WO2022180835A1 - Optical waveguide device and optical waveguide manufacturing apparatus and manufacturing method - Google Patents

Optical waveguide device and optical waveguide manufacturing apparatus and manufacturing method Download PDF

Info

Publication number
WO2022180835A1
WO2022180835A1 PCT/JP2021/007520 JP2021007520W WO2022180835A1 WO 2022180835 A1 WO2022180835 A1 WO 2022180835A1 JP 2021007520 W JP2021007520 W JP 2021007520W WO 2022180835 A1 WO2022180835 A1 WO 2022180835A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
processing information
manufacturing
marker
optical waveguide
Prior art date
Application number
PCT/JP2021/007520
Other languages
French (fr)
Japanese (ja)
Inventor
慶太 山口
雅 太田
賢哉 鈴木
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2023501995A priority Critical patent/JPWO2022180835A1/ja
Priority to PCT/JP2021/007520 priority patent/WO2022180835A1/en
Publication of WO2022180835A1 publication Critical patent/WO2022180835A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method

Definitions

  • the present invention relates to an optical waveguide device, an optical waveguide manufacturing apparatus, and a manufacturing method, and more particularly, to a processing technique for elements constituting an optical waveguide.
  • Optical devices such as semiconductor lasers, photodiodes, optical wavelength multiplexers/demultiplexers, and optical switches are configured with optical integrated circuits.
  • optical fiber communication not only the optical fiber as a transmission medium but also the optical integrated circuits in these optical devices for performing optical signal processing play an important role (see, for example, Non-Patent Document 1).
  • a semiconductor laser is an optical oscillator that generates a light wave for superimposing a signal, and a photodiode operates as an element that converts the intensity of an optical signal into an electrical signal.
  • An optical wavelength multiplexer/demultiplexer represented by an arrayed waveguide grating is used for wavelength division multiplex communication as an element for multiplexing/demultiplexing different wavelengths of light (see, for example, Non-Patent Document 2).
  • An optical switch has an important function in a ROADM (Reconfigurable Optical Add/Drop Multiplexing) system as an element that routes optical paths.
  • These optical integrated circuits are generally composed of an optical waveguide formed on a substrate.
  • An optical waveguide consists of a core through which an optical signal propagates and a clad surrounding it.
  • Semiconductor lasers and photodiodes are made of semiconductor materials such as InP, and arrayed waveguide gratings and optical switches are made of optical waveguide materials mainly made of silica glass.
  • FIG. 1 is a block diagram showing a method of manufacturing an optical waveguide.
  • a quartz-based planar lightwave circuit made of quartz-based glass will be described as an example.
  • a glass film that will become a lower clad 12 is deposited on a silicon substrate (wafer) 11 .
  • the lower clad 12 is made of, for example, SiO 2 added with P 2 O 5 or B 2 O 3 deposited by flame hydrolysis deposition (FHD).
  • FHD flame hydrolysis deposition
  • the FHD method is also used to deposit a thin film glass that will become the core 13 having a higher refractive index than the lower clad 12 .
  • a desired refractive index value can be obtained, for example, by adding GeO 2 to SiO 2 .
  • a transparent core 13 is formed by heating at a high temperature of 1000.degree.
  • the formation of these lower clad and core is not limited to the FHD method, and of course other well-known methods may be used.
  • a photoresist film 14 is formed on the substrate by spin coating.
  • the photoresist film is irradiated with UV light 16 through a photomask 15 to expose a circuit pattern corresponding to the mask pattern.
  • the photoresist development step 5 the circuit pattern of the photoresist film is developed to obtain a photoresist pattern 17.
  • etching step 6 the photoresist pattern 17 is transferred to the core by reactive ion etching (RIE) to obtain a core pattern 18. Then, in the resist removing step 7, the photoresist remaining on the core is removed by ashing. Finally, in the upper clad deposition step 8, the upper clad 19 is deposited by the same method as the lower clad deposition in the lower clad deposition step 1. FIG.
  • the optical waveguide obtained in the above manufacturing process is inspected for various characteristics such as optical characteristics.
  • manufacturing conditions reflecting the inspection results are set in each process after a series of processes are completed.
  • This method has the problem that manufacturing errors accumulate in each process, so that the accuracy of the inspection results becomes lower in later processes.
  • the accumulation of manufacturing errors can be suppressed by resetting the manufacturing conditions of the process or adjusting the manufacturing conditions of the subsequent process based on the inspection results obtained at the end of one process.
  • the manufacturing process is interrupted after each process, making it difficult to improve the throughput of the manufacturing process.
  • information on the processing result obtained in a certain process for example, information on the width of the resist pattern obtained in the photoresist development process
  • information on the pattern width can be obtained in the subsequent etching process. It is possible to implement a process that reflects Further, if the film thickness and refractive index of the core obtained in the core deposition process can be known during the deposition process, it is possible to predict the optical characteristics of the optical waveguide formed in the subsequent process. In this way, by acquiring the information of the optical waveguide component obtained in the previous process during the previous process, it can be reflected in the processing conditions of the subsequent process or used to predict the optical characteristics obtained in the subsequent process. If it can be done, it is convenient in terms of the throughput of the manufacturing process.
  • An object of the present invention is to provide an optical waveguide device, an optical waveguide manufacturing apparatus, and a manufacturing method that make it possible to acquire processing information without reducing throughput in one process of manufacturing an optical waveguide.
  • a manufacturing method for executing a plurality of steps for manufacturing an optical waveguide in time series wherein in the plurality of steps, processing information elements corresponding to waveguide constituent elements of the optical waveguide are: forming a marker in the same process as the waveguide component and including the processing information element; measuring the processing information element corresponding to the component, and controlling the formation of the waveguide component in the j-th step after the i-th step in chronological order based on the measurement result. and a step.
  • a manufacturing apparatus for executing a plurality of steps for manufacturing an optical waveguide in time series, wherein in the plurality of steps, processing information elements corresponding to waveguide constituent elements of the optical waveguide are generated. , means for forming in the same step as the waveguide constituent element and controlling to form a marker including the processing information element; a step of measuring processing information elements corresponding to the waveguide constituent elements thus obtained; and a step of controlling formation of the waveguide constituent elements in the j-th step subsequent to the i-th step in chronological order based on the measurement results. and means for performing
  • FIG. 1 is a generalized diagram of a feedforward system according to an embodiment of the invention
  • FIG. 2 is a diagram illustrating the basic configuration of a waveguide pattern formed on a substrate and a marker formed together with this pattern, according to the first embodiment of the present invention
  • (a) and (b) are diagrams illustrating a marker according to another embodiment of the present invention.
  • 5 is a flowchart illustrating an example of correction using markers in the manufacturing process of the optical waveguide according to the embodiment of the present invention.
  • FIG. 5 is a diagram illustrating an example of prediction using markers in the manufacturing process of the optical waveguide according to the embodiment of the present invention
  • FIG. 10 is a diagram showing a marker according to a second embodiment of the invention
  • FIG. 10 is a diagram showing a marker according to a third embodiment of the invention
  • the constituent elements or characteristics of the optical device formed in one step of the manufacturing process are measured at that time, and based on the measured data, the manufacturing conditions of the post-process are measured.
  • This method is hereinafter referred to as a “feedforward system.”
  • the feedforward system adjusts or corrects the desired optical characteristics of the finally obtained optical device, such as suppressing variations in the optical characteristics of the optical device. allows you to obtain
  • FIG. 2 is a diagram illustrating an example of a method for manufacturing an optical waveguide according to one embodiment of the present invention.
  • the feedforward system "measures” the components of the optical device formed in one process, and performs "optical property estimation” by the optical property estimation processing 21 based on the measurement results. Then, based on the estimation result, the process control processing 22 performs "control" of the post-process. For example, the refractive index and thickness of the lower clad film formed in the lower clad deposition step 1 and the refractive index and thickness of the core layer deposited in the core deposition step 2 are “measured”. Based on the results of this measurement, the final optical properties of devices fabricated with standard (nominal) design values are estimated. Then, based on this estimation, in the subsequent etching step 6, the etching intensity or time is "controlled”.
  • the ideal core width of the pattern to meet the performance required for the optical device is estimated (predicted). do. Then, in the etching step 6, etching is performed based on this predicted value. For example, in the case of prediction information that the standard (nominal) design value is "the waveguide width after core processing is thick" and the desired performance cannot be satisfied, the etching process is used to correct the width of the formed core. I do. As an adjustment method at this time, a method of thickening/thinning the core width by shortening/longening the etching time or weakening/strengthening the etching intensity can be considered.
  • the core width and steps in the waveguide pattern formed in the etching process 6 are "measured", and based on the measurement results, the refractive index of the upper clad film formed in the upper clad deposition process 8, etc. are "controlled”. However, it is also possible to adjust the optical characteristics of the finally obtained optical waveguide.
  • the feedforward system of the present embodiment measures the shape, characteristics, etc. of the constituent elements of the optical device formed during or after the preceding process of the plurality of processes for manufacturing the optical device. , based on the measurement results, the manufacturing conditions in the post-process are adjusted or corrected so that the performance of the finally completed device satisfies the desired conditions.
  • FIG. 3 is a diagram showing a generalized feedforward system according to an embodiment of the present invention.
  • the feedforward system includes an optical device manufacturing procedure consisting of M steps, and an optical device, which is an object to be manufactured, is divided into steps 1, 2, . . . , step i, . M order.
  • steps 1, 2, . . . , step i, . M order when i ⁇ j, the process j is a process later than the process i.
  • the feedforward system includes a measurement data processing section 31 and a control data processing section 32 .
  • the measurement data processing unit 31 executes the optical property estimation processing 21 described above with reference to FIG. 2, and the control data processing unit 32 executes the process control processing 22.
  • the measurement data processing unit 31 and the control data processing unit 32 can be in the form of a computer configured with a CPU, RAM, ROM, and the like.
  • the solid line indicates the flow according to the manufacturing process.
  • dashed lines indicate measurement data obtained by "measurement” of each process
  • one-dot chain lines indicate control data for "control” of each process.
  • the feedforward system of the present embodiment acquires measurement data from the manufacturing apparatus involved in the production or from the measurement apparatus, and transfers the measurement data to the measurement data processing unit 31 in step i.
  • the measurement data processing unit 31 predicts the shape or characteristics of the components of the optical device formed in step i based on the measurement data. Alternatively, the optical properties of the optical device finally obtained in step i may be predicted based on the measurement data.
  • the predicted value derived by the measurement data processing unit 31 is passed to the control data processing unit 32. Based on the predicted value, the control data processing unit 32 obtains the manufacturing conditions for the subsequent step j. The control data processing unit 32 supplies control data for the process j to be set in the manufacturing apparatus according to the obtained manufacturing conditions when the process j is executed.
  • the control data based on the pre-process supplied when executing the post-process j may be only control data based on the pre-process i, or a plurality of types of control data based on some of the pre-processes. good too. It goes without saying that the form is determined according to conditions such as the actually constructed manufacturing apparatus and the manufacturing object.
  • FIG. 4 is a diagram for explaining the basic configuration of an embodiment of the present invention, and is a diagram for explaining a waveguide pattern formed on a substrate and a marker formed together with this pattern.
  • FIG. 4 shows an AWG waveguide pattern 100 as an example of a waveguide and a marker 200 formed with this pattern.
  • the AWG waveguide pattern 100 includes a bent portion 101, a tapered portion 102, a straight portion 103, and the like as constituent elements that determine the shape of the waveguide.
  • the constituent elements are not limited to these, and can be determined according to how processing information obtained from markers, which will be described later, is used, such as the shape of the target waveguide pattern.
  • markers such as the shape of the target waveguide pattern.
  • the marker 200 is formed at substantially the center of the AWG waveguide pattern 100 in the same process as that of the optical waveguide described in FIG. 1, together with the optical waveguide. This marker 200 is: As shown on the right side of FIG.
  • the waveguide pattern 100 has a size of approximately several tens of millimeters ⁇ several tens of millimeters, as shown on the left side of FIG. 4 (see Non-Patent Document 2).
  • the marker 200 is formed by integrating elements having basically the same shape as part of the constituent elements of the waveguide.
  • a waveguide tapered portion 102 is shown as a component of the waveguide, which is formed in the marker 200 as a processing information element 102M.
  • the straight portion 103 of the waveguide is formed in the marker 200 as a straight processing information element 103M.
  • processing information the processing information elements (hereinafter also simply referred to as "processing information") in the marker 200 formed in the same process, correction in the post-process and adjustment of optical characteristics can be performed based on this processing information. Predictions can be made.
  • the processing information elements formed in the marker 200 are basically the same as the parameter values of the waveguide constituent elements in the waveguide pattern 100 to be manufactured.
  • the component is a "straight line”
  • a straight line in the marker 200 is formed with the same width as its "width” as a parameter.
  • the parameters are “width” and “bending radius”
  • the parameters are “taper ratio” and “taper start & end point width”
  • the parameter is the 'crossing angle'
  • the parameters are the 'waveguide width' and the 'spacing' of the waveguides.
  • a processing information element is formed with these parameters having the same values as the waveguide pattern.
  • the parameter for each component of the waveguide is not limited to the above example. Of course, it can be appropriately determined according to the processing information to be acquired and its intended use.
  • the marker 200 described above is formed, and processing information is acquired therefrom. Accordingly, it is possible to obtain the processing information by imaging only the marker. As a result, it is possible to acquire processing information with high throughput.
