WO2022180840A1 - Optical integrated circuit manufacturing system and manufacturing method - Google Patents

Optical integrated circuit manufacturing system and manufacturing method Download PDF

Info

Publication number
WO2022180840A1
WO2022180840A1 PCT/JP2021/007529 JP2021007529W WO2022180840A1 WO 2022180840 A1 WO2022180840 A1 WO 2022180840A1 JP 2021007529 W JP2021007529 W JP 2021007529W WO 2022180840 A1 WO2022180840 A1 WO 2022180840A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
refractive index
core
wafer
manufacturing
Prior art date
Application number
PCT/JP2021/007529
Other languages
French (fr)
Japanese (ja)
Inventor
慶太 山口
藍 柳原
雅 太田
賢哉 鈴木
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/007529 priority Critical patent/WO2022180840A1/en
Priority to JP2023502000A priority patent/JPWO2022180840A1/ja
Publication of WO2022180840A1 publication Critical patent/WO2022180840A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/132Integrated optical circuits characterised by the manufacturing method by deposition of thin films

Definitions

  • the present invention relates to a method and manufacturing system for improving manufacturing errors and efficiency in the manufacturing process of photoperiodic circuits.
  • Semiconductor lasers, photodiodes, optical wavelength multiplexers/demultiplexers, optical switches, etc. are optical devices that are key to optical fiber communication.
  • a semiconductor laser as an optical oscillator, generates a light wave that serves as a carrier for superimposing an information signal.
  • a photodiode operates as a device that converts the intensity of an optical signal into an electrical signal.
  • An optical wavelength multiplexer/demultiplexer represented by an arrayed waveguide grating is used for wavelength division multiplex communication as an element for multiplexing/demultiplexing different wavelengths of light (see, for example, Non-Patent Document 2).
  • optical switches have important functions in ROADM (Reconfigurable Optical Add/Drop Multiplexing) systems as elements that route optical paths.
  • These optical devices may be configured as optical integrated circuits. In optical fiber communication, not only the optical fiber as a transmission medium but also the optical integrated circuits of these optical devices that perform optical signal processing play an important role (see, for example, Non-P
  • An optical integrated circuit is generally composed of an optical waveguide formed on a substrate.
  • An optical waveguide consists of a core through which an optical signal propagates and a clad surrounding it.
  • Semiconductor lasers and photodiodes are made of semiconductor materials such as InP, and arrayed waveguide gratings and optical switches are made of optical waveguide materials mainly made of silica glass.
  • FIG. 1 is a diagram showing a conventional method for manufacturing an optical waveguide.
  • a typical manufacturing process will be described using a quartz-based planar lightwave circuit made of quartz-based glass as an example.
  • a lower clad deposition step a glass film that will become a lower clad 12 is deposited on a silicon substrate (wafer) 11 .
  • the lower clad 12 is made of SiO 2 added with P 2 O 5 or B 2 O 3 deposited by a flame hydrolysis deposition (FHD) method.
  • FHD flame hydrolysis deposition
  • the FHD method is also used to deposit a thin film glass that will become the core 13 having a higher refractive index than the lower clad 12 .
  • the desired refractive index value can be obtained by adding GeO 2 to SiO 2 .
  • a transparent core 13 is formed by heating at a high temperature of 1000° C. or higher as in the lower clad deposition step.
  • step 3 In the photoresist film-forming process, a photoresist film 14 is formed on the substrate by spin coating.
  • step 4 circuit pattern exposure, the photoresist film is irradiated with UV light 16 through a photomask 15 to expose a circuit pattern corresponding to the mask pattern.
  • step 5 photoresist development, the circuit pattern of the photoresist film is developed to obtain a photoresist pattern 17 .
  • step 6 in the etching process, the photoresist pattern 17 is transferred to the core by reactive ion etching (RIE) to obtain a core pattern 18 .
  • step 7 In the resist removing step, the photoresist remaining on the core is removed by ashing.
  • step 8 upper clad deposition, an upper clad 19 is deposited by the same method as the lower clad deposition in step 1: lower clad deposition.
  • the core film formed in the core deposition step 2 in the manufacturing process of FIG. 1 has a great influence on the optical characteristics of the core of the optical waveguide. Therefore, the core film deposition process and the core processing process play an important role in determining the overall quality and cost of the manufacturing process.
  • One embodiment of the present invention includes the steps of obtaining a film thickness distribution and a refractive index distribution of a core film in the plane of a wafer, and obtaining a structural value of an optical waveguide based on the film thickness distribution and the refractive index distribution determining a correction amount distribution; selecting a mask corresponding to the correction amount distribution for one or more exposure unit areas in the wafer; and exposing a photoresist film on the wafer.
  • Another embodiment of the present invention is an optical integrated circuit manufacturing system, comprising: selecting a mask corresponding to the correction amount distribution for one or more exposure unit regions in the wafer; and an exposure unit for exposing the photoresist film on the wafer using the selected mask.
  • FIG. 1 is a diagram showing an outline of a method for manufacturing an optical integrated circuit according to Embodiment 1;
  • FIG. 1 is a diagram of a generalized feedforward system of Embodiment 1;
  • FIG. 4 is a diagram showing variations in core film characteristics within a wafer surface on which an optical integrated circuit is formed;
  • FIG. 4 is a diagram for explaining calculation of an equivalent refractive index in an optical waveguide;
  • FIG. 5 is a diagram for explaining correction of structural values of an optical waveguide based on core film deposition process data;
  • FIG. 10 is a schematic diagram of a manufacturing system for carrying out the method for manufacturing an optical integrated circuit according to Embodiment 2;
  • FIG. 10 is a schematic diagram of a manufacturing system for carrying out the method for manufacturing an optical integrated circuit according to Embodiment 2;
  • FIG. 10 is a flowchart showing rough steps of a method for manufacturing an optical integrated circuit according to Embodiment 2;
  • FIG. 10 is a flowchart of more specific steps of the method for manufacturing an optical integrated circuit according to Embodiment 2;
  • FIG. 10 is a diagram of an example in which the method for manufacturing an optical integrated circuit according to Embodiment 2 is applied to an AWG;
  • FIG. 10 is a diagram of an example in which the manufacturing method of the optical integrated circuit of Embodiment 2 is applied to MZI;
  • FIG. 10 is a diagram showing a schematic configuration of a measuring device according to Embodiment 3;
  • FIG. 10 is a diagram of a lower clad reflection spectrum obtained by the measurement device of Embodiment 3;
  • FIG. 11 is a diagram for explaining a method of calculating a lower clad film thickness and a refractive index according to Embodiment 3;
  • FIG. 10 is a diagram showing a method for measuring a multilayer film according to Embodiment 3;
  • FIG. 10 is a diagram showing reflection spectra of cores obtained by the measurement apparatus of Embodiment 3;
  • FIG. 11 is a diagram for explaining a method of calculating a core film thickness and a refractive index according to Embodiment 3;
  • FIG. 11 is a diagram showing the relationship between the number of measurement points and the refractive index measurement accuracy in Embodiment 4;
  • FIG. 10 is a diagram showing actual measurement points after fitting processing in Embodiment 4;
  • the inventors reviewed from a new perspective how to use the information data obtained from the inspection results regarding the reflection of the inspection results in the manufacturing process of conventional optical circuits.
  • information based on the inspection results is fed back to the previous process.
  • the values of inspection results such as optical characteristics obtained at the final stage contain cumulative errors in each process.
  • process improvement through feedback process conditions were changed and adjusted based on information that included cumulative errors, including processes that were not directly related. It was not sufficiently effective in terms of the amount of feedback, its accuracy, and the destination and timing of feedback.
  • the processing result obtained in a certain process for example, information on the width of the resist pattern obtained in the photolithography development process
  • the information on the pattern width can be obtained in the subsequent etching process. can be reflected.
  • the film thickness and refractive index of the core obtained in the core deposition process can be known immediately after the deposition process, it is possible to predict the optical characteristics of the optical waveguide formed in the subsequent photolithography process and etching process. can. In this way, by acquiring the characteristic values of the optical waveguide component obtained in the preceding pre-process during or immediately after the pre-process, the processing conditions of the succeeding post-process are reflected, and the optical properties obtained in the post-process are reflected. Can be used for prediction and improvement.
  • process information and process data obtained in multiple manufacturing processes are "feed forwarded" to the next subsequent process during the process in which the information and data are obtained. Improvement of the manufacturing process by such feedforward is also advantageous in terms of the throughput of the manufacturing process.
  • the following embodiments disclose a manufacturing system, a manufacturing method, and a configuration of an optical circuit that improves the manufacturing method, in which inspection results and data that can be obtained in the manufacturing process of the optical circuit can be reflected in the process more efficiently and accurately.
  • the present specification will focus on a manufacturing system and a manufacturing method that effectively reflect process data acquired in the core film deposition process in subsequent processes and reduce errors in the core film deposition process.
  • Embodiment 1 In the optical circuit manufacturing method of the present embodiment, attention is paid to data about the constituent elements or characteristics of the optical device that are formed and obtained during the execution of one step in the manufacturing process. This data can also be referred to as real data or current data. The constituent elements or characteristics of the optical device are measured, and the manufacturing conditions in the post-process are adjusted or corrected based on the data obtained by the measurement (hereinafter, this system is also referred to as "feedforward system"). The feedforward system makes it possible to suppress variations in the optical characteristics of the optical device and obtain desired optical characteristics of the finally obtained optical device.
  • FIG. 2 is a diagram showing a method for manufacturing an optical circuit including an optical waveguide according to Embodiment 1 of the present disclosure.
  • the feedforward system "measures” the components of the optical device formed in one process, and performs “optical property estimation” by the optical property estimation processing 21 based on the measurement results. Then, based on the estimation result, the process control processing 22 performs “control” of the post-process.
  • the refractive index and thickness of the lower clad film formed in the lower clad deposition step 1 in FIG. 2 and the refractive index and thickness of the core layer deposited in the core deposition step 2 are "measured”. Based on the results of this measurement, the final optical properties of devices fabricated with standard (nominal) design values are estimated. Then, based on this estimation, in the subsequent etching step 6, the etching intensity or etching time is "controlled".
  • the ideal core width of the pattern to meet the performance required for the optical device is estimated (predicted). do. Then, in the etching step 6, etching is performed based on this predicted value. For example, in the case of prediction information that the standard (nominal) design value is "the waveguide width after core processing is thick" and the desired performance cannot be satisfied, the etching process can be used to correct the width of the core to be formed. conduct.
  • the core width and steps in the waveguide pattern formed in the etching step 6 can be "measured”. Based on this measurement result, it is also possible to "control" the refractive index of the upper clad film formed in the upper clad deposition step 8 and adjust the optical characteristics of the finally obtained optical waveguide.
  • the feedforward system of the embodiment of the present invention measures the shape, characteristics, etc. of the constituent elements of the optical device formed during or after the preceding process among the multiple processes of manufacturing the optical device. do. Based on this measurement result, the manufacturing conditions in the post-process are adjusted or corrected.
  • FIG. 3 is a generalized diagram of the feedforward system of the first embodiment.
  • the feedforward system includes an optical device manufacturing procedure consisting of M steps, and an optical device, which is an object to be manufactured, is divided into steps 1, 2, . . . , step i, . M order.
  • steps 1, 2, . . . , step i, . M order when i ⁇ j, the process j is a process later than the process i.
  • the feedforward system includes a measurement data processing section 31 and a control data processing section 32 .
  • the measurement data processing unit 31 executes the optical property estimation processing 21 described with reference to FIG. 2, and the control data processing unit 32 executes the process control processing 22 described with reference to FIG.
  • the measurement data processing unit 31 and the control data processing unit 32 can be in the form of a computer configured with a CPU, RAM, ROM, and the like.
  • the solid line indicates the flow of the product according to the process.
  • dashed lines indicate measurement data obtained by "measurement” of each process
  • one-dot chain lines indicate control data for "control” of each process.
  • the feedforward system of the present embodiment acquires measurement data from the manufacturing apparatus of that process or its measurement apparatus in process i, and transfers it to the measurement data processing unit 31 . Based on the transferred measurement data, the measurement data processing unit 31 predicts the shape or characteristics of the constituent elements of the optical device formed in step i. Also, based on the measurement data, the optical properties of the finally obtained optical device can be predicted in step i.
  • the predicted value derived by the measurement data processing unit 31 is passed to the control data processing unit 32. Based on the predicted value, the control data processing unit 32 obtains the manufacturing conditions for the subsequent step j.
  • the control data processing unit 32 supplies control data for the process j to be set in the manufacturing apparatus according to the obtained manufacturing conditions when the process j is performed.
  • the control data based on the previous process which is supplied when the post-process j is performed, may be only control data based on the previous process i, or a plurality of types of control data based on some of the previous processes. Also good.
  • the form of the control data is, of course, determined according to conditions such as the actually constructed manufacturing apparatus and the manufacturing object.
  • an optical integrated circuit manufacturing method and manufacturing system that minimizes the influence of an error that occurs in the 2: core deposition process of the feedforward system of the first embodiment on subsequent processes will be described. This corresponds to the improvement from 2: core deposition step to 6: etching step in the prior art manufacturing process of FIG.
  • a mechanism is disclosed for feeding forward to the circuit pattern exposure process based on the process data (core film thickness distribution data and refractive index distribution data) from the process of depositing the core film.
  • FIG. 4 is a diagram showing variations in core film characteristics within a wafer surface on which an optical integrated circuit is formed.
  • FIG. 4(a) is a diagram three-dimensionally showing a plot of the optical film thickness in the wafer plane and a distribution curved surface of the optical film thickness to which the plotted points are fitted.
  • the optical film thickness (nm) normalized to the vertical axis is plotted over the in-plane (xy plane) of a wafer approximately 120 mm in diameter.
  • FIG. 4(b) is a diagram showing the one-dimensional refractive index profile for the core film of another wafer with a diameter of 300 mm. Curves fitted according to Embodiment 4, which will be described later, are also shown.
  • the optical film thickness is distributed within the wafer surface.
  • the refractive index of the core film is distributed so as to decrease from the center of the wafer toward the periphery.
  • the in-plane distribution shape of the film thickness of the core film and the refractive indices of the lower and upper clads can be obtained (details of Embodiments 3 and 4). Variations in the thickness and refractive index of the core film and the refractive indices of the lower and upper clads within the wafer surface lead to variations in optical characteristics among a plurality of chips of optical integrated circuits fabricated on the entire surface of the wafer.
  • the equivalent refractive index ne which affects the phase sensed by light, changes, and even if the same circuit pattern is used, the amount of phase advance of light, which will be described later, varies within the wafer.
  • variations in optical characteristics occur for each optical interference circuit even in one chip.
  • another index is the equivalent refractive index n e of the optical waveguide.
  • an optical integrated circuit in which key optical devices are integrated contains an optical waveguide as an important component.
  • An optical device can also be called an optical waveguide device. Therefore, it is important to suppress manufacturing errors in the structure and optical characteristics of the optical waveguide.
  • many of the important large-scale optical integrated circuits include Mach-Zehnder interferometers (MZIs) and arrayed waveguide gratings (AWGs).
  • MZIs and AWGs arrayed waveguide gratings
  • the functionality of MZIs and AWGs is based on interference phenomena that utilize the phase difference of light caused by one or more optical waveguide paths through which light passes.
  • the phase of an optical signal propagating in an optical waveguide is directly affected by the propagation properties of the optical waveguide, which are determined by the equivalent refractive index ne .
  • FIG. 5 is a diagram for explaining calculation of an equivalent refractive index in an optical waveguide.
  • FIG. 5 shows the cross-sectional structure of an optical waveguide for obtaining the equivalent refractive index described below.
  • the equivalent refractive index n e of the optical waveguide is determined by the width a and height b of the optical waveguide core, the core refractive index n core and the clad refractive index n clad determined from
  • the propagation constant ⁇ and the equivalent refractive index A procedure for determining n e is disclosed.
  • the outline of the calculation of the equivalent refractive index n e is shown below.
  • the equivalent refractive index n e of the optical waveguide is determined from the core width a and height b, the core refractive index n core and the clad refractive index n clad .
  • optical characteristics of optical circuits such as MZI and AWG are strongly influenced by the equivalent refractive index ne, which represents the propagation characteristics of the optical waveguide. Therefore, in the manufacturing process of an optical integrated circuit, it is necessary to stably control the width and height of the optical waveguide core and the refractive index of the core, which determine the equivalent refractive index ne .
  • the film thickness and refractive index of the core film are not uniform but have a distribution at the stage when the deposition process of the core film is completed. It can be understood that this is directly linked to variations in optical characteristics. It is clear that the thickness of the core film, which is the height of the optical waveguide core, and the variation in the refractive index of the core film directly affect the indicators of the optical film thickness and the equivalent refractive index ne .
  • the inventors apply the information of the core film obtained at the stage of finishing the deposition process of the core film to any subsequent post-process of forming the optical waveguide, thereby suppressing the influence of the error generated in the core film deposition process. I considered whether I could not do it.
  • the difference between these set values determined from the target optical characteristics and the measured values corresponds to the amount of deviation from the respective target values, that is, the manufacturing error.
  • the manufacturing error In the subsequent fabrication process of the optical waveguide, it was thought that it would be possible to correct the changeable structural value of the optical waveguide so as to offset this amount of deviation.
  • structural values that can be practically changed include the core width of at least a part of the optical circuit configured on the wafer, as described in detail later. Core thickness, physical length of the optical waveguide, etc.
  • the final equivalent refractive index n e cannot be obtained unless the core film is etched, the core width is determined, and the shape of the core is determined.
  • the value of the core width is assumed to be a constant value with respect to the actual measurement data of the optical film thickness, core film thickness, and refractive index, a constant
  • the structural value of the optical waveguide can be corrected so that the equivalent refractive index ne becomes smaller.
  • the structural value of the optical waveguide should be corrected so that the equivalent refractive index ne becomes larger.
  • the wafer in-plane process data of the core film obtained in the deposition process of the core film is used to correct the structural value of the optical waveguide in the subsequent manufacturing process of the optical waveguide.
  • the wafer in-plane process data of the core film includes film thickness distribution data of the core film and refractive index distribution data of the core film.
  • the correction amount distribution is determined for the structural values of the optical waveguide in the direction parallel to the wafer surface (xy plane) before the exposure/etching process for fabricating the optical waveguide core. Thereafter, a mask corresponding to each exposure unit area of the optical integrated circuit in the wafer is selected according to the determined correction amount distribution of the structural value of the optical waveguide.
  • FIG. 6 is a diagram explaining the concept of a method for correcting the structural value of the optical waveguide based on the deposition process data of the core film.
  • the manufacturing process of the optical circuit progresses from the left side to the right side in FIG. 6, and in FIG. 2 corresponds to 2: core deposition process to 6: etching process of the manufacturing method.
  • the upper side of FIG. 6 shows the relationship between the occurrence of an error in the core film deposition process in the manufacturing process of the conventional technology and the result thereof, and is compared with the manufacturing method of the present embodiment on the lower side.
  • Various "values" are indicated by arrows in FIG. 6, and the vertical position of the arrow indicates the magnitude relationship of the values. In the following description, each value is defined as follows.
  • Optical characteristic value is an index value representing the function and performance of an optical circuit, and can be, for example, the center wavelength of MZI or the center wavelength of the transmission band of AWG.
  • the core film “target value” is the structure and properties of the core film necessary for forming a specific optical waveguide with respect to the determined target optical characteristic value 1010 (specification). It is the target value. Therefore, the core film “target value” remains unchanged as long as the design specifications for the optical properties remain the same. For example, it may be a film thickness target value or a refractive index target value of the core film.
  • Core film set value 1011 shown in FIG. 6 is a value set for an actual core deposition process in order to fabricate an optical waveguide in an actual manufacturing process.
  • the core film set value 1011 is the core film target value.
  • the core film actual measurement value 1012 includes wafer in-plane distribution data of the core film thickness and the refractive index of the core film actually measured after the core deposition process is finished.
  • a method for measuring the refractive index of the core film which is suitable for the manufacturing method of this embodiment, will be described later as a third embodiment.
  • the deviation of the above-mentioned core film measured value similarly occurs in both the manufacturing method of the prior art and the manufacturing method of the present invention.
  • the error generated in the core film deposition process is maintained as it is until the exposure/etching process for fabricating the optical waveguide, and the resulting optical characteristic value 1013 obtained at the end of the process is also the target optical characteristic value. It deviated from 1010.
  • the core film set value 1011 was fed back after the process was finished, the problems of accuracy and throughput, etc., as already described, occurred.
  • Applying the determined correction amount of the structural value of the optical waveguide to the exposure/etching process substantially corrects the equivalent refractive index ne.
  • the correction amount of the structural value of the optical waveguide is determined in advance based on the measured value distribution of the thickness and refractive index of the core film in the wafer plane, and the process is changed based on this correction amount. is applied to the exposure/etching process, the error of the resulting optical characteristic value 1016 in the final process is minimized.
  • the structural values of the optical waveguide to be corrected based on the measured value distribution of the film thickness and the measured value distribution of the refractive index of the core film are the optical waveguide core width and the core length of the optical waveguide constituting the optical interference circuit. , including the physical length difference between two or more optical waveguides in an optical interferometric circuit.
  • the process change in the exposure/etching process is performed by selecting a mask corresponding to the correction amount distribution of the structural value of the optical waveguide for each exposure unit area in the exposure process of the photoresist film on the wafer. Therefore, a different mask can be selected for each chip depending on the position within the wafer plane.
  • the exposure unit area means the minimum area that forms an optical circuit with one selected mask.
  • a semiconductor exposure apparatus can expose different transfer circuit patterns at arbitrary positions on a wafer using a projection optical system.
  • An exposure unit area is configured within a wafer by one mask shot (transfer), and can correspond to the entire area of one chip or a partial area within the chip.
  • a plurality of exposure unit areas may exist within one chip. For example, in an optical integrated circuit in which a plurality of optical interference circuits having the same configuration are included in one chip, an area composed of one optical interference circuit is an exposure unit area.
  • a different mask can be selected for each optical interferometer within one chip area.
  • FIG. 7 is a schematic diagram of a manufacturing system that implements the method for manufacturing an optical integrated circuit according to the second embodiment.
  • the wafer flow in manufacturing system 1000 generally corresponds to the manufacturing process flow of FIGS.
  • the manufacturing system 1000 includes a measurement unit 1001 that acquires the film thickness distribution and refractive index distribution of the core film within the plane of the wafer. Further, a core film correction amount calculation unit 1002 for determining the correction amount distribution of the structural value of the optical waveguide based on the film thickness distribution and the refractive index distribution, and an exposure/etching device 1003 are provided.
  • the exposure/etching apparatus 1003 selects a mask corresponding to the above correction amount distribution for one or more exposure unit areas in the wafer, and uses the selected mask to apply photoresist on the wafer. Operates to expose the membrane.
  • the calculation unit 1002 controls the measurement unit 1001 to measure the film thickness and the refractive index, and acquires the data of the film thickness distribution and the refractive index distribution of the core film from the measurement unit 1001 .
  • the calculation unit 1002 also calculates the core film correction amount and provides the exposure/etching apparatus 1003 with information for determining the mask to be selected.
  • FIG. 8 is a flowchart showing rough steps of the method for manufacturing an optical integrated circuit according to the second embodiment.
  • the flow of FIG. 8 corresponds to the outline of the manufacturing method of this embodiment shown from left to right in the lower part of FIG.
  • the flow of FIG. 8 starts with a step (S1021) of setting the initial design values of the core film for realizing the target optical characteristics of the optical circuit.
  • a step of depositing a core film is performed using the core film set value, which is the initial value (S1022).
  • the film thickness and refractive index of the core film are measured within the wafer surface (S1023).
  • distribution data of the core film thickness and refractive index in the wafer plane as shown in FIGS. 4A and 4B can be obtained.
  • the core film actual measurement value 1012 is obtained in FIG.
  • the film thickness and refractive index of the core film on the wafer can be measured by non-contact evaluation of the film thickness and refractive index of the multilayer film based on the light reflection spectrum analysis described in the third embodiment.
  • the lower oxide film is measured before deposition of the core film, and the lower oxide film is fixed and analyzed during the measurement of the core film, so that the characteristics of the core film can be evaluated with high accuracy. can. Details are disclosed in the third embodiment.
  • a core film thickness and a refractive index map are created based on the actual measurement values of the core film described above (S1024).
  • the throughput of this process can be improved by using the wafer in-plane fitting of the acquired information of Embodiment 4, which will be described later.
  • Throughput can be improved by sparsely acquiring core film distribution data and fitting with a function. Improving the accuracy of film thickness and refractive index maps by acquiring data densely in areas where the change is steep (e.g., near the edge of the wafer) instead of uniformly using distribution data within the wafer surface. can be done. Details are disclosed in the fourth embodiment.
  • a correction amount for the equivalent refractive index ne of the waveguide core is determined (S1025). This step corresponds to the correction amount determination step 1014 in FIG.
  • the equivalent refractive index can be calculated only after the structure of the optical waveguide is determined. . A specific example in this embodiment will be further described in the detailed flow of FIG. 9, which will be described later.
  • the core set value is corrected based on the correction amount of the equivalent refractive index ne ( S1026 ).
  • This step corresponds to the mask selection step 1015 of FIG.
  • the mask selection step 1015 of FIG. By selecting a mask corresponding to the amount of correction of the equivalent refractive index n e determined in preceding S1025, that is, the amount of correction of the structural value of the optical waveguide, the set value of the core of the optical waveguide is corrected, and the estimated equivalent refractive index A correction of the rate ne is performed.
  • the steps S1025 and S1026 described above correspond to "correction of equivalent refractive index n e " in FIG.
  • the exposure and etching processes are performed with the corrected core set values (S1027).
  • the general steps of the method for manufacturing an optical integrated circuit have been described from the viewpoint of correction of the estimated equivalent refractive index ne .
  • the manufacturing method of the optical integrated circuit of this embodiment will be further described with reference to FIG. 9 together with more specific steps and an example of the amount of correction of the structural value of the optical waveguide.
  • FIG. 9 is a flowchart showing specific steps of the method for manufacturing an optical integrated circuit according to the second embodiment.
  • the flow of FIG. 9 acquires the correction amount distribution ⁇ W(x, y) of the width of the optical waveguide as a specific example of the correction amount of the equivalent refractive index n e of the optical waveguide core in the steps of the manufacturing method shown in FIG. This is an example of what to do.
  • the optical waveguide width is a structural value that can be changed after deposition of the core film. is selected, correction of the equivalent refractive index ne can be realized.
  • a correction amount distribution .DELTA.W(x, y) of the waveguide width in the wafer plane is obtained below.
  • n set and n(x, y) be the set value and measured value of the refractive index of the core, respectively.
  • the set value and measured value of the waveguide width are W set and W(x, y), respectively.
  • a correction amount distribution .DELTA.W(x, y) that can be given to the set value of the waveguide width for the core film whose film thickness is actually measured is defined by the following equation.
  • the constant A can be considered to mean the contribution of the refractive index variation to the required correction amount of the waveguide width in addition to the correction of the waveguide width.
  • the constant A is obtained as follows.
  • the width correction amount for correcting the equivalent refractive index is A distribution quantity ⁇ W(x,y) is determined.
  • the equivalent refractive index when the waveguide width and core refractive index are slightly changed by dW and dn, respectively, is expressed by the following equation by performing Taylor expansion up to the first order on the premise that the amount of change is minute around the set value. be done.
  • equation (14) can be transformed as follows.
  • the expression (6) of the constant A in the waveguide width correction amount distribution ⁇ W (x, y) means that the constant A is the differential value of the equivalent refractive index with respect to the core refractive index, and the equivalent refractive index of the core waveguide It represents the ratio of the differential value to the width. Therefore, the constant A can be determined by Equation (17) by obtaining the slope of the equivalent refractive index with respect to the change in the optical waveguide width W and the slope of the equivalent refractive index with respect to the change in the core refractive index n.
  • the constant A is an optical circuit in an optical integrated circuit, and if the structure of the optical waveguide, the material properties of the core film, and the preparation conditions are determined, the dependence of the equivalent refractive index on the waveguide width W and the core refractive index under those conditions. should be measured. If the correction amount distribution ⁇ W(x, y) of the waveguide width can be determined by the equation (12), the manufacturing process of the optical integrated circuit of FIG. 9 can be carried out.
  • the step of depositing the core film is performed (S1031). Furthermore, the film thickness and refractive index of the core film are measured within the wafer plane (S1032).
  • the non-contact evaluation of the film thickness and refractive index of the multilayer film based on the light reflection spectrum analysis described in the third embodiment can be used.
  • the correction amount distribution ⁇ W(x, y) of the waveguide width can be obtained using Equation (12) (S1034).
  • the set value of the width W (structural value) of the optical waveguide is corrected based on the correction amount distribution ⁇ W (x, y), so that the equivalent refractive index predicted when the optical waveguide is completed is will approach the target equivalent refractive index.
  • the resulting optical characteristic value of the optical circuit also approaches the target optical characteristic value.
  • the structural value of the optical waveguide is corrected by selecting a mask based on the acquired correction amount distribution ⁇ W(x, y) (S1035).
  • the above S1033 to S1035 are performed by the calculator 1002 in the manufacturing system shown in FIG.
  • the exposure/etching device 1003 in the manufacturing system of FIG. 7 performs the exposure and etching process (S1036), completing the fabrication of the optical waveguide.
  • the method for manufacturing an optical integrated circuit of the present disclosure includes the step of acquiring the film thickness distribution and the refractive index distribution of the core film in the plane of the wafer (S1032), and based on the film thickness distribution and the refractive index distribution, a step of determining a correction amount distribution of structural values of an optical waveguide (S1034); and a step of selecting a mask corresponding to the correction amount distribution for one or more exposure unit regions in the wafer (S1035). and exposing a photoresist film on the wafer using the selected mask (S1036).
  • the optical integrated circuit manufacturing system of the present disclosure includes a measurement unit 1001 that acquires the film thickness distribution and the refractive index distribution of the core film in the wafer plane, and the optical guiding unit 1001 based on the film thickness distribution and the refractive index distribution.
  • an exposure section 1003 that is used to expose the photoresist film on the wafer.
  • in-wafer variation in the waveguide length difference between two arm waveguides in an MZI, which is an optical interference circuit is a problem because it directly affects the interference conditions along with variation in the equivalent refractive index.
  • a mask having an appropriate physical length difference can be selected in the wafer plane according to the equivalent refractive index expected from the core film's measured film thickness and refractive index measured value.
  • the structural value to be corrected based on the measured value of the core film is the core width of the optical waveguide, the length of the optical waveguides forming the optical interference circuit, or the waveguide length between the optical waveguides in the optical interference circuit. You can use the difference.
  • the waveguide length difference (optical path length difference) between the optical waveguides in the optical interference circuit is corrected based on the measured value of the film thickness and the measured value of the refractive index of the core film, and the selection of the mask
  • the waveguide physical length difference of the arm waveguide is used as the “optical waveguide structural value” to correct the optical characteristic, for example, the intra-wafer variation of the AWG center wavelength.
  • the optical characteristic for example, the intra-wafer variation of the AWG center wavelength.
  • an optical multiplexing/demultiplexing action occurs due to the phase difference caused by the optical path length difference of each arrayed waveguide.
  • a wavelength-multiplexed optical signal including a plurality of optical signals with different wavelengths is input, the optical signals can be separated for each wavelength and output to different ports.
  • the center wavelength of each output port in the AWG is determined by the phase difference caused by the optical path length difference of the arrayed waveguides.
  • the optical path length difference in an AWG arrayed waveguide is determined by the refractive index of the core and cladding of the optical waveguides constituting the arrayed waveguide, and the shape of the core.
  • FIG. 10 is a diagram for explaining an example in which the method for manufacturing an optical integrated circuit according to this embodiment is applied to an AWG.
  • the theoretical formula for the central wavelength ⁇ 0 in the AWG is expressed by the following formula as shown in FIG.
  • ne is the equivalent refractive index of the core
  • ⁇ L is the waveguide physical length difference between the adjacent arm waveguides
  • m is the diffraction order.
  • the target optical characteristic value is the central wavelength ⁇ 0 of the AWG.
  • the waveguide physical length difference ⁇ L between the arms may be selected according to the expected equivalent refractive index ne from the measured value distribution of the core film in the wafer plane. Specifically, as shown in the table of FIG.
  • a plurality of AWG masks with different waveguide physical length differences ⁇ L are prepared in advance, and from the film thickness distribution and refractive index distribution of the core film in the wafer plane, the waveguide structure value is A correction amount for the physical length difference ⁇ L is determined.
  • the optical path length difference of the arm waveguide is used as the "structural value of the optical waveguide" to correct the optical characteristic, for example, the variation in the center wavelength of the MZI within the wafer. can also be applied.
  • FIG. 11 is a diagram illustrating an example in which the method for manufacturing an optical integrated circuit of this embodiment is applied to MZI.
  • the output port changes due to the phase difference caused by the optical path length difference between the two arm waveguides 1041 and 1042 formed between the directional couplers 1043 and 1044.
  • FIG. By heating one arm waveguide 1042 with a heater 1045, it can also be utilized as a switch.
  • the optical path length difference ⁇ S between the two arm waveguides deviates from the set value, the extinction wavelength changes.
  • the optical path length difference between the two arm waveguides in the MZI is determined by the refractive index of the core and clad forming the optical waveguide, and the shape of the core (see Non-Patent Document 5).
  • Non-Patent Document 5 describes the structure and operating principle of a two-input, two-output MZI switch.
  • the interference state at the directional couplers 1043 and 1044 changes due to the optical path length difference ⁇ S between the two arm waveguides 1041 and 1042, and the optical output intensity changes.
  • the branching ratio of each of the two directional couplers is 50%
  • the optical path length difference between the two arm waveguides is 0 ⁇ 2n ⁇ in terms of phase
  • all the light input to the input port 1 is output from the output port 2.
  • the optical path length difference is .pi..+-.2n.pi.
  • a theoretical formula for the MZI transmission spectrum is also disclosed in Non-Patent Document 6.
  • the output P3 of the output port 3 when light is input from the input port 1 is expressed by the following equation. From equation (19), it can be seen that the output P3 of output port 3 is determined by the equivalent refractive index ne .
  • the physical length difference between the arm waveguides ( L 1 ⁇ L 2 ) can be selected.
  • the optical path length difference ⁇ S becomes shorter from equation (19). . Therefore, a mask 1048 with a larger physical length difference (L 1 -L 2 ) should be selected.
  • the predicted equivalent refractive index n e is slightly larger than the set value of the equivalent refractive index
  • the optical path length difference ⁇ S will be long from equation (19).
  • a mask 1046 with a smaller physical length difference (L 1 -L 2 ) should be selected.
  • a standard mask 1047 having a standard physical length difference (L 1 -L 2 ) can be used if the equivalent refractive index does not deviate from the set value and is as designed.
  • a plurality of MZI masks having different physical length differences are prepared in advance, and the structure of the optical waveguide is determined from the film thickness distribution and refractive index distribution of the core film within the wafer plane.
  • a correction amount for the physical length difference (L 1 -L 2 ) is determined as the value.
  • the error distribution data generated in the deposition process of the core film is immediately reflected in the optical waveguide manufacturing process, which is the subsequent process.
  • the feedforward system described in Embodiment 1 together with FIG. 3 is realized.
  • a manufacturing process of an optical integrated circuit that suppresses variations in optical characteristics occurring within a wafer surface is realized. It is possible to realize efficiency improvement and high throughput of the manufacturing process of the optical integrated circuit.
  • FIG. 12 is a diagram showing a schematic configuration of a measuring device according to one embodiment of the present invention.
  • the measuring device irradiates an optical device, which is an object to be manufactured, with a laser beam, analyzes the reflected light from the object, and measures the physical properties of the film formed on the optical device, such as film thickness and refractive index, in a non-contact manner. measure the rate.
  • an optical device which is an object to be manufactured
  • a laser beam analyzes the reflected light from the object, and measures the physical properties of the film formed on the optical device, such as film thickness and refractive index, in a non-contact manner. measure the rate.
  • film thickness and refractive index measures the rate.
  • conventional measurement methods such as a spectroscopic reflection film thickness gauge and a spectroscopic ellipsometer can be applied.
  • the measuring device is composed of an optical measuring system 101 and a tester 102.
  • a silicon wafer 114 formed with an optical device to be measured is fixed to a wafer chuck 113 and moved in three axial directions by a driving mechanism 112 on a base 111 .
  • a test head 121 connected to the tester 102 has a light transmitting optical system 122 , a light receiving optical system 123 and a control circuit 124 .
  • the tester 1 controls the driving mechanism 112 to irradiate the laser beam from the light transmitting optical system 122 onto a desired position of the film constituting the optical device formed on the silicon wafer 114 , and the test head 121 .
  • a command is sent to the control circuit 124 . Reflected light from the object is received by the light receiving optical system 123 , and the control circuit 124 processes the signal from the light receiving optical system 123 and sends back the measurement result to the tester 1 .
  • the tester 1 analyzes the signal from the light receiving optical system 123 and calculates the physical property values of each film formed on the silicon wafer 114 .
  • the tester 1 irradiates the surface of the lower clad 12 with a laser beam with a wavelength sweeping range of 450-900 nm at a predetermined incident angle from the light transmission optical system 122 of the test head 121 . From the light intensity of the light received by the light receiving optical system 123, the tester 1 calculates a reflection spectrum represented by reflectance with respect to wavelength.
  • FIG. 13 is a diagram showing the reflection spectrum of the lower clad obtained by the measurement device of this embodiment.
  • the laser light emitted from the light-transmitting optical system 122 is reflected at the surface of the lower clad 12 and the interface between the substrate 11 and the lower clad 12, and the reflected light resulting from interference between the two is incident on the light-receiving optical system 123. .
  • This light interference is reflected in the reflection spectrum, and if the film is formed uniformly, a wavy spectrum is observed due to the interference.
  • the width of the waves is large (the number of waves is small), and when the film thickness is thick, the width of the waves is small (the number of waves is large).
  • the tester 1 can calculate the film thickness and refractive index of the lower clad 12 from the wave amplitude and period of the reflection spectrum.
  • r ij is the reflectance when incident light from the i-th layer with a refractive index n i (0 is in the air) is reflected at the interface with the j-th layer with a refractive index n j
  • r ij ⁇ r ji
  • t ij is the transmittance when the interface between the i layer and the j layer is transmitted from the i layer to the j layer
  • t ji is the opposite
  • the film thickness d i of the i-th layer, the refractive index n i , the wavelength ⁇ , the phase coefficient ⁇ i when going back and forth in the i -th layer is given by the following equation.
  • the reflectance r12 and the transmittance t12 for the TE(P) wave are given by the following equations.
  • the reflectance r12 and the transmittance t12 for the TM(S) wave are given by the following equations.
  • the reflectance r1 of the entire reflected light from the lower clad 12, which is the first layer is given by the following equation.
  • the film thickness d1 and the refractive index n1 of the lower clad 12 are calculated from the wavelength dependence of the reflectance r1, that is, the amplitude and period of the reflection spectrum.
  • the refractive index difference between the core 13 and the lower clad 12 is as small as about 1%. , the reflectance is higher.
  • the film thickness of the core 13 is as thin as several ⁇ m, the reflected light component from the interface between the substrate 11 and the lower clad 12 is large, making it difficult to calculate the film thickness and refractive index.
  • a multi-step measurement method is applied in which the result of measurement in the previous process is reflected in the measurement result of the current process.
  • FIG. 15 is a diagram showing a method for measuring a multilayer film according to one embodiment of the present invention.
  • a case of measuring the core 13 formed in the core deposition step 2 by a spectral reflection method will be described.
  • a measurement result of the lower clad 12 formed in the lower clad deposition step 1 of the previous step is obtained.
  • the reflection spectrum is as shown in FIG. 13, and the physical property values (n, d) of the lower clad 12 obtained therefrom, here the refractive index and film thickness are obtained (S141).
  • S141 the measurement result of the core 13 formed in the core deposition step 2 is obtained (S142).
  • FIG. 16 is a diagram showing the reflection spectrum of the core obtained by the measurement device of this embodiment.
  • the measurement result of the core 13 has a small refractive index difference between the core 13 and the lower clad 12, so that the envelope of the reflection spectrum fluctuates as shown in FIG.
  • FIG. 17 is a diagram illustrating a method of calculating the film thickness and refractive index of the core.
  • the light intensity E total of the entire reflected light incident on the light receiving optical system 123 with respect to the incident light from the light transmitting optical system 122 is given by the following equation.
  • the light intensity E total is the intensity E of the total reflected light emitted from the surface of the core 13 calculated by Equation (20), and the total intensity of the reflected light reflected from the lower clad 12.
  • An intensity E' is added. From the reflection dependency of the reflectance obtained here, that is, the reflection spectrum (FIG. 16), the difference of the reflection spectrum (FIG. 13), which is the measurement result of the previous step, is calculated (S143).
  • the film thickness and refractive index of the core 13 are calculated from this difference, that is, the amplitude and period of the fluctuation (S144).
  • the reflectance is obtained using the film thickness and the refractive index, which are the measurement results of the previous step, as constants, and the wavelength dependence of the reflectance is calculated. Analyze and solve for film thickness and refractive index for the current process. For example, consider the case of stacking four layers on a substrate and calculating the film thickness and refractive index of the layer formed in the final step. Taking the reflectance r 4 of the total reflected light from the layer formed in the first step as a constant, the reflectance r 3 + 4 of the layer formed in the second step is obtained, and the reflectance of the layer formed in the third step Find r 2+3+4 . From the reflectance r 1+2+3+4 of the layer formed in the last step, the wavelength dependence of the reflectance is analyzed, and the solution for the film thickness and refractive index of the fourth layer formed in the last step is obtained.
  • the film thickness and refractive index in each process are measured without contact, and the difference is analyzed to obtain the physical property values of the film formed in each process. can be obtained.
  • Refractive index measurements are dependent on the temperature at which they are measured.
  • SiO 2 as a substrate material has a linear expansion coefficient of approximately 0.5 ⁇ 10 ⁇ 6 (room temperature to 1000° C.) and a refractive index change rate of approximately 10 ⁇ 5 /K.
  • it is generally necessary to control the refractive index with an accuracy of about 10 ⁇ 5 so correction of measured values using temperature information is beneficial.
  • a plurality of thermistors are arranged on the upper surface of the wafer chuck 113 to measure the temperature at arbitrary positions on the silicon wafer 114 .
  • the refractive index change rate with respect to the temperature is taken into account from the measured temperature.
  • the above linear expansion coefficient is taken into account from the measured temperature.
  • the temperature measurement points on the wafer may be provided at predetermined intervals, or predetermined measurement points may be provided for each optical circuit chip formed on the wafer. Furthermore, it is preferable to provide a measurement point for each functional component formed in one chip and for each functional component susceptible to refractive index conversion. In this case, the measurement points for the reflectance measurement described above are the same as the measurement points for the temperature measurement.
  • an arrayed waveguide grating which is a typical optical circuit
  • the AWG connects an input slab waveguide connected to the input waveguide and an output slab waveguide connected to the output waveguide with a plurality of arrayed waveguides each having a difference in physical waveguide length ⁇ L. Connected.
  • the center wavelength ⁇ 0 is determined by the following equation as already described.
  • nc is the effective refractive index of the arrayed waveguide
  • m is the diffraction order.
  • the effective refractive index of an arrayed waveguide is determined by the film thickness of the clad and core, and its uniformity affects the interference characteristics. Therefore, manufacturing errors have a great influence on the accuracy of the center wavelength. Therefore, in order to manufacture a plurality of arrayed waveguides with high accuracy and uniformity, for example, temperature measurement points are provided near the input slab waveguide, the intermediate point of the arrayed waveguides, and the output slab waveguide, and the temperature distribution is derived. Keep By ensuring the measurement accuracy of the refractive index in this way, it is possible to improve the accuracy of adjusting or correcting the manufacturing conditions in the post-process.
  • the actual measurement data can be used as training data and learned together with the correlated feature values such as the waveguide width and height with respect to the center wavelength.
  • the temperature distribution can be calculated by
  • This embodiment obtains a first measurement result of a first film obtained in a previous step in a multi-layer non-contact measurement method for measuring physical property values of each film of a multi-layer film formed on a substrate.
  • a step wherein the first measurement result is the light intensity of reflected light from the surface of the first film of laser light irradiated to the surface; obtaining a second measurement result of the film, wherein the second measurement result is the light intensity of the reflected light from the surface of the laser light irradiated to the surface of the second film; , a step of calculating a difference between the second measurement result and the first measurement result, which is a difference in the reflection spectrum obtained from the light intensity of the reflected light and represented by reflectance with respect to wavelength; and calculating the film thickness and refractive index of the second film from the above.
  • the above non-contact measurement method further comprises the step of measuring the temperature at an arbitrary position on the substrate, and the step of calculating the film thickness and the refractive index is characterized by further performing correction according to temperature.
  • Embodiment 4 This embodiment presents a method for efficiently performing the non-contact measurement of Embodiment 3 without further reducing the throughput of the manufacturing process.
  • a fitting process is performed in the inspection of a prototype lot, the measurement points on the wafer are specified in advance, and the number of measurement points is reduced, thereby reducing the throughput of the manufacturing process. prevent. Details of the fitting process will be described below.
  • the reflectance of the lower clad 12 formed in the lower clad deposition step 1 of FIGS. 1 and 2 is measured at predetermined intervals over the entire wafer using the above-described measuring apparatus.
  • the tester 1 calculates the film thickness and the refractive index from the reflection spectrum of the measurement results.
  • the horizontal axis (x-axis) is the distance from the center and the vertical axis is the refractive index.
  • a k , b k , c k , and d k are coefficients, which can be obtained using the method of least squares or the like.
  • FIG. 4(b) shows the fitting to the refractive index, the same can be done for the film thickness.
  • the approximation formula may be obtained from one wafer in a trial lot, or may be obtained by averaging the results obtained from a plurality of wafers.
  • the measurement points in the substrate surface of the wafer do not need to be set in a mesh pattern, but are arbitrary, but as can be seen from FIG. do.
  • FIG. 4A shows an example of three-dimensional fitting to the optical film thickness, the refractive index or film thickness can also be represented three-dimensionally by performing a similar fitting process.
  • FIG. 18 is a diagram showing the relationship between the number of measurement points and the refractive index measurement accuracy.
  • the measurement accuracy for a single measurement result obtained from only one measurement is shown by the dashed line as normalized to 1. Even if the number of measurement points on the wafer increases, the measurement accuracy remains constant. If the number of measurement points is increased and the fitting process is performed, the same effect as the method of measuring the same measurement point multiple times and calculating the average value is obtained, and the measurement accuracy is improved as shown by the solid line.
  • This is based on the same principle as accuracy improvement by the central limit theorem that the mean in the sample mean distribution approaches the population mean and the sample variance in the sample mean distribution approaches 1/n of the population variance as the number of samples increases. That is, the measurement result at a certain single measurement point can suppress randomly occurring measurement variations based on the results of the surrounding measurement points, thereby improving the measurement accuracy.
  • the desired measurement accuracy determines the number of measurement points in the wafer. For example, if an entire wafer with a diameter of 300 mm is measured at mesh intervals of 2 mm as described above, the number of measurement points is about 18,000. Assuming that the predetermined measurement accuracy is a normalized value of 0.25 or less, the measurement accuracy can be satisfied if the number of measurement points is 200 or more, as shown in FIG. At this time, from the upper limit of the number of measurements obtained by dividing the time allocated for measurement in the time allowed in the manufacturing process (for example, the lower clad deposition process 1) by the measurement time required for one measurement point , may determine the number of measurement points. Second, select a measurement point at a specific location.
  • FIG. 19 is a diagram showing measurement points to be actually measured as a result of fitting processing. Measurement points can be selected regardless of the location of the optical devices formed on the wafer. For example, from the results of the fitting process shown in FIGS. 4A and 4B, it is conceivable to select measurement points that are in good agreement with the approximation formula. It is also conceivable to densely set the measurement points near the inflection point of the fitting function represented by the approximation formula. Furthermore, it can be set in consideration of the temperature distribution on the wafer in the manufacturing process, variations in manufacturing errors, and the like. On the other hand, if the optical functional circuit included in the optical device includes a circuit that requires precision, the position where the optical functional circuit is formed can be selected as the measurement point.
  • the measurement points obtained by the fitting process are measured.
  • the measurement result at this measurement point and the result of the fitting process are passed to the next manufacturing process (for example, core deposition process 2), and the manufacturing conditions for the next manufacturing process are obtained.
  • the result of the fitting process is preferentially used. If the distribution of the measurement results in the prototype lot is smooth and the approximate expression is represented by an appropriate function as a result of the fitting process, the result of the fitting process is better than the single measurement result as described above. , because the measurement accuracy is high.
  • the non-contact measurement method of the present embodiment is a non-contact measurement method for measuring physical property values of a film formed on a substrate, and the substrate surface
  • a fitting step including a first step of obtaining an approximate expression representing the distribution of physical property values in advance, and a second step of selecting a second measurement point at a specific position, which is fewer than the first measurement points. and measuring the physical property values of the film using the measurement result obtained at the second measurement point and the approximate expression in the manufacturing process of the film.
  • the measurement result is the light intensity of reflected light from the surface of the film of the laser beam irradiated to the surface, and the physical property value is the film thickness and the refractive index of the film.
  • Another non-contact measurement method of the present embodiment is a multi-layer non-contact measurement method for measuring physical property values of each film of a multi-layer film formed on a substrate, wherein A first step of obtaining an approximate expression representing the distribution of physical property values in the substrate surface from the measurement results at the measurement points; 2 step in advance, and obtaining a first measurement result of the first film obtained in the previous step in the manufacturing process of the multilayer film, wherein the first measurement result is includes a measurement result measured at a second measurement point in the fitting process for the first film and an approximation, and a step and a second measurement result of the second film formed in the current process.
  • the first and second measurement results are light intensities of reflected light from the surfaces of the first and second films of laser light irradiated to the surfaces.
  • the difference is a difference of reflection spectra expressed by reflectance with respect to wavelength, which is obtained from the light intensity of the reflected light.
  • the physical property values may be film thicknesses and refractive indices of the first and second films.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

