WO2022180795A1 - Robot - Google Patents

Robot Download PDF

Info

Publication number
WO2022180795A1
WO2022180795A1 PCT/JP2021/007382 JP2021007382W WO2022180795A1 WO 2022180795 A1 WO2022180795 A1 WO 2022180795A1 JP 2021007382 W JP2021007382 W JP 2021007382W WO 2022180795 A1 WO2022180795 A1 WO 2022180795A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
shaft
drive motor
force sensor
arm
Prior art date
Application number
PCT/JP2021/007382
Other languages
French (fr)
Japanese (ja)
Inventor
宗 石川
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to PCT/JP2021/007382 priority Critical patent/WO2022180795A1/en
Priority to JP2023501960A priority patent/JPWO2022180795A1/ja
Publication of WO2022180795A1 publication Critical patent/WO2022180795A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices

Definitions

  • This specification discloses a robot.
  • Patent Document 1 a robot arm with a force sensor attached has been proposed (see Patent Document 1, for example).
  • the main purpose of the present disclosure is to prevent the force sensor from detecting unintended force due to interference between the inner ring of the bearing member and the load portion.
  • the robot of the present disclosure is a robot arm; a drive motor fixed to the robot arm; an outer ring of a bearing member fixed to the robot arm; an inner ring of the bearing member that rotates along the outer ring; a support for a force sensor fixed to the inner ring and rotated by the drive motor; an action portion of the force sensor supported by the support portion; a load portion coupled to the action portion and inserted through the inner ring;
  • the gist is to provide
  • the supporting portion of the force sensor rotated by the drive motor is fixed to the inner ring of the bearing member, and the load portion is connected to the action portion of the force sensor by inserting it through the inner ring of the bearing member. Accordingly, it is possible to prevent the force sensor from detecting an unintended force due to interference between the inner ring of the bearing member and the load portion.
  • FIG. 2 is a schematic configuration diagram of the tip of the robot; It is a sectional view of a robot tip part.
  • 1 is a schematic configuration diagram of a force sensor;
  • FIG. 5 is a schematic configuration diagram of a robot tip portion according to another embodiment;
  • FIG. 1 is an external perspective view of the robot.
  • FIG. 2 is a side view of the robot body.
  • FIG. 3 is a schematic configuration diagram of the tip of the robot.
  • FIG. 4 is a cross-sectional view of the tip of the robot.
  • the horizontal direction is the X-axis
  • the front-rear direction is the Y-axis
  • the vertical direction is the Z-axis.
  • the robot 10 of this embodiment includes a robot body 20 and a force sensor 70, as shown in FIGS.
  • the robot body 20 includes a first arm 21, a second arm 22, a base 25, a base 26, a first arm drive motor 35, a second arm drive motor 36, a posture It includes a holding device 37 , a lifting device 40 and a rotating three-axis mechanism 50 .
  • the first arm 21, the second arm 22, and the rotating three-axis mechanism 50 may be simply referred to as arms.
  • the base end of the first arm 21 is connected to the base 25 via a first joint shaft 31 extending in the vertical direction (Z-axis direction).
  • a rotation shaft of the first arm drive motor 35 is connected to the first joint shaft 31 .
  • the first arm drive motor 35 rotationally drives the first joint shaft 31 to rotate (rotate) the first arm 21 along the horizontal plane (XY plane) with the first joint shaft 31 as a fulcrum.
  • the proximal end of the second arm 22 is connected to the distal end of the first arm 21 via a second joint shaft 32 extending in the vertical direction (Z-axis direction).
  • a rotation shaft of the second arm drive motor 36 is connected to the second joint shaft 32 .
  • the second arm drive motor 36 rotates (revolves) the second arm 22 along the horizontal plane with the second joint shaft 32 as a fulcrum by rotationally driving the second joint shaft 32 .
  • the base 25 is provided so as to be able to move up and down with respect to the base 26 by an elevating device 40 installed on the base 26 .
  • the lifting device 40 includes a slider 41 fixed to the base 25 and a guide member 42 fixed to the base 26 and extending vertically to guide the movement of the slider 41 .
  • a ball screw shaft 43 (elevating shaft) extending vertically and screwed into a ball screw nut (not shown) fixed to the slider 41; And prepare.
  • the elevator device 40 moves the base 25 fixed to the slider 41 up and down along the guide member 42 by rotationally driving the ball screw shaft 43 by the elevator drive motor 44 .
  • the rotating 3-axis mechanism 50 is connected to the distal end of the second arm 22 via a posture holding shaft 33 extending in the vertical direction.
  • the rotating three-axis mechanism 50 includes a first rotating shaft 51, a second rotating shaft 52, and a third rotating shaft (tip shaft 53) that are orthogonal to each other, a first rotating shaft drive motor 55 that rotates the first rotating shaft 51, A second rotary shaft drive motor 56 that rotates the second rotary shaft 52 and a tip shaft drive device 60 that drives the tip shaft 53 are provided.
  • the first rotating shaft 51 is supported in a posture perpendicular to the posture holding shaft 33 .
  • the second rotating shaft 52 is supported in an orthogonal posture with respect to the first rotating shaft 51 .