  • the marker of this embodiment is not used, for example, when imaging the constituent elements of the entire waveguide with high resolution, there are problems such as an increase in the number of times of imaging and an increase in the amount of memory for imaging data. As a result, in order to determine the processing state, it is necessary to observe and measure the shape after processing across the wafer surface, which complicates the process and lowers the throughput.
  • the size and shape of the marker 200 be as small as possible so as not to affect the waveguide pattern.
  • the entire marker must fit within the imaging field of view, and the shape of the imaging device is generally rectangular. From these points, it is desirable to fit the marker 200 within the rectangular range accordingly. For example, for a chip size of 10 mm ⁇ 10 mm, if the size of the marker 200 is 1 mm ⁇ 1 mm, the imaging size required for inspection is 1/100. becomes 1 in 10000. This indicates that the throughput is 100 times and 10000 times higher, respectively, when measured at similar microscope magnifications.
  • one side of the marker 200 is 1/10 or less of the length of one side of the chip, or the area of the marker 200 is 1/100 or less of the chip. Also, even if the chip size is 500 ⁇ m ⁇ 500 ⁇ m, if the size of the marker 200 is 100 ⁇ m ⁇ 100 ⁇ m, the imaging size required for inspection is reduced to 1/25. This represents a 25-fold increase in throughput when measured at the same microscope magnification.
  • processing information elements in the marker 200 do not need to have the same parameter value for all the constituent elements of the waveguide. Examples of these are described below.
  • the radius of the waveguide pattern formed is as large as mm order for silica-based waveguides, etc., and the range required for imaging becomes large.
  • a processing information element having a smaller value for the parameter "bend radius” is formed in the marker.
  • processing information corresponding to the ratio of the reduced "bending radius” is acquired.
  • waveguides with a plurality of bending radii are prepared in advance, and the formation results (waveguide width, etc.) are obtained. , to compare with the actual waveguide pattern.
  • the actual bending radius forming result (processing information) in the waveguide pattern can be extrapolated and estimated according to the ratio of the bending radii.
  • the shape (processing information) of the bending portion can be estimated based on the different bending radius of the marker 200.
  • the shape of the "bent" portion is close to the shape of the actually formed bent portion. As described above, even when the radius of the waveguide pattern actually formed is large, it is possible to fit the processing information within the size of the marker 200 .
  • FIG. 5(a) is a diagram showing the configuration. As shown in FIG. 5(a), only a portion of the bend 100 of the waveguide component is formed in the marker 200 as a processing information element 100M. In this way, it is possible to fit the processing information within the size of the marker 200 by using the processing information element 100M as the bending portion corresponding to a part of the angle of the bending.
  • FIG. 5(b) is a diagram showing the configuration. As shown in FIG. 5(b), the arc 100 of the waveguide component is divided into four equal arc portions 100A, 100B, 100C and 100D. Then, processing information elements 100MA, 100MB, 100MC, and 100MD corresponding to them are formed in the marker 200. FIG. At this time, the directions or angles of the processing information elements 100MA, 100MB, 100MC, and 100MD are made different. Specifically, they are arranged at regular intervals in the circumferential direction. This makes it possible to make the formation range more compact.
  • the processing information can be contained within the size of the marker 200.
  • FIG. That is, interpolation of these four pieces of discrete information (values) for four pieces of information of formation results (core width, etc.) for each representative point (angle) of the four machining information elements 100MA, 100MB, 100MC, and 100MD.
  • the formation result (processing information) in the actual waveguide pattern can be estimated.
  • the processing information element 100M may be formed in the marker 200 in a direction or angle different from the orientation or angle at which the waveguide component 100 is formed. It takes into account the effects of gender. That is, from the information of the formation results (core width, etc.) of the processing information elements at different angles in the marker 200, the respective angle dependencies are calculated, and based on the calculation results, the formation results (processing information) at other angles are calculated. can be estimated. In particular, any angle can be expressed as long as the processing information elements are perpendicular to each other. Specifically, the orientation or angle of the waveguide component on the substrate may affect the manufacturing process differently. Therefore, the following configuration can be adopted.
  • the processing information elements formed in the marker are formed in the same direction.
  • the component is an "arc"
  • the distribution of a predetermined pattern in the waveguide pattern to be formed may be measured, so it is desirable that a plurality of identical patterns exist within the substrate. Thereby, for example, based on the difference in the formation result between markers in each of the plurality of patterns, it is possible to calculate the change in the formation result (core width, etc.) corresponding to the coordinates on the wafer.
  • the processing information is not limited to the shape information of the waveguide constituent elements described above.
  • ⁇ Actually formed waveguide width for each design value of waveguide width (design waveguide width dependence of difference between design value and actual value) ⁇ The point that the width of the formed waveguide differs depending on the bending radius, or the point that the width of the waveguide formed at the waveguide angle at the bending radius used differs. (including average, waviness, roughness, etc.) ⁇ Brightness distribution and brightness of the captured image of the waveguide pattern. Based on this, information on the roughness of the machined surface and the machined height is obtained.
  • the processing information element in the mark 200 described above can be used for correction in the post-process by forming and acquiring it during the manufacturing process. Also, based on the acquired processing information, it is possible to estimate and predict the optical characteristics of the optical waveguide to be finally manufactured.
  • the estimation and prediction of the characteristics based on the acquired processing information described above are not limited to the optical waveguide that is finally manufactured, and are used to estimate and predict the characteristics of resist patterns formed during the manufacturing process. It is clear from the following description that Next, their basic configurations will be described.
  • a marker is formed together in one step of the waveguide manufacturing process, processing information is acquired from the marker, and the processing information is used to correct processing in subsequent steps.
  • the processing information indicating that the formed resist pattern is thicker than a predetermined value is acquired from the processing information element of the mark 200 formed in the same process, in the post-process etching process, the processing information indicating that the etching time
  • the width of the waveguide formed in the etching process is set to the desired value (design value) by making corrections such as /lengthen/strengthen the strength.
  • processing information indicating that "the resist pattern is thinner than a predetermined value" is acquired, a correction is made to "shorten/lower the etching time/strength".
  • the core width is measured from the processing information element of the mark 200 formed in that process. Also, the width of the waveguide pattern through which the optical signal actually propagates can be estimated from the measured value.
  • the etching process can etch based on this core width measurement as an additional step. For example, in the case of information that "the waveguide width after etching is thicker than the ideal value", additional etching is performed to correct the formed core width to be thinner. If it is thinner than the desired value, it can be dealt with by, for example, designing the waveguide to be thicker than the desired waveguide width, or by dividing the etching into two times and acquiring the intermediate state. can do.
  • the ideal value of the waveguide width here may be a design value, or may be an ideal waveguide width calculated from the characteristic prediction described later.
  • FIG. 6 is a flowchart illustrating an example of correction using markers in the optical waveguide manufacturing process according to the embodiment of the present invention.
  • Steps S1 to S8 in FIG. 6 represent the steps of manufacturing the optical waveguide described above with reference to FIG.
  • the dicing process shown in step 9 is a process of cutting the wafer of optical waveguides manufactured so far into chips.
  • the waveguide pattern is formed in the photoresist development process of step S5, and the marker 200 is formed (see FIG. 1). As described above with reference to FIG. 4, this marker 200 is formed with processing information elements corresponding to the constituent elements of the waveguide pattern. Then, in the next step S201, the marker 200 is imaged, processing information is acquired from the imaged processing information element, and etching conditions in the subsequent etching step (S6) are calculated based on this processing information. After that, an etching process is performed in step S6.
  • the etching conditions of the etching process are calculated (corrected) as "increasing/increasing the etching time/strength”.
  • the width of the waveguide formed by the etching process can be set to a desired value (design value).
  • a marker is formed together in one step of the waveguide manufacturing process, processing information is obtained from the marker, and the processing information is used to estimate the optical characteristics of the finally obtained optical waveguide. Predict.
  • FIG. 7 is a diagram illustrating an example of prediction using markers in the optical waveguide manufacturing process according to the embodiment of the present invention.
  • This example utilizes the fact that the optical characteristics of an optical waveguide are determined according to the shape (width and thickness) and refractive index of a core through which light propagates.
  • the film thickness and refractive index of the core are obtained after the process of forming the core film.
  • the width of the core pattern is acquired as processing information from the formed marker 200 . Based on the width of the core pattern, the thickness of the core film, and the refractive index, the optical characteristics of the optical waveguide to be finally manufactured are predicted. As shown in FIG.
  • the acquisition (imaging) of the processing information after the etching process is performed in the area corresponding to the marker 200 of the core film 18 formed in this process (in this specification, this area is also referred to as the "marker 200"). ) to image, measure, and obtain the width and refractive index of the core pattern.
  • correction may be made in a post-process. For example, processing information of core film thickness and refractive index in a core film forming process and core pattern width in an etching process are acquired. Then, the etching conditions in the additional process of the etching process are determined. As a result, for example, the optical properties estimated from the core width measured after the etching process are closer to the design values than the optical properties estimated from the core thickness, refractive index, and core width measured after the etching process. case.
  • the same correction can be performed even when the marker 200 is imaged at the stage of resist pattern formation.
  • the optical properties estimated from the core film thickness, refractive index, and resist pattern width measured after the resist pattern formation process are closer to the design values than the optical properties estimated assuming that the resist pattern width is narrow. if close. That is, in the case of the processing information that "the resist pattern width is thicker than the ideal value", in the etching process, it is possible to make a correction to narrow the formed core width in consideration of the entrainment of the etching gas.
  • the marker 200 is formed in the same process as the process for manufacturing the optical waveguide shown in FIG.
  • the timing of acquiring the processing information from the processing information element of the marker 200 differs depending on the purpose of use.
  • the processing information may be acquired after the etching process and the photoresist development process, or may be acquired after the upper clad deposition process, in which case the final waveguide pattern is obtained. Close processing information can be acquired.
  • processing information may be acquired from the marker 200 in all the steps shown in FIG. 1 instead of acquiring the processing information in some of the steps.
  • the acquired data may contain noise.
  • the parameters of the waveguide component, bend 101, are waveguide width, bend radius and spacing.
  • Taper 102 is the taper rate, taper start/end waveguide width.
  • a straight line 103 is the waveguide width.
  • machining information elements 102M and 103M are formed with the same values (taper rate and taper start/end waveguide width, waveguide width) as corresponding tapers 102 and straight lines 103, respectively.
  • processing information elements 102M and 103M are formed in at least two orthogonal orientations or angles.
  • the machining information element 101M can have different parameter values than the corresponding bend 101.
  • the bend radius is set to a value smaller than that of the actual waveguide component.
  • Waveguide width and spacing are the same parameter values as the corresponding bend 101 .
  • the processing information elements 101M are formed at four locations with different orientations or angles. Thereby, the processing information element 101M corresponding to the bend 101 can be formed within the size of the marker 200. FIG.
  • the taper rate of the taper 102 is small and the difference between the taper start/end waveguide widths is large, the taper becomes longer and the size of the processing information element 102M becomes larger. In this case, for example, the difference between the taper start/end waveguide widths is reduced without making the parameter values the same. As described above, all the parameter values of the waveguide constituent element and the processing information element need not be the same, as described above.
  • FIG. 8 is a diagram showing a marker according to the second embodiment, showing waveguide constituent elements and processing information elements of the corresponding markers when manufacturing the waveguides constituting the MZI switch.
  • Waveguide components that make up the MZI switch waveguide, bending 101, straight line 103, intersection 104 and directional coupler 105, correspond to processing information elements 101M, 103M, 104M and 105M of marker 200, respectively.
  • the parameters of the waveguide component are the bend 101 is the waveguide width and bend radius, and the straight line 103 is the waveguide width. Also, intersection 104 is the intersection angle, and directional coupler 105 is the straight lines of the coupling and their spacing. Regarding these parameters, in the marker 200 these processing information elements 103M, 104M and 105M are formed with the same values as the corresponding line, intersection and directional coupler 105 respectively. In addition, the processing information elements 103M and 105M are formed in at least two different orthogonal orientations or angles, and the processing information element 104M is formed in two different orientations or angles.
  • the machining information element 101M has a different parameter value than the corresponding bending 101.
  • the bend radius is set to a value smaller than that of the actual waveguide component.
  • the processing information elements 101M are formed at four locations with different orientations or angles. Thereby, the processing information element 101M corresponding to bending can be formed within the size of the marker 200. FIG.
  • FIG. 9 is a diagram showing a marker according to the third embodiment, showing waveguide constituent elements and processing information elements of the corresponding markers when manufacturing the waveguides constituting the MZI switch. It is substantially the same as the marker according to the third embodiment described above with reference to FIG. 8, and different points will be described below.
  • the MZI waveguides and crossovers 104 are often arranged along the same direction, for example, in the PILOSS configuration. Therefore, it is desirable to make the processing information element of the marker 200 the same as the direction in which it is actually arranged. This is because the characteristics of the MZI switch, such as the ON/OFF extinction ratio and its wavelength dependence, and light leaking to other ports, can be determined by the MZI configuration and intersection.

