WO2023181952A1 - Compound, polymer compound, composition, and light emitting device - Google Patents

Compound, polymer compound, composition, and light emitting device Download PDF

Info

Publication number
WO2023181952A1
WO2023181952A1 PCT/JP2023/008896 JP2023008896W WO2023181952A1 WO 2023181952 A1 WO2023181952 A1 WO 2023181952A1 JP 2023008896 W JP2023008896 W JP 2023008896W WO 2023181952 A1 WO2023181952 A1 WO 2023181952A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ring
bonded
formula
substituent
Prior art date
Application number
PCT/JP2023/008896
Other languages
French (fr)
Japanese (ja)
Inventor
謙 吉岡
孝和 斎藤
昌光 石飛
晃徳 板東
理彦 西田
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2023181952A1 publication Critical patent/WO2023181952A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/22Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/12Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains three hetero rings
    • C07D491/16Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/12Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains three hetero rings
    • C07D495/16Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/04Esters of boric acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials

Definitions

  • the present invention relates to compounds, polymer compounds, compositions, and light emitting devices.
  • Non-Patent Document 1 a compound derived from an arylamine represented by the following formula has been studied as a light-emitting material for use in a light-emitting element.
  • the spectral width of the emission spectrum of the compound derived from the above-mentioned arylamine is not necessarily sufficiently narrow.
  • the main object of the present invention is to provide a compound that has a narrow emission spectrum and is useful as a light-emitting material for a light-emitting device.
  • Another object of the present invention is to provide a composition containing the compound and a light emitting device containing the compound.
  • [1] A compound represented by formula (1).
  • Ar 1 represents an aromatic hydrocarbon ring or an aromatic heterocycle, and these rings may have a substituent. When a plurality of these substituents exist, they may be bonded to each other to form a ring with the atoms to which they are bonded.
  • Ring Ar 2 and ring Ar 3 each independently represent an aromatic hydrocarbon ring or an aromatic heterocycle, and these rings may have a substituent. When a plurality of these substituents exist, they may be bonded to each other to form a ring with the atoms to which they are bonded.
  • R 1 represents a hydrogen atom, a halogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, a hydroxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, or a substituted amino group, and these groups may have a substituent.
  • a plurality of R 1s may be the same or different, and R 1s may be bonded to each other to form a ring together with the carbon atom to which R 1 is bonded.
  • L represents a direct bond, -O-, -S-, -C(R 11 ) 2 -, -N(R 12 )-, an arylene group, or a divalent heterocyclic group.
  • R 11 represents a hydrogen atom, a halogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, a hydroxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, or a substituted amino group, and these groups may have a substituent.
  • a plurality of R 11s may be the same or different, and R 11s may be bonded to each other to form a ring together with the carbon atom to which R 11 is bonded.
  • R 12 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent.
  • Ring Ar 4 represents an aromatic hydrocarbon ring or an aromatic heterocycle, and these rings may have a substituent. When a plurality of these substituents exist, they may be bonded to each other to form a ring with the atoms to which they are bonded.
  • L 1 represents -N(R 1L )-, -S-, -O- or -C(R 2L ) 2 -.
  • R 1L represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent.
  • R2L represents a hydrogen atom, a halogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, or a substituted amino group, and these groups are substituents. It may have.
  • a plurality of R 2Ls may be the same or different, and the R 2Ls may be bonded to each other to form a ring together with the carbon atom to which R 2L is bonded.
  • R 1X is R 1L , R 2L in the ring skeleton represented by formula (2).
  • R 1X may be combined with a substituent that R 1L may have or a substituent that R 2L may have to form a ring.
  • X in formula (1-B1) has the same meaning as above, and may be bonded to -R 1X , or may be bonded to the ring skeleton represented by formula (1-B1) together with adjacent X to further form a ring. may be formed, or may be combined with the ring skeleton represented by formula (2) together with adjacent X to further form a ring.
  • a plurality of X's may be the same or different.
  • Y represents a carbon atom or a nitrogen atom, and when Y is a carbon atom, Y is bonded to -R 1Y or together with adjacent Y, formula (1-B2): Either it combines with the ring skeleton represented by formula (2) to form a ring, or it combines with the ring skeleton represented by formula (2) together with adjacent Y to form a ring.
  • R 1Y represents a hydrogen atom, a halogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, or a substituted amino group, and these groups are substituents. It may have. When a plurality of R 1Ys exist, they may be the same or different, and the R 1Ys may be bonded to each other to form a ring together with the carbon atom to which R 1Y is bonded.
  • R 1Y is R 1L , R 2L in the ring skeleton represented by formula (2).
  • R 1L may have or a substituent that R 2L may have to form a ring.
  • Y in formula (1-B2) has the same meaning as above, and may be bonded to -R 1Y , or may be bonded to the ring skeleton represented by formula (1-B2) together with adjacent Y to further form a ring.
  • a plurality of Y's may be the same or different. However, among the combinations of adjacent Y's, at least one pair is bonded to the ring skeleton represented by formula (2) to form a ring.
  • [4] The compound according to any one of [1] to [3], wherein the ring skeleton represented by formula (2) is a ring skeleton represented by formula (2-A).
  • L 1A represents -N(R 1AL )-, -S-, -O- or -C(R 2AL ) 2 -.
  • R 1AL represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent.
  • R 2AL represents a hydrogen atom, a halogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, or a substituted amino group, and these groups are substituents. It may have.
  • a plurality of R 2ALs may be the same or different, and R 2ALs may be bonded to each other to form a ring with the carbon atom to which R 2AL is bonded.
  • Z represents a carbon atom or a nitrogen atom, and when Z is a carbon atom, Z is bonded to -R 1Z or together with adjacent Z, formula (2-A1): Either it combines with the ring skeleton represented by to form a ring.
  • R 1Z represents a hydrogen atom, a halogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, or a substituted amino group; It may have.
  • R 1Ys When a plurality of R 1Ys exist, they may be the same or different, and the R 1Ys may be bonded to each other to form a ring together with the carbon atom to which R 1Y is bonded.
  • Z in formula (2-A1) has the same meaning as above, and may be bonded to -R 1Z , or may be bonded to the ring skeleton represented by formula (2-A1) together with adjacent Z to further form a ring. may be formed.
  • a plurality of Z's may be the same or different.
  • W represents a carbon atom or a nitrogen atom
  • W is bonded to -R 1W , or together with adjacent W, formula (3-1): Either it combines with the ring skeleton represented by to form a ring.
  • R 1W represents a hydrogen atom, a halogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, or a substituted amino group, and these groups are substituents. It may have.
  • R 1Xs When a plurality of R 1Xs exist, they may be the same or different, and the R 1Xs may be bonded to each other to form a ring together with the carbon atom to which R 1X is bonded.
  • R3A represents a hydrogen atom, a halogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, or a substituted amino group, and these groups are substituents. It may have.
  • a plurality of R 3As may be the same or different, and the R 3As may be bonded to each other to form a ring together with the carbon atom to which R 3A is bonded.
  • W in formula (3-1) has the same meaning as above, and may be bonded to -R 1W , or may be bonded to the ring skeleton represented by formula (3-1) together with adjacent W to further form a ring. may be formed.
  • L 3A represents -N(R 31L )-, -S-, -O- or -C(R 32L ) 2 -.
  • R 31L represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent.
  • R32L represents a hydrogen atom, a halogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, or a substituted amino group, and these groups are substituents. It may have.
  • a plurality of R 32Ls may be the same or different, and the R 32Ls may be bonded to each other to form a ring together with the carbon atom to which R 32L is bonded.
  • a substituent that R 31L , R 32L , R 31L may have or a substituent that R 32L may have is bonded to a group on W 3A located two atoms adjacent to L 3A to form a ring. You may do so.
  • [6] A polymer compound containing a structural unit having a group obtained by removing one or more hydrogen atoms from the compound according to any one of [1] to [5].
  • [7] The compound according to any one of [1] to [5] or the polymer compound according to [6], A composition containing at least one member selected from the group consisting of a hole transport material, a hole injection material, an electron transport material, an electron injection material, a luminescent material, an antioxidant, and a solvent.
  • [8] comprising an anode, a cathode, and an organic layer provided between the anode and the cathode, A light emitting device, wherein the organic layer contains the compound according to any one of [1] to [5] or the polymer compound according to [6].
  • Room temperature means 25°C.
  • Me represents a methyl group
  • Et represents an ethyl group
  • Bu represents a butyl group
  • i-Pr represents an isopropyl group
  • t-Bu represents a tert-butyl group.
  • the hydrogen atom may be a deuterium atom or a light hydrogen atom.
  • a solid line representing a bond with the central metal means a covalent bond or a coordinate bond.
  • Low molecular compound means a compound that has no molecular weight distribution and has a molecular weight of 1 ⁇ 10 4 or less.
  • polymer compound refers to a polymer having a molecular weight distribution and a number average molecular weight of 1 ⁇ 10 3 or more (for example, 1 ⁇ 10 3 to 1 ⁇ 10 8 ) in terms of polystyrene.
  • Structural unit means one or more units present in a polymer compound. Two or more structural units contained in a polymer compound are generally also called “repeat units.”
  • the polymer compound may be a block copolymer, a random copolymer, an alternating copolymer, a graft copolymer, or may have other forms.
  • the terminal group of the polymer compound is preferably a stable group, since if the polymerization active group remains as it is, the luminescence characteristics may deteriorate when the polymer compound is used for producing a light emitting device.
  • the terminal group of the polymer compound is preferably a group that is conjugated to the main chain, such as an aryl group or a monovalent heterocyclic group that is bonded to the main chain of the polymer compound via a carbon-carbon bond. can be mentioned.
  • the "alkyl group” may be either straight chain or branched.
  • the number of carbon atoms in the straight chain alkyl group, not including the number of carbon atoms in the substituents, may be, for example, 1 or more, 2 or more, 3 or more, or 4 or more, and 50 or less, 40 or less, 30 or less, or 20 or less. It may be the following.
  • the number of carbon atoms in the branched alkyl group may be, for example, 3 or more or 4 or more, and 50 or less, 40 or less, 30 or less, or 20 or less, not including the number of carbon atoms of the substituents.
  • the alkyl group may have a substituent.
  • alkyl group examples include methyl group, ethyl group, propyl group, isopropyl group, butyl group, 2-butyl group, isobutyl group, tert-butyl group, pentyl group, isoamyl group, 2-ethylbutyl group, hexyl group, and heptyl group.
  • an alkyl group is a group in which some or all of the hydrogen atoms in these groups are substituted with a substituent (for example, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a fluorine atom, etc.) (for example, Trifluoromethyl group, pentafluoroethyl group, perfluorobutyl group, perfluorohexyl group, perfluorooctyl group, 3-phenylpropyl group, 3-(4-methylphenyl)propyl group, 3-(3,5-di -hexylphenyl)propyl group, 6-ethyloxyhexyl group).
  • a substituent for example, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a fluorine atom, etc.
  • a substituent for example, Trifluoromethyl group
  • the number of carbon atoms in the "cycloalkyl group” may be, for example, 3 or more or 4 or more, and 50 or less, 40 or less, 30 or less, or 20 or less, not including the number of carbon atoms of the substituents.
  • the cycloalkyl group may have a substituent. Examples of the cycloalkyl group include a cyclohexyl group and a group in which some or all of the hydrogen atoms in the group are substituted with a substituent.
  • alkenyl group may be either straight chain or branched.
  • the number of carbon atoms in the straight chain alkenyl group may be, for example, 2 or more or 3 or more, and 30 or less or 20 or less, not including the number of carbon atoms of the substituents.
  • the number of carbon atoms in the branched alkenyl group, not including the number of carbon atoms in substituents is usually 3 to 30, preferably 4 to 20.
  • the alkenyl group may have a substituent.
  • alkenyl group examples include vinyl group, 1-propenyl group, 2-propenyl group, 2-butenyl group, 3-butenyl group, 3-pentenyl group, 4-pentenyl group, 1-hexenyl group, 5-hexenyl group, Examples include a 7-octenyl group and groups in which some or all of the hydrogen atoms in these groups are substituted with substituents.
  • the number of carbon atoms in the "cycloalkenyl group” may be, for example, 3 or more or 4 or more, and 30 or less or 20 or less, not including the number of carbon atoms of the substituents.
  • the cycloalkenyl group may have a substituent. Examples of the cycloalkenyl group include a 5-cyclohexenyl group and a group in which some or all of the hydrogen atoms in these groups are substituted with a substituent.
  • alkynyl group may be either straight chain or branched.
  • the number of carbon atoms in the straight chain alkynyl group may be, for example, 2 or more or 3 or more, and 30 or less or 20 or less, not including carbon atoms of substituents.
  • the number of carbon atoms in the branched alkynyl group may be, for example, 4 or more, 30 or less, or 20 or less, not including carbon atoms of substituents.
  • the alkynyl group may have a substituent.
  • alkynyl group examples include ethynyl group, 1-propynyl group, 2-propynyl group, 2-butynyl group, 3-butynyl group, 3-pentynyl group, 4-pentynyl group, 1-hexynyl group, 5-hexynyl group, and groups in which some or all of the hydrogen atoms in these groups are substituted with substituents.
  • the number of carbon atoms in the "cycloalkynyl group” may be, for example, 4 or more, 30 or less, or 20 or less, not including carbon atoms of substituents.
  • the cycloalkynyl group may have a substituent. Examples of the cycloalkynyl group include a 5-cyclohexynyl group and groups in which some or all of the hydrogen atoms in these groups are substituted with substituents.
  • the "alkoxy group” may be either linear or branched.
  • the number of carbon atoms in the straight chain alkoxy group, not including the number of carbon atoms in the substituents, may be, for example, 1 or more, 2 or more, 3 or more, or 4 or more, and 40 or less, 30 or less, 20 or less, or 10 or less. It may be the following.
  • the number of carbon atoms in the branched alkoxy group may be, for example, 3 or more or 4 or more, and 40 or less, 30 or less, 20 or less, or 10 or less, not including the number of carbon atoms of the substituents.
  • the alkoxy group may have a substituent.
  • alkoxy group examples include methoxy group, ethoxy group, propyloxy group, isopropyloxy group, butyloxy group, isobutyloxy group, tert-butyloxy group, pentyloxy group, hexyloxy group, heptyloxy group, octyloxy group, - Ethylhexyloxy group, nonyloxy group, decyloxy group, 3,7-dimethyloctyloxy group, lauryloxy group, and some or all of the hydrogen atoms in these groups are substituents (for example, cycloalkyl group, alkoxy group, Examples include groups substituted with cycloalkoxy groups, aryl groups, fluorine atoms, etc.).
  • the number of carbon atoms in the "cycloalkoxy group” may be, for example, 3 or more or 4 or more, 40 or less, 30 or less, 20 or less, or 10 or less, not including the number of carbon atoms of the substituents.
  • the cycloalkoxy group may have a substituent. Examples of the cycloalkoxy group include a cyclohexyloxy group and a group in which some or all of the hydrogen atoms in the group are substituted with a substituent.
  • the number of carbon atoms in the "aryloxy group” may be, for example, 6 or more, 60 or less, or 48 or less, not including the number of carbon atoms in the substituents.
  • the aryloxy group may have a substituent. Examples of the aryloxy group include phenoxy group, 1-naphthyloxy group, 2-naphthyloxy group, 1-anthracenyloxy group, 9-anthracenyloxy group, 1-pyrenyloxy group, and Examples include groups in which part or all of the hydrogen atoms are substituted with a substituent (eg, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, a fluorine atom, etc.).
  • a substituent eg, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, a fluorine atom, etc.
  • Aromatic hydrocarbon group means a group obtained by removing one or more hydrogen atoms directly bonded to a carbon atom constituting a ring from an aromatic hydrocarbon.
  • a group obtained by removing one hydrogen atom directly bonded to a carbon atom constituting a ring from an aromatic hydrocarbon is also referred to as an "aryl group.”
  • a group obtained by removing two hydrogen atoms directly bonded to carbon atoms constituting a ring from an aromatic hydrocarbon is also referred to as an "arylene group.”
  • the number of carbon atoms of the aromatic hydrocarbon group may be, for example, 6 or more, 60 or less, 40 or less, 20 or less, or 10 or less, not including the number of carbon atoms of the substituents.
  • aromatic hydrocarbon group examples include monocyclic aromatic hydrocarbons (for example, benzene), or polycyclic aromatic hydrocarbons (for example, naphthalene, indene, naphthoquinone, indenone). and bicyclic aromatic hydrocarbons such as tetralone; tricyclic aromatic hydrocarbons such as anthracene, phenanthrene, dihydrophenanthrene, fluorene, anthraquinone, phenantoquinone, and fluorenone; benzanthracene, benzophenanthrene, benzofluorene, pyrene and 4-ring aromatic hydrocarbons such as fluoranthene; 5-ring aromatic hydrocarbons such as dibenzoanthracene, dibenzophenanthrene, dibenzofluorene, indenofluorene, perylene and benzofluoranthene; 6-rings such as spirobifluorene and heptocyclic aromatic hydrocarbons such as
  • Aromaatic hydrocarbon ring means a ring possessed by an aromatic hydrocarbon.
  • the aromatic hydrocarbon ring may be a monocyclic ring or a condensed polycyclic ring.
  • Examples of the aromatic hydrocarbon ring include a ring possessed by the above-mentioned monocyclic aromatic hydrocarbon, a ring possessed by a polycyclic aromatic hydrocarbon, and the like.
  • the aromatic hydrocarbon ring includes a ring in which a plurality of these rings are bonded or condensed.
  • the aromatic hydrocarbon ring may have a substituent.
  • aryl group examples include phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group, 9-anthracenyl group, 1-pyrenyl group, 2-pyrenyl group, 4-pyrenyl group, 2-fluorenyl group, 3-fluorenyl group, 4-fluorenyl group, 2-phenylphenyl group, 3-phenylphenyl group, 4-phenylphenyl group, and some or all of the hydrogen atoms in these groups are substituents ( Examples include groups substituted with alkyl groups, cycloalkyl groups, alkoxy groups, cycloalkoxy groups, fluorine atoms, etc.).
  • arylene group examples include a phenylene group, a naphthalenediyl group, an anthracenediyl group, a phenanthrenediyl group, a dihydrophenanthrenediyl group, a naphthacenediyl group, a fluorenediyl group, a pyrenediyl group, a perylene diyl group, a chrysenediyl group, and Examples include groups in which some or all of the hydrogen atoms are substituted with substituents.
  • the arylene group includes a group in which a plurality of these groups are bonded.
  • the arylene group is preferably a group represented by formula (A-1) to formula (A-20).
  • R and R a each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group.
  • a plurality of R and R a may be the same or different, and R a may be bonded to each other to form a ring with the atoms to which they are bonded.
  • heterocyclic group refers to a group obtained by removing one or more hydrogen atoms directly bonded to an atom (carbon atom or heteroatom) constituting a ring from a heterocyclic compound.
  • an "aromatic heterocyclic group” which is a group obtained by removing one or more hydrogen atoms directly bonded to atoms constituting a ring from an aromatic heterocyclic compound is preferable.
  • a group obtained by removing p hydrogen atoms (p represents an integer of 1 or more) directly bonded to the atoms constituting the ring from a heterocyclic compound is also referred to as a "p-valent heterocyclic group.”
  • a group obtained by removing p hydrogen atoms directly bonded to the atoms constituting the ring from an aromatic heterocyclic compound is also referred to as a "p-valent aromatic heterocyclic group.”
  • aromatic heterocyclic compounds include oxadiazole, thiadiazole, thiazole, oxazole, thiophene, pyrrole, phosphole, furan, pyridine, pyrazine, pyrimidine, triazine, pyridazine, quinoline, isoquinoline, carbazole, and dibenzophosphole.
  • heterocycle itself shows aromaticity
  • examples include compounds that have been
  • the number of carbon atoms in the heterocyclic group may be, for example, 1 or more, 2 or more, or 3 or more, and 60 or less, 40 or less, or 20 or less, not including the number of carbon atoms of the substituents.
  • the number of heteroatoms in the heterocyclic group is usually 1 to 30, preferably 1 to 10, more preferably 1 to 5, and still more preferably 1 to 3. It is.
  • the heterocyclic group include monocyclic heterocyclic compounds (for example, furan, thiophene, oxadiazole, thiadiazole, pyrrole, diazole, triazole, tetrazole, pyridine, diazabenzene, and triazine), or, Polycyclic heterocyclic compounds (e.g.
  • Examples include groups in which one or more groups are removed.
  • the heterocyclic group includes a group in which a plurality of these groups are bonded.
  • the heterocyclic group may have a substituent (for example, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a fluorine atom, etc.).
  • Aromatic heterocycle means a ring possessed by an aromatic heterocyclic compound.
  • the aromatic heterocyclic compound may be monocyclic or fused polycyclic.
  • Examples of the aromatic heterocycle include the ring possessed by the above-mentioned "aromatic heterocyclic compound”.
  • the aromatic heterocycle includes a ring in which a plurality of these rings are bonded or condensed, and a ring in which an aromatic hydrocarbon ring is bonded or condensed to these rings.
  • the aromatic heterocycle may have a substituent.
  • Examples of monovalent heterocyclic groups include thienyl group, pyrrolyl group, furyl group, pyridyl group, piperidinyl group, quinolinyl group, isoquinolinyl group, pyrimidinyl group, triazinyl group, and some of the hydrogen atoms in these groups or Examples include groups entirely substituted with substituents (eg, alkyl groups, cycloalkyl groups, alkoxy groups, cycloalkoxy groups).
  • the number of carbon atoms in the divalent heterocyclic group may be, for example, 2 or more, 3 or more, or 4 or more, and 60 or less, 40 or less, 20 or less, or 15 or less. It's good.
  • divalent heterocyclic group examples include pyridine, diazabenzene, triazine, azanaphthalene, diazanaphthalene, carbazole, dibenzofuran, dibenzothiophene, dibenzosilole, phenoxazine, phenothiazine, acridine, dihydroacridine, furan, thiophene, azole, Examples include divalent groups obtained by removing two hydrogen atoms from among the hydrogen atoms directly bonded to carbon atoms or heteroatoms constituting the ring from diazole or triazole.
  • the divalent heterocyclic group includes a group in which a plurality of these groups are bonded.
  • the divalent heterocyclic group is preferably a group represented by formulas (AA-1) to (AA-34). [In the formula, R and R a represent the same meanings as above. ]
  • Halogen atom refers to a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom.
  • the "amino group” may have a substituent, and a substituted amino group (ie, a secondary amino group or a tertiary amino group, more preferably a tertiary amino group) is preferable.
  • the substituent that the amino group has is preferably an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent.
  • the amino group has a plurality of substituents, they may be the same or different, or may be bonded to each other to form a ring with the nitrogen atom to which they are bonded.
  • substituted amino groups include dialkylamino groups, dicycloalkylamino groups, diarylamino groups, and those in which some or all of the hydrogen atoms in these groups are substituents (e.g., alkyl groups, cycloalkyl groups, alkoxy groups). , cycloalkoxy group, aryl group, fluorine atom, etc.).
  • substituted amino groups include dimethylamino group, diethylamino group, diphenylamino group, bis(methylphenyl)amino group, bis(3,5-di-tert-butylphenyl)amino group, and hydrogen in these groups.
  • Examples include groups in which some or all of the atoms are substituted with a substituent (eg, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a fluorine atom, etc.).
  • a substituent eg, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a fluorine atom, etc.
  • crosslinking group is a group that can generate a new bond by being subjected to heating, ultraviolet irradiation, near ultraviolet irradiation, visible light irradiation, infrared ray irradiation, radical reaction, etc.
  • examples of the crosslinking group include crosslinking groups selected from crosslinking group A (ie, crosslinking groups represented by formulas (XL-1) to (XL-19)).
  • (Bridging group A group) [In the formula, R XL represents a methylene group, an oxygen atom, or a sulfur atom, and n XL represents an integer of 0 to 5. When a plurality of R XL 's exist, they may be the same or different.
  • n XLs When a plurality of n XLs exist, they may be the same or different. *1 represents the bonding position.
  • These bridging groups may have a substituent, and when a plurality of substituents exist, they may be the same or different, and may be bonded to each other to form a ring with the atoms to which they are bonded. It's okay. ]
  • substituted amino group examples include alkenyl groups, cycloalkenyl groups, alkynyl groups, and cycloalkynyl groups.
  • the substituent may be a bridging group.
  • Dendrimer means a group having a regular dendritic branching structure (i.e., dendrimer structure) with an atom or ring as a branching point.
  • dendrimers compounds having dendrons
  • Examples of compounds having dendrons include WO 2002/067343, JP 2003-231692, WO 2003/079736, and WO 2006/097717. Examples include structures described in the literatures such as .
  • m DA1 , m DA2 and m DA3 each independently represent an integer of 0 or more.
  • GDA represents a nitrogen atom, an aromatic hydrocarbon group, or a heterocyclic group, and these groups may have a substituent.
  • Ar DA1 , Ar DA2 and Ar DA3 each independently represent an arylene group or a divalent heterocyclic group, and these groups may have a substituent.
  • TDA represents an aryl group or a monovalent heterocyclic group, and these groups may have a substituent.
  • a plurality of TDAs may be the same or different.
  • m DA1 , m DA2 , m DA3 , m DA4 , m DA5 , m DA6 and m DA7 each independently represent an integer of 0 or more.
  • GDA represents a nitrogen atom, an aromatic hydrocarbon group, or a heterocyclic group, and these groups may have a substituent.
  • a plurality of GDAs may be the same or different.
  • Ar DA1 , Ar DA2 , Ar DA3 , Ar DA4 , Ar DA5 , Ar DA6 and Ar DA7 each independently represent an arylene group or a divalent heterocyclic group, and even if these groups have a substituent, good.
  • TDA represents an aryl group or a monovalent heterocyclic group, and these groups may have a substituent.
  • a plurality of TDAs may be the same or different.
  • m DA1 represents an integer greater than or equal to 0.
  • Ar DA1 represents an arylene group or a divalent heterocyclic group, and these groups may have a substituent. When a plurality of Ar DA1s exist, they may be the same or different.
  • TDA represents an aryl group or a monovalent heterocyclic group, and these groups may have a substituent.
  • m DA1 , m DA2 , m DA3 , m DA4 , m DA5 , m DA6 and m DA7 are usually integers of 10 or less, preferably 5 or less, and more preferably 0 or 1. It is preferable that m DA1 , m DA2 , m DA3 , m DA4 , m DA5 , m DA6 and m DA7 are the same integer.
  • G DA is preferably an aromatic hydrocarbon group or a heterocyclic group, more preferably hydrogen directly bonded to a carbon atom or nitrogen atom constituting a ring from a benzene ring, pyridine ring, pyrimidine ring, triazine ring, or carbazole ring. A group consisting of three atoms removed, and these groups may have a substituent.
  • the substituent that GDA may have is preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, more preferably an alkyl group, A cycloalkyl group, an alkoxy group, or a cycloalkoxy group, more preferably an alkyl group or a cycloalkyl group, and these groups may have a substituent.
  • GDA is preferably a group represented by formulas (GDA-11) to (GDA-15), and these groups may have a substituent.
  • * represents a bond with Ar DA1 in formula (DA), Ar DA1 in formula (DB), Ar DA2 in formula (DB), or Ar DA3 in formula (DB).
  • ** represents a bond with Ar DA2 in formula (DA), Ar DA2 in formula (DB), Ar DA4 in formula (DB), or Ar DA6 in formula (DB) .
  • *** represents a bond with Ar DA3 in formula (DA), Ar DA3 in formula (DB), Ar DA5 in formula (DB), or Ar DA7 in formula (DB). represent.
  • R DA represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may further have a substituent. When there are multiple RDAs , they may be the same or different. ]
  • RDA is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, or a cycloalkoxy group, more preferably a hydrogen atom, an alkyl group, or a cycloalkyl group, and these groups have a substituent. It's okay.
  • Ar DA1 , Ar DA2 , Ar DA3 , Ar DA4 , Ar DA5 , Ar DA6 and Ar DA7 are preferably groups represented by formulas (ArDA-1) to (ArDA-6). Note that * represents the bonding position.
  • RDA represents the same meaning as above.
  • R DB represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent. If there are multiple RDBs , they may be the same or different. ]
  • R DB is preferably an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, more preferably an aryl group or a monovalent heterocyclic group, and even more preferably an aryl group.
  • Examples and preferred ranges of substituents that Ar DA1 to Ar DA7 , R DA and R DB may have are the same as the examples and preferred ranges of substituents that G DA may have.
  • T DA is preferably a group represented by formulas (TDA-1) to (TDA-4). Note that * represents the bonding position. [In the formula, R DA and R DB represent the same meanings as above. ]
  • the group represented by formula (DA) is preferably a group represented by formulas (DA1) to (DA5). Note that * represents the bonding position.
  • R p1 , R p2 , R p3 and R p4 each independently represent an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group or a halogen atom. When there are multiple R p1 , R p2 and R p4 , they may be the same or different.
  • np1 represents an integer from 0 to 5
  • np2 represents an integer from 0 to 3
  • np3 represents 0 or 1
  • np4 represents an integer from 0 to 4.
  • a plurality of np1s may be the same or different.
  • the group represented by formula (D-B) is preferably a group represented by formulas (D-B1) to (D-B3). Note that * represents the bonding position.
  • R p1 , R p2 and R p3 each independently represent an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group or a halogen atom. When there are multiple R p1 and R p2 , they may be the same or different.
  • np1 represents an integer from 0 to 5
  • np2 represents an integer from 0 to 3
  • np3 represents 0 or 1.
  • np1 and np2 may be the same or different.
  • np1 is preferably an integer of 0 to 3, more preferably an integer of 1 to 3, and even more preferably 1.
  • np2 is preferably 0 or 1, more preferably 0.
  • np3 is preferably 0.
  • R p1 , R p2 and R p3 are preferably an alkyl group or a cycloalkyl group.
  • the group represented by formula (DC) is preferably a group represented by formula (D-C1) to formula (D-C4).
  • * represents the bonding position.
  • R p4 to R p6 each independently represent an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, or a halogen atom. When there is a plurality of R p4 to R p6 , they may be the same or different.
  • np4 represents an integer from 0 to 4
  • np5 represents an integer from 0 to 5
  • np6 represents an integer from 0 to 5.
  • np1 is preferably 0 or 1.
  • np2 is preferably 0 or 1, more preferably 0.
  • np3 is preferably 0.
  • np4 is preferably an integer of 0 to 2.
  • np5 is preferably an integer of 1 to 3.
  • np6 is preferably an integer of 0 to 2.
  • R p4 to R p6 are preferably an alkyl group or a cycloalkyl group, more preferably a methyl group, ethyl group, isopropyl group, tert-butyl group, hexyl group, 2-ethylhexyl group, cyclohexyl group or tert-octyl group. and more preferably a methyl group, ethyl group, isopropyl group, tert-butyl group, hexyl group, 2-ethylhexyl group or tert-octyl group.
  • the compound of this embodiment is a compound represented by formula (1).
  • the compound of this embodiment may be a low molecular compound.
  • Ar 1 is preferably an aromatic hydrocarbon ring, more preferably a benzene ring, a naphthalene ring, an anthracene ring, a pyrene ring, a chrysene ring, or a perylene ring, and even more preferably a benzene ring or a naphthalene ring.
  • Ring Ar 2 and ring Ar 3 are preferably aromatic hydrocarbon rings, more preferably benzene ring, naphthalene ring, anthracene ring, pyrene ring, chrysene ring, or perylene ring, still more preferably benzene ring or naphthalene ring. It is.
  • R 1 is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, a hydroxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, or a substituted amino group, and more preferably hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, more preferably a hydrogen atom, an alkyl group, a cycloalkyl group, or an aryl group, and particularly preferably an alkyl group, a cycloalkyl group, or an aryl group. It is the basis.
  • the aryl group in R 1 is preferably a phenyl group, a naphthyl group, a phenanthrenyl group, a dihydrophenanthrenyl group, a fluorenyl group, or a spirobifluorenyl group, even if these groups have a substituent. good.
  • the monovalent heterocyclic group in R 1 is a pyridyl group, a pyrimidinyl group, a triazinyl group, a quinolinyl group, an isoquinolinyl group, a dibenzofuranyl group, a dibenzothienyl group, a carbazolyl group, an azacarbazolyl group, a diazacarbazolyl group, a phenoxazinyl group. or a phenothiazinyl group, and these groups may have a substituent.
  • the substituent that the amino group has is preferably an aryl group or a monovalent heterocyclic group, more preferably an aryl group, and these groups may further have a substituent.
  • Examples and preferred ranges of the aryl group and monovalent heterocyclic group in the substituent of the amino group are the same as the examples and preferred ranges of the aryl group and monovalent heterocyclic group in R 1 .
  • L is preferably a direct bond, -O-, -S-, an arylene group or a divalent heterocyclic group, more preferably a direct bond, -O- or -S-, still more preferably a direct bond.
  • L is directly bonded means that Ar 1 and ring Ar 2 are directly bonded.
  • R 11 are the same as the examples and preferred ranges of R 2L described below.
  • Examples and preferred ranges of R 12 are the same as those of R 1L described below.
  • R 1T represents an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryloxy group, an aryl group, a monovalent heterocyclic group, a substituted amino group, or a halogen atom; It may have a group.
  • R 1T may have is preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group, or a halogen atom. and more preferably an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, or a substituted amino group, and even more preferably an alkyl group, a cycloalkyl group, or an aryl group, and these groups are It may further have a substituent.
  • R 1T may further include are preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, and a monovalent group.
  • These groups may further have a substituent.
  • the aryl group in the substituent of R 1T or R 1T is preferably a phenyl group, a naphthyl group, a phenanthrenyl group, a dihydrophenanthrenyl group, a fluorenyl group, or a spirobifluorenyl group, and these groups are It may have.
  • the monovalent heterocyclic group in R 1T or the substituent of R 1T is a pyridyl group, pyrimidinyl group, triazinyl group, quinolinyl group, isoquinolinyl group, dibenzofuranyl group, dibenzothienyl group, carbazolyl group, azacarbazolyl group, diazacarba A zolyl group, a phenoxazinyl group or a phenothiazinyl group is preferable, and these groups may have a substituent.
  • the substituent that the amino group has is preferably an aryl group or a monovalent heterocyclic group, more preferably an aryl group, and these groups further have a substituent. You may do so. Examples and preferred ranges of the aryl group and monovalent heterocyclic group in the substituent of the amino group are the same as the examples and preferred ranges of the aryl group and monovalent heterocyclic group in R 1T .
  • R 1T is preferably an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, or a substituted amino group, and more preferably an alkyl group, a cycloalkyl group, or one of formulas (DA) to ( A group represented by DC) or a substituted amino group, and these groups may have a substituent.
  • Ring Ar 4 is preferably an aromatic hydrocarbon ring, more preferably a benzene ring, a naphthalene ring, an anthracene ring, a pyrene ring, a chrysene ring, or a perylene ring, and even more preferably a benzene ring or a naphthalene ring.
  • the preferred range of the substituent that ring Ar 4 may have is the same as the preferred range of the substituent that Ar 1 , ring Ar 2 , ring Ar 3 , and R 1 may have, as described above.
  • L 1 is preferably a group represented by -N(R 1L )-.
  • R 2L is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and more preferably a hydrogen atom, an alkyl group, a cycloalkyl group, or an aryl group.
  • the preferable range of the substituents that R 1L and R 2L may have is the same as the above-mentioned preferable range of the substituents that Ar 1 , ring Ar 2 , ring Ar 3 , and R 1 may have. be.
  • a substituent that R 1L , R 2L , R 1L may have or a substituent that R 2L may have is preferably bonded to ring Ar 2 , ring Ar 4 , a substituent that ring Ar 2 may have, or a substituent that ring Ar 4 may have to form a ring.
  • a substituent that R 1L , R 2L , R 1L may have or a substituent that R 2L may have is preferably bonded to ring Ar 3 , ring Ar 4 , a substituent that ring Ar 3 may have, or a substituent that ring Ar 4 may have to form a ring.
  • the compound represented by formula (1) is preferably a compound represented by formula (1-A).
  • Ar 1A is preferably an aromatic hydrocarbon ring, more preferably a benzene ring, a naphthalene ring, an anthracene ring, a pyrene ring, a chrysene ring, or a perylene ring, and even more preferably a benzene ring or a naphthalene ring.
  • the preferred range of the substituent that Ar 1A may have is the same as the preferred range of the substituent that Ar 1 , ring Ar 2 , ring Ar 3 , and R 1 may have, as described above.
  • the compound represented by formula (1) is more preferably a compound represented by formula (1-B).
  • Y is a carbon atom
  • Y is bonded to -R 1Y , or is bonded to the ring skeleton represented by formula (1-B2) together with Y of the adjacent carbon atom to form a ring
  • R 1Y is the same as the preferred range of the substituents that Ar 1 , ring Ar 2 , ring Ar 3 , and R 1 may have, as described above.
  • the ring skeleton represented by formula (2) is preferably a ring skeleton represented by formula (2-A).
  • L 1A is preferably -N(R 1AL )-.
  • R 1AL is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and more preferably a hydrogen atom, an alkyl group, a cycloalkyl group, or an aryl group.
  • R 2AL is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and more preferably a hydrogen atom, an alkyl group, a cycloalkyl group, or an aryl group.
  • R 1AL and R 2AL may have is the same as the preferred range of the substituents that Ar 1 , ring Ar 2 , ring Ar 3 , and R 1 may have, as described above. be.
  • a substituent that R 1AL may have or R 2AL may have
  • the substituent is a group on an atom constituting ring Ar 2 located next to two atoms of L 1A (for example, R 1Y on Y in formula (1-B)), or a group located next to two atoms of L 1A . It is preferable that the group (R 1Z ) on Z be bonded to form a ring.
  • a substituent that R 1AL may have or R 2AL may have
  • the substituent is a group on an atom constituting ring Ar 3 located next to two atoms of L 1A (for example, R 1Y on Y in formula (1-B)), or a group located next to two atoms of L 1A . It is preferable that the group (R 1Z ) on Z be bonded to form a ring.
  • Z is a carbon atom
  • Z is bonded to -R 1Z , or is bonded to the ring skeleton represented by formula (2-A1) with Z of the adjacent carbon atom to form a ring, It is preferable that it is either.
  • R 1Z is the same as the preferred range of the substituents that Ar 1 , ring Ar 2 , ring Ar 3 , and R 1 may have, as described above.
  • the compound represented by formula (1) has formulas (3-A), (3-B), (3-C), (3-D), (3-E), (3-F), (3 -G), (3-H), (3-I) or (3-J) are more preferred.
  • W is a carbon atom.
  • W is a carbon atom
  • W is bonded to -R 1W , or is bonded to the ring skeleton represented by formula (3-1) together with W of an adjacent carbon atom to form a ring, and is preferably bonded to -R 1W .
  • R 1W is the same as the preferred range of the substituents that Ar 1 , ring Ar 2 , ring Ar 3 , and R 1 may have, as described above.
  • R3A is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, a hydroxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, or a substituted amino group, and more preferably hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, more preferably a hydrogen atom, an alkyl group, a cycloalkyl group, or an aryl group, and particularly preferably an alkyl group, a cycloalkyl group, or an aryl group. It is the basis.
  • the preferable range of the substituent that R 3A may have is the same as the above-mentioned preferable range of the substituent that Ar 1 , ring Ar 2 , ring Ar 3 , and R 1 may have.
  • L 3A is preferably -N(R 31L )-.
  • R 32L is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and more preferably a hydrogen atom, an alkyl group, a cycloalkyl group, or an aryl group.
  • the preferable range of the substituent that R 31L may have is the same as the above-mentioned preferable range of the substituent that Ar 1 , ring Ar 2 , ring Ar 3 , and R 1 may have.
  • the preferable range of the substituent that R 32L may have is the same as the above-mentioned preferable range of the substituent that Ar 1 , ring Ar 2 , ring Ar 3 , and R 1 may have.
  • R 31L , R 32L , and R 31L may have and the substituents that R 32L may have include a group on W 3A that is a carbon atom located two atoms adjacent to L 3A (R 1W ) is preferably bonded to form a ring.
  • Examples of the compounds of this embodiment include compounds represented by formulas (1-1) to (1-125).
  • the polymer compound of this embodiment includes a structural unit (hereinafter also referred to as structural unit (A)) having a group obtained by removing one or more hydrogen atoms from the above compound.
  • structural unit (A) a structural unit having a group obtained by removing one or more hydrogen atoms from the above compound.
  • the structural unit (A) is preferably a structural unit having a group obtained by removing 1 to 5 hydrogen atoms from the above compound, and more preferably the above compound, since the polymer compound of this embodiment can be easily synthesized.
  • the structural unit (A) is preferably a structural unit represented by the formula (AP-1), the formula (AP-2), or the formula (AP-3), since the polymer compound of the present embodiment can be easily synthesized. More preferably, it is a structural unit represented by formula (AP-1) or formula (AP-2), and still more preferably a structural unit represented by formula (AP-2).
  • M AP1 represents a group obtained by removing one hydrogen atom from the above compound.
  • MAP2 represents a group obtained by removing two hydrogen atoms from the above compound.
  • M AP3 represents a group obtained by removing three hydrogen atoms from the above compound.
  • L AP1 each independently represents an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, a group represented by -N(R AP1 )-, an oxygen atom, or a sulfur atom; It may have a substituent. When a plurality of substituents exist, they may be the same or different, and may be bonded to each other to form a ring with the atoms to which they are bonded.
  • R AP1 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent.
  • substituents When a plurality of substituents exist, they may be the same or different, and may be bonded to each other to form a ring with the atoms to which they are bonded.
  • L AP1s When a plurality of L AP1s exist, they may be the same or different.
  • n AP1 represents an integer from 0 to 10.
  • Ar AP1 represents a hydrocarbon group or a heterocyclic group, and these groups may have a substituent.
  • substituents When a plurality of substituents exist, they may be the same or different, and may be bonded to each other to form a ring with the atoms to which they are bonded.
  • L AP1 is preferably an alkylene group, a cycloalkylene group, an arylene group, or a divalent heterocyclic group, more preferably an alkylene group or an arylene group, even more preferably an arylene group, and these groups may have a substituent.
  • Examples and preferred ranges of the arylene group and divalent heterocyclic group in L AP1 are respectively the same as the examples and preferred ranges of the arylene group and divalent heterocyclic group in Ar Y1 described below.
  • the alkylene group in L AP1 is preferably a methylene group, an ethylene group or a propylene group, more preferably a methylene group, and these groups may have a substituent.
  • n AP1 is preferably an integer of 0 to 5, preferably an integer of 0 to 3, more preferably 0 or 1, and even more preferably 0.
  • Examples of the hydrocarbon group in Ar AP1 include an aromatic hydrocarbon group that may have a substituent and an aliphatic hydrocarbon group that may have a substituent.
  • the hydrocarbon group in Ar AP1 includes a group in which a plurality of these groups are bonded.
  • the aliphatic hydrocarbon group includes a group obtained by removing one hydrogen atom n AP from an alkylene group or a cycloalkylene group, preferably a group obtained by removing one hydrogen atom n AP from an alkylene group, These groups may have a substituent. Examples and preferred ranges of this alkylene group include the examples and preferred ranges of the alkylene group in L H1 described below.
  • examples of the aromatic hydrocarbon group include a group obtained by removing one hydrogen atom n AP from an arylene group, and this group may have a substituent.
  • examples and preferred ranges of this arylene group include the examples and preferred ranges of the arylene group in Ar Y1 described below.
  • examples of the heterocyclic group in Ar AP1 include a group obtained by removing one hydrogen atom n AP from a divalent heterocyclic group, and this group may have a substituent.
  • Examples and preferred ranges of this divalent heterocyclic group include the examples and preferred ranges of the divalent heterocyclic group in Ar Y1 described below.
  • Examples of the structural unit represented by formula (A) include structural units represented by formulas (1-201) to (1-215).
  • the total amount of structural units (A) is preferably 0.1 to 50 mol%, more preferably 0.3 to 20 mol%, and further Preferably it is 0.5 to 10 mol%.
  • the polymer compound of this embodiment may further contain structural units other than the structural unit (A).
  • the polymer compound of the present embodiment further includes a structural unit represented by the formula (Y) described below (hereinafter also referred to as structural unit (Y)).
  • Examples and preferred ranges of the structural unit (Y) contained in the polymer compound of this embodiment are the same as examples and preferred ranges of the structural unit (Y) contained in the polymer host described below.
  • the content of the structural unit (Y) contained in the polymer compound of this embodiment is determined based on the total amount of structural units contained in the polymer compound, since when Ar Y1 is an arylene group, the luminance life of the light emitting element is better. On the other hand, it is preferably 0.5 to 80 mol%, more preferably 30 to 60 mol%.
  • the content of the structural unit (Y) contained in the polymer compound of this embodiment is such that Ar Y1 is a divalent heterocyclic group, or at least one arylene group and at least one divalent heterocyclic group.
  • Ar Y1 is a divalent heterocyclic group, or at least one arylene group and at least one divalent heterocyclic group.
  • the charge transport property of the light emitting device is excellent, so it is preferably 0.5 to 40 mol%, more preferably 0.5 to 40 mol%, based on the total amount of structural units contained in the polymer compound. is 3 to 30 mol%.
  • the polymer compound of this embodiment may contain only one type of structural unit (Y), or may contain two or more types.
  • the polymer compound of the present embodiment has excellent hole transport properties, it is preferable that the polymer compound further contains a structural unit represented by formula (X) described below (hereinafter also referred to as structural unit (X)).
  • Examples and preferred ranges of the structural unit (X) contained in the polymer compound of this embodiment are the same as examples and preferred ranges of the structural unit (X) contained in the polymer host described below.
  • the polymer compound of this embodiment may contain only one type of structural unit (X), or may contain two or more types.
  • polymer compounds of this embodiment include polymer compounds P-1 to P-3 shown in Table 1.
  • formula (1-P) means a structural unit (structural unit (A)) having a group obtained by removing one or more hydrogen atoms from the compound represented by formula (1)
  • formula (X) means the structural unit represented by formula (X)
  • formula (Y) means the structural unit represented by formula (Y)
  • “other” means the structural unit represented by formula (1-P) , means a structural unit other than formula (X) and formula (Y).
  • the terminal group of the polymer compound of this embodiment is preferable because if the polymerization active group remains as it is, the luminescence characteristics and brightness life may deteriorate when the polymer compound is used to fabricate a light emitting device.
  • This terminal group is preferably a group that is conjugated to the main chain, such as an aryl group or a monovalent heterocyclic group that is bonded to the main chain of the polymer compound via a carbon-carbon bond. .
  • the polymer compound of this embodiment may be any of a block copolymer, a random copolymer, an alternating copolymer, a graft copolymer, or may be of any other form; A copolymer formed by copolymerizing raw material monomers is preferable.
  • the compound of this embodiment can be produced, for example, by a method including step A of reacting a compound represented by formula (M-1) and a compound represented by formula (M-2). .
  • Process A [In the formula, Ar 1 , Ar 2 , Ar 3 and L have the same meanings as above. R 1 represents the same meaning as above (however, hydrogen atoms are excluded).
  • M M1 represents a lithium atom or Mg-X M2 .
  • X M1 represents a monovalent anion obtained by removing one proton (H + ) from an acid.
  • X M2 represents an alkylsulfonyloxy group, a cycloalkylsulfonyloxy group, an arylsulfonyloxy group, a chlorine atom, a bromine atom, or an iodine atom, and these groups may have a substituent.
  • the acid in X M1 may be, for example, alkylsulfonic acid, cycloalkylsulfonic acid, arylsulfonic acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, etc., and these acids may have substituents. good.
  • alkylsulfonic acid examples include methanesulfonic acid, ethanesulfonic acid, trifluoromethanesulfonic acid, and the like.
  • arylsulfonic acid examples include p-toluenesulfonic acid and the like.
  • M M1 is Mg-X M2 .
  • examples of the alkylsulfonyloxy group include a methanesulfonyloxy group, an ethanesulfonyloxy group, and a trifluoromethanesulfonyloxy group.
  • examples of the arylsulfonyloxy group include p-toluenesulfonyloxy group.
  • X M2 is a chlorine atom, a bromine atom, or an iodine atom.
  • Step A is usually performed in a solvent.
  • solvents include alcohol solvents such as methanol, ethanol, propanol, ethylene glycol, glycerin, 2-methoxyethanol, and 2-ethoxyethanol; ether solvents such as diethyl ether, tetrahydrofuran (THF), dioxane, cyclopentyl methyl ether, and diglyme.
  • Halogen solvents such as methylene chloride and chloroform
  • Nitrile solvents such as acetonitrile and benzonitrile
  • Hydrocarbon solvents such as hexane, decalin, toluene, xylene, and mesitylene
  • N,N-dimethylformamide, N,N-dimethylacetamide amide solvents such as acetone, dimethyl sulfoxide, water, etc.
  • the reaction time is usually 30 minutes to 150 hours, and the reaction temperature is usually between the melting point and the boiling point (above the melting point and below the boiling point) of the solvent present in the reaction system.
  • step A the amount of the compound represented by formula (M-2) is usually 1 to 20 mol per 1 mol of the compound represented by formula (M-1).
  • the compound represented by formula (M-1) can be produced, for example, by a method including step B of reacting a compound represented by formula (M-3).
  • Process B [In the formula, Ar 1 , Ar 2 , Ar 3 , L and X M1 have the same meanings as above. R 1 represents the same meaning as above (however, hydrogen atoms are excluded). ]
  • the reaction in step B is preferably carried out in the presence of an acid such as alkylsulfonic acid, cycloalkylsulfonic acid, arylsulfonic acid, hydrochloric acid, hydrobromic acid or hydroiodic acid.
  • an acid such as alkylsulfonic acid, cycloalkylsulfonic acid, arylsulfonic acid, hydrochloric acid, hydrobromic acid or hydroiodic acid.
  • an acid is usually 1 to 20 mol per 1 mol of the compound represented by formula (M-3).
  • alkylsulfonic acid used in Step B examples include methanesulfonic acid, ethanesulfonic acid, trifluoromethanesulfonic acid, and the like.
  • the arylsulfonic acid used in step B includes p-toluenesulfonic acid and the like.
  • the reaction in step B is usually carried out in a solvent.
  • Examples and preferred ranges of the solvent, reaction time, and reaction temperature in step B are the same as the examples and preferred ranges of the solvent, reaction time, and reaction temperature in the reaction of step A.
  • the compound represented by formula (M-1) may be isolated and the reaction in step A may be performed, or the compound represented by formula (M-1) is not isolated and the reaction in step A is performed.
  • the reaction of Step A may be carried out continuously in the reaction solvent of B.
  • the compound represented by formula (M-3) is produced, for example, by a method including step C in which a compound represented by formula (M-4) and a compound represented by formula (M-5) are reacted. can do.
  • Process C [In the formula, Ar 1 , Ar 2 , Ar 3 and L have the same meanings as above. R 1 represents the same meaning as above (however, hydrogen atoms are excluded).
  • M M2 represents a lithium atom or Mg-X M2 . ]
  • M M2 is Mg-X M2 .
  • the examples and preferred ranges of X M2 in M M2 are the same as the examples and preferred ranges of X M2 in M M1 .
  • Step C is usually performed in a solvent.
  • Examples and preferred ranges of the solvent, reaction time, and reaction temperature in Step C are the same as the examples and preferred ranges of the solvent, reaction time, and reaction temperature in Step A.
  • the compound of this embodiment can also be produced, for example, by a method including step D of reacting a compound represented by formula (M-6) with a compound represented by formula (M-7).
  • Process D [In the formula, Ar 1 , Ar 2 , Ar 3 and L have the same meanings as above. R 1 represents the same meaning as above (however, hydrogen atoms are excluded).
  • X M3 represents an alkylsulfonyloxy group, a cycloalkylsulfonyloxy group, an arylsulfonyloxy group, a chlorine atom, a bromine atom, or an iodine atom, and these groups may have a substituent.
  • Examples and preferred ranges for X M3 are the same as those for X M1 .
  • step D is usually carried out in a solvent.
  • Examples and preferred ranges of the solvent, reaction time, and reaction temperature in step D are the same as the examples and preferred ranges of the solvent, reaction time, and reaction temperature in the reaction of step A.
  • the compound represented by formula (M-6) can be produced, for example, by a method including step E of reacting the compound represented by formula (M-4).
  • step E [Wherein, Ar 1 , Ar 2 , Ar 3 and L have the same meanings as above. ]
  • step E is usually carried out in a solvent.
  • Examples and preferred ranges of the solvent, reaction time, and reaction temperature in Step E are the same as the examples and preferred ranges of the solvent, reaction time, and reaction temperature in the reaction of Step A.
  • the compound of this embodiment can also be produced, for example, by a method including step F in which a compound represented by formula (M-3) and a compound represented by formula (M-8) are reacted.
  • step F a compound represented by formula (M-3) and a compound represented by formula (M-8) are reacted.
  • the reaction in step F is preferably carried out in the presence of an acid such as alkylsulfonic acid, cycloalkylsulfonic acid, arylsulfonic acid, hydrochloric acid, hydrobromic acid or hydroiodic acid.
  • an acid such as alkylsulfonic acid, cycloalkylsulfonic acid, arylsulfonic acid, hydrochloric acid, hydrobromic acid or hydroiodic acid.
  • an acid is usually 1 to 20 mol per 1 mol of the compound represented by formula (M-3).
  • alkylsulfonic acid used in Step F examples include methanesulfonic acid, ethanesulfonic acid, trifluoromethanesulfonic acid, and the like.
  • the arylsulfonic acid used in step F includes p-toluenesulfonic acid and the like.
  • the reaction in step F is usually carried out in a solvent.
  • Examples and preferred ranges of the solvent, reaction time, and reaction temperature in Step F are the same as the examples and preferred ranges of the solvent, reaction time, and reaction temperature in the reaction of Step A.
  • the compound represented by formula (1) can also be produced, for example, by a method including step G of reacting a compound represented by formula (M-10). Furthermore, the compound represented by formula (M-4) and the compound represented by formula (M-6) are also produced by a method including step G of reacting the compound represented by formula (M-10). be able to.
  • Z M1 represents a group represented by -B(OR ZM1 ) 2 , an alkylsulfonyloxy group, a cycloalkylsulfonyloxy group, an arylsulfonyloxy group, a chlorine atom, a bromine atom, or an iodine atom, and these groups are substituents. You may do so.
  • R ZM1 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or an amino group, and these groups may have a substituent.
  • a plurality of R ZM1s may be the same or different, and may be bonded to each other to form a ring structure together with the oxygen atom to which each is bonded. ]
  • the compound represented by formula (M-9) is a compound represented by formula (M-4).
  • the compound represented by formula (M-9) is a compound represented by formula (1).
  • the compound represented by formula (M-9) is a compound represented by formula (M-6) You can also say that.
  • examples of the alkylsulfonyloxy group include a methanesulfonyloxy group, an ethanesulfonyloxy group, and a trifluoromethanesulfonyloxy group.
  • examples of the arylsulfonyloxy group include p-toluenesulfonyloxy group.
  • Examples of the group represented by -B(OR ZM1 ) 2 include groups represented by the following formulas (ZM-1) to (ZM-10).
  • Z M1 is preferably a trifluoromethanesulfonyloxy group, a chlorine atom, a bromine atom, or an iodine atom because the reaction in step G (coupling reaction) proceeds easily.
  • the reaction in step G is usually carried out in a solvent.
  • Examples and preferred ranges of the solvent, reaction time, and reaction temperature in step G are the same as the examples and preferred ranges of the solvent, reaction time, and reaction temperature in the reaction of step A.
  • the compound represented by formula (1) can also be produced, for example, by a method including step H of reacting a compound represented by formula (M-11). Furthermore, the compound represented by formula (M-4) and the compound represented by formula (M-6) are also produced by a method including step H of reacting the compound represented by formula (M-11). be able to. (Process H) [In the formula, Ar 1 , Ar 2 , Ar 3 , L and L M1 have the same meanings as above.
  • Z M2 and Z M3 represent a group represented by -B(OR ZM2 ) 2 , an alkylsulfonyloxy group, a cycloalkylsulfonyloxy group, an arylsulfonyloxy group, a chlorine atom, a bromine atom, or an iodine atom, and these groups may have a substituent.
  • R ZM2 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or an amino group, and these groups may have a substituent.
  • a plurality of R ZM2s may be the same or different, and may be bonded to each other to form a ring structure together with the oxygen atom to which each is bonded. ]
  • examples of the alkylsulfonyloxy group include a methanesulfonyloxy group, an ethanesulfonyloxy group, and a trifluoromethanesulfonyloxy group.
  • examples of the arylsulfonyloxy group include p-toluenesulfonyloxy group.
  • Examples of the group represented by -B(OR ZM2 ) 2 include groups represented by formulas (ZM-1) to (ZM-10).
  • the reaction in step H is usually carried out in a solvent.
  • Examples and preferred ranges of the solvent, reaction time, and reaction temperature in Step H are the same as the examples and preferred ranges of the solvent, reaction time, and reaction temperature in the reaction of Step A.
  • Palladium catalysts may be used in combination with phosphorus compounds such as triphenylphosphine, tri(o-tolyl)phosphine, tri(tert-butyl)phosphine, tricyclohexylphosphine, and 1,1′-bis(diphenylphosphino)ferrocene. .
  • the amount is usually an effective amount, for example, per 1 mole of the compound represented by formula (M-10) or formula (M-11), and preferably, It is 0.00001 to 10 mol in terms of palladium element.
  • a base may be used in combination, if necessary.
  • the compounds, catalysts, and solvents used in each reaction described in ⁇ Method for producing compounds> may be used alone or in combination of two or more.
  • the polymer compound of the present embodiment is produced, for example, by condensation polymerization of a compound represented by formula (M-12) and another compound (for example, a compound represented by formula (M-13)). can do.
  • the compounds used in the production of the polymer compound of this embodiment and forming the constituent units of the polymer compound of this embodiment may be collectively referred to as "raw material monomers.”
  • U 1 represents a group having a group obtained by removing one or more hydrogen atoms from the compound of this embodiment (the compound represented by formula (1)).
  • Ar Y1 has the same meaning as Ar Y1 described later.
  • Z C1 , Z C2 , Z C3 and Z C4 each independently represent a group selected from the group consisting of substituent A group and substituent B group.
  • Z C1 and Z C2 are groups selected from substituent group A
  • Z C3 and Z C4 are groups selected from substituent group B.
  • Z C1 and Z C2 are groups selected from substituent group B
  • Z C3 and Z C4 are groups selected from substituent group A.
  • R C2 represents a hydrogen atom, an alkyl group, a cycloalkyl group, or an aryl group, and these groups may have a substituent.
  • a plurality of R C2 is A group that may be the same or different, and may be linked to each other to form a ring structure with the oxygen atom to which each is bonded; - A group represented by BF 3 Q' (wherein Q' represents Li, Na, K, Rb or Cs); - A group represented by MgY' (wherein Y' represents a chlorine atom, a bromine atom, or an iodine atom); - a group represented by ZnY'' (wherein Y'' represents a chlorine atom, a bromine atom or an iodine atom); and -Sn(R C3 ) 3 (wherein R C3 represents a hydrogen atom, an alkyl group, a cycloalkyl group, or an aryl group, and these groups may have a substituent.
  • a plurality of R C3 is The groups may be the same or different, and may be linked to each other to form a ring structure together with the tin atom
  • Examples of the group represented by -B(OR C2 ) 2 include groups represented by the following formula.
  • a compound having a group selected from substituent group A and a compound having a group selected from substituent group B are condensed together by a known coupling reaction to form a group selected from substituent group A and a substituent group B. Carbon atoms that are bonded to groups selected from are bonded to each other. Therefore, if a compound having two groups selected from substituent group A and a compound having two groups selected from substituent group B are subjected to a known coupling reaction, the condensation of these compounds will occur through condensation polymerization. Polymers can be obtained.
  • Condensation polymerization is usually carried out in the presence of a catalyst, a base, and a solvent, but if necessary, it may be carried out in the presence of a phase transfer catalyst.
  • the catalyst examples include bis(triphenylphosphine)palladium(II) dichloride, bis(tris-o-methoxyphenylphosphine)palladium(II) dichloride, tetrakis(triphenylphosphine)palladium(0), and tris(dibenzylideneacetone).
  • Dipalladium(0) palladium complexes such as palladium acetate, tetrakis(triphenylphosphine)nickel(0), [1,3-bis(diphenylphosphino)propane)nickel(II) dichloride, bis(1,4- Transition metal complexes such as nickel complexes such as cyclooctadiene)nickel(0); these transition metal complexes can further be used to form triphenylphosphine, tri(o-tolyl)phosphine, tri(tert-butyl)phosphine, tricyclohexylphosphine, Examples include complexes having ligands such as 1,3-bis(diphenylphosphino)propane and bipyridyl.
  • the catalysts may be used alone or in combination of two or more.
  • the amount of catalyst used is usually 0.00001 to 3 molar equivalents as the amount of transition metal relative to the total number of moles of raw material monomers.
  • bases and phase transfer catalysts include inorganic bases such as sodium carbonate, potassium carbonate, cesium carbonate, potassium fluoride, cesium fluoride, and tripotassium phosphate; tetrabutylammonium fluoride, tetraethylammonium hydroxide, and tetraethylammonium hydroxide.
  • examples include organic bases such as butylammonium; phase transfer catalysts such as tetrabutylammonium chloride and tetrabutylammonium bromide.
  • the base and the phase transfer catalyst may be used alone or in combination of two or more.
  • the amounts of the base and phase transfer catalyst used are usually 0.001 to 100 molar equivalents, respectively, based on the total number of moles of the raw material monomers.
  • the solvent examples include organic solvents such as toluene, xylene, mesitylene, tetrahydrofuran, 1,4-dioxane, dimethoxyethane, N,N-dimethylacetamide, and N,N-dimethylformamide, and water.
  • organic solvents such as toluene, xylene, mesitylene, tetrahydrofuran, 1,4-dioxane, dimethoxyethane, N,N-dimethylacetamide, and N,N-dimethylformamide, and water.
  • the solvents may be used alone or in combination of two or more.
  • the amount of the solvent used is usually 10 to 100,000 parts by mass based on the total of 100 parts by mass of the raw material monomers.
  • the reaction temperature for condensation polymerization is usually -100 to 200°C.
  • the reaction time for condensation polymerization is usually 1 hour or more.
  • Post-treatment of the polymerization reaction can be carried out by known methods, such as removing water-soluble impurities by liquid separation, adding the reaction solution after the polymerization reaction to a lower alcohol such as methanol, filtering the precipitate, and then drying. Use these methods alone or in combination. If the purity of the polymer compound is low, it can be purified by conventional methods such as crystallization, reprecipitation, continuous extraction using a Soxhlet extractor, and column chromatography.
  • the compounds of this embodiment may be contained alone or in combination of two or more.
  • the compound of this embodiment can be formed into a composition with a host material having at least one function selected from the group consisting of hole-injecting property, hole-transporting property, electron-injecting property, and electron-transporting property.
  • the external quantum efficiency of the light-emitting device obtained using this compound is particularly excellent.
  • one type of host material may be contained alone, or two or more types of host materials may be contained.
  • the content of the compound of this embodiment is usually 0.05 parts by weight when the total of the compound of this embodiment and host material is 100 parts by weight. ⁇ 80 parts by weight, preferably 0.1 to 50 parts by weight, more preferably 0.5 to 20 parts by weight.
  • the host material is one that exhibits solubility in a solvent that can dissolve the compound of this embodiment, since a light emitting device obtained using the composition of this embodiment can be produced by a solution coating process. It is preferable.
  • Host materials are classified into low-molecular compounds and high-molecular compounds, and the composition of this embodiment may contain any of the host materials.
  • the low-molecular host is preferably a compound represented by the following formula (H-1) because the light-emitting element has better luminous efficiency.
  • Ar H1 and Ar H2 each independently represent an aryl group, a monovalent heterocyclic group, or a substituted amino group, and these groups may have a substituent. When a plurality of substituents exist, they may be the same or different, and may be bonded to each other to form a ring with the atoms to which they are bonded.
  • n H1 represents an integer of 0 or more.
  • L H1 represents a divalent group, and these groups may have a substituent.
  • substituents When a plurality of substituents exist, they may be the same or different, and may be bonded to each other to form a ring with the atoms to which they are bonded.
  • L H1 's When a plurality of L H1 's exist, they may be the same or different, and they may be bonded to each other directly or via a divalent group to form a ring.
  • Ar H1 and Ar H2 may be bonded directly or via a divalent group to form a ring.
  • L H1 and Ar H1 may be bonded directly or via a divalent group to form a ring.
  • L H1 and Ar H2 may be bonded directly or via a divalent group to form a ring.
  • the molecular weight of the compound represented by formula (H-1) is preferably 1 ⁇ 10 2 to 5 ⁇ 10 3 , more preferably 2 ⁇ 10 2 to 3 ⁇ 10 3 , even more preferably 3 ⁇ 10 3 It is 10 2 to 1.5 ⁇ 10 3 , particularly preferably 4 ⁇ 10 2 to 1 ⁇ 10 3 .
  • the aryl group in Ar H1 and Ar H2 is preferably directly bonded to an atom constituting a ring from a monocyclic or 2 to 7 ring aromatic hydrocarbon, since the luminance life of the light emitting element of this embodiment is more excellent.
  • a group from which one hydrogen atom is removed more preferably a group from which one hydrogen atom directly bonded to an atom constituting a ring is removed from a monocyclic or 2- to 5-ring aromatic hydrocarbon. More preferably, it is a group obtained by removing one hydrogen atom directly bonded to an atom constituting a ring from a monocyclic, bicyclic, or tricyclic aromatic hydrocarbon, and these groups have a substituent. You may do so.
  • the aryl groups in Ar H1 and Ar H2 are preferably benzene, naphthalene, anthracene, phenanthrene, dihydrophenanthrene, fluorene, benzanthracene, benzophenanthrene, benzofluorene, because the driving voltage of the light emitting device of this embodiment is further lowered.
  • dihydrophenanthrene fluorene, benzanthracene, benzophenanthrene, or benzofluorene, with one hydrogen atom directly bonded to a ring-constituting atom removed, more preferably benzene, naphthalene, anthracene, phenanthrene, dihydrophenanthrene. or a group obtained by removing one hydrogen atom directly bonded to an atom constituting a ring from fluorene, particularly preferably from benzene, naphthalene, or anthracene by removing one hydrogen atom directly bonded to an atom constituting a ring.
  • These groups may have a substituent.
  • the monovalent heterocyclic group in Ar H1 and Ar H2 is preferably furan, thiophene, oxadiazole, thiadiazole, pyrrole, diazole, triazole, pyridine, or diazabenzene, since the luminance lifetime of the light emitting element of this embodiment is more excellent.
  • triazine azanaphthalene, diazanaphthalene, benzofuran, benzothiophene, indole, azaindole, diazaindole, benzodiazole, benzothiadiazole, benzotriazole, dibenzofuran, dibenzothiophene, carbazole, azacarbazole, diazacarbazole, phenoxazine , phenothiazine, 9,10-dihydroacridine, 5,10-dihydrophenazine, azaanthracene, diazaanthracene, azaphenanthrene, diazaphenanthrene, benzocarbazole, azabenzocarbazole, diazabenzocarbazole, benzonaphthofuran, benzonaphthothiophene , dibenzocarbazole, indolocarbazole, indenocarbazole, azaindrocarba
  • pyridine diazabenzene, triazine, azanaphthalene, diazanaphthalene, dibenzofuran, dibenzothiophene, carbazole, azacarbazole, diazacarbazole, phenoxazine, phenothiazine, 9,10-dihydroacridine, 5,10- Dihydrophenazine, benzocarbazole, azabenzocarbazole, diazabenzocarbazole, benzonaphthofuran, benzonaphthothiophene, dibenzocarbazole, indolocarbazole, indenocarbazole, azaindrocarbazole, diazaindrocarbazole, azaindenocarbazole or dia A group obtained by removing one hydrogen atom directly bonded to an atom constituting a ring from zaindenocarbazole, and more preferably pyridine, diazabenzene, triazine,
  • a group excluding one hydrogen atom directly bonded to an atom constituting a ring, and these groups may have a substituent.
  • the substituent that the amino group has is preferably an aryl group or a monovalent heterocyclic group, more preferably an aryl group, and these groups further have a substituent.
  • Examples and preferred ranges of the aryl group that is a substituent on the amino group are the same as the examples and preferred ranges of the aryl group in Ar H1 and Ar H2 .
  • Examples and preferred ranges of the monovalent heterocyclic group that is a substituent on the amino group are the same as the examples and preferred ranges of the monovalent heterocyclic group in Ar H1 and Ar H2 .
  • Ar H1 and Ar H2 are an aryl group or a monovalent heterocyclic group, and both Ar H1 and Ar H2 are an aryl group or a monovalent heterocyclic group.
  • a group or a monovalent heterocyclic group is more preferable, and these groups may have a substituent.
  • aryl group and monovalent heterocyclic group in Ar H1 and Ar H2 monocyclic, bicyclic, or tricyclic aromatic hydrocarbons, or , a monocyclic, bicyclic, or tricyclic heterocyclic compound from which one hydrogen atom directly bonded to the atom constituting the ring is removed, such as benzene, naphthalene, fluorene, pyridine, diazabenzene, and triazine.
  • azanaphthalene, diazanaphthalene, dibenzofuran, dibenzothiophene, or carbazole with one hydrogen atom directly bonded to a ring-constituting atom removed, such as a phenyl group, a naphthyl group, a fluorenyl group, a carbazolyl group, and a dibenzo group.
  • a thienyl group or a dibenzofuryl group is more preferred, a phenyl group, a naphthyl group or a carbazolyl group is particularly preferred, and these groups may have a substituent.
  • the substituent that Ar H1 and Ar H2 may have is preferably a halogen atom, a cyano group, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryloxy group, an aryl group, or a monovalent group.
  • a heterocyclic group or a substituted amino group more preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a monovalent heterocyclic group or a substituted amino group, even more preferably an alkyl group , a cycloalkyl group, an aryl group, a monovalent heterocyclic group, or a substituted amino group, and particularly preferably an alkyl group, a cycloalkyl group, or an aryl group, even if these groups further have a substituent. good.
  • Examples and preferred ranges of the aryl group, monovalent heterocyclic group, and substituted amino group in the substituents that Ar H1 and Ar H2 may have are the aryl group, monovalent heterocyclic group, and substituted amino group in Ar H1 and Ar H2 , respectively
  • the examples and preferred ranges of the cyclic group and substituted amino group are the same.
  • Ar H1 and Ar H2 may further include are preferably a halogen atom, a cyano group, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, An aryloxy group, an aryl group, a monovalent heterocyclic group, or a substituted amino group, more preferably an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, or a substituted amino group, still more preferably , an alkyl group, a cycloalkyl group, or an aryl group, particularly preferably an alkyl group or a cycloalkyl group, and these groups may further have a substituent, but must not have a further substituent.
  • the examples and preferred ranges of the aryl group, monovalent heterocyclic group, and substituted amino group in Ar H2 are the same.
  • the divalent group in L H1 is preferably an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, -N(R 0 ), since the luminance life of the light emitting element of this embodiment is more excellent.
  • a group represented by -C( O)-, more preferably an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, -N(R 0 )-
  • At least one of the divalent groups in L H1 is preferably an alkylene group, a cycloalkylene group, an arylene group, or a divalent heterocyclic group, since the luminance life of the light emitting element of this embodiment is more excellent.
  • it is an arylene group or a divalent heterocyclic group, and these groups may have a substituent.
  • the arylene group is preferably an atom constituting a ring from a monocyclic or 2 to 7 ring aromatic hydrocarbon because the luminance life of the light emitting element of this embodiment is more excellent.
  • a group from which two hydrogen atoms directly bonded to are removed more preferably from a monocyclic or bi- to pentacyclic aromatic hydrocarbon from which two hydrogen atoms directly bonded to the atoms constituting the ring are removed.
  • a group, more preferably a group obtained by removing two hydrogen atoms directly bonded to atoms constituting a ring from a monocyclic, bicyclic, or tricyclic aromatic hydrocarbon, and these groups are substituted with It may have a group.
  • phenanthrene, dihydrophenanthrene, fluorene, benzanthracene, benzophenanthrene or benzofluorene from which two hydrogen atoms directly bonded to the atoms constituting the ring are removed, more preferably benzene, naphthalene, anthracene, phenanthrene, A group obtained by removing two hydrogen atoms directly bonded to the atoms constituting the ring from dihydrophenanthrene or fluorene, and particularly preferably two hydrogen atoms bonded directly to the atoms constituting the ring from benzene, naphthalene or anthracene. These groups may have a substituent.
  • a divalent heterocyclic group is preferably a monocyclic or 2- to 7-cyclic heterocyclic group, since the luminance life of the light emitting element of this embodiment is better.
  • a group from which two hydrogen atoms are directly bonded to an atom (preferably a carbon atom) constituting the more preferably a group consisting of an atom constituting a ring from a monocyclic or 2 to 5 ring heterocyclic compound ( Preferably, it is a group from which two hydrogen atoms are directly bonded to a carbon atom), and more preferably a group from which two hydrogen atoms are directly bonded to an atom (preferably a carbon atom) constituting a ring of a monocyclic, bicyclic, or tricyclic heterocyclic compound.
  • a group in which two hydrogen atoms directly bonded to an atom (atom) are removed and particularly preferably, a group in which two hydrogen atoms bonded directly to an atom (preferably a carbon atom) forming a ring from a tricyclic heterocyclic compound are removed.
  • These groups may have a substituent.
  • divalent heterocyclic groups are preferably furan, thiophene, oxadiazole, thiadiazole, pyrrole, diazole, triazole, Pyridine, diazabenzene, triazine, azanaphthalene, diazanaphthalene, benzofuran, benzothiophene, indole, azaindole, diazaindole, benzodiazole, benzothiadiazole, benzotriazole, dibenzofuran, dibenzothiophene, carbazole, azacarbazole, diazacarbazole , phenoxazine, phenothiazine, 9,10-dihydroacridine, 5,10-dihydrophenazine, azaanthracene, diazaanthracene, azaphenanthrene, diazaphenanthrene, benzocarbazole, azabenzocarbazole, azabenzocarbazole,
  • the alkylene group is preferably a methylene group, an ethylene group or a propylene group, more preferably a methylene group, and these groups may have a substituent.
  • R 0 is preferably an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, more preferably an aryl group or a monovalent heterocyclic group, More preferably, it is an aryl group, and these groups may have a substituent.
  • Examples and preferred ranges of the aryl group and monovalent heterocyclic group in R 0 in the divalent group in L H1 are the examples and preferred ranges of the aryl group and monovalent heterocyclic group in Ar H1 and Ar H2 , respectively. is the same as In the divalent group in L H1 , examples and preferred ranges of substituents that R 0 may have are the same as examples and preferred ranges of substituents that Ar H1 and Ar H2 may have. .
  • n H1 is usually an integer of 0 or more and 10 or less, preferably an integer of 0 or more and 7 or less, more preferably an integer of 1 or more and 5 or less, still more preferably an integer of 1 or more and 3 or less, Particularly preferably 1 or 2.
  • Ar H1 and Ar H2 may be bonded directly or via a divalent group to form a ring, but the compound represented by formula (H-1) can be easily synthesized. Therefore, it is preferable not to form a ring.
  • a group represented by -O- or a group represented by -S- more preferably an alkylene group, a group represented by -O- or a group represented by -S- , these groups may have a substituent.
  • examples and preferred ranges of the arylene group, divalent heterocyclic group, and alkylene group in the divalent group are as follows: The examples and preferred ranges are the same as the arylene group, divalent heterocyclic group, and alkylene group in L H1 , respectively.
  • examples and preferred ranges of R 0 in the divalent group are R 0 in the divalent group of L H1 .
  • the examples and preferred ranges are the same.
  • examples and preferred ranges of substituents that the divalent group may have include Ar H1 and Ar
  • examples and preferred ranges of substituents that H2 may have are the same.
  • L H1 and Ar H1 may be bonded directly or via a divalent group to form a ring, but the compound represented by formula (H-1) can be easily synthesized. Therefore, it is preferable not to form a ring.
  • Examples and preferred ranges of the divalent group in the case where L H1 and Ar H1 are bonded via a divalent group to form a ring are:
  • the examples and preferred ranges of divalent groups in the case of bonding together to form a ring are the same as the examples and preferred ranges of divalent groups.
  • L H1 and Ar H2 may be bonded directly or via a divalent group to form a ring, but the compound represented by formula (H-1) can be easily synthesized. Therefore, it is preferable not to form a ring.
  • Examples and preferred ranges of the divalent group in the case where L H1 and Ar H2 are bonded via a divalent group to form a ring are:
  • the examples and preferred ranges of divalent groups in the case of bonding together to form a ring are the same as the examples and preferred ranges of divalent groups.
  • Examples of the compound represented by formula (H-1) include compounds represented by the following formula.
  • polymer host material examples include a polymer compound that is a hole transport material described below and a polymer compound that is an electron transport material described below.
  • the number average molecular weight of the polymeric host material in terms of polystyrene is preferably 5 ⁇ 10 3 to 1 ⁇ 10 6 , more preferably 1 ⁇ 10 4 to 5 ⁇ 10 5 , even more preferably 5 ⁇ 10 4 to It is 2 ⁇ 10 5 .
  • the weight average molecular weight of the polymeric host material in terms of polystyrene is preferably 1 ⁇ 10 4 to 2 ⁇ 10 6 , more preferably 2 ⁇ 10 4 to 1 ⁇ 10 6 , even more preferably 1 ⁇ 10 5 to It is 5 ⁇ 10 5 .
  • the polymer host is preferably a polymer compound containing a structural unit represented by the following formula (Y).
  • Y represents an arylene group, a divalent heterocyclic group, or a divalent group in which at least one arylene group and at least one divalent heterocyclic group are directly bonded; The group may have a substituent.
  • the arylene group represented by Ar Y1 is more preferably represented by formula (A-1), formula (A-2), formula (A-6) to (A-10), formula (A-19), or formula ( A-20), more preferably formula (A-1), formula (A-2), formula (A-7), formula (A-9) or formula (A-19) These groups may have a substituent.
  • the divalent heterocyclic group represented by Ar Y1 is more preferably one of formulas (AA-1) to (AA-4), formulas (AA-10) to (AA-15), and formula (AA-18).
  • More preferred ranges of the arylene group and divalent heterocyclic group in the divalent group represented by Ar Y1 in which at least one arylene group and at least one divalent heterocyclic group are directly bonded still more preferred The ranges are the same as the more preferred ranges and more preferred ranges of the arylene group and divalent heterocyclic group represented by Ar Y1 described above, respectively.
  • R XX is preferably an alkyl group, a cycloalkyl group, or an aryl group, and these groups may have a substituent.
  • Examples of the structural unit represented by formula (Y) include structural units represented by formulas (Y-1) to (Y-10), and the composition of the polymer host and the compound of this embodiment From the viewpoint of the brightness life of a light emitting element using 4) to (Y-7), and from the viewpoint of hole transport properties, preferably structural units represented by formulas (Y-8) to (Y-10).
  • R Y1 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent.
  • a plurality of R Y1s may be the same or different, and adjacent R Y1s may be bonded to each other to form a ring with the carbon atoms to which they are bonded.
  • R Y1 is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, or an aryl group, and these groups may have a substituent.
  • the structural unit represented by formula (Y-1) is preferably a structural unit represented by formula (Y-1').
  • R Y11 represents an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent.
  • a plurality of R Y11 's may be the same or different.
  • R Y11 is preferably an alkyl group, a cycloalkyl group, or an aryl group, more preferably an alkyl group or a cycloalkyl group, and these groups may have a substituent.
  • R Y1 represents the same meaning as above.
  • R Y2 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent.
  • a plurality of R Y2s may be the same or different, and R Y2s may be bonded to each other to form a ring with the carbon atoms to which they are bonded. ]
  • R Y2 is preferably an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, more preferably an alkyl group, a cycloalkyl group, or an aryl group, and these groups have a substituent. You may do so.
  • R Y2s may be bonded to each other to form a ring with the atoms to which they are bonded, and when R Y2 forms a ring, as a group represented by -C(R Y2 ) 2 - is preferably a group represented by formulas (Y-A1) to (Y-A5), more preferably a group represented by formula (Y-A4), and these groups have a substituent. You can leave it there. Note that * represents the bonding position.
  • R Y2s in the group represented by -C(R Y2 ) 2 -C(R Y2 ) 2 - are preferably an alkyl group or a cycloalkyl group which may have a substituent. It is.
  • a plurality of R Y2 may be bonded to each other to form a ring with the atoms to which they are bonded, and when R Y2 forms a ring, -C(R Y2 ) 2 -C(R Y2 ) 2 -
  • the group represented is preferably a group represented by formulas (Y-B1) to (Y-B5), more preferably a group represented by formula (Y-B3), and these groups are substituted. It may have a group. Note that * represents the bonding position. [In the formula, R Y2 represents the same meaning as above. ]
  • the structural unit represented by formula (Y-2) is preferably a structural unit represented by formula (Y-2'). [In the formula, R Y1 and X Y1 represent the same meanings as above. ]
  • the structural unit represented by formula (Y-3) is preferably a structural unit represented by formula (Y-3'). [In the formula, R Y11 and X Y1 represent the same meanings as above. ]
  • R Y1 represents the same meaning as above.
  • R Y3 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent.
  • R Y3 is preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, more preferably an aryl group, and these groups have a substituent. It's okay.
  • the structural unit represented by formula (Y-4) is preferably a structural unit represented by formula (Y-4'), and the structural unit represented by formula (Y-6) is preferably a structural unit represented by formula (Y-4'). -6') is preferable.
  • R Y1 and R Y3 represent the same meanings as above.
  • R Y4 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent.
  • R Y4 is preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, more preferably an aryl group, and these groups have a substituent. You can.
  • Examples of the structural unit represented by formula (Y) include structural units consisting of arylene groups represented by formulas (Y-101) to (Y-141), and formulas (Y-201) to (Y-209).
  • Ar Y1 in formula (Y) is an arylene group
  • the content of the structural unit represented by formula (Y) is determined by the brightness life of the light emitting device using the composition of the polymer host and the compound of this embodiment. Therefore, the amount is preferably 0.5 to 80 mol%, more preferably 30 to 60 mol%, based on the total amount of structural units contained in the polymer compound.
  • Ar Y1 in the formula (Y) is a divalent heterocyclic group or a divalent group in which at least one arylene group and at least one divalent heterocyclic group are directly bonded
  • the formula (Y ) The content of the structural units represented by ) is determined by the total amount of structural units contained in the polymer compound, since the charge transport property of the light emitting device using the composition of the polymer host and the compound of this embodiment is excellent. On the other hand, it is preferably 0.5 to 30 mol%, more preferably 3 to 20 mol%.
  • the polymer host may contain only one type of structural unit represented by formula (Y), or may contain two or more types.
  • the polymer host has excellent hole transport properties, it is preferable that the polymer host further contains a structural unit represented by the following formula (X).
  • aX1 and aX2 each independently represent an integer of 0 or more.
  • Ar X1 and Ar X3 each independently represent an arylene group or a divalent heterocyclic group, and these groups may have a substituent.
  • Ar X2 and Ar X4 each independently represent an arylene group, a divalent heterocyclic group, or a divalent group in which at least one arylene group and at least one divalent heterocyclic group are directly bonded These groups may have a substituent.
  • Ar X2 and Ar X4 When a plurality of Ar X2 and Ar X4 exist, they may be the same or different.
  • R X1 , R X2 and R X3 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent.
  • R X2 and R X3 may be the same or different.
  • a X1 is preferably 2 or less, more preferably 1, since a light emitting device using a composition of a polymer host and the compound of this embodiment has an excellent brightness life.
  • a X2 is preferably 2 or less, more preferably 0, since the luminance life of a light emitting device using a composition of a polymer host and the compound of this embodiment is excellent.
  • R X1 , R X2 and R X3 are preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably an aryl group, and these groups have a substituent. Good too.
  • the arylene group represented by Ar X1 and Ar may have a substituent.
  • the divalent heterocyclic group represented by Ar X1 and Ar X3 is more preferably represented by formula (AA-1), formula (AA-2) or formula (AA-7) to (AA-26) These groups may have a substituent.
  • Ar X1 and Ar X3 are preferably arylene groups which may have a substituent.
  • the more preferable ranges are the same as the more preferable ranges and the more preferable ranges of the arylene group and divalent heterocyclic group represented by Ar X1 and Ar X3 , respectively.
  • At least examples include those similar to divalent groups in which one type of arylene group and at least one type of divalent heterocyclic group are directly bonded.
  • Ar X2 and Ar X4 are preferably arylene groups which may have substituents.
  • the structural unit represented by formula (X) is preferably a structural unit represented by formulas (X-1) to (X-7), more preferably formulas (X-1) to (X-6).
  • a structural unit represented by formulas (X-3) to (X-6) is more preferable.
  • R X4 and R represents a group, and these groups may have a substituent.
  • a plurality of R X4 's may be the same or different.
  • a plurality of R X5s may be the same or different, and adjacent R X5s may be bonded to each other to form a ring with the carbon atom to which they are bonded. ]
  • the content of the structural unit represented by formula (X) is preferably 0.1 to 50 mol% based on the total amount of structural units contained in the polymer host, since it has excellent hole transport properties. More preferably, it is 1 to 40 mol%, and still more preferably 5 to 30 mol%.
  • Examples of the structural unit represented by formula (X) include structural units represented by formulas (X1-1) to (X1-23), preferably formulas (X1-3) to (X1-10). ).
  • the polymer host may contain only one type of structural unit represented by formula (X), or may contain two or more types.
  • polymer host examples include polymer compounds (P-1) to (P-6) shown in Table 2.
  • other structural units mean structural units other than the structural unit represented by formula (Y) and the structural unit represented by formula (X).
  • the polymer host may be a block copolymer, a random copolymer, an alternating copolymer, a graft copolymer, or may have other forms; A copolymer formed by polymerization is preferable.
  • the polymer host can be produced using known polymerization methods such as those described in Chemical Review (Chem. Rev.), Vol. 109, pp. 897-1091 (2009). Examples include a method of polymerizing by a coupling reaction using a transition metal catalyst, such as Stille reaction, Negishi reaction, and Kumada reaction.
  • the monomers may be charged in one go by charging the entire amount of the monomers into the reaction system, or after charging a portion of the monomers and reacting, the remaining monomers are added in one batch.
  • Examples include a method of continuously or dividedly charging a monomer, a method of continuously or dividingly charging a monomer, and the like.
  • Post-treatment of the polymerization reaction can be carried out by known methods, such as removing water-soluble impurities by liquid separation, adding the reaction solution after the polymerization reaction to a lower alcohol such as methanol, filtering the precipitate, and then drying. Use these methods alone or in combination.
  • a lower alcohol such as methanol
  • filtering the precipitate and then drying.
  • the purity of the polymer host is low, it can be purified by conventional methods such as crystallization, reprecipitation, continuous extraction using a Soxhlet extractor, and column chromatography.
  • [solvent] A composition containing the compound of this embodiment and a solvent (hereinafter referred to as "ink”) is suitable for producing a light emitting element using a printing method such as an inkjet printing method or a nozzle printing method.
  • the viscosity of the ink can be adjusted depending on the type of printing method, but if it is applied to a printing method such as inkjet printing in which the solution passes through a discharge device, clogging and flight deflection during discharge are less likely to occur.
  • a printing method such as inkjet printing in which the solution passes through a discharge device, clogging and flight deflection during discharge are less likely to occur.
  • it is 1 to 20 mPa ⁇ s at 25°C.
  • the solvent contained in the ink is preferably a solvent that can dissolve or uniformly disperse the solid content in the ink.
  • the solvent include chlorine solvents such as 1,2-dichloroethane, 1,1,2-trichloroethane, chlorobenzene, and o-dichlorobenzene; ether solvents such as THF, dioxane, anisole, and 4-methylanisole; toluene, Aromatic hydrocarbon solvents such as xylene, mesitylene, ethylbenzene, n-hexylbenzene, cyclohexylbenzene; cyclohexane, methylcyclohexane, n-pentane, n-hexane, n-heptane, n-octane, n-nonane, n- Aliphatic hydrocarbon solvents such as decane, n-dodecane, and bicyclohexyl; Ketone solvents
  • Polyhydric alcohol solvents such as ethylene glycol, glycerin, and 1,2-hexanediol; Alcohol solvents such as isopropyl alcohol and cyclohexanol; Sulfoxide solvents such as dimethyl sulfoxide; N-methyl-2-pyrrolidone, N , N-dimethylformamide and the like.
  • the solvents may be used alone or in combination of two or more.
  • the amount of the solvent blended is usually 10,000 to 1,000,000 parts by weight, preferably 20,000 to 2,000,000 parts by weight, based on 100 parts by weight of the compound of the present embodiment.
  • Hole transport materials are classified into low-molecular compounds and high-molecular compounds, preferably high-molecular compounds, and more preferably high-molecular compounds having a crosslinking group.
  • polymer compound examples include polyvinylcarbazole and derivatives thereof; polyarylene having an aromatic amine structure in the side chain or main chain and derivatives thereof.
  • the polymer compound may be a compound to which an electron-accepting site is bonded.
  • the electron-accepting site include fullerene, tetrafluorotetracyanoquinodimethane, tetracyanoethylene, and trinitrofluorenone, with fullerene being preferred.
  • the amount of the hole transport material blended is usually 10 to 40,000 parts by weight, preferably 50 to 15,000 parts by weight, based on 100 parts by weight of the compound of the present embodiment.
  • the hole transport materials may be used alone or in combination of two or more.
  • Electron transport materials are classified into low molecular compounds and high molecular compounds.
  • the electron transport material may have a crosslinking group.
  • low-molecular compounds include metal complexes having 8-hydroxyquinoline as a ligand, oxadiazole, anthraquinodimethane, benzoquinone, naphthoquinone, anthraquinone, tetracyanoanthraquinodimethane, fluorenone, diphenyldicyanoethylene, and diphenoquinone. , and derivatives thereof.
  • the amount of the electron transport material blended is usually 10 to 40,000 parts by weight, preferably 50 to 15,000 parts by weight, based on 100 parts by weight of the compound of the present embodiment.
  • the electron transport materials may be used alone or in combination of two or more.
  • Hole-injecting materials and electron-injecting materials are classified into low-molecular compounds and high-molecular compounds, respectively.
  • the hole injection material and the electron injection material may have a crosslinking group.
  • low-molecular compounds examples include metal phthalocyanines such as copper phthalocyanine; carbon; metal oxides such as molybdenum and tungsten; and metal fluorides such as lithium fluoride, sodium fluoride, cesium fluoride, and potassium fluoride.
  • metal phthalocyanines such as copper phthalocyanine
  • carbon such as carbon
  • metal oxides such as molybdenum and tungsten
  • metal fluorides such as lithium fluoride, sodium fluoride, cesium fluoride, and potassium fluoride.
  • polymeric compounds include polyaniline, polythiophene, polypyrrole, polyphenylene vinylene, polythienylene vinylene, polyquinoline, polyquinoxaline, and derivatives thereof; conductive polymers containing an aromatic amine structure in the main chain or side chain. Polymers can be mentioned.
  • the amount of the hole injection material and the electron injection material is usually 10 to 40,000 parts by weight, preferably 50 to 15,000 parts by weight, based on 100 parts by weight of the compound of this embodiment. Parts by weight.
  • the hole injection material and the electron injection material may each be used singly or in combination of two or more.
  • the electrical conductivity of the conductive polymer is preferably 1 ⁇ 10 ⁇ 5 S/cm to 1 ⁇ 10 3 S/cm.
  • the conductive polymer can be doped with an appropriate amount of ions.
  • the type of ion to be doped is an anion if it is a hole injection material, and a cation if it is an electron injection material.
  • the anion include polystyrene sulfonate ion, alkylbenzene sulfonate ion, and camphor sulfonate ion.
  • the cation include lithium ion, sodium ion, potassium ion, and tetrabutylammonium ion.
  • the ions to be doped may be used alone or in combination of two or more.
  • Luminescent materials are classified into low molecular compounds and high molecular compounds.
  • the luminescent material may have a crosslinking group.
  • low-molecular compounds examples include naphthalene and its derivatives, anthracene and its derivatives, perylene and its derivatives, and triplet luminescent complexes having iridium, platinum, or europium as the central metal.
  • Examples of the polymer compound include a phenylene group, a naphthalenediyl group, a fluorenediyl group, a phenanthrenediyl group, a dihydrophenanthrenediyl group, a group represented by the formula (X), a carbazolediyl group, a phenoxazinediyl group, and a phenothiazinediyl group.
  • Examples include polymeric compounds containing anthracenediyl group, anthracenediyl group, pyrenediyl group, and the like.
  • the luminescent material preferably includes a triplet luminescent complex and a polymer compound.
  • triplet luminescent complexes examples include the metal complexes shown below.
  • the content of the luminescent material is usually 1 to 40,000 parts by weight based on 100 parts by weight of the compound of this embodiment.
  • the antioxidant may be any compound as long as it is soluble in the same solvent as the compound of this embodiment and does not inhibit light emission and charge transport.
  • examples of the antioxidant include phenolic antioxidants, phosphorus antioxidants, and the like.
  • the amount of antioxidant is usually 0.001 to 10 parts by weight based on 100 parts by weight of the compound of the present embodiment.
  • the antioxidants may be used alone or in combination of two or more.
  • the membrane contains the compound of this embodiment.
  • the film is suitable as a light emitting layer in a light emitting device.
  • the film can be formed using ink, such as spin coating, casting, microgravure coating, gravure coating, bar coating, roll coating, wire bar coating, dip coating, spray coating, and screen printing. , a flexographic printing method, an offset printing method, an inkjet printing method, a capillary coating method, and a nozzle coating method.
  • ink such as spin coating, casting, microgravure coating, gravure coating, bar coating, roll coating, wire bar coating, dip coating, spray coating, and screen printing.
  • a flexographic printing method an offset printing method, an inkjet printing method, a capillary coating method, and a nozzle coating method.
  • the thickness of the film is usually 1 nm to 10 ⁇ m.
  • the light emitting element of this embodiment is a light emitting element containing the compound of this embodiment.
  • the structure of the light emitting element of this embodiment includes, for example, electrodes consisting of an anode and a cathode, and a layer containing the compound of this embodiment provided between the electrodes.
  • the layer containing the compound of this embodiment is usually one or more of a light emitting layer, a hole transport layer, a hole injection layer, an electron transport layer, and an electron injection layer, and is preferably a light emitting layer.
  • These layers each include a luminescent material, a hole transport material, a hole injection material, an electron transport material, and an electron injection material.
  • These layers were prepared in the same way as the film described above, by dissolving a luminescent material, a hole transporting material, a hole injection material, an electron transporting material, and an electron injection material in the above-mentioned solvents and preparing and using the ink. It can be formed using a method.
  • a light emitting element has a light emitting layer between an anode and a cathode.
  • the light emitting device of this embodiment preferably has at least one layer of a hole injection layer and a hole transport layer between the anode and the light emitting layer, From the viewpoint of electron injection properties and electron transport properties, it is preferable to have at least one layer of an electron injection layer and an electron transport layer between the cathode and the light emitting layer.
  • materials for the hole transport layer, electron transport layer, light emitting layer, hole injection layer, and electron injection layer include the hole transport material, electron transport material, light emitting material, and positive hole transport material described above, respectively. Examples include hole injection materials and electron injection materials.
  • the material for the hole transport layer, the material for the electron transport layer, and the material for the emissive layer are based on the solvent used when forming the hole transport layer, the electron transport layer, and the layer adjacent to the emissive layer, respectively, in the production of the light emitting device.
  • the material has a crosslinking group in order to avoid dissolving the material in the solvent. After each layer is formed using a material having a crosslinking group, the layer can be made insolubilized by crosslinking the crosslinking group.
  • the method for forming each layer such as the light-emitting layer, hole-transporting layer, electron-transporting layer, hole-injecting layer, and electron-injecting layer includes, for example, when using a low-molecular compound, vacuum formation from powder.
  • Examples include a vapor deposition method, a method of forming a film from a solution or a molten state, and when a polymer compound is used, for example, a method of forming a film from a solution or a molten state.
  • the order, number, and thickness of the layers to be laminated may be adjusted in consideration of external quantum efficiency and luminance lifetime.
  • the substrate in the light emitting element may be any substrate as long as it is capable of forming an electrode and is not chemically changed during the formation of an organic layer, and is, for example, a substrate made of a material such as glass, plastic, or silicon. In the case of an opaque substrate, it is preferred that the electrode furthest from the substrate be transparent or translucent.
  • Examples of the material for the anode include conductive metal oxides and translucent metals, preferably indium oxide, zinc oxide, tin oxide; indium tin oxide (ITO), indium zinc oxide, etc. conductive compounds; silver-palladium-copper composite (APC); NESA, gold, platinum, silver, copper.
  • conductive metal oxides and translucent metals preferably indium oxide, zinc oxide, tin oxide; indium tin oxide (ITO), indium zinc oxide, etc.
  • conductive compounds preferably silver-palladium-copper composite (APC); NESA, gold, platinum, silver, copper.
  • Examples of the material for the cathode include metals such as lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, aluminum, zinc, and indium; alloys of two or more of these; and one of them. Examples include alloys of one or more species and one or more of silver, copper, manganese, titanium, cobalt, nickel, tungsten, and tin; and graphite and graphite intercalation compounds. Examples of the alloy include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, and calcium-aluminum alloy. Each of the anode and the cathode may have a laminated structure of two or more layers.
  • planar anodes and cathodes may be arranged so as to overlap.
  • patterned light emission there is a method of installing a mask with patterned windows on the surface of a planar light emitting element, and a method of forming an extremely thick layer to make the non-emissive area substantially non-emissive.
  • the anode, the cathode, or both electrodes are formed in a pattern.
  • both the anode and the cathode may be formed in a stripe shape and arranged so as to be orthogonal to each other. Partial color display and multicolor display are possible by using a method of painting multiple types of polymer compounds with different emission colors, a method of using a color filter, or a fluorescence conversion filter.
  • the dot matrix display device can be driven passively, or can be driven actively in combination with a TFT or the like. These display devices can be used for displays on computers, televisions, mobile terminals, and the like.
  • a planar light emitting element can be suitably used as a planar light source for a backlight of a liquid crystal display device or a planar light source for illumination. If a flexible substrate is used, it can also be used as a curved light source and display device.
  • the number average molecular weight (Mn) in terms of polystyrene and the weight average molecular weight (Mw) in terms of polystyrene of the polymer compound were determined using one of the following size exclusion chromatography (SEC) methods using tetrahydrofuran as a moving phase. It was determined by In addition, each measurement condition of SEC is as follows.
  • the polymer compound to be measured was dissolved in tetrahydrofuran at a concentration of about 0.05% by mass, and 10 ⁇ L was injected into SEC. The mobile phase was run at a flow rate of 1.0 mL/min.
  • PLgel MIXED-B manufactured by Polymer Laboratories
  • a UV-VIS detector manufactured by Tosoh, trade name: UV-8320GPC was used as a detector.
  • LC-MS was measured by the following method.
  • the measurement sample was dissolved in chloroform or tetrahydrofuran to a concentration of about 2 mg/mL, and about 1 ⁇ L was injected into an LC-MS (manufactured by Agilent, trade name: 1100LCMSD).
  • the mobile phase for LC-MS was acetonitrile and tetrahydrofuran in varying ratios and flowed at a flow rate of 0.2 mL/min.
  • the column used was L-column 2 ODS (3 ⁇ m) (manufactured by Japan Chemical Evaluation and Research Institute, inner diameter: 2.1 mm, length: 100 mm, particle size 3 ⁇ m).
  • TLC-MS was measured by the following method.
  • the measurement sample is dissolved in a solvent such as toluene, tetrahydrofuran, or chloroform at an arbitrary concentration, and applied onto a DART TLC plate (manufactured by Techno Applications, trade name: YSK5-100), and then applied to a TLC-MS (manufactured by JEOL Ltd., product name: YSK5-100).
  • Measurement was performed using a product name: JMS-T100TD (The AccuTOF TLC).
  • the helium gas temperature during the measurement was adjusted within the range of 200 to 400°C.
  • NMR NMR was measured by the following method. Add 5 to 10 mg of the measurement sample to about 0.5 mL of deuterated chloroform (CDCl 3 ), deuterated tetrahydrofuran, deuterated dimethyl sulfoxide, deuterated acetone, deuterated N,N-dimethylformamide, deuterated toluene, deuterated methanol, deuterated ethanol, deuterated 2-propanol. Alternatively, it was dissolved in methylene dichloride and measured using an NMR device (manufactured by Agilent, trade name: INOVA300 or MERCURY 400VX).
  • HPLC high performance liquid chromatography
  • the column used was Kaseisorb LC ODS 2000 (manufactured by Tokyo Chemical Industry Co., Ltd.) or an ODS column having equivalent performance.
  • a photodiode array detector manufactured by Shimadzu Corporation, trade name: SPD-M20A was used as a detector.
  • the obtained organic phase was dried over magnesium sulfate, filtered through a filter lined with Celite, and the filtered product was washed with toluene.
  • the obtained filtrate was concentrated under reduced pressure.
  • the obtained crude product was purified by silica gel column chromatography (mixed solvent of toluene and heptane).
  • the obtained crude product was recrystallized several times from a mixed solvent of toluene and heptane.
  • Compound S4 (0.1 g, yellow solid) was obtained by drying the obtained yellow solid under reduced pressure at 50°C.
  • the LC area percentage of compound S4 was greater than 98%.
  • Compound S7 was synthesized according to the method described in JP-A-2012-144722.
  • Compound S8 was synthesized according to the method described in International Publication No. 2011-049241.
  • Compound S9 was synthesized according to the method described in WO 2002-045184.
  • Compound S10 was synthesized according to the method described in WO 2008-038747. A commercially available product was used as compound S11.
  • Synthesis example 1 ⁇ Synthesis of polymer compound P1>
  • the polymer compound P1 was synthesized using the mixture P1-1 (compound S7, compound S8, compound S9, and compound S10) shown in Table 3 according to the method described in JP-A-2012-144722.
  • the Mn of the polymer compound P1 was 8.0 ⁇ 10 4 and the Mw was 2.6 ⁇ 10 5 .
  • the polymer compound P1 consists of a structural unit derived from compound S7, a structural unit derived from compound S8, a structural unit derived from compound S9, and a structural unit derived from compound S10, based on the theoretical value determined from the amount of raw materials to be charged. It is presumed that the derived structural units are random copolymers (copolymers without terminal blocks and non-terminal blocks) composed of a molar ratio of 50:30:12.5:7.5. Ru.
  • Synthesis example 2 ⁇ Synthesis of polymer compound P2> Polymer compound P2 was synthesized using mixture P2-1 (compound S7 and compound S11) shown in Table 4 according to the method described in JP-A-2012-144722. The Mn of the polymer compound P2 was 6.9 ⁇ 10 4 and the Mw was 2.1 ⁇ 10 5 .
  • the polymer compound P2 is a compound composed of a structural unit derived from the compound S7 and a structural unit derived from the compound S11 in a molar ratio of 50:50, based on the theoretical value determined from the amount of the charged raw materials. It is presumed to be a polymer.
  • Step 1 After creating an inert gas atmosphere in the reaction vessel, the above compound S13 (0.443 g), the above compound S12 (0.120 g), the above compound S13 (0.516 g), dichlorobis(tris- o-Methoxyphenylphosphine) palladium (1.46 mg) and toluene (31 mL) were added and heated to 80°C.
  • Step 2 Thereafter, a 20% by mass aqueous tetraethylammonium hydroxide solution (20.7 g) was added dropwise to the reaction vessel, and the mixture was refluxed for 2 hours.
  • Step 3 phenylboronic acid (48.9 mg) and dichlorobis(tris-o-methoxyphenylphosphine)palladium (1.50 mg) were added to the reaction vessel, and the mixture was stirred at 80° C. for 3 hours.
  • Step 4 After cooling the obtained reaction mixture, an aqueous sodium diethyldithiacarbamate solution was added, and the mixture was stirred at 40°C for 1 hour. After cooling the obtained reaction solution and removing the aqueous layer, the obtained organic layer was washed twice with 3% by mass aqueous ammonia and twice with water. When the obtained solution was added dropwise to methanol and stirred, a precipitate was generated.
  • the obtained precipitate was dissolved in toluene (71 mL), alumina (41 g) was added, and after stirring for 3 hours, the obtained suspension was purified by passing it through a silica gel column. When the obtained solution was added dropwise to methanol and stirred, a precipitate was generated. The obtained precipitate was collected by filtration and dried to obtain 0.44 g of polymer compound P3.
  • the Mn of the polymer compound P3 was 5.2 ⁇ 10 4 and the Mw was 1.1 ⁇ 10 5 .
  • the polymer compound P3 has a structural unit derived from the compound S13, a structural unit derived from the compound S12, and a structural unit derived from the compound S14 from a theoretical value determined from the amount of the raw materials to be charged. It is presumed to be a random copolymer (a copolymer without terminal blocks and non-terminal blocks) composed of a molar ratio of 5:50.
  • the emission spectrum of the compound was measured using the method described below.
  • the compounds were dissolved in xylene or chloroform to a concentration of 0.0008% by weight.
  • the obtained solution was placed in a 1 cm square quartz cell, and then nitrogen gas was bubbled to remove oxygen to prepare a measurement sample.
  • the emission spectrum of the obtained measurement sample was measured using a spectrophotometer (manufactured by JASCO Corporation, FP-6500), and from the obtained emission spectrum, the maximum wavelength and area ratio (maximum The value obtained by dividing the area value in the range of -0.12 eV to +0.07 eV from the intensity position by the area value of the entire emission spectrum) was calculated. Note that the excitation wavelength was 300 nm.
  • the area ratio obtained above indicates the ratio of the emission spectrum included within a predetermined range from the maximum intensity position of the emission spectrum to the entire emission spectrum. That is, a large area ratio indicates that the spectral width of the emission spectrum is narrow.
  • Examples C1 to C5 and Comparative Example CC1 Measurement of emission spectra of compounds S1 to S5 and 1 g of xylene solution Emission spectra were measured using compounds S1 to S5 and 1 g of xylene solution. Table 5 shows the maximum wavelength and area ratio of the emission spectrum of each compound.
  • Example D1 Production and evaluation of light emitting element D1 (fabrication of light emitting element D1) (Formation of anode and hole injection layer) An anode was formed by applying an ITO film with a thickness of 45 nm to a glass substrate by sputtering. On the anode, a hole injection material ND-3202 (manufactured by Nissan Chemical Industries, Ltd.) was deposited to a thickness of 35 nm by spin coating to form a coating film. The substrate on which the coating film was formed was heated on a hot plate at 50° C. for 3 minutes in an air atmosphere, and then further heated at 240° C. for 15 minutes to form a hole injection layer.
  • ND-3202 manufactured by Nissan Chemical Industries, Ltd.
  • Example CD1 Production and evaluation of light emitting device CD1 A light emitting device was produced in the same manner as Example D1 except that polymer compound P2 and compound S5 were used instead of polymer compound P2 and compound S1 in Example D1. CD1 was produced. Light emission was observed by applying a voltage to the light emitting element CD1, and the maximum wavelength and area ratio of the emission spectrum at 1000 cd/m 2 were 460 nm and 0.578, respectively. These results are shown in Table 7 below.
  • Example D2 Production and evaluation of light emitting element D2 (fabrication of light emitting element D2) (Formation of anode and hole injection layer)
  • An anode was formed by applying an ITO film with a thickness of 45 nm to a glass substrate by sputtering.
  • a hole injection material ND-3202 manufactured by Nissan Chemical Industries, Ltd.
  • the substrate on which the coating film was formed was heated on a hot plate at 50° C. for 3 minutes in an air atmosphere, and then further heated at 240° C. for 15 minutes to form a hole injection layer.
  • Example CD2 Production and evaluation of light emitting device CD2 A light emitting device CD2 was produced in the same manner as in Example D2, except that compound S6 and compound S5 were used instead of compound S6 and compound S1 in Example D2. . Light emission was observed by applying a voltage to the light emitting element CD2, and the maximum wavelength and area ratio of the emission spectrum at 1000 cd/m 2 were 470 nm and 0.582, respectively. These results are shown in Table 8 below.
  • the light-emitting element containing the compound S1 in the light-emitting layer has a higher area ratio of the emission spectrum, that is, the spectral width of the emission spectrum is narrower, compared to the light-emitting element containing the compound S5 in the light-emitting layer.
  • Examples Q1 to Q50 and Comparative Example CQ1> For compounds S1 to S4 and the following compounds S12 to S55, the area ratios of the emission spectra were calculated by the Franck-Condon analysis described below. The area ratios of the emission spectra of each compound are shown in Tables 10 to 14.
  • the calculation was performed using density functional theory based on an ab initio method. Specifically, using the quantum chemical calculation program Gaussian 16, structure optimization and Franck-Condon analysis were performed using 6-31G* as a basis using density functional theory at the B3LYP level. From the emission spectrum obtained by Franck-Condon analysis, the area ratio of the emission spectrum (value obtained by dividing the area value in the range of -0.12 eV to +0.07 eV from the maximum intensity position by the area value of the entire emission spectrum) was calculated. .
  • Compounds S1 to S4 of Examples and Compounds S12 to S55 have higher area ratios of emission spectra, that is, narrower spectral widths of emission spectra, than Compound S56 of Comparative Example. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