  • the third rotating shaft (tip shaft 53 ) is supported in a posture orthogonal to the second rotating shaft 52 .
  • the tip shaft 53 holds an end effector EF as a load portion so as to be coaxial with the tip shaft 53a.
  • the robot main body 20 performs translational motion in three directions of the X-axis direction, the Y-axis direction, and the Z-axis direction by the first arm drive motor 35, the second arm drive motor 36, and the lifting device 40, and rotates in three directions.
  • the tip shaft 53 that is, the end effector EF can be moved in any posture and in any desired position. position can be moved.
  • the posture holding device 37 holds the posture of the rotating three-axis mechanism 50 (orientation of the first rotating shaft 51) in a constant direction regardless of the postures of the first arm 21 and the second arm 22.
  • the posture holding device 37 maintains the posture based on the rotation angle of the first joint shaft 31 and the rotation angle of the second joint shaft 32 so that the axial direction of the first rotating shaft 51 is always in the left-right direction (X-axis direction). It controls the rotation angle of the holding shaft 33 .
  • control of translational motion in three directions and control of rotational motion in three directions can be performed independently of each other, facilitating control.
  • the distal end shaft driving device 60 includes a frame 61, a driving motor 62, a power transmission mechanism 63, a connecting shaft 65, a bearing member 67, a gripping member 69, and a force sensor 70, as shown in FIGS.
  • the frame 61 is a rectangular frame fixed to the second rotating shaft 52 and rotates integrally with the second rotating shaft 52 when the second rotating shaft 52 is driven.
  • the drive motor 62 is fixed to the frame 61 so that its rotating shaft 62 a is parallel to the axial direction of the second rotating shaft 52 .
  • the connecting shaft 65 is supported by the frame 61 so as to extend vertically. That is, the connecting shaft 65 extends in a direction orthogonal to the rotation shaft 62 a of the drive motor 62 and the second rotation shaft 52 .
  • the power transmission mechanism 63 has a bevel gear 63a attached to the rotating shaft 62a of the drive motor 62, and a bevel gear 63b attached to the connecting shaft 65 and meshing with the bevel gear 63a.
  • the power transmission mechanism 63 connects the rotating shaft 62a of the drive motor 62 and the connecting shaft 65, which are perpendicular to each other, to transmit power from the driving motor 62 to the connecting shaft 65. As shown in FIG.
  • the force sensor 70 detects force components acting in the directions of the X-, Y-, and Z-axes as external forces, and torque components acting around the respective axes.
  • the force sensor 70 includes an action portion 71 to which force acts, an annular support portion 72 that supports the action portion 71 on the inner peripheral side, and a force between the action portion 71 and the support portion 72 . and a detection portion 73 that is arranged at a predetermined interval in the circumferential direction and detects a force acting on the action portion 71 .
  • the upper surface of the support portion 72 is superimposed on and connected to the lower surface of the flange portion 65 a formed at the lower end of the connecting shaft 65 .
  • the lower surface of the support portion 72 is superimposed and connected to the upper surface of the flange portion 66a formed at the upper end of the cylindrical fixing member 66.
  • a tubular outer peripheral surface of the fixing member 66 is fixed to an inner peripheral surface of an inner ring 67 a of the bearing member 67 . That is, the support portion 72 is fixed to the inner ring 67 a of the bearing member 67 via the fixing member 66 .
  • An outer ring 67 b of the bearing member 67 is fixed to the frame 61 . Thereby, the connecting shaft 65 and the support portion 72 of the force sensor 70 are rotatably supported by the frame 61 via the bearing member 67 .
  • the lower surface of the action portion 71 is connected to the upper end of the tip shaft 53, and the lower end of the tip shaft 53 is attached with an end effector EF as a load portion via a holding portion (not shown). Further, the upper surface of the action portion 71 is connected to the proximal end portion of the gripping member 69 as the second load portion.
  • the gripping member 69 is provided so as to extend radially outward from the connecting shaft 65 .
  • the end effector EF is connected to the lower surface of the acting portion 71 of the force sensor 70 via the tip shaft 53, and the gripping member 69 is directly connected to the upper surface of the acting portion 71. It is configured such that force acts on the action portion 71 from both the upper surface and the lower surface. Thereby, the force received from the end effector EF and the force received from the grasping member 69 can be detected by the single force sensor 70 .
  • the tip shaft 53 is inserted through the inner ring 67a of the bearing member 67, as shown in FIG.
  • the cylindrical outer peripheral surface of the fixed member 66 connected to the support portion 72 of the force sensor 70 is fixed to the inner peripheral surface of the inner ring 67a, and the distal end shaft 53 extends from the inner peripheral surface of the fixed member 66. is inserted into the As shown in FIG. 4, a predetermined radial gap is provided between the cylindrical inner peripheral surface of the fixing member 66 and the outer peripheral surface of the tip shaft 53 .