Abstract

In the present invention, manufacturing processing for manufacturing an optical waveguide has, in a step for manufacturing an optical waveguide, a step for forming a processing information element that corresponds to a waveguide constituent element of the optical waveguide in the same step as the waveguide constituent element, and forming a marker that includes the processing information element.

Description

光導波路デバイス、光導波路の製造装置および製造方法Optical waveguide device, optical waveguide manufacturing apparatus and manufacturing method
 本発明は、光導波路デバイス並びに光導波路の製造装置および製造方法に関し、詳しくは、光導波路を構成する要素の加工技術に関する。 The present invention relates to an optical waveguide device, an optical waveguide manufacturing apparatus, and a manufacturing method, and more particularly, to a processing technique for elements constituting an optical waveguide.
 半導体レーザ、フォトダイオード、光波長合分波器、光スイッチなどの光デバイスは、光集積回路を備えて構成される。光ファイバ通信においては、伝送媒体である光ファイバはもとより、光信号処理を行うためのこれら光デバイスにおける光集積回路が重要な役割を果たす(例えば、非特許文献1参照)。半導体レーザは、光の発振器として信号を重畳するための光波を生成し、フォトダイオードは、光信号の強度を電気信号に変換する素子として動作する。また、アレイ導波路格子に代表される光波長合分波器は、異なる光の波長を合波・分波する素子として波長分割多重通信に用いられる(例えば、非特許文献2参照)。光スイッチは、光の経路をルーティングする素子としてROADM(Reconfigurable Optical Add/Drop Multiplexing)システムにおいて重要な機能を有している。これらの光集積回路は、一般に基板上に形成された光導波路により構成される。光導波路は、光信号が伝搬するコアとそれを取り囲むクラッドからなる。半導体レーザやフォトダイオードは、InPなどの半導体材料により構成され、アレイ導波路格子や光スイッチは、主に石英ガラスからなる光導波路材料で構成される。 Optical devices such as semiconductor lasers, photodiodes, optical wavelength multiplexers/demultiplexers, and optical switches are configured with optical integrated circuits. In optical fiber communication, not only the optical fiber as a transmission medium but also the optical integrated circuits in these optical devices for performing optical signal processing play an important role (see, for example, Non-Patent Document 1). A semiconductor laser is an optical oscillator that generates a light wave for superimposing a signal, and a photodiode operates as an element that converts the intensity of an optical signal into an electrical signal. An optical wavelength multiplexer/demultiplexer represented by an arrayed waveguide grating is used for wavelength division multiplex communication as an element for multiplexing/demultiplexing different wavelengths of light (see, for example, Non-Patent Document 2). An optical switch has an important function in a ROADM (Reconfigurable Optical Add/Drop Multiplexing) system as an element that routes optical paths. These optical integrated circuits are generally composed of an optical waveguide formed on a substrate. An optical waveguide consists of a core through which an optical signal propagates and a clad surrounding it. Semiconductor lasers and photodiodes are made of semiconductor materials such as InP, and arrayed waveguide gratings and optical switches are made of optical waveguide materials mainly made of silica glass.
 図1は、光導波路の製造方法を示すブロック図である。石英系ガラスからなる石英系平面光波回路を例に説明する。最初に、下部クラッド堆積工程1において、シリコン基板(ウエハ)11上に下部クラッド12となるガラス膜を堆積する。下部クラッド12は、例えば、火炎堆積法(FHD:Flame Hydrolysis Deposition)により堆積されたPやBを添加したSiOからなる。FHD法で堆積されたスート状のガラス粒子を1000℃以上の高温で加熱し透明な下部クラッド12を得る。次に、コア堆積工程2において、同じくFHD法を用いて、下部クラッド12よりも高い屈折率を有するコア13となる薄膜ガラスを堆積する。コア13の堆積にあたっては、例えば、GeOをSiOに添加することにより、所望の屈折率値を得ることができる。下部クラッド堆積工程1と同様に1000℃以上の高温で加熱し、透明なコア13を形成する。なお、これら下部クラッドやコアの形成は、FHD法に限られず、他の周知の方法で形成してもよいことはもちろんである。 FIG. 1 is a block diagram showing a method of manufacturing an optical waveguide. A quartz-based planar lightwave circuit made of quartz-based glass will be described as an example. First, in a lower clad deposition step 1, a glass film that will become a lower clad 12 is deposited on a silicon substrate (wafer) 11 . The lower clad 12 is made of, for example, SiO 2 added with P 2 O 5 or B 2 O 3 deposited by flame hydrolysis deposition (FHD). The soot-like glass particles deposited by the FHD method are heated at a high temperature of 1000° C. or higher to obtain a transparent lower clad 12 . Next, in the core depositing step 2, the FHD method is also used to deposit a thin film glass that will become the core 13 having a higher refractive index than the lower clad 12 . In depositing the core 13, a desired refractive index value can be obtained, for example, by adding GeO 2 to SiO 2 . A transparent core 13 is formed by heating at a high temperature of 1000.degree. Incidentally, the formation of these lower clad and core is not limited to the FHD method, and of course other well-known methods may be used.
 フォトレジスト成膜工程3において、スピンコートにより基板上にフォトレジスト膜14を成膜する。次に、回路パターン露光工程4において、フォトマスク15を介してUV光16をフォトレジスト膜に照射することにより、マスクパターンに応じた回路パターンを露光する。そして、フォトレジスト現像工程5において、フォトレジスト膜の回路パターンを現像し、フォトレジストパターン17を得る。 In the photoresist film-forming step 3, a photoresist film 14 is formed on the substrate by spin coating. Next, in the circuit pattern exposure step 4, the photoresist film is irradiated with UV light 16 through a photomask 15 to expose a circuit pattern corresponding to the mask pattern. Then, in the photoresist development step 5, the circuit pattern of the photoresist film is developed to obtain a photoresist pattern 17. FIG.
 次に、エッチング工程6において、反応性イオンエッチング(RIE:Reactive Ion Etching)により、フォトレジストパターン17をコアに転写し、コアパターン18を得る。そして、レジスト除去工程7において、コア上に残ったフォトレジストをアッシングにより除去する。最後に、上部クラッド堆積工程8において、下部クラッド堆積工程1における下部クラッド堆積と同様の方法によって、上部クラッド19を堆積する。 Next, in etching step 6, the photoresist pattern 17 is transferred to the core by reactive ion etching (RIE) to obtain a core pattern 18. Then, in the resist removing step 7, the photoresist remaining on the core is removed by ashing. Finally, in the upper clad deposition step 8, the upper clad 19 is deposited by the same method as the lower clad deposition in the lower clad deposition step 1. FIG.
 以上の製造工程で得られる光導波路に対して、光学特性など種々の特性の検査が行われる。従来、この検査結果を製造工程に反映するためには、一連の工程が全て終了した後、それぞれの工程において、検査結果を反映した製造条件を設定していた。この方法は、それぞれの工程における製造誤差が蓄積していくので、後工程になるほど、検査結果の精度が低いという問題があった。一方、一工程が終了した時点で得られた検査結果から、当該工程の製造条件を再設定したり、後工程の製造条件を調整したりすることにより、製造誤差の蓄積を抑えることができる。しかしながら、一工程ごとに製造工程を中断することになり、製造工程のスループットを向上させることが困難であるという問題があった。  The optical waveguide obtained in the above manufacturing process is inspected for various characteristics such as optical characteristics. Conventionally, in order to reflect the inspection results in the manufacturing process, manufacturing conditions reflecting the inspection results are set in each process after a series of processes are completed. This method has the problem that manufacturing errors accumulate in each process, so that the accuracy of the inspection results becomes lower in later processes. On the other hand, the accumulation of manufacturing errors can be suppressed by resetting the manufacturing conditions of the process or adjusting the manufacturing conditions of the subsequent process based on the inspection results obtained at the end of one process. However, there is a problem that the manufacturing process is interrupted after each process, making it difficult to improve the throughput of the manufacturing process.
 そこで、ある工程で得られる加工結果の情報、例えば、フォトレジスト現像工程で得られるレジストパターン幅の情報を、現像工程の工程中に知ることができれば、後工程であるエッチング工程においてパターン幅の情報を反映した工程を実施できる。また、コア堆積工程で得られるコアの膜厚、屈折率を、堆積工程の工程中に知ることができれば、後工程で形成される光導波路の光学特性を予測することもできる。このように、前の工程で得られる光導波路構成要素の情報を、前の工程中に取得することにより、後工程の加工条件に反映したり、後工程で得られる光学特性の予測に用いたりすることができれば、製造工程のスループットの点でも好都合である。 Therefore, if information on the processing result obtained in a certain process, for example, information on the width of the resist pattern obtained in the photoresist development process, can be known during the development process, information on the pattern width can be obtained in the subsequent etching process. It is possible to implement a process that reflects Further, if the film thickness and refractive index of the core obtained in the core deposition process can be known during the deposition process, it is possible to predict the optical characteristics of the optical waveguide formed in the subsequent process. In this way, by acquiring the information of the optical waveguide component obtained in the previous process during the previous process, it can be reflected in the processing conditions of the subsequent process or used to predict the optical characteristics obtained in the subsequent process. If it can be done, it is convenient in terms of the throughput of the manufacturing process.
 以上のように、前工程での加工結果の情報(加工情報)を取得する場合、それまでの工程で形成された導波路の形状などを、導波路の経路全体に渡って撮像することが考えられる。しかしながら、光信号が伝搬する経路総てを高倍率で撮像し、形状を測定することは比較的困難である。導波路の形状を詳細に取得するためには、高倍率での撮像が必要であり、この高倍率での撮像では、撮像範囲が小さいため、広い領域の情報を取得するためには撮像回数を増やす必要があり、スループットが低下し、また撮像情報の保存メモリ容量が増加するからである。 As described above, when acquiring the information (processing information) on the processing result in the previous process, it is conceivable to image the shape of the waveguide formed in the previous process over the entire path of the waveguide. be done. However, it is relatively difficult to image all paths along which optical signals propagate at a high magnification and measure the shape. In order to acquire the shape of the waveguide in detail, high-magnification imaging is necessary. This is because it is necessary to increase the number of pixels, resulting in a decrease in throughput and an increase in storage memory capacity for imaging information.
 本発明の目的は、光導波路製造の一工程においてスループットの低下を伴うことなく加工情報を取得することを可能とする光導波路デバイス並びに光導波路の製造装置および製造方法を提供することである。 An object of the present invention is to provide an optical waveguide device, an optical waveguide manufacturing apparatus, and a manufacturing method that make it possible to acquire processing information without reducing throughput in one process of manufacturing an optical waveguide.
 本発明の一形態では、光導波路を製造するための複数の工程を時系列で実行する製造方法であって、前記複数の工程において、光導波路の導波路構成要素に対応した加工情報要素を、当該導波路構成要素と同じ工程で形成し、前記加工情報要素を含むマーカを形成する工程と、前記複数の工程を実行する間に、前記複数の工程における第i工程までに形成された導波路構成要素に対応する加工情報要素を計測する工程と、計測した結果に基づいて前記第i工程より時系列で後の第j工程での導波路構成要素の形成を制御する工程と、を実行する工程と、を有することを特徴とする。 According to one aspect of the present invention, there is provided a manufacturing method for executing a plurality of steps for manufacturing an optical waveguide in time series, wherein in the plurality of steps, processing information elements corresponding to waveguide constituent elements of the optical waveguide are: forming a marker in the same process as the waveguide component and including the processing information element; measuring the processing information element corresponding to the component, and controlling the formation of the waveguide component in the j-th step after the i-th step in chronological order based on the measurement result. and a step.
 本発明の他の形態では、光導波路を製造するための複数の工程を時系列で実行する製造装置であって、前記複数の工程において、光導波路の導波路構成要素に対応した加工情報要素を、当該導波路構成要素と同じ工程で形成し、前記加工情報要素を含むマーカを形成するよう制御する手段と、前記複数の工程を実行する間に、前記複数の工程における第i工程までに形成された導波路構成要素に対応する加工情報要素を計測する工程と、計測した結果に基づいて前記第i工程より時系列で後の第j工程での導波路構成要素の形成を制御する工程と、を実行する手段と、を有することを特徴とする。 In another aspect of the present invention, there is provided a manufacturing apparatus for executing a plurality of steps for manufacturing an optical waveguide in time series, wherein in the plurality of steps, processing information elements corresponding to waveguide constituent elements of the optical waveguide are generated. , means for forming in the same step as the waveguide constituent element and controlling to form a marker including the processing information element; a step of measuring processing information elements corresponding to the waveguide constituent elements thus obtained; and a step of controlling formation of the waveguide constituent elements in the j-th step subsequent to the i-th step in chronological order based on the measurement results. and means for performing
光導波路の製造方法を示すブロック図である。It is a block diagram which shows the manufacturing method of an optical waveguide. 本発明の一実施形態にかかる光導波路の製造方法を説明する図である。It is a figure explaining the manufacturing method of the optical waveguide concerning one Embodiment of this invention. 本発明の実施形態に係るフィードフォワードシステムを一般化して示す図である。1 is a generalized diagram of a feedforward system according to an embodiment of the invention; FIG. 本発明の第1実施例に係り、基板上に形成される導波路のパターンとこのパターンと共に形成されるマーカの基本構成を説明する図である。FIG. 2 is a diagram illustrating the basic configuration of a waveguide pattern formed on a substrate and a marker formed together with this pattern, according to the first embodiment of the present invention; (a)および(b)は、本発明の他の実施形態に係るマーカを説明する図である。(a) and (b) are diagrams illustrating a marker according to another embodiment of the present invention. 本発明の実施形態に係る光導波路の製造工程におけるマーカを用いた補正の一例を説明するフローチャートである。5 is a flowchart illustrating an example of correction using markers in the manufacturing process of the optical waveguide according to the embodiment of the present invention; 本発明の実施形態に係る光導波路の製造工程におけるマーカを用いた予測の例を説明する図である。FIG. 5 is a diagram illustrating an example of prediction using markers in the manufacturing process of the optical waveguide according to the embodiment of the present invention; 本発明の第2実施例に係るマーカを示す図であるFIG. 10 is a diagram showing a marker according to a second embodiment of the invention; 本発明の第3実施例に係るマーカを示す図であるFIG. 10 is a diagram showing a marker according to a third embodiment of the invention;
 以下、図面を参照して本発明の実施形態を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 本発明の実施形態に係る製造方法は、製造工程における一工程で形成される、その時点での光デバイスの構成要素または特性について計測を行い、その計測したデータを基づいて、後工程の製造条件を調整ないし補正を行う(以下、この方式を「フィードフォワードシステムと命名する)。フィードフォワードシステムにより、光デバイスの光学特性のばらつきを抑制するなど、最終的に得られる光デバイスについて所望の光学特性を得ることを可能にする。 In the manufacturing method according to the embodiment of the present invention, the constituent elements or characteristics of the optical device formed in one step of the manufacturing process are measured at that time, and based on the measured data, the manufacturing conditions of the post-process are measured. (This method is hereinafter referred to as a “feedforward system.”) The feedforward system adjusts or corrects the desired optical characteristics of the finally obtained optical device, such as suppressing variations in the optical characteristics of the optical device. allows you to obtain
 図2は、本発明の一実施形態に係る光導波路の製造方法の一例を説明する図である。フィードフォワードシステムは、一工程で形成される光デバイスの構成要素について「計測」を行い、この計測結果に基づいて光学特性推定処理21によって「光学特性推定」を行う。そして、推定結果に基づきプロセスコントロール処理22によって後工程のプロセスの「制御」を行う。
例えば、下部クラッド堆積工程1で形成される下部クラッド膜の屈折率と厚み、コア堆積工程2において堆積するコア層の屈折率と厚みを「計測」する。この測定結果に基づいて、標準の(ノミナルの)設計値で作製されたデバイスの最終的な光学特性を推定する。そして、この推定に基づいて、後工程であるエッチング工程6において、エッチングの強度ないし時間を「制御」する。
