は、それぞれ独立に、アリーレン基、2価の複素環基、又は、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基を表し、これらの基は置換基を有していてもよい。ArX2及びArX4が複数存在する場合、それらは同一でも異なっていてもよい。
     RX1、RX2及びRX3は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。RX2及びRX3が複数存在する場合、それらは同一でも異なっていてもよい。]
    The polymer compound according to any one of claims 1 to 9, wherein the second structural unit comprises a structural unit represented by formula (X).
    Figure JPOXMLDOC01-appb-C000013

    [In the formula,
    a 1 and a 2 each independently represent an integer of 0 or more.
    Ar 1 X1 and Ar 2 X3 each independently represent an arylene group or a divalent heterocyclic group, and these groups may have a substituent.
    Ar X2 and Ar X4 each independently represent an arylene group, a divalent heterocyclic group, or a divalent group in which at least one arylene group and at least one divalent heterocyclic group are directly bonded; and these groups may have a substituent. When multiple Ar X2 and Ar X4 are present, they may be the same or different.
    R X1 , R X2 and R X3 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. When multiple R X2 and R X3 are present, they may be the same or different. ]
  11.  前記第二の構成単位が、架橋基を有する構成単位を含む、請求項1~10のいずれか一項に記載の高分子化合物。 The polymer compound according to any one of claims 1 to 10, wherein the second structural unit comprises a structural unit having a cross-linking group.
  12.  前記架橋基が、架橋基X群から選ばれる架橋基である、請求項11に記載の高分子化合物。
    (架橋基X群)
    Figure JPOXMLDOC01-appb-C000014

    [式中、RXLは、メチレン基、酸素原子又は硫黄原子を表し、nXLは、0~5の整数を表す。RXLが複数存在する場合、それらは同一でも異なっていてもよい。nXLが複数存在する場合、それらは同一でも異なっていてもよい。*1は結合位置を表す。これらの架橋基は置換基を有していてもよく、該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。]
    12. The polymer compound according to claim 11, wherein the cross-linking group is a cross-linking group selected from X group of cross-linking groups.
    (Crosslinking group X group)
    Figure JPOXMLDOC01-appb-C000014

    [In the formula, R XL represents a methylene group, an oxygen atom or a sulfur atom, and n XL represents an integer of 0 to 5. When multiple R XL are present, they may be the same or different. When multiple nXL are present, they may be the same or different. *1 represents the binding position. These bridging groups may have substituents, and when there are multiple substituents, they may be the same or different, and are bonded to each other to form a ring together with the atoms to which they are bonded. may ]
  13.  前記架橋基を有する構成単位が、式(2)で表される構成単位又は式(2’)で表される構成単位である、請求項12に記載の高分子化合物。
    Figure JPOXMLDOC01-appb-C000015

    [式中、
     nAは0~5の整数を表し、nは1又は2を表す。
     Arは、芳香族炭化水素基又は複素環基を表し、これらの基は置換基を有していてもよい。
     Lは、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-NR’-で表される基、酸素原子又は硫黄原子を表し、これらの基は置換基を有していてもよい。R’は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。Lが複数存在する場合、それらは同一でも異なっていてもよい。
     Xは、架橋基X群から選ばれる架橋基を表す。Xが複数存在する場合、それらは同一でも異なっていてもよい。]
    Figure JPOXMLDOC01-appb-C000016

    [式中、
     mAは0~5の整数を表し、mは1~4の整数を表し、cは0又は1の整数を表す。mAが複数存在する場合、それらは同一でも異なっていてもよい。
     Arは、芳香族炭化水素基、複素環基、又は、少なくとも1種の芳香族炭化水素環と少なくとも1種の複素環とが直接結合した基を表し、これらの基は置換基を有していてもよい。
     Ar及びArは、それぞれ独立に、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。
     Ar、Ar及びArはそれぞれ、当該基が結合している窒素原子に結合している当該基以外の基と、直接又は酸素原子もしくは硫黄原子を介して結合して、環を形成していてもよい。
     Kは、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-NR’-で表される基、酸素原子又は硫黄原子を表し、これらの基は置換基を有していてもよい。R’は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。Kが複数存在する場合、それらは同一でも異なっていてもよい。
     X’は、架橋基X群から選ばれる架橋基、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。但し、少なくとも1つのX’は、架橋基X群から選ばれる架橋基である。]
    13. The polymer compound according to claim 12, wherein the structural unit having the crosslinkable group is a structural unit represented by formula (2) or a structural unit represented by formula (2').
    Figure JPOXMLDOC01-appb-C000015

    [In the formula,
    nA represents an integer of 0 to 5, n represents 1 or 2;
    Ar 3 represents an aromatic hydrocarbon group or a heterocyclic group, and these groups may have a substituent.
    L A represents an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, a group represented by -NR'-, an oxygen atom or a sulfur atom, and these groups have a substituent; good too. R' represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. When multiple L A are present, they may be the same or different.
    X represents a cross-linking group selected from X group of cross-linking groups. When there are multiple X's, they may be the same or different. ]
    Figure JPOXMLDOC01-appb-C000016