Disclosed are a manufacturing system, manufacturing method, configuration of an optical circuit for improving a manufacturing method, etc., whereby an inspection result/data that can be acquired in an optical circuit manufacturing process can be more efficiently and precisely reflected in the process. This optical integrated circuit manufacturing method uses wafer in-plane process data of a core film obtained in a core film deposition process to correct a structure value of an optical waveguide in a subsequent optical waveguide fabrication process. The wafer in-plane process data of the core film includes film thickness distribution data and refractive index distribution data of the core film. In an exposure/etching process for fabricating an optical waveguide core, a distribution of correction amounts with respect to a structure value of the optical waveguide in the direction parallel to a wafer surface is determined. A corresponding mask is selected for each exposure unit region of an optical integrated circuit in the wafer in accordance with the determined distribution of correction amounts for the structure value of the optical waveguide.

Description

光集積回路の製造システムおよび製造方法Optical integrated circuit manufacturing system and manufacturing method
 本発明は、光周期回路の製造工程における製造誤差および効率を改善する方法および製造システムに関する。 The present invention relates to a method and manufacturing system for improving manufacturing errors and efficiency in the manufacturing process of photoperiodic circuits.
 半導体レーザ、フォトダイオード、光波長合分波器、光スイッチなどは光ファイバ通信のキーとなる光デバイスである。半導体レーザは、光の発振器として、情報信号を重畳するためのキャリアとなる光波を生成する。フォトダイオードは、光信号の強度を電気信号に変換する素子として動作する。また、アレイ導波路格子に代表される光波長合分波器は、異なる光の波長を合波・分波する素子として波長分割多重通信に用いられる(例えば、非特許文献2参照)。さらに光スイッチは、光の経路をルーティングする素子としてROADM(Reconfigurable Optical Add/Drop Multiplexing)システムにおいて重要な機能を持つ。これらの光デバイスは、光集積回路として構成され得る。光ファイバ通信においては、伝送媒体である光ファイバはもちろん、光信号処理を行うこれら光デバイスの光集積回路が重要な役割を果たす(例えば、非特許文献1参照)。 Semiconductor lasers, photodiodes, optical wavelength multiplexers/demultiplexers, optical switches, etc. are optical devices that are key to optical fiber communication. A semiconductor laser, as an optical oscillator, generates a light wave that serves as a carrier for superimposing an information signal. A photodiode operates as a device that converts the intensity of an optical signal into an electrical signal. An optical wavelength multiplexer/demultiplexer represented by an arrayed waveguide grating is used for wavelength division multiplex communication as an element for multiplexing/demultiplexing different wavelengths of light (see, for example, Non-Patent Document 2). Furthermore, optical switches have important functions in ROADM (Reconfigurable Optical Add/Drop Multiplexing) systems as elements that route optical paths. These optical devices may be configured as optical integrated circuits. In optical fiber communication, not only the optical fiber as a transmission medium but also the optical integrated circuits of these optical devices that perform optical signal processing play an important role (see, for example, Non-Patent Document 1).
 光集積回路は、一般に基板上に形成された光導波路により構成される。光導波路は、光信号が伝搬するコアとそれを取り囲むクラッドからなる。半導体レーザやフォトダイオードは、InPなどの半導体材料により構成され、アレイ導波路格子や光スイッチは、主に石英ガラスからなる光導波路材料により構成される。 An optical integrated circuit is generally composed of an optical waveguide formed on a substrate. An optical waveguide consists of a core through which an optical signal propagates and a clad surrounding it. Semiconductor lasers and photodiodes are made of semiconductor materials such as InP, and arrayed waveguide gratings and optical switches are made of optical waveguide materials mainly made of silica glass.
 図1は、従来技術の光導波路の製造方法を示す図である。ここでは、石英系ガラスからなる石英系平面光波回路を例に典型的な製造工程を説明する。最初に、1:下部クラッド堆積工程において、シリコン基板(ウェハ)11上に下部クラッド12となるガラス膜を堆積する。下部クラッド12は、火炎堆積法(FHD:Flame Hydrolysis Deposition)により堆積されたPやBを添加したSiOからなる。FHD法で堆積されたスート状のガラス粒子を1000℃以上の高温で加熱し、透明な下部クラッド12を得る。次に2:コア堆積工程において、同じくFHD法を用いて、下部クラッド12よりも高い屈折率を有するコア13となる薄膜ガラスを堆積する。コア13の堆積にあたっては、GeOをSiOに添加することにより、所望の屈折率値を得ることができる。1:下部クラッド堆積工程と同様に1000℃以上の高温で加熱し、透明なコア13を形成する。 FIG. 1 is a diagram showing a conventional method for manufacturing an optical waveguide. Here, a typical manufacturing process will be described using a quartz-based planar lightwave circuit made of quartz-based glass as an example. First, in 1: a lower clad deposition step, a glass film that will become a lower clad 12 is deposited on a silicon substrate (wafer) 11 . The lower clad 12 is made of SiO 2 added with P 2 O 5 or B 2 O 3 deposited by a flame hydrolysis deposition (FHD) method. The soot-like glass particles deposited by the FHD method are heated at a high temperature of 1000° C. or higher to obtain a transparent lower clad 12 . Next, in the 2: core deposition step, the FHD method is also used to deposit a thin film glass that will become the core 13 having a higher refractive index than the lower clad 12 . In depositing the core 13, the desired refractive index value can be obtained by adding GeO 2 to SiO 2 . 1: A transparent core 13 is formed by heating at a high temperature of 1000° C. or higher as in the lower clad deposition step.
 3:フォトレジスト成膜工程において、スピンコートにより基板上にフォトレジスト膜14を成膜する。次に、4:回路パターン露光工程において、フォトマスク15を介してUV光16をフォトレジスト膜に照射することにより、マスクパターンに応じた回路パターンを露光する。そして、5:フォトレジスト現像工程において、フォトレジスト膜の回路パターンを現像し、フォトレジストパターン17を得る。 3: In the photoresist film-forming process, a photoresist film 14 is formed on the substrate by spin coating. Next, in step 4: circuit pattern exposure, the photoresist film is irradiated with UV light 16 through a photomask 15 to expose a circuit pattern corresponding to the mask pattern. Then, in step 5: photoresist development, the circuit pattern of the photoresist film is developed to obtain a photoresist pattern 17 .
 次に、6:エッチング工程において、反応性イオンエッチング(RIE:Reactive Ion Etching)により、フォトレジストパターン17をコアに転写し、コアパターン18を得る。さらに、7:レジスト除去工程において、コア上に残ったフォトレジストをアッシングにより除去する。最後に、8:上部クラッド堆積工程において、上述の1:下部クラッド堆積工程における下部クラッド堆積と同様の方法によって、上部クラッド19を堆積する。 Next, 6: in the etching process, the photoresist pattern 17 is transferred to the core by reactive ion etching (RIE) to obtain a core pattern 18 . 7: In the resist removing step, the photoresist remaining on the core is removed by ashing. Finally, in step 8: upper clad deposition, an upper clad 19 is deposited by the same method as the lower clad deposition in step 1: lower clad deposition.
 上述の製造工程によって得られる光導波路に対して、光回路のパターンサイズや光学特性など種々の検査が行われる。従来、これらの検査結果を製造工程に反映するにあたっては、上述の図1の一連の工程が全て終了した後、それぞれの工程に対して、検査結果を反映した製造条件を設定していた。検査結果のこのような反映方法では、それぞれの工程における製造誤差が累積していく。この累積誤差のため、図1に示した工程の後工程になるほど、各工程で得られる検査結果の精度が低くなり、検査結果の反映が不正確になる問題があった。一工程が終了した時点で得られた検査結果から、現在の工程の製造条件を再設定したり、後工程の製造条件を調整したりすることにより、製造誤差の累積を抑えることもできる。しかしながらこのような反映方法では、一工程ごとに製造工程を中断することになり、製造工程のスループットを向上させることが難しいという問題もあった。 Various inspections such as the pattern size and optical characteristics of the optical circuit are performed on the optical waveguide obtained by the above manufacturing process. Conventionally, in order to reflect these inspection results in the manufacturing process, after the series of processes shown in FIG. 1 have been completed, manufacturing conditions reflecting the inspection results are set for each process. In this method of reflecting inspection results, manufacturing errors accumulate in each process. Due to this accumulated error, the precision of the inspection results obtained in each process becomes lower as the process shown in FIG. Accumulation of manufacturing errors can be suppressed by resetting the manufacturing conditions of the current process or adjusting the manufacturing conditions of the subsequent process based on the inspection results obtained at the end of one process. However, with such a reflection method, the manufacturing process is interrupted after each process, and there is also the problem that it is difficult to improve the throughput of the manufacturing process.
 とりわけ図1の製造工程における2:コア堆積工程で形成されるコア膜は、光導波路のコアの光学特性に大きな影響を与える。このため、コア膜の堆積工程およびコアの加工工程は、製造工程の全体の品質やコストを決定する重要な位置を占めている。 In particular, the core film formed in the core deposition step 2 in the manufacturing process of FIG. 1 has a great influence on the optical characteristics of the core of the optical waveguide. Therefore, the core film deposition process and the core processing process play an important role in determining the overall quality and cost of the manufacturing process.
 コア膜の堆積工程において生じる誤差の影響を抑え、製造工程へ精度良く、効率的に反映させる光集積回路の製造システム、製造方法が求められている。 There is a need for a manufacturing system and manufacturing method for optical integrated circuits that suppresses the effects of errors that occur in the core film deposition process and accurately and efficiently reflects them in the manufacturing process.
 本発明の1つの実施態様は、ウェハの面内において、コア膜の膜厚分布および屈折率分布を取得するステップと、前記膜厚分布および前記屈折率分布に基づいて、光導波路の構造値の補正量分布を決定するステップと、前記ウェハの中の1つ以上の露光単位領域に対して、前記補正量分布に対応したマスクを選択するステップと、前記選択されたマスクを使用して、前記ウェハの上のフォトレジスト膜を露光するステップとを備えることを特徴とする光集積回路の製造方法である。 One embodiment of the present invention includes the steps of obtaining a film thickness distribution and a refractive index distribution of a core film in the plane of a wafer, and obtaining a structural value of an optical waveguide based on the film thickness distribution and the refractive index distribution determining a correction amount distribution; selecting a mask corresponding to the correction amount distribution for one or more exposure unit areas in the wafer; and exposing a photoresist film on the wafer.
 本発明のもう1つの実施態様は、光集積回路の製造システムであって、ウェハの面内において、コア膜の膜厚分布および屈折率分布を取得する測定部と、前記膜厚分布および前記屈折率分布に基づいて、光導波路の構造値の補正量分布を決定する算出部と、前記ウェハの中の1つ以上の露光単位領域に対して、前記補正量分布に対応したマスクを選択し、前記選択されたマスクを使用して、前記ウェハの上のフォトレジスト膜を露光する露光部とを備えたことを特徴とする。 Another embodiment of the present invention is an optical integrated circuit manufacturing system, comprising: selecting a mask corresponding to the correction amount distribution for one or more exposure unit regions in the wafer; and an exposure unit for exposing the photoresist film on the wafer using the selected mask.
 光集積回路の製造工程の品質およびスループットを向上することができる。 It is possible to improve the quality and throughput of the manufacturing process of optical integrated circuits.
従来技術の典型的な光導波路の製造方法の一連の工程を説明する図である。It is a figure explaining a series of processes of the manufacturing method of the typical optical waveguide of a prior art. 実施形態1の光集積回路の製造方法の概要を示す図である。1 is a diagram showing an outline of a method for manufacturing an optical integrated circuit according to Embodiment 1; FIG. 実施形態1の一般化したフィードフォワードシステムの図である。1 is a diagram of a generalized feedforward system of Embodiment 1; FIG. 光集積回路が形成されるウェハ面内のコア膜特性バラツキを示す図である。FIG. 4 is a diagram showing variations in core film characteristics within a wafer surface on which an optical integrated circuit is formed; 光導波路における等価屈折率の算出を説明するための図である。FIG. 4 is a diagram for explaining calculation of an equivalent refractive index in an optical waveguide; コア膜堆積工程データによる光導波路の構造値の補正を説明する図である。FIG. 5 is a diagram for explaining correction of structural values of an optical waveguide based on core film deposition process data; 実施形態2の光集積回路の製造方法を実施する製造システム概略図である。FIG. 10 is a schematic diagram of a manufacturing system for carrying out the method for manufacturing an optical integrated circuit according to Embodiment 2; 実施形態2の光集積回路の製造方法の大まかな工程を示すフロー図である。FIG. 10 is a flowchart showing rough steps of a method for manufacturing an optical integrated circuit according to Embodiment 2; 実施形態2の光集積回路の製造方法のより具体的工程のフロー図である。FIG. 10 is a flowchart of more specific steps of the method for manufacturing an optical integrated circuit according to Embodiment 2; 実施形態2の光集積回路の製造方法をAWGに適用した例の図である。FIG. 10 is a diagram of an example in which the method for manufacturing an optical integrated circuit according to Embodiment 2 is applied to an AWG; 実施形態2の光集積回路の製造方法をMZIに適用した例の図である。FIG. 10 is a diagram of an example in which the manufacturing method of the optical integrated circuit of Embodiment 2 is applied to MZI; 実施形態3の測定装置の概略の構成を示す図である。FIG. 10 is a diagram showing a schematic configuration of a measuring device according to Embodiment 3; 実施形態3の測定装置による下部クラッド反射スペクトルの図である。FIG. 10 is a diagram of a lower clad reflection spectrum obtained by the measurement device of Embodiment 3; 実施形態3の下部クラッド膜厚、屈折率の算出方法を説明する図である。FIG. 11 is a diagram for explaining a method of calculating a lower clad film thickness and a refractive index according to Embodiment 3; 実施形態3の多層膜の測定方法を示す図である。FIG. 10 is a diagram showing a method for measuring a multilayer film according to Embodiment 3; 実施形態3の測定装置によるコアの反射スペクトルを示す図である。FIG. 10 is a diagram showing reflection spectra of cores obtained by the measurement apparatus of Embodiment 3; 実施形態3のコア膜厚、屈折率の算出方法を説明する図である。FIG. 11 is a diagram for explaining a method of calculating a core film thickness and a refractive index according to Embodiment 3; 実施形態4の測定点の数と屈折率の測定精度との関係を示した図である。FIG. 11 is a diagram showing the relationship between the number of measurement points and the refractive index measurement accuracy in Embodiment 4; 実施形態4のフィッティング処理後の、実際の測定点を示した図である。FIG. 10 is a diagram showing actual measurement points after fitting processing in Embodiment 4;
 発明者らは、従来技術の光回路の製造工程における検査結果の反映について、検査結果から得られる情報データの利用方法を新しい視点から見直した。図1に示した従来技術の一連の製造方法では、最終段階の検査結果を得た後で、検査結果に基づいた情報を先行する前の工程にフィードバックしていた。その結果として、最終段階で取得される光特性などの検査結果の値は、各工程における累積的な誤差を含んだものであった。またフィードバックによる工程改善の点でも、直接関係の無い工程へも含めて、累積的な誤差を含んだ情報に基づいて工程条件の変更・調整が成されていた。フィードバック量やその精度、フィードバックの行き先やタイミングの点で十分に効果的なものとは言えなかった。 The inventors reviewed from a new perspective how to use the information data obtained from the inspection results regarding the reflection of the inspection results in the manufacturing process of conventional optical circuits. In the prior art series of manufacturing methods shown in FIG. 1, after the final stage inspection results are obtained, information based on the inspection results is fed back to the previous process. As a result, the values of inspection results such as optical characteristics obtained at the final stage contain cumulative errors in each process. In terms of process improvement through feedback, process conditions were changed and adjusted based on information that included cumulative errors, including processes that were not directly related. It was not sufficiently effective in terms of the amount of feedback, its accuracy, and the destination and timing of feedback.
 しかしながら、ある工程で得られる加工結果の情報、例えばフォトリソグラフィ現像工程で得られるレジストパターン幅の情報を、その現像工程の直後に知ることができれば、後工程であるエッチング工程においてパターン幅の情報を反映することができる。また、コア堆積工程で得られるコアの膜厚や屈折率を、その堆積工程の直後に知ることができれば、後のフォトリソグラフィ工程やエッチング工程で形成される光導波路の光学特性を予測することもできる。このように、先行する前工程で得られる光導波路構成要素の特性値を、その前工程中または直後に取得することにより、引き続く後工程の加工条件に反映し、その後工程で得られる光学特性の予測および改善に用いることができる。 However, if information on the processing result obtained in a certain process, for example, information on the width of the resist pattern obtained in the photolithography development process, can be known immediately after the development process, the information on the pattern width can be obtained in the subsequent etching process. can be reflected. Also, if the film thickness and refractive index of the core obtained in the core deposition process can be known immediately after the deposition process, it is possible to predict the optical characteristics of the optical waveguide formed in the subsequent photolithography process and etching process. can. In this way, by acquiring the characteristic values of the optical waveguide component obtained in the preceding pre-process during or immediately after the pre-process, the processing conditions of the succeeding post-process are reflected, and the optical properties obtained in the post-process are reflected. Can be used for prediction and improvement.
 本開示の一連の発明では、複数の製造工程で得られる工程情報、工程データは、それらの情報、データが得られているその工程中、さらに引き続く次の工程へ「フィードフォワード」される。このようなフィードフォワードによる製造工程の改善は、製造工程のスループットの点でも好都合である。 In the series of inventions of the present disclosure, process information and process data obtained in multiple manufacturing processes are "feed forwarded" to the next subsequent process during the process in which the information and data are obtained. Improvement of the manufacturing process by such feedforward is also advantageous in terms of the throughput of the manufacturing process.
 以下の実施形態は、光回路の製造工程で取得できる検査結果・データを、より効率的に精度良く工程に反映できる製造システム、製造方法、製造方法を改善する光回路の構成などについて開示する。特に本明細書では、コア膜堆積工程において取得される工程データを後工程に効果的に反映させ、コア膜堆積工程の誤差を軽減する製造システムおよび製造方法に焦点を合わせて説明する。最初に、図面を参照しながら、本開示の光回路の製造方法の基本的概念から説明を始める。 The following embodiments disclose a manufacturing system, a manufacturing method, and a configuration of an optical circuit that improves the manufacturing method, in which inspection results and data that can be obtained in the manufacturing process of the optical circuit can be reflected in the process more efficiently and accurately. In particular, the present specification will focus on a manufacturing system and a manufacturing method that effectively reflect process data acquired in the core film deposition process in subsequent processes and reduce errors in the core film deposition process. First, the basic concept of the manufacturing method of the optical circuit of the present disclosure will be explained with reference to the drawings.
[実施形態1]
 本実施形態の光回路の製造方法では、製造工程における一工程を実施中に形成され、取得される、光デバイスの構成要素または特性についてのデータに着目する。このデータは、リアルデータまたは現在のデータと言うこともできる。光デバイスの構成要素または特性について計測を行い、その計測して得られたデータに基づいて、後工程の製造条件を調整しまたは補正を行う(以下この方式を「フィードフォワードシステム」とも言う)。フィードフォワードシステムにより、光デバイスの光学特性のバラツキを抑制し、最終的に得られる光デバイスについて所望の光学特性を得ることを可能にする。
[Embodiment 1]
In the optical circuit manufacturing method of the present embodiment, attention is paid to data about the constituent elements or characteristics of the optical device that are formed and obtained during the execution of one step in the manufacturing process. This data can also be referred to as real data or current data. The constituent elements or characteristics of the optical device are measured, and the manufacturing conditions in the post-process are adjusted or corrected based on the data obtained by the measurement (hereinafter, this system is also referred to as "feedforward system"). The feedforward system makes it possible to suppress variations in the optical characteristics of the optical device and obtain desired optical characteristics of the finally obtained optical device.
 図2は、本開示の実施形態1に係る光導波路を含む光回路の製造方法を示す図である。フィードフォワードシステムは、一工程で形成される光デバイスの構成要素について「計測」を行い、この計測結果に基づいて光学特性推定処理21によって「光学特性推定」を行う。そして、推定結果に基づき、プロセスコントロール処理22によって後工程のプロセスの「制御」を行う。 FIG. 2 is a diagram showing a method for manufacturing an optical circuit including an optical waveguide according to Embodiment 1 of the present disclosure. The feedforward system "measures" the components of the optical device formed in one process, and performs "optical property estimation" by the optical property estimation processing 21 based on the measurement results. Then, based on the estimation result, the process control processing 22 performs “control” of the post-process.
 例えば、図2の下部クラッド堆積工程1で形成される下部クラッド膜の屈折率および厚さ、コア堆積工程2において堆積するコア層の屈折率および厚さを「計測」する。この測定結果に基づいて、標準の(ノミナルの)設計値で作製されたデバイスの最終的な光学特性を推定する。そしてこの推定に基づいて、後工程であるエッチング工程6において、エッチングの強度またはエッチング時間を「制御」する。 For example, the refractive index and thickness of the lower clad film formed in the lower clad deposition step 1 in FIG. 2 and the refractive index and thickness of the core layer deposited in the core deposition step 2 are "measured". Based on the results of this measurement, the final optical properties of devices fabricated with standard (nominal) design values are estimated. Then, based on this estimation, in the subsequent etching step 6, the etching intensity or etching time is "controlled".
 具体的には、「計測」したコア層の膜厚および屈折率、クラッド膜の屈折率に基づいて、光デバイスとして要求される性能を満たすためのパターンの理想的なコア幅を推定(予測)する。そしてエッチング工程6では、この予測値に基づいてエッチングを行う。例えば、標準の(nominal)設計値では「コア加工後の導波路幅が太く」、所望の性能を満たすことができないという予測情報の場合、エッチング工程で、形成されるコア幅を細くする補正を行う。この時の調整(補正)方法としては、エッチング時間を短く/長くするまたはエッチング強度を弱く/強くすることにより、コア幅を太く/細くする方法がある。さらに、エッチング工程6で形成される導波路のパターンにおけるコアの幅や段差を「計測」することができる。この計測結果に基づき、上部クラッド堆積工程8で形成する上部クラッド膜の屈折率などを「制御」し、最終的に得られる光導波路の光学特性を調整することもできる。 Specifically, based on the "measured" thickness and refractive index of the core layer and the refractive index of the clad film, the ideal core width of the pattern to meet the performance required for the optical device is estimated (predicted). do. Then, in the etching step 6, etching is performed based on this predicted value. For example, in the case of prediction information that the standard (nominal) design value is "the waveguide width after core processing is thick" and the desired performance cannot be satisfied, the etching process can be used to correct the width of the core to be formed. conduct. As an adjustment (correction) method at this time, there is a method of thickening/thinning the core width by shortening/longening the etching time or weakening/strengthening the etching intensity. Furthermore, the core width and steps in the waveguide pattern formed in the etching step 6 can be "measured". Based on this measurement result, it is also possible to "control" the refractive index of the upper clad film formed in the upper clad deposition step 8 and adjust the optical characteristics of the finally obtained optical waveguide.
 上述のように本発実施形態のフィードフォワードシステムは、光デバイスを製造する複数の工程のうち、前工程の工程中またはその工程後に、形成された光デバイスの構成要素の形状、特性等を測定する。この測定結果に基づいて、後工程における製造条件を調整または補正を行う。 As described above, the feedforward system of the embodiment of the present invention measures the shape, characteristics, etc. of the constituent elements of the optical device formed during or after the preceding process among the multiple processes of manufacturing the optical device. do. Based on this measurement result, the manufacturing conditions in the post-process are adjusted or corrected.
 図3は、実施形態1のフィードフォワードシステムを一般化して示した図である。フィードフォワードシステムは、M個の工程からなる光デバイスの製造手順を含み、製造対象物である光デバイスを、工程1、工程2・・・、工程i、・・・工程j、・・・工程Mの順序で実施する。ここで、i<jのとき、工程jは工程iより時間的に後の工程である。フィードフォワードシステムは、計測データ処理部31および制御データ処理部32を含む。計測データ処理部31は、図2で説明した光学特性推定処理21を実行し、制御データ処理部32は、図2で説明したプロセスコントロール処理22を実行する。計測データ処理部31および制御データ処理部32は、CPU、RAM、ROMなどを有して構成されるコンピュータの形態とすることができる。 FIG. 3 is a generalized diagram of the feedforward system of the first embodiment. The feedforward system includes an optical device manufacturing procedure consisting of M steps, and an optical device, which is an object to be manufactured, is divided into steps 1, 2, . . . , step i, . M order. Here, when i<j, the process j is a process later than the process i. The feedforward system includes a measurement data processing section 31 and a control data processing section 32 . The measurement data processing unit 31 executes the optical property estimation processing 21 described with reference to FIG. 2, and the control data processing unit 32 executes the process control processing 22 described with reference to FIG. The measurement data processing unit 31 and the control data processing unit 32 can be in the form of a computer configured with a CPU, RAM, ROM, and the like.
 図3のフィードフォワードシステムにおいて、実線は製造対象物の工程に従った流れを示している。また、破線はそれぞれの工程の「計測」によって得られる計測データを、また、一点鎖線はそれぞれの工程に対する「制御」のための制御データを、それぞれ示している。図3のように、本実施形態のフィードフォワードシステムは、工程iで、その工程の製造装置またはその計測装置から計測データを取得し、計測データ処理部31へと転送する。計測データ処理部31は、転送された計測データに基づいて、工程iで形成される光デバイスの構成要素の形状または特性を予測する。また、計測データに基づいて、最終的に得られる光デバイスの光学特性を、工程iにおいて予測することもできる。 In the feedforward system in Figure 3, the solid line indicates the flow of the product according to the process. Also, dashed lines indicate measurement data obtained by "measurement" of each process, and one-dot chain lines indicate control data for "control" of each process. As shown in FIG. 3 , the feedforward system of the present embodiment acquires measurement data from the manufacturing apparatus of that process or its measurement apparatus in process i, and transfers it to the measurement data processing unit 31 . Based on the transferred measurement data, the measurement data processing unit 31 predicts the shape or characteristics of the constituent elements of the optical device formed in step i. Also, based on the measurement data, the optical properties of the finally obtained optical device can be predicted in step i.