FIG. 2 is a diagram illustrating an example of a method for manufacturing an optical waveguide according to one embodiment of the present invention. The feedforward system "measures" the components of the optical device formed in one process, and performs "optical property estimation" by the optical property estimation processing 21 based on the measurement results. Then, based on the estimation result, the process control processing 22 performs "control" of the post-process.
For example, the refractive index and thickness of the lower clad film formed in the lower clad deposition step 1 and the refractive index and thickness of the core layer deposited in the core deposition step 2 are “measured”. Based on the results of this measurement, the final optical properties of devices fabricated with standard (nominal) design values are estimated. Then, based on this estimation, in the subsequent etching step 6, the etching intensity or time is "controlled".
 具体的には、「計測」したコア層の膜厚および屈折率、クラッド膜の屈折率に基づいて、光デバイスとして要求される性能を満たすためのパターンの理想的なコア幅を推定(予測)する。そして、エッチング工程6では、この予測値に基づいてエッチングを行う。例えば、標準の(ノミナルの)設計値では「コア加工後の導波路幅が太く」、所望の性能を満たすことができないという予測情報の場合、エッチング工程で、形成されるコア幅を細くする補正を行う。この時の調整方法はエッチング時間を短く/長くするもしくはエッチング強度を弱く/強くすることにより、コア幅を太く/細くする方法などが考えられる。さらに、エッチング工程6で形成される導波路のパターンにおけるコアの幅や段差を「計測」し、この計測結果に基づき、上部クラッド堆積工程8で形成する上部クラッド膜の屈折率などを「制御」し、最終的に得られる光導波路の光学特性を調整することもできる。 Specifically, based on the "measured" thickness and refractive index of the core layer and the refractive index of the clad film, the ideal core width of the pattern to meet the performance required for the optical device is estimated (predicted). do. Then, in the etching step 6, etching is performed based on this predicted value. For example, in the case of prediction information that the standard (nominal) design value is "the waveguide width after core processing is thick" and the desired performance cannot be satisfied, the etching process is used to correct the width of the formed core. I do. As an adjustment method at this time, a method of thickening/thinning the core width by shortening/longening the etching time or weakening/strengthening the etching intensity can be considered. Furthermore, the core width and steps in the waveguide pattern formed in the etching process 6 are "measured", and based on the measurement results, the refractive index of the upper clad film formed in the upper clad deposition process 8, etc. are "controlled". However, it is also possible to adjust the optical characteristics of the finally obtained optical waveguide.
 以上のとおり、本実施形態のフィードフォワードシステムは、光デバイスを製造する複数の工程のうち、前工程の工程中あるいはその工程後に、形成された光デバイスの構成要素の形状、特性等を測定し、この測定結果に基づいて、最終的に完成したデバイスの性能が所期の条件を満たすように、後工程における製造条件を調整ないし補正を行う。 As described above, the feedforward system of the present embodiment measures the shape, characteristics, etc. of the constituent elements of the optical device formed during or after the preceding process of the plurality of processes for manufacturing the optical device. , based on the measurement results, the manufacturing conditions in the post-process are adjusted or corrected so that the performance of the finally completed device satisfies the desired conditions.
 図3は、本発明の実施形態に係るフィードフォワードシステムを一般化して示す図である。フィードフォワードシステムは、M個の工程からなる光デバイスの製造手順を含み、製造対象物である光デバイスを、工程1、工程2・・・、工程i、・・・工程j、・・・工程Mの順序で実施する。ここで、i<jのとき、工程jは工程iより時間的に後の工程である。フィードフォワードシステムは、計測データ処理部31および制御データ処理部32を含む。計測データ処理部31は、図2を参照して上述した光学特性推定処理21を実行し、制御データ処理部32は、プロセスコントロール処理22を実行する。計測データ処理部31および制御データ処理部32は、CPU、RAM、ROMなどを有して構成されるコンピュータの形態とすることができる。 FIG. 3 is a diagram showing a generalized feedforward system according to an embodiment of the present invention. The feedforward system includes an optical device manufacturing procedure consisting of M steps, and an optical device, which is an object to be manufactured, is divided into steps 1, 2, . . . , step i, . M order. Here, when i<j, the process j is a process later than the process i. The feedforward system includes a measurement data processing section 31 and a control data processing section 32 . The measurement data processing unit 31 executes the optical property estimation processing 21 described above with reference to FIG. 2, and the control data processing unit 32 executes the process control processing 22. FIG. The measurement data processing unit 31 and the control data processing unit 32 can be in the form of a computer configured with a CPU, RAM, ROM, and the like.
 図3において、実線は製造対象物の工程に従った流れを示している。また、破線はそれぞれの工程の「計測」によって得られる計測データを、また、一点鎖線はそれぞれの工程に対する「制御」のための制御データを、それぞれ示している。このように、本実施形態のフィードフォワードシステムは、工程iで、その製造に係る製造装置もしくはその計測装置から計測データを取得し、計測データ処理部31へと転送する。計測データ処理部31は、計測データに基づいて、工程iで形成される光デバイスの構成要素の形状ないし特性を予測する。または、計測データに基づき、工程iにおいて最終的に得られる、光デバイスの光学特性を予測してもよい。  In Figure 3, the solid line indicates the flow according to the manufacturing process. Also, dashed lines indicate measurement data obtained by "measurement" of each process, and one-dot chain lines indicate control data for "control" of each process. As described above, the feedforward system of the present embodiment acquires measurement data from the manufacturing apparatus involved in the production or from the measurement apparatus, and transfers the measurement data to the measurement data processing unit 31 in step i. The measurement data processing unit 31 predicts the shape or characteristics of the components of the optical device formed in step i based on the measurement data. Alternatively, the optical properties of the optical device finally obtained in step i may be predicted based on the measurement data.
 計測データ処理部31で導出された予測値は、制御データ処理部32に渡される。制御データ処理部32は、予測値に基づいて、後工程である工程jにおける製造条件を求める。制御データ処理部32は、工程jが実行される際に、求めた製造条件に応じて、製造装置に設定する工程j用の制御データを供給する。後工程jを実行する際に供給される前工程に基づく制御データは、前工程iに基づく制御データのみであってもよく、あるいは、前工程のいくつかに基づく複数種類の制御データであってもよい。その形態は、実際に構成される製造装置および製造対象物などの条件に応じて定められることはもちろんである。 The predicted value derived by the measurement data processing unit 31 is passed to the control data processing unit 32. Based on the predicted value, the control data processing unit 32 obtains the manufacturing conditions for the subsequent step j. The control data processing unit 32 supplies control data for the process j to be set in the manufacturing apparatus according to the obtained manufacturing conditions when the process j is executed. The control data based on the pre-process supplied when executing the post-process j may be only control data based on the pre-process i, or a plurality of types of control data based on some of the pre-processes. good too. It goes without saying that the form is determined according to conditions such as the actually constructed manufacturing apparatus and the manufacturing object.
 以下、上述したフィードフォワードシステムによる導波路製造の一工程で加工情報を取得するための構成を説明する。 A configuration for acquiring processing information in one process of manufacturing a waveguide using the feedforward system described above will be described below.
(基本構成)
 以下では、先ず、本発明の実施形態に係る加工情報を取得するための基本構成について説明する。
(basic configuration)
Below, first, a basic configuration for acquiring processing information according to an embodiment of the present invention will be described.
 図4は、本発明の実施形態の基本構成を説明するための図であり、基板上に形成される導波路のパターンとこのパターンと共に形成されるマーカを説明する図である。図4は、導波路の一例としてのAWG導波路パターン100と、このパターンと共に形成されるマーカ200とを示している。 FIG. 4 is a diagram for explaining the basic configuration of an embodiment of the present invention, and is a diagram for explaining a waveguide pattern formed on a substrate and a marker formed together with this pattern. FIG. 4 shows an AWG waveguide pattern 100 as an example of a waveguide and a marker 200 formed with this pattern.
 図4に示すように、AWG導波路パターン100には、その導波路の形状を定める構成要素として、曲げ部分101、テーパ部分102、直線部分103などが存在する。なお、構成要素はこれらに限定されるものでなく、対象となる導波路パターンの形状等、後述するマーカから得られる加工情報をどのように用いるかに応じて定めることができる。例えば、上述の曲げ部分、テーパ部分、直線部分以外に交差部分、方向結合器部分などがある。また、図4に示す例では、マーカ200は、AWG導波路パターン100のほぼ中央部に、光導波路の図1にて説明した同じ工程で光導波路と共に同じ工程で形成される。このマーカ200は。図4の右側に示すように、約100μm×100μmのサイズを有したほぼ正方形を成すものである。これに対し、導波路パターン100は、図4の左側に示すように、約数10mm×数10mmのサイズを有している(非特許文献2参照)。 As shown in FIG. 4, the AWG waveguide pattern 100 includes a bent portion 101, a tapered portion 102, a straight portion 103, and the like as constituent elements that determine the shape of the waveguide. Note that the constituent elements are not limited to these, and can be determined according to how processing information obtained from markers, which will be described later, is used, such as the shape of the target waveguide pattern. For example, in addition to the bends, tapers, and straight portions described above, there are crossing portions, directional coupler portions, and the like. Further, in the example shown in FIG. 4, the marker 200 is formed at substantially the center of the AWG waveguide pattern 100 in the same process as that of the optical waveguide described in FIG. 1, together with the optical waveguide. This marker 200 is: As shown on the right side of FIG. 4, it is approximately square with a size of about 100 μm×100 μm. On the other hand, the waveguide pattern 100 has a size of approximately several tens of millimeters×several tens of millimeters, as shown on the left side of FIG. 4 (see Non-Patent Document 2).
 マーカ200は、導波路の構成要素の一部を基本的に同じ形状を有した要素を集積して形成したものである。図4に示す例では、例えば、導波路の構成要素として、導波路のテーパ部分102が示され、これがマーカ200では加工情報要素102Mとして形成される。同様に、導波路の直線部分103は、マーカ200では直線の加工情報要素103Mとして形成される。 The marker 200 is formed by integrating elements having basically the same shape as part of the constituent elements of the waveguide. In the example shown in FIG. 4, for example, a waveguide tapered portion 102 is shown as a component of the waveguide, which is formed in the marker 200 as a processing information element 102M. Similarly, the straight portion 103 of the waveguide is formed in the marker 200 as a straight processing information element 103M.
 このように、導波路の構成要素が集積されたマーカ200を導波路の製造工程において形成、撮像することで、その製造工程の加工情報を代表することができる。導波路構成要素の曲げ、テーパ、交差、直線などの加工形状は、導波路の光伝搬特性に影響する。また、製造時の製造ばらつきにより、同一形状であってもその加工結果はウエハ面内でムラができる場合がある。このため、同一工程で形成されるマーカ200に加工情報要素の情報(以下、単に「加工情報」とも言う)を集約することで、この加工情報に基づいて、後工程での補正や光学特性の予測を行うことができる。 In this way, by forming and imaging the marker 200 in which the constituent elements of the waveguide are integrated in the manufacturing process of the waveguide, it is possible to represent the processing information of the manufacturing process. Fabrication shapes such as bends, tapers, crosses, straight lines, etc. of waveguide components affect the optical propagation properties of waveguides. In addition, even if the wafers have the same shape, the processing results may be uneven within the wafer surface due to manufacturing variations during manufacturing. Therefore, by consolidating the information of the processing information elements (hereinafter also simply referred to as "processing information") in the marker 200 formed in the same process, correction in the post-process and adjustment of optical characteristics can be performed based on this processing information. Predictions can be made.
 マーカ200において形成される加工情報要素は、基本的に、製造する導波路パターン100における導波路構成要素のパラメータ値と同一である。例えば、構成要素が「直線」の場合、パラメータとしてその「幅」と同じ幅でマーカ200における直線が形成される。同様に、構成要素が、「曲げ」の場合、パラメータは「幅」および「曲げ半径」、「テーパ」の場合、パラメータは「テーパ率」および「テーパ始点&終点幅」、「交差」の場合、パラメータは「交差角」、「方向性結合器」の場合、パラメータは「導波路幅」および導波路の「間隔」である。マーカ200ではこれらパラメータが導波路パターンと同じ値で加工情報要素が形成される。なお、導波路の構成要素ごとのパラメータは上記の例に限られないことはもちろんである。取得する加工情報およびその使用目的に応じて適宜定めることができることはもちろんである。 The processing information elements formed in the marker 200 are basically the same as the parameter values of the waveguide constituent elements in the waveguide pattern 100 to be manufactured. For example, if the component is a "straight line", a straight line in the marker 200 is formed with the same width as its "width" as a parameter. Similarly, if the component is "bending", the parameters are "width" and "bending radius", if "taper", the parameters are "taper ratio" and "taper start & end point width", and "intersection" , the parameter is the 'crossing angle', and for a 'directional coupler' the parameters are the 'waveguide width' and the 'spacing' of the waveguides. In the marker 200, a processing information element is formed with these parameters having the same values as the waveguide pattern. It goes without saying that the parameter for each component of the waveguide is not limited to the above example. Of course, it can be appropriately determined according to the processing information to be acquired and its intended use.
 本実施形態は、以上説明したマーカ200を形成し、そこから加工情報を取得する。これにより、マーカのみを撮像等することによって加工情報を取得することができる。その結果、高スループットで加工情報を取得することが可能となる。本実施形態のマーカを用いない場合、例えば、導波路全体で構成要素を高解像度で撮像する場合は、撮像回数の増加や撮像データのメモリ量の増加といった不都合がある。そして、その結果として、加工状態を判別するためには、加工後の形状をウエハ面内に渡って観測・測定する必要があり、工程が煩雑かつスループットが低下することになる。 In this embodiment, the marker 200 described above is formed, and processing information is acquired therefrom. Accordingly, it is possible to obtain the processing information by imaging only the marker. As a result, it is possible to acquire processing information with high throughput. When the marker of this embodiment is not used, for example, when imaging the constituent elements of the entire waveguide with high resolution, there are problems such as an increase in the number of times of imaging and an increase in the amount of memory for imaging data. As a result, in order to determine the processing state, it is necessary to observe and measure the shape after processing across the wafer surface, which complicates the process and lowers the throughput.
 マーカ200のサイズおよび形状は、導波路パターンに影響を与えないよう可能な限り小さなサイズであることが望ましい。一方で、マーカ全体が撮像視野に収まること、一般的に撮像素子の形状は矩形である。これらの点から、マーカ200もこれに合わせて矩形の範囲に収めることが望ましい。例えば、10mm×10mmのチップサイズに対して、マーカ200のサイズが1mm×1mmであれば、検査に必要な撮像サイズは100分の1に、100um×100umであれば、検査に必要な撮像サイズは10000分の1になる。これは、同程度の顕微鏡倍率で測定した際のスループットがそれぞれ、100倍、10000倍になることを示している。スループットを向上させるために、チップの一辺の長さに対してマーカ200の一辺が10分の1以下もしくは面積がチップに対してマーカ200が100分の1以下になることが望ましい。また、チップサイズが500 um × 500 umであったとしても、マーカ200のサイズが100um×100umであれば、検査に必要な撮像サイズは25分の1になる。これは、同程度の顕微鏡倍率で測定した際のスループットが25倍になることを示している。 It is desirable that the size and shape of the marker 200 be as small as possible so as not to affect the waveguide pattern. On the other hand, the entire marker must fit within the imaging field of view, and the shape of the imaging device is generally rectangular. From these points, it is desirable to fit the marker 200 within the rectangular range accordingly. For example, for a chip size of 10 mm×10 mm, if the size of the marker 200 is 1 mm×1 mm, the imaging size required for inspection is 1/100. becomes 1 in 10000. This indicates that the throughput is 100 times and 10000 times higher, respectively, when measured at similar microscope magnifications. In order to improve the throughput, it is desirable that one side of the marker 200 is 1/10 or less of the length of one side of the chip, or the area of the marker 200 is 1/100 or less of the chip. Also, even if the chip size is 500 μm×500 μm, if the size of the marker 200 is 100 μm×100 μm, the imaging size required for inspection is reduced to 1/25. This represents a 25-fold increase in throughput when measured at the same microscope magnification.