This compound is represented by formula (1). [In the formula, Ar1 represents an aromatic hydrocarbon ring or an aromatic heterocycle. Ring Ar2 and ring Ar3 each independently represent an aromatic hydrocarbon ring or an aromatic heterocycle. However, at least one of ring Ar2 and ring Ar3 fuses at at least the position of * with a ring skeleton represented by formula (2).] [In the formula, Ar4 represents an aromatic hydrocarbon ring or an aromatic heterocycle. L1 represents -N(R1L)-, -S-, -O-, or -C(R2L)2-.]

Description

化合物、高分子化合物、組成物及び発光素子Compounds, polymer compounds, compositions, and light emitting devices
 本発明は、化合物、高分子化合物、組成物及び発光素子に関する。 The present invention relates to compounds, polymer compounds, compositions, and light emitting devices.
 発光素子に用いるための発光材料として、例えば、下記式で表されるアリールアミンから誘導された化合物が検討されている(非特許文献1)
Figure JPOXMLDOC01-appb-C000013
For example, a compound derived from an arylamine represented by the following formula has been studied as a light-emitting material for use in a light-emitting element (Non-Patent Document 1)
Figure JPOXMLDOC01-appb-C000013
 発光素子に用いるための発光材料として、発光スペクトルのスペクトル幅が狭い発光材料の開発が望まれている。しかし、上記アリールアミンから誘導された化合物の発光スペクトルのスペクトル幅の狭さは、必ずしも十分ではない。 It is desired to develop a light-emitting material with a narrow emission spectrum as a light-emitting material for use in a light-emitting element. However, the spectral width of the emission spectrum of the compound derived from the above-mentioned arylamine is not necessarily sufficiently narrow.
 そこで、本発明は、発光スペクトルのスペクトル幅が狭く、発光素子用発光材料として有用な化合物を提供することを主な目的とする。また本発明の目的の一つは、当該化合物を含有する組成物、及び、当該化合物を含有する発光素子を提供することにある。 Therefore, the main object of the present invention is to provide a compound that has a narrow emission spectrum and is useful as a light-emitting material for a light-emitting device. Another object of the present invention is to provide a composition containing the compound and a light emitting device containing the compound.
 本発明は、以下の[1]~[7]を提供する。
[1]
 式(1)で表される化合物。
Figure JPOXMLDOC01-appb-C000014
[式中、
 Arは、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、互いに結合してそれぞれが結合する原子とともに環を形成していてもよい。
 環Ar及び環Arは、それぞれ独立に芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。但し、環Ar及び環Arのうち少なくとも一方は、式(2)で表される環骨格と、少なくとも*の位置で縮合している。式(2)で表される環骨格が複数存在する場合、それらは同一でも異なっていてもよい。
 Rは、水素原子、ハロゲン原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、ヒドロキシ基、アリール基、アリールオキシ基、1価の複素環基又は置換アミノ基を表し、これらの基は置換基を有していてもよい。複数存在するRは、同一でも異なっていてもよく、R同士は互いに結合して、Rが結合する炭素原子とともに環を形成していてもよい。
 Lは、直接結合、-O-、-S-、-C(R11-、-N(R12)-、アリーレン基又は2価の複素環基を表す。
 R11は、水素原子、ハロゲン原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、ヒドロキシ基、アリール基、アリールオキシ基、1価の複素環基又は置換アミノ基を表し、これらの基は置換基を有していてもよい。複数存在するR11は、同一でも異なっていてもよく、R11同士は互いに結合して、R11が結合する炭素原子とともに環を形成していてもよい。
 R12は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。]
Figure JPOXMLDOC01-appb-C000015
[式中、
 環Arは、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
 Lは、-N(R1L)-、-S-、-O-又は-C(R2L-を表す。
 R1Lは、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。
 R2Lは、水素原子、ハロゲン原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基又は置換アミノ基を表し、これらの基は置換基を有していてもよい。複数存在するR2Lは、同一でも異なっていてもよく、R2L同士は互いに結合して、R2Lが結合する炭素原子とともに環を形成していてもよい。
 式(2)で表される環骨格が環Arと縮合している場合、R1L、R2L、R1Lが有していてもよい置換基及びR2Lが有していてもよい置換基は、環Ar、環Ar、環Arが有していてもよい置換基又は環Arが有していてもよい置換基と結合して環を形成していてもよい。
 式(2)で表される環骨格が環Arと縮合している場合、R1L、R2L、R1Lが有していてもよい置換基及びR2Lが有していてもよい置換基は、環Ar、環Ar、環Arが有していてもよい置換基又は環Arが有していてもよい置換基と結合して環を形成していてもよい。]
[2]
 式(1-A)で表される化合物である、[1]に記載の化合物。
Figure JPOXMLDOC01-appb-C000016
[式中、
 環Ar、環Ar及びRは、前記と同義である。
 環Ar1Aは、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、互いに結合してそれぞれが結合する原子とともに環を形成していてもよい。]
[3]
 式(1-B)で表される化合物である、[1]又は[2]に記載の化合物。
Figure JPOXMLDOC01-appb-C000017
[式中、
 Rは、前記と同義である。
 Xは、炭素原子又は窒素原子を表し、Xが炭素原子である場合、Xは、-R1Xと結合しているか、隣接するXとともに式(1-B1):
Figure JPOXMLDOC01-appb-C000018
で表される環骨格と結合して環を形成しているか、隣接するXとともに式(2)で表される環骨格と結合して環を形成しているか、のいずれかである。
 R1Xは、水素原子、ハロゲン原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基又は置換アミノ基を表し、これらの基は置換基を有していてもよい。R1Xが複数存在する場合、それらは同一でも異なっていてもよく、R1X同士が互いに結合して、R1Xが結合する炭素原子とともに環を形成していてもよい。R1Xが結合するXに隣接するXが式(2)で表される環骨格と結合している場合、R1Xは、当該式(2)で表される環骨格中のR1L、R2L、R1Lが有していてもよい置換基又はR2Lが有していてもよい置換基と結合して、環を形成していてもよい。
 式(1-B1)中のXは、前記と同義であり、-R1Xと結合していてもよく、隣接するXとともに式(1-B1)で表される環骨格と結合して更に環を形成していてもよく、隣接するXとともに式(2)で表される環骨格と結合して更に環を形成していてもよい。
 複数存在するXは、同一でも異なっていてもよい。
 Yは、炭素原子又は窒素原子を表し、Yが炭素原子である場合、Yは、-R1Yと結合しているか、隣接するYとともに式(1-B2):
Figure JPOXMLDOC01-appb-C000019
で表される環骨格と結合して環を形成しているか、隣接するYとともに式(2)で表される環骨格と結合して環を形成しているか、のいずれかである。
 R1Yは、水素原子、ハロゲン原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基又は置換アミノ基を表し、これらの基は置換基を有していてもよい。R1Yが複数存在する場合、それらは同一でも異なっていてもよく、R1Y同士が互いに結合して、R1Yが結合する炭素原子とともに環を形成していてもよい。R1Yが結合するYに隣接するYが式(2)で表される環骨格と結合している場合、R1Yは、当該式(2)で表される環骨格中のR1L、R2L、R1Lが有していてもよい置換基又はR2Lが有していてもよい置換基と結合して、環を形成していてもよい。
 式(1-B2)中のYは、前記と同義であり、-R1Yと結合していてもよく、隣接するYとともに式(1-B2)で表される環骨格と結合して更に環を形成していてもよく、隣接するYとともに式(2)で表される環骨格と結合して更に環を形成していてもよい。
 複数存在するYは、同一でも異なっていてもよい。但し、隣り合うYの組み合せのうち、少なくとも1組は、式(2)で表される環骨格と結合して環を形成している。]
[4]
 式(2)で表される環骨格が、式(2-A)で表される環骨格である、[1]~[3]のいずれかに記載の化合物。
Figure JPOXMLDOC01-appb-C000020
[式中、
 L1Aは、-N(R1AL)-、-S-、-O-又は-C(R2AL-を表す。
 R1ALは、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。
 R2ALは、水素原子、ハロゲン原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基又は置換アミノ基を表し、これらの基は置換基を有していてもよい。複数存在するR2ALは、同一でも異なっていてもよく、R2AL同士は互いに結合して、R2ALが結合する炭素原子とともに環を形成していてもよい。
 Zは、炭素原子又は窒素原子を表し、Zが炭素原子である場合、Zは、-R1Zと結合しているか、隣接するZとともに式(2-A1):
Figure JPOXMLDOC01-appb-C000021
で表される環骨格と結合して環を形成しているか、のいずれかである。
 R1Zは、水素原子、ハロゲン原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基又は置換アミノ基を表し、これらの基は置換基を有していてもよい。R1Yが複数存在する場合、それらは同一でも異なっていてもよく、R1Y同士が互いに結合して、R1Yが結合する炭素原子とともに環を形成していてもよい。
 式(2-A1)中のZは、前記と同義であり、-R1Zと結合していてもよく、隣接するZとともに式(2-A1)で表される環骨格と結合して更に環を形成していてもよい。
 複数存在するZは、同一でも異なっていてもよい。
 式(2-A)で表される環骨格が環Arと縮合している場合、R1AL、R2AL、R1ALが有していてもよい置換基及びR2ALが有していてもよい置換基は、L1Aの2原子隣りに位置するZ上の基、又は、L1Aの2原子隣りに位置する環Arを構成する原子上の基と結合して、環を形成していてもよい。
 式(2-A)で表される環骨格が環Arと縮合している場合、R1AL、R2AL、R1ALが有していてもよい置換基及びR2ALが有していてもよい置換基は、L1Aの2原子隣りに位置するZ上の基、又は、L1Aの2原子隣りに位置する環Arを構成する原子上の基と結合して、環を形成していてもよい。]
[5]
 式(3-A)、(3-B)、(3-C)、(3-D)、(3-E)、(3-F)、(3-G)、(3-H)、(3-I)又は(3-J)で表される化合物である、[1]~[4]のいずれかに記載の化合物。
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
[式中、
 Wは、炭素原子又は窒素原子を表し、Wが炭素原子である場合、Wは、-R1Wと結合しているか、隣接するWとともに式(3-1):
Figure JPOXMLDOC01-appb-C000025
で表される環骨格と結合して環を形成しているか、のいずれかである。
 R1Wは、水素原子、ハロゲン原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基又は置換アミノ基を表し、これらの基は置換基を有していてもよい。R1Xが複数存在する場合、それらは同一でも異なっていてもよく、R1X同士が互いに結合して、R1Xが結合する炭素原子とともに環を形成していてもよい。
 R3Aは、水素原子、ハロゲン原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基又は置換アミノ基を表し、これらの基は置換基を有していてもよい。複数存在するR3Aは、同一でも異なっていてもよく、R3A同士は互いに結合して、R3Aが結合する炭素原子とともに環を形成していてもよい。
 式(3-1)中のWは、前記と同義であり、-R1Wと結合していてもよく、隣接するWとともに式(3-1)で表される環骨格と結合して更に環を形成していてもよい。
 L3Aは、-N(R31L)-、-S-、-O-又は-C(R32L-を表す。
 R31Lは、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。
 R32Lは、水素原子、ハロゲン原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基又は置換アミノ基を表し、これらの基は置換基を有していてもよい。複数存在するR32Lは、同一でも異なっていてもよく、R32L同士は互いに結合して、R32Lが結合する炭素原子とともに環を形成していてもよい。
 R31L、R32L、R31Lが有していてよい置換基又はR32Lが有していてよい置換基は、L3Aの2原子隣りに位置するW3A上の基と結合して環を形成していてもよい。]
[6]
 [1]~[5]のいずれかに記載の化合物から水素原子を1個以上除いた基を有する構成単位を含む、高分子化合物。
[7]
 [1]~[5]のいずれかに記載の化合物、又は、[6]に記載の高分子化合物と、
 正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料、酸化防止剤及び溶媒からなる群より選ばれる少なくとも1種と、を含有する組成物。
[8]
 陽極と、陰極と、前記陽極及び前記陰極の間に設けられた有機層と、を備え、
 前記有機層が、[1]~[5]のいずれかに記載の化合物、又は、[6]に記載の高分子化合物を含有する、発光素子。
The present invention provides the following [1] to [7].
[1]
A compound represented by formula (1).
Figure JPOXMLDOC01-appb-C000014
[In the formula,
Ar 1 represents an aromatic hydrocarbon ring or an aromatic heterocycle, and these rings may have a substituent. When a plurality of these substituents exist, they may be bonded to each other to form a ring with the atoms to which they are bonded.
Ring Ar 2 and ring Ar 3 each independently represent an aromatic hydrocarbon ring or an aromatic heterocycle, and these rings may have a substituent. When a plurality of these substituents exist, they may be bonded to each other to form a ring with the atoms to which they are bonded. However, at least one of ring Ar 2 and ring Ar 3 is condensed with the ring skeleton represented by formula (2) at least at the * position. When a plurality of ring skeletons represented by formula (2) exist, they may be the same or different.
R 1 represents a hydrogen atom, a halogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, a hydroxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, or a substituted amino group, and these groups may have a substituent. A plurality of R 1s may be the same or different, and R 1s may be bonded to each other to form a ring together with the carbon atom to which R 1 is bonded.
L represents a direct bond, -O-, -S-, -C(R 11 ) 2 -, -N(R 12 )-, an arylene group, or a divalent heterocyclic group.
R 11 represents a hydrogen atom, a halogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, a hydroxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, or a substituted amino group, and these groups may have a substituent. A plurality of R 11s may be the same or different, and R 11s may be bonded to each other to form a ring together with the carbon atom to which R 11 is bonded.
R 12 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent. ]
Figure JPOXMLDOC01-appb-C000015
[In the formula,
Ring Ar 4 represents an aromatic hydrocarbon ring or an aromatic heterocycle, and these rings may have a substituent. When a plurality of these substituents exist, they may be bonded to each other to form a ring with the atoms to which they are bonded.
L 1 represents -N(R 1L )-, -S-, -O- or -C(R 2L ) 2 -.
R 1L represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent.
R2L represents a hydrogen atom, a halogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, or a substituted amino group, and these groups are substituents. It may have. A plurality of R 2Ls may be the same or different, and the R 2Ls may be bonded to each other to form a ring together with the carbon atom to which R 2L is bonded.
When the ring skeleton represented by formula (2) is fused with ring Ar 2 , R 1L , R 2L , a substituent that R 1L may have and a substituent that R 2L may have may be bonded to ring Ar 2 , ring Ar 4 , a substituent that ring Ar 2 may have, or a substituent that ring Ar 4 may have to form a ring.
When the ring skeleton represented by formula (2) is fused with ring Ar 3 , R 1L , R 2L , a substituent that R 1L may have and a substituent that R 2L may have may be bonded to ring Ar 3 , ring Ar 4 , a substituent that ring Ar 3 may have, or a substituent that ring Ar 4 may have to form a ring. ]
[2]
The compound according to [1], which is a compound represented by formula (1-A).
Figure JPOXMLDOC01-appb-C000016
[In the formula,
Ring Ar 2 , ring Ar 3 and R 1 have the same meanings as above.
Ring Ar 1A represents an aromatic hydrocarbon ring or an aromatic heterocycle, and these rings may have a substituent. When a plurality of these substituents exist, they may be bonded to each other to form a ring with the atoms to which they are bonded. ]
[3]
The compound according to [1] or [2], which is a compound represented by formula (1-B).
Figure JPOXMLDOC01-appb-C000017
[In the formula,
R 1 has the same meaning as above.
X represents a carbon atom or a nitrogen atom, and when X is a carbon atom, X is bonded to -R 1X or together with adjacent X formula (1-B1):
Figure JPOXMLDOC01-appb-C000018
Either it combines with the ring skeleton represented by formula (2) to form a ring, or it combines with the ring skeleton represented by formula (2) together with adjacent X to form a ring.
R 1X represents a hydrogen atom, a halogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, or a substituted amino group, and these groups are substituents. It may have. When a plurality of R 1Xs exist, they may be the same or different, and the R 1Xs may be bonded to each other to form a ring together with the carbon atom to which R 1X is bonded. When X adjacent to X to which R 1X is bonded is bonded to the ring skeleton represented by formula (2), R 1X is R 1L , R 2L in the ring skeleton represented by formula (2). , may be combined with a substituent that R 1L may have or a substituent that R 2L may have to form a ring.
X in formula (1-B1) has the same meaning as above, and may be bonded to -R 1X , or may be bonded to the ring skeleton represented by formula (1-B1) together with adjacent X to further form a ring. may be formed, or may be combined with the ring skeleton represented by formula (2) together with adjacent X to further form a ring.
A plurality of X's may be the same or different.
Y represents a carbon atom or a nitrogen atom, and when Y is a carbon atom, Y is bonded to -R 1Y or together with adjacent Y, formula (1-B2):
Figure JPOXMLDOC01-appb-C000019
Either it combines with the ring skeleton represented by formula (2) to form a ring, or it combines with the ring skeleton represented by formula (2) together with adjacent Y to form a ring.
R 1Y represents a hydrogen atom, a halogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, or a substituted amino group, and these groups are substituents. It may have. When a plurality of R 1Ys exist, they may be the same or different, and the R 1Ys may be bonded to each other to form a ring together with the carbon atom to which R 1Y is bonded. When Y adjacent to Y to which R 1Y is bonded is bonded to the ring skeleton represented by formula (2), R 1Y is R 1L , R 2L in the ring skeleton represented by formula (2). , may be combined with a substituent that R 1L may have or a substituent that R 2L may have to form a ring.
Y in formula (1-B2) has the same meaning as above, and may be bonded to -R 1Y , or may be bonded to the ring skeleton represented by formula (1-B2) together with adjacent Y to further form a ring. may be formed, or may be bonded to the ring skeleton represented by formula (2) together with adjacent Y to further form a ring.
A plurality of Y's may be the same or different. However, among the combinations of adjacent Y's, at least one pair is bonded to the ring skeleton represented by formula (2) to form a ring. ]
[4]
The compound according to any one of [1] to [3], wherein the ring skeleton represented by formula (2) is a ring skeleton represented by formula (2-A).
Figure JPOXMLDOC01-appb-C000020
[In the formula,
L 1A represents -N(R 1AL )-, -S-, -O- or -C(R 2AL ) 2 -.
R 1AL represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent.
R 2AL represents a hydrogen atom, a halogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, or a substituted amino group, and these groups are substituents. It may have. A plurality of R 2ALs may be the same or different, and R 2ALs may be bonded to each other to form a ring with the carbon atom to which R 2AL is bonded.
Z represents a carbon atom or a nitrogen atom, and when Z is a carbon atom, Z is bonded to -R 1Z or together with adjacent Z, formula (2-A1):
Figure JPOXMLDOC01-appb-C000021
Either it combines with the ring skeleton represented by to form a ring.
R 1Z represents a hydrogen atom, a halogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, or a substituted amino group; It may have. When a plurality of R 1Ys exist, they may be the same or different, and the R 1Ys may be bonded to each other to form a ring together with the carbon atom to which R 1Y is bonded.
Z in formula (2-A1) has the same meaning as above, and may be bonded to -R 1Z , or may be bonded to the ring skeleton represented by formula (2-A1) together with adjacent Z to further form a ring. may be formed.
A plurality of Z's may be the same or different.
When the ring skeleton represented by formula (2-A) is fused with ring Ar 2 , R 1AL , R 2AL , a substituent that R 1AL may have and R 2AL may have The substituent is bonded to a group on Z located next to two atoms of L 1A or a group on an atom constituting ring Ar 2 located next to two atoms of L 1A to form a ring. Good too.
When the ring skeleton represented by formula (2-A) is fused with ring Ar 3 , R 1AL , R 2AL , a substituent that R 1AL may have and R 2AL may have The substituent is bonded to a group on Z located next to two atoms of L 1A or a group on an atom constituting ring Ar 3 located next to two atoms of L 1A to form a ring. Good too. ]
[5]
Formulas (3-A), (3-B), (3-C), (3-D), (3-E), (3-F), (3-G), (3-H), ( The compound according to any one of [1] to [4], which is a compound represented by 3-I) or (3-J).
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
[In the formula,
W represents a carbon atom or a nitrogen atom, and when W is a carbon atom, W is bonded to -R 1W , or together with adjacent W, formula (3-1):
Figure JPOXMLDOC01-appb-C000025
Either it combines with the ring skeleton represented by to form a ring.
R 1W represents a hydrogen atom, a halogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, or a substituted amino group, and these groups are substituents. It may have. When a plurality of R 1Xs exist, they may be the same or different, and the R 1Xs may be bonded to each other to form a ring together with the carbon atom to which R 1X is bonded.
R3A represents a hydrogen atom, a halogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, or a substituted amino group, and these groups are substituents. It may have. A plurality of R 3As may be the same or different, and the R 3As may be bonded to each other to form a ring together with the carbon atom to which R 3A is bonded.
W in formula (3-1) has the same meaning as above, and may be bonded to -R 1W , or may be bonded to the ring skeleton represented by formula (3-1) together with adjacent W to further form a ring. may be formed.
L 3A represents -N(R 31L )-, -S-, -O- or -C(R 32L ) 2 -.
R 31L represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent.
R32L represents a hydrogen atom, a halogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, or a substituted amino group, and these groups are substituents. It may have. A plurality of R 32Ls may be the same or different, and the R 32Ls may be bonded to each other to form a ring together with the carbon atom to which R 32L is bonded.
A substituent that R 31L , R 32L , R 31L may have or a substituent that R 32L may have is bonded to a group on W 3A located two atoms adjacent to L 3A to form a ring. You may do so. ]
[6]
A polymer compound containing a structural unit having a group obtained by removing one or more hydrogen atoms from the compound according to any one of [1] to [5].
[7]
The compound according to any one of [1] to [5] or the polymer compound according to [6],
A composition containing at least one member selected from the group consisting of a hole transport material, a hole injection material, an electron transport material, an electron injection material, a luminescent material, an antioxidant, and a solvent.
[8]
comprising an anode, a cathode, and an organic layer provided between the anode and the cathode,
A light emitting device, wherein the organic layer contains the compound according to any one of [1] to [5] or the polymer compound according to [6].
 本発明によれば、発光スペクトルのスペクトル幅が狭く、発光素子用発光材料として有用な化合物を提供することができる。また本発明によれば、当該化合物を含有する組成物、及び、当該化合物を含有する発光素子を提供することができる。 According to the present invention, it is possible to provide a compound that has a narrow emission spectrum and is useful as a light-emitting material for a light-emitting device. Further, according to the present invention, a composition containing the compound and a light emitting device containing the compound can be provided.
 以下、本発明の好適な実施形態について詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail.
<共通する用語の説明>
 本明細書で共通して用いられる用語は、特記しない限り、以下の意味である。
<Explanation of common terms>
Terms commonly used herein have the following meanings unless otherwise specified.
 「室温」とは、25℃を意味する。
 Meはメチル基、Etはエチル基、Buはブチル基、i-Prはイソプロピル基、t-Buはtert-ブチル基を表す。
 水素原子は、重水素原子であっても、軽水素原子であってもよい。
 金属錯体を表す式中、中心金属との結合を表す実線は、共有結合又は配位結合を意味する。
"Room temperature" means 25°C.
Me represents a methyl group, Et represents an ethyl group, Bu represents a butyl group, i-Pr represents an isopropyl group, and t-Bu represents a tert-butyl group.
The hydrogen atom may be a deuterium atom or a light hydrogen atom.
In the formula representing a metal complex, a solid line representing a bond with the central metal means a covalent bond or a coordinate bond.
 「低分子化合物」とは、分子量分布を有さず、分子量が1×10以下の化合物を意味する。
 「高分子化合物」とは、分子量分布を有し、ポリスチレン換算の数平均分子量が1×10以上(例えば、1×10~1×10)である重合体を意味する。
 「構成単位」とは、高分子化合物中に1個以上存在する単位を意味する。高分子化合物中に2個以上含まれる構成単位は、一般に、「繰り返し単位」とも呼ばれる。
 高分子化合物は、ブロック共重合体、ランダム共重合体、交互共重合体、グラフト共重合体のいずれであってもよいし、その他の態様であってもよい。
 高分子化合物の末端基は、重合活性基がそのまま残っていると、高分子化合物を発光素子の作製に用いた場合、発光特性が低下する可能性があるので、好ましくは安定な基である。高分子化合物の末端基としては、好ましくは主鎖と共役結合している基であり、例えば、炭素-炭素結合を介して高分子化合物の主鎖と結合するアリール基又は1価の複素環基が挙げられる。
"Low molecular compound" means a compound that has no molecular weight distribution and has a molecular weight of 1×10 4 or less.
The term “polymer compound” refers to a polymer having a molecular weight distribution and a number average molecular weight of 1×10 3 or more (for example, 1×10 3 to 1×10 8 ) in terms of polystyrene.
"Structural unit" means one or more units present in a polymer compound. Two or more structural units contained in a polymer compound are generally also called "repeat units."
The polymer compound may be a block copolymer, a random copolymer, an alternating copolymer, a graft copolymer, or may have other forms.
The terminal group of the polymer compound is preferably a stable group, since if the polymerization active group remains as it is, the luminescence characteristics may deteriorate when the polymer compound is used for producing a light emitting device. The terminal group of the polymer compound is preferably a group that is conjugated to the main chain, such as an aryl group or a monovalent heterocyclic group that is bonded to the main chain of the polymer compound via a carbon-carbon bond. can be mentioned.
 「アルキル基」は、直鎖及び分岐のいずれでもよい。直鎖のアルキル基の炭素原子数は、置換基の炭素原子数を含めないで、例えば、1以上、2以上、3以上又は4以上であってよく、50以下、40以下、30以下又は20以下であってよい。分岐のアルキル基の炭素原子数は、置換基の炭素原子数を含めないで、例えば、3以上又は4以上であってよく、50以下、40以下、30以下又は20以下であってよい。
 アルキル基は、置換基を有していてもよい。アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、2-ブチル基、イソブチル基、tert-ブチル基、ペンチル基、イソアミル基、2-エチルブチル基、ヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、3-プロピルヘプチル基、デシル基、3,7-ジメチルオクチル基、2-エチルオクチル基、2-ヘキシルデシル基及びドデシル基が挙げられる。また、アルキル基は、これらの基における水素原子の一部又は全部が、置換基(例えば、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等)で置換された基(例えば、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロブチル基、パーフルオロヘキシル基、パーフルオロオクチル基、3-フェニルプロピル基、3-(4-メチルフェニル)プロピル基、3-(3,5-ジ-ヘキシルフェニル)プロピル基、6-エチルオキシヘキシル基)であってもよい。
The "alkyl group" may be either straight chain or branched. The number of carbon atoms in the straight chain alkyl group, not including the number of carbon atoms in the substituents, may be, for example, 1 or more, 2 or more, 3 or more, or 4 or more, and 50 or less, 40 or less, 30 or less, or 20 or less. It may be the following. The number of carbon atoms in the branched alkyl group may be, for example, 3 or more or 4 or more, and 50 or less, 40 or less, 30 or less, or 20 or less, not including the number of carbon atoms of the substituents.
The alkyl group may have a substituent. Examples of the alkyl group include methyl group, ethyl group, propyl group, isopropyl group, butyl group, 2-butyl group, isobutyl group, tert-butyl group, pentyl group, isoamyl group, 2-ethylbutyl group, hexyl group, and heptyl group. octyl group, 2-ethylhexyl group, 3-propylheptyl group, decyl group, 3,7-dimethyloctyl group, 2-ethyloctyl group, 2-hexyldecyl group and dodecyl group. In addition, an alkyl group is a group in which some or all of the hydrogen atoms in these groups are substituted with a substituent (for example, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a fluorine atom, etc.) (for example, Trifluoromethyl group, pentafluoroethyl group, perfluorobutyl group, perfluorohexyl group, perfluorooctyl group, 3-phenylpropyl group, 3-(4-methylphenyl)propyl group, 3-(3,5-di -hexylphenyl)propyl group, 6-ethyloxyhexyl group).
 「シクロアルキル基」の炭素原子数は、置換基の炭素原子数を含めないで、例えば、3以上又は4以上であってよく、50以下、40以下、30以下又は20以下であってよい。
 シクロアルキル基は、置換基を有していてもよい。シクロアルキル基としては、例えば、シクロヘキシル基、及び、該基における水素原子の一部又は全部が置換基で置換された基が挙げられる。
The number of carbon atoms in the "cycloalkyl group" may be, for example, 3 or more or 4 or more, and 50 or less, 40 or less, 30 or less, or 20 or less, not including the number of carbon atoms of the substituents.
The cycloalkyl group may have a substituent. Examples of the cycloalkyl group include a cyclohexyl group and a group in which some or all of the hydrogen atoms in the group are substituted with a substituent.
 「アルケニル基」は、直鎖及び分岐のいずれでもよい。直鎖のアルケニル基の炭素原子数は、置換基の炭素原子数を含めないで、例えば、2以上又は3以上であってよく、30以下又は20以下であってよい。分岐のアルケニル基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~30であり、好ましくは4~20である。
 アルケニル基は、置換基を有していてもよい。アルケニル基としては、例えば、ビニル基、1-プロペニル基、2-プロペニル基、2-ブテニル基、3-ブテニル基、3-ペンテニル基、4-ペンテニル基、1-ヘキセニル基、5-ヘキセニル基、7-オクテニル基、及び、これらの基における水素原子の一部又は全部が置換基で置換された基が挙げられる。
The "alkenyl group" may be either straight chain or branched. The number of carbon atoms in the straight chain alkenyl group may be, for example, 2 or more or 3 or more, and 30 or less or 20 or less, not including the number of carbon atoms of the substituents. The number of carbon atoms in the branched alkenyl group, not including the number of carbon atoms in substituents, is usually 3 to 30, preferably 4 to 20.
The alkenyl group may have a substituent. Examples of the alkenyl group include vinyl group, 1-propenyl group, 2-propenyl group, 2-butenyl group, 3-butenyl group, 3-pentenyl group, 4-pentenyl group, 1-hexenyl group, 5-hexenyl group, Examples include a 7-octenyl group and groups in which some or all of the hydrogen atoms in these groups are substituted with substituents.
 「シクロアルケニル基」の炭素原子数は、置換基の炭素原子数を含めないで、例えば3以上又は4以上であってよく、30以下又は20以下であってよい。
 シクロアルケニル基は、置換基を有していてもよい。シクロアルケニル基としては、例えば、5-シクロヘキセニル基、及び、これらの基における水素原子の一部又は全部が置換基で置換された基が挙げられる。
The number of carbon atoms in the "cycloalkenyl group" may be, for example, 3 or more or 4 or more, and 30 or less or 20 or less, not including the number of carbon atoms of the substituents.
The cycloalkenyl group may have a substituent. Examples of the cycloalkenyl group include a 5-cyclohexenyl group and a group in which some or all of the hydrogen atoms in these groups are substituted with a substituent.
 「アルキニル基」は、直鎖及び分岐のいずれでもよい。直鎖のアルキニル基の炭素原子数は、置換基の炭素原子を含めないで、例えば、2以上又は3以上であってよく、30以下又は20以下であってよい。分岐のアルキニル基の炭素原子数は、置換基の炭素原子を含めないで、例えば、4以上であってよく、30以下又は20以下であってよい。
 アルキニル基は、置換基を有していてもよい。アルキニル基としては、例えば、エチニル基、1-プロピニル基、2-プロピニル基、2-ブチニル基、3-ブチニル基、3-ペンチニル基、4-ペンチニル基、1-ヘキシニル基、5-ヘキシニル基、及び、これらの基における水素原子の一部又は全部が置換基で置換された基が挙げられる。
The "alkynyl group" may be either straight chain or branched. The number of carbon atoms in the straight chain alkynyl group may be, for example, 2 or more or 3 or more, and 30 or less or 20 or less, not including carbon atoms of substituents. The number of carbon atoms in the branched alkynyl group may be, for example, 4 or more, 30 or less, or 20 or less, not including carbon atoms of substituents.
The alkynyl group may have a substituent. Examples of the alkynyl group include ethynyl group, 1-propynyl group, 2-propynyl group, 2-butynyl group, 3-butynyl group, 3-pentynyl group, 4-pentynyl group, 1-hexynyl group, 5-hexynyl group, and groups in which some or all of the hydrogen atoms in these groups are substituted with substituents.
 「シクロアルキニル基」の炭素原子数は、置換基の炭素原子を含めないで、例えば4以上であってよく、30以下又は20以下であってよい。
 シクロアルキニル基は、置換基を有していてもよい。シクロアルキニル基としては、例えば、5-シクロヘキシニル基、及び、これらの基における水素原子の一部又は全部が置換基で置換された基が挙げられる。
The number of carbon atoms in the "cycloalkynyl group" may be, for example, 4 or more, 30 or less, or 20 or less, not including carbon atoms of substituents.
The cycloalkynyl group may have a substituent. Examples of the cycloalkynyl group include a 5-cyclohexynyl group and groups in which some or all of the hydrogen atoms in these groups are substituted with substituents.
 「アルコキシ基」は、直鎖及び分岐のいずれでもよい。直鎖のアルコキシ基の炭素原子数は、置換基の炭素原子数を含めないで、例えば、1以上、2以上、3以上又は4以上であってよく、40以下、30以下、20以下又は10以下であってよい。分岐のアルコキシ基の炭素原子数は、置換基の炭素原子数を含めないで、例えば、3以上又は4以上であってよく、40以下、30以下、20以下又は10以下であってよい。
 アルコキシ基は、置換基を有していてもよい。アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブチルオキシ基、イソブチルオキシ基、tert-ブチルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2-エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7-ジメチルオクチルオキシ基、ラウリルオキシ基、及び、これらの基における水素原子の一部又は全部が置換基(例えば、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等)で置換された基が挙げられる。
The "alkoxy group" may be either linear or branched. The number of carbon atoms in the straight chain alkoxy group, not including the number of carbon atoms in the substituents, may be, for example, 1 or more, 2 or more, 3 or more, or 4 or more, and 40 or less, 30 or less, 20 or less, or 10 or less. It may be the following. The number of carbon atoms in the branched alkoxy group may be, for example, 3 or more or 4 or more, and 40 or less, 30 or less, 20 or less, or 10 or less, not including the number of carbon atoms of the substituents.
The alkoxy group may have a substituent. Examples of the alkoxy group include methoxy group, ethoxy group, propyloxy group, isopropyloxy group, butyloxy group, isobutyloxy group, tert-butyloxy group, pentyloxy group, hexyloxy group, heptyloxy group, octyloxy group, - Ethylhexyloxy group, nonyloxy group, decyloxy group, 3,7-dimethyloctyloxy group, lauryloxy group, and some or all of the hydrogen atoms in these groups are substituents (for example, cycloalkyl group, alkoxy group, Examples include groups substituted with cycloalkoxy groups, aryl groups, fluorine atoms, etc.).
 「シクロアルコキシ基」の炭素原子数は、置換基の炭素原子数を含めないで、例えば、3以上又は4以上であってよく、40以下、30以下、20以下又は10以下であってよい。
 シクロアルコキシ基は、置換基を有していてもよい。シクロアルコキシ基としては、例えば、シクロヘキシルオキシ基、及び、該基における水素原子の一部又は全部が置換基で置換された基が挙げられる。
The number of carbon atoms in the "cycloalkoxy group" may be, for example, 3 or more or 4 or more, 40 or less, 30 or less, 20 or less, or 10 or less, not including the number of carbon atoms of the substituents.
The cycloalkoxy group may have a substituent. Examples of the cycloalkoxy group include a cyclohexyloxy group and a group in which some or all of the hydrogen atoms in the group are substituted with a substituent.
 「アリールオキシ基」の炭素原子数は、置換基の炭素原子数を含めないで、例えば、6以上であってよく、60以下又は48以下であってよい。
 アリールオキシ基は、置換基を有していてもよい。アリールオキシ基としては、例えば、フェノキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基、1-アントラセニルオキシ基、9-アントラセニルオキシ基、1-ピレニルオキシ基、及び、これらの基における水素原子の一部又は全部が置換基(例えば、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、フッ素原子等)で置換された基が挙げられる。
The number of carbon atoms in the "aryloxy group" may be, for example, 6 or more, 60 or less, or 48 or less, not including the number of carbon atoms in the substituents.
The aryloxy group may have a substituent. Examples of the aryloxy group include phenoxy group, 1-naphthyloxy group, 2-naphthyloxy group, 1-anthracenyloxy group, 9-anthracenyloxy group, 1-pyrenyloxy group, and Examples include groups in which part or all of the hydrogen atoms are substituted with a substituent (eg, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, a fluorine atom, etc.).
 「芳香族炭化水素基」は、芳香族炭化水素から環を構成する炭素原子に直接結合する水素原子1個以上を除いた基を意味する。芳香族炭化水素から環を構成する炭素原子に直接結合する水素原子1個を除いた基を「アリール基」ともいう。芳香族炭化水素から環を構成する炭素原子に直接結合する水素原子2個を除いた基を「アリーレン基」ともいう。
 芳香族炭化水素基の炭素原子数は、置換基の炭素原子数を含めないで、例えば、6以上であってよく、60以下、40以下、20以下又は10以下であってよい。
 「芳香族炭化水素基」としては、例えば、単環式の芳香族炭化水素(例えば、ベンゼンが挙げられる。)、又は、多環式の芳香族炭化水素(例えば、ナフタレン、インデン、ナフトキノン、インデノン及びテトラロン等の2環式の芳香族炭化水素;アントラセン、フェナントレン、ジヒドロフェナントレン、フルオレン、アントラキノン、フェナントキノン及びフルオレノン等の3環式の芳香族炭化水素;ベンゾアントラセン、ベンゾフェナントレン、ベンゾフルオレン、ピレン及びフルオランテン等の4環式の芳香族炭化水素;ジベンゾアントラセン、ジベンゾフェナントレン、ジベンゾフルオレン、インデノフルオレン、ペリレン及びベンゾフルオランテン等の5環式の芳香族炭化水素;スピロビフルオレン等の6環式の芳香族炭化水素;並びに、ベンゾスピロビフルオレン及びアセナフトフルオランテン等の7環式の芳香族炭化水素が挙げられる。)から、環を構成する炭素原子に直接結合する水素原子1個以上を除いた基が挙げられる。芳香族炭化水素基は、これらの基が複数結合した基を含む。芳香族炭化水素基は置換基を有していてもよい。
"Aromatic hydrocarbon group" means a group obtained by removing one or more hydrogen atoms directly bonded to a carbon atom constituting a ring from an aromatic hydrocarbon. A group obtained by removing one hydrogen atom directly bonded to a carbon atom constituting a ring from an aromatic hydrocarbon is also referred to as an "aryl group." A group obtained by removing two hydrogen atoms directly bonded to carbon atoms constituting a ring from an aromatic hydrocarbon is also referred to as an "arylene group."
The number of carbon atoms of the aromatic hydrocarbon group may be, for example, 6 or more, 60 or less, 40 or less, 20 or less, or 10 or less, not including the number of carbon atoms of the substituents.
Examples of the "aromatic hydrocarbon group" include monocyclic aromatic hydrocarbons (for example, benzene), or polycyclic aromatic hydrocarbons (for example, naphthalene, indene, naphthoquinone, indenone). and bicyclic aromatic hydrocarbons such as tetralone; tricyclic aromatic hydrocarbons such as anthracene, phenanthrene, dihydrophenanthrene, fluorene, anthraquinone, phenantoquinone, and fluorenone; benzanthracene, benzophenanthrene, benzofluorene, pyrene and 4-ring aromatic hydrocarbons such as fluoranthene; 5-ring aromatic hydrocarbons such as dibenzoanthracene, dibenzophenanthrene, dibenzofluorene, indenofluorene, perylene and benzofluoranthene; 6-rings such as spirobifluorene and heptocyclic aromatic hydrocarbons such as benzospirobifluorene and acenaphthofluoranthene. Groups other than the above may be mentioned. The aromatic hydrocarbon group includes a group in which a plurality of these groups are bonded. The aromatic hydrocarbon group may have a substituent.
 「芳香族炭化水素環」は、芳香族炭化水素が有する環を意味する。芳香族炭化水素環は、単環であっても縮合多環であってもよい。芳香族炭化水素環としては、例えば、上記単環式の芳香族炭化水素が有する環、多環式の芳香族炭化水素が有する環等が挙げられる。芳香族炭化水素環は、これらの環が複数結合又は縮合した環を含む。芳香族炭化水素環は置換基を有していてもよい。 "Aromatic hydrocarbon ring" means a ring possessed by an aromatic hydrocarbon. The aromatic hydrocarbon ring may be a monocyclic ring or a condensed polycyclic ring. Examples of the aromatic hydrocarbon ring include a ring possessed by the above-mentioned monocyclic aromatic hydrocarbon, a ring possessed by a polycyclic aromatic hydrocarbon, and the like. The aromatic hydrocarbon ring includes a ring in which a plurality of these rings are bonded or condensed. The aromatic hydrocarbon ring may have a substituent.
 アリール基としては、例えば、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、1-ピレニル基、2-ピレニル基、4-ピレニル基、2-フルオレニル基、3-フルオレニル基、4-フルオレニル基、2-フェニルフェニル基、3-フェニルフェニル基、4-フェニルフェニル基、及び、これらの基における水素原子の一部又は全部が置換基(例えば、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、フッ素原子等)で置換された基が挙げられる。 Examples of the aryl group include phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group, 9-anthracenyl group, 1-pyrenyl group, 2-pyrenyl group, 4-pyrenyl group, 2-fluorenyl group, 3-fluorenyl group, 4-fluorenyl group, 2-phenylphenyl group, 3-phenylphenyl group, 4-phenylphenyl group, and some or all of the hydrogen atoms in these groups are substituents ( Examples include groups substituted with alkyl groups, cycloalkyl groups, alkoxy groups, cycloalkoxy groups, fluorine atoms, etc.).
 アリーレン基としては、例えば、フェニレン基、ナフタレンジイル基、アントラセンジイル基、フェナントレンジイル基、ジヒドロフェナントレンジイル基、ナフタセンジイル基、フルオレンジイル基、ピレンジイル基、ペリレンジイル基、クリセンジイル基、及び、これらの基における水素原子の一部又は全部が置換基で置換された基が挙げられる。アリーレン基は、これらの基が複数結合した基を含む。アリーレン基は、好ましくは、式(A-1)~式(A-20)で表される基である。
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
[式中、R及びRは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表す。複数存在するR及びRは、各々、同一でも異なっていてもよく、R同士は互いに結合して、それぞれが結合する原子と共に環を形成していてもよい。]
Examples of the arylene group include a phenylene group, a naphthalenediyl group, an anthracenediyl group, a phenanthrenediyl group, a dihydrophenanthrenediyl group, a naphthacenediyl group, a fluorenediyl group, a pyrenediyl group, a perylene diyl group, a chrysenediyl group, and Examples include groups in which some or all of the hydrogen atoms are substituted with substituents. The arylene group includes a group in which a plurality of these groups are bonded. The arylene group is preferably a group represented by formula (A-1) to formula (A-20).
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
[In the formula, R and R a each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group. A plurality of R and R a may be the same or different, and R a may be bonded to each other to form a ring with the atoms to which they are bonded. ]
 「複素環基」とは、複素環式化合物から環を構成する原子(炭素原子又はヘテロ原子)に直接結合する水素原子1個以上を除いた基を意味する。複素環基の中でも、芳香族複素環式化合物から環を構成する原子に直接結合する水素原子1個以上を除いた基である「芳香族複素環基」が好ましい。複素環式化合物から環を構成する原子に直接結合する水素原子p個(pは、1以上の整数を表す。)を除いた基を「p価の複素環基」ともいう。芳香族複素環式化合物から環を構成する原子に直接結合する水素原子p個を除いた基を「p価の芳香族複素環基」ともいう。
 「芳香族複素環式化合物」としては、例えば、オキサジアゾール、チアジアゾール、チアゾール、オキサゾール、チオフェン、ピロール、ホスホール、フラン、ピリジン、ピラジン、ピリミジン、トリアジン、ピリダジン、キノリン、イソキノリン、カルバゾール、ジベンゾホスホール等の複素環自体が芳香族性を示す化合物、及び、フェノキサジン、フェノチアジン、ジベンゾボロール、ジベンゾシロール、ベンゾピラン等の複素環自体は芳香族性を示さなくとも、複素環に芳香環が縮環されている化合物が挙げられる。
 複素環基の炭素原子数は、置換基の炭素原子数を含めないで、例えば、1以上、2以上又は3以上であってよく、60以下、40以下又は20以下であってよい。複素環基のヘテロ原子数は、置換基のヘテロ原子数を含めないで、通常1~30であり、好ましくは1~10であり、より好ましくは1~5であり、更に好ましくは1~3である。
 複素環基としては、例えば、単環式の複素環式化合物(例えば、フラン、チオフェン、オキサジアゾール、チアジアゾール、ピロール、ジアゾール、トリアゾール、テトラゾール、ピリジン、ジアザベンゼン及びトリアジンが挙げられる。)、又は、多環式の複素環式化合物(例えば、アザナフタレン、ジアザナフタレン、ベンゾフラン、ベンゾチオフェン、インドール、アザインドール、ジアザインドール、ベンゾジアゾール、ベンゾチアジアゾール、ベンゾトリアゾール、ベンゾチオフェンジオキシド、ベンゾチオフェンオキシド及びベンゾピラノン等の2環式の複素環式化合物;ジベンゾフラン、ジベンゾチオフェン、ジベンゾチオフェンジオキシド、ジベンゾチオフェンオキシド、ジベンゾピラノン、ジベンゾボロール、ジベンゾシロール、ジベンゾホスホール、ジベンゾセレノフェン、カルバゾール、アザカルバゾール、ジアザカルバゾール、フェノキサジン、フェノチアジン、9,10-ジヒドロアクリジン、5,10-ジヒドロフェナジン、アクリドン、フェナザボリン、フェノホスファジン、フェノセレナジン、フェナザシリン、アザアントラセン、ジアザアントラセン、アザフェナントレン及びジアザフェナントレン等の3環式の複素環式化合物;ヘキサアザトリフェニレン、ベンゾカルバゾール、アザベンゾカルバゾール、ジアザベンゾカルバゾール、ベンゾナフトフラン及びベンゾナフトチオフェン等の4環式の複素環式化合物;ジベンゾカルバゾール、インドロカルバゾール、インデノカルバゾール、アザインドロカルバゾール、ジアザインドロカルバゾール、アザインデノカルバゾール及びジアザインデノカルバゾール等の5環式の複素環式化合物;カルバゾロカルバゾール、ベンゾインドロカルバゾール及びベンゾインデノカルバゾール等の6環式の複素環式化合物;並びに、ジベンゾインドロカルバゾール及びジベンゾインデノカルバゾール等の7環式の複素環式化合物が挙げられる。)から、環を構成する原子に直接結合する水素原子1個以上を除いた基が挙げられる。複素環基は、これらの基が複数結合した基を含む。複素環基は置換基(例えば、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等)を有していてもよい。
The term "heterocyclic group" refers to a group obtained by removing one or more hydrogen atoms directly bonded to an atom (carbon atom or heteroatom) constituting a ring from a heterocyclic compound. Among the heterocyclic groups, an "aromatic heterocyclic group" which is a group obtained by removing one or more hydrogen atoms directly bonded to atoms constituting a ring from an aromatic heterocyclic compound is preferable. A group obtained by removing p hydrogen atoms (p represents an integer of 1 or more) directly bonded to the atoms constituting the ring from a heterocyclic compound is also referred to as a "p-valent heterocyclic group." A group obtained by removing p hydrogen atoms directly bonded to the atoms constituting the ring from an aromatic heterocyclic compound is also referred to as a "p-valent aromatic heterocyclic group."
Examples of "aromatic heterocyclic compounds" include oxadiazole, thiadiazole, thiazole, oxazole, thiophene, pyrrole, phosphole, furan, pyridine, pyrazine, pyrimidine, triazine, pyridazine, quinoline, isoquinoline, carbazole, and dibenzophosphole. Compounds in which the heterocycle itself shows aromaticity, such as phenoxazine, phenothiazine, dibenzoborol, dibenzosilole, benzopyran, etc., even if the heterocycle itself does not show aromaticity, an aromatic ring is fused to the heterocycle. Examples include compounds that have been
The number of carbon atoms in the heterocyclic group may be, for example, 1 or more, 2 or more, or 3 or more, and 60 or less, 40 or less, or 20 or less, not including the number of carbon atoms of the substituents. The number of heteroatoms in the heterocyclic group, not including the number of heteroatoms in substituents, is usually 1 to 30, preferably 1 to 10, more preferably 1 to 5, and still more preferably 1 to 3. It is.
Examples of the heterocyclic group include monocyclic heterocyclic compounds (for example, furan, thiophene, oxadiazole, thiadiazole, pyrrole, diazole, triazole, tetrazole, pyridine, diazabenzene, and triazine), or, Polycyclic heterocyclic compounds (e.g. azanaphthalene, diazanaphthalene, benzofuran, benzothiophene, indole, azaindole, diazaindole, benzodiazole, benzothiadiazole, benzotriazole, benzothiophene dioxide, benzothiophene oxide and bicyclic heterocyclic compounds such as benzopyranone; dibenzofuran, dibenzothiophene, dibenzothiophene dioxide, dibenzothiophene oxide, dibenzopyranone, dibenzoborole, dibenzosilole, dibenzophosphole, dibenzoselenophene, carbazole, azacarbazole , diazacarbazole, phenoxazine, phenothiazine, 9,10-dihydroacridine, 5,10-dihydrophenazine, acridone, fenazaborin, phenophosphazine, phenoselenazine, phenazacillin, azaanthracene, diazaanthracene, azaphenanthrene and diaza Tricyclic heterocyclic compounds such as phenanthrene; Tetracyclic heterocyclic compounds such as hexaazatriphenylene, benzocarbazole, azabenzocarbazole, diazabenzocarbazole, benzonaphthofuran and benzonaphthothiophene; dibenzocarbazole, India Pentacyclic heterocyclic compounds such as locarbazole, indenocarbazole, azaindrocarbazole, diazaindrocarbazole, azaindenocarbazole and diazaindenocarbazole; carbazolocarbazole, benzindrocarbazole and benzoindenocarbazole 6-ring heterocyclic compounds such as; and 7-ring heterocyclic compounds such as dibenzoindolocarbazole and dibenzoindenocarbazole. Examples include groups in which one or more groups are removed. The heterocyclic group includes a group in which a plurality of these groups are bonded. The heterocyclic group may have a substituent (for example, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a fluorine atom, etc.).
 「芳香族複素環」は、芳香族複素環式化合物が有する環を意味する。芳香族複素環式化合物は、単環であっても縮合多環であってもよい。芳香族複素環としては、例えば、上述の「芳香族複素環式化合物」が有する環が挙げられる。また、芳香族複素環は、これらの環が複数結合又は縮合した環、これらの環に芳香族炭化水素環が結合又は縮合した環を含む。芳香族複素環は置換基を有していてもよい。 "Aromatic heterocycle" means a ring possessed by an aromatic heterocyclic compound. The aromatic heterocyclic compound may be monocyclic or fused polycyclic. Examples of the aromatic heterocycle include the ring possessed by the above-mentioned "aromatic heterocyclic compound". Further, the aromatic heterocycle includes a ring in which a plurality of these rings are bonded or condensed, and a ring in which an aromatic hydrocarbon ring is bonded or condensed to these rings. The aromatic heterocycle may have a substituent.
 1価の複素環基としては、例えば、チエニル基、ピロリル基、フリル基、ピリジル基、ピペリジニル基、キノリニル基、イソキノリニル基、ピリミジニル基、トリアジニル基、及び、これらの基における水素原子の一部又は全部が置換基(例えば、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基)等で置換された基が挙げられる。 Examples of monovalent heterocyclic groups include thienyl group, pyrrolyl group, furyl group, pyridyl group, piperidinyl group, quinolinyl group, isoquinolinyl group, pyrimidinyl group, triazinyl group, and some of the hydrogen atoms in these groups or Examples include groups entirely substituted with substituents (eg, alkyl groups, cycloalkyl groups, alkoxy groups, cycloalkoxy groups).
 2価の複素環基の炭素原子数は、置換基の炭素原子数を含めないで、例えば、2以上、3以上又は4以上であってよく、60以下、40以下、20以下又は15以下であってよい。
 2価の複素環基としては、例えば、ピリジン、ジアザベンゼン、トリアジン、アザナフタレン、ジアザナフタレン、カルバゾール、ジベンゾフラン、ジベンゾチオフェン、ジベンゾシロール、フェノキサジン、フェノチアジン、アクリジン、ジヒドロアクリジン、フラン、チオフェン、アゾール、ジアゾール又はトリアゾールから、環を構成する炭素原子又はヘテロ原子に直接結合している水素原子のうち2個の水素原子を除いた2価の基が挙げられる。2価の複素環基は、これらの基が複数結合した基を含む。2価の複素環基は、好ましくは、式(AA-1)~式(AA-34)で表される基である。
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
[式中、R及びRは、前記と同じ意味を表す。]
The number of carbon atoms in the divalent heterocyclic group, not including the number of carbon atoms in the substituents, may be, for example, 2 or more, 3 or more, or 4 or more, and 60 or less, 40 or less, 20 or less, or 15 or less. It's good.
Examples of the divalent heterocyclic group include pyridine, diazabenzene, triazine, azanaphthalene, diazanaphthalene, carbazole, dibenzofuran, dibenzothiophene, dibenzosilole, phenoxazine, phenothiazine, acridine, dihydroacridine, furan, thiophene, azole, Examples include divalent groups obtained by removing two hydrogen atoms from among the hydrogen atoms directly bonded to carbon atoms or heteroatoms constituting the ring from diazole or triazole. The divalent heterocyclic group includes a group in which a plurality of these groups are bonded. The divalent heterocyclic group is preferably a group represented by formulas (AA-1) to (AA-34).
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
[In the formula, R and R a represent the same meanings as above. ]
 「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子又はヨウ素原子を示す。 "Halogen atom" refers to a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom.
 「アミノ基」は、置換基を有していてもよく、置換アミノ基(すなわち、第2級アミノ基又は第3級アミノ基、より好ましくは第3級アミノ基)が好ましい。アミノ基が有する置換基としては、アルキル基、シクロアルキル基、アリール基又は1価の複素環基が好ましく、これらの基は置換基を有していてもよい。アミノ基が有する置換基が複数存在する場合、それらは同一で異なっていてもよく、互いに結合して、それぞれが結合する窒素原子とともに環を形成していてもよい。
 置換アミノ基としては、例えば、ジアルキルアミノ基、ジシクロアルキルアミノ基、ジアリールアミノ基、及び、これらの基における水素原子の一部又は全部が置換基(例えば、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等)で置換された基が挙げられる。
 置換アミノ基としては、例えば、ジメチルアミノ基、ジエチルアミノ基、ジフェニルアミノ基、ビス(メチルフェニル)アミノ基、ビス(3,5-ジ-tert-ブチルフェニル)アミノ基、及び、これらの基における水素原子の一部又は全部が置換基(例えば、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等)で置換された基が挙げられる。
The "amino group" may have a substituent, and a substituted amino group (ie, a secondary amino group or a tertiary amino group, more preferably a tertiary amino group) is preferable. The substituent that the amino group has is preferably an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent. When the amino group has a plurality of substituents, they may be the same or different, or may be bonded to each other to form a ring with the nitrogen atom to which they are bonded.
Examples of substituted amino groups include dialkylamino groups, dicycloalkylamino groups, diarylamino groups, and those in which some or all of the hydrogen atoms in these groups are substituents (e.g., alkyl groups, cycloalkyl groups, alkoxy groups). , cycloalkoxy group, aryl group, fluorine atom, etc.).
Examples of substituted amino groups include dimethylamino group, diethylamino group, diphenylamino group, bis(methylphenyl)amino group, bis(3,5-di-tert-butylphenyl)amino group, and hydrogen in these groups. Examples include groups in which some or all of the atoms are substituted with a substituent (eg, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a fluorine atom, etc.).
 「架橋基」とは、加熱、紫外線照射、近紫外線照射、可視光照射、赤外線照射、ラジカル反応等に供することにより、新たな結合を生成することが可能な基である。架橋基としては、架橋基A群から選ばれる架橋基(すなわち、式(XL-1)~式(XL-19)で表される架橋基が挙げられる。
(架橋基A群)
Figure JPOXMLDOC01-appb-C000037
[式中、RXLは、メチレン基、酸素原子又は硫黄原子を表し、nXLは、0~5の整数を表す。RXLが複数存在する場合、それらは同一でも異なっていてもよい。nXLが複数存在する場合、それらは同一でも異なっていてもよい。*1は結合位置を表す。これらの架橋基は置換基を有していてもよく、該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。]
A "crosslinking group" is a group that can generate a new bond by being subjected to heating, ultraviolet irradiation, near ultraviolet irradiation, visible light irradiation, infrared ray irradiation, radical reaction, etc. Examples of the crosslinking group include crosslinking groups selected from crosslinking group A (ie, crosslinking groups represented by formulas (XL-1) to (XL-19)).
(Bridging group A group)
Figure JPOXMLDOC01-appb-C000037
[In the formula, R XL represents a methylene group, an oxygen atom, or a sulfur atom, and n XL represents an integer of 0 to 5. When a plurality of R XL 's exist, they may be the same or different. When a plurality of n XLs exist, they may be the same or different. *1 represents the bonding position. These bridging groups may have a substituent, and when a plurality of substituents exist, they may be the same or different, and may be bonded to each other to form a ring with the atoms to which they are bonded. It's okay. ]
 「置換基」としては、例えば、ハロゲン原子、シアノ基、アルキル基、シクロアルキル基、アリール基、1価の複素環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アミノ基、置換アミノ基、アルケニル基、シクロアルケニル基、アルキニル基、シクロアルキニル基等が挙げられる。置換基は架橋基であってもよい。 Examples of the "substituent" include a halogen atom, a cyano group, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, an alkoxy group, a cycloalkoxy group, an aryloxy group, an amino group, a substituted amino group, Examples include alkenyl groups, cycloalkenyl groups, alkynyl groups, and cycloalkynyl groups. The substituent may be a bridging group.
 「デンドロン」とは、原子又は環を分岐点とする規則的な樹枝状分岐構造(即ち、デンドリマー構造)を有する基を意味する。デンドロンを有する化合物(以下、「デンドリマー」と言う。)としては、例えば、国際公開第2002/067343号、特開2003-231692号公報、国際公開第2003/079736号、国際公開第2006/097717号等の文献に記載の構造が挙げられる。 "Dendron" means a group having a regular dendritic branching structure (i.e., dendrimer structure) with an atom or ring as a branching point. Examples of compounds having dendrons (hereinafter referred to as "dendrimers") include WO 2002/067343, JP 2003-231692, WO 2003/079736, and WO 2006/097717. Examples include structures described in the literatures such as .
 デンドロンとしては、例えば式(D-A)~(D-C)で表される基が挙げられる。 Examples of dendrons include groups represented by formulas (DA) to (DC).
Figure JPOXMLDOC01-appb-C000038
[式中、
 mDA1、mDA2及びmDA3は、それぞれ独立に、0以上の整数を表す。
 GDAは、窒素原子、芳香族炭化水素基又は複素環基を表し、これらの基は置換基を有していてもよい。
 ArDA1、ArDA2及びArDA3は、それぞれ独立に、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。ArDA1、ArDA2及びArDA3が複数ある場合、それらはそれぞれ同一でも異なっていてもよい。
 TDAは、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるTDAは、同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000038
[In the formula,
m DA1 , m DA2 and m DA3 each independently represent an integer of 0 or more.
GDA represents a nitrogen atom, an aromatic hydrocarbon group, or a heterocyclic group, and these groups may have a substituent.
Ar DA1 , Ar DA2 and Ar DA3 each independently represent an arylene group or a divalent heterocyclic group, and these groups may have a substituent. When there are multiple Ar DA1 , Ar DA2 and Ar DA3 , they may be the same or different.
TDA represents an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. A plurality of TDAs may be the same or different. ]
Figure JPOXMLDOC01-appb-C000039
[式中、
 mDA1、mDA2、mDA3、mDA4、mDA5、mDA6及びmDA7は、それぞれ独立に、0以上の整数を表す。
 GDAは、窒素原子、芳香族炭化水素基又は複素環基を表し、これらの基は置換基を有していてもよい。複数あるGDAは、同一でも異なっていてもよい。
 ArDA1、ArDA2、ArDA3、ArDA4、ArDA5、ArDA6及びArDA7は、それぞれ独立に、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。ArDA1、ArDA2、ArDA3、ArDA4、ArDA5、ArDA6及びArDA7が複数ある場合、それらはそれぞれ同一でも異なっていてもよい。
 TDAは、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるTDAは、同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000039
[In the formula,
m DA1 , m DA2 , m DA3 , m DA4 , m DA5 , m DA6 and m DA7 each independently represent an integer of 0 or more.
GDA represents a nitrogen atom, an aromatic hydrocarbon group, or a heterocyclic group, and these groups may have a substituent. A plurality of GDAs may be the same or different.
Ar DA1 , Ar DA2 , Ar DA3 , Ar DA4 , Ar DA5 , Ar DA6 and Ar DA7 each independently represent an arylene group or a divalent heterocyclic group, and even if these groups have a substituent, good. When there are a plurality of Ar DA1 , Ar DA2 , Ar DA3 , Ar DA4 , Ar DA5 , Ar DA6 and Ar DA7 , they may be the same or different.
TDA represents an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. A plurality of TDAs may be the same or different. ]
Figure JPOXMLDOC01-appb-C000040
[式中、
 mDA1は、0以上の整数を表す。
 ArDA1は、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。ArDA1が複数存在する場合、それらは同一でも異なっていてもよい。