 計測データ処理部31で導出された予測値は、制御データ処理部32に渡される。制御データ処理部32は、予測値に基づいて、後工程である工程jにおける製造条件を求める。制御データ処理部32は、工程jが実施される際に、求めた製造条件に応じて、製造装置に設定する工程j用の制御データを供給する。後工程jを実施する際に供給される、前工程に基づく制御データは、前工程iに基づく制御データのみであっても良いし、前工程のいくつかに基づく複数種類の制御データであっても良い。制御データの形態は、実際に構成される製造装置および製造対象物などの条件に応じて定められることはもちろんである。 The predicted value derived by the measurement data processing unit 31 is passed to the control data processing unit 32. Based on the predicted value, the control data processing unit 32 obtains the manufacturing conditions for the subsequent step j. The control data processing unit 32 supplies control data for the process j to be set in the manufacturing apparatus according to the obtained manufacturing conditions when the process j is performed. The control data based on the previous process, which is supplied when the post-process j is performed, may be only control data based on the previous process i, or a plurality of types of control data based on some of the previous processes. Also good. The form of the control data is, of course, determined according to conditions such as the actually constructed manufacturing apparatus and the manufacturing object.
 [実施形態2]
 本実施形態では、実施形態1のフィードフォワードシステムの2:コア堆積工程で生じる誤差が後工程へ与える影響を最小化する光集積回路の製造方法、製造システムについて説明する。図1の従来技術の製造工程における2:コア堆積工程から6:エッチング工程までの改善に相当する。図3のフィードフォワードシステムにおいて、コア膜を堆積する工程からの工程データ(コア膜の膜厚分布データおよび屈折率分布データ)に基づいて、回路パターン露光工程へフィードフォワードする仕組みが開示される。最初に、コア膜の堆積工程が後工程および光集積回路の光学特性に与える影響について説明し、その後、本開示の光集積回路の製造方法および製造システムについて説明する。
[Embodiment 2]
In the present embodiment, an optical integrated circuit manufacturing method and manufacturing system that minimizes the influence of an error that occurs in the 2: core deposition process of the feedforward system of the first embodiment on subsequent processes will be described. This corresponds to the improvement from 2: core deposition step to 6: etching step in the prior art manufacturing process of FIG. In the feedforward system of FIG. 3, a mechanism is disclosed for feeding forward to the circuit pattern exposure process based on the process data (core film thickness distribution data and refractive index distribution data) from the process of depositing the core film. First, the effect of the core film deposition process on the post-process and the optical characteristics of the optical integrated circuit will be described, and then the method and system for manufacturing an optical integrated circuit of the present disclosure will be described.
 図4は、光集積回路が形成されるウェハ面内におけるコア膜特性のバラツキを示す図である。図4の(a)は、ウェハ面内の光学膜厚のプロットと、プロット点をフィッティングした光学膜厚の分布曲面を3次元的に示した図である。概ね直径120mmのウェハ面内(x-y面)において、垂直方向軸に正規化した光学膜厚(nm)をプロットしている。「光学膜厚」は、コア膜に対して光学膜厚=膜厚×屈折率の関係で表され、ウェハ面内でこの光学膜厚の分布を求めることができる。また、コア膜特性としてコア膜の膜厚および屈折率、下部および上部クラッドの屈折率の各分布を取得することできる。これらの分布は、コア膜に対して光導波路が形成された後で、光信号の伝搬特性を表す指標である等価屈折率nの情報を得るために重要である。等価屈折率nについては、さらに後述する。図4の(b)は、別の直径300mmのウェハのコア膜について1次元の屈折率分布を示した図である。後述する実施形態4によりフィッティングした曲線も示している。 FIG. 4 is a diagram showing variations in core film characteristics within a wafer surface on which an optical integrated circuit is formed. FIG. 4(a) is a diagram three-dimensionally showing a plot of the optical film thickness in the wafer plane and a distribution curved surface of the optical film thickness to which the plotted points are fitted. The optical film thickness (nm) normalized to the vertical axis is plotted over the in-plane (xy plane) of a wafer approximately 120 mm in diameter. The "optical film thickness" is represented by the relationship of optical film thickness=film thickness×refractive index with respect to the core film, and the distribution of this optical film thickness within the wafer surface can be obtained. Also, as core film characteristics, distributions of the film thickness and refractive index of the core film, and the refractive indices of the lower and upper clads can be obtained. These distributions are important for obtaining information on the equivalent refractive index ne , which is an index representing the propagation characteristics of optical signals, after the optical waveguide is formed in the core film. The equivalent refractive index ne will be further described later. FIG. 4(b) is a diagram showing the one-dimensional refractive index profile for the core film of another wafer with a diameter of 300 mm. Curves fitted according to Embodiment 4, which will be described later, are also shown.
 図4の(a)では、ウェハ面内で光学膜厚が分布している状態が良く確認できる。図4の(b)の例でも、コア膜の屈折率はウェハ中央部から周辺に向かって小さくなるように分布している。コア膜の膜厚、下部および上部クラッドの屈折率についても同様に、面内の分布形状を取得することができる(詳細は実施形態3、4)。ウェハ面内におけるコア膜の膜厚および屈折率、下部および上部クラッドの屈折率の各バラツキは、ウェハ全面に作製される光集積回路の複数のチップ間で、光学特性のバラツキにつながる。これらの膜特性が変化することで光が感じる位相に影響する等価屈折率nが変化し、同一の回路パターンを使用していても後述する光の位相進み量がウェハ内でばらつくことになる。また1つのチップ内に多数の光干渉回路を備えたような光集積回路では、1つのチップ内でも光干渉回路毎に光学特性にバラツキが生じることになる。コア膜の光の光学特性のバラツキを示す光学膜厚に加えて、もう1つの指標は光導波路の等価屈折率nである。 In FIG. 4(a), it can be clearly seen that the optical film thickness is distributed within the wafer surface. Also in the example of FIG. 4B, the refractive index of the core film is distributed so as to decrease from the center of the wafer toward the periphery. Similarly, the in-plane distribution shape of the film thickness of the core film and the refractive indices of the lower and upper clads can be obtained (details of Embodiments 3 and 4). Variations in the thickness and refractive index of the core film and the refractive indices of the lower and upper clads within the wafer surface lead to variations in optical characteristics among a plurality of chips of optical integrated circuits fabricated on the entire surface of the wafer. When these film characteristics change, the equivalent refractive index ne , which affects the phase sensed by light, changes, and even if the same circuit pattern is used, the amount of phase advance of light, which will be described later, varies within the wafer. . Further, in an optical integrated circuit having a large number of optical interference circuits in one chip, variations in optical characteristics occur for each optical interference circuit even in one chip. In addition to the optical film thickness that indicates the variation in the optical properties of the core film, another index is the equivalent refractive index n e of the optical waveguide.
 最初に述べたように、キーとなる光デバイスを集積化した光集積回路は、その重要な構成要素として光導波路を含んでいる。光デバイスは光導波路デバイスと言うこともできる。したがって、光導波路の構造や光学特性の製造誤差を抑えることが重要である。また光集積回路の重要で大規模なものの多くには、マッハツェンダー干渉計(MZI:Mach-Zehnder Interferometer)やアレイ導波路回折格子(AWG:Arrayed Waveguide Grating)が含まれている。MZIやAWGの機能は、光が通過する1つ以上の光導波路の経路に起因して生じる光の位相差を利用した干渉現象に基づいている。光導波路を伝搬する光信号の位相は、光導波路の伝搬特性によって直接的に影響を受け、この伝搬特性は、等価屈折率nによって決定される。 As mentioned at the beginning, an optical integrated circuit in which key optical devices are integrated contains an optical waveguide as an important component. An optical device can also be called an optical waveguide device. Therefore, it is important to suppress manufacturing errors in the structure and optical characteristics of the optical waveguide. Also, many of the important large-scale optical integrated circuits include Mach-Zehnder interferometers (MZIs) and arrayed waveguide gratings (AWGs). The functionality of MZIs and AWGs is based on interference phenomena that utilize the phase difference of light caused by one or more optical waveguide paths through which light passes. The phase of an optical signal propagating in an optical waveguide is directly affected by the propagation properties of the optical waveguide, which are determined by the equivalent refractive index ne .
 図5は、光導波路における等価屈折率の算出を説明するための図である。図5には、以下説明する等価屈折率を求める光導波路の断面構成を示している。波長λの光信号が、長さLおよび等価屈折率nの光導波路を伝搬するとき、光信号の位相の進み量φは次式で表される。
Figure JPOXMLDOC01-appb-M000001
FIG. 5 is a diagram for explaining calculation of an equivalent refractive index in an optical waveguide. FIG. 5 shows the cross-sectional structure of an optical waveguide for obtaining the equivalent refractive index described below. When an optical signal having a wavelength λ propagates through an optical waveguide having a length L and an equivalent refractive index ne , the phase lead amount φ of the optical signal is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000001
 図5に示したように光導波路の断面形状が矩形の場合、光導波路の等価屈折率nは、光導波路コアの幅aおよび高さbと、コア屈折率ncore、クラッド屈折率ncladから決定される。例えば非特許文献3および非特許文献4では、矩形コアについて、その形状、コア屈折率、クラッド屈折率から、x成分、y成分の各電場の分散方程式を用いて、伝搬定数βおよび等価屈折率nを求める手順が開示されている。以下、等価屈折率nの計算の概略を示す。図5の断面構成の光導波路コアに対して、第1象限のみを考慮してx軸方向およびy軸方向についてそれぞれ分散方程式を解く。 When the cross-sectional shape of the optical waveguide is rectangular as shown in FIG. 5, the equivalent refractive index n e of the optical waveguide is determined by the width a and height b of the optical waveguide core, the core refractive index n core and the clad refractive index n clad determined from For example, in Non-Patent Document 3 and Non-Patent Document 4, the propagation constant β and the equivalent refractive index A procedure for determining n e is disclosed. The outline of the calculation of the equivalent refractive index n e is shown below. For the optical waveguide core having the cross-sectional configuration of FIG. 5, only the first quadrant is considered to solve the dispersion equations for the x-axis direction and the y-axis direction, respectively.
 x軸方向については、次式が得られる。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
For the x-axis direction, the following equation is obtained.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
同様にy軸方向について、次式が得られる。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Similarly, the following equation is obtained for the y-axis direction.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
上式において、pはx軸の横方向電磁界成分の山の数、qはy軸の横方向電磁界成分の山の数である。上の式(2)~(9)から伝搬定数βを求め、さらに等価屈折率nが次のように求められる。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
In the above equation, p is the number of peaks of the horizontal electromagnetic field component on the x-axis, and q is the number of peaks of the horizontal electromagnetic field component on the y-axis. The propagation constant β is obtained from the above equations (2) to (9), and the equivalent refractive index n e is obtained as follows.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
上式から、光導波路の等価屈折率nが、コアの幅aおよび高さbと、コア屈折率ncore、クラッド屈折率ncladから決定されることがわかる。 From the above equation, it can be seen that the equivalent refractive index n e of the optical waveguide is determined from the core width a and height b, the core refractive index n core and the clad refractive index n clad .
 MZIやAWGのような光回路の光学特性は、光導波路の伝搬特性を表す等価屈折率nによって強く影響される。したがって、光集積回路の製造工程では等価屈折率nを決定する光導波路コアの幅、高さおよびコアの屈折率を安定して制御する必要がある。一方で図4の(a)、(b)に示したように、コア膜の堆積工程を終了した段階で、コア膜の膜厚、屈折率は均一ではなく分布を持っており、光回路の光学特性のバラツキに直結することが理解できるだろう。光導波路コアの高さとなるコア膜の厚さ、コア膜の屈折率の変動は、いずれも光学膜厚および等価屈折率nの各指標に直接影響するのは明らかである。 The optical characteristics of optical circuits such as MZI and AWG are strongly influenced by the equivalent refractive index ne, which represents the propagation characteristics of the optical waveguide. Therefore, in the manufacturing process of an optical integrated circuit, it is necessary to stably control the width and height of the optical waveguide core and the refractive index of the core, which determine the equivalent refractive index ne . On the other hand, as shown in FIGS. 4A and 4B, the film thickness and refractive index of the core film are not uniform but have a distribution at the stage when the deposition process of the core film is completed. It can be understood that this is directly linked to variations in optical characteristics. It is clear that the thickness of the core film, which is the height of the optical waveguide core, and the variation in the refractive index of the core film directly affect the indicators of the optical film thickness and the equivalent refractive index ne .
 発明者らは、コア膜の堆積工程を終了した段階で得られるコア膜の情報を、引き続く光導波路形成のいずれかの後工程に反映させ、コア膜堆積工程で生じた誤差の影響を抑えることができないか検討した。上述の光の伝搬状態を表す指標の内、コア膜の光学膜厚(=屈折率×コア膜厚)、屈折率、膜厚は、コア膜の堆積工程が終了した段階でウェハの面内分布として測定できる。また下部クラッドの屈折率分布についても、同様に測定することができる。目標光学特性から決定されるこれらの設定値と、実測値との差分は、それぞれの目標値からの逸脱量、すなわち製造誤差に対応している。引き続く光導波路の作製工程において、変更可能な光導波路の構造値に対して、この逸脱量を相殺するような補正ができるのではないかと考えた。 The inventors apply the information of the core film obtained at the stage of finishing the deposition process of the core film to any subsequent post-process of forming the optical waveguide, thereby suppressing the influence of the error generated in the core film deposition process. I considered whether I could not do it. Among the indices representing the state of light propagation described above, the optical film thickness of the core film (= refractive index × core film thickness), the refractive index, and the film thickness are the in-plane distribution of the wafer at the stage when the deposition process of the core film is completed. can be measured as Also, the refractive index distribution of the lower clad can be similarly measured. The difference between these set values determined from the target optical characteristics and the measured values corresponds to the amount of deviation from the respective target values, that is, the manufacturing error. In the subsequent fabrication process of the optical waveguide, it was thought that it would be possible to correct the changeable structural value of the optical waveguide so as to offset this amount of deviation.
 コア膜の堆積工程の後の、光導波路の作製工程において、現実的に変更可能な構造値としては、後に詳述するように、ウェハ上に構成される少なくとも一部の光回路のコア幅、コアの厚さ、光導波路の物理的長さなどがある。コア膜の堆積より後工程の光導波路の作製工程において適用できるこれらの構造値への補正量を決定することで、コア膜の堆積工程で生じたコア膜のウェハ面内の誤差分布を抑えることができるはずである。このように光導波路の作製工程で変更可能な構造値に補正を加えることは、光導波路が作製された状態の等価屈折率nの補正を行っているのと実質的に同じである。 In the process of fabricating the optical waveguide after the process of depositing the core film, structural values that can be practically changed include the core width of at least a part of the optical circuit configured on the wafer, as described in detail later. Core thickness, physical length of the optical waveguide, etc. By determining the amount of correction to these structural values that can be applied in the optical waveguide manufacturing process that follows the deposition of the core film, the error distribution of the core film within the wafer plane that occurs in the deposition process of the core film can be suppressed. should be possible. Correcting the structural values that can be changed in the manufacturing process of the optical waveguide is substantially the same as correcting the equivalent refractive index n e in the state in which the optical waveguide is manufactured.
 既に説明した通り、コア膜がエッチングされてコア幅が決まりコアの形状が確定しない限り、最終的な等価屈折率nを求めることはできない。しかしながら、光導波路の作製の前であっても、光学膜厚やコア膜の厚さおよび屈折率の実測データに対して、例えばコア幅の値を一定値と仮定すれば、簡易的に、一定の精度で等価屈折率nを推定することもできる。光導波路の作製工程の前段階でも、その後の工程を実施する場合に推定される等価屈折率nに基づき、その等価屈折率nに補正が加えられるように、後工程の製造条件を修正できる。例えば、推定される等価屈折率nが設定値よりも大きくなるのであれば、等価屈折率nが小さくなるように光導波路の構造値を補正できる。逆に推定される等価屈折率nが設定値よりも小さくなるのであれば、等価屈折率nが大きくなるように光導波路の構造値を補正すれば良い。このように図3のフィードフォワードの考え方をコア膜堆積工程に適用し、コア膜堆積工程より後工程の製造条件・工程の修正することによって、光集積回路の光学特性のバラツキを抑え、歩留を上げてコストダウンを実現できる。 As already explained, the final equivalent refractive index n e cannot be obtained unless the core film is etched, the core width is determined, and the shape of the core is determined. However, even before the fabrication of the optical waveguide, if, for example, the value of the core width is assumed to be a constant value with respect to the actual measurement data of the optical film thickness, core film thickness, and refractive index, a constant It is also possible to estimate the equivalent refractive index n e with an accuracy of . Modification of the manufacturing conditions of the post-process so that the equivalent refractive index n e is estimated based on the estimated equivalent refractive index n e in the pre-process of the optical waveguide manufacturing process, and the correction is added to the equivalent refractive index n e . can. For example, if the estimated equivalent refractive index ne becomes larger than the set value, the structural value of the optical waveguide can be corrected so that the equivalent refractive index ne becomes smaller. Conversely, if the estimated equivalent refractive index ne is smaller than the set value, the structural value of the optical waveguide should be corrected so that the equivalent refractive index ne becomes larger. In this way, by applying the feedforward concept of FIG. 3 to the core film deposition process and correcting the manufacturing conditions and processes in the processes after the core film deposition process, variations in the optical characteristics of the optical integrated circuit can be suppressed and the yield can be improved. can be raised to reduce costs.
 本実施形態の光集積回路の製造方法では、コア膜の堆積工程で得られるコア膜のウェハ面内工程データを利用して、引き続く光導波路の作製工程における光導波路の構造値を補正する。コア膜のウェハ面内の工程データには、コア膜の膜厚分布データ、コア膜の屈折率分布データを含む。本実施形態では、光導波路コアを作製するための露光・エッチング工程の前で、ウェハ面(x-y面)に平行な方向における光導波路の構造値に対して、補正量分布を決定する。その後、決定された光導波路の構造値の補正量分布にしたがって、ウェハ内の光集積回路の露光単位領域毎に対応するマスクを選択する。以下、図面を参照しながら、本実施形態の光集積回路の製造方法の詳細を説明する。 In the manufacturing method of the optical integrated circuit of the present embodiment, the wafer in-plane process data of the core film obtained in the deposition process of the core film is used to correct the structural value of the optical waveguide in the subsequent manufacturing process of the optical waveguide. The wafer in-plane process data of the core film includes film thickness distribution data of the core film and refractive index distribution data of the core film. In this embodiment, the correction amount distribution is determined for the structural values of the optical waveguide in the direction parallel to the wafer surface (xy plane) before the exposure/etching process for fabricating the optical waveguide core. Thereafter, a mask corresponding to each exposure unit area of the optical integrated circuit in the wafer is selected according to the determined correction amount distribution of the structural value of the optical waveguide. Hereinafter, details of the method for manufacturing the optical integrated circuit of this embodiment will be described with reference to the drawings.
 図6は、コア膜の堆積工程データに基づいて、光導波路の構造値を補正する方法の概念を説明する図である。図6の左側から右側に向かって光回路の製造工程が進行し、図2では製造方法の2:コア堆積工程から6:エッチング工程に対応する。図6の上側に従来技術の製造工程におけるコア膜堆積工程の誤差の発生とその結果に至るまでの関係が示されており、下側の本実施形態の製造方法と対比している。図6には様々な「値」が矢印で示されており、矢印の上下方向の位置がその値の大小関係を示している。以後の説明では、各値を次のように定義する。 FIG. 6 is a diagram explaining the concept of a method for correcting the structural value of the optical waveguide based on the deposition process data of the core film. The manufacturing process of the optical circuit progresses from the left side to the right side in FIG. 6, and in FIG. 2 corresponds to 2: core deposition process to 6: etching process of the manufacturing method. The upper side of FIG. 6 shows the relationship between the occurrence of an error in the core film deposition process in the manufacturing process of the conventional technology and the result thereof, and is compared with the manufacturing method of the present embodiment on the lower side. Various "values" are indicated by arrows in FIG. 6, and the vertical position of the arrow indicates the magnitude relationship of the values. In the following description, each value is defined as follows.
 「光学特性値」は、光回路の機能や性能を表す指標値であって、例えばMZIの中心波長やAWGの透過帯域の中心波長であり得る。図6には示していないが、コア膜「目標値」は、決定された目標光学特性値1010(仕様)に対して、特定の光導波路を構成するのに必要なコア膜の構造や特性の目標値(Target value)である。したがって、コア膜「目標値」は光学特性の設計仕様が同一である限り、不変である。例えば、コア膜の膜厚目標値や屈折率目標値であり得る。 "Optical characteristic value" is an index value representing the function and performance of an optical circuit, and can be, for example, the center wavelength of MZI or the center wavelength of the transmission band of AWG. Although not shown in FIG. 6, the core film "target value" is the structure and properties of the core film necessary for forming a specific optical waveguide with respect to the determined target optical characteristic value 1010 (specification). It is the target value. Therefore, the core film "target value" remains unchanged as long as the design specifications for the optical properties remain the same. For example, it may be a film thickness target value or a refractive index target value of the core film.
 図6に示した「コア膜設定値」1011は、光導波路を実際の製造工程で作製するために、実際のコア堆積工程に対して設定される値である。初期状態の製造工程では、コア膜設定値1011は、コア膜目標値となる。コア膜実測値1012は、コア堆積工程の終了後に、実測されたコア膜の膜厚およびコア膜の屈折率のウェハ面内分布データを含む。図4で説明したように、ウェハ面内のコア膜特性は分布しばらついているので、図6のコア膜実測値1012はコア膜設定値1011に対してずれ、逸脱が生じる。図6では、一例としてウェハ面内のある位置においてコア膜実測値1012がコア膜設定値1011よりも小さい方向(下方)にずれたものとする。具体的には、コア膜厚の実測値がコア膜厚の設定値よりも小さくなった状態を想定されたい。本実施形態の製造方法に好適な、コア膜の屈折率の測定方法は、実施形態3として後述する。 "Core film set value" 1011 shown in FIG. 6 is a value set for an actual core deposition process in order to fabricate an optical waveguide in an actual manufacturing process. In the manufacturing process in the initial state, the core film set value 1011 is the core film target value. The core film actual measurement value 1012 includes wafer in-plane distribution data of the core film thickness and the refractive index of the core film actually measured after the core deposition process is finished. As described with reference to FIG. 4, since the core film characteristics within the wafer surface are unevenly distributed, the core film actual measurement value 1012 in FIG. In FIG. 6, as an example, it is assumed that the core film actual measurement value 1012 deviates in a direction (downward) smaller than the core film set value 1011 at a certain position within the wafer surface. Specifically, assume that the measured value of the core thickness is smaller than the set value of the core thickness. A method for measuring the refractive index of the core film, which is suitable for the manufacturing method of this embodiment, will be described later as a third embodiment.
 上述のコア膜実測値の逸脱は、従来技術の製造方法および本発明の製造方法のいずれについても、同様に生じる。図6の上側に示した従来技術では、コア膜堆積工程で生じた誤差がそのまま光導波路作製のための露光・エッチング工程まで維持され、工程終了時に得られる結果光学特性値1013も目標光学特性値1010から逸脱したものであった。従来技術では、工程終了後にコア膜設定値1011に対してフィードバックをしていたため、その精度やスループットなど既に述べた問題を生じていた。 The deviation of the above-mentioned core film measured value similarly occurs in both the manufacturing method of the prior art and the manufacturing method of the present invention. In the prior art shown in the upper part of FIG. 6, the error generated in the core film deposition process is maintained as it is until the exposure/etching process for fabricating the optical waveguide, and the resulting optical characteristic value 1013 obtained at the end of the process is also the target optical characteristic value. It deviated from 1010. In the prior art, since the core film set value 1011 was fed back after the process was finished, the problems of accuracy and throughput, etc., as already described, occurred.