 なお、導波路の総ての構成要素について、マーカ200における加工情報要素が同一のパラメータ値である必要はない。以下、それらの例を説明する。 It should be noted that the processing information elements in the marker 200 do not need to have the same parameter value for all the constituent elements of the waveguide. Examples of these are described below.
 例えば、構成要素が「曲げ」の場合、形成される導波路パターンの半径はシリカ系導波路などではmmオーダーと大きく撮像に必要な範囲が大きくなる。このような場合は、マーカにおいて、パラメータである「曲げ半径」がより小さな値の加工情報要素を形成する。そして、このマーカ200からの加工情報要素の取得に際しては、小さくした「曲げ半径」の比率に応じた加工情報を取得する。具体的には、導波路パターンにおける実際の曲げ半径よりも小さい値の上記「曲げ半径」に応じて、複数の曲げ半径の導波路を予め用意して、その形成結果(導波路幅など)を、実際の導波路パターンと比較する。そして、その比較結果において、上記曲げ半径の比率に応じて、導波路パターンにおける実際の曲げ半径の形成結果(加工情報)を外挿して推定することができる。なお、「曲げ」部分の特性として、マーカ200における曲げ半径が導波路パターンにおける実際の曲げ半径と異なっていても、マーカ200の異なる曲げ半径に基づいて曲げ部分の形状(加工情報)を推定しても、「曲げ」部分についてはその推定結果が実際に形成される曲げ部分の形状に近いことが分かっている。以上により、実際に形成される導波路パターンの半径が大きくなる場合でも、マーカ200のサイズ内にその加工情報を収めることが可能となる。 For example, if the component is "bending", the radius of the waveguide pattern formed is as large as mm order for silica-based waveguides, etc., and the range required for imaging becomes large. In such a case, in the marker, a processing information element having a smaller value for the parameter "bend radius" is formed. When acquiring processing information elements from the marker 200, processing information corresponding to the ratio of the reduced "bending radius" is acquired. Specifically, according to the above-mentioned "bending radius" which is smaller than the actual bending radius in the waveguide pattern, waveguides with a plurality of bending radii are prepared in advance, and the formation results (waveguide width, etc.) are obtained. , to compare with the actual waveguide pattern. Then, in the comparison result, the actual bending radius forming result (processing information) in the waveguide pattern can be extrapolated and estimated according to the ratio of the bending radii. As a characteristic of the "bending" portion, even if the bending radius of the marker 200 is different from the actual bending radius of the waveguide pattern, the shape (processing information) of the bending portion can be estimated based on the different bending radius of the marker 200. However, it is known that the shape of the "bent" portion is close to the shape of the actually formed bent portion. As described above, even when the radius of the waveguide pattern actually formed is large, it is possible to fit the processing information within the size of the marker 200 .
 他の例として、導波路構成要素の曲げの一部のみを、加工情報要素としてマーカ200内に形成してもよい。図5(a)は、その構成を示す図である。図5(a)に示すように、導波路構成要素の曲げ100のうち、その一部のみを加工情報要素100Mとしてーカ200内に形成する。このように、曲げのうち一部の角度に対応して曲げ部分を加工情報要素100Mとすることによってもマーカ200のサイズ内にその加工情報を収めることが可能となる。すなわち、一部のみの加工情報要素100Mは、それによって実際の導波路パターンにおける曲げ部分との位置関係に応じた違い(角度依存性)を知ることはできないが、加工情報要素100Mが持つ代表点(角度)での加工情報要素100Mの形成結から、他の角度でも同一の形成結果(加工情報)であると推定することができる。 As another example, only part of the bending of the waveguide component may be formed within the marker 200 as the processing information element. FIG. 5(a) is a diagram showing the configuration. As shown in FIG. 5(a), only a portion of the bend 100 of the waveguide component is formed in the marker 200 as a processing information element 100M. In this way, it is possible to fit the processing information within the size of the marker 200 by using the processing information element 100M as the bending portion corresponding to a part of the angle of the bending. That is, only a part of the processing information element 100M cannot know the difference (angle dependence) according to the positional relationship with the bent portion in the actual waveguide pattern, but the representative point of the processing information element 100M From the formation result of the processing information element 100M at (angle), it can be estimated that the same formation result (processing information) is obtained at other angles.
 さらに他の例として、導波路構成要素が、曲げの一種として円弧である場合、それを等分したものを加工情報要素としてマーカ200内に形成してもよい。図5(b)は、その構成を示す図である。図5(b)に示すように、導波路構成要素の円弧100を四等分し円弧部分100A、100B、100C、100Dとする。そして、それらに対応する加工情報要素100MA、100MB、100MC、100MDをマーカ200内に形成する。この際、加工情報要素100MA、100MB、100MC、100MDの向きないし角度を異ならせる。具体的には、円周方向において等間隔となるように配置する。これによってその形成範囲をよりコンパクトにできる。このように、曲げを等分して加工情報要素100Mとすることによってマーカ200のサイズ内にその加工情報を収めることが可能となる。すなわち、4つの加工情報要素100MA、100MB、100MC、100MDの代表点(角度)ごとの形成結果(コア幅など)の4つ情報について、これら4つの離散的な情報(値)を内挿することにより、実際の導波路パターンにおける形成結果(加工情報)を推定することができる。 As yet another example, if the waveguide component is a circular arc as a type of bending, it may be equally divided and formed in the marker 200 as the processing information element. FIG. 5(b) is a diagram showing the configuration. As shown in FIG. 5(b), the arc 100 of the waveguide component is divided into four equal arc portions 100A, 100B, 100C and 100D. Then, processing information elements 100MA, 100MB, 100MC, and 100MD corresponding to them are formed in the marker 200. FIG. At this time, the directions or angles of the processing information elements 100MA, 100MB, 100MC, and 100MD are made different. Specifically, they are arranged at regular intervals in the circumferential direction. This makes it possible to make the formation range more compact. By equally dividing the bending into the processing information elements 100M in this manner, the processing information can be contained within the size of the marker 200. FIG. That is, interpolation of these four pieces of discrete information (values) for four pieces of information of formation results (core width, etc.) for each representative point (angle) of the four machining information elements 100MA, 100MB, 100MC, and 100MD. Thus, the formation result (processing information) in the actual waveguide pattern can be estimated.
 なお、図5(b)に示す例のように、導波路構成要素100が形成される向きないし角度とは異なって加工情報要素100Mがマーカ200内に形成され得るが、この場合、いわゆる角度依存性の影響を考慮したものである。すなわち、マーカ200における異なる角度での加工情報要素の形成結果(コア幅など)の情報から、それぞれの角度依存性を算出し、その算出結果に基づいて他の角度での形成結果(加工情報)を推定することができる。特に、加工情報要素が相互に直交する角度であれば、どのような角度に対しても表現することができる。具体的には、基板における導波路構成要素の向きないし角度によって、製造工程における影響の度合いが異なることもあり得る。このため、次のような構成をとることができる。第1に、導波路パターンにおいて同じ構成要素の配置方向が一定の場合、マーカに形成する加工情報要素は同一の方向に形成されるのが望ましい。第2に、導波路パターンにおいて同一の構成要素を、マーカでは異なる複数の角度、好ましくは、直交する角度で配置することが望ましい。第3に、構成要素が「円弧」の場合、マーカでは、図5(b)にて説明したように円弧を等間隔で分割し、それらを向きないし角度を異ならせて配置することが望ましい。 As in the example shown in FIG. 5B, the processing information element 100M may be formed in the marker 200 in a direction or angle different from the orientation or angle at which the waveguide component 100 is formed. It takes into account the effects of gender. That is, from the information of the formation results (core width, etc.) of the processing information elements at different angles in the marker 200, the respective angle dependencies are calculated, and based on the calculation results, the formation results (processing information) at other angles are calculated. can be estimated. In particular, any angle can be expressed as long as the processing information elements are perpendicular to each other. Specifically, the orientation or angle of the waveguide component on the substrate may affect the manufacturing process differently. Therefore, the following configuration can be adopted. First, when the arrangement direction of the same component in the waveguide pattern is constant, it is desirable that the processing information elements formed in the marker are formed in the same direction. Second, it is desirable to place identical components in the waveguide pattern at different angles in the marker, preferably orthogonal angles. Third, when the component is an "arc", it is desirable that the marker divides the arc at equal intervals and arranges them with different orientations or angles, as described with reference to FIG. 5(b).
 また、形成する導波路パターンにおける所定のパターンの分布を計測することがあり、そのために同一のパターンが基板内に複数存在することが望ましい。これにより、例えば、複数のパターンそれぞれにおけるマーカ間の形成結果の違いに基づいて、ウエハ上の座標に対応して形成結果(コア幅など)の変化を計算することができる。 In addition, the distribution of a predetermined pattern in the waveguide pattern to be formed may be measured, so it is desirable that a plurality of identical patterns exist within the substrate. Thereby, for example, based on the difference in the formation result between markers in each of the plurality of patterns, it is possible to calculate the change in the formation result (core width, etc.) corresponding to the coordinates on the wafer.
 なお、加工情報としては、上述した導波路構成要素の形状情報に限られない。例えば、以下の情報とすることもできる。
 ・導波路パターンの所望の導波路幅(設計値)に対して実際に形成された導波路幅の平均値、導波路表面および側面のうねりや粗さ。
 ・導波路幅の設計値ごとの、実際に形成された導波路幅(設計値と実際値の差の設計導波路幅依存性)
 ・形成される導波路幅がその曲げ半径によって異なる点、もしくは使用する曲げ半径での導波路角度での形成される導波路幅が異なる点
 ・導波路の粗密もしくは近接した状態での導波路幅(平均、うねり、ラフネスなど含む)
 ・導波路パターンの撮像画像の輝度分布や明暗。これに基づき、加工表面の粗さや加工高さの情報を取得
The processing information is not limited to the shape information of the waveguide constituent elements described above. For example, the following information can also be used.
The average value of the waveguide width actually formed with respect to the desired waveguide width (design value) of the waveguide pattern, and the undulations and roughness of the waveguide surface and side surfaces.
・Actually formed waveguide width for each design value of waveguide width (design waveguide width dependence of difference between design value and actual value)
・The point that the width of the formed waveguide differs depending on the bending radius, or the point that the width of the waveguide formed at the waveguide angle at the bending radius used differs. (including average, waviness, roughness, etc.)
・Brightness distribution and brightness of the captured image of the waveguide pattern. Based on this, information on the roughness of the machined surface and the machined height is obtained.
 以上説明したマーク200における加工情報要素は、製造工程中にそれを形成し、取得することによって後工程での補正に用いることができる。また、取得した加工情報に基づいて、最終的に製造される光導波路の光学特性を推定、予測することもできる。なお、以上説明した、取得した加工情報に基づく特性の推定、予測は、最終的に製造される光導波路に限られず、その製造過程の途中で形成されるレジストパターンなどの特性を推定、予測しても良いことは、以下の説明からも明らかである。次に、それらの基本構成について説明する。 The processing information element in the mark 200 described above can be used for correction in the post-process by forming and acquiring it during the manufacturing process. Also, based on the acquired processing information, it is possible to estimate and predict the optical characteristics of the optical waveguide to be finally manufactured. The estimation and prediction of the characteristics based on the acquired processing information described above are not limited to the optical waveguide that is finally manufactured, and are used to estimate and predict the characteristics of resist patterns formed during the manufacturing process. It is clear from the following description that Next, their basic configurations will be described.
(加工情報に基づく補正)
 本発明の一実施形態は、導波路の製造工程の一工程においてマーカを共に形成しそのマーカから加工情報を取得し、その加工情報を用いてその後の工程の加工の補正を行う。
(Correction based on processing information)
In one embodiment of the present invention, a marker is formed together in one step of the waveguide manufacturing process, processing information is acquired from the marker, and the processing information is used to correct processing in subsequent steps.
 例えば、フォトレジスト現像工程において、形成した「レジストパターンが所定値より太い」という加工情報を、同じ工程で形成したマーク200の加工情報要素から取得した場合、後工程のエッチング工程において、「エッチング時間/強度を長く/強くする」という補正を行い、エッチング工程で形成される導波路の幅を所望の値(設計値)にする。逆に、「レジストパターンが所定値より細い」という加工情報を取得した場合、「エッチング時間/強度を短く/弱くする」という補正を行う。 For example, in the photoresist development process, if processing information indicating that the formed resist pattern is thicker than a predetermined value is acquired from the processing information element of the mark 200 formed in the same process, in the post-process etching process, the processing information indicating that the etching time The width of the waveguide formed in the etching process is set to the desired value (design value) by making corrections such as /lengthen/strengthen the strength. Conversely, if processing information indicating that "the resist pattern is thinner than a predetermined value" is acquired, a correction is made to "shorten/lower the etching time/strength".
 また別の例として、導波路製造のエッチング工程の後に、その工程で形成したマーク200の加工情報要素からコア幅を測定する。また、その測定値から実際に光信号が伝搬する導波路パターンの幅が推定できる。エッチング工程では、追加の工程としてこのコア幅の測定値に基づいてエッチングを行うことができる。例えば、「エッチング後の導波路幅が理想値よりも太い」という情報の場合、追加のエッチングで、形成されるコア幅を細くする補正を行う。なお、所望の値よりも細いときは、例えば、所望の導波路幅よりも太い導波路になるように設計することや、エッチングを2回に分けて、途中状態を取得することなど、によって対応することができる。ここでの導波路幅の理想値は設計値であってもよいし、後述の特性予想から算出される理想的な導波路幅であってもよい。 As another example, after the etching process of manufacturing the waveguide, the core width is measured from the processing information element of the mark 200 formed in that process. Also, the width of the waveguide pattern through which the optical signal actually propagates can be estimated from the measured value. The etching process can etch based on this core width measurement as an additional step. For example, in the case of information that "the waveguide width after etching is thicker than the ideal value", additional etching is performed to correct the formed core width to be thinner. If it is thinner than the desired value, it can be dealt with by, for example, designing the waveguide to be thicker than the desired waveguide width, or by dividing the etching into two times and acquiring the intermediate state. can do. The ideal value of the waveguide width here may be a design value, or may be an ideal waveguide width calculated from the characteristic prediction described later.
 なお、加工情報に基づいてエッチング条件を定める際は、エッチングガスの回り込みを考慮してエッチング時間などを定めることが望ましい。 It should be noted that when determining etching conditions based on processing information, it is desirable to determine the etching time and the like in consideration of the entrainment of the etching gas.