 TDAは、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。]
Figure JPOXMLDOC01-appb-C000040
[In the formula,
m DA1 represents an integer greater than or equal to 0.
Ar DA1 represents an arylene group or a divalent heterocyclic group, and these groups may have a substituent. When a plurality of Ar DA1s exist, they may be the same or different.
TDA represents an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. ]
 mDA1、mDA2、mDA3、mDA4、mDA5、mDA6及びmDA7は、通常10以下の整数であり、好ましくは5以下の整数であり、より好ましくは0又は1である。mDA1、mDA2、mDA3、mDA4、mDA5、mDA6及びmDA7は、同一の整数であることが好ましい。 m DA1 , m DA2 , m DA3 , m DA4 , m DA5 , m DA6 and m DA7 are usually integers of 10 or less, preferably 5 or less, and more preferably 0 or 1. It is preferable that m DA1 , m DA2 , m DA3 , m DA4 , m DA5 , m DA6 and m DA7 are the same integer.
 GDAは、好ましくは芳香族炭化水素基又は複素環基であり、より好ましくはベンゼン環、ピリジン環、ピリミジン環、トリアジン環又はカルバゾール環から環を構成する炭素原子又は窒素原子に直接結合する水素原子3個を除いてなる基であり、これらの基は置換基を有していてもよい。
 GDAが有していてもよい置換基としては、好ましくは、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基であり、より好ましくは、アルキル基、シクロアルキル基、アルコキシ基又はシクロアルコキシ基であり、更に好ましくは、アルキル基又はシクロアルキル基であり、これらの基は置換基を有していてもよい。
G DA is preferably an aromatic hydrocarbon group or a heterocyclic group, more preferably hydrogen directly bonded to a carbon atom or nitrogen atom constituting a ring from a benzene ring, pyridine ring, pyrimidine ring, triazine ring, or carbazole ring. A group consisting of three atoms removed, and these groups may have a substituent.
The substituent that GDA may have is preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, more preferably an alkyl group, A cycloalkyl group, an alkoxy group, or a cycloalkoxy group, more preferably an alkyl group or a cycloalkyl group, and these groups may have a substituent.
 GDAは、好ましくは式(GDA-11)~(GDA-15)で表される基であり、これらの基は置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000041
[式中、
 *は、式(D-A)におけるArDA1、式(D-B)におけるArDA1、式(D-B)におけるArDA2、又は、式(D-B)におけるArDA3との結合を表す。
 **は、式(D-A)におけるArDA2、式(D-B)におけるArDA2、式(D-B)におけるArDA4、又は、式(D-B)におけるArDA6との結合を表す。
 ***は、式(D-A)におけるArDA3、式(D-B)におけるArDA3、式(D-B)におけるArDA5、又は、式(D-B)におけるArDA7との結合を表す。
 RDAは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は更に置換基を有していてもよい。RDAが複数ある場合、それらは同一でも異なっていてもよい。]
GDA is preferably a group represented by formulas (GDA-11) to (GDA-15), and these groups may have a substituent.
Figure JPOXMLDOC01-appb-C000041
[In the formula,
* represents a bond with Ar DA1 in formula (DA), Ar DA1 in formula (DB), Ar DA2 in formula (DB), or Ar DA3 in formula (DB).
** represents a bond with Ar DA2 in formula (DA), Ar DA2 in formula (DB), Ar DA4 in formula (DB), or Ar DA6 in formula (DB) .
*** represents a bond with Ar DA3 in formula (DA), Ar DA3 in formula (DB), Ar DA5 in formula (DB), or Ar DA7 in formula (DB). represent.
R DA represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may further have a substituent. When there are multiple RDAs , they may be the same or different. ]
 RDAは、好ましくは水素原子、アルキル基、シクロアルキル基、アルコキシ基又はシクロアルコキシ基であり、より好ましくは水素原子、アルキル基又はシクロアルキル基であり、これらの基は置換基を有していてもよい。 RDA is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, or a cycloalkoxy group, more preferably a hydrogen atom, an alkyl group, or a cycloalkyl group, and these groups have a substituent. It's okay.
 ArDA1、ArDA2、ArDA3、ArDA4、ArDA5、ArDA6及びArDA7は、好ましくは式(ArDA-1)~(ArDA-6)で表される基である。なお、*は結合位置を表す。
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
[式中、
 RDAは前記と同じ意味を表す。
 RDBは、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。RDBが複数ある場合、それらは同一でも異なっていてもよい。]
Ar DA1 , Ar DA2 , Ar DA3 , Ar DA4 , Ar DA5 , Ar DA6 and Ar DA7 are preferably groups represented by formulas (ArDA-1) to (ArDA-6). Note that * represents the bonding position.
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
[In the formula,
RDA represents the same meaning as above.
R DB represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent. If there are multiple RDBs , they may be the same or different. ]
 RDBは、好ましくはアルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくはアリール基又は1価の複素環基であり、更に好ましくはアリール基である。 R DB is preferably an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, more preferably an aryl group or a monovalent heterocyclic group, and even more preferably an aryl group.
 ArDA1~ArDA7、RDA及びRDBが有していてもよい置換基の例及び好ましい範囲は、GDAが有していてもよい置換基の例及び好ましい範囲と同じである。 Examples and preferred ranges of substituents that Ar DA1 to Ar DA7 , R DA and R DB may have are the same as the examples and preferred ranges of substituents that G DA may have.
 TDAは、好ましくは式(TDA-1)~(TDA-4)で表される基である。なお、*は結合位置を表す。
Figure JPOXMLDOC01-appb-C000044
[式中、RDA及びRDBは前記と同じ意味を表す。]
T DA is preferably a group represented by formulas (TDA-1) to (TDA-4). Note that * represents the bonding position.
Figure JPOXMLDOC01-appb-C000044
[In the formula, R DA and R DB represent the same meanings as above. ]
 式(D-A)で表される基は、好ましくは式(D-A1)~(D-A5)で表される基である。なお、*は結合位置を表す。
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
[式中、
 Rp1、Rp2、Rp3及びRp4は、それぞれ独立に、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基又はハロゲン原子を表す。Rp1、Rp2及びRp4が複数ある場合、それらはそれぞれ同一であっても異なっていてもよい。
 np1は、0~5の整数を表し、np2は0~3の整数を表し、np3は0又は1を表し、np4は0~4の整数を表す。複数あるnp1は、同一でも異なっていてもよい。]
The group represented by formula (DA) is preferably a group represented by formulas (DA1) to (DA5). Note that * represents the bonding position.
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
[In the formula,
R p1 , R p2 , R p3 and R p4 each independently represent an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group or a halogen atom. When there are multiple R p1 , R p2 and R p4 , they may be the same or different.
np1 represents an integer from 0 to 5, np2 represents an integer from 0 to 3, np3 represents 0 or 1, and np4 represents an integer from 0 to 4. A plurality of np1s may be the same or different. ]
 式(D-B)で表される基は、好ましくは式(D-B1)~(D-B3)で表される基である。なお、*は結合位置を表す。
Figure JPOXMLDOC01-appb-C000047
[式中、
 Rp1、Rp2及びRp3は、それぞれ独立に、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基又はハロゲン原子を表す。Rp1及びRp2が複数ある場合、それらはそれぞれ同一でも異なっていてもよい。
 np1は0~5の整数を表し、np2は0~3の整数を表し、np3は0又は1を表す。np1及びnp2が複数ある場合、それらはそれぞれ同一でも異なっていてもよい。]
The group represented by formula (D-B) is preferably a group represented by formulas (D-B1) to (D-B3). Note that * represents the bonding position.
Figure JPOXMLDOC01-appb-C000047
[In the formula,
R p1 , R p2 and R p3 each independently represent an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group or a halogen atom. When there are multiple R p1 and R p2 , they may be the same or different.
np1 represents an integer from 0 to 5, np2 represents an integer from 0 to 3, and np3 represents 0 or 1. When there are a plurality of np1 and np2, they may be the same or different. ]
 np1は、好ましくは0~3の整数であり、より好ましくは1~3の整数であり、更に好ましくは1である。np2は、好ましくは0又は1であり、より好ましくは0である。np3は好ましくは0である。 np1 is preferably an integer of 0 to 3, more preferably an integer of 1 to 3, and even more preferably 1. np2 is preferably 0 or 1, more preferably 0. np3 is preferably 0.
 Rp1、Rp2及びRp3は、好ましくはアルキル基又はシクロアルキル基である。 R p1 , R p2 and R p3 are preferably an alkyl group or a cycloalkyl group.
 式(D-C)で表される基は、好ましくは式(D-C1)~式(D-C4)で表される基である。なお、*は結合位置を表す。
Figure JPOXMLDOC01-appb-C000048
[式中、
 Rp4~Rp6は、それぞれ独立に、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基又はハロゲン原子を表す。Rp4~Rp6が複数ある場合、それらはそれぞれ同一であっても異なっていてもよい。
 np4は、0~4の整数を表し、np5は0~5の整数を表し、np6は0~5の整数を表す。]
The group represented by formula (DC) is preferably a group represented by formula (D-C1) to formula (D-C4). Note that * represents the bonding position.
Figure JPOXMLDOC01-appb-C000048
[In the formula,
R p4 to R p6 each independently represent an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, or a halogen atom. When there is a plurality of R p4 to R p6 , they may be the same or different.
np4 represents an integer from 0 to 4, np5 represents an integer from 0 to 5, and np6 represents an integer from 0 to 5. ]
 np1は、好ましくは0又は1である。np2は、好ましくは0又は1であり、より好ましくは0である。np3は好ましくは0である。np4は、好ましくは0~2の整数である。np5は、好ましくは1~3の整数である。np6は、好ましくは0~2の整数である。 np1 is preferably 0 or 1. np2 is preferably 0 or 1, more preferably 0. np3 is preferably 0. np4 is preferably an integer of 0 to 2. np5 is preferably an integer of 1 to 3. np6 is preferably an integer of 0 to 2.
 Rp4~Rp6は、好ましくはアルキル基又はシクロアルキル基であり、より好ましくはメチル基、エチル基、イソプロピル基、tert-ブチル基、ヘキシル基、2-エチルヘキシル基、シクロヘキシル基又はtert-オクチル基であり、更に好ましくはメチル基、エチル基、イソプロピル基、tert-ブチル基、ヘキシル基、2-エチルヘキシル基又はtert-オクチル基である。 R p4 to R p6 are preferably an alkyl group or a cycloalkyl group, more preferably a methyl group, ethyl group, isopropyl group, tert-butyl group, hexyl group, 2-ethylhexyl group, cyclohexyl group or tert-octyl group. and more preferably a methyl group, ethyl group, isopropyl group, tert-butyl group, hexyl group, 2-ethylhexyl group or tert-octyl group.
<化合物>
 本実施形態の化合物は、式(1)で表される化合物である。本実施形態の化合物は、低分子化合物であってよい。
<Compound>
The compound of this embodiment is a compound represented by formula (1). The compound of this embodiment may be a low molecular compound.
 Arは、好ましくは芳香族炭化水素環であり、より好ましくはベンゼン環、ナフタレン環、アントラセン環、ピレン環、クリセン環又はペリレン環であり、更に好ましくはベンゼン環又はナフタレン環である。 Ar 1 is preferably an aromatic hydrocarbon ring, more preferably a benzene ring, a naphthalene ring, an anthracene ring, a pyrene ring, a chrysene ring, or a perylene ring, and even more preferably a benzene ring or a naphthalene ring.
 環Ar及び環Arは、好ましくは芳香族炭化水素環であり、より好ましくはベンゼン環、ナフタレン環、アントラセン環、ピレン環、クリセン環又はペリレン環であり、更に好ましくはベンゼン環又はナフタレン環である。 Ring Ar 2 and ring Ar 3 are preferably aromatic hydrocarbon rings, more preferably benzene ring, naphthalene ring, anthracene ring, pyrene ring, chrysene ring, or perylene ring, still more preferably benzene ring or naphthalene ring. It is.
 Rは、好ましくは水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、ヒドロキシ基、アリール基、アリールオキシ基、1価の複素環基又は置換アミノ基であり、より好ましくは水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、更に好ましくは水素原子、アルキル基、シクロアルキル基又はアリール基であり、特に好ましくはアルキル基、シクロアルキル基又はアリール基である。 R 1 is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, a hydroxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, or a substituted amino group, and more preferably hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, more preferably a hydrogen atom, an alkyl group, a cycloalkyl group, or an aryl group, and particularly preferably an alkyl group, a cycloalkyl group, or an aryl group. It is the basis.
 Rにおけるアリール基は、フェニル基、ナフチル基、フェナントレニル基、ジヒドロフェナントレニル基、フルオレニル基又はスピロビフルオレニル基であることが好ましく、これらの基は置換基を有していてもよい。 The aryl group in R 1 is preferably a phenyl group, a naphthyl group, a phenanthrenyl group, a dihydrophenanthrenyl group, a fluorenyl group, or a spirobifluorenyl group, even if these groups have a substituent. good.
 Rにおける1価の複素環基は、ピリジル基、ピリミジニル基、トリアジニル基、キノリニル基、イソキノリニル基、ジベンゾフラニル基、ジベンゾチエニル基、カルバゾリル基、アザカルバゾリル基、ジアザカルバゾリル基、フェノキサジニル基又はフェノチアジニル基であることが好ましく、これらの基は置換基を有していてもよい。 The monovalent heterocyclic group in R 1 is a pyridyl group, a pyrimidinyl group, a triazinyl group, a quinolinyl group, an isoquinolinyl group, a dibenzofuranyl group, a dibenzothienyl group, a carbazolyl group, an azacarbazolyl group, a diazacarbazolyl group, a phenoxazinyl group. or a phenothiazinyl group, and these groups may have a substituent.
 Rにおける置換アミノ基において、アミノ基が有する置換基としては、アリール基又は1価の複素環基が好ましく、アリール基がより好ましく、これらの基は更に置換基を有していてもよい。アミノ基が有する置換基におけるアリール基及び1価の複素環基の例及び好ましい範囲は、Rにおけるアリール基及び1価の複素環基の例及び好ましい範囲と同じである。 In the substituted amino group for R 1 , the substituent that the amino group has is preferably an aryl group or a monovalent heterocyclic group, more preferably an aryl group, and these groups may further have a substituent. Examples and preferred ranges of the aryl group and monovalent heterocyclic group in the substituent of the amino group are the same as the examples and preferred ranges of the aryl group and monovalent heterocyclic group in R 1 .
 Lは、好ましくは直接結合、-O-、-S-、アリーレン基又は2価の複素環基であり、より好ましくは直接結合、-O-又は-S-であり、更に好ましくは直接結合である。なお、Lが直接結合とは、Arと環Arとが直接結合することを意味する。 L is preferably a direct bond, -O-, -S-, an arylene group or a divalent heterocyclic group, more preferably a direct bond, -O- or -S-, still more preferably a direct bond. be. In addition, L is directly bonded means that Ar 1 and ring Ar 2 are directly bonded.
 R11の例及び好ましい範囲は、後述のR2Lの例及び好ましい範囲と同じである。R12の例及び好ましい範囲は、後述のR1Lの例及び好ましい範囲と同じである。 The examples and preferred ranges of R 11 are the same as the examples and preferred ranges of R 2L described below. Examples and preferred ranges of R 12 are the same as those of R 1L described below.
 Ar、環Ar、環Ar、Rが有していてもよい置換基としては、下記式(1-T)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000049
[式中、R1Tは、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アリール基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。]
The substituent that Ar 1 , ring Ar 2 , ring Ar 3 , and R 1 may have is preferably a group represented by the following formula (1-T).
Figure JPOXMLDOC01-appb-C000049
[In the formula, R 1T represents an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryloxy group, an aryl group, a monovalent heterocyclic group, a substituted amino group, or a halogen atom; It may have a group. ]
 R1Tが有していてもよい置換基は、好ましくは、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子であり、より好ましくは、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であり、更に好ましくは、アルキル基、シクロアルキル基又はアリール基であり、これらの基は更に置換基を有していてもよい。 The substituent that R 1T may have is preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group, or a halogen atom. and more preferably an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, or a substituted amino group, and even more preferably an alkyl group, a cycloalkyl group, or an aryl group, and these groups are It may further have a substituent.
 R1Tが有していてもよい置換基が更に有していてもよい置換基としては、好ましくは、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子であり、より好ましくは、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であり、更に好ましくは、アルキル基又はシクロアルキル基であり、これらの基は更に置換基を有していてもよい。 The substituents that R 1T may further include are preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, and a monovalent group. A heterocyclic group, a substituted amino group, or a halogen atom, more preferably an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, or a substituted amino group, and still more preferably an alkyl group or a cycloalkyl group. These groups may further have a substituent.
 R1T又はR1Tの置換基におけるアリール基は、フェニル基、ナフチル基、フェナントレニル基、ジヒドロフェナントレニル基、フルオレニル基又はスピロビフルオレニル基であることが好ましく、これらの基は置換基を有していてもよい。 The aryl group in the substituent of R 1T or R 1T is preferably a phenyl group, a naphthyl group, a phenanthrenyl group, a dihydrophenanthrenyl group, a fluorenyl group, or a spirobifluorenyl group, and these groups are It may have.
 R1T又はR1Tの置換基における1価の複素環基は、ピリジル基、ピリミジニル基、トリアジニル基、キノリニル基、イソキノリニル基、ジベンゾフラニル基、ジベンゾチエニル基、カルバゾリル基、アザカルバゾリル基、ジアザカルバゾリル基、フェノキサジニル基又はフェノチアジニル基であることが好ましく、これらの基は置換基を有していてもよい。 The monovalent heterocyclic group in R 1T or the substituent of R 1T is a pyridyl group, pyrimidinyl group, triazinyl group, quinolinyl group, isoquinolinyl group, dibenzofuranyl group, dibenzothienyl group, carbazolyl group, azacarbazolyl group, diazacarba A zolyl group, a phenoxazinyl group or a phenothiazinyl group is preferable, and these groups may have a substituent.
 R1T又はR1Tの置換基における置換アミノ基において、アミノ基が有する置換基としては、アリール基又は1価の複素環基が好ましく、アリール基がより好ましく、これらの基は更に置換基を有していてもよい。アミノ基が有する置換基におけるアリール基及び1価の複素環基の例及び好ましい範囲は、R1Tにおけるアリール基及び1価の複素環基の例及び好ましい範囲と同じである。 In the substituted amino group in R 1T or the substituent of R 1T , the substituent that the amino group has is preferably an aryl group or a monovalent heterocyclic group, more preferably an aryl group, and these groups further have a substituent. You may do so. Examples and preferred ranges of the aryl group and monovalent heterocyclic group in the substituent of the amino group are the same as the examples and preferred ranges of the aryl group and monovalent heterocyclic group in R 1T .
 R1Tは、好ましくは、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であり、より好ましくは、アルキル基、シクロアルキル基、式(D-A)~式(D-C)で表される基又は置換アミノ基であり、これらの基は置換基を有していてもよい。 R 1T is preferably an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, or a substituted amino group, and more preferably an alkyl group, a cycloalkyl group, or one of formulas (DA) to ( A group represented by DC) or a substituted amino group, and these groups may have a substituent.
 環Arは、好ましくは芳香族炭化水素環であり、より好ましくはベンゼン環、ナフタレン環、アントラセン環、ピレン環、クリセン環又はペリレン環であり、更に好ましくはベンゼン環又はナフタレン環である。 Ring Ar 4 is preferably an aromatic hydrocarbon ring, more preferably a benzene ring, a naphthalene ring, an anthracene ring, a pyrene ring, a chrysene ring, or a perylene ring, and even more preferably a benzene ring or a naphthalene ring.
 環Arが有していてもよい置換基の好ましい範囲は、前述した、Ar、環Ar、環Ar、Rが有していてもよい置換基の好ましい範囲と同じである。 The preferred range of the substituent that ring Ar 4 may have is the same as the preferred range of the substituent that Ar 1 , ring Ar 2 , ring Ar 3 , and R 1 may have, as described above.
 Lは、-N(R1L)-で表される基であることが好ましい。 L 1 is preferably a group represented by -N(R 1L )-.
 R1Lは、好ましくは、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくは、水素原子、アルキル基、シクロアルキル基又はアリール基である。 R 1L is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and more preferably a hydrogen atom, an alkyl group, a cycloalkyl group, or an aryl group.
 R2Lは、好ましくは、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくは、水素原子、アルキル基、シクロアルキル基又はアリール基である。 R 2L is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and more preferably a hydrogen atom, an alkyl group, a cycloalkyl group, or an aryl group.
 R1L、R2Lが有していてもよい置換基の好ましい範囲は、前述した、Ar、環Ar、環Ar、Rが有していてもよい置換基の好ましい範囲と同じである。 The preferable range of the substituents that R 1L and R 2L may have is the same as the above-mentioned preferable range of the substituents that Ar 1 , ring Ar 2 , ring Ar 3 , and R 1 may have. be.
 式(2)で表される環骨格が環Arと縮合している場合、R1L、R2L、R1Lが有していてもよい置換基又はR2Lが有していてもよい置換基は、環Ar、環Ar、環Arが有していてもよい置換基又は環Arが有していてもよい置換基と結合して環を形成していることが好ましい。 When the ring skeleton represented by formula (2) is fused with ring Ar 2 , a substituent that R 1L , R 2L , R 1L may have or a substituent that R 2L may have is preferably bonded to ring Ar 2 , ring Ar 4 , a substituent that ring Ar 2 may have, or a substituent that ring Ar 4 may have to form a ring.
 式(2)で表される環骨格が環Arと縮合している場合、R1L、R2L、R1Lが有していてもよい置換基又はR2Lが有していてもよい置換基は、環Ar、環Ar、環Arが有していてもよい置換基又は環Arが有していてもよい置換基と結合して環を形成していることが好ましい。 When the ring skeleton represented by formula (2) is fused with ring Ar 3 , a substituent that R 1L , R 2L , R 1L may have or a substituent that R 2L may have is preferably bonded to ring Ar 3 , ring Ar 4 , a substituent that ring Ar 3 may have, or a substituent that ring Ar 4 may have to form a ring.
 式(1)で表される化合物は、式(1-A)で表される化合物であることが好ましい。 The compound represented by formula (1) is preferably a compound represented by formula (1-A).
 Ar1Aは、好ましくは芳香族炭化水素環であり、より好ましくはベンゼン環、ナフタレン環、アントラセン環、ピレン環、クリセン環又はペリレン環であり、更に好ましくはベンゼン環又はナフタレン環である。 Ar 1A is preferably an aromatic hydrocarbon ring, more preferably a benzene ring, a naphthalene ring, an anthracene ring, a pyrene ring, a chrysene ring, or a perylene ring, and even more preferably a benzene ring or a naphthalene ring.
 Ar1Aが有していてもよい置換基の好ましい範囲は、前述した、Ar、環Ar、環Ar、Rが有していてもよい置換基の好ましい範囲と同じである。 The preferred range of the substituent that Ar 1A may have is the same as the preferred range of the substituent that Ar 1 , ring Ar 2 , ring Ar 3 , and R 1 may have, as described above.
 式(1)で表される化合物は、式(1-B)で表される化合物であることがより好ましい。 The compound represented by formula (1) is more preferably a compound represented by formula (1-B).
 Xは、炭素原子であることが好ましい。 It is preferable that X is a carbon atom.
 Xが炭素原子である場合、Xは、-R1Xと結合しているか、隣接する炭素原子のXとともに式(1-B1)で表される環骨格と結合して環を形成しているか、のいずれかであることが好ましい。 When X is a carbon atom, X is bonded to -R 1X , or is bonded to the ring skeleton represented by formula (1-B1) with X of the adjacent carbon atom to form a ring, It is preferable that it is either.
 R1Xの好ましい範囲は、前述した、Ar、環Ar、環Ar、Rが有していてもよい置換基の好ましい範囲と同じである。 The preferred range of R 1X is the same as the preferred range of the substituents that Ar 1 , ring Ar 2 , ring Ar 3 , and R 1 may have, as described above.
 Yは、炭素原子であることが好ましい。 It is preferable that Y is a carbon atom.
 Yが炭素原子である場合、Yは、-R1Yと結合しているか、隣接する炭素原子のYとともに式(1-B2)で表される環骨格と結合して環を形成しているか、隣接する炭素原子のYとともに式(2)で表される環骨格と結合して環を形成しているか、のいずれかであることが好ましい。 When Y is a carbon atom, Y is bonded to -R 1Y , or is bonded to the ring skeleton represented by formula (1-B2) together with Y of the adjacent carbon atom to form a ring, It is preferable that it is either bonded to the ring skeleton represented by formula (2) together with Y of the adjacent carbon atom to form a ring.
 R1Yの好ましい範囲は、前述した、Ar、環Ar、環Ar、Rが有していてもよい置換基の好ましい範囲と同じである。 The preferred range of R 1Y is the same as the preferred range of the substituents that Ar 1 , ring Ar 2 , ring Ar 3 , and R 1 may have, as described above.
 式(1-B)で表される化合物において、式(2)で表される環骨格が隣接する2つのXと結合している場合、当該式(2)におけるR1L、R2L、R1Lが有していてもよい置換基又はR2Lが有していてもよい置換基は、Lの2原子隣りに位置するX上の基(R1X)、又は、Lの2原子隣りに位置する環Rを構成する原子上の基(例えば、式(2-A)におけるZ上のR1Z)と結合して環を形成していることが好ましい。 In the compound represented by formula (1-B), when the ring skeleton represented by formula (2) is bonded to two adjacent Xs, R 1L , R 2L , R 1L in formula (2) The substituent that may have or the substituent that R 2L may have is a group (R 1X ) on X located next to two atoms of L 1 or a group (R 1X ) located next to two atoms of L 1 It is preferable that the ring is bonded to a group on an atom constituting the ring R 4 (for example, R 1Z on Z in formula (2-A)) to form a ring.
 式(1-B)で表される化合物において、式(2)で表される環骨格が隣接する2つのYと結合している場合、当該式(2)におけるR1L、R2L、R1Lが有していてもよい置換基又はR2Lが有していてもよい置換基は、Lの2原子隣りに位置するY上の基(R1Y)、又は、Lの2原子隣りに位置する環Rを構成する原子上の基(例えば、式(2-A)におけるZ上のR1Z)と結合して環を形成していることが好ましい。 In the compound represented by formula (1-B), when the ring skeleton represented by formula (2) is bonded to two adjacent Y, R 1L , R 2L , R 1L in formula (2) The substituent that may have or the substituent that R 2L may have is a group (R 1Y ) on Y located next to two atoms of L 1 or a group (R 1Y ) located next to two atoms of L 1 It is preferable that the ring is bonded to a group on an atom constituting the ring R 4 (for example, R 1Z on Z in formula (2-A)) to form a ring.
 式(2)で表される環骨格は、式(2-A)で表される環骨格であることが好ましい。 The ring skeleton represented by formula (2) is preferably a ring skeleton represented by formula (2-A).
 L1Aは、-N(R1AL)-であることが好ましい。 L 1A is preferably -N(R 1AL )-.
 R1ALは、好ましくは、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくは、水素原子、アルキル基、シクロアルキル基又はアリール基である。 R 1AL is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and more preferably a hydrogen atom, an alkyl group, a cycloalkyl group, or an aryl group.
 R2ALは、好ましくは、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくは、水素原子、アルキル基、シクロアルキル基又はアリール基である。 R 2AL is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and more preferably a hydrogen atom, an alkyl group, a cycloalkyl group, or an aryl group.
 R1AL、R2ALが有していてもよい置換基の好ましい範囲は、前述した、Ar、環Ar、環Ar、Rが有していてもよい置換基の好ましい範囲と同じである。 The preferred range of the substituents that R 1AL and R 2AL may have is the same as the preferred range of the substituents that Ar 1 , ring Ar 2 , ring Ar 3 , and R 1 may have, as described above. be.
 式(2-A)で表される環骨格が環Arと縮合している場合、R1AL、R2AL、R1ALが有していてもよい置換基又はR2ALが有していてもよい置換基は、L1Aの2原子隣りに位置する環Arを構成する原子上の基(例えば、式(1-B)におけるY上のR1Y)、又は、L1Aの2原子隣りに位置するZ上の基(R1Z)と結合して環を形成していることが好ましい。 When the ring skeleton represented by formula (2-A) is fused with ring Ar 2 , R 1AL , R 2AL , a substituent that R 1AL may have or R 2AL may have The substituent is a group on an atom constituting ring Ar 2 located next to two atoms of L 1A (for example, R 1Y on Y in formula (1-B)), or a group located next to two atoms of L 1A . It is preferable that the group (R 1Z ) on Z be bonded to form a ring.
 式(2-A)で表される環骨格が環Arと縮合している場合、R1AL、R2AL、R1ALが有していてもよい置換基又はR2ALが有していてもよい置換基は、L1Aの2原子隣りに位置する環Arを構成する原子上の基(例えば、式(1-B)におけるY上のR1Y)、又は、L1Aの2原子隣りに位置するZ上の基(R1Z)と結合して環を形成していることが好ましい。 When the ring skeleton represented by formula (2-A) is fused with ring Ar 3 , R 1AL , R 2AL , a substituent that R 1AL may have or R 2AL may have The substituent is a group on an atom constituting ring Ar 3 located next to two atoms of L 1A (for example, R 1Y on Y in formula (1-B)), or a group located next to two atoms of L 1A . It is preferable that the group (R 1Z ) on Z be bonded to form a ring.
 Zは、炭素原子であることが好ましい。 It is preferable that Z is a carbon atom.
 Zが炭素原子である場合、Zは、-R1Zと結合しているか、隣接する炭素原子のZとともに式(2-A1)で表される環骨格と結合して環を形成しているか、のいずれかであることが好ましい。 When Z is a carbon atom, Z is bonded to -R 1Z , or is bonded to the ring skeleton represented by formula (2-A1) with Z of the adjacent carbon atom to form a ring, It is preferable that it is either.
 R1Zの好ましい範囲は、前述した、Ar、環Ar、環Ar、Rが有していてもよい置換基の好ましい範囲と同じである。 The preferred range of R 1Z is the same as the preferred range of the substituents that Ar 1 , ring Ar 2 , ring Ar 3 , and R 1 may have, as described above.
 式(1)で表される化合物は、式(3-A)、(3-B)、(3-C)、(3-D)、(3-E)、(3-F)、(3-G)、(3-H)、(3-I)又は(3-J)で表される化合物であることがより好ましい。 The compound represented by formula (1) has formulas (3-A), (3-B), (3-C), (3-D), (3-E), (3-F), (3 -G), (3-H), (3-I) or (3-J) are more preferred.
 Wは、炭素原子であることが好ましい。 It is preferable that W is a carbon atom.
 Wが炭素原子である場合、Wは、-R1Wと結合しているか、隣接する炭素原子のWとともに式(3-1)で表される環骨格と結合して環を形成しているか、のいずれかであり、-R1Wと結合していることが好ましい。 When W is a carbon atom, W is bonded to -R 1W , or is bonded to the ring skeleton represented by formula (3-1) together with W of an adjacent carbon atom to form a ring, and is preferably bonded to -R 1W .
 R1Wの好ましい範囲は、前述した、Ar、環Ar、環Ar、Rが有していてもよい置換基の好ましい範囲と同じである。 The preferred range of R 1W is the same as the preferred range of the substituents that Ar 1 , ring Ar 2 , ring Ar 3 , and R 1 may have, as described above.
 R3Aは、好ましくは水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、ヒドロキシ基、アリール基、アリールオキシ基、1価の複素環基又は置換アミノ基であり、より好ましくは水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、更に好ましくは水素原子、アルキル基、シクロアルキル基又はアリール基であり、特に好ましくはアルキル基、シクロアルキル基又はアリール基である。 R3A is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, a hydroxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, or a substituted amino group, and more preferably hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, more preferably a hydrogen atom, an alkyl group, a cycloalkyl group, or an aryl group, and particularly preferably an alkyl group, a cycloalkyl group, or an aryl group. It is the basis.
 R3Aが有していてもよい置換基の好ましい範囲は、前述した、Ar、環Ar、環Ar、Rが有していてもよい置換基の好ましい範囲と同じである。 The preferable range of the substituent that R 3A may have is the same as the above-mentioned preferable range of the substituent that Ar 1 , ring Ar 2 , ring Ar 3 , and R 1 may have.
 L3Aは、-N(R31L)-であることが好ましい。 L 3A is preferably -N(R 31L )-.
 R31Lは、好ましくは、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくは、水素原子、アルキル基、シクロアルキル基又はアリール基である。 R 31L is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and more preferably a hydrogen atom, an alkyl group, a cycloalkyl group, or an aryl group.
 R32Lは、好ましくは、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくは、水素原子、アルキル基、シクロアルキル基又はアリール基である。 R 32L is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and more preferably a hydrogen atom, an alkyl group, a cycloalkyl group, or an aryl group.
 R31Lが有していてもよい置換基の好ましい範囲は、前述した、Ar、環Ar、環Ar、Rが有していてもよい置換基の好ましい範囲と同じである。 The preferable range of the substituent that R 31L may have is the same as the above-mentioned preferable range of the substituent that Ar 1 , ring Ar 2 , ring Ar 3 , and R 1 may have.
 R32Lが有していてもよい置換基の好ましい範囲は、前述した、Ar、環Ar、環Ar、Rが有していてもよい置換基の好ましい範囲と同じである。 The preferable range of the substituent that R 32L may have is the same as the above-mentioned preferable range of the substituent that Ar 1 , ring Ar 2 , ring Ar 3 , and R 1 may have.
 R31L、R32L、R31Lが有していてよい置換基及びR32Lが有していてよい置換基は、L3Aの2原子隣りに位置する炭素原子であるW3A上の基(R1W)と結合して環を形成していることが好ましい。 The substituents that R 31L , R 32L , and R 31L may have and the substituents that R 32L may have include a group on W 3A that is a carbon atom located two atoms adjacent to L 3A (R 1W ) is preferably bonded to form a ring.
 本実施形態の化合物としては、例えば、式(1-1)~(1-125)で表される化合物が挙げられる。 Examples of the compounds of this embodiment include compounds represented by formulas (1-1) to (1-125).
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000069
<高分子化合物>
 本実施形態の高分子化合物は、上記化合物から水素原子を1個以上除いた基を有する構成単位(以下、構成単位(A)ともいう。)を含む。
<High molecular compound>
The polymer compound of this embodiment includes a structural unit (hereinafter also referred to as structural unit (A)) having a group obtained by removing one or more hydrogen atoms from the above compound.
 構成単位(A)は、本実施形態の高分子化合物の合成が容易なので、好ましくは、上記化合物から水素原子1個以上5個以下を除いた基を有する構成単位であり、より好ましくは、上記化合物から水素原子1個以上3個以下を除いた基を有する構成単位であり、更に好ましくは、上記化合物から水素原子1個又は2個を除いた基を有する構成単位である。 The structural unit (A) is preferably a structural unit having a group obtained by removing 1 to 5 hydrogen atoms from the above compound, and more preferably the above compound, since the polymer compound of this embodiment can be easily synthesized. A structural unit having a group obtained by removing one or more and three or less hydrogen atoms from a compound, and more preferably a structural unit having a group obtained by removing one or two hydrogen atoms from the above compound.
 構成単位(A)は、本実施形態の高分子化合物の合成が容易なので、好ましくは、式(AP-1)、式(AP-2)又は式(AP-3)で表される構成単位であり、より好ましくは、式(AP-1)又は式(AP-2)で表される構成単位であり、更に好ましくは式(AP-2)で表される構成単位である。
Figure JPOXMLDOC01-appb-C000070
[式中、
 MAP1は、上記化合物から水素原子1個を除いた基を表す。
 MAP2は、上記化合物から水素原子2個を除いた基を表す。
 MAP3は、上記化合物から水素原子3個を除いた基を表す。
 LAP1は、それぞれ独立に、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-N(RAP1)-で表される基、酸素原子又は硫黄原子を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
 RAP1は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。LAP1が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。
 nAP1は、0以上10以下の整数を表す。
 ArAP1は、炭化水素基又は複素環基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。]
The structural unit (A) is preferably a structural unit represented by the formula (AP-1), the formula (AP-2), or the formula (AP-3), since the polymer compound of the present embodiment can be easily synthesized. More preferably, it is a structural unit represented by formula (AP-1) or formula (AP-2), and still more preferably a structural unit represented by formula (AP-2).
Figure JPOXMLDOC01-appb-C000070
[In the formula,
M AP1 represents a group obtained by removing one hydrogen atom from the above compound.
MAP2 represents a group obtained by removing two hydrogen atoms from the above compound.
M AP3 represents a group obtained by removing three hydrogen atoms from the above compound.
L AP1 each independently represents an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, a group represented by -N(R AP1 )-, an oxygen atom, or a sulfur atom; It may have a substituent. When a plurality of substituents exist, they may be the same or different, and may be bonded to each other to form a ring with the atoms to which they are bonded.
R AP1 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent. When a plurality of substituents exist, they may be the same or different, and may be bonded to each other to form a ring with the atoms to which they are bonded. When a plurality of L AP1s exist, they may be the same or different.
n AP1 represents an integer from 0 to 10.
Ar AP1 represents a hydrocarbon group or a heterocyclic group, and these groups may have a substituent. When a plurality of substituents exist, they may be the same or different, and may be bonded to each other to form a ring with the atoms to which they are bonded. ]
 LAP1は、アルキレン基、シクロアルキレン基、アリーレン基又は2価の複素環基であることが好ましく、アルキレン基又はアリーレン基であることがより好ましく、アリーレン基であることが更に好ましく、これらの基は置換基を有していてもよい。
 LAP1におけるアリーレン基及び2価の複素環基の例及び好ましい範囲は、それぞれ、後述のArY1におけるアリーレン基及び2価の複素環基の例及び好ましい範囲と同じである。LAP1におけるアルキレン基としては、好ましくは、メチレン基、エチレン基又はプロピレン基であり、より好ましくはメチレン基であり、これらの基は置換基を有していてもよい。
L AP1 is preferably an alkylene group, a cycloalkylene group, an arylene group, or a divalent heterocyclic group, more preferably an alkylene group or an arylene group, even more preferably an arylene group, and these groups may have a substituent.
Examples and preferred ranges of the arylene group and divalent heterocyclic group in L AP1 are respectively the same as the examples and preferred ranges of the arylene group and divalent heterocyclic group in Ar Y1 described below. The alkylene group in L AP1 is preferably a methylene group, an ethylene group or a propylene group, more preferably a methylene group, and these groups may have a substituent.
 RAP1の例及び好ましい範囲は、後述のRX1~RX3の例及び好ましい範囲と同じである。 Examples and preferred ranges of R AP1 are the same as examples and preferred ranges of R X1 to R X3 described below.
 nAP1は、好ましくは0~5の整数であり、好ましくは0~3の整数であり、より好ましくは0又は1であり、更に好ましくは0である。 n AP1 is preferably an integer of 0 to 5, preferably an integer of 0 to 3, more preferably 0 or 1, and even more preferably 0.
 ArAP1における炭化水素基としては、置換基を有していてもよい芳香族炭化水素基及び置換基を有していてもよい脂肪族炭化水素基が挙げられる。ArAP1における炭化水素基は、これらの基が複数結合した基を含む。
 ArAP1において、脂肪族炭化水素基としては、アルキレン基又はシクロアルキレン基から水素原子nAP1個を除いた基が挙げられ、好ましくは、アルキレン基から水素原子nAP1個を除いた基であり、これらの基は置換基を有していてもよい。このアルキレン基の例及び好ましい範囲としては、後述のLH1におけるアルキレン基の例及び好ましい範囲が挙げられる。
 ArAP1において、芳香族炭化水素基としては、アリーレン基から水素原子nAP1個を除いた基が挙げられ、この基は置換基を有していてもよい。このアリーレン基の例及び好ましい範囲としては、後述のArY1におけるアリーレン基の例及び好ましい範囲が挙げられる。
 ArAP1における複素環基としては、2価の複素環基から水素原子nAP1個を除いた基が挙げられ、この基は置換基を有していてもよい。この2価の複素環基の例及び好ましい範囲としては、後述のArY1における2価の複素環基の例及び好ましい範囲が挙げられる。
Examples of the hydrocarbon group in Ar AP1 include an aromatic hydrocarbon group that may have a substituent and an aliphatic hydrocarbon group that may have a substituent. The hydrocarbon group in Ar AP1 includes a group in which a plurality of these groups are bonded.
In Ar AP1 , the aliphatic hydrocarbon group includes a group obtained by removing one hydrogen atom n AP from an alkylene group or a cycloalkylene group, preferably a group obtained by removing one hydrogen atom n AP from an alkylene group, These groups may have a substituent. Examples and preferred ranges of this alkylene group include the examples and preferred ranges of the alkylene group in L H1 described below.
In Ar AP1 , examples of the aromatic hydrocarbon group include a group obtained by removing one hydrogen atom n AP from an arylene group, and this group may have a substituent. Examples and preferred ranges of this arylene group include the examples and preferred ranges of the arylene group in Ar Y1 described below.
Examples of the heterocyclic group in Ar AP1 include a group obtained by removing one hydrogen atom n AP from a divalent heterocyclic group, and this group may have a substituent. Examples and preferred ranges of this divalent heterocyclic group include the examples and preferred ranges of the divalent heterocyclic group in Ar Y1 described below.
 LAP1及びArAP1が有していてもよい置換基の例及び好ましい例は、後述のArY1で表される基が有してもよい置換基の例及び好ましい範囲と同じである。 Examples and preferred examples of substituents that L AP1 and Ar AP1 may have are the same as examples and preferred ranges of substituents that the group represented by Ar Y1 described below may have.
 式(A)で表される構成単位としては、例えば、式(1-201)~式(1-215)で表される構成単位が挙げられる。
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Examples of the structural unit represented by formula (A) include structural units represented by formulas (1-201) to (1-215).
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
 本実施形態の高分子化合物は、構成単位(A)を1種のみ含むものであってよく、2種以上含むものであってもよい。 The polymer compound of this embodiment may contain only one type of structural unit (A), or may contain two or more types.
 構成単位(A)の合計量は、高分子化合物が有する構成単位の合計量に対して、好ましくは0.1~50モル%であり、より好ましくは0.3~20モル%であり、更に好ましくは0.5~10モル%である。 The total amount of structural units (A) is preferably 0.1 to 50 mol%, more preferably 0.3 to 20 mol%, and further Preferably it is 0.5 to 10 mol%.
 本実施形態の高分子化合物は、構成単位(A)以外の構成単位を更に含んでいてもよい。 The polymer compound of this embodiment may further contain structural units other than the structural unit (A).
 本実施形態の高分子化合物は、後述する式(Y)で表される構成単位(以下、構成単位(Y)ともいう。)を更に含むことが好ましい。 It is preferable that the polymer compound of the present embodiment further includes a structural unit represented by the formula (Y) described below (hereinafter also referred to as structural unit (Y)).
 本実施形態の高分子化合物が含む構成単位(Y)の例及び好ましい範囲は、後述する高分子ホストが含む構成単位(Y)の例及び好ましい範囲と同じである。 Examples and preferred ranges of the structural unit (Y) contained in the polymer compound of this embodiment are the same as examples and preferred ranges of the structural unit (Y) contained in the polymer host described below.
 本実施形態の高分子化合物が含む構成単位(Y)の含有量は、ArY1がアリーレン基である場合、発光素子の輝度寿命がより優れるので、高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.5~80モル%であり、より好ましくは30~60モル%である。 The content of the structural unit (Y) contained in the polymer compound of this embodiment is determined based on the total amount of structural units contained in the polymer compound, since when Ar Y1 is an arylene group, the luminance life of the light emitting element is better. On the other hand, it is preferably 0.5 to 80 mol%, more preferably 30 to 60 mol%.
 本実施形態の高分子化合物が含む構成単位(Y)の含有量は、ArY1が2価の複素環基、又は、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基である場合、発光素子の電荷輸送性が優れるので、高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.5~40モル%であり、より好ましくは3~30モル%である。 The content of the structural unit (Y) contained in the polymer compound of this embodiment is such that Ar Y1 is a divalent heterocyclic group, or at least one arylene group and at least one divalent heterocyclic group. When it is a directly bonded divalent group, the charge transport property of the light emitting device is excellent, so it is preferably 0.5 to 40 mol%, more preferably 0.5 to 40 mol%, based on the total amount of structural units contained in the polymer compound. is 3 to 30 mol%.
 本実施形態の高分子化合物は、構成単位(Y)を1種のみ含むものであってよく、2種以上含むものであってもよい。 The polymer compound of this embodiment may contain only one type of structural unit (Y), or may contain two or more types.
 本実施形態の高分子化合物は、正孔輸送性が優れるので、後述する式(X)で表される構成単位(以下、構成単位(X)ともいう。)を更に含むことが好ましい。 Since the polymer compound of the present embodiment has excellent hole transport properties, it is preferable that the polymer compound further contains a structural unit represented by formula (X) described below (hereinafter also referred to as structural unit (X)).
 本実施形態の高分子化合物が含む構成単位(X)の例及び好ましい範囲は、後述する高分子ホストが含む構成単位(X)の例及び好ましい範囲と同じである。 Examples and preferred ranges of the structural unit (X) contained in the polymer compound of this embodiment are the same as examples and preferred ranges of the structural unit (X) contained in the polymer host described below.
 本実施形態の高分子化合物は、構成単位(X)を1種のみ含むものであってよく、2種以上含むものであってもよい。 The polymer compound of this embodiment may contain only one type of structural unit (X), or may contain two or more types.
 本実施形態の高分子化合物としては、例えば、表1に示す高分子化合物P-1~P-3が挙げられる。ここで、式(1-P)とは、式(1)で表される化合物から水素原子1個以上を除いた基を有する構成単位(構成単位(A))を意味し、式(X)とは、式(X)で表される構成単位を意味し、式(Y)とは、式(Y)で表される構成単位を意味し、「その他」とは、式(1-P)、式(X)及び式(Y)以外の構成単位を意味する。 Examples of the polymer compounds of this embodiment include polymer compounds P-1 to P-3 shown in Table 1. Here, formula (1-P) means a structural unit (structural unit (A)) having a group obtained by removing one or more hydrogen atoms from the compound represented by formula (1), and formula (X) means the structural unit represented by formula (X), formula (Y) means the structural unit represented by formula (Y), and "other" means the structural unit represented by formula (1-P) , means a structural unit other than formula (X) and formula (Y).
Figure JPOXMLDOC01-appb-T000077
[表中、p、q、r及びsは、各構成単位のモル比率を表す。p+q+r+s=100であり、かつ、70≦p+q+r≦100である。]
Figure JPOXMLDOC01-appb-T000077
[In the table, p, q, r and s represent the molar ratio of each structural unit. p+q+r+s=100, and 70≦p+q+r≦100. ]
 高分子化合物P-1~P-3における、式(1-P)、式(Y)及び式(X)の構成単位の例及び好ましい範囲は、上記のとおりである。 Examples and preferred ranges of the structural units of formula (1-P), formula (Y), and formula (X) in polymer compounds P-1 to P-3 are as described above.
 本実施形態の高分子化合物の末端基は、重合活性基がそのまま残っていると、高分子化合物を発光素子の作製に用いた場合に発光特性及び輝度寿命が低下する可能性があるので、好ましくは安定な基である。この末端基としては、好ましくは主鎖と共役結合している基であり、例えば、炭素-炭素結合を介して高分子化合物の主鎖と結合するアリール基又は1価の複素環基が挙げられる。 The terminal group of the polymer compound of this embodiment is preferable because if the polymerization active group remains as it is, the luminescence characteristics and brightness life may deteriorate when the polymer compound is used to fabricate a light emitting device. is a stable group. This terminal group is preferably a group that is conjugated to the main chain, such as an aryl group or a monovalent heterocyclic group that is bonded to the main chain of the polymer compound via a carbon-carbon bond. .
 本実施形態の高分子化合物は、ブロック共重合体、ランダム共重合体、交互共重合体、グラフト共重合体のいずれであってもよいし、その他の態様であってもよいが、複数種の原料モノマーを共重合してなる共重合体であることが好ましい。 The polymer compound of this embodiment may be any of a block copolymer, a random copolymer, an alternating copolymer, a graft copolymer, or may be of any other form; A copolymer formed by copolymerizing raw material monomers is preferable.
<化合物の製造方法>
 次に、本実施形態の化合物の製造方法について説明する。
<Method for producing compound>
Next, a method for producing the compound of this embodiment will be explained.
 本実施形態の化合物の製造方法においては、必要に応じて、下記式(M-1)~(M-11)の官能基変換反応を行ってもよい。 In the method for producing the compound of the present embodiment, functional group conversion reactions of the following formulas (M-1) to (M-11) may be performed as necessary.
 本実施形態の化合物は、例えば、式(M-1)で表される化合物と、式(M-2)で表される化合物と、を反応させる工程Aを含む方法により、製造することができる。
(工程A)
Figure JPOXMLDOC01-appb-C000078
[式中、
 Ar、Ar、Ar及びLは、前記と同じ意味を表す。
 Rは、前記と同じ意味を表す(但し、水素原子は除く)。
 MM1は、リチウム原子、又は、Mg-XM2を表す。
 XM1は、酸からプロトン(H)を1つ除いてなる1価のアニオンを表す。
 XM2は、アルキルスルホニルオキシ基、シクロアルキルスルホニルオキシ基、アリールスルホニルオキシ基、塩素原子、臭素原子又はヨウ素原子を表し、これらの基は置換基を有していてもよい。]
The compound of this embodiment can be produced, for example, by a method including step A of reacting a compound represented by formula (M-1) and a compound represented by formula (M-2). .
(Process A)
Figure JPOXMLDOC01-appb-C000078
[In the formula,
Ar 1 , Ar 2 , Ar 3 and L have the same meanings as above.
R 1 represents the same meaning as above (however, hydrogen atoms are excluded).
M M1 represents a lithium atom or Mg-X M2 .
X M1 represents a monovalent anion obtained by removing one proton (H + ) from an acid.
X M2 represents an alkylsulfonyloxy group, a cycloalkylsulfonyloxy group, an arylsulfonyloxy group, a chlorine atom, a bromine atom, or an iodine atom, and these groups may have a substituent. ]
 XM1における酸は、例えば、アルキルスルホン酸、シクロアルキルスルホン酸、アリールスルホン酸、塩酸、臭化水素酸、ヨウ化水素酸等であってよく、これらの酸は置換基を有していてもよい。 The acid in X M1 may be, for example, alkylsulfonic acid, cycloalkylsulfonic acid, arylsulfonic acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, etc., and these acids may have substituents. good.
 アルキルスルホン酸としては、メタンスルホン酸、エタンスルホン酸、トリフルオロメタンスルホン酸等が挙げられる。アリールスルホン酸としては、p-トルエンスルホン酸等が挙げられる。 Examples of the alkylsulfonic acid include methanesulfonic acid, ethanesulfonic acid, trifluoromethanesulfonic acid, and the like. Examples of the arylsulfonic acid include p-toluenesulfonic acid and the like.
 MM1は、Mg-XM2であることが好ましい。 Preferably, M M1 is Mg-X M2 .
 XM2において、アルキルスルホニルオキシ基としては、メタンスルホニルオキシ基、エタンスルホニルオキシ基、トリフルオロメタンスルホニルオキシ基等が挙げられる。アリールスルホニルオキシ基としては、p-トルエンスルホニルオキシ基等が挙げられる。 In X M2 , examples of the alkylsulfonyloxy group include a methanesulfonyloxy group, an ethanesulfonyloxy group, and a trifluoromethanesulfonyloxy group. Examples of the arylsulfonyloxy group include p-toluenesulfonyloxy group.
 XM2は、塩素原子、臭素原子又はヨウ素原子であることが好ましい。 Preferably, X M2 is a chlorine atom, a bromine atom, or an iodine atom.
 工程Aは、通常、溶媒中で行う。溶媒としては、メタノール、エタノール、プロパノール、エチレングリコール、グリセリン、2-メトキシエタノール、2-エトキシエタノール等のアルコール系溶媒;ジエチルエーテル、テトラヒドロフラン(THF)、ジオキサン、シクロペンチルメチルエーテル、ジグライム等のエーテル系溶媒;塩化メチレン、クロロホルム等のハロゲン系溶媒;アセトニトリル、ベンゾニトリル等のニトリル系溶媒;ヘキサン、デカリン、トルエン、キシレン、メシチレン等の炭化水素系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド系溶媒;アセトン、ジメチルスルホキシド、水等が挙げられる。 Step A is usually performed in a solvent. Examples of solvents include alcohol solvents such as methanol, ethanol, propanol, ethylene glycol, glycerin, 2-methoxyethanol, and 2-ethoxyethanol; ether solvents such as diethyl ether, tetrahydrofuran (THF), dioxane, cyclopentyl methyl ether, and diglyme. ; Halogen solvents such as methylene chloride and chloroform; Nitrile solvents such as acetonitrile and benzonitrile; Hydrocarbon solvents such as hexane, decalin, toluene, xylene, and mesitylene; N,N-dimethylformamide, N,N-dimethylacetamide amide solvents such as acetone, dimethyl sulfoxide, water, etc.
 工程Aにおいて、反応時間は、通常、30分~150時間であり、反応温度は、通常、反応系に存在する溶媒の融点から沸点の間(融点以上沸点以下)である。 In Step A, the reaction time is usually 30 minutes to 150 hours, and the reaction temperature is usually between the melting point and the boiling point (above the melting point and below the boiling point) of the solvent present in the reaction system.
 工程Aにおいて、式(M-2)で表される化合物の量は、式(M-1)で表される化合物1モルに対して、通常、1~20モルである。 In step A, the amount of the compound represented by formula (M-2) is usually 1 to 20 mol per 1 mol of the compound represented by formula (M-1).
 式(M-1)で表される化合物は、例えば、式(M-3)で表される化合物を反応させる工程Bを含む方法により製造することができる。
(工程B)
Figure JPOXMLDOC01-appb-C000079
[式中、
 Ar、Ar、Ar、L及びXM1は、前記と同じ意味を表す。
 Rは、前記と同じ意味を表す(但し、水素原子は除く)。]
The compound represented by formula (M-1) can be produced, for example, by a method including step B of reacting a compound represented by formula (M-3).
(Process B)
Figure JPOXMLDOC01-appb-C000079
[In the formula,
Ar 1 , Ar 2 , Ar 3 , L and X M1 have the same meanings as above.
R 1 represents the same meaning as above (however, hydrogen atoms are excluded). ]
 工程Bにおける反応は、アルキルスルホン酸、シクロアルキルスルホン酸、アリールスルホン酸、塩酸、臭化水素酸又はヨウ化水素酸等の酸の存在下で行うことが好ましい。酸を用いる場合、その量は、式(M-3)で表される化合物1モルに対して、通常、1~20モルである。 The reaction in step B is preferably carried out in the presence of an acid such as alkylsulfonic acid, cycloalkylsulfonic acid, arylsulfonic acid, hydrochloric acid, hydrobromic acid or hydroiodic acid. When an acid is used, the amount thereof is usually 1 to 20 mol per 1 mol of the compound represented by formula (M-3).
 工程Bで使用されるアルキルスルホン酸としては、メタンスルホン酸、エタンスルホン酸、トリフルオロメタンスルホン酸等が挙げられる。工程Bで使用されるアリールスルホン酸としては、p-トルエンスルホン酸等が挙げられる。 Examples of the alkylsulfonic acid used in Step B include methanesulfonic acid, ethanesulfonic acid, trifluoromethanesulfonic acid, and the like. The arylsulfonic acid used in step B includes p-toluenesulfonic acid and the like.
 工程Bの反応は、通常、溶媒中で行う。工程Bにおける溶媒、反応時間及び反応温度の例及び好ましい範囲は、工程Aの反応における溶媒、反応時間及び反応温度の例及び好ましい範囲と同じである。 The reaction in step B is usually carried out in a solvent. Examples and preferred ranges of the solvent, reaction time, and reaction temperature in step B are the same as the examples and preferred ranges of the solvent, reaction time, and reaction temperature in the reaction of step A.
 工程Bの反応後は、式(M-1)で表される化合物を単離して工程Aの反応を行ってもよく、式(M-1)で表される化合物を単離せずに、工程Bの反応溶媒中で連続して工程Aの反応を行ってもよい。 After the reaction in step B, the compound represented by formula (M-1) may be isolated and the reaction in step A may be performed, or the compound represented by formula (M-1) is not isolated and the reaction in step A is performed. The reaction of Step A may be carried out continuously in the reaction solvent of B.
 式(M-3)で表される化合物は、例えば、式(M-4)で表される化合物と、式(M-5)で表される化合物とを反応させる工程Cを含む方法により製造することができる。
(工程C)
Figure JPOXMLDOC01-appb-C000080
[式中、
 Ar、Ar、Ar及びLは、前記と同じ意味を表す。
 Rは、前記と同じ意味を表す(但し、水素原子は除く)。
 MM2は、リチウム原子、又は、Mg-XM2を表す。]
The compound represented by formula (M-3) is produced, for example, by a method including step C in which a compound represented by formula (M-4) and a compound represented by formula (M-5) are reacted. can do.
(Process C)
Figure JPOXMLDOC01-appb-C000080
[In the formula,
Ar 1 , Ar 2 , Ar 3 and L have the same meanings as above.
R 1 represents the same meaning as above (however, hydrogen atoms are excluded).
M M2 represents a lithium atom or Mg-X M2 . ]
 MM2は、Mg-XM2であることが好ましい。MM2におけるXM2の例及び好適な範囲は、MM1におけるXM2の例及び好適な範囲と同じである。 Preferably, M M2 is Mg-X M2 . The examples and preferred ranges of X M2 in M M2 are the same as the examples and preferred ranges of X M2 in M M1 .
 工程Cは、通常、溶媒中で行う。工程Cにおける溶媒、反応時間及び反応温度の例及び好ましい範囲は、工程Aの反応における溶媒、反応時間及び反応温度の例及び好ましい範囲と同じである。 Step C is usually performed in a solvent. Examples and preferred ranges of the solvent, reaction time, and reaction temperature in Step C are the same as the examples and preferred ranges of the solvent, reaction time, and reaction temperature in Step A.
 本実施形態の化合物は、例えば、式(M-6)で表される化合物と式(M-7)で表される化合物と、を反応させる工程Dを含む方法によって製造することもできる。
(工程D)
Figure JPOXMLDOC01-appb-C000081
[式中、
 Ar、Ar、Ar及びLは、前記と同じ意味を表す。
 Rは、前記と同じ意味を表す(但し、水素原子は除く)。
 XM3は、アルキルスルホニルオキシ基、シクロアルキルスルホニルオキシ基、アリールスルホニルオキシ基、塩素原子、臭素原子又はヨウ素原子を表し、これらの基は置換基を有していてもよい。]
The compound of this embodiment can also be produced, for example, by a method including step D of reacting a compound represented by formula (M-6) with a compound represented by formula (M-7).
(Process D)
Figure JPOXMLDOC01-appb-C000081
[In the formula,
Ar 1 , Ar 2 , Ar 3 and L have the same meanings as above.
R 1 represents the same meaning as above (however, hydrogen atoms are excluded).
X M3 represents an alkylsulfonyloxy group, a cycloalkylsulfonyloxy group, an arylsulfonyloxy group, a chlorine atom, a bromine atom, or an iodine atom, and these groups may have a substituent. ]
 XM3の例及び好ましい範囲は、XM1の例及び好ましい範囲と同じである。 Examples and preferred ranges for X M3 are the same as those for X M1 .
 工程Dの反応は、通常、溶媒中で行う。工程Dにおける溶媒、反応時間及び反応温度の例及び好ましい範囲は、工程Aの反応における溶媒、反応時間及び反応温度の例及び好ましい範囲と同じである。 The reaction in step D is usually carried out in a solvent. Examples and preferred ranges of the solvent, reaction time, and reaction temperature in step D are the same as the examples and preferred ranges of the solvent, reaction time, and reaction temperature in the reaction of step A.
 式(M-6)で表される化合物は、例えば、式(M-4)で表される化合物を反応させる工程Eを含む方法により製造することができる。
(工程E)
Figure JPOXMLDOC01-appb-C000082
[式中、Ar、Ar、Ar及びLは、前記と同じ意味を表す。]
The compound represented by formula (M-6) can be produced, for example, by a method including step E of reacting the compound represented by formula (M-4).
(Process E)
Figure JPOXMLDOC01-appb-C000082
[Wherein, Ar 1 , Ar 2 , Ar 3 and L have the same meanings as above. ]
 工程Eの反応は、通常、溶媒中で行う。工程Eにおける溶媒、反応時間及び反応温度の例及び好ましい範囲は、工程Aの反応における溶媒、反応時間及び反応温度の例及び好ましい範囲と同じである。 The reaction in step E is usually carried out in a solvent. Examples and preferred ranges of the solvent, reaction time, and reaction temperature in Step E are the same as the examples and preferred ranges of the solvent, reaction time, and reaction temperature in the reaction of Step A.
 本実施形態の化合物は、例えば、式(M-3)で表される化合物と式(M-8)で表される化合物とを反応させる工程Fを含む方法により製造することもできる。
(工程F)
Figure JPOXMLDOC01-appb-C000083
[式中、
 Ar、Ar、Ar及びLは、前記と同じ意味を表す。
 Rは、前記と同じ意味を表す(但し、水素原子は除く)。]
The compound of this embodiment can also be produced, for example, by a method including step F in which a compound represented by formula (M-3) and a compound represented by formula (M-8) are reacted.
(Process F)
Figure JPOXMLDOC01-appb-C000083
[In the formula,
Ar 1 , Ar 2 , Ar 3 and L have the same meanings as above.
R 1 represents the same meaning as above (however, hydrogen atoms are excluded). ]
 工程Fにおける反応は、アルキルスルホン酸、シクロアルキルスルホン酸、アリールスルホン酸、塩酸、臭化水素酸又はヨウ化水素酸等の酸の存在下で行うことが好ましい。酸を用いる場合、その量は、式(M-3)で表される化合物1モルに対して、通常、1~20モルである。 The reaction in step F is preferably carried out in the presence of an acid such as alkylsulfonic acid, cycloalkylsulfonic acid, arylsulfonic acid, hydrochloric acid, hydrobromic acid or hydroiodic acid. When an acid is used, the amount thereof is usually 1 to 20 mol per 1 mol of the compound represented by formula (M-3).