 一方、図6の下側に示した本実施形態の製造方法では、コア膜堆積工程の後の露光・エッチング工程における光導波路の構造値に対して「補正」が実施される。具体的には、光導波路コアの構造値に対して「補正量」が決定される。光導波路の構造値に対して補正して露光・エッチング工程を実施することによって、コア膜堆積工程で生じたコア膜実測値1012で検出された誤差、逸脱が相殺される。工程終了後には、コア膜堆積工程でコア膜設定値1011に対する誤差が生じていないのと実質的に等価な状態へ近づけることができる。光導波路の構造値の決定された補正量を露光・エッチング工程に適用することは、実質的に等価屈折率nを補正していることになる。このように本開示の製造方法では、ウェハ面内におけるコア膜の膜厚や屈折率の実測値分布に基づき、予め光導波路の構造値の補正量を決定し、この補正量に基づいた工程変更を露光・エッチング工程に適用することで、最終工程の結果光学特性値1016の誤差が最小化される。 On the other hand, in the manufacturing method of this embodiment shown in the lower part of FIG. 6, "correction" is performed on the structural value of the optical waveguide in the exposure/etching process after the core film deposition process. Specifically, the “correction amount” is determined with respect to the structural value of the optical waveguide core. By performing the exposure/etching process after correcting the structural value of the optical waveguide, errors and deviations detected in the core film actual measurement values 1012 caused in the core film deposition process are offset. After the end of the process, it is possible to approach a substantially equivalent state in which no error occurs in the core film set value 1011 in the core film deposition process. Applying the determined correction amount of the structural value of the optical waveguide to the exposure/etching process substantially corrects the equivalent refractive index ne. As described above, in the manufacturing method of the present disclosure, the correction amount of the structural value of the optical waveguide is determined in advance based on the measured value distribution of the thickness and refractive index of the core film in the wafer plane, and the process is changed based on this correction amount. is applied to the exposure/etching process, the error of the resulting optical characteristic value 1016 in the final process is minimized.
 本実施形態の製造方法において、コア膜の膜厚実測値分布や屈折率実測値分布に基づいて補正する光導波路の構造値は、光導波路コア幅、光干渉回路を構成する光導波路のコア長さ、光干渉回路における2つ以上の光導波路間の物理長差を含む。露光・エッチング工程における工程変更は、ウェハ上のフォトレジスト膜の露光工程において、露光単位領域毎に、光導波路の構造値の補正量分布に対応したマスクを選択することによって実施される。したがって、ウェハ面内の位置に応じて、チップ毎に異なるマスクが選択され得る。 In the manufacturing method of the present embodiment, the structural values of the optical waveguide to be corrected based on the measured value distribution of the film thickness and the measured value distribution of the refractive index of the core film are the optical waveguide core width and the core length of the optical waveguide constituting the optical interference circuit. , including the physical length difference between two or more optical waveguides in an optical interferometric circuit. The process change in the exposure/etching process is performed by selecting a mask corresponding to the correction amount distribution of the structural value of the optical waveguide for each exposure unit area in the exposure process of the photoresist film on the wafer. Therefore, a different mask can be selected for each chip depending on the position within the wafer plane.
 露光単位領域は、1つの選択されたマスクによって光回路を形成する最小領域を意味している。光集積回路の製造工程では、半導体露光装置によって、投影光学系を利用してウェハ上に任意の位置に異なる転写用回路パターンを露光することができる。露光単位領域は、1つのマスクのショット(転写)によりウェハ内に構成され、1つのチップの全領域またはチップ内の一部の領域に対応し得る。また、1つのチップ内に複数の露光単位領域が存在しても良い。例えば、1つのチップ内に同一構成の複数の光干渉回路が含まれる光集積回路では、1つの光干渉回路で構成される領域が露光単位領域となる。1つのチップ領域内で、光干渉回路毎に、異なるマスクが選択され得る。 The exposure unit area means the minimum area that forms an optical circuit with one selected mask. In the manufacturing process of optical integrated circuits, a semiconductor exposure apparatus can expose different transfer circuit patterns at arbitrary positions on a wafer using a projection optical system. An exposure unit area is configured within a wafer by one mask shot (transfer), and can correspond to the entire area of one chip or a partial area within the chip. Also, a plurality of exposure unit areas may exist within one chip. For example, in an optical integrated circuit in which a plurality of optical interference circuits having the same configuration are included in one chip, an area composed of one optical interference circuit is an exposure unit area. A different mask can be selected for each optical interferometer within one chip area.
 図7は、実施形態2の光集積回路の製造方法を実施する製造システムの概略図である。製造システム1000におけるウェハフローは、図1および図2の製造工程フローに概ね対応している。製造システム1000は、ウェハの面内において、コア膜の膜厚分布および屈折率分布を取得する測定部1001を備える。さらに、膜厚分布および屈折率分布に基づいて、光導波路の構造値の補正量分布を決定するコア膜補正量の算出部1002と、露光・エッチング装置1003を備える。露光・エッチング装置1003は、ウェハの中の1つ以上の露光単位領域に対して、上述の補正量分布に対応したマスクを選択し、選択されたマスクを使用して、ウェハの上のフォトレジスト膜を露光するよう動作する。 FIG. 7 is a schematic diagram of a manufacturing system that implements the method for manufacturing an optical integrated circuit according to the second embodiment. The wafer flow in manufacturing system 1000 generally corresponds to the manufacturing process flow of FIGS. The manufacturing system 1000 includes a measurement unit 1001 that acquires the film thickness distribution and refractive index distribution of the core film within the plane of the wafer. Further, a core film correction amount calculation unit 1002 for determining the correction amount distribution of the structural value of the optical waveguide based on the film thickness distribution and the refractive index distribution, and an exposure/etching device 1003 are provided. The exposure/etching apparatus 1003 selects a mask corresponding to the above correction amount distribution for one or more exposure unit areas in the wafer, and uses the selected mask to apply photoresist on the wafer. Operates to expose the membrane.
 製造システム1000では、矢印で示したように情報・データがやり取りされる。算出部1002は、測定部1001の膜厚、屈折率の測定のための制御を行い、測定部1001からコア膜の膜厚分布および屈折率分布のデータを取得する。また算出部1002は、コア膜補正量を算出し、露光・エッチング装置1003に対して、選択するマスクを決定ための情報を提供する。 In the manufacturing system 1000, information and data are exchanged as indicated by arrows. The calculation unit 1002 controls the measurement unit 1001 to measure the film thickness and the refractive index, and acquires the data of the film thickness distribution and the refractive index distribution of the core film from the measurement unit 1001 . The calculation unit 1002 also calculates the core film correction amount and provides the exposure/etching apparatus 1003 with information for determining the mask to be selected.
 図8は、実施形態2の光集積回路の製造方法の大まかな工程を示すフロー図である。図8のフローは、図6の下側において左側から右側に向かって示した本実施形態の製造方法の概要に対応し、コア膜の堆積工程から光導波路コアの作製工程までに対応する。図8のフローは、光回路の目標の光学特性を実現するためのコア膜の初期設計値を設定する工程(S1021)で開始する。次に、初期値であるコア膜設定値によってコア膜を堆積する工程を実施する(S1022)。 FIG. 8 is a flowchart showing rough steps of the method for manufacturing an optical integrated circuit according to the second embodiment. The flow of FIG. 8 corresponds to the outline of the manufacturing method of this embodiment shown from left to right in the lower part of FIG. The flow of FIG. 8 starts with a step (S1021) of setting the initial design values of the core film for realizing the target optical characteristics of the optical circuit. Next, a step of depositing a core film is performed using the core film set value, which is the initial value (S1022).
 コア膜の堆積工程が終わると、ウェハ面内で、コア膜の膜厚および屈折率をそれぞれ測定する(S1023)。この工程によって、図4の(a)、(b)に示したような、ウェハ面内におけるコア膜の膜厚および屈折率の分布データを求めることができる。S1023の工程によって、図6においては、コア膜実測値1012が得られる。ウェハにおけるコア膜の膜厚および屈折率の測定は、実施形態3で説明される光の反射スペクトル解析による多層膜の膜厚・屈折率の非接触評価によって実施できる。実施形態3の測定方法によれば、コア膜堆積前に下層酸化膜を測定し、コア膜測定時に下層酸化膜を固定して解析することで、コア膜の特性を高精度に評価することができる。詳細は、実施形態3において開示される。 When the deposition process of the core film is finished, the film thickness and refractive index of the core film are measured within the wafer surface (S1023). Through this process, distribution data of the core film thickness and refractive index in the wafer plane as shown in FIGS. 4A and 4B can be obtained. By the step of S1023, the core film actual measurement value 1012 is obtained in FIG. The film thickness and refractive index of the core film on the wafer can be measured by non-contact evaluation of the film thickness and refractive index of the multilayer film based on the light reflection spectrum analysis described in the third embodiment. According to the measurement method of the third embodiment, the lower oxide film is measured before deposition of the core film, and the lower oxide film is fixed and analyzed during the measurement of the core film, so that the characteristics of the core film can be evaluated with high accuracy. can. Details are disclosed in the third embodiment.
 次に、上述のコア膜の実測値に基づいて、コア膜の膜厚および屈折率マップを作成する(S1024)。ウェハ面内のコア膜の実測値を評価する際には、後述の実施形態4の取得情報のウェハ面内フィッティングを利用することで、本工程のスループットを向上させることができる。コア膜の分布データをスパースに取得し、関数でフィッティングすることでスループットの向上可能である。ウェハ面内の分布データを均一に利用するのではなく、変化が急峻な領域(例えば、ウェハのエッジ近傍)において密にデータを取得することで、膜厚および屈折率マップの精度を向上させることができる。詳細は、実施形態4において開示される。 Next, a core film thickness and a refractive index map are created based on the actual measurement values of the core film described above (S1024). When evaluating the measured value of the core film in the wafer plane, the throughput of this process can be improved by using the wafer in-plane fitting of the acquired information of Embodiment 4, which will be described later. Throughput can be improved by sparsely acquiring core film distribution data and fitting with a function. Improving the accuracy of film thickness and refractive index maps by acquiring data densely in areas where the change is steep (e.g., near the edge of the wafer) instead of uniformly using distribution data within the wafer surface. can be done. Details are disclosed in the fourth embodiment.
 次に、導波路コアの等価屈折率nの補正量を決定する(S1025)。この工程は、図6における補正量の決定段階1014に対応する。既に述べたように、等価屈折率は、光導波路の構造が確定して初めて算出が可能であるが、光導波路の作製工程で変更可能な光導波路の構造値に対する補正量を決定することになる。本実施形態における具体例は、後述する図9の詳細フローにおいてさらに説明される。 Next, a correction amount for the equivalent refractive index ne of the waveguide core is determined (S1025). This step corresponds to the correction amount determination step 1014 in FIG. As already mentioned, the equivalent refractive index can be calculated only after the structure of the optical waveguide is determined. . A specific example in this embodiment will be further described in the detailed flow of FIG. 9, which will be described later.
 引き続き、等価屈折率nの補正量に基づいて、コア設定値を補正する(S1026)。この工程は、図6のマスク選択段階1015に対応する。先行するS1025で決定した等価屈折率nの補正量、すなわち光導波路の構造値の補正量に対応したマスクを選択することで、光導波路のコアの設定値が補正され、推定される等価屈折率nの補正が実施される。上述のS1025~S1026の工程は、図6の「等価屈折率nの補正」に対応する。 Subsequently, the core set value is corrected based on the correction amount of the equivalent refractive index ne ( S1026 ). This step corresponds to the mask selection step 1015 of FIG. By selecting a mask corresponding to the amount of correction of the equivalent refractive index n e determined in preceding S1025, that is, the amount of correction of the structural value of the optical waveguide, the set value of the core of the optical waveguide is corrected, and the estimated equivalent refractive index A correction of the rate ne is performed. The steps S1025 and S1026 described above correspond to "correction of equivalent refractive index n e " in FIG.
 最後に、コア設定値の補正された状態で露光およびエッチング工程を実施する(S1027)。上述の図8の工程フローでは、推定される等価屈折率nの補正と言う視点で、光集積回路の製造方法の大まかな工程を説明した。本実施形態の光集積回路の製造方法は、より具体的な工程、光導波路の構造値の補正量の例とともに、図9でさらに説明される。 Finally, the exposure and etching processes are performed with the corrected core set values (S1027). In the process flow of FIG. 8 described above, the general steps of the method for manufacturing an optical integrated circuit have been described from the viewpoint of correction of the estimated equivalent refractive index ne . The manufacturing method of the optical integrated circuit of this embodiment will be further described with reference to FIG. 9 together with more specific steps and an example of the amount of correction of the structural value of the optical waveguide.
 図9は、実施形態2の光集積回路の製造方法の具体的な工程を示すフロー図である。図9のフローは、図8に示した製造方法の工程において、光導波路コアの等価屈折率nの補正量の具体例として、光導波路の幅の補正量分布ΔW(x,y)を取得する例を示したものである。 FIG. 9 is a flowchart showing specific steps of the method for manufacturing an optical integrated circuit according to the second embodiment. The flow of FIG. 9 acquires the correction amount distribution ΔW(x, y) of the width of the optical waveguide as a specific example of the correction amount of the equivalent refractive index n e of the optical waveguide core in the steps of the manufacturing method shown in FIG. This is an example of what to do.
 ここでまず、光導波路の構造値の補正の例として、光導波路の幅を補正する場合の幅補正量の算出について説明する。光導波路幅は、コア膜堆積の後で変更可能な構造値であり、異なる導波路幅を持った複数のマスクを予め備えておけば、ウェハ面内の位置に応じ必要な補正量にしたがってマスクを選択することで、等価屈折率nの補正を実現できる。 First, as an example of correcting the structural value of the optical waveguide, calculation of the width correction amount when correcting the width of the optical waveguide will be described. The optical waveguide width is a structural value that can be changed after deposition of the core film. is selected, correction of the equivalent refractive index ne can be realized.
 以下、ウェハ面内における導波路幅の補正量分布ΔW(x,y)を求める。コアの屈折率の設定値、測定値をそれぞれ、nset、n(x,y)とする。また、導波路幅の設定値、測定値をそれぞれ、Wset、W(x,y)とする。膜厚が実測されたコア膜に対して、導波路幅の設定値に与え得るべき補正量分布ΔW(x,y)は次式で定義される。
Figure JPOXMLDOC01-appb-M000008
A correction amount distribution .DELTA.W(x, y) of the waveguide width in the wafer plane is obtained below. Let n set and n(x, y) be the set value and measured value of the refractive index of the core, respectively. Also, the set value and measured value of the waveguide width are W set and W(x, y), respectively. A correction amount distribution .DELTA.W(x, y) that can be given to the set value of the waveguide width for the core film whose film thickness is actually measured is defined by the following equation.
Figure JPOXMLDOC01-appb-M000008
式(12)において、定数Aは、導波路幅の補正に加えて、屈折率変動が導波路幅の所要補正量に与える寄与率を意味していると考えることができる。 In equation (12), the constant A can be considered to mean the contribution of the refractive index variation to the required correction amount of the waveguide width in addition to the correction of the waveguide width.
 式(12)で補正量分布ΔW(x,y)を決定するために、定数Aを以下の様にして求める。本例では、光導波路の幅Wおよびコアの屈折率nの実測値が、設定値n(Wset,nset)よりもずれた場合に、等価屈折率を補正するための幅の補正量分布量ΔW(x,y)を決定する。導波路幅およびコア屈折率をそれぞれdW、dnだけ微小変化させたときの等価屈折率は、設定値を中心に変化量が微小である前提で1次までテーラー展開することで、次式で表される。
Figure JPOXMLDOC01-appb-M000009
In order to determine the correction amount distribution .DELTA.W(x, y) in Equation (12), the constant A is obtained as follows. In this example, when the measured values of the width W of the optical waveguide and the refractive index n of the core deviate from the set value n e (W set , n set ), the width correction amount for correcting the equivalent refractive index is A distribution quantity ΔW(x,y) is determined. The equivalent refractive index when the waveguide width and core refractive index are slightly changed by dW and dn, respectively, is expressed by the following equation by performing Taylor expansion up to the first order on the premise that the amount of change is minute around the set value. be done.
Figure JPOXMLDOC01-appb-M000009
 式(13)において、微小変化した等価屈折率n(Wset+dW,nset+dn)と設定値n(Wset,nset)が一致するためには、式(13)の2行目においてその第2項が0となれば良いので、次式を満たせば良い。
Figure JPOXMLDOC01-appb-M000010
In order for the slightly changed equivalent refractive index n e (W set +dW, n set +dn) to match the set value n e (W set , n set ) in the expression (13), the second line of the expression (13) , the second term should be 0, so the following equation should be satisfied.
Figure JPOXMLDOC01-appb-M000010
 ここで簡単のため屈折率分布n(x,y)をnで表し、等価屈折率値n(Wset,nset)をnで表すと、定義からdn=(n-nset)となるので、式(14)は次のように変形できる。
Figure JPOXMLDOC01-appb-M000011
Here, for simplicity, if the refractive index distribution n(x, y) is represented by n and the equivalent refractive index value n e (W set ,n set ) is represented by n e , dn=(n−n set ) from the definition. Therefore, equation (14) can be transformed as follows.
Figure JPOXMLDOC01-appb-M000011
 式(15)から、さらに次式が得られる。
Figure JPOXMLDOC01-appb-M000012
From equation (15), the following equation is further obtained.
Figure JPOXMLDOC01-appb-M000012
 式(12)の導波路幅の補正量分布ΔW(x,y)の式および式(16)を参照すれば、定数Aは、次式で表される。
Figure JPOXMLDOC01-appb-M000013
Referring to the equation (12) for the correction amount distribution ΔW(x, y) of the waveguide width and the equation (16), the constant A is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000013
 導波路幅の補正量分布ΔW(x,y)における定数Aの式(6)の意味するところは、定数Aは、等価屈折率のコア屈折率に対する微分値と、等価屈折率のコア導波路幅に対する微分値の比を表している。したがって定数Aは、等価屈折率の光導波路幅Wの変化に対する傾きと、等価屈折率のコア屈折率nの変化に対する傾きをそれぞれ求めれば、式(17)で決定される。定数Aは、光集積回路における光回路で、光導波路の構造およびコア膜の材料特性、作成条件が決定すれば、その条件で、等価屈折率の導波路幅W依存性、コア屈折率依存性を実測すれば良い。式(12)によって導波路幅の補正量分布ΔW(x,y)が決定できれば、図9の光集積回路の製造工程を実施することができる。 The expression (6) of the constant A in the waveguide width correction amount distribution ΔW (x, y) means that the constant A is the differential value of the equivalent refractive index with respect to the core refractive index, and the equivalent refractive index of the core waveguide It represents the ratio of the differential value to the width. Therefore, the constant A can be determined by Equation (17) by obtaining the slope of the equivalent refractive index with respect to the change in the optical waveguide width W and the slope of the equivalent refractive index with respect to the change in the core refractive index n. The constant A is an optical circuit in an optical integrated circuit, and if the structure of the optical waveguide, the material properties of the core film, and the preparation conditions are determined, the dependence of the equivalent refractive index on the waveguide width W and the core refractive index under those conditions. should be measured. If the correction amount distribution ΔW(x, y) of the waveguide width can be determined by the equation (12), the manufacturing process of the optical integrated circuit of FIG. 9 can be carried out.
 図9に戻り、光導波路の幅の補正による等価屈折率の補正の例を説明すれば、図8と同様に、まずコア膜の堆積工程が実施される(S1031)。さらにウェハ面内において、コア膜の膜厚および屈折率の測定が実施される(S1032)。ここでは、実施形態3で説明される光の反射スペクトル解析による多層膜の膜厚・屈折率の非接触評価を利用できる。 Returning to FIG. 9, an example of correction of the equivalent refractive index by correcting the width of the optical waveguide will be described. First, similarly to FIG. 8, the step of depositing the core film is performed (S1031). Furthermore, the film thickness and refractive index of the core film are measured within the wafer plane (S1032). Here, the non-contact evaluation of the film thickness and refractive index of the multilayer film based on the light reflection spectrum analysis described in the third embodiment can be used.
 引き続き、コア膜の膜厚実測値および屈折率実測値のマップを作成が実施される(S1033)。この工程では、実施形態4で説明される取得情報のウェハ面内フィッティングの手法を利用できる。 Subsequently, a map of the actual measured values of the core film thickness and the measured values of the refractive index is created (S1033). In this step, the method of fitting the acquired information within the wafer plane described in the fourth embodiment can be used.
 コア膜の膜厚実測値および屈折率実測値が得られれば、式(12)を用いて導波路幅の補正量分布ΔW(x,y)を取得することができる(S1034)。ウェハ面内で、光導波路の幅W(構造値)の設定値が補正量分布ΔW(x,y)に基づいて補正されることで、光導波路が作製完了した時点で予測される等価屈折率は、目標の等価屈折率に近づくことになる。結果として、光回路の結果光学特性値も目標の光学特性値に近づく。 If the actual measured value of the film thickness and the measured value of the refractive index of the core film are obtained, the correction amount distribution ΔW(x, y) of the waveguide width can be obtained using Equation (12) (S1034). In the wafer plane, the set value of the width W (structural value) of the optical waveguide is corrected based on the correction amount distribution ΔW (x, y), so that the equivalent refractive index predicted when the optical waveguide is completed is will approach the target equivalent refractive index. As a result, the resulting optical characteristic value of the optical circuit also approaches the target optical characteristic value.
 具体的には次の工程で、取得した補正量分布ΔW(x,y)に基づいてマスクを選択すること(S1035)で、光導波路の構造値の補正が実施される。上述のS1033~S1035は、図7に示した製造システムにおける算出部1002によって実施される。 Specifically, in the next step, the structural value of the optical waveguide is corrected by selecting a mask based on the acquired correction amount distribution ΔW(x, y) (S1035). The above S1033 to S1035 are performed by the calculator 1002 in the manufacturing system shown in FIG.
 最後に、選択されたマスクを使用して、図7の製造システムにおける露光・エッチング装置1003よって、露光およびエッチング工程が実施され(S1036)、光導波路の作製は終了する。 Finally, using the selected mask, the exposure/etching device 1003 in the manufacturing system of FIG. 7 performs the exposure and etching process (S1036), completing the fabrication of the optical waveguide.
 したがって本開示の光集積回路の製造方法は、ウェハの面内において、コア膜の膜厚分布および屈折率分布を取得するステップ(S1032)と、前記膜厚分布および前記屈折率分布に基づいて、光導波路の構造値の補正量分布を決定するステップ(S1034)と、前記ウェハの中の1つ以上の露光単位領域に対して、前記補正量分布に対応したマスクを選択するステップ(S1035)と、前記選択されたマスクを使用して、前記ウェハの上のフォトレジスト膜を露光するステップ(S1036)とを備えるものとして実施できる。 Therefore, the method for manufacturing an optical integrated circuit of the present disclosure includes the step of acquiring the film thickness distribution and the refractive index distribution of the core film in the plane of the wafer (S1032), and based on the film thickness distribution and the refractive index distribution, a step of determining a correction amount distribution of structural values of an optical waveguide (S1034); and a step of selecting a mask corresponding to the correction amount distribution for one or more exposure unit regions in the wafer (S1035). and exposing a photoresist film on the wafer using the selected mask (S1036).
 また本開示の光集積回路の製造システムは、ウェハの面内において、コア膜の膜厚分布および屈折率分布を取得する測定部1001と、前記膜厚分布および前記屈折率分布に基づいて、光導波路の構造値の補正量分布を決定する算出部1002と、前記ウェハの中の1つ以上の露光単位領域に対して、前記補正量分布に対応したマスクを選択し、前記選択されたマスクを使用して、前記ウェハの上のフォトレジスト膜を露光する露光部1003とを備えたものとしても実施できる。 Further, the optical integrated circuit manufacturing system of the present disclosure includes a measurement unit 1001 that acquires the film thickness distribution and the refractive index distribution of the core film in the wafer plane, and the optical guiding unit 1001 based on the film thickness distribution and the refractive index distribution. a calculating unit 1002 for determining the correction amount distribution of the structural value of the wave path; and a mask corresponding to the correction amount distribution for one or more exposure unit regions in the wafer, and applying the selected mask. and an exposure section 1003 that is used to expose the photoresist film on the wafer.
 上述の図9の製造工程フローでは、光導波路の構造値として導波路幅Wを補正する例を説明したが、コア膜の膜厚実測値および屈折率実測値に基づいて、予想される等価屈折率を補正できれば、構造値は幅だけに限られない。等価屈折率が異なっていてもウェハ面(x-y面)に平行な方向については、光導波路の幅だけでなく、光導波路の長さについても構造値として光信号の位相進み量の補正が可能である。式(1)で示したように、等価屈折率nの誤差により大きな影響を受けるのは、光干渉回路の光導波路における光信号の位相進み量である。 In the manufacturing process flow of FIG. 9 described above, an example of correcting the waveguide width W as the structural value of the optical waveguide has been described. Structural values are not limited to width only, if modulus can be corrected. Even if the equivalent refractive index is different, in the direction parallel to the wafer surface (xy plane), not only the width of the optical waveguide but also the length of the optical waveguide can be corrected for the phase lead amount of the optical signal as a structural value. It is possible. As shown in equation (1), the amount of phase lead of the optical signal in the optical waveguide of the optical interference circuit is greatly affected by the error in the equivalent refractive index ne .
 例えば光干渉回路であるMZIにおける2本のアーム導波路間の導波路長差のウェハ内バラツキは、等価屈折率のバラツキとともに干渉条件に直接影響するため問題となる。構造値として、導波路長差に対して補正をする場合は、マスクとして異なる物理長差のアーム導波路を持つ複数のマスクを備えておけば良い。コア膜の膜厚実測値および屈折率実測値から予想される等価屈折率に応じて、ウェア面内で、適切な物理長差のマスクを選択できる。このように、コア膜の実測値に基づいて補正を行う構造値は、光導波路のコア幅、光干渉回路を構成する光導波路の長さ、または、光干渉回路における光導波路間の導波路長差などを利用できる。 For example, in-wafer variation in the waveguide length difference between two arm waveguides in an MZI, which is an optical interference circuit, is a problem because it directly affects the interference conditions along with variation in the equivalent refractive index. When correcting the waveguide length difference as a structural value, it is sufficient to prepare a plurality of masks having arm waveguides with different physical length differences. A mask having an appropriate physical length difference can be selected in the wafer plane according to the equivalent refractive index expected from the core film's measured film thickness and refractive index measured value. Thus, the structural value to be corrected based on the measured value of the core film is the core width of the optical waveguide, the length of the optical waveguides forming the optical interference circuit, or the waveguide length between the optical waveguides in the optical interference circuit. You can use the difference.