 図6は、本発明の実施形態に係る光導波路の製造工程におけるマーカを用いた補正の一例を説明するフローチャートである。図6におけるステップS1~S8は図1にて前述した光導波路製造の各工程を示している。また、ステップ9に示すダイシング工程は、それまでに製造された光導波路のウエハを切断してチップ化する工程である。 FIG. 6 is a flowchart illustrating an example of correction using markers in the optical waveguide manufacturing process according to the embodiment of the present invention. Steps S1 to S8 in FIG. 6 represent the steps of manufacturing the optical waveguide described above with reference to FIG. Further, the dicing process shown in step 9 is a process of cutting the wafer of optical waveguides manufactured so far into chips.
 以上の製造工程において、本例では、ステップS5のフォトレジスト現像工程で導波路パターンを形成すると共にマーカ200を形成する(図1参照)。このマーカ200には、図4にて上述したように、導波路パターンの構成要素に対応した加工情報要素が形成されている。そして、次のステップS201において、マーカ200を撮像し、撮像した加工情報要素から加工情報を取得し、この加工情報に基づいて、後工程のエッチング工程(S6)におけるエッチング条件を算出する。その後、ステップS6でエッチング工程を実施する。これにより、上述したように、例えば、形成した「レジストパターンが所定値より太い」場合、エッチング工程のエッチング条件を「エッチング時間/強度を長く/強くする」と算出(補正)する。その結果、エッチング工程で形成される導波路の幅を所望の値(設計値)にすることができる。 In the above manufacturing process, in this example, the waveguide pattern is formed in the photoresist development process of step S5, and the marker 200 is formed (see FIG. 1). As described above with reference to FIG. 4, this marker 200 is formed with processing information elements corresponding to the constituent elements of the waveguide pattern. Then, in the next step S201, the marker 200 is imaged, processing information is acquired from the imaged processing information element, and etching conditions in the subsequent etching step (S6) are calculated based on this processing information. After that, an etching process is performed in step S6. As a result, as described above, for example, when "the resist pattern formed is thicker than a predetermined value", the etching conditions of the etching process are calculated (corrected) as "increasing/increasing the etching time/strength". As a result, the width of the waveguide formed by the etching process can be set to a desired value (design value).
(加工情報に基づく光学特性予測)
 本発明の一実施形態は、導波路の製造工程の一工程においてマーカを共に形成しそのマーカから加工情報を取得し、その加工情報を用いて最終的に得られる光導波路の光学特性を推定、予測する。
(Prediction of optical properties based on processing information)
In one embodiment of the present invention, a marker is formed together in one step of the waveguide manufacturing process, processing information is obtained from the marker, and the processing information is used to estimate the optical characteristics of the finally obtained optical waveguide. Predict.
 図7は、本発明の実施形態に係る光導波路の製造工程におけるマーカを用いた予測の例を説明する図である。本例は、光導波路の光学特性が、光が伝搬するコアの形状(幅および厚み)と屈折率に応じて定まることを利用したものである。図7に示すように、コア膜の製膜工程後にコアの膜厚および屈折率を取得する。また、エッチング工程の後に、形成されたマーカ200から、コアパターンの幅を加工情報として取得する。そして、これら取得したコアパターンの幅およびコア膜の厚み、並びに屈折率に基づいて最終的に製造される光導波路の光学特性を予測する。なお、図7に示すように、エッチング工程の後における加工情報の取得(撮像)は、この工程で形成されたコア膜18のマーカ200に対応する領域(本明細書では、この領域も「マーカ」という)で、コアパターンの幅および屈折率を撮像、測定し、取得する。 FIG. 7 is a diagram illustrating an example of prediction using markers in the optical waveguide manufacturing process according to the embodiment of the present invention. This example utilizes the fact that the optical characteristics of an optical waveguide are determined according to the shape (width and thickness) and refractive index of a core through which light propagates. As shown in FIG. 7, the film thickness and refractive index of the core are obtained after the process of forming the core film. Further, after the etching process, the width of the core pattern is acquired as processing information from the formed marker 200 . Based on the width of the core pattern, the thickness of the core film, and the refractive index, the optical characteristics of the optical waveguide to be finally manufactured are predicted. As shown in FIG. 7, the acquisition (imaging) of the processing information after the etching process is performed in the area corresponding to the marker 200 of the core film 18 formed in this process (in this specification, this area is also referred to as the "marker 200"). ) to image, measure, and obtain the width and refractive index of the core pattern.
 なお、図7にて上述したようにして得られる加工情報に基づいて、後工程で補正をしてもよい。例えば、コア膜の製膜工程においてコアの膜厚、屈折率およびエッチング工程において、コアパターン幅の加工情報を取得する。そして、そのエッチング工程の追加工程におけるエッチング条件を定める。これにより、例えば、コアの膜厚、屈折率およびエッチング工程後に測定したコア幅から推定された光学特性よりも、コア幅が細いと仮定した場合に推定された光学特性の方が設計値に近い場合。つまり、上述したように、「導波路パターンのコア幅が理想値よりも太い」という加工情報の場合、エッチング工程で、エッチングガスの回り込みを考慮して形成されるコア幅を細くする補正を行うことができる。 Further, based on the processing information obtained as described above with reference to FIG. 7, correction may be made in a post-process. For example, processing information of core film thickness and refractive index in a core film forming process and core pattern width in an etching process are acquired. Then, the etching conditions in the additional process of the etching process are determined. As a result, for example, the optical properties estimated from the core width measured after the etching process are closer to the design values than the optical properties estimated from the core thickness, refractive index, and core width measured after the etching process. case. In other words, as described above, in the case of the processing information that "the core width of the waveguide pattern is thicker than the ideal value", in the etching process, correction is performed to narrow the formed core width in consideration of the wraparound of the etching gas. be able to.
 また、上述の通り、レジストパターン形成段階でのマーカ200の撮像でも同様の補正が可能である。例えば、コアの膜厚、屈折率およびレジストパターン形成工程後に測定したレジストパターン幅から推定された光学特性よりも、レジストパターン幅が細いと仮定した場合に推定された光学特性の方が設計値に近い場合。つまり、「レジストパターン幅が理想値よりも太い」という加工情報の場合、エッチング工程で、エッチングガスの回り込みを考慮して形成されるコア幅を細くする補正を行うことができる。 Also, as described above, the same correction can be performed even when the marker 200 is imaged at the stage of resist pattern formation. For example, the optical properties estimated from the core film thickness, refractive index, and resist pattern width measured after the resist pattern formation process are closer to the design values than the optical properties estimated assuming that the resist pattern width is narrow. if close. That is, in the case of the processing information that "the resist pattern width is thicker than the ideal value", in the etching process, it is possible to make a correction to narrow the formed core width in consideration of the entrainment of the etching gas.
 以上説明したように、マーカ200は、図1に示した光導波路を製造する工程と同じ工程で形成される。そして、マーカ200の加工情報要素から加工情報を取得するタイミングはその使用目的に応じて異なる。上述した例で示したように、エッチング工程、フォトレジスト現像工程の後に加工情報を取得してもよく、また、上部クラッド堆積工程の後に取得してもよく、この場合は最終の導波路パターンに近い加工情報を取得することができる。 As described above, the marker 200 is formed in the same process as the process for manufacturing the optical waveguide shown in FIG. The timing of acquiring the processing information from the processing information element of the marker 200 differs depending on the purpose of use. As shown in the above examples, the processing information may be acquired after the etching process and the photoresist development process, or may be acquired after the upper clad deposition process, in which case the final waveguide pattern is obtained. Close processing information can be acquired.
 また、このような一部の工程において加工情報を取得するのではなく、図1に示した総ての工程でマーカ200から加工情報を取得してもよい。 Also, the processing information may be acquired from the marker 200 in all the steps shown in FIG. 1 instead of acquiring the processing information in some of the steps.
 より好ましいのは、コア堆積工程の後で、かつ上部クラッド堆積工程までである。光導波路構造において、ほとんどの光が通るのがコアであり、コアの形状が一番特性に影響するからであり、また、上部ラッドが堆積された後は、上部クラッド内の構造を撮像する必要があり、この場合は取得するデータにノイズが入る場合があるからである。 More preferably, after the core deposition step and up to the upper clad deposition step. This is because most of the light passes through the core in the optical waveguide structure, and the shape of the core has the greatest effect on the characteristics. In this case, the acquired data may contain noise.
 以下では、以上説明したマーカの具体的な実施例について説明する。 Specific examples of the markers described above will be described below.
(第1実施例)
 本発明の第1実施例として、AWG導波路を製造するときの導波路構成要素とそれに対応するマーカの加工情報要素について、基本構成の説明で上述した図4を参照して説明する。AWG導波路を構成する導波路構成要素である、曲げ101、テーパ102および直線103は、マーカ200の加工情報要素101M、102Mおよび103Mにそれぞれ対応している。
(First embodiment)
As a first embodiment of the present invention, waveguide constituent elements and processing information elements of markers corresponding thereto when manufacturing an AWG waveguide will be described with reference to FIG. 4 described above in the description of the basic configuration. A bend 101, a taper 102 and a straight line 103, which are waveguide constituent elements constituting the AWG waveguide, correspond to the processing information elements 101M, 102M and 103M of the marker 200, respectively.
 導波路構成要素のパラメータは、曲げ101は、導波路幅、曲げ半径および間隔である。テーパ102は、テーパ率、テーパ開始/終了導波路幅である。直線103は、導波路幅である。これらのパラメータに関し、マーカ200において、加工情報要素102Mおよび103Mは、対応するテーパ102および直線103とそれぞれ同じ値(テーパ率およびテーパ開始/終了導波路幅、導波路幅)で形成される。加えて、加工情報要素102Mおよび103Mは、少なくとも直交した2つの向きないし角度で形成される。 The parameters of the waveguide component, bend 101, are waveguide width, bend radius and spacing. Taper 102 is the taper rate, taper start/end waveguide width. A straight line 103 is the waveguide width. Regarding these parameters, in marker 200, machining information elements 102M and 103M are formed with the same values (taper rate and taper start/end waveguide width, waveguide width) as corresponding tapers 102 and straight lines 103, respectively. Additionally, processing information elements 102M and 103M are formed in at least two orthogonal orientations or angles.
 一方、マーカ200において、加工情報要素101Mは、対応する曲げ101と異なるパラメータ値を有することもできる。詳しくは、図5(b)にて上述したように、曲げ半径が実際の導波路構成要素より小さな値とする。導波路幅および間隔は、対応する曲げ101と同じパラメータ値である。加えて、加工情報要素101Mは向きないし角度を異ならせた4か所に形成される。これにより、曲げ101に対応する加工情報要素101Mをマーカ200のサイズ内で形成することができる。 On the other hand, in the marker 200, the machining information element 101M can have different parameter values than the corresponding bend 101. Specifically, as described above with reference to FIG. 5B, the bend radius is set to a value smaller than that of the actual waveguide component. Waveguide width and spacing are the same parameter values as the corresponding bend 101 . In addition, the processing information elements 101M are formed at four locations with different orientations or angles. Thereby, the processing information element 101M corresponding to the bend 101 can be formed within the size of the marker 200. FIG.
 なお、テーパ102は、テーパ率が小さく、テーパ開始/終了導波路幅の差が大きい場合は、テーパが長くなり、加工情報要素102Mサイズが大きくなる。この場合は、パラメータ値を同じにせずに、例えば、テーパ開始/終了導波路幅の差を小さくする。以上のように、導波路構成要素と加工情報要素の総てのパラメータ値が同一でなくてもよいことは上述した通りである。 Note that when the taper rate of the taper 102 is small and the difference between the taper start/end waveguide widths is large, the taper becomes longer and the size of the processing information element 102M becomes larger. In this case, for example, the difference between the taper start/end waveguide widths is reduced without making the parameter values the same. As described above, all the parameter values of the waveguide constituent element and the processing information element need not be the same, as described above.
(第2実施例)
 図8は、第2実施例に係るマーカを示す図であり、MZIスイッチを構成する導波路を製造するときの導波路構成要素とそれに対応するマーカの加工情報要素を示している。MZIスイッチ導波路を構成する導波路構成要素である、曲げ101、直線103、交差104および方向性結合器105は、マーカ200の加工情報要素101M、103M、104Mおよび105Mにそれぞれ対応している。
(Second embodiment)
FIG. 8 is a diagram showing a marker according to the second embodiment, showing waveguide constituent elements and processing information elements of the corresponding markers when manufacturing the waveguides constituting the MZI switch. Waveguide components that make up the MZI switch waveguide, bending 101, straight line 103, intersection 104 and directional coupler 105, correspond to processing information elements 101M, 103M, 104M and 105M of marker 200, respectively.
 導波路構成要素のパラメータは、曲げ101は、導波路幅、曲げ半径であり、直線103は、導波路幅である。また、交差104は、交差角であり、方向性結合器105は、結合部の直線およびそれらの間隔である。これらのパラメータに関し、マーカ200において、これら加工情報要素103M、104Mおよび105Mは、対応する直線、交差および方向性結合器105とそれぞれ同じ値で形成される。加えて、加工情報要素103Mおよび105Mは、少なくとも直交する異なる2つの向きないし角度で形成され、加工情報要素104Mは、異なる2つの向きないし角度で形成される。 The parameters of the waveguide component are the bend 101 is the waveguide width and bend radius, and the straight line 103 is the waveguide width. Also, intersection 104 is the intersection angle, and directional coupler 105 is the straight lines of the coupling and their spacing. Regarding these parameters, in the marker 200 these processing information elements 103M, 104M and 105M are formed with the same values as the corresponding line, intersection and directional coupler 105 respectively. In addition, the processing information elements 103M and 105M are formed in at least two different orthogonal orientations or angles, and the processing information element 104M is formed in two different orientations or angles.
 一方、マーカ200において、加工情報要素101Mは、対応する曲げ101と異なるパラメータ値を有する。詳しくは、図5(b)にて上述したように、曲げ半径が実際の導波路構成要素より小さな値とする。加えて、加工情報要素101Mは向きないし角度を異ならせた4か所に形成される。これにより、曲げに対応する加工情報要素101Mをマーカ200のサイズ内で形成することができる。 On the other hand, in the marker 200, the machining information element 101M has a different parameter value than the corresponding bending 101. Specifically, as described above with reference to FIG. 5B, the bend radius is set to a value smaller than that of the actual waveguide component. In addition, the processing information elements 101M are formed at four locations with different orientations or angles. Thereby, the processing information element 101M corresponding to bending can be formed within the size of the marker 200. FIG.
(第3実施例)
 図9は、第3実施例に係るマーカを示す図であり、MZIスイッチを構成する導波路を製造するときの導波路構成要素とそれに対応するマーカの加工情報要素を示している。図8にて上述した第3実施例に係るマーカとほぼ同様であり、以下では異なる点について説明する。
(Third embodiment)
FIG. 9 is a diagram showing a marker according to the third embodiment, showing waveguide constituent elements and processing information elements of the corresponding markers when manufacturing the waveguides constituting the MZI switch. It is substantially the same as the marker according to the third embodiment described above with reference to FIG. 8, and different points will be described below.
 MZIスイッチでは、例えば、PILOSS構成のように、MZI導波路や交差104は同じ方向に沿って配置されることが多い。そのため、マーカ200の加工情報要素も、実際に配置される方向と同一にするのが望ましい。MZIスイッチの特性である、ON/OFFの消光比とその波長依存性、他ポートへの漏れ光などを、MZIの構成と交差によって決定できるからである。 In MZI switches, the MZI waveguides and crossovers 104 are often arranged along the same direction, for example, in the PILOSS configuration. Therefore, it is desirable to make the processing information element of the marker 200 the same as the direction in which it is actually arranged. This is because the characteristics of the MZI switch, such as the ON/OFF extinction ratio and its wavelength dependence, and light leaking to other ports, can be determined by the MZI configuration and intersection.