  • the distal end shaft 53 connected to the acting portion 71 of the force sensor 70 and the fixed member 66 (inner ring 67a) fixed to the support portion 72 of the force sensor 70 are prevented from interfering with each other, and the force sense is generated by the interference. It is possible to prevent the sensor 70 from detecting an unintended force.
  • the rotating shaft 62a of the driving motor 62 is arranged on a different shaft from the distal end shaft 53, and the end effector EF can be operated. can be attached coaxially with the tip shaft 53 .
  • the shaft length can be further shortened compared to a configuration in which the rotation shaft 62a of the drive motor 62, the distal end shaft 53, and the end effector EF are arranged coaxially.
  • a grasping member 69 is connected to the upper surface of the acting portion 71 of the force sensor 70 . Therefore, when the operator manually moves the robot body 20 and performs direct teaching to record the motion of the robot body 20, the operator can directly move the arm by gripping the grip member 69, which facilitates the operation. . Further, at this time, the force sensor 70 can detect the external force applied from the gripping member 69, so that the motion of the robot body 20 can be recorded more accurately.
  • direct teaching can also be performed by gripping the end effector EF and moving the robot body 20 . In this case, the gripping member 69 may be omitted.
  • the first arm 21, the second arm 22, and the rotating three-axis mechanism 50 of the present embodiment correspond to the robot arm of the present disclosure
  • the inner ring 67a of the bearing member 67 corresponds to the inner ring of the bearing member
  • the bearing member 67 corresponds to the outer ring of the bearing member
  • the supporting portion 72 of the force sensor 70 corresponds to the supporting portion of the force sensor
  • the acting portion 71 of the force sensor 70 corresponds to the acting portion of the force sensor
  • the tip shaft 53 and the end effector EF correspond to the load section.
  • the gripping member 69 corresponds to the second load section.
  • the connecting shaft 65 corresponds to a connecting member
  • the frame 61 corresponds to a frame
  • the power transmission mechanism 63 corresponds to a power transmission member.
  • the bevel gears 63a and 63b correspond to bevel gears.
  • the distal end shaft driving device 60 includes a driving motor 62 having a rotation shaft 62a arranged so as to be orthogonal to a connecting shaft 65 coaxial with the distal end shaft 53, and bevel gears 63a, 63a.
  • a power transmission mechanism 63 that connects the rotating shaft 62 a and the connecting shaft 65 to transmit the power from the drive motor 62 to the connecting shaft 65 is provided.
  • a distal end shaft driving device 160 includes a driving motor 162 arranged such that a rotating shaft 162a is parallel to a connecting shaft 165, and a belt 163a.
  • a power transmission mechanism 163 that connects the parallel rotating shaft 162 and the connecting shaft 165 to transmit power from the driving motor 162 to the connecting shaft 165 may be provided.
  • the distal end shaft driving device 60 has the load portions connected to both upper and lower surfaces of the action portion 71 of the force sensor 70, but the load portion is connected to only one of the surfaces.
  • the robot 10 is configured as a seven-axis articulated robot capable of translational motion in three directions and rotational motion in three directions.
  • the number of axes can be any number.
  • the robot 10 may be configured by a so-called vertical articulated robot, a horizontal articulated robot, or the like.
  • the support portion of the force sensor rotated by the drive motor is fixed to the inner ring of the bearing member, and the load portion is inserted through the inner ring of the bearing member to act on the force sensor acting portion. concatenate Accordingly, it is possible to prevent the force sensor from detecting an unintended force due to interference between the inner ring of the bearing member and the load portion.
  • the robot of the present disclosure may further include a second load section connected to a surface of the action section opposite to the surface to which the load section is connected.
  • the force sensor can detect the force applied from the load section and the second load section.
  • a connecting member that connects the rotation shaft of the drive motor and the support portion is provided, and the force sensor has an annular shape that supports the action portion on which a force acts on an inner peripheral side.
  • the outer ring is fixed to the frame of the robot arm, and the connecting member is connected to the rotation shaft of the drive motor via a power transmission member, and is driven by power from the drive motor. It may be connected to the support so as to rotate coaxially with the load.
  • the power transmission member is a bevel gear, and the rotation shaft of the drive motor is perpendicular to the axial direction of the connection member. and connected to the connecting member via the bevel gear.
  • the power transmission member may be a belt, and the rotating shaft of the drive motor may be arranged parallel to the axial direction of the connecting member and connected to the connecting member via the belt.
  • the present disclosure can be used in the robot manufacturing industry and the like.