 以下により具体的な光干渉回路において、コア膜の膜厚実測値および屈折率実測値に基づいて、光干渉回路における光導波路間の導波路長差(光路長差)を補正し、マスクの選択によって等価屈折率を補正する実施例を説明する。 In the following more specific optical interference circuit, the waveguide length difference (optical path length difference) between the optical waveguides in the optical interference circuit is corrected based on the measured value of the film thickness and the measured value of the refractive index of the core film, and the selection of the mask An embodiment in which the equivalent refractive index is corrected by is described.
 本実施形態の光集積回路の製造方法は、アーム導波路の導波路物理長差を、補正する「光導波路の構造値」として、光学特性である例えばAWGの中心波長のウェハ内バラツキを改善するのにも適用できる。 In the manufacturing method of the optical integrated circuit of the present embodiment, the waveguide physical length difference of the arm waveguide is used as the “optical waveguide structural value” to correct the optical characteristic, for example, the intra-wafer variation of the AWG center wavelength. can also be applied to
 AWGでは、各アレイ導波路の光路長差に起因する位相差によって、光合分波作用を生じる。異なる波長の複数の光信号を含む波長多重化光信号を入力すれば、波長毎に光信号を異なるポートへ分離して、出力することができる。AWGにおける各出力ポートの中心波長は、アレイ導波路の光路長差に起因する位相差によって決定される。AWGのアレイ導波路における光路長差は、アレイ導波路を構成する光導波路のコアやクラッドの屈折率、コアの形状により決定される。 In the AWG, an optical multiplexing/demultiplexing action occurs due to the phase difference caused by the optical path length difference of each arrayed waveguide. When a wavelength-multiplexed optical signal including a plurality of optical signals with different wavelengths is input, the optical signals can be separated for each wavelength and output to different ports. The center wavelength of each output port in the AWG is determined by the phase difference caused by the optical path length difference of the arrayed waveguides. The optical path length difference in an AWG arrayed waveguide is determined by the refractive index of the core and cladding of the optical waveguides constituting the arrayed waveguide, and the shape of the core.
 図10は、本実施形態の光集積回路の製造方法をAWGに適用した例を説明する図である。非特許文献5を参照すれば、AWGにおける中心波長λの理論式は図10にも示したように次式で表される。
Figure JPOXMLDOC01-appb-M000014
 ここで、nはコアの等価屈折率、ΔLは隣接するアーム導波路間の導波路物理長差、mは回折次数である。本実施例では、目標光学特性値がAWGの中心波長λとなる。ウェハ面内のコア膜の実測値分布から、予測される等価屈折率nに合わせて、アーム間の導波路物理長差ΔLを選択すれば良い。具体的には図10の表に示したように、予測される等価屈折率nが等価屈折率の設定値よりもやや小さいと予測される場合は、式(18)からΔLがより大きいマスクを選択すれば良い。逆に予測される等価屈折率nが等価屈折率の設定値よりもやや大きいと予測される場合は、式(18)からΔLがより小さいマスクを選択すれば良い。等価屈折率の設定値からの逸脱が無く設計値通りであれば、標準のΔLのマスクを使用すれば良い。
FIG. 10 is a diagram for explaining an example in which the method for manufacturing an optical integrated circuit according to this embodiment is applied to an AWG. Referring to Non-Patent Document 5, the theoretical formula for the central wavelength λ 0 in the AWG is expressed by the following formula as shown in FIG.
Figure JPOXMLDOC01-appb-M000014
Here, ne is the equivalent refractive index of the core, ΔL is the waveguide physical length difference between the adjacent arm waveguides, and m is the diffraction order. In this embodiment, the target optical characteristic value is the central wavelength λ 0 of the AWG. The waveguide physical length difference ΔL between the arms may be selected according to the expected equivalent refractive index ne from the measured value distribution of the core film in the wafer plane. Specifically, as shown in the table of FIG. 10, if the predicted equivalent refractive index n e is expected to be slightly smaller than the set value of the equivalent refractive index, then from equation (18), a mask with a larger ΔL should be selected. Conversely, if the expected equivalent refractive index n e is expected to be slightly larger than the set value of the equivalent refractive index, a mask with a smaller ΔL should be selected from equation (18). If there is no deviation from the set value of the equivalent refractive index and the design value is satisfied, the standard ΔL mask may be used.
 このように、導波路物理長差ΔLの異なる複数のAWG用のマスクを予め準備しておき、ウェハ面内において、コア膜の膜厚分布および屈折率分布から、光導波路の構造値として導波路物理長差ΔLの補正量を決定する。複数のAWG用のマスクの中から、決定されたΔLの補正量に対応したAWG用のマスクを選択することで、実質的に等価屈折率nが補正されるのと同じ効果が得られる。 In this way, a plurality of AWG masks with different waveguide physical length differences ΔL are prepared in advance, and from the film thickness distribution and refractive index distribution of the core film in the wafer plane, the waveguide structure value is A correction amount for the physical length difference ΔL is determined. By selecting an AWG mask corresponding to the determined correction amount of ΔL from among a plurality of AWG masks, substantially the same effect as correcting the equivalent refractive index n e can be obtained.
 本実施形態の光集積回路の製造方法は、アーム導波路の光路長差を、補正する「光導波路の構造値」として、光学特性である例えばMZIの中心波長のウェハ内バラツキを改善するのにも適用できる。 In the manufacturing method of the optical integrated circuit of the present embodiment, the optical path length difference of the arm waveguide is used as the "structural value of the optical waveguide" to correct the optical characteristic, for example, the variation in the center wavelength of the MZI within the wafer. can also be applied.
 図11は、本実施形態の光集積回路の製造方法をMZIに適用した例を説明する図である。MZI1040では方向性結合器1043、1044の間に構成された2つのアーム導波路1041,1042の光路長差に起因する位相差によって、出力ポートが変化する。一方のアーム導波路1042をヒータ1045で加熱することにより、スイッチとしても活用することもできる。ここで2つのアーム導波路の光路長差ΔSが設定値からずれると、消光波長が変化する。MZIにおける2つのアーム導波路の光路長差は、光導波路を形成するコアやクラッドの屈折率、コアの形状により決定される(非特許文献5を参照)。 FIG. 11 is a diagram illustrating an example in which the method for manufacturing an optical integrated circuit of this embodiment is applied to MZI. In the MZI 1040, the output port changes due to the phase difference caused by the optical path length difference between the two arm waveguides 1041 and 1042 formed between the directional couplers 1043 and 1044. FIG. By heating one arm waveguide 1042 with a heater 1045, it can also be utilized as a switch. Here, when the optical path length difference ΔS between the two arm waveguides deviates from the set value, the extinction wavelength changes. The optical path length difference between the two arm waveguides in the MZI is determined by the refractive index of the core and clad forming the optical waveguide, and the shape of the core (see Non-Patent Document 5).
 非特許文献5には、2入力2出力のMZIスイッチの構造と動作原理が説明されている。MZIスイッチ1040では、2つのアーム導波路1041、1042の間の光路長差ΔSにより方向性結合器1043、1044での干渉状態が変化し、光出力強度が変化する。2つの方向性結合器の分岐比がそれぞれ50%であるとすると、2つのアーム導波路の光路長差が位相換算で0±2nπのとき入力ポート1に入力された光はすべて出力ポート2から出力される。一方、光路長差が位相換算でπ±2nπのとき入力ポート1に入力された光はすべて出力ポート1から出力される。MZI透過スペクトルの理論式は、非特許文献6にも開示されている。 Non-Patent Document 5 describes the structure and operating principle of a two-input, two-output MZI switch. In the MZI switch 1040, the interference state at the directional couplers 1043 and 1044 changes due to the optical path length difference ΔS between the two arm waveguides 1041 and 1042, and the optical output intensity changes. Assuming that the branching ratio of each of the two directional couplers is 50%, when the optical path length difference between the two arm waveguides is 0±2nπ in terms of phase, all the light input to the input port 1 is output from the output port 2. output. On the other hand, when the optical path length difference is .pi..+-.2n.pi. A theoretical formula for the MZI transmission spectrum is also disclosed in Non-Patent Document 6.
 非特許文献6によれば、光を入力ポート1から入力した場合の出力ポート3の出力Pは次式で表される。
Figure JPOXMLDOC01-appb-M000015
 式(19)より、出力ポート3の出力Pは、等価屈折率nによって決定されることがわかる。
According to Non-Patent Document 6, the output P3 of the output port 3 when light is input from the input port 1 is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000015
From equation (19), it can be seen that the output P3 of output port 3 is determined by the equivalent refractive index ne .
 本実施形態の光集積回路の製造方法をMZIへ適用するには、ウェハ面内のコア膜の実測値分布から予測される等価屈折率nに合わせて、アーム導波路間の物理長差(L-L)を選択すれば良い。具体的には図11の表に示したように、予測される等価屈折率nが等価屈折率の設定値よりもやや小さい場合は、光路長差ΔSは式(19)から短くなってしまう。そこで、物理長差(L-L)がより大きいマスク1048を選択すれば良い。逆に予測される等価屈折率nが等価屈折率の設定値よりもやや大きい場合は、光路長差ΔSは式(19)から長くなってしまう。この場合は、物理長差(L-L)がより小さいマスク1046を選択すれば良い。等価屈折率の設定値からの逸脱が無く、設計値通りであれば、標準の物理長差(L-L)の標準マスク1047を使用すれば良い。 In order to apply the manufacturing method of the optical integrated circuit of this embodiment to MZI , the physical length difference between the arm waveguides ( L 1 −L 2 ) can be selected. Specifically, as shown in the table of FIG. 11, when the predicted equivalent refractive index n e is slightly smaller than the set value of the equivalent refractive index, the optical path length difference ΔS becomes shorter from equation (19). . Therefore, a mask 1048 with a larger physical length difference (L 1 -L 2 ) should be selected. Conversely, if the predicted equivalent refractive index n e is slightly larger than the set value of the equivalent refractive index, the optical path length difference ΔS will be long from equation (19). In this case, a mask 1046 with a smaller physical length difference (L 1 -L 2 ) should be selected. A standard mask 1047 having a standard physical length difference (L 1 -L 2 ) can be used if the equivalent refractive index does not deviate from the set value and is as designed.
 このように、予め物理長差(L-L)の異なる複数のMZI用のマスクを準備しておき、ウェハ面内において、コア膜の膜厚分布および屈折率分布から、光導波路の構造値として物理長差(L-L)の補正量を決定する。複数のMZI用のマスクから、決定された物理長差(L-L)の補正量に対応したマスクを選択することで、実質的に等価屈折率nが補正されるのと同じ効果が得られる。 In this way, a plurality of MZI masks having different physical length differences (L 1 −L 2 ) are prepared in advance, and the structure of the optical waveguide is determined from the film thickness distribution and refractive index distribution of the core film within the wafer plane. A correction amount for the physical length difference (L 1 -L 2 ) is determined as the value. By selecting a mask corresponding to the correction amount of the determined physical length difference (L 1 −L 2 ) from a plurality of masks for MZI, the same effect as substantially correcting the equivalent refractive index n e is obtained.
 以上詳細に述べたように、本開示の光集積回路の製造方法によって、コア膜の堆積工程で生じる誤差の分布データが直ちに後工程である光導波路の作製工程に反映さる。図3とともに実施形態1で説明をしたフィードフォワードシステムが実現される。ウェハ面内で生じる光学特性のバラツキを抑えた、光集積回路の製造工程が実現される。光集積回路の製造工程の効率化、高スループット化を実現できる。 As described in detail above, according to the manufacturing method of the optical integrated circuit of the present disclosure, the error distribution data generated in the deposition process of the core film is immediately reflected in the optical waveguide manufacturing process, which is the subsequent process. The feedforward system described in Embodiment 1 together with FIG. 3 is realized. A manufacturing process of an optical integrated circuit that suppresses variations in optical characteristics occurring within a wafer surface is realized. It is possible to realize efficiency improvement and high throughput of the manufacturing process of the optical integrated circuit.
[実施形態3]
 本実施形態のフィードフォワードシステムにおいて、各々の工程における膜厚、屈折率を非接触により測定する方法について、以下に説明する。
[Embodiment 3]
A non-contact method of measuring the film thickness and refractive index in each step in the feedforward system of this embodiment will be described below.
[3.1 測定装置]
 図12は、本発明の一実施形態にかかる測定装置の概略の構成を示す図である。測定装置は、製造対象物である光デバイスにレーザ光を照射し、対象物からの反射光を解析して、非接触により、光デバイスに形成されている膜の物性値、例えば膜厚、屈折率を測定する。測定原理として、従来の分光反射式膜厚計、分光エリプソメーターなどの測定方式を適用することができる。
[3.1 Measuring device]
FIG. 12 is a diagram showing a schematic configuration of a measuring device according to one embodiment of the present invention. The measuring device irradiates an optical device, which is an object to be manufactured, with a laser beam, analyzes the reflected light from the object, and measures the physical properties of the film formed on the optical device, such as film thickness and refractive index, in a non-contact manner. measure the rate. As a principle of measurement, conventional measurement methods such as a spectroscopic reflection film thickness gauge and a spectroscopic ellipsometer can be applied.
 測定装置は、光学測定系101とテスタ102とにより構成されている。測定対象となる光デバイスが形成されたシリコンウェハ114は、ウェハチャック113に固定され、基台111上の駆動機構112によって、3軸方向に移動させられる。テスタ102に接続されたテストヘッド121は、送光光学系122、受光光学系123および制御回路124を備えている。テスタ1は、シリコンウェハ114に形成されている光デバイスを構成する膜の所望の位置に、送光光学系122からのレーザ光を照射するように、駆動機構112を制御し、テストヘッド121の制御回路124に指令を送出する。対象物からの反射光を受光光学系123により受光し、制御回路124は、受光光学系123からの信号を処理して、測定結果をテスタ1に送り返す。 The measuring device is composed of an optical measuring system 101 and a tester 102. A silicon wafer 114 formed with an optical device to be measured is fixed to a wafer chuck 113 and moved in three axial directions by a driving mechanism 112 on a base 111 . A test head 121 connected to the tester 102 has a light transmitting optical system 122 , a light receiving optical system 123 and a control circuit 124 . The tester 1 controls the driving mechanism 112 to irradiate the laser beam from the light transmitting optical system 122 onto a desired position of the film constituting the optical device formed on the silicon wafer 114 , and the test head 121 . A command is sent to the control circuit 124 . Reflected light from the object is received by the light receiving optical system 123 , and the control circuit 124 processes the signal from the light receiving optical system 123 and sends back the measurement result to the tester 1 .
 テスタ1は、後述するように、受光光学系123からの信号を解析して、シリコンウェハ114に形成されている各膜の物性値を算出する。 As will be described later, the tester 1 analyzes the signal from the light receiving optical system 123 and calculates the physical property values of each film formed on the silicon wafer 114 .
[3.2 膜厚、屈折率の非接触測定法]
 例えば、図1および図2の下部クラッド堆積工程1で形成される下部クラッド12を、分光反射式で測定する場合を説明する。テスタ1は、テストヘッド121の送光光学系122から、下部クラッド12の表面に対して、所定の入射角で波長掃引範囲450-900nmのレーザ光を照射する。受光光学系123で受光した光の光強度から、テスタ1は、波長に対する反射率で表された反射スペクトルを算出する。
[3.2 Non-contact measurement method of film thickness and refractive index]
For example, a case of measuring the lower clad 12 formed in the lower clad deposition step 1 of FIGS. 1 and 2 by a spectral reflection method will be described. The tester 1 irradiates the surface of the lower clad 12 with a laser beam with a wavelength sweeping range of 450-900 nm at a predetermined incident angle from the light transmission optical system 122 of the test head 121 . From the light intensity of the light received by the light receiving optical system 123, the tester 1 calculates a reflection spectrum represented by reflectance with respect to wavelength.
 図13は、本実施形態の測定装置による下部クラッドの反射スペクトルを示す図である。送光光学系122から出射されたレーザ光は、下部クラッド12の表面と、基板11および下部クラッド12の界面とにおいて反射し、受光光学系123には、両者が干渉した反射光が入射される。この光の干渉が反射スペクトルに反映され、膜が均一に形成されていれば、干渉により波打ったスペクトルが観測される。膜厚が薄い場合は、波の幅は大きくなり(波の数は少なくなり)、膜厚が厚い場合は、波の幅は小さくなる(波の数は多くなる)。テスタ1は、この反射スペクトルの波の振幅、周期から下部クラッド12の膜厚と屈折率とを算出することができる。 FIG. 13 is a diagram showing the reflection spectrum of the lower clad obtained by the measurement device of this embodiment. The laser light emitted from the light-transmitting optical system 122 is reflected at the surface of the lower clad 12 and the interface between the substrate 11 and the lower clad 12, and the reflected light resulting from interference between the two is incident on the light-receiving optical system 123. . This light interference is reflected in the reflection spectrum, and if the film is formed uniformly, a wavy spectrum is observed due to the interference. When the film thickness is thin, the width of the waves is large (the number of waves is small), and when the film thickness is thick, the width of the waves is small (the number of waves is large). The tester 1 can calculate the film thickness and refractive index of the lower clad 12 from the wave amplitude and period of the reflection spectrum.
 図14を参照して、下部クラッドの膜厚および屈折率の算出方法を説明する。送光光学系122からの入射光の強度E、下部クラッド12の表面から反射された反射光の強度E、基板11と下部クラッド12の界面とにおいて反射された反射光の強度Eとする。さらに、下部クラッド12および基板11と下部クラッド12の界面の間を往復して、下部クラッド12の表面から出射される反射光をE,E4,...、受光光学系123に入射される反射光全体の光強度Eとすると、次式の関係が成り立つ。
Figure JPOXMLDOC01-appb-M000016
                       式(20)
A method of calculating the film thickness and refractive index of the lower clad will be described with reference to FIG. The intensity E 0 of the incident light from the light-sending optical system 122, the intensity E 1 of the reflected light reflected from the surface of the lower clad 12, the intensity E 2 of the reflected light reflected at the interface between the substrate 11 and the lower clad 12, and do. Furthermore, reflected light E 3 , E 4 , . . . Assuming that the light intensity of the entire reflected light is E, the following relationship holds.
Figure JPOXMLDOC01-appb-M000016
formula (20)
 ここで、rijは屈折率nのi番目の層(0は空気中)からの入射光が屈折率nのj番目の層との界面で反射したときの反射率であり、rij=-rjiである。また、tijはi層とj層の界面をi層からj層に透過したときの透過率であり、tjiはその逆であり、i番目の層の膜厚d、屈折率n、波長λとしたとき、i番目の層を往復したときの位相係数Δは、次式である。
Figure JPOXMLDOC01-appb-M000017
Here, r ij is the reflectance when incident light from the i-th layer with a refractive index n i (0 is in the air) is reflected at the interface with the j-th layer with a refractive index n j , and r ij =−r ji . In addition, t ij is the transmittance when the interface between the i layer and the j layer is transmitted from the i layer to the j layer, and t ji is the opposite, the film thickness d i of the i-th layer, the refractive index n i , the wavelength λ, the phase coefficient Δi when going back and forth in the i -th layer is given by the following equation.
Figure JPOXMLDOC01-appb-M000017
 このとき、TE(P)波に対する反射率r12および透過率t12は、次式となる。
Figure JPOXMLDOC01-appb-M000018
At this time, the reflectance r12 and the transmittance t12 for the TE(P) wave are given by the following equations.
Figure JPOXMLDOC01-appb-M000018
 また、TM(S)波に対する反射率r12および透過率t12は、次式となる。
Figure JPOXMLDOC01-appb-M000019
Also, the reflectance r12 and the transmittance t12 for the TM(S) wave are given by the following equations.
Figure JPOXMLDOC01-appb-M000019
 上式をマクローリン展開から整理して、1番目の層である下部クラッド12からの反射光全体の反射率rは、次式となる。
Figure JPOXMLDOC01-appb-M000020
Rearranging the above equation from the Maclaurin expansion, the reflectance r1 of the entire reflected light from the lower clad 12, which is the first layer, is given by the following equation.
Figure JPOXMLDOC01-appb-M000020
 次に、反射率rの波長依存性、すなわち反射スペクトルの振幅、周期から、下部クラッド12の膜厚dと屈折率nとを算出する。 Next, the film thickness d1 and the refractive index n1 of the lower clad 12 are calculated from the wavelength dependence of the reflectance r1, that is, the amplitude and period of the reflection spectrum.
[3.3 多段階測定法]
 次に、図1および図2のコア堆積工程2で形成されるコア13を、分光反射式で測定する場合を説明する。上述した送光光学系122から出射されたレーザ光は、コア13の表面、コア13と下部クラッド12の界面、および基板11と下部クラッド12の界面において反射する。分光反射式で測定する場合、基板11と下部クラッド12の界面からの反射光はノイズとなるので、膜厚と屈折率の算出に際しては除去する必要がある。一方、石英系平面光波回路では、コア13と下部クラッド12との屈折率差は1%程度と小さいため、コア13と下部クラッド12の界面における反射率よりも、基板11と下部クラッド12の界面における反射率の方が高い。加えて、コア13の膜厚は数μm程度と薄いため、基板11と下部クラッド12の界面からの反射光の成分が大きく、膜厚と屈折率の算出が困難である。
[3.3 Multistep measurement method]
Next, a case of measuring the core 13 formed in the core deposition step 2 of FIGS. 1 and 2 by a spectral reflection method will be described. The laser light emitted from the light-transmitting optical system 122 described above is reflected at the surface of the core 13 , the interface between the core 13 and the lower clad 12 , and the interface between the substrate 11 and the lower clad 12 . When the measurement is performed by the spectral reflection method, the reflected light from the interface between the substrate 11 and the lower clad 12 becomes noise and must be removed when calculating the film thickness and refractive index. On the other hand, in the silica-based planar lightwave circuit, the refractive index difference between the core 13 and the lower clad 12 is as small as about 1%. , the reflectance is higher. In addition, since the film thickness of the core 13 is as thin as several μm, the reflected light component from the interface between the substrate 11 and the lower clad 12 is large, making it difficult to calculate the film thickness and refractive index.
 そこで、本実施形態では、多層膜を形成する製造工程において、前工程で測定した結果を、現在の工程の測定結果に反映させる多段階測定法を適用する。 Therefore, in this embodiment, in the manufacturing process for forming a multilayer film, a multi-step measurement method is applied in which the result of measurement in the previous process is reflected in the measurement result of the current process.
 図15は、本発明の一実施形態にかかる多層膜の測定方法を示す図である。コア堆積工程2で形成されるコア13を、分光反射式で測定する場合を説明する。前工程の下部クラッド堆積工程1で形成される下部クラッド12の測定結果を取得する。反射スペクトルは図13に示した通りであり、ここから得られた下部クラッド12の物性値(n,d)、ここでは屈折率と膜厚を取得する(S141)。次に、コア堆積工程2で形成されるコア13の測定結果を取得する(S142)。 FIG. 15 is a diagram showing a method for measuring a multilayer film according to one embodiment of the present invention. A case of measuring the core 13 formed in the core deposition step 2 by a spectral reflection method will be described. A measurement result of the lower clad 12 formed in the lower clad deposition step 1 of the previous step is obtained. The reflection spectrum is as shown in FIG. 13, and the physical property values (n, d) of the lower clad 12 obtained therefrom, here the refractive index and film thickness are obtained (S141). Next, the measurement result of the core 13 formed in the core deposition step 2 is obtained (S142).
 図16は、本実施形態の測定装置によるコアの反射スペクトルを示す図である。上述したように、コア13の測定結果は、コア13と下部クラッド12との屈折率差が小さいため、図16に示すように、反射スペクトルの包絡線にゆらぎが生じる。 FIG. 16 is a diagram showing the reflection spectrum of the core obtained by the measurement device of this embodiment. As described above, the measurement result of the core 13 has a small refractive index difference between the core 13 and the lower clad 12, so that the envelope of the reflection spectrum fluctuates as shown in FIG.
 図17は、コアの膜厚および屈折率の算出方法を説明する図である。送光光学系122からの入射光に対して、受光光学系123に入射される反射光全体の光強度Etotalは、次式となる。
Figure JPOXMLDOC01-appb-M000021
 式(21)のように、光強度Etotalは、式(20)により算出したコア13の表面から出射される反射光全体の強度Eに加えて、下部クラッド12から反射された反射光全体の強度E’が加えられる。ここで求めた反射率の反射依存性、すなわち反射スペクトル(図16)から、前工程の測定結果である反射スペクトル(図13)の差分を算出する(S143)。この差分、すなわちゆらぎの振幅、周期からコア13の膜厚と屈折率とを算出する(S144)。
FIG. 17 is a diagram illustrating a method of calculating the film thickness and refractive index of the core. The light intensity E total of the entire reflected light incident on the light receiving optical system 123 with respect to the incident light from the light transmitting optical system 122 is given by the following equation.
Figure JPOXMLDOC01-appb-M000021
As in Equation (21), the light intensity E total is the intensity E of the total reflected light emitted from the surface of the core 13 calculated by Equation (20), and the total intensity of the reflected light reflected from the lower clad 12. An intensity E' is added. From the reflection dependency of the reflectance obtained here, that is, the reflection spectrum (FIG. 16), the difference of the reflection spectrum (FIG. 13), which is the measurement result of the previous step, is calculated (S143). The film thickness and refractive index of the core 13 are calculated from this difference, that is, the amplitude and period of the fluctuation (S144).
 さらに、上部クラッド19を形成するなど、3つ以上の層を形成する場合には、前工程の測定結果である膜厚と屈折率とを定数として反射率を求め、反射率の波長依存性を解析し、現在の工程の膜厚と屈折率の解を求める。例えば、基板上に4つの層を積層し、最後の工程で形成した層の膜厚と屈折率を算出する場合を考える。最初の工程で形成した層からの反射光全体の反射率rを定数として、2番目の工程で形成した層の反射率r3+4を求め、さらに、3番目の工程で形成した層の反射率r2+3+4を求める。最後の工程で形成した層の反射率r1+2+3+4から、反射率の波長依存性を解析し、最後の工程で形成した4番目の層の膜厚と屈折率の解を求める。