 工程Fで使用されるアルキルスルホン酸としては、メタンスルホン酸、エタンスルホン酸、トリフルオロメタンスルホン酸等が挙げられる。工程Fで使用されるアリールスルホン酸としては、p-トルエンスルホン酸等が挙げられる。 Examples of the alkylsulfonic acid used in Step F include methanesulfonic acid, ethanesulfonic acid, trifluoromethanesulfonic acid, and the like. The arylsulfonic acid used in step F includes p-toluenesulfonic acid and the like.
 工程Fの反応は、通常、溶媒中で行う。工程Fにおける溶媒、反応時間及び反応温度の例及び好ましい範囲は、工程Aの反応における溶媒、反応時間及び反応温度の例及び好ましい範囲と同じである。 The reaction in step F is usually carried out in a solvent. Examples and preferred ranges of the solvent, reaction time, and reaction temperature in Step F are the same as the examples and preferred ranges of the solvent, reaction time, and reaction temperature in the reaction of Step A.
 式(1)で表される化合物は、例えば、式(M-10)で表される化合物を反応させる工程Gを含む方法によって製造することもできる。また、式(M-4)で表される化合物及び式(M-6)で表される化合物についても、式(M-10)で表される化合物を反応させる工程Gを含む方法によって製造することができる。
(工程G)
Figure JPOXMLDOC01-appb-C000084
[式中、
 Ar、Ar、Ar及びLは、前記と同じ意味を表す。
 LM1は、-C(=O)-、又は、-C(R-を表す。
 Rは、前記と同じ意味を表す。
 ZM1は、-B(ORZM1で表される基、アルキルスルホニルオキシ基、シクロアルキルスルホニルオキシ基、アリールスルホニルオキシ基、塩素原子、臭素原子又はヨウ素原子を表し、これらの基は置換基をしていてもよい。
 RZM1は、水素原子、アルキル基、シクロアルキル基、アリール基又はアミノ基を表し、これらの基は置換基を有していてもよい。複数存在するRZM1は、同一でも異なっていてもよく、互いに結合して、それぞれが結合する酸素原子とともに環構造を形成していてもよい。]
The compound represented by formula (1) can also be produced, for example, by a method including step G of reacting a compound represented by formula (M-10). Furthermore, the compound represented by formula (M-4) and the compound represented by formula (M-6) are also produced by a method including step G of reacting the compound represented by formula (M-10). be able to.
(Process G)
Figure JPOXMLDOC01-appb-C000084
[In the formula,
Ar 1 , Ar 2 , Ar 3 and L have the same meanings as above.
L M1 represents -C(=O)- or -C(R 1 ) 2 -.
R 1 represents the same meaning as above.
Z M1 represents a group represented by -B(OR ZM1 ) 2 , an alkylsulfonyloxy group, a cycloalkylsulfonyloxy group, an arylsulfonyloxy group, a chlorine atom, a bromine atom, or an iodine atom, and these groups are substituents. You may do so.
R ZM1 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or an amino group, and these groups may have a substituent. A plurality of R ZM1s may be the same or different, and may be bonded to each other to form a ring structure together with the oxygen atom to which each is bonded. ]
 LM1が-C(=O)-であるとき、式(M-9)で表される化合物は式(M-4)で表される化合物である。LM1が-C(R-であるとき、式(M-9)で表される化合物は式(1)で表される化合物である。LM1が-C(R-であり、且つ、Rが水素原子であるとき、式(M-9)で表される化合物は式(M-6)で表される化合物であるということもできる。 When L M1 is -C(=O)-, the compound represented by formula (M-9) is a compound represented by formula (M-4). When L M1 is -C(R 1 ) 2 -, the compound represented by formula (M-9) is a compound represented by formula (1). When L M1 is -C(R 1 ) 2 - and R 1 is a hydrogen atom, the compound represented by formula (M-9) is a compound represented by formula (M-6) You can also say that.
 ZM1において、アルキルスルホニルオキシ基としては、メタンスルホニルオキシ基、エタンスルホニルオキシ基、トリフルオロメタンスルホニルオキシ基等が挙げられる。ZM1において、アリールスルホニルオキシ基としては、p-トルエンスルホニルオキシ基等が挙げられる。 In Z M1 , examples of the alkylsulfonyloxy group include a methanesulfonyloxy group, an ethanesulfonyloxy group, and a trifluoromethanesulfonyloxy group. In Z M1 , examples of the arylsulfonyloxy group include p-toluenesulfonyloxy group.
 -B(ORZM1で表される基としては、例えば、下記式(ZM-1)~(ZM-10)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000085
Examples of the group represented by -B(OR ZM1 ) 2 include groups represented by the following formulas (ZM-1) to (ZM-10).
Figure JPOXMLDOC01-appb-C000085
 ZM1は、工程Gの反応(カップリング反応)が容易に進行するので、好ましくは、トリフルオロメタンスルホニルオキシ基、塩素原子、臭素原子又はヨウ素原子である。 Z M1 is preferably a trifluoromethanesulfonyloxy group, a chlorine atom, a bromine atom, or an iodine atom because the reaction in step G (coupling reaction) proceeds easily.
 工程Gの反応は、通常、溶媒中で行う。工程Gにおける溶媒、反応時間及び反応温度の例及び好ましい範囲は、工程Aの反応における溶媒、反応時間及び反応温度の例及び好ましい範囲と同じである。 The reaction in step G is usually carried out in a solvent. Examples and preferred ranges of the solvent, reaction time, and reaction temperature in step G are the same as the examples and preferred ranges of the solvent, reaction time, and reaction temperature in the reaction of step A.
 式(1)で表される化合物は、例えば、式(M-11)で表される化合物を反応させる工程Hを含む方法によって製造することもできる。また、式(M-4)で表される化合物及び式(M-6)で表される化合物についても、式(M-11)で表される化合物を反応させる工程Hを含む方法によって製造することができる。
(工程H)
Figure JPOXMLDOC01-appb-C000086
[式中、
 Ar、Ar、Ar、L及びLM1は、前記と同じ意味を表す。
 ZM2及びZM3は、-B(ORZM2で表される基、アルキルスルホニルオキシ基、シクロアルキルスルホニルオキシ基、アリールスルホニルオキシ基、塩素原子、臭素原子又はヨウ素原子を表し、これらの基は置換基をしていてもよい。
 RZM2は、水素原子、アルキル基、シクロアルキル基、アリール基又はアミノ基を表し、これらの基は置換基を有していてもよい。複数存在するRZM2は、同一でも異なっていてもよく、互いに結合して、それぞれが結合する酸素原子とともに環構造を形成していてもよい。]
The compound represented by formula (1) can also be produced, for example, by a method including step H of reacting a compound represented by formula (M-11). Furthermore, the compound represented by formula (M-4) and the compound represented by formula (M-6) are also produced by a method including step H of reacting the compound represented by formula (M-11). be able to.
(Process H)
Figure JPOXMLDOC01-appb-C000086
[In the formula,
Ar 1 , Ar 2 , Ar 3 , L and L M1 have the same meanings as above.
Z M2 and Z M3 represent a group represented by -B(OR ZM2 ) 2 , an alkylsulfonyloxy group, a cycloalkylsulfonyloxy group, an arylsulfonyloxy group, a chlorine atom, a bromine atom, or an iodine atom, and these groups may have a substituent.
R ZM2 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or an amino group, and these groups may have a substituent. A plurality of R ZM2s may be the same or different, and may be bonded to each other to form a ring structure together with the oxygen atom to which each is bonded. ]
 ZM2及びZM3において、アルキルスルホニルオキシ基としては、メタンスルホニルオキシ基、エタンスルホニルオキシ基、トリフルオロメタンスルホニルオキシ基等が挙げられる。ZM2及びZM3において、アリールスルホニルオキシ基としては、p-トルエンスルホニルオキシ基等が挙げられる。 In Z M2 and Z M3 , examples of the alkylsulfonyloxy group include a methanesulfonyloxy group, an ethanesulfonyloxy group, and a trifluoromethanesulfonyloxy group. In Z M2 and Z M3 , examples of the arylsulfonyloxy group include p-toluenesulfonyloxy group.
 -B(ORZM2で表される基としては、例えば、式(ZM-1)~(ZM-10)で表される基が挙げられる。 Examples of the group represented by -B(OR ZM2 ) 2 include groups represented by formulas (ZM-1) to (ZM-10).
 工程Hの反応は、通常、溶媒中で行う。工程Hにおける溶媒、反応時間及び反応温度の例及び好ましい範囲は、工程Aの反応における溶媒、反応時間及び反応温度の例及び好ましい範囲と同じである。 The reaction in step H is usually carried out in a solvent. Examples and preferred ranges of the solvent, reaction time, and reaction temperature in Step H are the same as the examples and preferred ranges of the solvent, reaction time, and reaction temperature in the reaction of Step A.
・工程G及びHの共通説明
 カップリング反応(工程G及びHにおける反応)においては、反応を促進するために、パラジウム触媒等の触媒を用いてもよい。パラジウム触媒としては、酢酸パラジウム、ビス(トリフェニルホスフィン)パラジウム(II)ジクロリド、テトラキス(トリフェニルホスフィン)パラジウム(0)、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II)、トリス(ジベンジリデンアセトン)二パラジウム(0)等が挙げられる。
- Common explanation of steps G and H In the coupling reaction (reaction in steps G and H), a catalyst such as a palladium catalyst may be used to promote the reaction. Palladium catalysts include palladium acetate, bis(triphenylphosphine)palladium(II) dichloride, tetrakis(triphenylphosphine)palladium(0), [1,1'-bis(diphenylphosphino)ferrocene]dichloropalladium(II). , tris(dibenzylideneacetone) dipalladium(0), and the like.
 パラジウム触媒は、トリフェニルホスフィン、トリ(o-トリル)ホスフィン、トリ(tert-ブチル)ホスフィン、トリシクロヘキシルホスフィン、1,1’-ビス(ジフェニルホスフィノ)フェロセン等のリン化合物と併用してもよい。 Palladium catalysts may be used in combination with phosphorus compounds such as triphenylphosphine, tri(o-tolyl)phosphine, tri(tert-butyl)phosphine, tricyclohexylphosphine, and 1,1′-bis(diphenylphosphino)ferrocene. .
 カップリング反応においてパラジウム触媒を用いる場合、その量は、例えば、式(M-10)又は式(M-11)で表される化合物1モルに対して、通常、有効量であり、好ましくは、パラジウム元素換算で0.00001~10モルである。 When a palladium catalyst is used in the coupling reaction, the amount is usually an effective amount, for example, per 1 mole of the compound represented by formula (M-10) or formula (M-11), and preferably, It is 0.00001 to 10 mol in terms of palladium element.
 カップリング反応においては、必要に応じて、塩基を併用してもよい。 In the coupling reaction, a base may be used in combination, if necessary.
 <化合物の製造方法>で説明した各反応において用いられる化合物、触媒及び溶媒は、各々、一種単独で用いても二種以上を併用してもよい。 The compounds, catalysts, and solvents used in each reaction described in <Method for producing compounds> may be used alone or in combination of two or more.
<高分子化合物の製造方法>
 次に、本実施形態の高分子化合物の製造方法について説明する。
<Production method of polymer compound>
Next, a method for producing a polymer compound according to the present embodiment will be explained.
 本実施形態の高分子化合物は、例えば、式(M-12)で表される化合物と、他の化合物(例えば、式(M-13)で表される化合物)とを縮合重合させることにより製造することができる。本明細書において、本実施形態の高分子化合物の製造に使用され、本実施形態の高分子化合物の構成単位を形成する化合物を総称して、「原料モノマー」ということがある。
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
[式中、
 Uは、本実施形態の化合物(式(1)で表される化合物)から水素原子1個以上を除いた基を有する基を表す。
 ArY1は、後述するArY1と同じ意味を示す。
 ZC1、ZC2、ZC3及びZC4は、それぞれ独立に、置換基A群及び置換基B群からなる群から選ばれる基を表す。]
The polymer compound of the present embodiment is produced, for example, by condensation polymerization of a compound represented by formula (M-12) and another compound (for example, a compound represented by formula (M-13)). can do. In this specification, the compounds used in the production of the polymer compound of this embodiment and forming the constituent units of the polymer compound of this embodiment may be collectively referred to as "raw material monomers."
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
[In the formula,
U 1 represents a group having a group obtained by removing one or more hydrogen atoms from the compound of this embodiment (the compound represented by formula (1)).
Ar Y1 has the same meaning as Ar Y1 described later.
Z C1 , Z C2 , Z C3 and Z C4 each independently represent a group selected from the group consisting of substituent A group and substituent B group. ]
 例えば、ZC1及びZC2が置換基A群から選ばれる基である場合、ZC3及びZC4は、置換基B群から選ばれる基を選択する。 For example, when Z C1 and Z C2 are groups selected from substituent group A, Z C3 and Z C4 are groups selected from substituent group B.
 例えば、ZC1及びZC2が置換基B群から選ばれる基である場合、ZC3及びZC4は、置換基A群から選ばれる基を選択する。 For example, when Z C1 and Z C2 are groups selected from substituent group B, Z C3 and Z C4 are groups selected from substituent group A.
 [置換基A群]
 塩素原子、臭素原子、ヨウ素原子、-O-S(=O)C1(式中、RC1は、アルキル基、シクロアルキル基又はアリール基を表し、これらの基は置換基を有していてもよい。)で表される基。
[Substituent group A]
Chlorine atom, bromine atom, iodine atom, -O-S(=O) 2 R C1 (wherein R C1 represents an alkyl group, a cycloalkyl group, or an aryl group, and these groups have a substituent. ).
 [置換基B群]
 -B(ORC2(式中、RC2は、水素原子、アルキル基、シクロアルキル基又はアリール基を表し、これらの基は置換基を有していてもよい。複数存在するRC2は同一でも異なっていてもよく、互いに連結して、それぞれが結合する酸素原子とともに環構造を形成していてもよい。)で表される基;
 -BFQ’(式中、Q’は、Li、Na、K、Rb又はCsを表す。)で表される基;
 -MgY’(式中、Y’は、塩素原子、臭素原子又はヨウ素原子を表す。)で表される基;
 -ZnY’’(式中、Y’’は、塩素原子、臭素原子又はヨウ素原子を表す。)で表される基;及び、
 -Sn(RC3(式中、RC3は、水素原子、アルキル基、シクロアルキル基又はアリール基を表し、これらの基は置換基を有していてもよい。複数存在するRC3は同一でも異なっていてもよく、互いに連結して、それぞれが結合するスズ原子とともに環構造を形成していてもよい。)で表される基。
[Substituent group B]
-B(OR C2 ) 2 (In the formula, R C2 represents a hydrogen atom, an alkyl group, a cycloalkyl group, or an aryl group, and these groups may have a substituent. A plurality of R C2 is A group that may be the same or different, and may be linked to each other to form a ring structure with the oxygen atom to which each is bonded;
- A group represented by BF 3 Q' (wherein Q' represents Li, Na, K, Rb or Cs);
- A group represented by MgY' (wherein Y' represents a chlorine atom, a bromine atom, or an iodine atom);
- a group represented by ZnY'' (wherein Y'' represents a chlorine atom, a bromine atom or an iodine atom); and
-Sn(R C3 ) 3 (wherein R C3 represents a hydrogen atom, an alkyl group, a cycloalkyl group, or an aryl group, and these groups may have a substituent. A plurality of R C3 is The groups may be the same or different, and may be linked to each other to form a ring structure together with the tin atoms to which they are bonded.
 -B(ORC2で表される基としては、下記式で表される基が例示される。
Figure JPOXMLDOC01-appb-C000089
Examples of the group represented by -B(OR C2 ) 2 include groups represented by the following formula.
Figure JPOXMLDOC01-appb-C000089
 置換基A群から選ばれる基を有する化合物と置換基B群から選ばれる基を有する化合物とは、公知のカップリング反応により縮合重合して、置換基A群から選ばれる基及び置換基B群から選ばれる基と結合する炭素原子同士が結合する。そのため、置換基A群から選ばれる基を2個有する化合物と、置換基B群から選ばれる基を2個有する化合物を公知のカップリング反応に供すれば、縮合重合により、これらの化合物の縮合重合体を得ることができる。 A compound having a group selected from substituent group A and a compound having a group selected from substituent group B are condensed together by a known coupling reaction to form a group selected from substituent group A and a substituent group B. Carbon atoms that are bonded to groups selected from are bonded to each other. Therefore, if a compound having two groups selected from substituent group A and a compound having two groups selected from substituent group B are subjected to a known coupling reaction, the condensation of these compounds will occur through condensation polymerization. Polymers can be obtained.
 縮合重合は、通常、触媒、塩基及び溶媒の存在下で行なわれるが、必要に応じて、相間移動触媒を共存させて行ってもよい。 Condensation polymerization is usually carried out in the presence of a catalyst, a base, and a solvent, but if necessary, it may be carried out in the presence of a phase transfer catalyst.
 触媒としては、例えば、ビス(トリフェニルホスフィン)パラジウム(II)ジクロリド、ビス(トリス-o-メトキシフェニルホスフィン)パラジウム(II)ジクロリド、テトラキス(トリフェニルホスフィン)パラジウム(0)、トリス(ジベンジリデンアセトン)ジパラジウム(0)、酢酸パラジウム等のパラジウム錯体、テトラキス(トリフェニルホスフィン)ニッケル(0)、[1,3-ビス(ジフェニルホスフィノ)プロパン)ニッケル(II)ジクロリド、ビス(1,4-シクロオクタジエン)ニッケル(0)等のニッケル錯体等の遷移金属錯体;これらの遷移金属錯体が、更にトリフェニルホスフィン、トリ(o-トリル)ホスフィン、トリ(tert-ブチル)ホスフィン、トリシクロヘキシルホスフィン、1,3-ビス(ジフェニルホスフィノ)プロパン、ビピリジル等の配位子を有する錯体が挙げられる。触媒は、一種単独で用いても二種以上を併用してもよい。 Examples of the catalyst include bis(triphenylphosphine)palladium(II) dichloride, bis(tris-o-methoxyphenylphosphine)palladium(II) dichloride, tetrakis(triphenylphosphine)palladium(0), and tris(dibenzylideneacetone). ) Dipalladium(0), palladium complexes such as palladium acetate, tetrakis(triphenylphosphine)nickel(0), [1,3-bis(diphenylphosphino)propane)nickel(II) dichloride, bis(1,4- Transition metal complexes such as nickel complexes such as cyclooctadiene)nickel(0); these transition metal complexes can further be used to form triphenylphosphine, tri(o-tolyl)phosphine, tri(tert-butyl)phosphine, tricyclohexylphosphine, Examples include complexes having ligands such as 1,3-bis(diphenylphosphino)propane and bipyridyl. The catalysts may be used alone or in combination of two or more.
 触媒の使用量は、原料モノマーのモル数の合計に対する遷移金属の量として、通常、0.00001~3モル当量である。 The amount of catalyst used is usually 0.00001 to 3 molar equivalents as the amount of transition metal relative to the total number of moles of raw material monomers.
 塩基及び相間移動触媒としては、例えば、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、フッ化カリウム、フッ化セシウム、リン酸三カリウム等の無機塩基;フッ化テトラブチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラブチルアンモニウム等の有機塩基;塩化テトラブチルアンモニウム、臭化テトラブチルアンモニウム等の相間移動触媒が挙げられる。塩基及び相間移動触媒は、それぞれ、一種単独で用いても二種以上を併用してもよい。 Examples of bases and phase transfer catalysts include inorganic bases such as sodium carbonate, potassium carbonate, cesium carbonate, potassium fluoride, cesium fluoride, and tripotassium phosphate; tetrabutylammonium fluoride, tetraethylammonium hydroxide, and tetraethylammonium hydroxide. Examples include organic bases such as butylammonium; phase transfer catalysts such as tetrabutylammonium chloride and tetrabutylammonium bromide. The base and the phase transfer catalyst may be used alone or in combination of two or more.
 塩基及び相間移動触媒の使用量は、それぞれ、原料モノマーの合計モル数に対して、通常0.001~100モル当量である。 The amounts of the base and phase transfer catalyst used are usually 0.001 to 100 molar equivalents, respectively, based on the total number of moles of the raw material monomers.
 溶媒としては、例えば、トルエン、キシレン、メシチレン、テトラヒドロフラン、1,4-ジオキサン、ジメトキシエタン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等の有機溶媒、水が挙げられる。溶媒は、一種単独で用いても二種以上を併用してもよい。 Examples of the solvent include organic solvents such as toluene, xylene, mesitylene, tetrahydrofuran, 1,4-dioxane, dimethoxyethane, N,N-dimethylacetamide, and N,N-dimethylformamide, and water. The solvents may be used alone or in combination of two or more.
 溶媒の使用量は、通常、原料モノマーの合計100質量部に対して、10~100000質量部である。 The amount of the solvent used is usually 10 to 100,000 parts by mass based on the total of 100 parts by mass of the raw material monomers.
 縮合重合の反応温度は、通常-100~200℃である。縮合重合の反応時間は、通常1時間以上である。 The reaction temperature for condensation polymerization is usually -100 to 200°C. The reaction time for condensation polymerization is usually 1 hour or more.
 重合反応の後処理は、公知の方法、例えば、分液により水溶性不純物を除去する方法、メタノール等の低級アルコールに重合反応後の反応液を加えて、析出させた沈殿を濾過した後、乾燥させる方法等を単独、又は組み合わせて行う。高分子化合物の純度が低い場合、例えば、晶析、再沈殿、ソックスレー抽出器による連続抽出、カラムクロマトグラフィー等の通常の方法にて精製することができる。 Post-treatment of the polymerization reaction can be carried out by known methods, such as removing water-soluble impurities by liquid separation, adding the reaction solution after the polymerization reaction to a lower alcohol such as methanol, filtering the precipitate, and then drying. Use these methods alone or in combination. If the purity of the polymer compound is low, it can be purified by conventional methods such as crystallization, reprecipitation, continuous extraction using a Soxhlet extractor, and column chromatography.
<組成物>
 本実施形態の組成物は、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料、酸化防止剤及び溶媒からなる群より選ばれる少なくとも1種と、本実施形態の化合物及び本実施形態の高分子化合物からなる群より選択される少なくとも1種(以下、本実施形態の化合物と総称する。)と、を含有する。
<Composition>
The composition of this embodiment includes at least one member selected from the group consisting of a hole transport material, a hole injection material, an electron transport material, an electron injection material, a luminescent material, an antioxidant, and a solvent, and the compound of this embodiment. and at least one kind selected from the group consisting of the polymer compounds of the present embodiment (hereinafter collectively referred to as the compounds of the present embodiment).
 本実施形態の組成物において、本実施形態の化合物は、1種単独で含有されていても、2種以上含有されていてもよい。 In the composition of this embodiment, the compounds of this embodiment may be contained alone or in combination of two or more.
 [ホスト材料]
 本実施形態の化合物は、正孔注入性、正孔輸送性、電子注入性及び電子輸送性からなる群から選ばれる少なくとも1つの機能を有するホスト材料との組成物とすることにより、本実施形態の化合物を用いて得られる発光素子の外部量子効率が特に優れたものとなる。本実施形態の組成物において、ホスト材料は、1種単独で含有されていても、2種以上含有されていてもよい。
[Host material]
The compound of this embodiment can be formed into a composition with a host material having at least one function selected from the group consisting of hole-injecting property, hole-transporting property, electron-injecting property, and electron-transporting property. The external quantum efficiency of the light-emitting device obtained using this compound is particularly excellent. In the composition of this embodiment, one type of host material may be contained alone, or two or more types of host materials may be contained.
 本実施形態の化合物とホスト材料とを含有する組成物において、本実施形態の化合物の含有量は、本実施形態の化合物とホスト材料との合計を100重量部とした場合、通常、0.05~80重量部であり、好ましくは0.1~50重量部であり、より好ましくは0.5~20重量部である。 In a composition containing the compound of this embodiment and a host material, the content of the compound of this embodiment is usually 0.05 parts by weight when the total of the compound of this embodiment and host material is 100 parts by weight. ~80 parts by weight, preferably 0.1 to 50 parts by weight, more preferably 0.5 to 20 parts by weight.
 ホスト材料の有する最低励起一重項状態(S1)は、本実施形態の組成物を用いて得られる発光素子の外部量子効率が優れるので、本実施形態の化合物の有するS1と同等のエネルギー準位、又は、より高いエネルギー準位であることが好ましい。 The lowest excited singlet state (S1) of the host material has an energy level equivalent to S1 of the compound of this embodiment, since the external quantum efficiency of the light emitting device obtained using the composition of this embodiment is excellent. Alternatively, a higher energy level is preferred.
 ホスト材料としては、本実施形態の組成物を用いて得られる発光素子を溶液塗布プロセスで作製できるので、本実施形態の化合物を溶解することが可能な溶媒に対して溶解性を示すものであることが好ましい。 The host material is one that exhibits solubility in a solvent that can dissolve the compound of this embodiment, since a light emitting device obtained using the composition of this embodiment can be produced by a solution coating process. It is preferable.
 ホスト材料は、低分子化合物と高分子化合物とに分類され、本実施形態の組成物はいずれのホスト材料を含有していてもよい。 Host materials are classified into low-molecular compounds and high-molecular compounds, and the composition of this embodiment may contain any of the host materials.
 [低分子ホスト]
 低分子ホストは、発光素子の発光効率がより優れるので、好ましくは、下記式(H-1)で表される化合物である。
Figure JPOXMLDOC01-appb-C000090
[式中、
 ArH1及びArH2は、それぞれ独立に、アリール基、1価の複素環基又は置換アミノ基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
 nH1は、0以上の整数を表す。
 LH1は、2価の基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。LH1が複数存在する場合、それらは同一でも異なっていてもよく、それらは互いに、直接結合して、又は、2価の基を介して結合して、環を形成してもよい。
 ArH1とArH2とは、直接結合して、又は、2価の基を介して結合して、環を形成してもよい。LH1とArH1とは、直接結合して、又は、2価の基を介して結合して、環を形成してもよい。LH1とArH2とは、直接結合して、又は、2価の基を介して結合して、環を形成してもよい。]
[Low molecule host]
The low-molecular host is preferably a compound represented by the following formula (H-1) because the light-emitting element has better luminous efficiency.
Figure JPOXMLDOC01-appb-C000090
[In the formula,
Ar H1 and Ar H2 each independently represent an aryl group, a monovalent heterocyclic group, or a substituted amino group, and these groups may have a substituent. When a plurality of substituents exist, they may be the same or different, and may be bonded to each other to form a ring with the atoms to which they are bonded.
n H1 represents an integer of 0 or more.
L H1 represents a divalent group, and these groups may have a substituent. When a plurality of substituents exist, they may be the same or different, and may be bonded to each other to form a ring with the atoms to which they are bonded. When a plurality of L H1 's exist, they may be the same or different, and they may be bonded to each other directly or via a divalent group to form a ring.
Ar H1 and Ar H2 may be bonded directly or via a divalent group to form a ring. L H1 and Ar H1 may be bonded directly or via a divalent group to form a ring. L H1 and Ar H2 may be bonded directly or via a divalent group to form a ring. ]
 式(H-1)で表される化合物の分子量は、好ましくは、1×10~5×10であり、より好ましくは2×10~3×10であり、更に好ましくは3×10~1.5×10であり、特に好ましくは4×10~1×10である。 The molecular weight of the compound represented by formula (H-1) is preferably 1×10 2 to 5×10 3 , more preferably 2×10 2 to 3×10 3 , even more preferably 3×10 3 It is 10 2 to 1.5×10 3 , particularly preferably 4×10 2 to 1×10 3 .
 ArH1及びArH2におけるアリール基は、本実施形態の発光素子の輝度寿命がより優れるので、好ましくは、単環式又は2~7環式の芳香族炭化水素から環を構成する原子に直接結合する水素原子1個を除いた基であり、より好ましくは、単環式又は2~5環式の芳香族炭化水素から環を構成する原子に直接結合する水素原子1個を除いた基であり、更に好ましくは、単環式、2環式又は3環式の芳香族炭化水素から環を構成する原子に直接結合する水素原子1個を除いた基であり、これらの基は置換基を有していてもよい。
 ArH1及びArH2におけるアリール基は、本実施形態の発光素子の駆動電圧が更に低くなるので、好ましくは、ベンゼン、ナフタレン、アントラセン、フェナントレン、ジヒドロフェナントレン、フルオレン、ベンゾアントラセン、ベンゾフェナントレン、ベンゾフルオレン、ジベンゾアントラセン、ジベンゾフェナントレン、ジベンゾフルオレン、インデノフルオレン又はベンゾフルオランテンから、環を構成する原子に直接結合する水素原子1個を除いた基であり、より好ましくは、ベンゼン、ナフタレン、アントラセン、フェナントレン、ジヒドロフェナントレン、フルオレン、ベンゾアントラセン、ベンゾフェナントレン又はベンゾフルオレンから、環を構成する原子に直接結合する水素原子1個を除いた基であり、更に好ましくは、ベンゼン、ナフタレン、アントラセン、フェナントレン、ジヒドロフェナントレン又はフルオレンから、環を構成する原子に直接結合する水素原子1個を除いた基であり、特に好ましくは、ベンゼン、ナフタレン又はアントラセンから、環を構成する原子に直接結合する水素原子1個を除いた基であり、これらの基は置換基を有していてもよい。
The aryl group in Ar H1 and Ar H2 is preferably directly bonded to an atom constituting a ring from a monocyclic or 2 to 7 ring aromatic hydrocarbon, since the luminance life of the light emitting element of this embodiment is more excellent. A group from which one hydrogen atom is removed, more preferably a group from which one hydrogen atom directly bonded to an atom constituting a ring is removed from a monocyclic or 2- to 5-ring aromatic hydrocarbon. More preferably, it is a group obtained by removing one hydrogen atom directly bonded to an atom constituting a ring from a monocyclic, bicyclic, or tricyclic aromatic hydrocarbon, and these groups have a substituent. You may do so.
The aryl groups in Ar H1 and Ar H2 are preferably benzene, naphthalene, anthracene, phenanthrene, dihydrophenanthrene, fluorene, benzanthracene, benzophenanthrene, benzofluorene, because the driving voltage of the light emitting device of this embodiment is further lowered. A group obtained by removing one hydrogen atom directly bonded to an atom constituting a ring from dibenzanthracene, dibenzophenanthrene, dibenzofluorene, indenofluorene, or benzofluoranthene, and more preferably benzene, naphthalene, anthracene, or phenanthrene. , dihydrophenanthrene, fluorene, benzanthracene, benzophenanthrene, or benzofluorene, with one hydrogen atom directly bonded to a ring-constituting atom removed, more preferably benzene, naphthalene, anthracene, phenanthrene, dihydrophenanthrene. or a group obtained by removing one hydrogen atom directly bonded to an atom constituting a ring from fluorene, particularly preferably from benzene, naphthalene, or anthracene by removing one hydrogen atom directly bonded to an atom constituting a ring. These groups may have a substituent.
 ArH1及びArH2における1価の複素環基は、本実施形態の発光素子の輝度寿命がより優れるので、好ましくは、フラン、チオフェン、オキサジアゾール、チアジアゾール、ピロール、ジアゾール、トリアゾール、ピリジン、ジアザベンゼン、トリアジン、アザナフタレン、ジアザナフタレン、ベンゾフラン、ベンゾチオフェン、インドール、アザインドール、ジアザインドール、ベンゾジアゾール、ベンゾチアジアゾール、ベンゾトリアゾール、ジベンゾフラン、ジベンゾチオフェン、カルバゾール、アザカルバゾール、ジアザカルバゾール、フェノキサジン、フェノチアジン、9,10-ジヒドロアクリジン、5,10-ジヒドロフェナジン、アザアントラセン、ジアザアントラセン、アザフェナントレン、ジアザフェナントレン、ベンゾカルバゾール、アザベンゾカルバゾール、ジアザベンゾカルバゾール、ベンゾナフトフラン、ベンゾナフトチオフェン、ジベンゾカルバゾール、インドロカルバゾール、インデノカルバゾール、アザインドロカルバゾール、ジアザインドロカルバゾール、アザインデノカルバゾール又はジアザインデノカルバゾールから環を構成する原子に直接結合する水素原子1個を除いた基であり、より好ましくは、ピリジン、ジアザベンゼン、トリアジン、アザナフタレン、ジアザナフタレン、ジベンゾフラン、ジベンゾチオフェン、カルバゾール、アザカルバゾール、ジアザカルバゾール、フェノキサジン、フェノチアジン、9,10-ジヒドロアクリジン、5,10-ジヒドロフェナジン、ベンゾカルバゾール、アザベンゾカルバゾール、ジアザベンゾカルバゾール、ベンゾナフトフラン、ベンゾナフトチオフェン、ジベンゾカルバゾール、インドロカルバゾール、インデノカルバゾール、アザインドロカルバゾール、ジアザインドロカルバゾール、アザインデノカルバゾール又はジアザインデノカルバゾールから環を構成する原子に直接結合する水素原子1個を除いた基であり、更に好ましくは、ピリジン、ジアザベンゼン、トリアジン、アザナフタレン、ジアザナフタレン、ジベンゾフラン、ジベンゾチオフェン、カルバゾール、アザカルバゾール、ジアザカルバゾール、フェノキサジン、フェノチアジン、9,10-ジヒドロアクリジン又は5,10-ジヒドロフェナジンから環を構成する原子に直接結合する水素原子1個を除いた基であり、特に好ましくは、ピリジン、ジアザベンゼン、トリアジン、アザナフタレン、ジアザナフタレン、ジベンゾフラン、ジベンゾチオフェン又はカルバゾールから環を構成する原子に直接結合する水素原子1個を除いた基であり、とりわけ好ましくは、ジベンゾフラン、ジベンゾチオフェン又はカルバゾールから環を構成する原子に直接結合する水素原子1個を除いた基であり、これらの基は置換基を有していてもよい。 The monovalent heterocyclic group in Ar H1 and Ar H2 is preferably furan, thiophene, oxadiazole, thiadiazole, pyrrole, diazole, triazole, pyridine, or diazabenzene, since the luminance lifetime of the light emitting element of this embodiment is more excellent. , triazine, azanaphthalene, diazanaphthalene, benzofuran, benzothiophene, indole, azaindole, diazaindole, benzodiazole, benzothiadiazole, benzotriazole, dibenzofuran, dibenzothiophene, carbazole, azacarbazole, diazacarbazole, phenoxazine , phenothiazine, 9,10-dihydroacridine, 5,10-dihydrophenazine, azaanthracene, diazaanthracene, azaphenanthrene, diazaphenanthrene, benzocarbazole, azabenzocarbazole, diazabenzocarbazole, benzonaphthofuran, benzonaphthothiophene , dibenzocarbazole, indolocarbazole, indenocarbazole, azaindrocarbazole, diazaindrocarbazole, azaindenocarbazole or diazaindenocarbazole with one hydrogen atom directly bonded to an atom constituting the ring removed. and more preferably pyridine, diazabenzene, triazine, azanaphthalene, diazanaphthalene, dibenzofuran, dibenzothiophene, carbazole, azacarbazole, diazacarbazole, phenoxazine, phenothiazine, 9,10-dihydroacridine, 5,10- Dihydrophenazine, benzocarbazole, azabenzocarbazole, diazabenzocarbazole, benzonaphthofuran, benzonaphthothiophene, dibenzocarbazole, indolocarbazole, indenocarbazole, azaindrocarbazole, diazaindrocarbazole, azaindenocarbazole or dia A group obtained by removing one hydrogen atom directly bonded to an atom constituting a ring from zaindenocarbazole, and more preferably pyridine, diazabenzene, triazine, azanaphthalene, diazanaphthalene, dibenzofuran, dibenzothiophene, carbazole, aza A group obtained by removing one hydrogen atom directly bonded to an atom constituting a ring from carbazole, diazacarbazole, phenoxazine, phenothiazine, 9,10-dihydroacridine or 5,10-dihydrophenazine, and particularly preferably pyridine. , diazabenzene, triazine, azanaphthalene, diazanaphthalene, dibenzofuran, dibenzothiophene or carbazole from which one hydrogen atom directly bonded to the ring atom has been removed, particularly preferably dibenzofuran, dibenzothiophene or carbazole. A group excluding one hydrogen atom directly bonded to an atom constituting a ring, and these groups may have a substituent.
 ArH1及びArH2における置換アミノ基において、アミノ基が有する置換基としては、アリール基又は1価の複素環基が好ましく、アリール基がより好ましく、これらの基は更に置換基を有していてもよい。アミノ基が有する置換基であるアリール基の例及び好ましい範囲は、ArH1及びArH2におけるアリール基の例及び好ましい範囲と同じである。アミノ基が有する置換基である1価の複素環基の例及び好ましい範囲は、ArH1及びArH2における1価の複素環基の例及び好ましい範囲と同じである。 In the substituted amino groups in Ar H1 and Ar H2 , the substituent that the amino group has is preferably an aryl group or a monovalent heterocyclic group, more preferably an aryl group, and these groups further have a substituent. Good too. Examples and preferred ranges of the aryl group that is a substituent on the amino group are the same as the examples and preferred ranges of the aryl group in Ar H1 and Ar H2 . Examples and preferred ranges of the monovalent heterocyclic group that is a substituent on the amino group are the same as the examples and preferred ranges of the monovalent heterocyclic group in Ar H1 and Ar H2 .
 本実施形態の発光素子の輝度寿命がより優れるので、ArH1及びArH2の少なくとも1つは、アリール基又は1価の複素環基であることが好ましく、ArH1及びArH2の両方が、アリール基又は1価の複素環基であることがより好ましく、これらの基は置換基を有していてもよい。
 ArH1及びArH2におけるアリール基及び1価の複素環基としては、本実施形態の発光素子の輝度寿命がより優れるので、単環式、2環式若しくは3環式の芳香族炭化水素、又は、単環式、2環式若しくは3環式の複素環式化合物から、環を構成する原子に直接結合する水素原子1個を除いた基が好ましく、ベンゼン、ナフタレン、フルオレン、ピリジン、ジアザベンゼン、トリアジン、アザナフタレン、ジアザナフタレン、ジベンゾフラン、ジベンゾチオフェン又はカルバゾールから、環を構成する原子に直接結合する水素原子1個を除いた基がより好ましく、フェニル基、ナフチル基、フルオレニル基、カルバゾリル基、ジベンゾチエニル基又はジベンゾフリル基が更に好ましく、フェニル基、ナフチル基又はカルバゾリル基が特に好ましく、これらの基は置換基を有していてもよい。
Since the luminance life of the light emitting element of this embodiment is more excellent, it is preferable that at least one of Ar H1 and Ar H2 is an aryl group or a monovalent heterocyclic group, and both Ar H1 and Ar H2 are an aryl group or a monovalent heterocyclic group. A group or a monovalent heterocyclic group is more preferable, and these groups may have a substituent.
As the aryl group and monovalent heterocyclic group in Ar H1 and Ar H2 , monocyclic, bicyclic, or tricyclic aromatic hydrocarbons, or , a monocyclic, bicyclic, or tricyclic heterocyclic compound from which one hydrogen atom directly bonded to the atom constituting the ring is removed, such as benzene, naphthalene, fluorene, pyridine, diazabenzene, and triazine. , azanaphthalene, diazanaphthalene, dibenzofuran, dibenzothiophene, or carbazole, with one hydrogen atom directly bonded to a ring-constituting atom removed, such as a phenyl group, a naphthyl group, a fluorenyl group, a carbazolyl group, and a dibenzo group. A thienyl group or a dibenzofuryl group is more preferred, a phenyl group, a naphthyl group or a carbazolyl group is particularly preferred, and these groups may have a substituent.
 ArH1及びArH2が有していてもよい置換基としては、好ましくは、ハロゲン原子、シアノ基、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アリール基、1価の複素環基又は置換アミノ基であり、より好ましくは、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、1価の複素環基又は置換アミノ基であり、更に好ましくは、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であり、特に好ましくは、アルキル基、シクロアルキル基又はアリール基であり、これらの基は更に置換基を有していてもよい。
 ArH1及びArH2が有していてもよい置換基におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、ArH1及びArH2におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
The substituent that Ar H1 and Ar H2 may have is preferably a halogen atom, a cyano group, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryloxy group, an aryl group, or a monovalent group. A heterocyclic group or a substituted amino group, more preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a monovalent heterocyclic group or a substituted amino group, even more preferably an alkyl group , a cycloalkyl group, an aryl group, a monovalent heterocyclic group, or a substituted amino group, and particularly preferably an alkyl group, a cycloalkyl group, or an aryl group, even if these groups further have a substituent. good.
Examples and preferred ranges of the aryl group, monovalent heterocyclic group, and substituted amino group in the substituents that Ar H1 and Ar H2 may have are the aryl group, monovalent heterocyclic group, and substituted amino group in Ar H1 and Ar H2 , respectively The examples and preferred ranges of the cyclic group and substituted amino group are the same.
 ArH1及びArH2が有していてもよい置換基が更に有していてもよい置換基としては、好ましくは、ハロゲン原子、シアノ基、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アリール基、1価の複素環基又は置換アミノ基であり、より好ましくは、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であり、更に好ましくは、アルキル基、シクロアルキル基又はアリール基であり、特に好ましくは、アルキル基又はシクロアルキル基であり、これらの基は更に置換基を有していてもよいが、更に置換基を有さないことが好ましい。
 ArH1及びArH2が有していてもよい置換基が更に有していてもよい置換基におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、ArH1及びArH2におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
The substituents that Ar H1 and Ar H2 may further include are preferably a halogen atom, a cyano group, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, An aryloxy group, an aryl group, a monovalent heterocyclic group, or a substituted amino group, more preferably an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, or a substituted amino group, still more preferably , an alkyl group, a cycloalkyl group, or an aryl group, particularly preferably an alkyl group or a cycloalkyl group, and these groups may further have a substituent, but must not have a further substituent. is preferred.
Examples and preferred ranges of the aryl group, monovalent heterocyclic group, and substituted amino group in the substituents that Ar H1 and Ar H2 may have further include Ar H1 and Ar H2 , respectively. The examples and preferred ranges of the aryl group, monovalent heterocyclic group, and substituted amino group in Ar H2 are the same.
 LH1における2価の基としては、好ましくは、本実施形態の発光素子の輝度寿命がより優れるので、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-N(R)-で表される基、-(O=)P(R)-で表される基、-O-で表される基、-S-で表される基、-S(=O)-で表される基又は-C(=O)-で表される基であり、より好ましくは、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-N(R)-で表される基、-O-で表される基又は-S-で表される基であり、更に好ましくは、アルキレン基、シクロアルキレン基、アリーレン基又は2価の複素環基であり、特に好ましくは、アリーレン基又は2価の複素環基であり、これらの基は置換基を有していてもよい。
 LH1における2価の基の少なくとも1つは、本実施形態の発光素子の輝度寿命がより優れるので、好ましくは、アルキレン基、シクロアルキレン基、アリーレン基又は2価の複素環基であり、より好ましくは、アリーレン基又は2価の複素環基であり、これらの基は置換基を有していてもよい。
The divalent group in L H1 is preferably an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, -N(R 0 ), since the luminance life of the light emitting element of this embodiment is more excellent. A group represented by -, a group represented by -(O=)P(R 0 )-, a group represented by -O-, a group represented by -S-, -S(=O) 2 - A group represented by -C(=O)-, more preferably an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, -N(R 0 )- A group represented by -O- or -S-, more preferably an alkylene group, cycloalkylene group, arylene group or divalent heterocyclic group, particularly preferably is an arylene group or a divalent heterocyclic group, and these groups may have a substituent.
At least one of the divalent groups in L H1 is preferably an alkylene group, a cycloalkylene group, an arylene group, or a divalent heterocyclic group, since the luminance life of the light emitting element of this embodiment is more excellent. Preferably, it is an arylene group or a divalent heterocyclic group, and these groups may have a substituent.
 LH1における2価の基において、アリーレン基は、本実施形態の発光素子の輝度寿命がより優れるので、好ましくは、単環式又は2~7環式の芳香族炭化水素から環を構成する原子に直接結合する水素原子2個を除いた基であり、より好ましくは、単環式又は2~5環式の芳香族炭化水素から環を構成する原子に直接結合する水素原子2個を除いた基であり、更に好ましくは、単環式、2環式又は3環式の芳香族炭化水素から環を構成する原子に直接結合する水素原子2個を除いた基であり、これらの基は置換基を有していてもよい。
 LH1における2価の基において、アリーレン基は、本実施形態の発光素子の輝度寿命がより優れるので、好ましくは、ベンゼン、ナフタレン、アントラセン、フェナントレン、ジヒドロフェナントレン、フルオレン、ベンゾアントラセン、ベンゾフェナントレン、ベンゾフルオレン、ジベンゾアントラセン、ジベンゾフェナントレン、ジベンゾフルオレン、インデノフルオレン又はベンゾフルオランテンから、環を構成する原子に直接結合する水素原子2個を除いた基であり、より好ましくは、ベンゼン、ナフタレン、アントラセン、フェナントレン、ジヒドロフェナントレン、フルオレン、ベンゾアントラセン、ベンゾフェナントレン又はベンゾフルオレンから、環を構成する原子に直接結合する水素原子2個を除いた基であり、更に好ましくは、ベンゼン、ナフタレン、アントラセン、フェナントレン、ジヒドロフェナントレン又はフルオレンから、環を構成する原子に直接結合する水素原子2個を除いた基であり、特に好ましくは、ベンゼン、ナフタレン又はアントラセンから、環を構成する原子に直接結合する水素原子2個を除いた基であり、これらの基は置換基を有していてもよい。
In the divalent group in L H1 , the arylene group is preferably an atom constituting a ring from a monocyclic or 2 to 7 ring aromatic hydrocarbon because the luminance life of the light emitting element of this embodiment is more excellent. A group from which two hydrogen atoms directly bonded to are removed, more preferably from a monocyclic or bi- to pentacyclic aromatic hydrocarbon from which two hydrogen atoms directly bonded to the atoms constituting the ring are removed. A group, more preferably a group obtained by removing two hydrogen atoms directly bonded to atoms constituting a ring from a monocyclic, bicyclic, or tricyclic aromatic hydrocarbon, and these groups are substituted with It may have a group.
Among the divalent groups in L H1 , the arylene group is preferably benzene, naphthalene, anthracene, phenanthrene, dihydrophenanthrene, fluorene, benzanthracene, benzophenanthrene, benzophenanthrene, because the luminance life of the light emitting element of this embodiment is better. A group obtained by removing two hydrogen atoms directly bonded to atoms constituting a ring from fluorene, dibenzoanthracene, dibenzophenanthrene, dibenzofluorene, indenofluorene, or benzofluoranthene, more preferably benzene, naphthalene, or anthracene. , phenanthrene, dihydrophenanthrene, fluorene, benzanthracene, benzophenanthrene or benzofluorene, from which two hydrogen atoms directly bonded to the atoms constituting the ring are removed, more preferably benzene, naphthalene, anthracene, phenanthrene, A group obtained by removing two hydrogen atoms directly bonded to the atoms constituting the ring from dihydrophenanthrene or fluorene, and particularly preferably two hydrogen atoms bonded directly to the atoms constituting the ring from benzene, naphthalene or anthracene. These groups may have a substituent.
 LH1における2価の基において、2価の複素環基は、本実施形態の発光素子の輝度寿命がより優れるので、好ましくは、単環式又は2~7環式の複素環式化合物から環を構成する原子(好ましくは炭素原子)に直接結合する水素原子2個を除いた基であり、より好ましくは、単環式又は2~5環式の複素環式化合物から環を構成する原子(好ましくは炭素原子)に直接結合する水素原子2個を除いた基であり、更に好ましくは、単環式、2環式又は3環式の複素環式化合物から環を構成する原子(好ましくは炭素原子)に直接結合する水素原子2個を除いた基であり、特に好ましくは、3環式の複素環式化合物から環を構成する原子(好ましくは炭素原子)に直接結合する水素原子2個を除いた基であり、これらの基は置換基を有していてもよい。
 LH1における2価の基において、2価の複素環基は、本実施形態の発光素子の輝度寿命がより優れるので、好ましくは、フラン、チオフェン、オキサジアゾール、チアジアゾール、ピロール、ジアゾール、トリアゾール、ピリジン、ジアザベンゼン、トリアジン、アザナフタレン、ジアザナフタレン、ベンゾフラン、ベンゾチオフェン、インドール、アザインドール、ジアザインドール、ベンゾジアゾール、ベンゾチアジアゾール、ベンゾトリアゾール、ジベンゾフラン、ジベンゾチオフェン、カルバゾール、アザカルバゾール、ジアザカルバゾール、フェノキサジン、フェノチアジン、9,10-ジヒドロアクリジン、5,10-ジヒドロフェナジン、アザアントラセン、ジアザアントラセン、アザフェナントレン、ジアザフェナントレン、ベンゾカルバゾール、アザベンゾカルバゾール、ジアザベンゾカルバゾール、ベンゾナフトフラン、ベンゾナフトチオフェン、ジベンゾカルバゾール、インドロカルバゾール、インデノカルバゾール、アザインドロカルバゾール、ジアザインドロカルバゾール、アザインデノカルバゾール又はジアザインデノカルバゾールから環を構成する原子(好ましくは炭素原子)に直接結合する水素原子2個を除いた基であり、より好ましくは、ピリジン、ジアザベンゼン、トリアジン、アザナフタレン、ジアザナフタレン、ジベンゾフラン、ジベンゾチオフェン、カルバゾール、アザカルバゾール、ジアザカルバゾール、フェノキサジン、フェノチアジン、9,10-ジヒドロアクリジン、5,10-ジヒドロフェナジン、ベンゾカルバゾール、アザベンゾカルバゾール、ジアザベンゾカルバゾール、ベンゾナフトフラン、ベンゾナフトチオフェン、ジベンゾカルバゾール、インドロカルバゾール、インデノカルバゾール、アザインドロカルバゾール、ジアザインドロカルバゾール、アザインデノカルバゾール又はジアザインデノカルバゾールから環を構成する原子(好ましくは炭素原子)に直接結合する水素原子2個を除いた基であり、更に好ましくは、ピリジン、ジアザベンゼン、トリアジン、アザナフタレン、ジアザナフタレン、ジベンゾフラン、ジベンゾチオフェン、カルバゾール、アザカルバゾール、ジアザカルバゾール、フェノキサジン、フェノチアジン、9,10-ジヒドロアクリジン又は5,10-ジヒドロフェナジンから環を構成する原子(好ましくは炭素原子)に直接結合する水素原子2個を除いた基であり、特に好ましくは、ピリジン、ジアザベンゼン、トリアジン、アザナフタレン、ジアザナフタレン、ジベンゾフラン、ジベンゾチオフェン又はカルバゾールから環を構成する原子(好ましくは炭素原子)に直接結合する水素原子2個を除いた基であり、とりわけ好ましくは、ジベンゾフラン、ジベンゾチオフェン又はカルバゾールから環を構成する原子(好ましくは炭素原子)に直接結合する水素原子2個を除いた基であり、これらの基は置換基を有していてもよい。
Among the divalent groups in L H1 , a divalent heterocyclic group is preferably a monocyclic or 2- to 7-cyclic heterocyclic group, since the luminance life of the light emitting element of this embodiment is better. A group from which two hydrogen atoms are directly bonded to an atom (preferably a carbon atom) constituting the , more preferably a group consisting of an atom constituting a ring from a monocyclic or 2 to 5 ring heterocyclic compound ( Preferably, it is a group from which two hydrogen atoms are directly bonded to a carbon atom), and more preferably a group from which two hydrogen atoms are directly bonded to an atom (preferably a carbon atom) constituting a ring of a monocyclic, bicyclic, or tricyclic heterocyclic compound. A group in which two hydrogen atoms directly bonded to an atom (atom) are removed, and particularly preferably, a group in which two hydrogen atoms bonded directly to an atom (preferably a carbon atom) forming a ring from a tricyclic heterocyclic compound are removed. These groups may have a substituent.
Among the divalent groups in L H1 , divalent heterocyclic groups are preferably furan, thiophene, oxadiazole, thiadiazole, pyrrole, diazole, triazole, Pyridine, diazabenzene, triazine, azanaphthalene, diazanaphthalene, benzofuran, benzothiophene, indole, azaindole, diazaindole, benzodiazole, benzothiadiazole, benzotriazole, dibenzofuran, dibenzothiophene, carbazole, azacarbazole, diazacarbazole , phenoxazine, phenothiazine, 9,10-dihydroacridine, 5,10-dihydrophenazine, azaanthracene, diazaanthracene, azaphenanthrene, diazaphenanthrene, benzocarbazole, azabenzocarbazole, diazabenzocarbazole, benzonaphthofuran, A direct bond to an atom (preferably a carbon atom) constituting a ring from benzonaphthothiophene, dibenzocarbazole, indolocarbazole, indenocarbazole, azaindrocarbazole, diazaindrocarbazole, azaindenocarbazole or diazaindenocarbazole A group from which two hydrogen atoms have been removed, more preferably pyridine, diazabenzene, triazine, azanaphthalene, diazanaphthalene, dibenzofuran, dibenzothiophene, carbazole, azacarbazole, diazacarbazole, phenoxazine, phenothiazine, 9, 10-dihydroacridine, 5,10-dihydrophenazine, benzocarbazole, azabenzocarbazole, diazabenzocarbazole, benzonaphthofuran, benzonaphthothiophene, dibenzocarbazole, indolocarbazole, indenocarbazole, azaindrocarbazole, diazain A group obtained by removing two hydrogen atoms directly bonded to an atom (preferably a carbon atom) constituting a ring from dolocarbazole, azaindenocarbazole or diazaindenocarbazole, more preferably pyridine, diazabenzene, triazine, Atoms constituting a ring (preferably carbon atoms ), and is particularly preferably a group consisting of atoms (preferably carbon atoms) that form a ring of pyridine, diazabenzene, triazine, azanaphthalene, diazanaphthalene, dibenzofuran, dibenzothiophene, or carbazole. ), particularly preferably a group from which two hydrogen atoms directly bonded to dibenzofuran, dibenzothiophene or carbazole are removed from a ring-constituting atom (preferably a carbon atom) and these groups may have a substituent.
 LH1における2価の基において、アルキレン基としては、好ましくは、メチレン基、エチレン基又はプロピレン基であり、より好ましくはメチレン基であり、これらの基は置換基を有していてもよい。 In the divalent group for L H1 , the alkylene group is preferably a methylene group, an ethylene group or a propylene group, more preferably a methylene group, and these groups may have a substituent.
 LH1が有していてもよい置換基の例及び好ましい範囲は、ArH1及びArH2が有していてもよい置換基の例及び好ましい範囲と同じである。 The examples and preferred ranges of substituents that L H1 may have are the same as the examples and preferred ranges of substituents that Ar H1 and Ar H2 may have.
 LH1における2価の基において、Rは、好ましくは、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくはアリール基又は1価の複素環基であり、更に好ましくはアリール基であり、これらの基は置換基を有していてもよい。
 LH1における2価の基において、Rにおけるアリール基及び1価の複素環基の例及び好ましい範囲は、それぞれ、ArH1及びArH2におけるアリール基及び1価の複素環基の例及び好ましい範囲と同じである。
 LH1における2価の基において、Rが有していてもよい置換基の例及び好ましい範囲は、ArH1及びArH2が有していてもよい置換基の例及び好ましい範囲と同じである。
In the divalent group in L H1 , R 0 is preferably an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, more preferably an aryl group or a monovalent heterocyclic group, More preferably, it is an aryl group, and these groups may have a substituent.
Examples and preferred ranges of the aryl group and monovalent heterocyclic group in R 0 in the divalent group in L H1 are the examples and preferred ranges of the aryl group and monovalent heterocyclic group in Ar H1 and Ar H2 , respectively. is the same as
In the divalent group in L H1 , examples and preferred ranges of substituents that R 0 may have are the same as examples and preferred ranges of substituents that Ar H1 and Ar H2 may have. .
 nH1は、通常、0以上10以下の整数であり、好ましくは0以上7以下の整数であり、より好ましくは1以上5以下の整数であり、更に好ましくは1以上3以下の整数であり、特に好ましくは1又は2である。 n H1 is usually an integer of 0 or more and 10 or less, preferably an integer of 0 or more and 7 or less, more preferably an integer of 1 or more and 5 or less, still more preferably an integer of 1 or more and 3 or less, Particularly preferably 1 or 2.
 ArH1とArH2とは、直接結合して、又は、2価の基を介して結合して、環を形成してもよいが、式(H-1)で表される化合物の合成が容易なので、環を形成しないことが好ましい。
 ArH1とArH2とが、2価の基を介して結合して、環を形成する場合において、2価の基としては、好ましくは、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-N(R)-で表される基、-(O=)P(R)-で表される基、-O-で表される基、-S-で表される基、-S(=O)-で表される基又は-C(=O)-で表される基であり、より好ましくは、アルキレン基、シクロアルキレン基、-N(R)-で表される基、-O-で表される基又は-S-で表される基であり、更に好ましくは、アルキレン基、-O-で表される基又は-S-で表される基であり、これらの基は置換基を有していてもよい。
 ArH1とArH2とが、2価の基を介して結合して、環を形成する場合において、2価の基におけるアリーレン基、2価の複素環基及びアルキレン基の例及び好ましい範囲は、それぞれ、LH1におけるアリーレン基、2価の複素環基及びアルキレン基の例及び好ましい範囲と同じである。
 ArH1とArH2とが、2価の基を介して結合して、環を形成する場合において、2価の基におけるRの例及び好ましい範囲は、LH1の2価の基におけるRの例及び好ましい範囲と同じである。
 ArH1とArH2とが、2価の基を介して結合して、環を形成する場合において、2価の基が有していてもよい置換基の例及び好ましい範囲は、ArH1及びArH2が有していてもよい置換基の例及び好ましい範囲と同じである。
Ar H1 and Ar H2 may be bonded directly or via a divalent group to form a ring, but the compound represented by formula (H-1) can be easily synthesized. Therefore, it is preferable not to form a ring.
When Ar H1 and Ar H2 are bonded via a divalent group to form a ring, the divalent group is preferably an alkylene group, a cycloalkylene group, an arylene group, or a divalent hetero cyclic group, group represented by -N(R 0 )-, group represented by -(O=)P(R 0 )-, group represented by -O-, group represented by -S- , -S(=O) 2 - or -C(=O)-, more preferably alkylene group, cycloalkylene group, -N(R 0 )-. , a group represented by -O- or a group represented by -S-, more preferably an alkylene group, a group represented by -O- or a group represented by -S- , these groups may have a substituent.
In the case where Ar H1 and Ar H2 are bonded via a divalent group to form a ring, examples and preferred ranges of the arylene group, divalent heterocyclic group, and alkylene group in the divalent group are as follows: The examples and preferred ranges are the same as the arylene group, divalent heterocyclic group, and alkylene group in L H1 , respectively.
In the case where Ar H1 and Ar H2 are bonded via a divalent group to form a ring, examples and preferred ranges of R 0 in the divalent group are R 0 in the divalent group of L H1 . The examples and preferred ranges are the same.
When Ar H1 and Ar H2 are bonded via a divalent group to form a ring, examples and preferred ranges of substituents that the divalent group may have include Ar H1 and Ar The examples and preferred ranges of substituents that H2 may have are the same.
 LH1とArH1とは、直接結合して、又は、2価の基を介して結合して、環を形成してもよいが、式(H-1)で表される化合物の合成が容易なので、環を形成しないことが好ましい。LH1とArH1とが、2価の基を介して結合して、環を形成する場合における2価の基の例及び好ましい範囲は、ArH1とArH2とが、2価の基を介して結合して、環を形成する場合における2価の基の例及び好ましい範囲と同じである。
 LH1とArH2とは、直接結合して、又は、2価の基を介して結合して、環を形成してもよいが、式(H-1)で表される化合物の合成が容易なので、環を形成しないことが好ましい。LH1とArH2とが、2価の基を介して結合して、環を形成する場合における2価の基の例及び好ましい範囲は、ArH1とArH2とが、2価の基を介して結合して、環を形成する場合における2価の基の例及び好ましい範囲と同じである。
L H1 and Ar H1 may be bonded directly or via a divalent group to form a ring, but the compound represented by formula (H-1) can be easily synthesized. Therefore, it is preferable not to form a ring. Examples and preferred ranges of the divalent group in the case where L H1 and Ar H1 are bonded via a divalent group to form a ring are: The examples and preferred ranges of divalent groups in the case of bonding together to form a ring are the same as the examples and preferred ranges of divalent groups.
L H1 and Ar H2 may be bonded directly or via a divalent group to form a ring, but the compound represented by formula (H-1) can be easily synthesized. Therefore, it is preferable not to form a ring. Examples and preferred ranges of the divalent group in the case where L H1 and Ar H2 are bonded via a divalent group to form a ring are: The examples and preferred ranges of divalent groups in the case of bonding together to form a ring are the same as the examples and preferred ranges of divalent groups.
 式(H-1)で表される化合物としては、例えば、下記式で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000097
Examples of the compound represented by formula (H-1) include compounds represented by the following formula.
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000097
 [高分子ホスト]
 高分子ホスト材料としては、例えば、後述の正孔輸送材料である高分子化合物、及び、後述の電子輸送材料である高分子化合物が挙げられる。
[Polymer host]
Examples of the polymer host material include a polymer compound that is a hole transport material described below and a polymer compound that is an electron transport material described below.
 高分子ホスト材料のポリスチレン換算の数平均分子量は、好ましくは5×10~1×10であり、より好ましくは1×10~5×10であり、更に好ましくは5×10~2×10である。高分子ホスト材料のポリスチレン換算の重量平均分子量は、好ましくは1×10~2×10であり、より好ましくは2×10~1×10であり、更に好ましくは1×10~5×10である。 The number average molecular weight of the polymeric host material in terms of polystyrene is preferably 5×10 3 to 1×10 6 , more preferably 1×10 4 to 5×10 5 , even more preferably 5×10 4 to It is 2×10 5 . The weight average molecular weight of the polymeric host material in terms of polystyrene is preferably 1×10 4 to 2×10 6 , more preferably 2×10 4 to 1×10 6 , even more preferably 1×10 5 to It is 5×10 5 .
 高分子ホストは、好ましくは、下記式(Y)で表される構成単位を含む高分子化合物である。
Figure JPOXMLDOC01-appb-C000098
[式中、ArY1は、アリーレン基、2価の複素環基、又は、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基を表し、これらの基は置換基を有していてもよい。]
The polymer host is preferably a polymer compound containing a structural unit represented by the following formula (Y).
Figure JPOXMLDOC01-appb-C000098
[In the formula, Ar Y1 represents an arylene group, a divalent heterocyclic group, or a divalent group in which at least one arylene group and at least one divalent heterocyclic group are directly bonded; The group may have a substituent. ]
 ArY1で表されるアリーレン基は、より好ましくは、式(A-1)、式(A-2)、式(A-6)~(A-10)、式(A-19)又は式(A-20)で表される基であり、更に好ましくは、式(A-1)、式(A-2)、式(A-7)、式(A-9)又は式(A-19)で表される基であり、これらの基は置換基を有していてもよい。 The arylene group represented by Ar Y1 is more preferably represented by formula (A-1), formula (A-2), formula (A-6) to (A-10), formula (A-19), or formula ( A-20), more preferably formula (A-1), formula (A-2), formula (A-7), formula (A-9) or formula (A-19) These groups may have a substituent.
 ArY1で表される2価の複素環基は、より好ましくは、式(AA-1)~(AA-4)、式(AA-10)~(AA-15)、式(AA-18)~(AA-21)、式(AA-33)又は式(AA-34)で表される基であり、更に好ましくは、式(AA-4)、式(AA-10)、式(AA-12)、式(AA-14)又は式(AA-33)で表される基であり、これらの基は置換基を有していてもよい。 The divalent heterocyclic group represented by Ar Y1 is more preferably one of formulas (AA-1) to (AA-4), formulas (AA-10) to (AA-15), and formula (AA-18). A group represented by ~(AA-21), formula (AA-33) or formula (AA-34), more preferably formula (AA-4), formula (AA-10) or formula (AA- 12), a group represented by formula (AA-14) or formula (AA-33), and these groups may have a substituent.