Claims (9)

  1.  光導波路を製造するための製造方法であって、
     光導波路を製造する工程において、当該光導波路の導波路構成要素に対応した加工情報要素を、当該導波路構成要素と同じ工程で形成し、前記加工情報要素を含むマーカを形成する工程、を有することを特徴とする製造方法。
    A manufacturing method for manufacturing an optical waveguide, comprising:
    In the step of manufacturing an optical waveguide, forming a processing information element corresponding to a waveguide component of the optical waveguide in the same process as the waveguide component, and forming a marker including the processing information element. A manufacturing method characterized by:
  2.  光導波路を製造するための複数の工程を時系列で実行する製造方法であって、
     前記複数の工程において、光導波路の導波路構成要素に対応した加工情報要素を、当該導波路構成要素と同じ工程で形成し、前記加工情報要素を含むマーカを形成する工程と、
     前記複数の工程を実行する間に、前記複数の工程における第i工程までに形成された導波路構成要素に対応する加工情報要素を計測する工程と、計測した結果に基づいて前記第i工程より時系列で後の第j工程での導波路構成要素の形成を制御する工程と、を実行する工程と、
    を有することを特徴とする製造方法。
    A manufacturing method for executing a plurality of steps for manufacturing an optical waveguide in chronological order,
    forming a processing information element corresponding to a waveguide component of an optical waveguide in the same process as the waveguide component in the plurality of steps, and forming a marker including the processing information element;
    a step of measuring a processing information element corresponding to a waveguide component formed up to the i-th step in the plurality of steps while performing the plurality of steps; controlling the formation of the waveguide component in a subsequent j-th step in chronological order;
    A manufacturing method characterized by having
  3.  前記導波路構成要素と前記加工情報要素は、同じパラメータ値を有することを特徴とする請求項1または2に記載の製造方法。 The manufacturing method according to claim 1 or 2, wherein the waveguide component and the processing information element have the same parameter value.
  4.  前記導波路構成要素と前記加工情報要素は、異なるパラメータ値を有することを特徴とする請求項1または2に記載の製造方法。 The manufacturing method according to claim 1 or 2, wherein the waveguide component and the processing information element have different parameter values.
  5.  前記導波路構成要素と前記加工情報要素は、形成される要素の大きさが異なるパラメータ値を有することを特徴とする請求項4に記載の製造方法。 The manufacturing method according to claim 4, characterized in that the waveguide component and the processing information element have parameter values that differ in the sizes of the formed elements.
  6.  前記導波路構成要素と前記加工情報要素は、形成される要素の向きが異なるパラメータ値を有することを特徴とする請求項4に記載の製造方法。 The manufacturing method according to claim 4, wherein the waveguide component and the processing information element have parameter values that differ in the orientation of the formed element.
  7.  1つの前記導波路構成要素に対応して複数の前記加工情報要素が形成されることを特徴とする請求項1または2に記載の製造方法。 The manufacturing method according to claim 1 or 2, characterized in that a plurality of said processing information elements are formed corresponding to one said waveguide component.
  8.  光導波路を製造するための複数の工程を時系列で実行する製造装置であって、
     前記複数の工程において、光導波路の導波路構成要素に対応した加工情報要素を、当該導波路構成要素と同じ工程で形成し、前記加工情報要素を含むマーカを形成するよう制御する手段と、
     前記複数の工程を実行する間に、前記複数の工程における第i工程までに形成された導波路構成要素に対応する加工情報要素を計測する工程と、計測した結果に基づいて前記第i工程より時系列で後の第j工程での導波路構成要素の形成を制御する工程と、を実行する手段と、
    を有することを特徴とする製造装置。
    A manufacturing apparatus for executing a plurality of steps for manufacturing an optical waveguide in time series,
    means for forming, in the plurality of steps, a processing information element corresponding to a waveguide component of an optical waveguide in the same step as the waveguide component, and controlling to form a marker including the processing information element;
    a step of measuring a processing information element corresponding to a waveguide component formed up to the i-th step in the plurality of steps while performing the plurality of steps; controlling the formation of the waveguide component in the j-th step later in chronological order;
    A manufacturing apparatus characterized by comprising:
  9.  光導波路デバイスであって、
     光導波路と、当該光導波路の導波路構成要素に対応した加工情報要素を含むマーカであって、前記マーカは、前記光導波路パターンの一辺の長さの1/10以下のサイズを有したことを特徴とする光導波路デバイス。
    An optical waveguide device,
    A marker including an optical waveguide and a processing information element corresponding to a waveguide component of the optical waveguide, wherein the marker has a size of 1/10 or less of the length of one side of the optical waveguide pattern. An optical waveguide device characterized by:
PCT/JP2021/007520 2021-02-26 2021-02-26 Optical waveguide device and optical waveguide manufacturing apparatus and manufacturing method WO2022180835A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023501995A JPWO2022180835A1 (en) 2021-02-26 2021-02-26
PCT/JP2021/007520 WO2022180835A1 (en) 2021-02-26 2021-02-26 Optical waveguide device and optical waveguide manufacturing apparatus and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/007520 WO2022180835A1 (en) 2021-02-26 2021-02-26 Optical waveguide device and optical waveguide manufacturing apparatus and manufacturing method