Figure JPOXMLDOC01-appb-I000022
Furthermore, when forming three or more layers, such as forming the upper clad 19, the reflectance is obtained using the film thickness and the refractive index, which are the measurement results of the previous step, as constants, and the wavelength dependence of the reflectance is calculated. Analyze and solve for film thickness and refractive index for the current process. For example, consider the case of stacking four layers on a substrate and calculating the film thickness and refractive index of the layer formed in the final step. Taking the reflectance r 4 of the total reflected light from the layer formed in the first step as a constant, the reflectance r 3 + 4 of the layer formed in the second step is obtained, and the reflectance of the layer formed in the third step Find r 2+3+4 . From the reflectance r 1+2+3+4 of the layer formed in the last step, the wavelength dependence of the reflectance is analyzed, and the solution for the film thickness and refractive index of the fourth layer formed in the last step is obtained.
Figure JPOXMLDOC01-appb-I000022
 本実施形態によれば、多層膜を形成する製造工程において、各々の工程における膜厚、屈折率を非接触により測定し、その差分を解析することにより、各工程で形成された膜の物性値を取得することができる。 According to the present embodiment, in the manufacturing process for forming a multilayer film, the film thickness and refractive index in each process are measured without contact, and the difference is analyzed to obtain the physical property values of the film formed in each process. can be obtained.
[3.4 温度情報の活用]
 屈折率の測定は、測定時の温度によって左右される。例えば、基板材料であるSiOは、線膨張係数が約0.5×10-6(室温~1000℃)、屈折率変化率約10-5/Kである。一般的に、光信号処理を行う光デバイスでは、屈折率を10-5程度の精度で制御する必要があるために、温度情報を活用した測定値の補正は有益である。
[3.4 Utilization of temperature information]
Refractive index measurements are dependent on the temperature at which they are measured. For example, SiO 2 as a substrate material has a linear expansion coefficient of approximately 0.5×10 −6 (room temperature to 1000° C.) and a refractive index change rate of approximately 10 −5 /K. In optical devices that perform optical signal processing, it is generally necessary to control the refractive index with an accuracy of about 10 −5 , so correction of measured values using temperature information is beneficial.
 本実施形態の測定装置においては、ウェハチャック113の上面に、複数のサーミスタを配置して、シリコンウェハ114の任意の位置の温度を測定する。下部クラッド12、コア13の屈折率を算出する際に、測定された温度から、上記の温度に対する屈折率変化率を加味して算出する。また、膜厚を算出する際に、測定された温度から、上記の線膨張係数を加味して算出する。 In the measuring apparatus of this embodiment, a plurality of thermistors are arranged on the upper surface of the wafer chuck 113 to measure the temperature at arbitrary positions on the silicon wafer 114 . When calculating the refractive index of the lower clad 12 and the core 13, the refractive index change rate with respect to the temperature is taken into account from the measured temperature. Also, when calculating the film thickness, the above linear expansion coefficient is taken into account from the measured temperature.
 ウェハにおける温度の測定点は、所定の間隔で設けてもよいし、ウェハに形成される光回路1チップごとに、所定の測定点を設けてもよい。さらに、1チップの中に形成される機能部品、屈折率変換に影響を受け易い機能部品ごとに測定点を設けることが好適である。この場合、上述した反射率の測定における測定点も、温度測定の測定点と同じとする。 The temperature measurement points on the wafer may be provided at predetermined intervals, or predetermined measurement points may be provided for each optical circuit chip formed on the wafer. Furthermore, it is preferable to provide a measurement point for each functional component formed in one chip and for each functional component susceptible to refractive index conversion. In this case, the measurement points for the reflectance measurement described above are the same as the measurement points for the temperature measurement.
 例えば、代表的な光回路であるアレイ導波路格子(AWG)について説明する。AWGは、入力導波路に接続された入力スラブ導波路と出力導波路に接続された出力スラブ導波路との間を、それぞれの物理的な導波路長の差がΔLの複数のアレイ導波路で接続している。AWGの光学特性のうち、中心波長λは、既に述べたように次式で決定される。
Figure JPOXMLDOC01-appb-M000023
For example, an arrayed waveguide grating (AWG), which is a typical optical circuit, will be described. The AWG connects an input slab waveguide connected to the input waveguide and an output slab waveguide connected to the output waveguide with a plurality of arrayed waveguides each having a difference in physical waveguide length ΔL. Connected. Among the optical characteristics of the AWG, the center wavelength λ0 is determined by the following equation as already described.
Figure JPOXMLDOC01-appb-M000023
 ここで、nはアレイ導波路の実効屈折率、mは回折次数である。アレイ導波路の実効屈折率は、クラッドとコアの膜厚によって決定され、その均一性が干渉特性に影響を与える。このため、製造誤差が中心波長の精度に与える影響が大きい。従って、複数のアレイ導波路を精度よく均一に作製するために、例えば、入力スラブ導波路、アレイ導波路の中間地点、出力スラブ導波路の付近において、温度の測定点を設け、温度分布を導出しておく。このように屈折率の測定精度を担保することにより、後工程の製造条件を調整ないし補正を行う精度も向上させることが可能となる。 Here, nc is the effective refractive index of the arrayed waveguide, and m is the diffraction order. The effective refractive index of an arrayed waveguide is determined by the film thickness of the clad and core, and its uniformity affects the interference characteristics. Therefore, manufacturing errors have a great influence on the accuracy of the center wavelength. Therefore, in order to manufacture a plurality of arrayed waveguides with high accuracy and uniformity, for example, temperature measurement points are provided near the input slab waveguide, the intermediate point of the arrayed waveguides, and the output slab waveguide, and the temperature distribution is derived. Keep By ensuring the measurement accuracy of the refractive index in this way, it is possible to improve the accuracy of adjusting or correcting the manufacturing conditions in the post-process.
[3.5 機械学習による特性予想]
 上述した温度の測定結果は、機械学習による物性値の予想に必要なデータとして格納しておくことが考えられる。取得した温度情報からウェハチャック113上に固定されたシリコンウェハ114の温度分布を算出することにより、サーミスタが配置されていない光回路の任意の位置の温度も取得することができ、より正確な屈折率、膜厚の補正を行うことができる。
[3.5 Characteristic prediction by machine learning]
It is conceivable to store the above-described temperature measurement results as data necessary for prediction of physical property values by machine learning. By calculating the temperature distribution of the silicon wafer 114 fixed on the wafer chuck 113 from the obtained temperature information, it is possible to obtain the temperature at an arbitrary position of the optical circuit where no thermistor is arranged, thereby obtaining more accurate refraction. It is possible to correct the rate and film thickness.
 温度分布を算出する上で、フィッティングに必要な関係式が不明であっても、実測データを教師データとして、中心波長に対する導波路幅、高さなど、相関のある特徴量と合わせて学習させることにより、温度分布を算出することができる。 When calculating the temperature distribution, even if the relational expression required for fitting is unknown, the actual measurement data can be used as training data and learned together with the correlated feature values such as the waveguide width and height with respect to the center wavelength. The temperature distribution can be calculated by
 本実施形態は、基板上に形成された多層膜の各膜の物性値を測定する多層膜の非接触測定法において、前工程で得られた第1の膜の第1の測定結果を取得するステップであって、前記第1の測定結果は、前記第1の膜の表面に照射したレーザ光の当該表面からの反射光の光強度である、ステップと、現在の工程で形成された第2の膜の第2の測定結果を取得するであって、前記第2の測定結果は、前記第2の膜の表面に照射したレーザ光の当該表面からの反射光の光強度である、ステップと、前記第2の測定結果と前記第1の測定結果の差分であって、前記反射光の光強度から求めた、波長に対する反射率で表された反射スペクトルの差分を算出するステップと、前記差分から前記第2の膜の膜厚および屈折率を算出するステップとを備えたものとして実施できる。 This embodiment obtains a first measurement result of a first film obtained in a previous step in a multi-layer non-contact measurement method for measuring physical property values of each film of a multi-layer film formed on a substrate. a step, wherein the first measurement result is the light intensity of reflected light from the surface of the first film of laser light irradiated to the surface; obtaining a second measurement result of the film, wherein the second measurement result is the light intensity of the reflected light from the surface of the laser light irradiated to the surface of the second film; , a step of calculating a difference between the second measurement result and the first measurement result, which is a difference in the reflection spectrum obtained from the light intensity of the reflected light and represented by reflectance with respect to wavelength; and calculating the film thickness and refractive index of the second film from the above.
 また上記の非接触測定法は、前記基板の任意の位置の温度を測定するステップをさらに備え、前記膜厚および前記屈折率を算出するステップは、温度による補正をさらに行うことを特徴とする。 The above non-contact measurement method further comprises the step of measuring the temperature at an arbitrary position on the substrate, and the step of calculating the film thickness and the refractive index is characterized by further performing correction according to temperature.
[実施形態4]
 本実施形態では、実施形態3の非接触測定を、さらに製造工程のスループットの低下を生じさせずに効率的に実施するための方法を提示する。
[Embodiment 4]
This embodiment presents a method for efficiently performing the non-contact measurement of Embodiment 3 without further reducing the throughput of the manufacturing process.
 ウェハ上に複数形成される同一の光デバイスは、均一な特性、機能を発現できなければならない。しかしながら、製造工程においては、上述したように、ウェハ面内の温度分布により特性の変動が避けられないばかりか、半導体材料の堆積、エッチングなどの加工精度のばらつきによっても、特性の変動が避けられない。従って、光学特性などの特性の検査においては、ウェハ上の測定点が多いほど、製造誤差を抑制することができるが、測定点の増大は、製造工程のスループットを低下させてしまう。 Multiple identical optical devices formed on a wafer must be able to exhibit uniform characteristics and functions. However, in the manufacturing process, as described above, characteristic fluctuations cannot be avoided due to the temperature distribution in the wafer surface, and variations in the accuracy of processing such as the deposition and etching of the semiconductor material also inevitably cause characteristic fluctuations. do not have. Therefore, in the inspection of characteristics such as optical characteristics, manufacturing errors can be suppressed as the number of measurement points on the wafer increases. However, an increase in the number of measurement points reduces the throughput of the manufacturing process.
 そこで本実施形態では、製品ロットの製造の前に、試作ロットの検査においてフィッティング処理を行い、予めウェハ上の測定点を特定し、かつ測定点の数を減らすことにより、製造工程のスループットの低下を防ぐ。以下、フィッティング処理の詳細を説明する。 Therefore, in the present embodiment, before manufacturing a product lot, a fitting process is performed in the inspection of a prototype lot, the measurement points on the wafer are specified in advance, and the number of measurement points is reduced, thereby reducing the throughput of the manufacturing process. prevent. Details of the fitting process will be described below.
 試作ロットにおいて、上述した測定装置により、例えば、図1および図2の下部クラッド堆積工程1で形成される下部クラッド12を、ウェハ全体にわたって、所定の間隔で反射率を測定する。テスタ1は、測定結果の反射スペクトルから膜厚と屈折率とを算出する。ここで再び図4の(b)の1次元の屈折率分布を参照する。図4の(b)では、直径300mmのウェハの中心を座標x=0,y=0とし、y=0の直線上を2mm間隔で測定し、求めた屈折率が白丸で示されている。横軸(x軸)は、中心から距離であり、縦軸が屈折率である。 In a prototype lot, the reflectance of the lower clad 12 formed in the lower clad deposition step 1 of FIGS. 1 and 2 is measured at predetermined intervals over the entire wafer using the above-described measuring apparatus. The tester 1 calculates the film thickness and the refractive index from the reflection spectrum of the measurement results. Here again, reference is made to the one-dimensional refractive index distribution of FIG. 4(b). In FIG. 4(b), the center of a wafer with a diameter of 300 mm is set at coordinates x=0, y=0, and the refractive index obtained by measuring the straight line of y=0 at intervals of 2 mm is indicated by white circles. The horizontal axis (x-axis) is the distance from the center and the vertical axis is the refractive index.
 同様にして、y軸方向に2mm間隔でy軸に平行な複数の直線上を測定することにより、ウェハ全体にわたって2mmのメッシュ間隔で測定を行う。この測定結果から、ウェハ上の任意の位置の屈折率の近似式n(x,y)および膜厚の近似式t(x,y)を、次式にて生成する。
Figure JPOXMLDOC01-appb-M000024
Similarly, measurements are made at 2 mm mesh intervals across the wafer by measuring on a plurality of straight lines parallel to the y axis at 2 mm intervals in the y direction. From this measurement result, the refractive index approximation n(x, y) and the film thickness approximation t(x, y) at an arbitrary position on the wafer are generated by the following equations.
Figure JPOXMLDOC01-appb-M000024
 上記2つの近似式で、a,b,c,dは係数であり、最小二乗法等を用いて求めることができる。図4の(b)に示した実線は、この近似式で表されるフィッティング関数であって、y=0の直線上の屈折率n(x,y)のフィッティング結果を表している。図4の(b)では屈折率に対してのフィッティングを示したが、膜厚についても同様のことができる。 In the above two approximation formulas, a k , b k , c k , and d k are coefficients, which can be obtained using the method of least squares or the like. The solid line shown in FIG. 4(b) is the fitting function represented by this approximation, and represents the fitting result of the refractive index n(x, y) on the straight line of y=0. Although FIG. 4(b) shows the fitting to the refractive index, the same can be done for the film thickness.
 図4の(a)を再び参照すると、フィッティング処理の結果を示している。ウェハ全体にわたるフィッティング処理の結果を、3次元的に表した図であり、ウェハの中心をx=0,y=0とする2次元平面における光学膜厚(屈折率×膜厚)を表している。なお、近似式は、試作ロットの1枚のウェハから求めても良いし、複数枚のウェハから求めた結果の平均を用いても良い。また、ウェハの基板面内の測定点は、メッシュ状に設定する必要はなく、任意ではあるが、図8からも分かるように、フィッティング処理においては、測定点が多いほど近似式の精度が向上する。図4の(a)では光学膜厚に対して3次元的なフィッティングの例を示したが、屈折率または膜厚についても、同様にフィッティング処理を行って3次元的に表すことができる。 Referring again to (a) of FIG. 4, the results of the fitting process are shown. FIG. 3 is a three-dimensional representation of the result of fitting processing over the entire wafer, and represents the optical film thickness (refractive index×film thickness) on a two-dimensional plane where the center of the wafer is x=0 and y=0. . The approximation formula may be obtained from one wafer in a trial lot, or may be obtained by averaging the results obtained from a plurality of wafers. In addition, the measurement points in the substrate surface of the wafer do not need to be set in a mesh pattern, but are arbitrary, but as can be seen from FIG. do. Although FIG. 4A shows an example of three-dimensional fitting to the optical film thickness, the refractive index or film thickness can also be represented three-dimensionally by performing a similar fitting process.
 図18は、測定点の数と屈折率の測定精度との関係を示す図である。1回のみの測定で得られる単一の測定結果における測定精度を、規格化した1として点線により示している。ウェハ上の測定点が増えたとしても、測定精度は変わらず一定である。測定点を増やしてフィッティング処理を行うと、同一の測定点を複数回測定して平均値を出す方法と同様の効果があり、実線に示すように測定精度が向上する。これは、サンプル数が多いほど標本平均の分布における平均は母平均に近づき、標本平均の分布における標本分散は母分散の1/nに近づくという中心極限定理による精度向上と同じ原理による。すなわち、ある単一の測定点における測定結果は、周辺の測定点の結果をもとに、ランダムに発生する測定ばらつきを抑制できるために測定精度が向上する。 FIG. 18 is a diagram showing the relationship between the number of measurement points and the refractive index measurement accuracy. The measurement accuracy for a single measurement result obtained from only one measurement is shown by the dashed line as normalized to 1. Even if the number of measurement points on the wafer increases, the measurement accuracy remains constant. If the number of measurement points is increased and the fitting process is performed, the same effect as the method of measuring the same measurement point multiple times and calculating the average value is obtained, and the measurement accuracy is improved as shown by the solid line. This is based on the same principle as accuracy improvement by the central limit theorem that the mean in the sample mean distribution approaches the population mean and the sample variance in the sample mean distribution approaches 1/n of the population variance as the number of samples increases. That is, the measurement result at a certain single measurement point can suppress randomly occurring measurement variations based on the results of the surrounding measurement points, thereby improving the measurement accuracy.
 次に、測定点を特定する方法について説明する。第1に、所望の測定精度を設定し、図18に示した結果から、ウェハ内の測定点の数を決定する。例えば、直径300mmのウェハ全体を、上述したように2mmのメッシュ間隔で測定すると、測定点は18,000点程度になる。所定の測定精度を、規格化された値で0.25以下とすると、図18に示したように、測定点が200点以上あれば、測定精度を満たすことができる。このとき、製造工程(例えば、下部クラッド堆積工程1)において許容されている時間のうち、測定に割り当てられた時間を、1測定点にかかる測定時間で除して得られた測定回数の上限から、測定点の数を決定しても良い。第2に、特定の位置の測定点を選択する。 Next, we will explain how to identify the measurement points. First, set the desired measurement accuracy and from the results shown in FIG. 18, determine the number of measurement points in the wafer. For example, if an entire wafer with a diameter of 300 mm is measured at mesh intervals of 2 mm as described above, the number of measurement points is about 18,000. Assuming that the predetermined measurement accuracy is a normalized value of 0.25 or less, the measurement accuracy can be satisfied if the number of measurement points is 200 or more, as shown in FIG. At this time, from the upper limit of the number of measurements obtained by dividing the time allocated for measurement in the time allowed in the manufacturing process (for example, the lower clad deposition process 1) by the measurement time required for one measurement point , may determine the number of measurement points. Second, select a measurement point at a specific location.
 図19は、フィッティング処理の結果、実際に測定する測定点を示した図である。測定点は、ウェハ上に形成される光デバイスの位置に関係なく選択することができる。例えば、図4の(a)、(b)に示したフィッティング処理の結果から、近似式とよく整合している測定点を選択することが考えられる。また、近似式で表されるフィッティング関数の変曲点付近に測定点を密に設定することも考えられる。さらに、製造工程におけるウェハ上の温度分布、製造誤差のバラツキなどを考慮して設定することもできる。一方、光デバイスに含まれる光機能回路に、精度の要求される回路が含まれる場合に、当該光機能回路が形成される位置を、測定点として選択することもできる。 FIG. 19 is a diagram showing measurement points to be actually measured as a result of fitting processing. Measurement points can be selected regardless of the location of the optical devices formed on the wafer. For example, from the results of the fitting process shown in FIGS. 4A and 4B, it is conceivable to select measurement points that are in good agreement with the approximation formula. It is also conceivable to densely set the measurement points near the inflection point of the fitting function represented by the approximation formula. Furthermore, it can be set in consideration of the temperature distribution on the wafer in the manufacturing process, variations in manufacturing errors, and the like. On the other hand, if the optical functional circuit included in the optical device includes a circuit that requires precision, the position where the optical functional circuit is formed can be selected as the measurement point.
 製品ロットの製造においては、フィッティング処理によって求めた測定点のみ測定を行う。次の製造工程(例えば、コア堆積工程2)には、この測定点における測定結果と、フィッティング処理の結果とが渡され、次の製造工程の製造条件が求められる。後工程においては、フィッティング処理の結果が優先して用いられる。試作ロットにおける測定結果の分布が滑らかであり、フィッティング処理の結果、適当な関数で近似式が表される場合には、上述したように、単一の測定結果よりもフィッティング処理の結果の方が、測定精度が高いからである。  In the production of product lots, only the measurement points obtained by the fitting process are measured. The measurement result at this measurement point and the result of the fitting process are passed to the next manufacturing process (for example, core deposition process 2), and the manufacturing conditions for the next manufacturing process are obtained. In the post-process, the result of the fitting process is preferentially used. If the distribution of the measurement results in the prototype lot is smooth and the approximate expression is represented by an appropriate function as a result of the fitting process, the result of the fitting process is better than the single measurement result as described above. , because the measurement accuracy is high.
 本実施形態の非接触測定法は、基板上に形成された膜の物性値を測定する非接触測定法であって、前記基板面内の任意の第1の測定点における測定結果から前記基板面内の物性値の分布を表す近似式を求める第1ステップと、前記第1の測定点より数が少なく、特定の位置の第2の測定点を選択する第2ステップとを含むフィッティング工程を予め実行し、前記膜の製造工程において、前記第2の測定点において測定した測定結果と前記近似式とを用いて、前記膜の物性値を測定することを特徴とするものとして実施できる。 The non-contact measurement method of the present embodiment is a non-contact measurement method for measuring physical property values of a film formed on a substrate, and the substrate surface A fitting step including a first step of obtaining an approximate expression representing the distribution of physical property values in advance, and a second step of selecting a second measurement point at a specific position, which is fewer than the first measurement points. and measuring the physical property values of the film using the measurement result obtained at the second measurement point and the approximate expression in the manufacturing process of the film.
 前記測定結果は、前記膜の表面に照射したレーザ光の当該表面からの反射光の光強度であり、前記物性値は、前記膜の膜厚および屈折率であることを特徴とする。 The measurement result is the light intensity of reflected light from the surface of the film of the laser beam irradiated to the surface, and the physical property value is the film thickness and the refractive index of the film.
 また本実施形態の別の非接触測定法は、基板上に形成された多層膜の各膜の物性値を測定する多層膜の非接触測定法であって、前記各膜の任意の第1の測定点における測定結果から前記基板面内の物性値の分布を表す近似式を求める第1ステップと、前記第1の測定点より数が少なく、特定の位置の第2の測定点を選択する第2ステップとを含むフィッティング工程を予め実行し、前記多層膜の製造工程において、前工程で得られた第1の膜の第1の測定結果を取得するステップであって、前記第1の測定結果は、前記第1の膜に対する前記フィッティング工程における第2の測定点において測定した測定結果と近似式とを含む、ステップと、現在の工程で形成された第2の膜の第2の測定結果を取得するステップと、前記第2の測定結果と前記第1の測定結果との差分を算出するステップであって、前記第2の測定結果と前記第2の測定点において測定した測定結果との差分、または前記第2の測定結果と前記近似式から得られた前記第2の測定結果の測定点に対応する測定結果との差分を求める、ステップと、前記差分から前記第2の膜の物性値を算出するステップとを備えるものとして実施できる。 Another non-contact measurement method of the present embodiment is a multi-layer non-contact measurement method for measuring physical property values of each film of a multi-layer film formed on a substrate, wherein A first step of obtaining an approximate expression representing the distribution of physical property values in the substrate surface from the measurement results at the measurement points; 2 step in advance, and obtaining a first measurement result of the first film obtained in the previous step in the manufacturing process of the multilayer film, wherein the first measurement result is includes a measurement result measured at a second measurement point in the fitting process for the first film and an approximation, and a step and a second measurement result of the second film formed in the current process. and calculating a difference between the second measurement result and the first measurement result, wherein the difference between the second measurement result and the measurement result measured at the second measurement point or obtaining the difference between the second measurement result and the measurement result corresponding to the measurement point of the second measurement result obtained from the approximation formula; and the physical property value of the second film from the difference. and calculating the .
 上記別の非接触測定法において、前記第1および前記第2の測定結果は、前記第1および前記第2の膜の表面に照射したレーザ光の当該表面からの反射光の光強度であることを特徴とする。また、上記別の非接触測定法において、前記差分は、前記反射光の光強度から求めた、波長に対する反射率で表された反射スペクトルの差分であることを特徴とする。前記物性値は、前記第1および前記第2の膜の膜厚および屈折率であり得る。 In the above-described another non-contact measurement method, the first and second measurement results are light intensities of reflected light from the surfaces of the first and second films of laser light irradiated to the surfaces. characterized by Further, in the above-mentioned another non-contact measurement method, the difference is a difference of reflection spectra expressed by reflectance with respect to wavelength, which is obtained from the light intensity of the reflected light. The physical property values may be film thicknesses and refractive indices of the first and second films.
 本実施形態では、製品ロットの製造の前の試作ロットの検査において、1または複数のウェハを用いてフィッティング処理を行う方法を説明した。製品ロットの製造工程に入った後においても、製品ロットの製造において得られた測定結果と、予め求めたフィッティング処理の結果とを比較して、近似式を随時変更するようにしても良い。 In this embodiment, a method of performing fitting processing using one or more wafers in the inspection of a trial lot before manufacturing a product lot has been described. Even after entering the manufacturing process of the product lot, the approximation formula may be changed as needed by comparing the measurement result obtained in the manufacturing of the product lot with the result of the fitting process obtained in advance.
 本実施形態よれば、フィッティング処理により予めウェハ上の測定点を特定し、かつ測定点の数を減らすことにより、測定精度を落とすことなく、製造工程のスループットの低下を防ぐことができる。 According to this embodiment, by specifying the measurement points on the wafer in advance by the fitting process and reducing the number of measurement points, it is possible to prevent the throughput of the manufacturing process from decreasing without lowering the measurement accuracy.