 ArY1で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基における、アリーレン基及び2価の複素環基のより好ましい範囲、更に好ましい範囲は、それぞれ、前述のArY1で表されるアリーレン基及び2価の複素環基のより好ましい範囲、更に好ましい範囲と同様である。 More preferred ranges of the arylene group and divalent heterocyclic group in the divalent group represented by Ar Y1 in which at least one arylene group and at least one divalent heterocyclic group are directly bonded, still more preferred The ranges are the same as the more preferred ranges and more preferred ranges of the arylene group and divalent heterocyclic group represented by Ar Y1 described above, respectively.
 「少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基」としては、例えば、下記式で表される基が挙げられ、これらは置換基を有していてもよい。なお、*は結合位置を表す。
Figure JPOXMLDOC01-appb-C000099
[式中、RXXは、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。]
Examples of "a divalent group in which at least one arylene group and at least one divalent heterocyclic group are directly bonded" include groups represented by the following formula, which have a substituent. You may do so. Note that * represents the bonding position.
Figure JPOXMLDOC01-appb-C000099
[In the formula, R XX represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent. ]
 RXXは、好ましくは、アルキル基、シクロアルキル基又はアリール基であり、これらの基は置換基を有していてもよい。 R XX is preferably an alkyl group, a cycloalkyl group, or an aryl group, and these groups may have a substituent.
 ArY1で表される基が有してもよい置換基は、好ましくは、アルキル基、シクロアルキル基又はアリール基であり、これらの基は更に置換基を有していてもよい。 The substituent that the group represented by Ar Y1 may have is preferably an alkyl group, a cycloalkyl group, or an aryl group, and these groups may further have a substituent.
 式(Y)で表される構成単位としては、例えば、式(Y-1)~(Y-10)で表される構成単位が挙げられ、高分子ホストと本実施形態の化合物との組成物を用いた発光素子の輝度寿命の観点からは、好ましくは式(Y-1)~(Y-3)で表される構成単位であり、電子輸送性の観点からは、好ましくは式(Y-4)~(Y-7)で表される構成単位であり、正孔輸送性の観点からは、好ましくは式(Y-8)~(Y-10)で表される構成単位である。 Examples of the structural unit represented by formula (Y) include structural units represented by formulas (Y-1) to (Y-10), and the composition of the polymer host and the compound of this embodiment From the viewpoint of the brightness life of a light emitting element using 4) to (Y-7), and from the viewpoint of hole transport properties, preferably structural units represented by formulas (Y-8) to (Y-10).
Figure JPOXMLDOC01-appb-C000100
[式中、RY1は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRY1は、同一でも異なっていてもよく、隣接するRY1同士は互いに結合して、それぞれが結合する炭素原子と共に環を形成していてもよい。]
Figure JPOXMLDOC01-appb-C000100
[In the formula, R Y1 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent. . A plurality of R Y1s may be the same or different, and adjacent R Y1s may be bonded to each other to form a ring with the carbon atoms to which they are bonded. ]
 RY1は、好ましくは、水素原子、アルキル基、シクロアルキル基又はアリール基であり、これらの基は置換基を有していてもよい。 R Y1 is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, or an aryl group, and these groups may have a substituent.
 式(Y-1)で表される構成単位は、好ましくは、式(Y-1’)で表される構成単位である。
Figure JPOXMLDOC01-appb-C000101
[式中、RY11は、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRY11は、同一でも異なっていてもよい。]
The structural unit represented by formula (Y-1) is preferably a structural unit represented by formula (Y-1').
Figure JPOXMLDOC01-appb-C000101
[In the formula, R Y11 represents an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent. A plurality of R Y11 's may be the same or different. ]
 RY11は、好ましくは、アルキル基、シクロアルキル基又はアリール基であり、より好ましくは、アルキル基又はシクロアルキル基であり、これらの基は置換基を有していてもよい。 R Y11 is preferably an alkyl group, a cycloalkyl group, or an aryl group, more preferably an alkyl group or a cycloalkyl group, and these groups may have a substituent.
Figure JPOXMLDOC01-appb-C000102
[式中、
 RY1は前記と同じ意味を表す。
 XY1は、-C(RY2-、-C(RY2)=C(RY2)-又は-C(RY2-C(RY2-で表される基を表す。RY2は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRY2は、同一でも異なっていてもよく、RY2同士は互いに結合して、それぞれが結合する炭素原子と共に環を形成していてもよい。]
Figure JPOXMLDOC01-appb-C000102
[In the formula,
R Y1 represents the same meaning as above.
X Y1 represents a group represented by -C(R Y2 ) 2 -, -C(R Y2 )=C(R Y2 )-, or -C(R Y2 ) 2 -C(R Y2 ) 2 -. R Y2 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent. A plurality of R Y2s may be the same or different, and R Y2s may be bonded to each other to form a ring with the carbon atoms to which they are bonded. ]
 RY2は、好ましくは、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくは、アルキル基、シクロアルキル基又はアリール基であり、これらの基は置換基を有していてもよい。 R Y2 is preferably an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, more preferably an alkyl group, a cycloalkyl group, or an aryl group, and these groups have a substituent. You may do so.
 XY1において、-C(RY2-で表される基中の2個のRY2の組み合わせは、好ましくは両方がアルキル基若しくはシクロアルキル基、両方がアリール基、両方が1価の複素環基、又は、一方がアルキル基若しくはシクロアルキル基で他方がアリール基若しくは1価の複素環基であり、より好ましくは一方がアルキル基若しくはシクロアルキル基で他方がアリール基であり、これらの基は置換基を有していてもよい。2個存在するRY2は互いに結合して、それぞれが結合する原子と共に環を形成していてもよく、RY2が環を形成する場合、-C(RY2-で表される基としては、好ましくは式(Y-A1)~(Y-A5)で表される基であり、より好ましくは式(Y-A4)で表される基であり、これらの基は置換基を有していてもよい。なお、*は結合位置を表す。
Figure JPOXMLDOC01-appb-C000103
In X Y1 , the combination of two R Y2s in the group represented by -C(R Y2 ) 2 - is preferably such that both are alkyl groups or cycloalkyl groups, both are aryl groups, and both are monovalent hetero cyclic group, or one is an alkyl group or cycloalkyl group and the other is an aryl group or a monovalent heterocyclic group, more preferably one is an alkyl group or cycloalkyl group and the other is an aryl group, and these groups may have a substituent. Two R Y2s may be bonded to each other to form a ring with the atoms to which they are bonded, and when R Y2 forms a ring, as a group represented by -C(R Y2 ) 2 - is preferably a group represented by formulas (Y-A1) to (Y-A5), more preferably a group represented by formula (Y-A4), and these groups have a substituent. You can leave it there. Note that * represents the bonding position.
Figure JPOXMLDOC01-appb-C000103
 XY1において、-C(RY2)=C(RY2)-で表される基中の2個のRY2の組み合わせは、好ましくは両方がアルキル基若しくはシクロアルキル基、又は、一方がアルキル基若しくはシクロアルキル基で他方がアリール基であり、これらの基は置換基を有していてもよい。 In X Y1 , the combination of two R Y2s in the group represented by -C(R Y2 )=C(R Y2 )- is preferably such that both are an alkyl group or a cycloalkyl group, or one is an alkyl group. Alternatively, one is a cycloalkyl group and the other is an aryl group, and these groups may have a substituent.
 XY1において、-C(RY2-C(RY2-で表される基中の4個のRY2は、好ましくは置換基を有していてもよいアルキル基又はシクロアルキル基である。複数あるRY2は互いに結合して、それぞれが結合する原子と共に環を形成していてもよく、RY2が環を形成する場合、-C(RY2-C(RY2-で表される基は、好ましくは式(Y-B1)~(Y-B5)で表される基であり、より好ましくは式(Y-B3)で表される基であり、これらの基は置換基を有していてもよい。なお、*は結合位置を表す。
Figure JPOXMLDOC01-appb-C000104
[式中、RY2は前記と同じ意味を表す。]
In X Y1 , four R Y2s in the group represented by -C(R Y2 ) 2 -C(R Y2 ) 2 - are preferably an alkyl group or a cycloalkyl group which may have a substituent. It is. A plurality of R Y2 may be bonded to each other to form a ring with the atoms to which they are bonded, and when R Y2 forms a ring, -C(R Y2 ) 2 -C(R Y2 ) 2 - The group represented is preferably a group represented by formulas (Y-B1) to (Y-B5), more preferably a group represented by formula (Y-B3), and these groups are substituted. It may have a group. Note that * represents the bonding position.
Figure JPOXMLDOC01-appb-C000104
[In the formula, R Y2 represents the same meaning as above. ]
 式(Y-2)で表される構成単位は、式(Y-2’)で表される構成単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000105
[式中、RY1及びXY1は前記と同じ意味を表す。]
The structural unit represented by formula (Y-2) is preferably a structural unit represented by formula (Y-2').
Figure JPOXMLDOC01-appb-C000105
[In the formula, R Y1 and X Y1 represent the same meanings as above. ]
Figure JPOXMLDOC01-appb-C000106
[式中、RY1及びXY1は前記と同じ意味を表す。]
Figure JPOXMLDOC01-appb-C000106
[In the formula, R Y1 and X Y1 represent the same meanings as above. ]
 式(Y-3)で表される構成単位は、式(Y-3’)で表される構成単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000107
[式中、RY11及びXY1は前記と同じ意味を表す。]
The structural unit represented by formula (Y-3) is preferably a structural unit represented by formula (Y-3').
Figure JPOXMLDOC01-appb-C000107
[In the formula, R Y11 and X Y1 represent the same meanings as above. ]
Figure JPOXMLDOC01-appb-C000108
[式中、
 RY1は前記と同じ意味を表す。
 RY3は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。]
Figure JPOXMLDOC01-appb-C000108
[In the formula,
R Y1 represents the same meaning as above.
R Y3 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent. ]
 RY3は、好ましくはアルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基であり、より好ましくはアリール基であり、これらの基は置換基を有していてもよい。 R Y3 is preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, more preferably an aryl group, and these groups have a substituent. It's okay.
 式(Y-4)で表される構成単位は、式(Y-4’)で表される構成単位であることが好ましく、式(Y-6)で表される構成単位は、式(Y-6’)で表される構成単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000109
[式中、RY1及びRY3は前記と同じ意味を表す。]
The structural unit represented by formula (Y-4) is preferably a structural unit represented by formula (Y-4'), and the structural unit represented by formula (Y-6) is preferably a structural unit represented by formula (Y-4'). -6') is preferable.
Figure JPOXMLDOC01-appb-C000109
[In the formula, R Y1 and R Y3 represent the same meanings as above. ]
Figure JPOXMLDOC01-appb-C000110
[式中、
 RY1は前記を同じ意味を表す。
 RY4は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。]
Figure JPOXMLDOC01-appb-C000110
[In the formula,
RY1 represents the same meaning as above.
R Y4 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent. ]
 RY4は、好ましくはアルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基であり、より好ましくはアリール基であり、これらの基は置換基を有していてもよい。 R Y4 is preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, more preferably an aryl group, and these groups have a substituent. You can.
 式(Y)で表される構成単位としては、例えば、式(Y-101)~(Y-141)で表されるアリーレン基からなる構成単位、式(Y-201)~(Y-209)で表される2価の複素環基からなる構成単位、式(Y-301)~(Y-306)で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基からなる構成単位が挙げられる。
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000115
Figure JPOXMLDOC01-appb-C000116
Figure JPOXMLDOC01-appb-C000117
Figure JPOXMLDOC01-appb-C000118
Figure JPOXMLDOC01-appb-C000119
Figure JPOXMLDOC01-appb-C000120
Figure JPOXMLDOC01-appb-C000121
Figure JPOXMLDOC01-appb-C000122
Figure JPOXMLDOC01-appb-C000123
Figure JPOXMLDOC01-appb-C000124
Examples of the structural unit represented by formula (Y) include structural units consisting of arylene groups represented by formulas (Y-101) to (Y-141), and formulas (Y-201) to (Y-209). A structural unit consisting of a divalent heterocyclic group represented by, at least one arylene group represented by formulas (Y-301) to (Y-306) and at least one divalent heterocyclic group Examples include structural units consisting of directly bonded divalent groups.
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000115
Figure JPOXMLDOC01-appb-C000116
Figure JPOXMLDOC01-appb-C000117
Figure JPOXMLDOC01-appb-C000118
Figure JPOXMLDOC01-appb-C000119
Figure JPOXMLDOC01-appb-C000120
Figure JPOXMLDOC01-appb-C000121
Figure JPOXMLDOC01-appb-C000122
Figure JPOXMLDOC01-appb-C000123
Figure JPOXMLDOC01-appb-C000124
 式(Y)におけるArY1がアリーレン基である場合、式(Y)で表される構成単位の含有量は、高分子ホストと本実施形態の化合物との組成物を用いた発光素子の輝度寿命が優れるので、高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.5~80モル%であり、より好ましくは30~60モル%である。 When Ar Y1 in formula (Y) is an arylene group, the content of the structural unit represented by formula (Y) is determined by the brightness life of the light emitting device using the composition of the polymer host and the compound of this embodiment. Therefore, the amount is preferably 0.5 to 80 mol%, more preferably 30 to 60 mol%, based on the total amount of structural units contained in the polymer compound.
 式(Y)におけるArY1が2価の複素環基、又は、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基である場合、式(Y)で表される構成単位の含有量は、高分子ホストと本実施形態の化合物との組成物を用いた発光素子の電荷輸送性が優れるので、高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.5~30モル%であり、より好ましくは3~20モル%である。 When Ar Y1 in the formula (Y) is a divalent heterocyclic group or a divalent group in which at least one arylene group and at least one divalent heterocyclic group are directly bonded, the formula (Y ) The content of the structural units represented by ) is determined by the total amount of structural units contained in the polymer compound, since the charge transport property of the light emitting device using the composition of the polymer host and the compound of this embodiment is excellent. On the other hand, it is preferably 0.5 to 30 mol%, more preferably 3 to 20 mol%.
 高分子ホストは、式(Y)で表される構成単位を1種のみ含むものであってよく、2種以上含むものであってもよい。 The polymer host may contain only one type of structural unit represented by formula (Y), or may contain two or more types.
 高分子ホストは、正孔輸送性が優れるので、下記式(X)で表される構成単位を更に含むことが好ましい。
Figure JPOXMLDOC01-appb-C000125
[式中、
 aX1及びaX2は、それぞれ独立に、0以上の整数を表す。
 ArX1及びArX3は、それぞれ独立に、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。
 ArX2及びArX4は、それぞれ独立に、アリーレン基、2価の複素環基、又は、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基を表し、これらの基は置換基を有していてもよい。ArX2及びArX4が複数存在する場合、それらは同一でも異なっていてもよい。
 RX1、RX2及びRX3は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。RX2及びRX3が複数存在する場合、それらは同一でも異なっていてもよい。]
Since the polymer host has excellent hole transport properties, it is preferable that the polymer host further contains a structural unit represented by the following formula (X).
Figure JPOXMLDOC01-appb-C000125
[In the formula,
aX1 and aX2 each independently represent an integer of 0 or more.
Ar X1 and Ar X3 each independently represent an arylene group or a divalent heterocyclic group, and these groups may have a substituent.
Ar X2 and Ar X4 each independently represent an arylene group, a divalent heterocyclic group, or a divalent group in which at least one arylene group and at least one divalent heterocyclic group are directly bonded These groups may have a substituent. When a plurality of Ar X2 and Ar X4 exist, they may be the same or different.
R X1 , R X2 and R X3 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent. When a plurality of R X2 and R X3 exist, they may be the same or different. ]
 aX1は、高分子ホストと本実施形態の化合物との組成物を用いた発光素子の輝度寿命が優れるので、好ましくは2以下であり、より好ましくは1である。 a X1 is preferably 2 or less, more preferably 1, since a light emitting device using a composition of a polymer host and the compound of this embodiment has an excellent brightness life.
 aX2は、高分子ホストと本実施形態の化合物との組成物を用いた発光素子の輝度寿命が優れるので、好ましくは2以下であり、より好ましくは0である。 a X2 is preferably 2 or less, more preferably 0, since the luminance life of a light emitting device using a composition of a polymer host and the compound of this embodiment is excellent.
 RX1、RX2及びRX3は、好ましくはアルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくはアリール基であり、これらの基は置換基を有していてもよい。 R X1 , R X2 and R X3 are preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably an aryl group, and these groups have a substituent. Good too.
 ArX1及びArX3で表されるアリーレン基は、より好ましくは式(A-1)又は式(A-9)で表される基であり、更に好ましくは式(A-1)で表される基であり、これらの基は置換基を有していてもよい。 The arylene group represented by Ar X1 and Ar These groups may have a substituent.
 ArX1及びArX3で表される2価の複素環基は、より好ましくは式(AA-1)、式(AA-2)又は式(AA-7)~(AA-26)で表される基であり、これらの基は置換基を有していてもよい。 The divalent heterocyclic group represented by Ar X1 and Ar X3 is more preferably represented by formula (AA-1), formula (AA-2) or formula (AA-7) to (AA-26) These groups may have a substituent.
 ArX1及びArX3は、好ましくは置換基を有していてもよいアリーレン基である。 Ar X1 and Ar X3 are preferably arylene groups which may have a substituent.
 ArX2及びArX4で表されるアリーレン基としては、より好ましくは式(A-1)、式(A-6)、式(A-7)、式(A-9)~(A-11)又は式(A-19)で表される基であり、これらの基は置換基を有していてもよい。 The arylene group represented by Ar X2 and Ar or a group represented by formula (A-19), and these groups may have a substituent.
 ArX2及びArX4で表される2価の複素環基のより好ましい範囲は、ArX1及びArX3で表される2価の複素環基のより好ましい範囲と同じである。 The more preferred range of the divalent heterocyclic group represented by Ar X2 and Ar X4 is the same as the more preferred range of the divalent heterocyclic group represented by Ar X1 and Ar X3 .
 ArX2及びArX4で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基における、アリーレン基及び2価の複素環基のより好ましい範囲、更に好ましい範囲は、それぞれ、ArX1及びArX3で表されるアリーレン基及び2価の複素環基のより好ましい範囲、更に好ましい範囲と同様である。 More preferred ranges of the arylene group and the divalent heterocyclic group in the divalent group represented by Ar X2 and Ar X4 in which at least one arylene group and at least one divalent heterocyclic group are directly bonded. The more preferable ranges are the same as the more preferable ranges and the more preferable ranges of the arylene group and divalent heterocyclic group represented by Ar X1 and Ar X3 , respectively.
 ArX2及びArX4で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基としては、式(Y)のArY1で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基と同様のものが挙げられる。 As the divalent group in which at least one arylene group represented by Ar X2 and Ar X4 and at least one divalent heterocyclic group are directly bonded, at least Examples include those similar to divalent groups in which one type of arylene group and at least one type of divalent heterocyclic group are directly bonded.
 ArX2及びArX4は、好ましくは置換基を有していてもよいアリーレン基である。 Ar X2 and Ar X4 are preferably arylene groups which may have substituents.
 ArX1~ArX4及びRX1~RX3で表される基が有してもよい置換基は、好ましくはアルキル基、シクロアルキル基又はアリール基であり、これらの基は更に置換基を有していてもよい。 The substituents that the groups represented by Ar X1 to Ar X4 and R X1 to R You can leave it there.
 式(X)で表される構成単位は、好ましくは式(X-1)~(X-7)で表される構成単位であり、より好ましくは式(X-1)~(X-6)で表される構成単位であり、更に好ましくは式(X-3)~(X-6)で表される構成単位である。
Figure JPOXMLDOC01-appb-C000126
Figure JPOXMLDOC01-appb-C000127
Figure JPOXMLDOC01-appb-C000128
Figure JPOXMLDOC01-appb-C000129
[式中、RX4及びRX5は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、ハロゲン原子、1価の複素環基又はシアノ基を表し、これらの基は置換基を有していてもよい。複数存在するRX4は、同一でも異なっていてもよい。複数存在するRX5は、同一でも異なっていてもよく、隣接するRX5同士は互いに結合して、それぞれが結合する炭素原子と共に環を形成していてもよい。]
The structural unit represented by formula (X) is preferably a structural unit represented by formulas (X-1) to (X-7), more preferably formulas (X-1) to (X-6). A structural unit represented by formulas (X-3) to (X-6) is more preferable.
Figure JPOXMLDOC01-appb-C000126
Figure JPOXMLDOC01-appb-C000127
Figure JPOXMLDOC01-appb-C000128
Figure JPOXMLDOC01-appb-C000129
[In the formula, R X4 and R represents a group, and these groups may have a substituent. A plurality of R X4 's may be the same or different. A plurality of R X5s may be the same or different, and adjacent R X5s may be bonded to each other to form a ring with the carbon atom to which they are bonded. ]
 式(X)で表される構成単位の含有量は、正孔輸送性が優れるので、高分子ホストに含まれる構成単位の合計量に対して、好ましくは0.1~50モル%であり、より好ましくは1~40モル%であり、更に好ましくは5~30モル%である。 The content of the structural unit represented by formula (X) is preferably 0.1 to 50 mol% based on the total amount of structural units contained in the polymer host, since it has excellent hole transport properties. More preferably, it is 1 to 40 mol%, and still more preferably 5 to 30 mol%.
 式(X)で表される構成単位としては、例えば、式(X1-1)~(X1-23)で表される構成単位が挙げられ、好ましくは式(X1-3)~(X1-10)で表される構成単位である。 Examples of the structural unit represented by formula (X) include structural units represented by formulas (X1-1) to (X1-23), preferably formulas (X1-3) to (X1-10). ).
Figure JPOXMLDOC01-appb-C000130
Figure JPOXMLDOC01-appb-C000130
Figure JPOXMLDOC01-appb-C000131
Figure JPOXMLDOC01-appb-C000131
Figure JPOXMLDOC01-appb-C000132
Figure JPOXMLDOC01-appb-C000132
Figure JPOXMLDOC01-appb-C000133
Figure JPOXMLDOC01-appb-C000133
Figure JPOXMLDOC01-appb-C000134
Figure JPOXMLDOC01-appb-C000134
Figure JPOXMLDOC01-appb-C000135
Figure JPOXMLDOC01-appb-C000135
Figure JPOXMLDOC01-appb-C000136
Figure JPOXMLDOC01-appb-C000136
 高分子ホストは、式(X)で表される構成単位を1種のみ含むものであってよく、2種以上含むものであってもよい。 The polymer host may contain only one type of structural unit represented by formula (X), or may contain two or more types.
 高分子ホストとしては、例えば、表2の高分子化合物(P-1)~(P-6)が挙げられる。ここで、「その他」の構成単位とは、式(Y)で表される構成単位、式(X)で表される構成単位以外の構成単位を意味する。
Figure JPOXMLDOC01-appb-T000137
[表中、p、q、r、s及びtは、各構成単位のモル比率を示す。p+q+r+s+t=100であり、かつ、100≧p+q+r+s≧70である。]
Examples of the polymer host include polymer compounds (P-1) to (P-6) shown in Table 2. Here, "other" structural units mean structural units other than the structural unit represented by formula (Y) and the structural unit represented by formula (X).
Figure JPOXMLDOC01-appb-T000137
[In the table, p, q, r, s and t indicate the molar ratio of each structural unit. p+q+r+s+t=100, and 100≧p+q+r+s≧70. ]
 高分子ホストは、ブロック共重合体、ランダム共重合体、交互共重合体、グラフト共重合体のいずれであってもよいし、その他の態様であってもよいが、複数種の原料モノマーを共重合してなる共重合体であることが好ましい。 The polymer host may be a block copolymer, a random copolymer, an alternating copolymer, a graft copolymer, or may have other forms; A copolymer formed by polymerization is preferable.
 <高分子ホストの製造方法>
 高分子ホストは、ケミカルレビュー(Chem. Rev.),第109巻,897-1091頁(2009年)等に記載の公知の重合方法を用いて製造することができ、Suzuki反応、Yamamoto反応、Buchwald反応、Stille反応、Negishi反応及びKumada反応等の遷移金属触媒を用いるカップリング反応により重合させる方法が例示される。
<Production method of polymer host>
The polymer host can be produced using known polymerization methods such as those described in Chemical Review (Chem. Rev.), Vol. 109, pp. 897-1091 (2009). Examples include a method of polymerizing by a coupling reaction using a transition metal catalyst, such as Stille reaction, Negishi reaction, and Kumada reaction.
 上記重合方法において、単量体を仕込む方法としては、単量体全量を反応系に一括して仕込む方法、単量体の一部を仕込んで反応させた後、残りの単量体を一括、連続又は分割して仕込む方法、単量体を連続又は分割して仕込む方法等が挙げられる。 In the above polymerization method, the monomers may be charged in one go by charging the entire amount of the monomers into the reaction system, or after charging a portion of the monomers and reacting, the remaining monomers are added in one batch. Examples include a method of continuously or dividedly charging a monomer, a method of continuously or dividingly charging a monomer, and the like.
 遷移金属触媒としては、パラジウム触媒、ニッケル触媒等が挙げられる。 Examples of transition metal catalysts include palladium catalysts and nickel catalysts.
 重合反応の後処理は、公知の方法、例えば、分液により水溶性不純物を除去する方法、メタノール等の低級アルコールに重合反応後の反応液を加えて、析出させた沈殿を濾過した後、乾燥させる方法等を単独又は組み合わせて行う。高分子ホストの純度が低い場合、例えば、晶析、再沈殿、ソックスレー抽出器による連続抽出、カラムクロマトグラフィー等の通常の方法にて精製することができる。 Post-treatment of the polymerization reaction can be carried out by known methods, such as removing water-soluble impurities by liquid separation, adding the reaction solution after the polymerization reaction to a lower alcohol such as methanol, filtering the precipitate, and then drying. Use these methods alone or in combination. When the purity of the polymer host is low, it can be purified by conventional methods such as crystallization, reprecipitation, continuous extraction using a Soxhlet extractor, and column chromatography.
 [溶媒]
 本実施形態の化合物及び溶媒を含有する組成物(以下、「インク」と言う。)は、インクジェットプリント法、ノズルプリント法等の印刷法を用いた発光素子の作製に好適である。
[solvent]
A composition containing the compound of this embodiment and a solvent (hereinafter referred to as "ink") is suitable for producing a light emitting element using a printing method such as an inkjet printing method or a nozzle printing method.
 インクの粘度は、印刷法の種類によって調整すればよいが、インクジェットプリント法等の溶液が吐出装置を経由する印刷法に適用する場合には、吐出時の目づまりと飛行曲がりが起こりづらいので、好ましくは25℃において1~20mPa・sである。 The viscosity of the ink can be adjusted depending on the type of printing method, but if it is applied to a printing method such as inkjet printing in which the solution passes through a discharge device, clogging and flight deflection during discharge are less likely to occur. Preferably it is 1 to 20 mPa·s at 25°C.
 インクに含まれる溶媒は、好ましくは、インク中の固形分を溶解又は均一に分散できる溶媒である。溶媒としては、例えば、1,2-ジクロロエタン、1,1,2-トリクロロエタン、クロロベンゼン、o-ジクロロベンゼン等の塩素系溶媒;THF、ジオキサン、アニソール、4-メチルアニソール等のエーテル系溶媒;トルエン、キシレン、メシチレン、エチルベンゼン、n-ヘキシルベンゼン、シクロヘキシルベンゼン等の芳香族炭化水素系溶媒;シクロヘキサン、メチルシクロヘキサン、n-ペンタン、n-ヘキサン、n-へプタン、n-オクタン、n-ノナン、n-デカン、n-ドデカン、ビシクロヘキシル等の脂肪族炭化水素系溶媒;アセトン、メチルエチルケトン、シクロヘキサノン、アセトフェノン等のケトン系溶媒;酢酸エチル、酢酸ブチル、エチルセルソルブアセテート、安息香酸メチル、酢酸フェニル等のエステル系溶媒;エチレングリコール、グリセリン、1,2-ヘキサンジオール等の多価アルコール系溶媒;イソプロピルアルコール、シクロヘキサノール等のアルコール系溶媒;ジメチルスルホキシド等のスルホキシド系溶媒;N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド等のアミド系溶媒が挙げられる。溶媒は、一種単独で用いても二種以上を併用してもよい。 The solvent contained in the ink is preferably a solvent that can dissolve or uniformly disperse the solid content in the ink. Examples of the solvent include chlorine solvents such as 1,2-dichloroethane, 1,1,2-trichloroethane, chlorobenzene, and o-dichlorobenzene; ether solvents such as THF, dioxane, anisole, and 4-methylanisole; toluene, Aromatic hydrocarbon solvents such as xylene, mesitylene, ethylbenzene, n-hexylbenzene, cyclohexylbenzene; cyclohexane, methylcyclohexane, n-pentane, n-hexane, n-heptane, n-octane, n-nonane, n- Aliphatic hydrocarbon solvents such as decane, n-dodecane, and bicyclohexyl; Ketone solvents such as acetone, methyl ethyl ketone, cyclohexanone, and acetophenone; and esters such as ethyl acetate, butyl acetate, ethyl cellosolve acetate, methyl benzoate, and phenyl acetate. Polyhydric alcohol solvents such as ethylene glycol, glycerin, and 1,2-hexanediol; Alcohol solvents such as isopropyl alcohol and cyclohexanol; Sulfoxide solvents such as dimethyl sulfoxide; N-methyl-2-pyrrolidone, N , N-dimethylformamide and the like. The solvents may be used alone or in combination of two or more.
 インクにおいて、溶媒の配合量は、本実施形態の化合物100重量部に対して、通常、10000~10000000重量部であり、好ましくは20000~2000000重量部である。 In the ink, the amount of the solvent blended is usually 10,000 to 1,000,000 parts by weight, preferably 20,000 to 2,000,000 parts by weight, based on 100 parts by weight of the compound of the present embodiment.
 [正孔輸送材料]
 正孔輸送材料は、低分子化合物と高分子化合物とに分類され、好ましくは高分子化合物であり、より好ましくは架橋基を有する高分子化合物である。
[Hole transport material]
Hole transport materials are classified into low-molecular compounds and high-molecular compounds, preferably high-molecular compounds, and more preferably high-molecular compounds having a crosslinking group.
 高分子化合物としては、例えば、ポリビニルカルバゾール及びその誘導体;側鎖又は主鎖に芳香族アミン構造を有するポリアリーレン及びその誘導体が挙げられる。高分子化合物は、電子受容性部位が結合された化合物でもよい。電子受容性部位としては、例えば、フラーレン、テトラフルオロテトラシアノキノジメタン、テトラシアノエチレン、トリニトロフルオレノン等が挙げられ、好ましくはフラーレンである。 Examples of the polymer compound include polyvinylcarbazole and derivatives thereof; polyarylene having an aromatic amine structure in the side chain or main chain and derivatives thereof. The polymer compound may be a compound to which an electron-accepting site is bonded. Examples of the electron-accepting site include fullerene, tetrafluorotetracyanoquinodimethane, tetracyanoethylene, and trinitrofluorenone, with fullerene being preferred.
 本実施形態の組成物において、正孔輸送材料の配合量は、本実施形態の化合物100重量部に対して、通常、10~40000重量部であり、好ましくは50~15000重量部である。 In the composition of the present embodiment, the amount of the hole transport material blended is usually 10 to 40,000 parts by weight, preferably 50 to 15,000 parts by weight, based on 100 parts by weight of the compound of the present embodiment.
 正孔輸送材料は、一種単独で用いても二種以上を併用してもよい。 The hole transport materials may be used alone or in combination of two or more.
 [電子輸送材料]
 電子輸送材料は、低分子化合物と高分子化合物とに分類される。電子輸送材料は、架橋基を有していてもよい。
[Electron transport material]
Electron transport materials are classified into low molecular compounds and high molecular compounds. The electron transport material may have a crosslinking group.
 低分子化合物としては、例えば、8-ヒドロキシキノリンを配位子とする金属錯体、オキサジアゾール、アントラキノジメタン、ベンゾキノン、ナフトキノン、アントラキノン、テトラシアノアントラキノジメタン、フルオレノン、ジフェニルジシアノエチレン及びジフェノキノン、並びに、これらの誘導体が挙げられる。 Examples of low-molecular compounds include metal complexes having 8-hydroxyquinoline as a ligand, oxadiazole, anthraquinodimethane, benzoquinone, naphthoquinone, anthraquinone, tetracyanoanthraquinodimethane, fluorenone, diphenyldicyanoethylene, and diphenoquinone. , and derivatives thereof.
 高分子化合物としては、例えば、ポリフェニレン、ポリフルオレン、及び、これらの誘導体が挙げられる。高分子化合物は、金属でドープされていてもよい。 Examples of the polymer compound include polyphenylene, polyfluorene, and derivatives thereof. The polymer compound may be doped with metal.
 本実施形態の組成物において、電子輸送材料の配合量は、本実施形態の化合物100重量部に対して、通常、10~40000重量部であり、好ましくは50~15000重量部である。 In the composition of the present embodiment, the amount of the electron transport material blended is usually 10 to 40,000 parts by weight, preferably 50 to 15,000 parts by weight, based on 100 parts by weight of the compound of the present embodiment.
 電子輸送材料は、一種単独で用いても二種以上を併用してもよい。 The electron transport materials may be used alone or in combination of two or more.
 [正孔注入材料及び電子注入材料]
 正孔注入材料及び電子注入材料は、各々、低分子化合物と高分子化合物とに分類される。正孔注入材料及び電子注入材料は、架橋基を有していてもよい。
[Hole injection material and electron injection material]
Hole-injecting materials and electron-injecting materials are classified into low-molecular compounds and high-molecular compounds, respectively. The hole injection material and the electron injection material may have a crosslinking group.
 低分子化合物としては、例えば、銅フタロシアニン等の金属フタロシアニン;カーボン;モリブデン、タングステン等の金属酸化物;フッ化リチウム、フッ化ナトリウム、フッ化セシウム、フッ化カリウム等の金属フッ化物が挙げられる。 Examples of low-molecular compounds include metal phthalocyanines such as copper phthalocyanine; carbon; metal oxides such as molybdenum and tungsten; and metal fluorides such as lithium fluoride, sodium fluoride, cesium fluoride, and potassium fluoride.
 高分子化合物としては、例えば、ポリアニリン、ポリチオフェン、ポリピロール、ポリフェニレンビニレン、ポリチエニレンビニレン、ポリキノリン及びポリキノキサリン、並びに、これらの誘導体;芳香族アミン構造を主鎖又は側鎖に含む重合体等の導電性高分子が挙げられる。 Examples of polymeric compounds include polyaniline, polythiophene, polypyrrole, polyphenylene vinylene, polythienylene vinylene, polyquinoline, polyquinoxaline, and derivatives thereof; conductive polymers containing an aromatic amine structure in the main chain or side chain. Polymers can be mentioned.
 本実施形態の組成物において、正孔注入材料及び電子注入材料の配合量は、各々、本実施形態の化合物100重量部に対して、通常、10~40000重量部であり、好ましくは50~15000重量部である。 In the composition of this embodiment, the amount of the hole injection material and the electron injection material is usually 10 to 40,000 parts by weight, preferably 50 to 15,000 parts by weight, based on 100 parts by weight of the compound of this embodiment. Parts by weight.
 正孔注入材料及び電子注入材料は、各々、一種単独で用いても二種以上を併用してもよい。 The hole injection material and the electron injection material may each be used singly or in combination of two or more.
 [イオンドープ]
 正孔注入材料又は電子注入材料が導電性高分子を含む場合、導電性高分子の電気伝導度は、好ましくは、1×10-5S/cm~1×10S/cmである。導電性高分子の電気伝導度をかかる範囲とするために、導電性高分子に適量のイオンをドープすることができる。
[Ion dope]
When the hole injection material or electron injection material contains a conductive polymer, the electrical conductivity of the conductive polymer is preferably 1×10 −5 S/cm to 1×10 3 S/cm. In order to keep the electrical conductivity of the conductive polymer within this range, the conductive polymer can be doped with an appropriate amount of ions.
 ドープするイオンの種類は、正孔注入材料であればアニオン、電子注入材料であればカチオンである。アニオンとしては、例えば、ポリスチレンスルホン酸イオン、アルキルベンゼンスルホン酸イオン、樟脳スルホン酸イオンが挙げられる。カチオンとしては、例えば、リチウムイオン、ナトリウムイオン、カリウムイオン、テトラブチルアンモニウムイオンが挙げられる。 The type of ion to be doped is an anion if it is a hole injection material, and a cation if it is an electron injection material. Examples of the anion include polystyrene sulfonate ion, alkylbenzene sulfonate ion, and camphor sulfonate ion. Examples of the cation include lithium ion, sodium ion, potassium ion, and tetrabutylammonium ion.
 ドープするイオンは、一種単独で用いても二種以上を併用してもよい。 The ions to be doped may be used alone or in combination of two or more.
 [発光材料]
 発光材料(本実施形態の化合物とは異なる。)は、低分子化合物と高分子化合物とに分類される。発光材料は、架橋基を有していてもよい。
[Light-emitting material]
Luminescent materials (different from the compounds of this embodiment) are classified into low molecular compounds and high molecular compounds. The luminescent material may have a crosslinking group.
 低分子化合物としては、例えば、ナフタレン及びその誘導体、アントラセン及びその誘導体、ペリレン及びその誘導体、並びに、イリジウム、白金又はユーロピウムを中心金属とする三重項発光錯体が挙げられる。 Examples of low-molecular compounds include naphthalene and its derivatives, anthracene and its derivatives, perylene and its derivatives, and triplet luminescent complexes having iridium, platinum, or europium as the central metal.
 高分子化合物としては、例えば、フェニレン基、ナフタレンジイル基、フルオレンジイル基、フェナントレンジイル基、ジヒドロフェナントレンジイル基、式(X)で表される基、カルバゾールジイル基、フェノキサジンジイル基、フェノチアジンジイル基、アントラセンジイル基、ピレンジイル基等を含む高分子化合物が挙げられる。 Examples of the polymer compound include a phenylene group, a naphthalenediyl group, a fluorenediyl group, a phenanthrenediyl group, a dihydrophenanthrenediyl group, a group represented by the formula (X), a carbazolediyl group, a phenoxazinediyl group, and a phenothiazinediyl group. Examples include polymeric compounds containing anthracenediyl group, anthracenediyl group, pyrenediyl group, and the like.
 発光材料は、好ましくは、三重項発光錯体及び高分子化合物を含む。 The luminescent material preferably includes a triplet luminescent complex and a polymer compound.
 三重項発光錯体としては、例えば、以下に示す金属錯体が挙げられる。
Figure JPOXMLDOC01-appb-C000138
Figure JPOXMLDOC01-appb-C000139
Figure JPOXMLDOC01-appb-C000140
Figure JPOXMLDOC01-appb-C000141
Figure JPOXMLDOC01-appb-C000142
Examples of triplet luminescent complexes include the metal complexes shown below.
Figure JPOXMLDOC01-appb-C000138
Figure JPOXMLDOC01-appb-C000139
Figure JPOXMLDOC01-appb-C000140
Figure JPOXMLDOC01-appb-C000141
Figure JPOXMLDOC01-appb-C000142
 本実施形態の組成物において、発光材料の含有量は、本実施形態の化合物100重量部に対して、通常、1~40000重量部である。 In the composition of this embodiment, the content of the luminescent material is usually 1 to 40,000 parts by weight based on 100 parts by weight of the compound of this embodiment.
 [酸化防止剤]
 酸化防止剤は、本実施形態の化合物と同じ溶媒に可溶であり、発光及び電荷輸送を阻害しない化合物であればよい。酸化防止剤としては、例えば、フェノール系酸化防止剤、リン系酸化防止剤等が挙げられる。
[Antioxidant]
The antioxidant may be any compound as long as it is soluble in the same solvent as the compound of this embodiment and does not inhibit light emission and charge transport. Examples of the antioxidant include phenolic antioxidants, phosphorus antioxidants, and the like.
 本実施形態の組成物において、酸化防止剤の配合量は、本実施形態の化合物100重量部に対して、通常、0.001~10重量部である。 In the composition of the present embodiment, the amount of antioxidant is usually 0.001 to 10 parts by weight based on 100 parts by weight of the compound of the present embodiment.
 酸化防止剤は、一種単独で用いても二種以上を併用してもよい。 The antioxidants may be used alone or in combination of two or more.
<膜>
 膜は、本実施形態の化合物を含有する。
<Membrane>
The membrane contains the compound of this embodiment.
 膜は、発光素子における発光層として好適である。 The film is suitable as a light emitting layer in a light emitting device.
 膜は、インクを用いて、例えば、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイヤーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、キャピラリ-コート法、ノズルコート法により作製することができる。 The film can be formed using ink, such as spin coating, casting, microgravure coating, gravure coating, bar coating, roll coating, wire bar coating, dip coating, spray coating, and screen printing. , a flexographic printing method, an offset printing method, an inkjet printing method, a capillary coating method, and a nozzle coating method.
 膜の厚さは、通常、1nm~10μmである。 The thickness of the film is usually 1 nm to 10 μm.
<発光素子>
 本実施形態の発光素子は、本実施形態の化合物を含有する発光素子である。
 本実施形態の発光素子の構成としては、例えば、陽極及び陰極からなる電極と、該電極間に設けられた本実施形態の化合物を含有する層とを有する。
<Light emitting element>
The light emitting element of this embodiment is a light emitting element containing the compound of this embodiment.
The structure of the light emitting element of this embodiment includes, for example, electrodes consisting of an anode and a cathode, and a layer containing the compound of this embodiment provided between the electrodes.
 [層構成]
 本実施形態の化合物を含有する層は、通常、発光層、正孔輸送層、正孔注入層、電子輸送層、電子注入層の1種以上の層であり、好ましくは、発光層である。これらの層は、各々、発光材料、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料を含む。これらの層は、各々、発光材料、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料を、上述した溶媒に溶解させ、インクを調製して用い、上述した膜の作製と同じ方法を用いて形成することができる。
[Layer structure]
The layer containing the compound of this embodiment is usually one or more of a light emitting layer, a hole transport layer, a hole injection layer, an electron transport layer, and an electron injection layer, and is preferably a light emitting layer. These layers each include a luminescent material, a hole transport material, a hole injection material, an electron transport material, and an electron injection material. These layers were prepared in the same way as the film described above, by dissolving a luminescent material, a hole transporting material, a hole injection material, an electron transporting material, and an electron injection material in the above-mentioned solvents and preparing and using the ink. It can be formed using a method.
 発光素子は、陽極と陰極の間に発光層を有する。本実施形態の発光素子は、正孔注入性及び正孔輸送性の観点からは、陽極と発光層との間に、正孔注入層及び正孔輸送層の少なくとも1層を有することが好ましく、電子注入性及び電子輸送性の観点からは、陰極と発光層の間に、電子注入層及び電子輸送層の少なくとも1層を有することが好ましい。 A light emitting element has a light emitting layer between an anode and a cathode. From the viewpoint of hole injection and hole transport properties, the light emitting device of this embodiment preferably has at least one layer of a hole injection layer and a hole transport layer between the anode and the light emitting layer, From the viewpoint of electron injection properties and electron transport properties, it is preferable to have at least one layer of an electron injection layer and an electron transport layer between the cathode and the light emitting layer.
 正孔輸送層、電子輸送層、発光層、正孔注入層及び電子注入層の材料としては、本実施形態の化合物の他、各々、上述した正孔輸送材料、電子輸送材料、発光材料、正孔注入材料及び電子注入材料等が挙げられる。 In addition to the compound of this embodiment, materials for the hole transport layer, electron transport layer, light emitting layer, hole injection layer, and electron injection layer include the hole transport material, electron transport material, light emitting material, and positive hole transport material described above, respectively. Examples include hole injection materials and electron injection materials.
 正孔輸送層の材料、電子輸送層の材料及び発光層の材料は、発光素子の作製において、各々、正孔輸送層、電子輸送層及び発光層に隣接する層の形成時に使用される溶媒に溶解する場合、該溶媒に該材料が溶解することを回避するために、該材料が架橋基を有することが好ましい。架橋基を有する材料を用いて各層を形成した後、該架橋基を架橋させることにより、該層を不溶化させることができる。 The material for the hole transport layer, the material for the electron transport layer, and the material for the emissive layer are based on the solvent used when forming the hole transport layer, the electron transport layer, and the layer adjacent to the emissive layer, respectively, in the production of the light emitting device. When dissolved, it is preferable that the material has a crosslinking group in order to avoid dissolving the material in the solvent. After each layer is formed using a material having a crosslinking group, the layer can be made insolubilized by crosslinking the crosslinking group.
 本実施形態の発光素子において、発光層、正孔輸送層、電子輸送層、正孔注入層、電子注入層等の各層の形成方法としては、低分子化合物を用いる場合、例えば、粉末からの真空蒸着法、溶液又は溶融状態からの成膜による方法が挙げられ、高分子化合物を用いる場合、例えば、溶液又は溶融状態からの成膜による方法が挙げられる。 In the light-emitting device of this embodiment, the method for forming each layer such as the light-emitting layer, hole-transporting layer, electron-transporting layer, hole-injecting layer, and electron-injecting layer includes, for example, when using a low-molecular compound, vacuum formation from powder. Examples include a vapor deposition method, a method of forming a film from a solution or a molten state, and when a polymer compound is used, for example, a method of forming a film from a solution or a molten state.
 積層する層の順番、数及び厚さは、外部量子効率及び輝度寿命を勘案して調整してよい。 The order, number, and thickness of the layers to be laminated may be adjusted in consideration of external quantum efficiency and luminance lifetime.
 [基板/電極]
 発光素子における基板は、電極を形成することができ、かつ、有機層を形成する際に化学的に変化しない基板であればよく、例えば、ガラス、プラスチック、シリコン等の材料からなる基板である。不透明な基板の場合には、基板から最も遠くにある電極が透明又は半透明であることが好ましい。
[Substrate/electrode]
The substrate in the light emitting element may be any substrate as long as it is capable of forming an electrode and is not chemically changed during the formation of an organic layer, and is, for example, a substrate made of a material such as glass, plastic, or silicon. In the case of an opaque substrate, it is preferred that the electrode furthest from the substrate be transparent or translucent.
 陽極の材料としては、例えば、導電性の金属酸化物、半透明の金属が挙げられ、好ましくは、酸化インジウム、酸化亜鉛、酸化スズ;インジウム・スズ・オキサイド(ITO)、インジウム・亜鉛・オキサイド等の導電性化合物;銀とパラジウムと銅との複合体(APC);NESA、金、白金、銀、銅である。 Examples of the material for the anode include conductive metal oxides and translucent metals, preferably indium oxide, zinc oxide, tin oxide; indium tin oxide (ITO), indium zinc oxide, etc. conductive compounds; silver-palladium-copper composite (APC); NESA, gold, platinum, silver, copper.
 陰極の材料としては、例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、亜鉛、インジウム等の金属;それらのうち2種以上の合金;それらのうち1種以上と、銀、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫のうち1種以上との合金;並びに、グラファイト及びグラファイト層間化合物が挙げられる。合金としては、例えば、マグネシウム-銀合金、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、インジウム-銀合金、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金、カルシウム-アルミニウム合金が挙げられる。
 陽極及び陰極は、各々、2層以上の積層構造としてもよい。
Examples of the material for the cathode include metals such as lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, aluminum, zinc, and indium; alloys of two or more of these; and one of them. Examples include alloys of one or more species and one or more of silver, copper, manganese, titanium, cobalt, nickel, tungsten, and tin; and graphite and graphite intercalation compounds. Examples of the alloy include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, and calcium-aluminum alloy.
Each of the anode and the cathode may have a laminated structure of two or more layers.
 [用途]
 発光素子を用いて面状の発光を得るためには、面状の陽極と陰極が重なり合うように配置すればよい。パターン状の発光を得るためには、面状の発光素子の表面にパターン状の窓を設けたマスクを設置する方法、非発光部にしたい層を極端に厚く形成し実質的に非発光とする方法、陽極若しくは陰極、又は、両方の電極をパターン状に形成する方法がある。これらのいずれかの方法でパターンを形成し、いくつかの電極を独立にON/OFFできるように配置することにより、数字、文字等を表示できるセグメントタイプの表示装置が得られる。ドットマトリックス表示装置とするためには、陽極と陰極を共にストライプ状に形成して直交するように配置すればよい。複数の種類の発光色の異なる高分子化合物を塗り分ける方法、カラーフィルター又は蛍光変換フィルターを用いる方法により、部分カラー表示、マルチカラー表示が可能となる。ドットマトリックス表示装置は、パッシブ駆動も可能であるし、TFT等と組み合わせてアクティブ駆動も可能である。これらの表示装置は、コンピュータ、テレビ、携帯端末等のディスプレイに用いることができる。面状の発光素子は、液晶表示装置のバックライト用の面状光源、又は、面状の照明用光源として好適に用いることができる。フレキシブルな基板を用いれば、曲面状の光源及び表示装置としても使用できる。
[Application]
In order to obtain planar light emission using a light emitting element, planar anodes and cathodes may be arranged so as to overlap. In order to obtain patterned light emission, there is a method of installing a mask with patterned windows on the surface of a planar light emitting element, and a method of forming an extremely thick layer to make the non-emissive area substantially non-emissive. There is a method in which the anode, the cathode, or both electrodes are formed in a pattern. By forming a pattern using any of these methods and arranging some electrodes so that they can be turned on and off independently, a segment type display device that can display numbers, characters, etc. can be obtained. In order to obtain a dot matrix display device, both the anode and the cathode may be formed in a stripe shape and arranged so as to be orthogonal to each other. Partial color display and multicolor display are possible by using a method of painting multiple types of polymer compounds with different emission colors, a method of using a color filter, or a fluorescence conversion filter. The dot matrix display device can be driven passively, or can be driven actively in combination with a TFT or the like. These display devices can be used for displays on computers, televisions, mobile terminals, and the like. A planar light emitting element can be suitably used as a planar light source for a backlight of a liquid crystal display device or a planar light source for illumination. If a flexible substrate is used, it can also be used as a curved light source and display device.
 以下、実施例によって本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples.
 実施例において、高分子化合物のポリスチレン換算の数平均分子量(Mn)及びポリスチレン換算の重量平均分子量(Mw)は、移動層にテトラヒドロフランを用い、下記のサイズエクスクルージョンクロマトグラフィー(SEC)のいずれかにより求めた。なお、SECの各測定条件は、次のとおりである。 In the examples, the number average molecular weight (Mn) in terms of polystyrene and the weight average molecular weight (Mw) in terms of polystyrene of the polymer compound were determined using one of the following size exclusion chromatography (SEC) methods using tetrahydrofuran as a moving phase. It was determined by In addition, each measurement condition of SEC is as follows.
 測定する高分子化合物を約0.05質量%の濃度でテトラヒドロフランに溶解させ、SECに10μL注入した。移動相は、1.0mL/分の流量で流した。カラムとして、PLgel MIXED-B(ポリマーラボラトリーズ製)を用いた。検出器にはUV-VIS検出器(東ソー製、商品名:UV-8320GPC)を用いた。 The polymer compound to be measured was dissolved in tetrahydrofuran at a concentration of about 0.05% by mass, and 10 μL was injected into SEC. The mobile phase was run at a flow rate of 1.0 mL/min. PLgel MIXED-B (manufactured by Polymer Laboratories) was used as a column. A UV-VIS detector (manufactured by Tosoh, trade name: UV-8320GPC) was used as a detector.
 LC-MSは、下記の方法で測定した。
 測定試料を約2mg/mLの濃度になるようにクロロホルム又はテトラヒドロフランに溶解させ、LC-MS(Agilent製、商品名:1100LCMSD)に約1μL注入した。LC-MSの移動相には、アセトニトリル及びテトラヒドロフランの比率を変化させながら用い、0.2mL/分の流量で流した。カラムは、L-column 2 ODS(3μm)(化学物質評価研究機構製、内径:2.1mm、長さ:100mm、粒径3μm)を用いた。
LC-MS was measured by the following method.
The measurement sample was dissolved in chloroform or tetrahydrofuran to a concentration of about 2 mg/mL, and about 1 μL was injected into an LC-MS (manufactured by Agilent, trade name: 1100LCMSD). The mobile phase for LC-MS was acetonitrile and tetrahydrofuran in varying ratios and flowed at a flow rate of 0.2 mL/min. The column used was L-column 2 ODS (3 μm) (manufactured by Japan Chemical Evaluation and Research Institute, inner diameter: 2.1 mm, length: 100 mm, particle size 3 μm).
 TLC-MSは、下記の方法で測定した。
 測定試料をトルエン、テトラヒドロフラン又はクロロホルムのいずれかの溶媒に任意の濃度で溶解させ、DART用TLCプレート(テクノアプリケーションズ製、商品名:YSK5-100)上に塗布し、TLC-MS(日本電子製、商品名:JMS-T100TD(The AccuTOF TLC))を用いて測定した。測定時のヘリウムガス温度は、200~400℃の範囲で調節した。
TLC-MS was measured by the following method.
The measurement sample is dissolved in a solvent such as toluene, tetrahydrofuran, or chloroform at an arbitrary concentration, and applied onto a DART TLC plate (manufactured by Techno Applications, trade name: YSK5-100), and then applied to a TLC-MS (manufactured by JEOL Ltd., product name: YSK5-100). Measurement was performed using a product name: JMS-T100TD (The AccuTOF TLC). The helium gas temperature during the measurement was adjusted within the range of 200 to 400°C.
 NMRは、下記の方法で測定した。
 5~10mgの測定試料を約0.5mLの重クロロホルム(CDCl)、重テトラヒドロフラン、重ジメチルスルホキシド、重アセトン、重N,N-ジメチルホルムアミド、重トルエン、重メタノール、重エタノール、重2-プロパノール又は重塩化メチレンに溶解させ、NMR装置(Agilent製、商品名:INOVA300又はMERCURY 400VX)を用いて測定した。
NMR was measured by the following method.
Add 5 to 10 mg of the measurement sample to about 0.5 mL of deuterated chloroform (CDCl 3 ), deuterated tetrahydrofuran, deuterated dimethyl sulfoxide, deuterated acetone, deuterated N,N-dimethylformamide, deuterated toluene, deuterated methanol, deuterated ethanol, deuterated 2-propanol. Alternatively, it was dissolved in methylene dichloride and measured using an NMR device (manufactured by Agilent, trade name: INOVA300 or MERCURY 400VX).
 化合物の純度の指標として、高速液体クロマトグラフィー(HPLC)面積百分率の値を用いた。この値は、特に記載がない限り、HPLC(島津製作所製、商品名:LC-20A)でのUV=254nmにおける値とする。この際、測定する化合物は、0.01~0.2質量%の濃度になるようにテトラヒドロフラン又はクロロホルムに溶解させ、濃度に応じてHPLCに1~10μL注入した。HPLCの移動相には、アセトニトリル/テトラヒドロフランの比率を100/0~0/100(容積比)まで変化させながら用い、1.0mL/分の流量で流した。カラムは、Kaseisorb LC ODS 2000(東京化成工業製)又は同等の性能を有するODSカラムを用いた。検出器には、フォトダイオードアレイ検出器(島津製作所製、商品名:SPD-M20A)を用いた。 The high performance liquid chromatography (HPLC) area percentage value was used as an indicator of the purity of the compound. Unless otherwise specified, this value is a value at UV=254 nm using HPLC (manufactured by Shimadzu Corporation, trade name: LC-20A). At this time, the compound to be measured was dissolved in tetrahydrofuran or chloroform to a concentration of 0.01 to 0.2% by mass, and 1 to 10 μL was injected into HPLC depending on the concentration. As the mobile phase for HPLC, the ratio of acetonitrile/tetrahydrofuran was varied from 100/0 to 0/100 (volume ratio), and the mixture was flowed at a flow rate of 1.0 mL/min. The column used was Kaseisorb LC ODS 2000 (manufactured by Tokyo Chemical Industry Co., Ltd.) or an ODS column having equivalent performance. A photodiode array detector (manufactured by Shimadzu Corporation, trade name: SPD-M20A) was used as a detector.
 <化合物の合成>
 下記の実施例及び比較例における化合物S1~S14は、下記のようにして合成した。
<Synthesis of compounds>
Compounds S1 to S14 in the following Examples and Comparative Examples were synthesized as follows.
・化合物S1の合成
Figure JPOXMLDOC01-appb-C000143
Figure JPOXMLDOC01-appb-C000144
・Synthesis of compound S1
Figure JPOXMLDOC01-appb-C000143
Figure JPOXMLDOC01-appb-C000144
(化合物1a)
 反応容器内をアルゴンガス雰囲気とした後、6(5H)-フェナンスリジノン(10.2g)、N,N-ジメチルホルムアミド(306mL)を加え撹拌し、N-ブロモスクシンイミド(9.3g)を加え、オイルバス65℃で4時間加熱撹拌した。室温まで冷却後、イオン交換水(102mL)を加え撹拌した。得られた懸濁液をろ過器上でイオン交換水(51mL)、N,N-ジメチルホルムアミド(153mL)で洗浄し、得られたろ上物をメタノール(153mL)で3回洗浄した。得られたクリーム色固体を50℃で減圧乾燥させることで、化合物1a(12.0g、クリーム色固体)を得た。化合物1aのLC面積百分率は96%以上であった。
 H-NMR(400MHz,CDCl):δ(ppm)=8.87(1H,broad-s),8.46(1H,d),8.37(1H,d),8.25(1H,d),7.84(1H,t),7.65(1H,t),7.58(1H,dd),7.09(1H,d).
 TLC-MS(ESI,positive):[M+H]=274.
(Compound 1a)
After creating an argon gas atmosphere in the reaction vessel, 6(5H)-phenanthridinone (10.2 g) and N,N-dimethylformamide (306 mL) were added and stirred, and N-bromosuccinimide (9.3 g) was added. The mixture was heated and stirred in an oil bath at 65° C. for 4 hours. After cooling to room temperature, ion-exchanged water (102 mL) was added and stirred. The resulting suspension was washed on a filter with ion-exchanged water (51 mL) and N,N-dimethylformamide (153 mL), and the filtered substance obtained was washed three times with methanol (153 mL). The obtained cream-colored solid was dried under reduced pressure at 50° C. to obtain Compound 1a (12.0 g, cream-colored solid). The LC area percentage of compound 1a was greater than 96%.
1 H-NMR (400 MHz, CD 2 Cl 2 ): δ (ppm) = 8.87 (1H, broad-s), 8.46 (1H, d), 8.37 (1H, d), 8.25 (1H, d), 7.84 (1H, t), 7.65 (1H, t), 7.58 (1H, dd), 7.09 (1H, d).
TLC-MS (ESI, positive): [M+H] + =274.
(化合物1b)
 反応容器内をアルゴンガス雰囲気とした後、化合物1a(10.0g)、4,4,5,5-テトラメチル-2-[4-(1,1,3,3-テトラメチルブチル)フェニル]-1,3,2-ジオキサボロラン(12.7g)、4-メチルテトラヒドロピラン(172mL)、[(ジ(1-アダマンチル)-N-ブチルホスフィン)-2-(2’-アミノ-1,1’-ビフェニル)]パラジウム(II)メタンスルホン酸塩(0.27g)、40%テトラブチルアンモニウムヒドロキシド水溶液(71mL)、イオン交換水(213mL)を加えオイルバス100℃で4時間加熱撹拌した。室温まで冷却後、得られた懸濁液をイオン交換水(100mL)で洗浄し、得られた懸濁液にメタノール(2250mL)を加え10分撹拌した後、得られた懸濁液をろ過器上でメタノール(420mL)で洗浄した。得られた薄灰色固体を50℃で減圧乾燥させることで、化合物1b(15.4g、薄灰色固体)を得た。化合物1bのLC面積百分率は99.8%以上であった。
 H-NMR(400MHz,CDCl):δ(ppm)=9.37(1H,broad-s),8.48(1H,d),8.44(1H,d),8.41(1H,d),7.83(1H,td),7.73(1H,dd),7.65-7.57(3H,m),7.49(2H,d),7.28(1H,d),1.80(2H,s),1.40(6H,s),0.75(9H,s).
 TLC-MS(ESI,positive):[M+H]=384.
(Compound 1b)
After creating an argon gas atmosphere in the reaction vessel, compound 1a (10.0 g), 4,4,5,5-tetramethyl-2-[4-(1,1,3,3-tetramethylbutyl)phenyl] -1,3,2-dioxaborolane (12.7 g), 4-methyltetrahydropyran (172 mL), [(di(1-adamantyl)-N-butylphosphine)-2-(2'-amino-1,1' -biphenyl)]palladium(II) methanesulfonate (0.27 g), 40% aqueous tetrabutylammonium hydroxide solution (71 mL), and ion-exchanged water (213 mL) were added, and the mixture was heated and stirred in an oil bath at 100°C for 4 hours. After cooling to room temperature, the obtained suspension was washed with ion-exchanged water (100 mL), methanol (2250 mL) was added to the obtained suspension, stirred for 10 minutes, and the obtained suspension was filtered. The top was washed with methanol (420 mL). Compound 1b (15.4 g, light gray solid) was obtained by drying the obtained light gray solid under reduced pressure at 50°C. The LC area percentage of Compound 1b was greater than 99.8%.