Abstract

This robot comprises: a robot arm; a drive motor affixed to the robot arm; a bearing member outer ring affixed to the robot arm; a bearing member inner ring that rotates along the outer ring; a force sensor support part that is affixed to the inner ring and rotates due to the drive motor; a force sensor action part supported by the supporting part; and a load part that is linked to the action part and passes through the inner ring.

Description

ロボットrobot
 本明細書は、ロボットについて開示する。 This specification discloses a robot.
 従来、ロボットアームに力覚センサが取り付けられたものが提案されている(例えば、特許文献1参照)。 Conventionally, a robot arm with a force sensor attached has been proposed (see Patent Document 1, for example).
特表2019-504680号Special table 2019-504680
 負荷部(エンドエフェクタ)と駆動モータとの間に介在するようにロボットアームに力覚センサを取り付ける場合、軸受け部材や負荷部の配置によっては、軸受け部材の内輪と負荷部との干渉によって、意図しない力が力覚センサに検出されるおそれがある。 When a force sensor is attached to the robot arm so as to be interposed between the load section (end effector) and the drive motor, depending on the arrangement of the bearing member and the load section, the interference between the inner ring of the bearing member and the load section may There is a risk that the force sensor will detect an undesired force.
 本開示は、軸受け部材の内輪と負荷部との干渉によって意図せぬ力を力覚センサが検知してしまうのを防止することを主目的とする。 The main purpose of the present disclosure is to prevent the force sensor from detecting unintended force due to interference between the inner ring of the bearing member and the load portion.
 本開示は、上述の主目的を達成するために以下の手段を採った。 This disclosure has taken the following means to achieve the above-mentioned main objectives.
 本開示のロボットは、
 ロボットアームと、
 前記ロボットアームに固定された駆動モータと、
 前記ロボットアームに固定された軸受け部材の外輪と、
 前記外輪に沿って回転する前記軸受け部材の内輪と、
 前記内輪に固定され前記駆動モータにより回転する力覚センサの支持部と、
 前記支持部に支持される前記力覚センサの作用部と、
 前記作用部に連結され前記内輪に挿通された負荷部と、
 を備えることを要旨とする。
The robot of the present disclosure is
a robot arm;
a drive motor fixed to the robot arm;
an outer ring of a bearing member fixed to the robot arm;
an inner ring of the bearing member that rotates along the outer ring;
a support for a force sensor fixed to the inner ring and rotated by the drive motor;
an action portion of the force sensor supported by the support portion;
a load portion coupled to the action portion and inserted through the inner ring;
The gist is to provide
 この本開示のロボットでは、駆動モータにより回転する力覚センサの支持部を軸受け部材の内輪に固定すると共に、軸受け部材の内輪に挿通させて力覚センサの作用部に負荷部を連結する。これにより、軸受け部材の内輪と負荷部との干渉によって意図せぬ力を力覚センサが検知してしまうのを防止することができる。 In the robot of the present disclosure, the supporting portion of the force sensor rotated by the drive motor is fixed to the inner ring of the bearing member, and the load portion is connected to the action portion of the force sensor by inserting it through the inner ring of the bearing member. Accordingly, it is possible to prevent the force sensor from detecting an unintended force due to interference between the inner ring of the bearing member and the load portion.