Claims (8)

  1.  ウェハの面内において、コア膜の膜厚分布および屈折率分布を取得するステップと、
     前記膜厚分布および前記屈折率分布に基づいて、光導波路の構造値の補正量分布を決定するステップと、
     前記ウェハの中の1つ以上の露光単位領域に対して、前記補正量分布に対応したマスクを選択するステップと、
     前記選択されたマスクを使用して、前記ウェハの上のフォトレジスト膜を露光するステップと
     を備えることを特徴とする光集積回路の製造方法。
    obtaining a film thickness distribution and a refractive index distribution of the core film in the plane of the wafer;
    determining a correction amount distribution for structural values of the optical waveguide based on the film thickness distribution and the refractive index distribution;
    selecting a mask corresponding to the correction amount distribution for one or more exposure unit areas in the wafer;
    and exposing a photoresist film on said wafer using said selected mask.
  2.  前記構造値は、前記光導波路のコア幅、光干渉回路を構成する前記光導波路の長さ、または、前記光干渉回路における前記光導波路間の導波路長差の少なくともいずれかを含むことを特徴とする請求項1に記載の光集積回路の製造方法。 The structural value includes at least one of a core width of the optical waveguide, a length of the optical waveguides forming the optical interference circuit, or a waveguide length difference between the optical waveguides in the optical interference circuit. 2. The method for manufacturing an optical integrated circuit according to claim 1.
  3.  前記露光単位領域は、2本以上の光導波路を有する光干渉回路を含み、
     前記ウェハに少なくとも1つの前記露光単位領域が含まれることを特徴とする請求項1または2に記載の光集積回路の製造方法。
    The exposure unit area includes an optical interference circuit having two or more optical waveguides,
    3. The method of manufacturing an optical integrated circuit according to claim 1, wherein the wafer includes at least one exposure unit area.
  4.  前記露光単位領域は、前記ウェハのチップ領域内にそれぞれ含まれることを特徴とする請求項3に記載の光集積回路の製造方法。 4. The method of manufacturing an optical integrated circuit according to claim 3, wherein the exposure unit areas are each included in a chip area of the wafer.
  5.  前記コア幅の前記補正量分布は、前記コア膜の膜厚初期設定値および屈折率初期設定値、前記膜厚分布ならびに前記屈折率分布に基づいて決定されることを特徴とする請求項2乃至4いずれかに記載の光集積回路の製造方法。 3. The correction amount distribution of the core width is determined based on the core film thickness initial setting value and refractive index initial setting value, the film thickness distribution and the refractive index distribution. 4. The method for manufacturing an optical integrated circuit according to any one of 4.
  6.  光集積回路の製造システムであって、
     ウェハの面内において、コア膜の膜厚分布および屈折率分布を取得する測定部と、
     前記膜厚分布および前記屈折率分布に基づいて、光導波路の構造値の補正量分布を決定する算出部と、
     前記ウェハの中の1つ以上の露光単位領域に対して、前記補正量分布に対応したマスクを選択し、前記選択されたマスクを使用して、前記ウェハの上のフォトレジスト膜を露光する露光部と
     を備えたことを特徴とする光集積回路の製造システム。
    An optical integrated circuit manufacturing system,
    a measurement unit that acquires the film thickness distribution and the refractive index distribution of the core film in the plane of the wafer;
    a calculation unit that determines a correction amount distribution of structural values of an optical waveguide based on the film thickness distribution and the refractive index distribution;
    Exposure for selecting a mask corresponding to the correction amount distribution for one or more exposure unit areas in the wafer and exposing a photoresist film on the wafer using the selected mask A manufacturing system for an optical integrated circuit, comprising: a unit;
  7.  前記構造値は、前記光導波路のコア幅、光干渉回路を構成する前記光導波路の長さ、または、前記光干渉回路における前記光導波路間の導波路長差の少なくともいずれかを含むことを特徴とする請求項6に記載の製造システム。 The structural value includes at least one of a core width of the optical waveguide, a length of the optical waveguides forming the optical interference circuit, or a waveguide length difference between the optical waveguides in the optical interference circuit. The manufacturing system according to claim 6, wherein
  8.  前記露光単位領域は、2本以上の光導波路を有する光干渉回路を含み、
     前記ウェハに少なくとも1つの前記露光単位領域が含まれるか、または、
     前記ウェハのチップ領域内にそれぞれ含まれること
    を特徴とする請求項6または7に記載の製造システム。
    The exposure unit area includes an optical interference circuit having two or more optical waveguides,
    the wafer includes at least one exposure unit area, or
    8. A manufacturing system according to claim 6 or 7, wherein each is contained within a chip area of said wafer.
PCT/JP2021/007529 2021-02-26 2021-02-26 Optical integrated circuit manufacturing system and manufacturing method WO2022180840A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/007529 WO2022180840A1 (en) 2021-02-26 2021-02-26 Optical integrated circuit manufacturing system and manufacturing method
JP2023502000A JPWO2022180840A1 (en) 2021-02-26 2021-02-26