1H -NMR (400MHz, CD 2 Cl 2 ): δ (ppm) = 9.37 (1H, broad-s), 8.48 (1H, d), 8.44 (1H, d), 8.41 (1H, d), 7.83 (1H, td), 7.73 (1H, dd), 7.65-7.57 (3H, m), 7.49 (2H, d), 7.28 ( 1H, d), 1.80 (2H, s), 1.40 (6H, s), 0.75 (9H, s).
TLC-MS (ESI, positive): [M+H] + =384.
(化合物1c)
 反応容器内をアルゴンガス雰囲気とした後、化合物1b(15.0g)、N,N-ジメチルホルムアミド(450mL)を加え撹拌し、N-ブロモスクシンイミド(18.1g)を加え、オイルバス65℃で11時間加熱撹拌した。室温まで冷却後、イオン交換水(140mL)を加え撹拌した。得られた懸濁液をろ過器上でイオン交換水(70mL)、N,N-ジメチルホルムアミド(210mL)で洗浄し、得られたろ上物をN,N-ジメチルホルムアミド(42mL)で2回洗浄した。得られたろ上物をメタノール(70mL)で洗浄した。得られた肌色固体を50℃で減圧乾燥させることで、化合物1c(15.4g、肌色固体)を得た。化合物1cのLC面積百分率は93%以上であった。
 H-NMR(400MHz,CDCl):δ(ppm)=8.92(1H,broad-s),8.46(1H,dd),8.42-8.35(2H,m),7.96(1H,d),7.83(1H,td),7.64(1H,t),7.58(2H,d),7.50(2H,d),1.80(2H,s),1.40(6H,s),0.75(9H,s).
 TLC-MS(ESI,positive):[M+H]=462.
(Compound 1c)
After creating an argon gas atmosphere in the reaction vessel, compound 1b (15.0 g) and N,N-dimethylformamide (450 mL) were added and stirred, and N-bromosuccinimide (18.1 g) was added, and the mixture was heated in an oil bath at 65°C. The mixture was heated and stirred for 11 hours. After cooling to room temperature, ion-exchanged water (140 mL) was added and stirred. The obtained suspension was washed with ion-exchanged water (70 mL) and N,N-dimethylformamide (210 mL) on a filter, and the obtained filter cake was washed twice with N,N-dimethylformamide (42 mL). did. The obtained filtered material was washed with methanol (70 mL). The obtained flesh-colored solid was dried under reduced pressure at 50° C. to obtain Compound 1c (15.4 g, flesh-colored solid). The LC area percentage of Compound 1c was greater than 93%.
1H -NMR (400MHz, CD 2 Cl 2 ): δ (ppm) = 8.92 (1H, broad-s), 8.46 (1H, dd), 8.42-8.35 (2H, m) , 7.96 (1H, d), 7.83 (1H, td), 7.64 (1H, t), 7.58 (2H, d), 7.50 (2H, d), 1.80 ( 2H, s), 1.40 (6H, s), 0.75 (9H, s).
TLC-MS (ESI, positive): [M+H] + =462.
(化合物1d)
 反応容器内をアルゴンガス雰囲気とした後、化合物1c(13.3g)、ビス(ピナコラト)ジボロン(11.0g)、酢酸カリウム(11.3g)、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリドジクロロメタン付加物(0.47g)、1,2-ジメトキシエタン(133mL)、トルエン(399mL)を加え、オイルバス75℃で2時間加熱撹拌した。室温まで冷却後、トルエン(67mL)を加え撹拌し、得られた懸濁液を、セライトを敷いたろ過器でろ過し、ろ上物をトルエン(60mL)で洗浄した。得られたろ液を減圧濃縮した。得られた粗生成物をトルエン(133mL)に溶解させ、活性炭(5.3g)、活性白土(8.0g)を加え10分撹拌し、セライトを敷いたろ過器でろ過し、ろ上物をトルエン(133mL)で洗浄した。得られたろ液を減圧濃縮した。得られた粗生成物をトルエン(147mL)に溶解させ、活性炭(7.3g)を加え10分撹拌し、セライトを敷いたろ過器でろ過し、ろ上物をトルエン(133mL)で洗浄した。得られたろ液を減圧濃縮した。得られた粗生成物をトルエン、アセトニトリルの混合溶媒で再結晶した。得られた白色固体を50℃で減圧乾燥させることで、化合物1d(9.2g、白色固体)を得た。化合物1dのLC面積百分率は97%以上であった。
 H-NMR(400MHz,CDCl):δ(ppm)=10.30(1H,broad-s),8.55(1H,s),8.44(1H,d),8.39(1H,d),8.16(1H,s),7.79(1H,t),7.64-7.55(3H,m),7.49(2H,d),1.80(2H,s),1.42(12H,s),1.20(6H,s),0.74(9H,s).
 TLC-MS(ESI,positive):[M+H]=510.
(Compound 1d)
After creating an argon gas atmosphere in the reaction vessel, compound 1c (13.3 g), bis(pinacolato)diboron (11.0 g), potassium acetate (11.3 g), [1,1'-bis(diphenylphosphino)] Ferrocene]palladium(II) dichloride dichloromethane adduct (0.47 g), 1,2-dimethoxyethane (133 mL), and toluene (399 mL) were added, and the mixture was heated and stirred at 75° C. in an oil bath for 2 hours. After cooling to room temperature, toluene (67 mL) was added and stirred, and the resulting suspension was filtered through a filter lined with Celite, and the filtered material was washed with toluene (60 mL). The obtained filtrate was concentrated under reduced pressure. The obtained crude product was dissolved in toluene (133 mL), activated carbon (5.3 g) and activated clay (8.0 g) were added, stirred for 10 minutes, filtered through a filter lined with Celite, and the filtered material was Washed with toluene (133 mL). The obtained filtrate was concentrated under reduced pressure. The obtained crude product was dissolved in toluene (147 mL), activated carbon (7.3 g) was added, stirred for 10 minutes, filtered through a filter lined with Celite, and the filtered product was washed with toluene (133 mL). The obtained filtrate was concentrated under reduced pressure. The obtained crude product was recrystallized from a mixed solvent of toluene and acetonitrile. Compound 1d (9.2 g, white solid) was obtained by drying the obtained white solid under reduced pressure at 50°C. The LC area percentage of Compound 1d was greater than 97%.
1H -NMR (400MHz, CD 2 Cl 2 ): δ (ppm) = 10.30 (1H, broad-s), 8.55 (1H, s), 8.44 (1H, d), 8.39 (1H, d), 8.16 (1H, s), 7.79 (1H, t), 7.64-7.55 (3H, m), 7.49 (2H, d), 1.80 ( 2H, s), 1.42 (12H, s), 1.20 (6H, s), 0.74 (9H, s).
TLC-MS (ESI, positive): [M+H] + =510.
(化合物1e)
 反応容器内をアルゴンガス雰囲気とした後、化合物1d(7.0g)、1,4-ジブロモ-2,5-ジヨードベンゼン(3.19g)、トルエン(105mL)、テトラキス(トリフェニルホスフィン)パラジウム(0)(0.76g)、40%テトラブチルアンモニウムヒドロキシド水溶液(21mL)、イオン交換水(85mL)を加えオイルバス70℃で13時間加熱撹拌した。室温まで冷却後、得られた懸濁液をイオン交換水(175mL)で3回洗浄し、得られた懸濁液をろ過器上でエタノール(350mL)で洗浄した。得られた白色固体を50℃で減圧乾燥させることで、化合物1e(5.8g、白色固体)を得た。化合物1eのLC面積百分率は97%以上であった。
 H-NMR(400MHz,CDCl):δ(ppm)=8.60(2H,s),8.50(2H,d),8.44(2H,d),8.26(2H,s),7.93-7.82(4H,m),7.78(2H,s),7.75-7.76(6H,m),7.56(4H,m),1.81(4H,s),1.41(12H,s),0.76(18H,s).
 TLC-MS(ESI,positive):[M+H]=997.
(Compound 1e)
After creating an argon gas atmosphere in the reaction vessel, compound 1d (7.0 g), 1,4-dibromo-2,5-diiodobenzene (3.19 g), toluene (105 mL), and tetrakis(triphenylphosphine)palladium were added. (0) (0.76 g), 40% aqueous tetrabutylammonium hydroxide solution (21 mL), and ion-exchanged water (85 mL) were added, and the mixture was heated and stirred in an oil bath at 70° C. for 13 hours. After cooling to room temperature, the resulting suspension was washed three times with ion exchange water (175 mL), and the resulting suspension was washed with ethanol (350 mL) on a filter. Compound 1e (5.8 g, white solid) was obtained by drying the obtained white solid under reduced pressure at 50°C. The LC area percentage of compound 1e was greater than 97%.
1 H-NMR (400 MHz, CD 2 Cl 2 ): δ (ppm) = 8.60 (2H, s), 8.50 (2H, d), 8.44 (2H, d), 8.26 (2H , s), 7.93-7.82 (4H, m), 7.78 (2H, s), 7.75-7.76 (6H, m), 7.56 (4H, m), 1. 81 (4H, s), 1.41 (12H, s), 0.76 (18H, s).
TLC-MS (ESI, positive): [M+H] + =997.
(化合物1f)
 反応容器内をアルゴンガス雰囲気とした後、化合物1e(5.7g)、炭酸カリウム(3.16g)、N,N-ジメチルアセトアミド(100mL)、ヨウ化銅(I)(0.32g)、1,10-フェナントロリン(0.31g)を加えオイルバス130℃で3時間加熱撹拌した。室温まで冷却後、トルエン(100mL)を加え、得られた懸濁液をイオン交換水(100mL)で3回洗浄し、得られた懸濁液をろ過器上でメタノール(500mL)で洗浄し、ろ上物をろ過器上でトルエン(30mL)で3回洗浄した。得られた淡黄色固体を50℃で減圧乾燥させることで、化合物1f(3.9g、淡黄色固体)を得た。化合物1fのLC面積百分率は98%以上であった。
 TLC-MS(ESI,positive):[M+H]=837.
(Compound 1f)
After creating an argon gas atmosphere in the reaction vessel, compound 1e (5.7 g), potassium carbonate (3.16 g), N,N-dimethylacetamide (100 mL), copper(I) iodide (0.32 g), 1 , 10-phenanthroline (0.31 g) was added, and the mixture was heated and stirred in an oil bath at 130° C. for 3 hours. After cooling to room temperature, toluene (100 mL) was added, the resulting suspension was washed three times with ion-exchanged water (100 mL), and the resulting suspension was washed with methanol (500 mL) on a filter. The filtered product was washed three times with toluene (30 mL) on the filter. The obtained pale yellow solid was dried under reduced pressure at 50°C to obtain Compound 1f (3.9 g, pale yellow solid). The LC area percentage of compound 1f was greater than 98%.
TLC-MS (ESI, positive): [M+H] + =837.
(化合物1g)
 反応容器内をアルゴンガス雰囲気とした後、1-ブロモ-3,5-ジヘキシルベンゼン(2.56g)、テトラヒドロフラン(220mL)を加え、-65℃以下のバスで冷却し、s-ブチルリチウム溶液(1.2mol/L,シクロヘキサン/ヘキサン溶液)(6.3mL)を滴下し、2時間撹拌した。得られた溶液に、化合物1f(2.2g)を加え、室温まで昇温し、2時間室温にて撹拌した。氷冷にて冷却後、メタノール(4mL)を加え、室温まで昇温後、トルエン(50mL)を加え、得られた溶液をイオン交換水(20mL)で3回洗浄した。得られた有機相を硫酸マグネシウムで乾燥させた後、セライトを敷いたろ過器でろ過し、ろ上物をトルエンで洗浄した。得られたろ液を減圧濃縮した。得られた粗生成物をヘプタンで洗浄した。得られた黄色固体を50℃で減圧乾燥させることで、化合物1g(3.4g、黄色固体)を得た。化合物1gのLC面積百分率は84%以上であった。
 H-NMR(400MHz、CDCl):δ(ppm)=8.21(2H,s),8.17(2H,d),8.10(2H,s),7.89(2H,d),7.70(4H,d),7.59(2H,d),7.53(4H,d),7.44(2H,t),7.31(2H,t),7.20(4H,s),6.91(2H,s),3.48(2H,s),2.49(8H,t),1.85(4H,s),1.53-1.42(8H,m),1.44(12H,s),1.32-1.20(8H,m),1.20-1.15(16H,m),0.81(18H,s),0.71(12H,s).
(1 g of compound)
After creating an argon gas atmosphere in the reaction vessel, 1-bromo-3,5-dihexylbenzene (2.56 g) and tetrahydrofuran (220 mL) were added, and the mixture was cooled in a bath at -65°C or below, and the s-butyllithium solution ( 1.2 mol/L, cyclohexane/hexane solution) (6.3 mL) was added dropwise, and the mixture was stirred for 2 hours. Compound 1f (2.2 g) was added to the obtained solution, the temperature was raised to room temperature, and the mixture was stirred at room temperature for 2 hours. After cooling on ice, methanol (4 mL) was added, the temperature was raised to room temperature, toluene (50 mL) was added, and the resulting solution was washed three times with ion-exchanged water (20 mL). The obtained organic phase was dried over magnesium sulfate, filtered through a filter lined with Celite, and the filtered product was washed with toluene. The obtained filtrate was concentrated under reduced pressure. The obtained crude product was washed with heptane. The obtained yellow solid was dried under reduced pressure at 50°C to obtain 1 g (3.4 g, yellow solid) of the compound. The LC area percentage of 1 g of the compound was greater than 84%.
1 H-NMR (400 MHz, CD 2 Cl 2 ): δ (ppm) = 8.21 (2H, s), 8.17 (2H, d), 8.10 (2H, s), 7.89 (2H , d), 7.70 (4H, d), 7.59 (2H, d), 7.53 (4H, d), 7.44 (2H, t), 7.31 (2H, t), 7 .20 (4H, s), 6.91 (2H, s), 3.48 (2H, s), 2.49 (8H, t), 1.85 (4H, s), 1.53-1. 42 (8H, m), 1.44 (12H, s), 1.32-1.20 (8H, m), 1.20-1.15 (16H, m), 0.81 (18H, s) , 0.71 (12H, s).
(化合物1h)
 反応容器内をアルゴンガス雰囲気とした後、化合物1g(3.1g)、1,4-ジオキサン(310mL)を加え、室温でトリフルオロメタンスルホン酸(1.7g)を滴下し、2時間室温にて撹拌した。得られた懸濁液をろ過器上で1,4-ジオキサンで洗浄した。得られた橙色固体を50℃で減圧乾燥させることで、化合物1h(3.5g、橙色固体)を得た。
 H-NMR(400MHz、CDCl)δ(ppm)=9.11(2H,d),9.05(2H,s),8.50(2H,t),8.34(2H,d),8.19(2H,s),8.07(2H,t),7.80(2H,s),7.79(4H,d),7.71(4H,d),7.57(4H,s),7.03(2H,s),2.95-2.77(8H,m),1.91(4H,s),1.82-1.68(8H,m),1.51(12H,s),1.37(8H,quin),1.21-1.08(16H,m),0.83(18H,s),0.71(12H,t).
(Compound 1h)
After creating an argon gas atmosphere in the reaction vessel, 1 g (3.1 g) of the compound and 1,4-dioxane (310 mL) were added, and trifluoromethanesulfonic acid (1.7 g) was added dropwise at room temperature, followed by stirring at room temperature for 2 hours. Stirred. The resulting suspension was washed with 1,4-dioxane on a filter. The obtained orange solid was dried under reduced pressure at 50°C to obtain Compound 1h (3.5 g, orange solid).
1 H-NMR (400 MHz, CD 2 Cl 2 ) δ (ppm) = 9.11 (2H, d), 9.05 (2H, s), 8.50 (2H, t), 8.34 (2H, d), 8.19 (2H, s), 8.07 (2H, t), 7.80 (2H, s), 7.79 (4H, d), 7.71 (4H, d), 7. 57 (4H, s), 7.03 (2H, s), 2.95-2.77 (8H, m), 1.91 (4H, s), 1.82-1.68 (8H, m) , 1.51 (12H, s), 1.37 (8H, quin), 1.21-1.08 (16H, m), 0.83 (18H, s), 0.71 (12H, t).
(化合物S1)
 反応容器内をアルゴンガス雰囲気とした後、化合物1h(3.0g)、シクロペンチルメチルエーテル(300mL)を加え、-65℃以下のバスで冷却し、オクチルマグネシウムブロミド溶液(2mol/L,ジエチルエーテル溶液)(4.7mL)を滴下し、2時間撹拌した。メタノール(6mL)を加え、室温まで昇温後、トルエン(30mL)を加え、得られた溶液をイオン交換水(30mL)で3回洗浄した。得られた有機相を硫酸マグネシウムで乾燥させた後、活性炭(0.6g)を加え10分撹拌し、セライトを敷いたろ過器でろ過し、ろ上物をトルエンで洗浄した。得られたろ液を減圧濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(トルエン及びヘプタンの混合溶媒)で精製した。得られた粗生成物をトルエン、酢酸エチル、アセトニトリルの混合溶媒で複数回、再結晶した。得られた黄色固体を50℃で減圧乾燥させることで、化合物S1(1.7g、黄色固体)を得た。化合物S1のLC面積百分率は99.4%以上であった。
 H-NMR(400MHz、CDCl):δ(ppm)=8.81-8.13(4H,m),7.94-7.88(2H,m),7.68-7.63(4H,m),7.50(4H,d),7.48-7.39(2H,m),7.30(2H,t),7.25-7.19(4H,m),7.16(2H,m),7.08(2H,m),6.95-6.90(2H,m),3.30-2.40(12H,m),1.82(4H,s),1.60-1.40(20H,m),1.30-0.30(84H,m).
 LC-MS(APCI,positive):[M+H]=1522.
(Compound S1)
After creating an argon gas atmosphere in the reaction vessel, compound 1h (3.0 g) and cyclopentyl methyl ether (300 mL) were added, cooled in a bath at -65°C or lower, and octylmagnesium bromide solution (2 mol/L, diethyl ether solution) was added. ) (4.7 mL) was added dropwise and stirred for 2 hours. Methanol (6 mL) was added, the temperature was raised to room temperature, toluene (30 mL) was added, and the resulting solution was washed three times with ion-exchanged water (30 mL). After drying the obtained organic phase with magnesium sulfate, activated carbon (0.6 g) was added and stirred for 10 minutes, filtered through a filter lined with Celite, and the filtered product was washed with toluene. The obtained filtrate was concentrated under reduced pressure. The obtained crude product was purified by silica gel column chromatography (mixed solvent of toluene and heptane). The obtained crude product was recrystallized multiple times from a mixed solvent of toluene, ethyl acetate, and acetonitrile. Compound S1 (1.7 g, yellow solid) was obtained by drying the obtained yellow solid under reduced pressure at 50°C. The LC area percentage of compound S1 was greater than 99.4%.
1 H-NMR (400 MHz, CD 2 Cl 2 ): δ (ppm) = 8.81-8.13 (4H, m), 7.94-7.88 (2H, m), 7.68-7. 63 (4H, m), 7.50 (4H, d), 7.48-7.39 (2H, m), 7.30 (2H, t), 7.25-7.19 (4H, m) , 7.16 (2H, m), 7.08 (2H, m), 6.95-6.90 (2H, m), 3.30-2.40 (12H, m), 1.82 (4H , s), 1.60-1.40 (20H, m), 1.30-0.30 (84H, m).
LC-MS (APCI, positive): [M+H] + =1522.
・化合物S2の合成
Figure JPOXMLDOC01-appb-C000145
・Synthesis of compound S2
Figure JPOXMLDOC01-appb-C000145
(化合物S2)
 反応容器内をアルゴンガス雰囲気とした後、化合物1h(0.13g)、シクロペンチルメチルエーテル(13mL)を加え、-65℃以下のバスで冷却し、メチルマグネシウムブロミド溶液(1mol/L,テトラヒドロフラン溶液)(0.4mL)を滴下し、2時間撹拌した。メタノール(0.3mL)を加え、室温まで昇温後、トルエン(3mL)を加え、得られた溶液をイオン交換水(2mL)で3回洗浄した。得られた有機相を硫酸マグネシウムで乾燥させた後、活性炭(20mg)を加え10分撹拌し、セライトを敷いたろ過器でろ過し、ろ上物をトルエンで洗浄した。得られたろ液を減圧濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(トルエン及びヘプタンの混合溶媒)で精製した。得られた粗生成物をトルエン、メタノールの混合溶媒で再結晶した。得られた黄色固体を50℃で減圧乾燥させることで、化合物S2(0.09g、黄色固体)を得た。化合物S2のLC面積百分率は99.6%以上であった。
 H-NMR(400MHz、CDCl)δ(ppm)=8.10-8.05(4H,m),7.86(2H,d),7.65(4H,d),7.51(4H,d),7.35-7.28(6H,m),7.24-7.19(2H,m),7.16(2H,t),7.06-6.98(4H,m),2.63-2.50(8H,m),2.13-2.05(6H,m),1.84(4H,s),1.62-1.50(8H,m),1.44(12H,s),1.30-1.10(24H,m),0.80(18H,s),0.73-0.65(12H,m).
 LC-MS(APCI,positive):[M+H]=1326.
(Compound S2)
After creating an argon gas atmosphere in the reaction vessel, compound 1h (0.13 g) and cyclopentyl methyl ether (13 mL) were added, cooled in a bath at -65°C or lower, and methylmagnesium bromide solution (1 mol/L, tetrahydrofuran solution) was added. (0.4 mL) was added dropwise and stirred for 2 hours. Methanol (0.3 mL) was added, the temperature was raised to room temperature, toluene (3 mL) was added, and the resulting solution was washed three times with ion-exchanged water (2 mL). After drying the obtained organic phase with magnesium sulfate, activated carbon (20 mg) was added and stirred for 10 minutes, filtered through a filter lined with Celite, and the filtered product was washed with toluene. The obtained filtrate was concentrated under reduced pressure. The obtained crude product was purified by silica gel column chromatography (mixed solvent of toluene and heptane). The obtained crude product was recrystallized from a mixed solvent of toluene and methanol. Compound S2 (0.09 g, yellow solid) was obtained by drying the obtained yellow solid under reduced pressure at 50°C. The LC area percentage of compound S2 was greater than 99.6%.
1 H-NMR (400 MHz, CD 2 Cl 2 ) δ (ppm) = 8.10-8.05 (4H, m), 7.86 (2H, d), 7.65 (4H, d), 7. 51 (4H, d), 7.35-7.28 (6H, m), 7.24-7.19 (2H, m), 7.16 (2H, t), 7.06-6.98 ( 4H, m), 2.63-2.50 (8H, m), 2.13-2.05 (6H, m), 1.84 (4H, s), 1.62-1.50 (8H, m), 1.44 (12H, s), 1.30-1.10 (24H, m), 0.80 (18H, s), 0.73-0.65 (12H, m).
LC-MS (APCI, positive): [M+H] + =1326.
・化合物S3の合成
Figure JPOXMLDOC01-appb-C000146
・Synthesis of compound S3
Figure JPOXMLDOC01-appb-C000146
(化合物S3)
 反応容器内をアルゴンガス雰囲気とした後、マグネシウム(0.09g)、テトラヒドロフラン(5mL)、ヨウ素(0.001g)を加え、オイルバス70℃で1時間加熱撹拌した。1-ブロモ-3,5-ジヘキシルベンゼン(1.0g)、テトラヒドロフラン(1mL)を滴下し、オイルバス70℃で1時間加熱撹拌し、室温まで冷却し、3,5-ジヘキシルフェニルマグネシウムブロミド溶液(0.43mol/L,テトラヒドロフラン溶液)を調製した。
 別の反応容器にて、反応容器内をアルゴンガス雰囲気とした後、化合物1h(0.13g)、シクロペンチルメチルエーテル(13mL)を加え、-65℃以下のバスで冷却し、調製した3,5-ジヘキシルフェニルマグネシウムブロミド溶液(0.43mol/L,テトラヒドロフラン溶液)(1.52mL)を滴下し、2時間撹拌した。メタノール(0.3mL)を加え、室温まで昇温後、トルエン(3mL)を加え、得られた溶液をイオン交換水(2mL)で3回洗浄した。得られた有機相を硫酸マグネシウムで乾燥させた後、活性炭(20mg)を加え10分撹拌し、セライトを敷いたろ過器でろ過し、ろ上物をトルエンで洗浄した。得られたろ液を減圧濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(トルエン及びヘプタンの混合溶媒)で精製した。得られた粗生成物をトルエン、アセトニトリルの混合溶媒で再結晶した。得られた黄色固体を50℃で減圧乾燥させることで、化合物S3(0.08g、黄色固体)を得た。化合物S3のLC面積百分率は98%以上であった。
 H-NMR(400MHz、CDCl):δ(ppm)=8.03(2H,d),8.01(2H,d),7.72(2H,d),7.57(4H,d),7.47(4H,d),7.37(2H,td),7.24(2H,td),7.15(2H,dd),6.92(4H,t),6.85-6.79(10H,m),2.39(16H,t),1.81(4H,s),1.47-1.31(28H,m),1.12-0.91(48H,m),0.79(18H,t),0.63(24H,t).
 LC-MS(APCI,positive):[M+H]=1786.
(Compound S3)
After creating an argon gas atmosphere in the reaction vessel, magnesium (0.09 g), tetrahydrofuran (5 mL), and iodine (0.001 g) were added, and the mixture was heated and stirred in an oil bath at 70° C. for 1 hour. 1-bromo-3,5-dihexylbenzene (1.0 g) and tetrahydrofuran (1 mL) were added dropwise, heated and stirred in an oil bath at 70°C for 1 hour, cooled to room temperature, and 3,5-dihexylphenylmagnesium bromide solution ( 0.43 mol/L, tetrahydrofuran solution) was prepared.
In another reaction vessel, after creating an argon gas atmosphere in the reaction vessel, compound 1h (0.13 g) and cyclopentyl methyl ether (13 mL) were added, and the mixture was cooled in a bath at -65°C or lower to prepare 3,5 -Dihexylphenylmagnesium bromide solution (0.43 mol/L, tetrahydrofuran solution) (1.52 mL) was added dropwise, and the mixture was stirred for 2 hours. Methanol (0.3 mL) was added, the temperature was raised to room temperature, toluene (3 mL) was added, and the resulting solution was washed three times with ion-exchanged water (2 mL). After drying the obtained organic phase with magnesium sulfate, activated carbon (20 mg) was added and stirred for 10 minutes, filtered through a filter lined with Celite, and the filtered product was washed with toluene. The obtained filtrate was concentrated under reduced pressure. The obtained crude product was purified by silica gel column chromatography (mixed solvent of toluene and heptane). The obtained crude product was recrystallized from a mixed solvent of toluene and acetonitrile. Compound S3 (0.08 g, yellow solid) was obtained by drying the obtained yellow solid under reduced pressure at 50°C. The LC area percentage of compound S3 was greater than 98%.
1 H-NMR (400 MHz, CD 2 Cl 2 ): δ (ppm) = 8.03 (2H, d), 8.01 (2H, d), 7.72 (2H, d), 7.57 (4H , d), 7.47 (4H, d), 7.37 (2H, td), 7.24 (2H, td), 7.15 (2H, dd), 6.92 (4H, t), 6 .85-6.79 (10H, m), 2.39 (16H, t), 1.81 (4H, s), 1.47-1.31 (28H, m), 1.12-0.91 (48H, m), 0.79 (18H, t), 0.63 (24H, t).
LC-MS (APCI, positive): [M+H] + =1786.
・化合物S4の合成
Figure JPOXMLDOC01-appb-C000147
・Synthesis of compound S4
Figure JPOXMLDOC01-appb-C000147
(化合物2a)
 反応容器内をアルゴンガス雰囲気とした後、化合物1f(0.5g)、テトラヒドロフラン(50mL)を加え、-65℃以下のバスで冷却し、n-ブチルリチウム溶液(1.7mol/L,ヘキサン溶液)(1.4mL)を滴下し、室温まで昇温し、3時間室温にて撹拌した。氷冷にて冷却後、メタノール(1mL)を加え、室温まで昇温後、トルエン(20mL)を加え、得られた溶液をイオン交換水(20mL)で3回洗浄した。得られた有機相を硫酸マグネシウムで乾燥させた後、セライトを敷いたろ過器でろ過し、ろ上物をトルエンで洗浄した。得られたろ液を減圧濃縮した。得られた粗生成物をヘプタンで洗浄した。得られた黄色固体を50℃で減圧乾燥させることで、化合物2a(0.5g、黄色固体)を得た。化合物2aのLC面積百分率は86%以上であった。
 H-NMR(400MHz、CDCl):δ(ppm)=8.90-8.63(2H,m),8.43-8.30(2H,m),8.20-8.13(2H,m),8.81-7.40(16H,m),3.60-3.28(2H,m),3.20-2.80(4H,m),2.35-2.05(4H,m),1.90-1.80(4H,m),1.55-0.01(40H,t).
(Compound 2a)
After creating an argon gas atmosphere in the reaction vessel, compound 1f (0.5 g) and tetrahydrofuran (50 mL) were added, cooled in a bath at -65°C or lower, and dissolved in n-butyllithium solution (1.7 mol/L, hexane solution). ) (1.4 mL) was added dropwise, the temperature was raised to room temperature, and the mixture was stirred at room temperature for 3 hours. After cooling on ice, methanol (1 mL) was added, the temperature was raised to room temperature, toluene (20 mL) was added, and the resulting solution was washed three times with ion-exchanged water (20 mL). The obtained organic phase was dried over magnesium sulfate, filtered through a filter lined with Celite, and the filtered product was washed with toluene. The obtained filtrate was concentrated under reduced pressure. The obtained crude product was washed with heptane. Compound 2a (0.5 g, yellow solid) was obtained by drying the obtained yellow solid under reduced pressure at 50°C. The LC area percentage of compound 2a was greater than 86%.
1 H-NMR (400 MHz, CD 2 Cl 2 ): δ (ppm) = 8.90-8.63 (2H, m), 8.43-8.30 (2H, m), 8.20-8. 13 (2H, m), 8.81-7.40 (16H, m), 3.60-3.28 (2H, m), 3.20-2.80 (4H, m), 2.35- 2.05 (4H, m), 1.90-1.80 (4H, m), 1.55-0.01 (40H, t).
(化合物2b)
 反応容器内をアルゴンガス雰囲気とした後、化合物2a(0.4g)、1,4-ジオキサン(40mL)を加え、室温でトリフルオロメタンスルホン酸(0.3g)を滴下し、2時間室温にて撹拌した。得られた懸濁液をろ過器上で1,4-ジオキサンで洗浄した。得られた赤色固体を50℃で減圧乾燥させることで、化合物2b(0.47g、赤色固体)を得た。
(Compound 2b)
After creating an argon gas atmosphere in the reaction vessel, compound 2a (0.4 g) and 1,4-dioxane (40 mL) were added, trifluoromethanesulfonic acid (0.3 g) was added dropwise at room temperature, and the mixture was heated at room temperature for 2 hours. Stirred. The resulting suspension was washed with 1,4-dioxane on a filter. Compound 2b (0.47 g, red solid) was obtained by drying the obtained red solid under reduced pressure at 50°C.
(化合物S4)
 反応容器内をアルゴンガス雰囲気とした後、化合物2b(0.4g)、シクロペンチルメチルエーテル(40mL)を加え、-65℃以下のバスで冷却し、ブチルマグネシウムブロミド溶液(2mol/L,ジエチルエーテル溶液)(1.3mL)を滴下し、2時間撹拌した。メタノール(1mL)を加え、室温まで昇温後、トルエン(7mL)を加え、得られた溶液をイオン交換水(3mL)で3回洗浄した。得られた有機相を硫酸マグネシウムで乾燥させた後、セライトを敷いたろ過器でろ過し、ろ上物をトルエンで洗浄した。得られたろ液を減圧濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(トルエン及びヘプタンの混合溶媒)で精製した。得られた粗生成物をトルエン、ヘプタンの混合溶媒で複数回、再結晶した。得られた黄色固体を50℃で減圧乾燥させることで、化合物S4(0.1g、黄色固体)を得た。化合物S4のLC面積百分率は98%以上であった。
 H-NMR(400MHz、CDCl):δ(ppm)=8.57(2H,s),8.29(2H,s),8.10(2H,d),8.05(2H,s),7.73(4H,d),7.53(6H,d),7.43-7.35(4H,m),3.16(4H,td),2.22(4H,td),1.82(4H,s),1.42(12H,s),1.15-0.65(34H,m),0.55(12H,t).
 LC-MS(APCI,positive):[M+H]=1034.
(Compound S4)
After creating an argon gas atmosphere in the reaction vessel, compound 2b (0.4 g) and cyclopentyl methyl ether (40 mL) were added, and the mixture was cooled in a bath at -65°C or below, and a butylmagnesium bromide solution (2 mol/L, diethyl ether solution) was added. ) (1.3 mL) was added dropwise and stirred for 2 hours. Methanol (1 mL) was added, the temperature was raised to room temperature, toluene (7 mL) was added, and the resulting solution was washed three times with ion-exchanged water (3 mL). The obtained organic phase was dried over magnesium sulfate, filtered through a filter lined with Celite, and the filtered product was washed with toluene. The obtained filtrate was concentrated under reduced pressure. The obtained crude product was purified by silica gel column chromatography (mixed solvent of toluene and heptane). The obtained crude product was recrystallized several times from a mixed solvent of toluene and heptane. Compound S4 (0.1 g, yellow solid) was obtained by drying the obtained yellow solid under reduced pressure at 50°C. The LC area percentage of compound S4 was greater than 98%.
1 H-NMR (400 MHz, CD 2 Cl 2 ): δ (ppm) = 8.57 (2H, s), 8.29 (2H, s), 8.10 (2H, d), 8.05 (2H , s), 7.73 (4H, d), 7.53 (6H, d), 7.43-7.35 (4H, m), 3.16 (4H, td), 2.22 (4H, td), 1.82 (4H, s), 1.42 (12H, s), 1.15-0.65 (34H, m), 0.55 (12H, t).
LC-MS (APCI, positive): [M+H] + =1034.
・化合物S5の合成
 化合物S5は、国際公開第2012-086671号に記載された方法に従って合成した。
Figure JPOXMLDOC01-appb-C000148
-Synthesis of Compound S5 Compound S5 was synthesized according to the method described in International Publication No. 2012-086671.
Figure JPOXMLDOC01-appb-C000148
・化合物S6の合成
 化合物S6は、国際公開第2018-199283号に記載された方法に従って合成した。
Figure JPOXMLDOC01-appb-C000149
-Synthesis of compound S6 Compound S6 was synthesized according to the method described in International Publication No. 2018-199283.
Figure JPOXMLDOC01-appb-C000149
・化合物S7~S11の合成及び入手
 化合物S7は、特開2012-144722号公報に記載の方法に従って合成した。
 化合物S8は、国際公開第2011-049241号に記載の方法に従って合成した。
 化合物S9は、国際公開第2002-045184号に記載の方法に従って合成した。
 化合物S10は、国際公開第2008-038747号に記載の方法に従って合成した。
 化合物S11は、市販品を用いた。
Figure JPOXMLDOC01-appb-C000150
-Synthesis and acquisition of compounds S7 to S11 Compound S7 was synthesized according to the method described in JP-A-2012-144722.
Compound S8 was synthesized according to the method described in International Publication No. 2011-049241.
Compound S9 was synthesized according to the method described in WO 2002-045184.
Compound S10 was synthesized according to the method described in WO 2008-038747.
A commercially available product was used as compound S11.
Figure JPOXMLDOC01-appb-C000150
・化合物S12の合成
Figure JPOXMLDOC01-appb-C000151
・Synthesis of compound S12
Figure JPOXMLDOC01-appb-C000151
(化合物3a)
 反応容器内をアルゴンガス雰囲気とした後、マグネシウム(7.81g)、テトラヒドロフラン(81mL)、ヨウ素(0.026g)を加え、オイルバス70℃で1時間加熱撹拌した。3-ブロモ-3’-クロロ-1,1’-ビフェニル(28.5g)、テトラヒドロフラン(2mL)を滴下し、オイルバス70℃で1時間加熱撹拌し、室温まで冷却し、3-(3’-クロロ-フェニル)フェニルマグネシウムブロミド溶液(1.22mol/L,テトラヒドロフラン溶液)を調製した。
 別の反応容器にて、反応容器内をアルゴンガス雰囲気とした後、化合物2a(8.5g)、シクロペンチルメチルエーテル(850mL)を加え、室温でトリフルオロメタンスルホン酸(6.1g)を滴下し、2時間室温にて撹拌して化合物2bの懸濁液を得た。得られた懸濁液を-65℃以下のバスで冷却し、調製した3-(3’-クロロ-フェニル)フェニルマグネシウムブロミド溶液(1.22mol/L,テトラヒドロフラン溶液)(83mL)を滴下し、2時間撹拌した。メタノール(17mL)を加え、室温まで昇温後、イオン交換水(85mL)を加え、得られた溶液をイオン交換水(85mL)で3回洗浄した。得られた有機相を減圧濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(トルエン及びヘキサンの混合溶媒)で精製した。得られた粗生成物をテトラヒドロフラン、メタノールの混合溶媒で再結晶した。得られた黄色固体を50℃で減圧乾燥させることで、化合物3a(10.0g、黄色固体)を得た。化合物3aのLC面積百分率は84%以上であった。
 H-NMR(400MHz、CDCl):δ(ppm)=8.12-8.06(4H,m),7.99-7.91(4H,m),7.67-7.27(25H,m),7.25-7.05(5H,m),3.41-3.25(2H,m),2.75-2.60(2H,m),1.83(4H,s),1.42(12H,s),1.15-0.85(6H,m),0.80(18H,s),0.60-0.43(8H,m).
 LC-MS(APCI,positive):[M+H]=1293.
(Compound 3a)
After creating an argon gas atmosphere in the reaction vessel, magnesium (7.81 g), tetrahydrofuran (81 mL), and iodine (0.026 g) were added, and the mixture was heated and stirred in an oil bath at 70° C. for 1 hour. 3-Bromo-3'-chloro-1,1'-biphenyl (28.5 g) and tetrahydrofuran (2 mL) were added dropwise, heated and stirred in an oil bath at 70°C for 1 hour, cooled to room temperature, and 3-(3' -Chloro-phenyl)phenylmagnesium bromide solution (1.22 mol/L, tetrahydrofuran solution) was prepared.
In another reaction container, after creating an argon gas atmosphere in the reaction container, compound 2a (8.5 g) and cyclopentyl methyl ether (850 mL) were added, and trifluoromethanesulfonic acid (6.1 g) was added dropwise at room temperature. The mixture was stirred at room temperature for 2 hours to obtain a suspension of compound 2b. The resulting suspension was cooled in a bath at -65°C or lower, and the prepared 3-(3'-chloro-phenyl)phenylmagnesium bromide solution (1.22 mol/L, tetrahydrofuran solution) (83 mL) was added dropwise. Stirred for 2 hours. Methanol (17 mL) was added, and after the temperature was raised to room temperature, ion exchange water (85 mL) was added, and the resulting solution was washed three times with ion exchange water (85 mL). The obtained organic phase was concentrated under reduced pressure. The obtained crude product was purified by silica gel column chromatography (mixed solvent of toluene and hexane). The obtained crude product was recrystallized from a mixed solvent of tetrahydrofuran and methanol. Compound 3a (10.0 g, yellow solid) was obtained by drying the obtained yellow solid under reduced pressure at 50°C. The LC area percentage of compound 3a was greater than 84%.
1 H-NMR (400 MHz, CD 2 Cl 2 ): δ (ppm) = 8.12-8.06 (4H, m), 7.99-7.91 (4H, m), 7.67-7. 27 (25H, m), 7.25-7.05 (5H, m), 3.41-3.25 (2H, m), 2.75-2.60 (2H, m), 1.83 ( 4H, s), 1.42 (12H, s), 1.15-0.85 (6H, m), 0.80 (18H, s), 0.60-0.43 (8H, m).
LC-MS (APCI, positive): [M+H] + =1293.
(化合物S12)
 反応容器内をアルゴン雰囲気とした後、化合物3a(7.6g)、ビスピナコラートジボロン(4.5g)、トリス(ジベンジリデンアセトン)ジパラジウム(0.17g)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニルジシクロヘキシル(2’,4’,6’-トリイソプロピル-[1,1’-ビフェニル]-2-イル)ホスフィン(0.31g)、酢酸カリウム(3.5g)、トルエン(304mL)、エチレングリコールジメチルエーテル(228mL)を加え、オイルバス90℃で10時間加熱撹拌し、その後、トルエン(61mL)、水(23mL)を加え室温で撹拌した。分液し、イオン交換水で3回洗浄した。得られた有機相を減圧濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(トルエン及びヘキサンの混合溶媒)で精製した。得られた粗生成物をトルエン、ヘプタンの混合溶媒で再結晶した。得られた黄色固体を50℃で減圧乾燥させることで、化合物S12(1.4g、黄色固体)を得た。化合物S12のLC面積百分率は98%以上であった。
 H-NMR(400MHz、CDCl):δ(ppm)=8.10(2H,d),8.08(2H,s),8.83-7.96(4H,m),7.94(2H,s),7.76(2H,d),7.67-7.59(8H,m),7.55(2H,d),7.52-7.45(6H,m),7.44-7.36(4H,m),7.32(2H,t),7.20(2H,t),7.10(2H,t),3.32(2H,td),2.65(2H,td),1.83(4H,s),1.45(12H,s),1.29(24H,s),1.03(4H,sextet),0.97-0.83(2H,m),0.80(18H,s),0.52-0.35(8H,m).
 TLC-MS(positive):[M+H]=1478.
(Compound S12)
After creating an argon atmosphere in the reaction vessel, compound 3a (7.6 g), bispinacolato diboron (4.5 g), tris(dibenzylideneacetone)dipalladium (0.17 g), and 2-dicyclohexylphosphino-2 were added. ',4',6'-triisopropylbiphenyldicyclohexyl(2',4',6'-triisopropyl-[1,1'-biphenyl]-2-yl)phosphine (0.31 g), potassium acetate (3. 5 g), toluene (304 mL), and ethylene glycol dimethyl ether (228 mL) were added, and the mixture was heated and stirred in an oil bath at 90° C. for 10 hours. Then, toluene (61 mL) and water (23 mL) were added, and the mixture was stirred at room temperature. The liquid was separated and washed three times with ion-exchanged water. The obtained organic phase was concentrated under reduced pressure. The obtained crude product was purified by silica gel column chromatography (mixed solvent of toluene and hexane). The obtained crude product was recrystallized from a mixed solvent of toluene and heptane. Compound S12 (1.4 g, yellow solid) was obtained by drying the obtained yellow solid under reduced pressure at 50°C. The LC area percentage of compound S12 was greater than 98%.
1 H-NMR (400 MHz, CD 2 Cl 2 ): δ (ppm) = 8.10 (2H, d), 8.08 (2H, s), 8.83-7.96 (4H, m), 7 .94 (2H, s), 7.76 (2H, d), 7.67-7.59 (8H, m), 7.55 (2H, d), 7.52-7.45 (6H, m ), 7.44-7.36 (4H, m), 7.32 (2H, t), 7.20 (2H, t), 7.10 (2H, t), 3.32 (2H, td) , 2.65 (2H, td), 1.83 (4H, s), 1.45 (12H, s), 1.29 (24H, s), 1.03 (4H, sextet), 0.97- 0.83 (2H, m), 0.80 (18H, s), 0.52-0.35 (8H, m).
TLC-MS (positive): [M+H] + =1478.
・化合物S13~S14の合成及び入手
 化合物S13は、市販品を用いた。
 化合物S14は、国際公開第2009-131255号に記載の方法に従って合成した。
Figure JPOXMLDOC01-appb-C000152
-Synthesis and acquisition of compounds S13 to S14 A commercially available product was used as compound S13.
Compound S14 was synthesized according to the method described in WO 2009-131255.
Figure JPOXMLDOC01-appb-C000152
 合成例1
 <高分子化合物P1の合成>
 高分子化合物P1は、表3に示す混合物P1-1(化合物S7、化合物S8、化合物S9及び化合物S10)を用いて、特開2012-144722号公報に記載の方法に従って合成した。高分子化合物P1のMnは8.0×10であり、Mwは2.6×10であった。
Synthesis example 1
<Synthesis of polymer compound P1>
The polymer compound P1 was synthesized using the mixture P1-1 (compound S7, compound S8, compound S9, and compound S10) shown in Table 3 according to the method described in JP-A-2012-144722. The Mn of the polymer compound P1 was 8.0×10 4 and the Mw was 2.6×10 5 .
Figure JPOXMLDOC01-appb-T000153
Figure JPOXMLDOC01-appb-T000153
 高分子化合物P1は、仕込み原料の量から求めた理論値から、化合物S7から誘導される構成単位と、化合物S8から誘導される構成単位と、化合物S9から誘導される構成単位と、化合物S10から誘導される構成単位とが、50:30:12.5:7.5のモル比で構成されてなるランダム共重合体(末端ブロック及び非末端ブロックを有しない共重合体)であると推測される。 The polymer compound P1 consists of a structural unit derived from compound S7, a structural unit derived from compound S8, a structural unit derived from compound S9, and a structural unit derived from compound S10, based on the theoretical value determined from the amount of raw materials to be charged. It is presumed that the derived structural units are random copolymers (copolymers without terminal blocks and non-terminal blocks) composed of a molar ratio of 50:30:12.5:7.5. Ru.
 合成例2
 <高分子化合物P2の合成>
 高分子化合物P2は、表4に示す混合物P2-1(化合物S7及び化合物S11)を用いて、特開2012-144722号公報に記載の方法に従って合成した。高分子化合物P2のMnは6.9×10であり、Mwは2.1×10であった。
Synthesis example 2
<Synthesis of polymer compound P2>
Polymer compound P2 was synthesized using mixture P2-1 (compound S7 and compound S11) shown in Table 4 according to the method described in JP-A-2012-144722. The Mn of the polymer compound P2 was 6.9×10 4 and the Mw was 2.1×10 5 .
Figure JPOXMLDOC01-appb-T000154
Figure JPOXMLDOC01-appb-T000154
 高分子化合物P2は、仕込み原料の量から求めた理論値から、化合物S7から誘導される構成単位と、化合物S11から誘導される構成単位とが、50:50のモル比で構成されてなる共重合体であると推測される。 The polymer compound P2 is a compound composed of a structural unit derived from the compound S7 and a structural unit derived from the compound S11 in a molar ratio of 50:50, based on the theoretical value determined from the amount of the charged raw materials. It is presumed to be a polymer.
 合成例3
 <高分子化合物P3の合成>
 高分子化合物P3を以下の方法で合成した。
(工程1)反応容器内を不活性ガス雰囲気とした後、上記の化合物S13(0.443g)、上記の化合物S12(0.120g)、上記の化合物S13(0.516g)、ジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(1.46mg)及びトルエン(31mL)を加え、80℃に加熱した。
(工程2)その後、反応容器に20質量%水酸化テトラエチルアンモニウム水溶液(20.7g)を滴下し、2時間還流させた。
(工程3)その後、反応容器にフェニルボロン酸(48.9mg)及びジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(1.50mg)を加え、80℃で3時間撹拌した。
(工程4)得られた反応混合物を冷却した後、ジエチルジチアカルバミン酸ナトリウム水溶液を加え、40℃で1時間撹拌した。得られた反応液を冷却し、水層を除去した後、得られた有機層を、3質量%アンモニア水で2回、水で2回洗浄した。得られた溶液をメタノールに滴下し、撹拌したところ、沈澱が生じた。得られた沈殿物をトルエン(71mL)に溶解させ、アルミナ(41g)を加え、3時間撹拌した後、得られた懸濁液をシリカゲルカラムに通液することにより精製した。得られた溶液をメタノールに滴下し、撹拌したところ、沈殿が生じた。得られた沈殿物をろ取し、乾燥させることにより、高分子化合物P3を0.44g得た。高分子化合物P3のMnは5.2×10であり、Mwは1.1×10であった。
Synthesis example 3
<Synthesis of polymer compound P3>
Polymer compound P3 was synthesized by the following method.
(Step 1) After creating an inert gas atmosphere in the reaction vessel, the above compound S13 (0.443 g), the above compound S12 (0.120 g), the above compound S13 (0.516 g), dichlorobis(tris- o-Methoxyphenylphosphine) palladium (1.46 mg) and toluene (31 mL) were added and heated to 80°C.
(Step 2) Thereafter, a 20% by mass aqueous tetraethylammonium hydroxide solution (20.7 g) was added dropwise to the reaction vessel, and the mixture was refluxed for 2 hours.
(Step 3) Then, phenylboronic acid (48.9 mg) and dichlorobis(tris-o-methoxyphenylphosphine)palladium (1.50 mg) were added to the reaction vessel, and the mixture was stirred at 80° C. for 3 hours.
(Step 4) After cooling the obtained reaction mixture, an aqueous sodium diethyldithiacarbamate solution was added, and the mixture was stirred at 40°C for 1 hour. After cooling the obtained reaction solution and removing the aqueous layer, the obtained organic layer was washed twice with 3% by mass aqueous ammonia and twice with water. When the obtained solution was added dropwise to methanol and stirred, a precipitate was generated. The obtained precipitate was dissolved in toluene (71 mL), alumina (41 g) was added, and after stirring for 3 hours, the obtained suspension was purified by passing it through a silica gel column. When the obtained solution was added dropwise to methanol and stirred, a precipitate was generated. The obtained precipitate was collected by filtration and dried to obtain 0.44 g of polymer compound P3. The Mn of the polymer compound P3 was 5.2×10 4 and the Mw was 1.1×10 5 .
 高分子化合物P3は、仕込み原料の量から求めた理論値から、化合物S13から誘導される構成単位と、化合物S12から誘導される構成単位と、化合物S14から誘導される構成単位とが、45:5:50のモル比で構成されてなるランダム共重合体(末端ブロック及び非末端ブロックを有しない共重合体)であると推測される。 The polymer compound P3 has a structural unit derived from the compound S13, a structural unit derived from the compound S12, and a structural unit derived from the compound S14 from a theoretical value determined from the amount of the raw materials to be charged. It is presumed to be a random copolymer (a copolymer without terminal blocks and non-terminal blocks) composed of a molar ratio of 5:50.
 化合物の発光スペクトルの測定は、下記の方法で行った。
 化合物を、0.0008重量%の濃度となるように、キシレン又はクロロホルムに溶解させた。得られた溶液を1cm角の石英セルに入れた後、窒素ガスでバブリングして酸素を脱気することにより測定試料を作製した。得られた測定試料に対して、分光光度計(日本分光株式会社製、FP-6500)を用いて、発光スペクトルを測定し、得られた発光スペクトルから、発光スペクトルの極大波長及び面積比率(最大強度位置から-0.12eV~+0.07eVの範囲の面積値を、発光スペクトル全体の面積値で割った値)を算出した。なお、励起波長は300nmとした。
The emission spectrum of the compound was measured using the method described below.
The compounds were dissolved in xylene or chloroform to a concentration of 0.0008% by weight. The obtained solution was placed in a 1 cm square quartz cell, and then nitrogen gas was bubbled to remove oxygen to prepare a measurement sample. The emission spectrum of the obtained measurement sample was measured using a spectrophotometer (manufactured by JASCO Corporation, FP-6500), and from the obtained emission spectrum, the maximum wavelength and area ratio (maximum The value obtained by dividing the area value in the range of -0.12 eV to +0.07 eV from the intensity position by the area value of the entire emission spectrum) was calculated. Note that the excitation wavelength was 300 nm.
 上記で得られる面積比率は、発光スペクトル全体に対する、発光スペクトルの最大強度位置から所定範囲内に含まれる発光スペクトルの割合を示す。すなわち、上記面積比率が大きいことは、発光スペクトルのスペクトル幅が狭いことを示す。 The area ratio obtained above indicates the ratio of the emission spectrum included within a predetermined range from the maximum intensity position of the emission spectrum to the entire emission spectrum. That is, a large area ratio indicates that the spectral width of the emission spectrum is narrow.
 <実施例C1~C5及び比較例CC1> 化合物S1~S5及び1gのキシレン溶液の発光スペクトルの測定
 化合物S1~S5及び1gのキシレン溶液を用いて、発光スペクトルの測定を行った。各化合物の発光スペクトルの極大波長及び面積比率を、表5に示す。
<Examples C1 to C5 and Comparative Example CC1> Measurement of emission spectra of compounds S1 to S5 and 1 g of xylene solution Emission spectra were measured using compounds S1 to S5 and 1 g of xylene solution. Table 5 shows the maximum wavelength and area ratio of the emission spectrum of each compound.
Figure JPOXMLDOC01-appb-T000155
Figure JPOXMLDOC01-appb-T000155
 <実施例C6及び比較例CC2> 化合物S1及びS5のクロロホルム溶液の発光スペクトルの測定
 化合物S1及びS5のクロロホルム溶液を用いて、発光スペクトルの測定を行った。各化合物の発光スペクトルの極大波長及び面積比率を、表6に示す。
<Example C6 and Comparative Example CC2> Measurement of emission spectra of chloroform solutions of compounds S1 and S5 Emission spectra were measured using chloroform solutions of compounds S1 and S5. Table 6 shows the maximum wavelength and area ratio of the emission spectrum of each compound.
Figure JPOXMLDOC01-appb-T000156
Figure JPOXMLDOC01-appb-T000156
 表5及び表6の結果から、化合物S1~S4及び1gは、化合物S5と比較して、発光スペクトルの面積比率が高い、すなわち、発光スペクトルのスペクトル幅が狭い。 From the results in Tables 5 and 6, compounds S1 to S4 and 1g have higher area ratios of emission spectra, that is, narrower spectral widths of emission spectra, than compound S5.
<実施例D1> 発光素子D1の作製及び評価
(発光素子D1の作製)
(陽極及び正孔注入層の形成)
 ガラス基板にスパッタ法により45nmの厚さでITO膜を付けることにより、陽極を形成した。該陽極上に、正孔注入材料であるND-3202(日産化学工業製)をスピンコート法により35nmの厚さで成膜し、塗膜を形成した。塗膜を形成した基板を大気雰囲気下において、ホットプレート上で50℃、3分間加熱し、更に240℃、15分間加熱することにより正孔注入層を形成した。
<Example D1> Production and evaluation of light emitting element D1 (fabrication of light emitting element D1)
(Formation of anode and hole injection layer)
An anode was formed by applying an ITO film with a thickness of 45 nm to a glass substrate by sputtering. On the anode, a hole injection material ND-3202 (manufactured by Nissan Chemical Industries, Ltd.) was deposited to a thickness of 35 nm by spin coating to form a coating film. The substrate on which the coating film was formed was heated on a hot plate at 50° C. for 3 minutes in an air atmosphere, and then further heated at 240° C. for 15 minutes to form a hole injection layer.
(正孔輸送層の形成)
 キシレンに、高分子化合物P1を0.7質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔注入層の上にスピンコート法により20nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で180℃、60分間加熱させることにより、正孔輸送層を形成した。この加熱により、高分子化合物P1は、架橋した状態となった。
(Formation of hole transport layer)
Polymer compound P1 was dissolved in xylene at a concentration of 0.7% by mass. Using the obtained xylene solution, a film with a thickness of 20 nm was formed by spin coating on the hole injection layer, and a positive film was formed by heating it on a hot plate at 180°C for 60 minutes in a nitrogen gas atmosphere. A pore transport layer was formed. This heating brought the polymer compound P1 into a crosslinked state.
(発光層の形成)
 キシレンに、高分子化合物P2及び化合物S1(高分子化合物P2/化合物S1=97質量%/3質量%)を1.2質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔輸送層の上にスピンコート法により60nmの厚さで成膜し、窒素ガス雰囲気下において、150℃、10分間加熱させることにより、発光層を形成した。
(Formation of light emitting layer)
Polymer compound P2 and compound S1 (polymer compound P2/compound S1 = 97% by mass/3% by mass) were dissolved in xylene at a concentration of 1.2% by mass. Using the obtained xylene solution, a film with a thickness of 60 nm was formed by spin coating on the hole transport layer, and a light emitting layer was formed by heating at 150° C. for 10 minutes in a nitrogen gas atmosphere. .
(陰極の形成)
 発光層を形成した基板を蒸着機内において、1.0×10-4Pa以下にまで減圧した後、陰極として、発光層の上にフッ化ナトリウムを約4nm、次いで、フッ化ナトリウム層の上にアルミニウムを約80nm蒸着した。蒸着後、陰極を形成した基板をガラス基板で封止することにより、発光素子D1を作製した。
(Formation of cathode)
After reducing the pressure of the substrate on which the light-emitting layer was formed to 1.0×10 −4 Pa or less in a vapor deposition machine, about 4 nm of sodium fluoride was applied on the light-emitting layer as a cathode, and then on the sodium fluoride layer. Aluminum was deposited to a thickness of about 80 nm. After the vapor deposition, the substrate on which the cathode was formed was sealed with a glass substrate, thereby producing a light emitting element D1.
(発光素子D1の評価)
 発光素子D1に電圧を印加することにより発光が観測され、1000cd/mにおける発光スペクトルの極大波長及び面積比率は、それぞれ455nm及び0.642となった。これらの結果を、下記表7に示す。
(Evaluation of light emitting element D1)
Light emission was observed by applying a voltage to the light emitting element D1, and the maximum wavelength and area ratio of the emission spectrum at 1000 cd/m 2 were 455 nm and 0.642, respectively. These results are shown in Table 7 below.
<比較例CD1> 発光素子CD1の作製及び評価
 実施例D1における、高分子化合物P2及び化合物S1に代えて、高分子化合物P2及び化合物S5を用いた以外は実施例D1と同様にして、発光素子CD1を作製した。
 発光素子CD1に電圧を印加することにより発光が観測され、1000cd/mにおける発光スペクトルの極大波長及び面積比率は、それぞれ460nm及び0.578となった。これらの結果を、下記表7に示す。
<Comparative Example CD1> Production and evaluation of light emitting device CD1 A light emitting device was produced in the same manner as Example D1 except that polymer compound P2 and compound S5 were used instead of polymer compound P2 and compound S1 in Example D1. CD1 was produced.
Light emission was observed by applying a voltage to the light emitting element CD1, and the maximum wavelength and area ratio of the emission spectrum at 1000 cd/m 2 were 460 nm and 0.578, respectively. These results are shown in Table 7 below.
Figure JPOXMLDOC01-appb-T000157
Figure JPOXMLDOC01-appb-T000157
<実施例D2> 発光素子D2の作製及び評価
(発光素子D2の作製)
(陽極及び正孔注入層の形成)
 ガラス基板にスパッタ法により45nmの厚さでITO膜を付けることにより、陽極を形成した。該陽極上に、正孔注入材料であるND-3202(日産化学工業製)をスピンコート法により35nmの厚さで成膜し、塗膜を形成した。塗膜を形成した基板を大気雰囲気下において、ホットプレート上で50℃、3分間加熱し、更に240℃、15分間加熱することにより正孔注入層を形成した。
<Example D2> Production and evaluation of light emitting element D2 (fabrication of light emitting element D2)
(Formation of anode and hole injection layer)
An anode was formed by applying an ITO film with a thickness of 45 nm to a glass substrate by sputtering. On the anode, a hole injection material ND-3202 (manufactured by Nissan Chemical Industries, Ltd.) was deposited to a thickness of 35 nm by spin coating to form a coating film. The substrate on which the coating film was formed was heated on a hot plate at 50° C. for 3 minutes in an air atmosphere, and then further heated at 240° C. for 15 minutes to form a hole injection layer.
(正孔輸送層の形成)
 キシレンに、高分子化合物P1を0.7質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔注入層の上にスピンコート法により20nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で180℃、60分間加熱させることにより、正孔輸送層を形成した。この加熱により、高分子化合物P1は、架橋した状態となった。
(Formation of hole transport layer)
Polymer compound P1 was dissolved in xylene at a concentration of 0.7% by mass. Using the obtained xylene solution, a film with a thickness of 20 nm was formed by spin coating on the hole injection layer, and a positive film was formed by heating it on a hot plate at 180°C for 60 minutes in a nitrogen gas atmosphere. A pore transport layer was formed. This heating brought the polymer compound P1 into a crosslinked state.
(発光層の形成)
 トルエンに、化合物S6及び化合物S1(化合物S6/化合物S1=97質量%/3質量%)を1.8質量%の濃度で溶解させた。得られたトルエン溶液を用いて、正孔輸送層の上にスピンコート法により60nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより、発光層を形成した。
(Formation of light emitting layer)
Compound S6 and compound S1 (compound S6/compound S1 = 97% by mass/3% by mass) were dissolved in toluene at a concentration of 1.8% by mass. Using the obtained toluene solution, a film with a thickness of 60 nm was formed by spin coating on the hole transport layer, and a light emitting layer was formed by heating at 130° C. for 10 minutes in a nitrogen gas atmosphere. .
(陰極の形成)
 発光層を形成した基板を蒸着機内において、1.0×10-4Pa以下にまで減圧した後、陰極として、発光層の上にフッ化ナトリウムを約4nm、次いで、フッ化ナトリウム層の上にアルミニウムを約80nm蒸着した。蒸着後、陰極を形成した基板をガラス基板で封止することにより、発光素子D2を作製した。
(Formation of cathode)
After reducing the pressure of the substrate on which the light-emitting layer was formed to 1.0×10 −4 Pa or less in a vapor deposition machine, about 4 nm of sodium fluoride was applied on the light-emitting layer as a cathode, and then on the sodium fluoride layer. Aluminum was deposited to a thickness of about 80 nm. After the vapor deposition, the substrate on which the cathode was formed was sealed with a glass substrate, thereby producing a light emitting element D2.
(発光素子D2の評価)
 発光素子D2に電圧を印加することにより発光が観測され、1000cd/mにおける発光スペクトルの極大波長及び面積比率は、それぞれ460nm及び0.644となった。これらの結果を、下記表8に示す。
(Evaluation of light emitting element D2)
Light emission was observed by applying a voltage to the light emitting element D2, and the maximum wavelength and area ratio of the emission spectrum at 1000 cd/m 2 were 460 nm and 0.644, respectively. These results are shown in Table 8 below.
<比較例CD2> 発光素子CD2の作製及び評価
 実施例D2における、化合物S6及び化合物S1に代えて、化合物S6及び化合物S5を用いた以外は実施例D2と同様にして、発光素子CD2を作製した。
 発光素子CD2に電圧を印加することにより発光が観測され、1000cd/mにおける発光スペクトルの極大波長及び面積比率は、それぞれ470nm及び0.582となった。これらの結果を、下記表8に示す。
<Comparative Example CD2> Production and evaluation of light emitting device CD2 A light emitting device CD2 was produced in the same manner as in Example D2, except that compound S6 and compound S5 were used instead of compound S6 and compound S1 in Example D2. .
Light emission was observed by applying a voltage to the light emitting element CD2, and the maximum wavelength and area ratio of the emission spectrum at 1000 cd/m 2 were 470 nm and 0.582, respectively. These results are shown in Table 8 below.
Figure JPOXMLDOC01-appb-T000158
Figure JPOXMLDOC01-appb-T000158
 これらの結果から、化合物S1を発光層に含有する発光素子は、化合物S5を発光層に含有する発光素子と比較して、発光スペクトルの面積比率が高い、すなわち、発光スペクトルのスペクトル幅が狭い。 From these results, the light-emitting element containing the compound S1 in the light-emitting layer has a higher area ratio of the emission spectrum, that is, the spectral width of the emission spectrum is narrower, compared to the light-emitting element containing the compound S5 in the light-emitting layer.
<実施例D3> 発光素子D3の作製及び評価
(発光素子D3の作製)
 (発光層の形成)における「高分子化合物P2及び化合物S1(高分子化合物P2/化合物S1=97質量%/3質量%)を1.2質量%の濃度で溶解させた」ことに代えて、高分子化合物P3を1.4質量%の濃度で溶解させたこと以外は、実施例D1と同様にして、発光素子D3を作製した。
<Example D3> Production and evaluation of light emitting element D3 (fabrication of light emitting element D3)
Instead of "polymer compound P2 and compound S1 (polymer compound P2/compound S1 = 97% by mass/3% by mass) were dissolved at a concentration of 1.2% by mass" in (formation of light emitting layer), Light-emitting element D3 was produced in the same manner as Example D1, except that polymer compound P3 was dissolved at a concentration of 1.4% by mass.
(発光素子D3の評価)
 発光素子D3に電圧を印加することにより発光が観測され、1000cd/mにおける発光スペクトルの極大波長及び面積比率は、それぞれ460nm及び0.691となった。これらの結果を、下記表9に示す。
(Evaluation of light emitting element D3)
Light emission was observed by applying a voltage to the light emitting element D3, and the maximum wavelength and area ratio of the emission spectrum at 1000 cd/m 2 were 460 nm and 0.691, respectively. These results are shown in Table 9 below.
<実施例D4> 発光素子D4の作製及び評価
(発光素子D4の作製)
 (発光層の形成)における「高分子化合物P2及び化合物S1(高分子化合物P2/化合物S1=97質量%/3質量%)を1.2質量%の濃度で溶解させた」ことに代えて、高分子化合物P3及び高分子化合物P2(高分子化合物P3/高分子化合物P2=20質量%/80質量%)を1.4質量%の濃度で溶解させたこと以外は、実施例D1と同様にして、発光素子D4を作製した。
<Example D4> Production and evaluation of light emitting element D4 (fabrication of light emitting element D4)
Instead of "polymer compound P2 and compound S1 (polymer compound P2/compound S1 = 97% by mass/3% by mass) were dissolved at a concentration of 1.2% by mass" in (formation of light emitting layer), The procedure was the same as in Example D1, except that polymer compound P3 and polymer compound P2 (polymer compound P3/polymer compound P2 = 20% by mass/80% by mass) were dissolved at a concentration of 1.4% by mass. Thus, a light emitting device D4 was manufactured.
(発光素子D4の評価)
 発光素子D4に電圧を印加することにより発光が観測され、1000cd/mにおける発光スペクトルの極大波長及び面積比率は、それぞれ455nm及び0.650となった。これらの結果を、下記表9に示す。
(Evaluation of light emitting element D4)
Light emission was observed by applying a voltage to the light emitting element D4, and the maximum wavelength and area ratio of the emission spectrum at 1000 cd/m 2 were 455 nm and 0.650, respectively. These results are shown in Table 9 below.
Figure JPOXMLDOC01-appb-T000159
Figure JPOXMLDOC01-appb-T000159
 <実施例Q1~Q50及び比較例CQ1>
 化合物S1~S4及び下記化合物S12~S55について、下記のフランク・コンドン解析により発光スペクトルの面積比率を算出した。各化合物の発光スペクトルの面積比率を、表10~表14に示す。
<Examples Q1 to Q50 and Comparative Example CQ1>
For compounds S1 to S4 and the following compounds S12 to S55, the area ratios of the emission spectra were calculated by the Franck-Condon analysis described below. The area ratios of the emission spectra of each compound are shown in Tables 10 to 14.
 計算化学的手法としては、非経験的手法に基づいた密度汎関数法を用いて算出した。
 具体的には、量子化学計算プログラムGaussian16を用い、B3LYPレベルの密度汎関数法にて、基底として6-31G*を用いて構造最適化及びフランク・コンドン解析を行った。フランク・コンドン解析により求めた発光スペクトルから、発光スペクトルの面積比率(最大強度位置から-0.12eV~+0.07eVの範囲の面積値を、発光スペクトル全体の面積値で割った値)を算出した。
As a computational chemical method, the calculation was performed using density functional theory based on an ab initio method.
Specifically, using the quantum chemical calculation program Gaussian 16, structure optimization and Franck-Condon analysis were performed using 6-31G* as a basis using density functional theory at the B3LYP level. From the emission spectrum obtained by Franck-Condon analysis, the area ratio of the emission spectrum (value obtained by dividing the area value in the range of -0.12 eV to +0.07 eV from the maximum intensity position by the area value of the entire emission spectrum) was calculated. .
Figure JPOXMLDOC01-appb-C000160
Figure JPOXMLDOC01-appb-C000160
Figure JPOXMLDOC01-appb-C000161
Figure JPOXMLDOC01-appb-C000161
Figure JPOXMLDOC01-appb-C000162
Figure JPOXMLDOC01-appb-C000162
Figure JPOXMLDOC01-appb-C000163
Figure JPOXMLDOC01-appb-C000163
Figure JPOXMLDOC01-appb-C000164
Figure JPOXMLDOC01-appb-C000164
Figure JPOXMLDOC01-appb-C000165
Figure JPOXMLDOC01-appb-C000165
Figure JPOXMLDOC01-appb-C000166
Figure JPOXMLDOC01-appb-C000166
Figure JPOXMLDOC01-appb-C000167
Figure JPOXMLDOC01-appb-C000167
Figure JPOXMLDOC01-appb-C000168
Figure JPOXMLDOC01-appb-C000168
Figure JPOXMLDOC01-appb-C000169
Figure JPOXMLDOC01-appb-C000169
Figure JPOXMLDOC01-appb-C000170
Figure JPOXMLDOC01-appb-C000170
Figure JPOXMLDOC01-appb-T000171
Figure JPOXMLDOC01-appb-T000171
Figure JPOXMLDOC01-appb-T000172
Figure JPOXMLDOC01-appb-T000172
Figure JPOXMLDOC01-appb-T000173
Figure JPOXMLDOC01-appb-T000173
Figure JPOXMLDOC01-appb-T000174
Figure JPOXMLDOC01-appb-T000174
Figure JPOXMLDOC01-appb-T000175
Figure JPOXMLDOC01-appb-T000175
 表10~表14に示すとおり、実施例の化合物S1~S4及び化合物S12~S55は、比較例の化合物S56と比較して、発光スペクトルの面積比率が高い、すなわち、発光スペクトルのスペクトル幅が狭い。 As shown in Tables 10 to 14, Compounds S1 to S4 of Examples and Compounds S12 to S55 have higher area ratios of emission spectra, that is, narrower spectral widths of emission spectra, than Compound S56 of Comparative Example. .