    [In the formula,
    mA represents an integer of 0 to 5, m represents an integer of 1 to 4, and c represents an integer of 0 or 1. When multiple mA are present, they may be the same or different.
    Ar 5 represents an aromatic hydrocarbon group, a heterocyclic group, or a group in which at least one aromatic hydrocarbon ring and at least one heterocyclic ring are directly bonded, and these groups have a substituent may be
    Ar 4 and Ar 6 each independently represent an arylene group or a divalent heterocyclic group, and these groups may have a substituent.
    each of Ar 4 , Ar 5 and Ar 6 is bonded directly or through an oxygen atom or a sulfur atom to a group other than the group bonded to the nitrogen atom to which the group is bonded to form a ring; may be
    K A represents an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, a group represented by -NR'-, an oxygen atom or a sulfur atom, and these groups have a substituent; good too. R' represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. When multiple K A are present, they may be the same or different.
    X' represents a bridging group selected from the bridging group X group, a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. However, at least one X' is a cross-linking group selected from the X group of cross-linking groups. ]
  14.  請求項1~13のいずれか一項に記載の高分子化合物と、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料、酸化防止剤及び溶媒からなる群より選ばれる少なくとも1種と、を含有する、組成物。 Selected from the group consisting of the polymer compound according to any one of claims 1 to 13 and a hole transport material, a hole injection material, an electron transport material, an electron injection material, a light emitting material, an antioxidant and a solvent and at least one.
  15.  請求項1~13のいずれか一項に記載の高分子化合物、及び、請求項11~13のいずれか一項に記載の高分子化合物の架橋体からなる群より選択される少なくとも1種を含有する、発光素子。 Containing at least one selected from the group consisting of the polymer compound according to any one of claims 1 to 13 and the crosslinked product of the polymer compound according to any one of claims 11 to 13 light-emitting element.
PCT/JP2022/000483 2021-02-25 2022-01-11 Polymer compound and light-emitting element using same WO2022181075A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021028385 2021-02-25
JP2021-028385 2021-02-25

Publications (1)

Publication Number Publication Date
WO2022181075A1 true WO2022181075A1 (en) 2022-09-01

Family

ID=83048829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000483 WO2022181075A1 (en) 2021-02-25 2022-01-11 Polymer compound and light-emitting element using same

Country Status (3)

Country Link
JP (1) JP2022130289A (en)
TW (1) TW202239806A (en)
WO (1) WO2022181075A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019527257A (en) * 2016-06-28 2019-09-26 メルク パテント ゲーエムベーハー Formulation of organic functional materials
JP2020092102A (en) * 2018-10-10 2020-06-11 住友化学株式会社 Film for light emitting device and light emitting device using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019527257A (en) * 2016-06-28 2019-09-26 メルク パテント ゲーエムベーハー Formulation of organic functional materials
JP2020092102A (en) * 2018-10-10 2020-06-11 住友化学株式会社 Film for light emitting device and light emitting device using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HYEONUK YEO, KAZUO TANAKA, YOSHIKI CHUJO: "Energy transfer through heterogeneous dyes-substituted fluorene-containing alternating copolymers and their dual-emission properties in the films", JOURNAL OF POLYMER SCIENCE PART A: POLYMER CHEMISTRY, JOHN WILEY & SONS, INC., US, vol. 53, no. 17, 1 September 2015 (2015-09-01), US , pages 2026 - 2035, XP055752387, ISSN: 0887-624X, DOI: 10.1002/pola.27652 *

Also Published As

Publication number Publication date
JP2022130289A (en) 2022-09-06
TW202239806A (en) 2022-10-16

Similar Documents

Publication Publication Date Title
US11021568B2 (en) Polymer compound and light emitting device using the same
JP6500891B2 (en) Polymer compound and light emitting device using the same
WO2015156235A1 (en) Light-emission element, and composition used therein
WO2015159744A1 (en) Composition and light-emitting element using same
JP6663114B2 (en) Composition and light emitting device using the same
EP3171673B1 (en) Method for manufacturing light emitting element
JP6642428B2 (en) Polymer compound and light emitting device using the same
JP2017125087A (en) Polymer compound and light emitting element prepared therewith
EP3932927B1 (en) Metal complex and composition including said metal complex
JP7194072B2 (en) light emitting element
KR20180081083A (en) Method of driving light emitting device and light emitting device
JP7215957B2 (en) BLOCK COPOLYMER AND COMPOSITION, AND LIGHT-EMITTING DEVICE USING THEM
JP7319251B2 (en) light emitting element
JP7282078B2 (en) Block copolymer and light-emitting device using the same
JP6707909B2 (en) Polymer compound and light-emitting device using the same
WO2022181075A1 (en) Polymer compound and light-emitting element using same
JP7354557B2 (en) Polymer compounds and light emitting devices using them
JP7261729B2 (en) Polymer compound and light-emitting device using the same
JP2023067756A (en) Polymer compound and light-emitting element using the same
WO2022181076A1 (en) Composition and light emitting element using same
WO2023176304A1 (en) Polymer compound and light-emitting element using same
WO2023204174A1 (en) Composition and light emitting element using same
WO2023181952A1 (en) Compound, polymer compound, composition, and light emitting device
WO2022181077A1 (en) Polymer, composition, and luminescent element
JP2020128525A (en) Polymer compound and light emitting element including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22759118

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22759118

Country of ref document: EP

Kind code of ref document: A1