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/007529 WO2022180840A1 (en) 2021-02-26 2021-02-26 Optical integrated circuit manufacturing system and manufacturing method

Publications (1)

Publication Number Publication Date
WO2022180840A1 true WO2022180840A1 (en) 2022-09-01

Family

ID=83048717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/007529 WO2022180840A1 (en) 2021-02-26 2021-02-26 Optical integrated circuit manufacturing system and manufacturing method

Country Status (2)

Country Link
JP (1) JPWO2022180840A1 (en)
WO (1) WO2022180840A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001244254A (en) * 1999-12-23 2001-09-07 Applied Materials Inc Film thickness control using spectrum interference method
JP2003232948A (en) * 2001-12-03 2003-08-22 Furukawa Electric Co Ltd:The Method of manufacturing optical waveguide, optical waveguide device using the method, and waveguide type optical multiplexer/demultiplexer
JP2004206016A (en) * 2002-12-26 2004-07-22 Hitachi Chem Co Ltd Optical waveguide structure and its manufacturing method
US20090216474A1 (en) * 2008-02-21 2009-08-27 Southwell William H Optical monitor for rugate filter deposition
WO2015111600A1 (en) * 2014-01-24 2015-07-30 技術研究組合光電子融合基盤技術研究所 Production method for optical device, and optical device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001244254A (en) * 1999-12-23 2001-09-07 Applied Materials Inc Film thickness control using spectrum interference method
JP2003232948A (en) * 2001-12-03 2003-08-22 Furukawa Electric Co Ltd:The Method of manufacturing optical waveguide, optical waveguide device using the method, and waveguide type optical multiplexer/demultiplexer
JP2004206016A (en) * 2002-12-26 2004-07-22 Hitachi Chem Co Ltd Optical waveguide structure and its manufacturing method
US20090216474A1 (en) * 2008-02-21 2009-08-27 Southwell William H Optical monitor for rugate filter deposition
WO2015111600A1 (en) * 2014-01-24 2015-07-30 技術研究組合光電子融合基盤技術研究所 Production method for optical device, and optical device

Also Published As

Publication number Publication date
JPWO2022180840A1 (en) 2022-09-01

Similar Documents

Publication Publication Date Title
US7085676B2 (en) Feed forward critical dimension control
JP6796048B2 (en) Si photonics optical circuit and its manufacturing method
Bolk et al. Deep UV lithography process in generic InP integration for arrayed waveguide gratings
Lee et al. The role of photomask resolution on the performance of arrayed-waveguide grating devices
JP2003232948A (en) Method of manufacturing optical waveguide, optical waveguide device using the method, and waveguide type optical multiplexer/demultiplexer
JP6677746B2 (en) Method and apparatus for optical fiber connection
WO2001013150A9 (en) Array waveguide diffraction grating
WO2022180840A1 (en) Optical integrated circuit manufacturing system and manufacturing method
WO2022180832A1 (en) Optical integrated circuit manufacturing system and manufacturing method
WO2022180829A1 (en) Non-contact measurement method
US6428944B1 (en) Fabrication of gratings in planar waveguide devices
WO2022180830A1 (en) Contactless multilayer film measurement method
WO2023105681A1 (en) Non-contact measurement method and estimation device
WO2024009457A1 (en) Optical waveguide device and method for manufacturing same
WO2022180827A1 (en) Ai prediction system for optical characteristics
Ong et al. Wafer-level characterization of silicon nitride CWDM (de) multiplexers using Bayesian inference
WO2022180839A1 (en) Optical waveguide device manufacturing method and manufacturing system
WO2022180835A1 (en) Optical waveguide device and optical waveguide manufacturing apparatus and manufacturing method
WO2022180838A1 (en) Optical waveguide device production method and production system
CN115933054A (en) Full-etching polarization-independent sub-wavelength grating coupler
WO2023021697A1 (en) Optical circuit measurement system and measurement method
JP7215593B2 (en) wavelength checker
JP7227542B2 (en) Optical modulator manufacturing method
WO2022180826A1 (en) Optical circuit manufacturing device and optical circuit manufacturing method
WO2022180828A1 (en) Method and system for manufacturing optical waveguide device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927940

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023502000

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21927940

Country of ref document: EP

Kind code of ref document: A1