Claims (8)

  1.  式(1)で表される化合物。
    Figure JPOXMLDOC01-appb-C000001
    [式中、
     Arは、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、互いに結合してそれぞれが結合する原子とともに環を形成していてもよい。
     環Ar及び環Arは、それぞれ独立に芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。但し、環Ar及び環Arのうち少なくとも一方は、式(2)で表される環骨格と、少なくとも*の位置で縮合している。式(2)で表される環骨格が複数存在する場合、それらは同一でも異なっていてもよい。
     Rは、水素原子、ハロゲン原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、ヒドロキシ基、アリール基、アリールオキシ基、1価の複素環基又は置換アミノ基を表し、これらの基は置換基を有していてもよい。複数存在するRは、同一でも異なっていてもよく、R同士は互いに結合して、Rが結合する炭素原子とともに環を形成していてもよい。
     Lは、直接結合、-O-、-S-、-C(R11-、-N(R12)-、アリーレン基又は2価の複素環基を表す。
     R11は、水素原子、ハロゲン原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、ヒドロキシ基、アリール基、アリールオキシ基、1価の複素環基又は置換アミノ基を表し、これらの基は置換基を有していてもよい。複数存在するR11は、同一でも異なっていてもよく、R11同士は互いに結合して、R11が結合する炭素原子とともに環を形成していてもよい。
     R12は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。]
    Figure JPOXMLDOC01-appb-C000002
    [式中、
     環Arは、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
     Lは、-N(R1L)-、-S-、-O-又は-C(R2L-を表す。
     R1Lは、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。
     R2Lは、水素原子、ハロゲン原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基又は置換アミノ基を表し、これらの基は置換基を有していてもよい。複数存在するR2Lは、同一でも異なっていてもよく、R2L同士は互いに結合して、R2Lが結合する炭素原子とともに環を形成していてもよい。
     式(2)で表される環骨格が環Arと縮合している場合、R1L、R2L、R1Lが有していてもよい置換基及びR2Lが有していてもよい置換基は、環Ar、環Ar、環Arが有していてもよい置換基又は環Arが有していてもよい置換基と結合して環を形成していてもよい。
     式(2)で表される環骨格が環Arと縮合している場合、R1L、R2L、R1Lが有していてもよい置換基及びR2Lが有していてもよい置換基は、環Ar、環Ar、環Arが有していてもよい置換基又は環Arが有していてもよい置換基と結合して環を形成していてもよい。]
    A compound represented by formula (1).
    Figure JPOXMLDOC01-appb-C000001
    [In the formula,
    Ar 1 represents an aromatic hydrocarbon ring or an aromatic heterocycle, and these rings may have a substituent. When a plurality of these substituents exist, they may be bonded to each other to form a ring with the atoms to which they are bonded.
    Ring Ar 2 and ring Ar 3 each independently represent an aromatic hydrocarbon ring or an aromatic heterocycle, and these rings may have a substituent. When a plurality of these substituents exist, they may be bonded to each other to form a ring with the atoms to which they are bonded. However, at least one of ring Ar 2 and ring Ar 3 is condensed with the ring skeleton represented by formula (2) at least at the * position. When a plurality of ring skeletons represented by formula (2) exist, they may be the same or different.
    R 1 represents a hydrogen atom, a halogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, a hydroxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, or a substituted amino group, and these groups may have a substituent. A plurality of R 1s may be the same or different, and R 1s may be bonded to each other to form a ring together with the carbon atom to which R 1 is bonded.
    L represents a direct bond, -O-, -S-, -C(R 11 ) 2 -, -N(R 12 )-, an arylene group, or a divalent heterocyclic group.
    R 11 represents a hydrogen atom, a halogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, a hydroxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, or a substituted amino group, and these groups may have a substituent. A plurality of R 11s may be the same or different, and R 11s may be bonded to each other to form a ring together with the carbon atom to which R 11 is bonded.
    R 12 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent. ]
    Figure JPOXMLDOC01-appb-C000002
    [In the formula,
    Ring Ar 4 represents an aromatic hydrocarbon ring or an aromatic heterocycle, and these rings may have a substituent. When a plurality of these substituents exist, they may be bonded to each other to form a ring with the atoms to which they are bonded.
    L 1 represents -N(R 1L )-, -S-, -O- or -C(R 2L ) 2 -.
    R 1L represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent.
    R2L represents a hydrogen atom, a halogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, or a substituted amino group, and these groups are substituents. It may have. A plurality of R 2Ls may be the same or different, and the R 2Ls may be bonded to each other to form a ring together with the carbon atom to which R 2L is bonded.
    When the ring skeleton represented by formula (2) is fused with ring Ar 2 , R 1L , R 2L , a substituent that R 1L may have and a substituent that R 2L may have may be bonded to ring Ar 2 , ring Ar 4 , a substituent that ring Ar 2 may have, or a substituent that ring Ar 4 may have to form a ring.
    When the ring skeleton represented by formula (2) is fused with ring Ar 3 , R 1L , R 2L , a substituent that R 1L may have and a substituent that R 2L may have may be bonded to ring Ar 3 , ring Ar 4 , a substituent that ring Ar 3 may have, or a substituent that ring Ar 4 may have to form a ring. ]
  2.  式(1-A)で表される化合物である、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000003
    [式中、
     環Ar、環Ar及びRは、前記と同義である。
     環Ar1Aは、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、互いに結合してそれぞれが結合する原子とともに環を形成していてもよい。]
    The compound according to claim 1, which is a compound represented by formula (1-A).
    Figure JPOXMLDOC01-appb-C000003
    [In the formula,
    Ring Ar 2 , ring Ar 3 and R 1 have the same meanings as above.
    Ring Ar 1A represents an aromatic hydrocarbon ring or an aromatic heterocycle, and these rings may have a substituent. When a plurality of these substituents exist, they may be bonded to each other to form a ring with the atoms to which they are bonded. ]
  3.  式(1-B)で表される化合物である、請求項2に記載の化合物。
    Figure JPOXMLDOC01-appb-C000004
    [式中、
     Rは、前記と同義である。
     Xは、炭素原子又は窒素原子を表し、Xが炭素原子である場合、Xは、-R1Xと結合しているか、隣接するXとともに式(1-B1):
    Figure JPOXMLDOC01-appb-C000005
    で表される環骨格と結合して環を形成しているか、隣接するXとともに式(2)で表される環骨格と結合して環を形成しているか、のいずれかである。
     R1Xは、水素原子、ハロゲン原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基又は置換アミノ基を表し、これらの基は置換基を有していてもよい。R1Xが複数存在する場合、それらは同一でも異なっていてもよく、R1X同士が互いに結合して、R1Xが結合する炭素原子とともに環を形成していてもよい。R1Xが結合するXに隣接するXが式(2)で表される環骨格と結合している場合、R1Xは、当該式(2)で表される環骨格中のR1L、R2L、R1Lが有していてもよい置換基又はR2Lが有していてもよい置換基と結合して、環を形成していてもよい。
     式(1-B1)中のXは、前記と同義であり、-R1Xと結合していてもよく、隣接するXとともに式(1-B1)で表される環骨格と結合して更に環を形成していてもよく、隣接するXとともに式(2)で表される環骨格と結合して更に環を形成していてもよい。
     複数存在するXは、同一でも異なっていてもよい。
     Yは、炭素原子又は窒素原子を表し、Yが炭素原子である場合、Yは、-R1Yと結合しているか、隣接するYとともに式(1-B2):
    Figure JPOXMLDOC01-appb-C000006
    で表される環骨格と結合して環を形成しているか、隣接するYとともに式(2)で表される環骨格と結合して環を形成しているか、のいずれかである。
     R1Yは、水素原子、ハロゲン原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基又は置換アミノ基を表し、これらの基は置換基を有していてもよい。R1Yが複数存在する場合、それらは同一でも異なっていてもよく、R1Y同士が互いに結合して、R1Yが結合する炭素原子とともに環を形成していてもよい。R1Yが結合するYに隣接するYが式(2)で表される環骨格と結合している場合、R1Yは、当該式(2)で表される環骨格中のR1L、R2L、R1Lが有していてもよい置換基又はR2Lが有していてもよい置換基と結合して、環を形成していてもよい。
     式(1-B2)中のYは、前記と同義であり、-R1Yと結合していてもよく、隣接するYとともに式(1-B2)で表される環骨格と結合して更に環を形成していてもよく、隣接するYとともに式(2)で表される環骨格と結合して更に環を形成していてもよい。
     複数存在するYは、同一でも異なっていてもよい。但し、隣り合うYの組み合せのうち、少なくとも1組は、式(2)で表される環骨格と結合して環を形成している。]
    The compound according to claim 2, which is a compound represented by formula (1-B).
    Figure JPOXMLDOC01-appb-C000004
    [In the formula,
    R 1 has the same meaning as above.
    X represents a carbon atom or a nitrogen atom, and when X is a carbon atom, X is bonded to -R 1X or together with adjacent X formula (1-B1):
    Figure JPOXMLDOC01-appb-C000005
    Either it combines with the ring skeleton represented by formula (2) to form a ring, or it combines with the ring skeleton represented by formula (2) together with adjacent X to form a ring.
    R 1X represents a hydrogen atom, a halogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, or a substituted amino group, and these groups are substituents. It may have. When a plurality of R 1Xs exist, they may be the same or different, and the R 1Xs may be bonded to each other to form a ring together with the carbon atom to which R 1X is bonded. When X adjacent to X to which R 1X is bonded is bonded to the ring skeleton represented by formula (2), R 1X is R 1L , R 2L in the ring skeleton represented by formula (2). , may be combined with a substituent that R 1L may have or a substituent that R 2L may have to form a ring.
    X in formula (1-B1) has the same meaning as above, and may be bonded to -R 1X , or may be bonded to the ring skeleton represented by formula (1-B1) together with adjacent X to further form a ring. may be formed, or may be combined with the ring skeleton represented by formula (2) together with adjacent X to further form a ring.
    A plurality of X's may be the same or different.
    Y represents a carbon atom or a nitrogen atom, and when Y is a carbon atom, Y is bonded to -R 1Y or together with adjacent Y, formula (1-B2):
    Figure JPOXMLDOC01-appb-C000006
    Either it combines with the ring skeleton represented by formula (2) to form a ring, or it combines with the ring skeleton represented by formula (2) together with adjacent Y to form a ring.
    R 1Y represents a hydrogen atom, a halogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, or a substituted amino group, and these groups are substituents. It may have. When a plurality of R 1Ys exist, they may be the same or different, and the R 1Ys may be bonded to each other to form a ring together with the carbon atom to which R 1Y is bonded. When Y adjacent to Y to which R 1Y is bonded is bonded to the ring skeleton represented by formula (2), R 1Y is R 1L , R 2L in the ring skeleton represented by formula (2). , may be combined with a substituent that R 1L may have or a substituent that R 2L may have to form a ring.
    Y in formula (1-B2) has the same meaning as above, and may be bonded to -R 1Y , or may be bonded to the ring skeleton represented by formula (1-B2) together with adjacent Y to further form a ring. may be formed, or may be bonded to the ring skeleton represented by formula (2) together with adjacent Y to further form a ring.
    A plurality of Y's may be the same or different. However, among the combinations of adjacent Y's, at least one pair is bonded to the ring skeleton represented by formula (2) to form a ring. ]
  4.  式(2)で表される環骨格が、式(2-A)で表される環骨格である、請求項1~3のいずれか一項に記載の化合物。
    Figure JPOXMLDOC01-appb-C000007
    [式中、
     L1Aは、-N(R1AL)-、-S-、-O-又は-C(R2AL-を表す。
     R1ALは、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。
     R2ALは、水素原子、ハロゲン原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基又は置換アミノ基を表し、これらの基は置換基を有していてもよい。複数存在するR2ALは、同一でも異なっていてもよく、R2AL同士は互いに結合して、R2ALが結合する炭素原子とともに環を形成していてもよい。
     Zは、炭素原子又は窒素原子を表し、Zが炭素原子である場合、Zは、-R1Zと結合しているか、隣接するZとともに式(2-A1):
    Figure JPOXMLDOC01-appb-C000008
    で表される環骨格と結合して環を形成しているか、のいずれかである。
     R1Zは、水素原子、ハロゲン原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基又は置換アミノ基を表し、これらの基は置換基を有していてもよい。R1Yが複数存在する場合、それらは同一でも異なっていてもよく、R1Y同士が互いに結合して、R1Yが結合する炭素原子とともに環を形成していてもよい。
     式(2-A1)中のZは、前記と同義であり、-R1Zと結合していてもよく、隣接するZとともに式(2-A1)で表される環骨格と結合して更に環を形成していてもよい。
     複数存在するZは、同一でも異なっていてもよい。
     式(2-A)で表される環骨格が環Arと縮合している場合、R1AL、R2AL、R1ALが有していてもよい置換基及びR2ALが有していてもよい置換基は、L1Aの2原子隣りに位置するZ上の基、又は、L1Aの2原子隣りに位置する環Arを構成する原子上の基と結合して、環を形成していてもよい。
     式(2-A)で表される環骨格が環Arと縮合している場合、R1AL、R2AL、R1ALが有していてもよい置換基及びR2ALが有していてもよい置換基は、L1Aの2原子隣りに位置するZ上の基、又は、L1Aの2原子隣りに位置する環Arを構成する原子上の基と結合して、環を形成していてもよい。]
    The compound according to any one of claims 1 to 3, wherein the ring skeleton represented by formula (2) is a ring skeleton represented by formula (2-A).
    Figure JPOXMLDOC01-appb-C000007
    [In the formula,
    L 1A represents -N(R 1AL )-, -S-, -O- or -C(R 2AL ) 2 -.
    R 1AL represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent.
    R 2AL represents a hydrogen atom, a halogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, or a substituted amino group, and these groups are substituents. It may have. A plurality of R 2ALs may be the same or different, and R 2ALs may be bonded to each other to form a ring with the carbon atom to which R 2AL is bonded.
    Z represents a carbon atom or a nitrogen atom, and when Z is a carbon atom, Z is bonded to -R 1Z or together with adjacent Z, formula (2-A1):
    Figure JPOXMLDOC01-appb-C000008
    Either it combines with the ring skeleton represented by to form a ring.
    R 1Z represents a hydrogen atom, a halogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, or a substituted amino group; It may have. When a plurality of R 1Ys exist, they may be the same or different, and the R 1Ys may be bonded to each other to form a ring together with the carbon atom to which R 1Y is bonded.
    Z in formula (2-A1) has the same meaning as above, and may be bonded to -R 1Z , or may be bonded to the ring skeleton represented by formula (2-A1) together with adjacent Z to further form a ring. may be formed.
    A plurality of Z's may be the same or different.
    When the ring skeleton represented by formula (2-A) is fused with ring Ar 2 , R 1AL , R 2AL , a substituent that R 1AL may have and R 2AL may have The substituent is bonded to a group on Z located next to two atoms of L 1A or a group on an atom constituting ring Ar 2 located next to two atoms of L 1A to form a ring. Good too.
    When the ring skeleton represented by formula (2-A) is fused with ring Ar 3 , R 1AL , R 2AL , a substituent that R 1AL may have and R 2AL may have The substituent is bonded to a group on Z located next to two atoms of L 1A or a group on an atom constituting ring Ar 3 located next to two atoms of L 1A to form a ring. Good too. ]
  5.  式(3-A)、(3-B)、(3-C)、(3-D)、(3-E)、(3-F)、(3-G)、(3-H)、(3-I)又は(3-J)で表される化合物である、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000009
    Figure JPOXMLDOC01-appb-C000010
    Figure JPOXMLDOC01-appb-C000011
    [式中、
     Wは、炭素原子又は窒素原子を表し、Wが炭素原子である場合、Wは、-R1Wと結合しているか、隣接するWとともに式(3-1):
    Figure JPOXMLDOC01-appb-C000012
    で表される環骨格と結合して環を形成しているか、のいずれかである。
     R1Wは、水素原子、ハロゲン原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基又は置換アミノ基を表し、これらの基は置換基を有していてもよい。R1Xが複数存在する場合、それらは同一でも異なっていてもよく、R1X同士が互いに結合して、R1Xが結合する炭素原子とともに環を形成していてもよい。
     R3Aは、水素原子、ハロゲン原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基又は置換アミノ基を表し、これらの基は置換基を有していてもよい。複数存在するR3Aは、同一でも異なっていてもよく、R3A同士は互いに結合して、R3Aが結合する炭素原子とともに環を形成していてもよい。
     式(3-1)中のWは、前記と同義であり、-R1Wと結合していてもよく、隣接するWとともに式(3-1)で表される環骨格と結合して更に環を形成していてもよい。
     L3Aは、-N(R31L)-、-S-、-O-又は-C(R32L-を表す。
     R31Lは、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。
     R32Lは、水素原子、ハロゲン原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基又は置換アミノ基を表し、これらの基は置換基を有していてもよい。複数存在するR32Lは、同一でも異なっていてもよく、R32L同士は互いに結合して、R32Lが結合する炭素原子とともに環を形成していてもよい。
     R31L、R32L、R31Lが有していてよい置換基又はR32Lが有していてよい置換基は、L3Aの2原子隣りに位置するW3A上の基と結合して環を形成していてもよい。]
    Formulas (3-A), (3-B), (3-C), (3-D), (3-E), (3-F), (3-G), (3-H), ( The compound according to claim 1, which is a compound represented by 3-I) or (3-J).
    Figure JPOXMLDOC01-appb-C000009
    Figure JPOXMLDOC01-appb-C000010
    Figure JPOXMLDOC01-appb-C000011
    [In the formula,
    W represents a carbon atom or a nitrogen atom, and when W is a carbon atom, W is bonded to -R 1W or together with the adjacent W formula (3-1):
    Figure JPOXMLDOC01-appb-C000012
    Either it combines with the ring skeleton represented by to form a ring.
    R 1W represents a hydrogen atom, a halogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, or a substituted amino group, and these groups are substituents. It may have. When a plurality of R 1Xs exist, they may be the same or different, and the R 1Xs may be bonded to each other to form a ring together with the carbon atom to which R 1X is bonded.
    R3A represents a hydrogen atom, a halogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, or a substituted amino group, and these groups are substituents. It may have. A plurality of R 3As may be the same or different, and the R 3As may be bonded to each other to form a ring together with the carbon atom to which R 3A is bonded.
    W in formula (3-1) has the same meaning as above, and may be bonded to -R 1W , or may be bonded to the ring skeleton represented by formula (3-1) together with adjacent W to further form a ring. may be formed.
    L 3A represents -N(R 31L )-, -S-, -O- or -C(R 32L ) 2 -.
    R 31L represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent.
    R32L represents a hydrogen atom, a halogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, or a substituted amino group, and these groups are substituents. It may have. A plurality of R 32Ls may be the same or different, and the R 32Ls may be bonded to each other to form a ring together with the carbon atom to which R 32L is bonded.
    A substituent that R 31L , R 32L , R 31L may have or a substituent that R 32L may have is bonded to a group on W 3A located two atoms adjacent to L 3A to form a ring. You may do so. ]
  6.  請求項1に記載の化合物から水素原子を1個以上除いた基を有する構成単位を含む、高分子化合物。 A polymer compound comprising a structural unit having a group obtained by removing one or more hydrogen atoms from the compound according to claim 1.
  7.  請求項1に記載の化合物、又は、請求項6に記載の高分子化合物と、
     正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料、酸化防止剤及び溶媒からなる群より選ばれる少なくとも1種と、を含有する組成物。
    The compound according to claim 1 or the polymer compound according to claim 6,
    A composition containing at least one member selected from the group consisting of a hole transport material, a hole injection material, an electron transport material, an electron injection material, a luminescent material, an antioxidant, and a solvent.
  8.  陽極と、陰極と、前記陽極及び前記陰極の間に設けられた有機層と、を備え、
     前記有機層が、請求項1に記載の化合物、又は、請求項6に記載の高分子化合物を含有する、発光素子。
    comprising an anode, a cathode, and an organic layer provided between the anode and the cathode,
    A light emitting device, wherein the organic layer contains the compound according to claim 1 or the polymer compound according to claim 6.
PCT/JP2023/008896 2022-03-22 2023-03-08 Compound, polymer compound, composition, and light emitting device WO2023181952A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022044994 2022-03-22
JP2022-044994 2022-03-22