Publications (1)

Publication Number Publication Date
WO2022180835A1 true WO2022180835A1 (en) 2022-09-01

Family

ID=83048707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/007520 WO2022180835A1 (en) 2021-02-26 2021-02-26 Optical waveguide device and optical waveguide manufacturing apparatus and manufacturing method

Country Status (2)

Country Link
JP (1) JPWO2022180835A1 (en)
WO (1) WO2022180835A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020136526A1 (en) * 2001-01-25 2002-09-26 Pottebaum Indira S. Fluorinated photopolymer composition and waveguide device
JP2003232948A (en) * 2001-12-03 2003-08-22 Furukawa Electric Co Ltd:The Method of manufacturing optical waveguide, optical waveguide device using the method, and waveguide type optical multiplexer/demultiplexer
US20090216474A1 (en) * 2008-02-21 2009-08-27 Southwell William H Optical monitor for rugate filter deposition
JP2010123697A (en) * 2008-11-18 2010-06-03 Oki Semiconductor Co Ltd Method of producing semiconductor device and soq substrate used in the method
JP2019060988A (en) * 2017-09-25 2019-04-18 日本電信電話株式会社 Si PHOTONICS OPTICAL CIRCUIT AND MANUFACTURING METHOD THEREOF

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020136526A1 (en) * 2001-01-25 2002-09-26 Pottebaum Indira S. Fluorinated photopolymer composition and waveguide device
JP2003232948A (en) * 2001-12-03 2003-08-22 Furukawa Electric Co Ltd:The Method of manufacturing optical waveguide, optical waveguide device using the method, and waveguide type optical multiplexer/demultiplexer
US20090216474A1 (en) * 2008-02-21 2009-08-27 Southwell William H Optical monitor for rugate filter deposition
JP2010123697A (en) * 2008-11-18 2010-06-03 Oki Semiconductor Co Ltd Method of producing semiconductor device and soq substrate used in the method
JP2019060988A (en) * 2017-09-25 2019-04-18 日本電信電話株式会社 Si PHOTONICS OPTICAL CIRCUIT AND MANUFACTURING METHOD THEREOF

Also Published As

Publication number Publication date
JPWO2022180835A1 (en) 2022-09-01

Similar Documents

Publication Publication Date Title
Bogaerts et al. Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology
Bogaerts et al. Silicon-on-insulator spectral filters fabricated with CMOS technology
Li et al. Silica-based optical integrated circuits
CA2673455C (en) Method for designing wave propagation circuits and computer program therefor
JP2004234031A (en) Planar optical waveguide element
KR20070036189A (en) System and tapered waveguide for improving light coupling efficiency between optical fibers and integrated planar waveguides and method of manufacturing same
JP6572175B2 (en) Waveguide type optical coupler
Bolk et al. Deep UV lithography process in generic InP integration for arrayed waveguide gratings
JP2003232948A (en) Method of manufacturing optical waveguide, optical waveguide device using the method, and waveguide type optical multiplexer/demultiplexer
JP2008261952A (en) Waveguides crossing each other three-dimensionally
JP2018022146A (en) Optical waveguide interferometer
Nuck et al. Low-Loss Vertical MMI Coupler for 3D Photonic Integration.
US20230259017A1 (en) Photomask, Optical-Waveguide, Optical Circuit and Method of Manufacturing an Optical-Waveguide
WO2022180835A1 (en) Optical waveguide device and optical waveguide manufacturing apparatus and manufacturing method
WO2022180827A1 (en) Ai prediction system for optical characteristics
WO2022180839A1 (en) Optical waveguide device manufacturing method and manufacturing system
WO2022180838A1 (en) Optical waveguide device production method and production system
WO2022180840A1 (en) Optical integrated circuit manufacturing system and manufacturing method
JP7227542B2 (en) Optical modulator manufacturing method
WO2022180832A1 (en) Optical integrated circuit manufacturing system and manufacturing method
WO2022180829A1 (en) Non-contact measurement method
WO2022180830A1 (en) Contactless multilayer film measurement method
WO2022180828A1 (en) Method and system for manufacturing optical waveguide device
WO2024009457A1 (en) Optical waveguide device and method for manufacturing same
WO2023105681A1 (en) Non-contact measurement method and estimation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927935

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023501995

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21927935

Country of ref document: EP

Kind code of ref document: A1