Publications (1)

Publication Number Publication Date
WO2023181952A1 true WO2023181952A1 (en) 2023-09-28

Family

ID=88100776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008896 WO2023181952A1 (en) 2022-03-22 2023-03-08 Compound, polymer compound, composition, and light emitting device

Country Status (2)

Country Link
JP (1) JP2023140306A (en)
WO (1) WO2023181952A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140076519A (en) * 2012-12-12 2014-06-20 에스에프씨 주식회사 An electroluminescent compound and an electroluminescent device comprising the same
JP2016507890A (en) * 2012-12-18 2016-03-10 メルク パテント ゲーエムベーハー Organic electroluminescent device
JP2017509616A (en) * 2014-02-28 2017-04-06 メルク パテント ゲーエムベーハー Materials for organic electroluminescent devices
CN111909158A (en) * 2020-08-28 2020-11-10 北京八亿时空液晶科技股份有限公司 Carbazole derivative and application thereof
CN112321598A (en) * 2020-11-02 2021-02-05 北京八亿时空液晶科技股份有限公司 Carbazole derivative and application thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140076519A (en) * 2012-12-12 2014-06-20 에스에프씨 주식회사 An electroluminescent compound and an electroluminescent device comprising the same
JP2016507890A (en) * 2012-12-18 2016-03-10 メルク パテント ゲーエムベーハー Organic electroluminescent device
JP2017509616A (en) * 2014-02-28 2017-04-06 メルク パテント ゲーエムベーハー Materials for organic electroluminescent devices
CN111909158A (en) * 2020-08-28 2020-11-10 北京八亿时空液晶科技股份有限公司 Carbazole derivative and application thereof
CN112321598A (en) * 2020-11-02 2021-02-05 北京八亿时空液晶科技股份有限公司 Carbazole derivative and application thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE REGISTRY 24 September 2015 (2015-09-24), ANONYMOUS : "Spiro[1H,13H,22H-cyclo penta[1'',2'':5,6;4'', 3'':5',6']diindolo[3,2, 1- de:3',2',1'-d'e']diphe nanthridine-22,9'-[9 H]fluorene] (CA IND EX NAME) ", XP093095696, retrieved from STN Database accession no. 1808085-69-9 *
PINARDI ANNA LISA, OTERO-IRURUETA GONZALO, PALACIO IRENE, MARTINEZ JOSE IGNACIO, SANCHEZ-SANCHEZ CARLOS, TELLO MARTA, ROGERO CELIA: "Tailored Formation of N-Doped Nanoarchitectures by Diffusion-Controlled on-Surface (Cyclo)Dehydrogenation of Heteroaromatics", ACS NANO, vol. 7, no. 4, 23 April 2013 (2013-04-23), US , pages 3676 - 3684, XP093095683, ISSN: 1936-0851, DOI: 10.1021/nn400690e *

Also Published As

Publication number Publication date
JP2023140306A (en) 2023-10-04

Similar Documents

Publication Publication Date Title
JP6780704B2 (en) A light emitting device and a composition useful for producing the light emitting device.
JP6848787B2 (en) Light emitting element
JP2021120952A (en) Manufacturing method of composition
JP6822363B2 (en) Light emitting element
WO2017170313A1 (en) Light-emitting element
JP6108056B2 (en) Composition and light emitting device using the same
JP6809426B2 (en) Light emitting element
WO2015159744A1 (en) Composition and light-emitting element using same
WO2015156235A1 (en) Light-emission element, and composition used therein
WO2015194448A1 (en) Light emitting element
JP7020420B2 (en) Light emitting element
EP3171673B1 (en) Method for manufacturing light emitting element
WO2021199948A1 (en) Composition and light-emitting element containing same
JP6663114B2 (en) Composition and light emitting device using the same
JP6642428B2 (en) Polymer compound and light emitting device using the same
JP6531386B2 (en) Light emitting element and polymer compound used therefor
JP2017125087A (en) Polymer compound and light emitting element prepared therewith
JP2020138934A (en) Metal complex and composition containing the metal complex
WO2023181952A1 (en) Compound, polymer compound, composition, and light emitting device
JP6804465B2 (en) Composition and light emitting device using it
JPWO2019065389A1 (en) Light emitting element
JP7354557B2 (en) Polymer compounds and light emitting devices using them
WO2022181075A1 (en) Polymer compound and light-emitting element using same
CN116917371A (en) Polymer compound, composition, and light-emitting element
JP2023067756A (en) Polymer compound and light-emitting element using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23774551

Country of ref document: EP

Kind code of ref document: A1