本実施形態のロボットの外観斜視図である。It is an external appearance perspective view of the robot of this embodiment. ロボット本体の側面図である。It is a side view of a robot main body. ロボット先端部の概略構成図である。FIG. 2 is a schematic configuration diagram of the tip of the robot; ロボット先端部の断面図である。It is a sectional view of a robot tip part. 力覚センサの概略構成図である。1 is a schematic configuration diagram of a force sensor; FIG. 他の実施形態に係るロボット先端部の概略構成図である。FIG. 5 is a schematic configuration diagram of a robot tip portion according to another embodiment;
 次に、本開示を実施するための形態について図面を参照しながら説明する。図1は、ロボットの外観斜視図である。図2は、ロボット本体の側面図である。図3は、ロボット先端部の概略構成図である。図4は、ロボット先端部の断面図である。なお、図1中、左右方向がX軸であり、前後方向がY軸方向であり、上下方向がZ軸方向である。 Next, a mode for carrying out the present disclosure will be described with reference to the drawings. FIG. 1 is an external perspective view of the robot. FIG. 2 is a side view of the robot body. FIG. 3 is a schematic configuration diagram of the tip of the robot. FIG. 4 is a cross-sectional view of the tip of the robot. In FIG. 1, the horizontal direction is the X-axis, the front-rear direction is the Y-axis, and the vertical direction is the Z-axis.
 本実施形態のロボット10は、図1~図3に示すように、ロボット本体20と、力覚センサ70と、を備える。 The robot 10 of this embodiment includes a robot body 20 and a force sensor 70, as shown in FIGS.
 ロボット本体20は、図2に示すように、第1アーム21と、第2アーム22と、ベース25と、基台26と、第1アーム駆動モータ35と、第2アーム駆動モータ36と、姿勢保持装置37と、昇降装置40と、回転3軸機構50と、を備える。なお、第1アーム21と第2アーム22と回転3軸機構50とは、単にアームと呼ぶ場合がある。 As shown in FIG. 2, the robot body 20 includes a first arm 21, a second arm 22, a base 25, a base 26, a first arm drive motor 35, a second arm drive motor 36, a posture It includes a holding device 37 , a lifting device 40 and a rotating three-axis mechanism 50 . Note that the first arm 21, the second arm 22, and the rotating three-axis mechanism 50 may be simply referred to as arms.
 第1アーム21の基端部は、上下方向(Z軸方向)に延在する第1関節軸31を介してベース25に連結されている。第1アーム駆動モータ35の回転軸は、第1関節軸31に接続されている。第1アーム駆動モータ35は、第1関節軸31を回転駆動することにより、第1関節軸31を支点に第1アーム21を水平面(XY平面)に沿って回動(旋回)させる。 The base end of the first arm 21 is connected to the base 25 via a first joint shaft 31 extending in the vertical direction (Z-axis direction). A rotation shaft of the first arm drive motor 35 is connected to the first joint shaft 31 . The first arm drive motor 35 rotationally drives the first joint shaft 31 to rotate (rotate) the first arm 21 along the horizontal plane (XY plane) with the first joint shaft 31 as a fulcrum.
 第2アーム22の基端部は、上下方向(Z軸方向)に延在する第2関節軸32を介して第1アーム21の先端部に連結されている。第2アーム駆動モータ36の回転軸は、第2関節軸32に接続されている。第2アーム駆動モータ36は、第2関節軸32を回転駆動することにより、第2関節軸32を支点に第2アーム22を水平面に沿って回動(旋回)させる。 The proximal end of the second arm 22 is connected to the distal end of the first arm 21 via a second joint shaft 32 extending in the vertical direction (Z-axis direction). A rotation shaft of the second arm drive motor 36 is connected to the second joint shaft 32 . The second arm drive motor 36 rotates (revolves) the second arm 22 along the horizontal plane with the second joint shaft 32 as a fulcrum by rotationally driving the second joint shaft 32 .
 ベース25は、基台26上に設置された昇降装置40により、基台26に対して昇降可能に設けられている。昇降装置40は、図1および図2に示すように、ベース25に固定されたスライダ41と、基台26に固定されると共に上下方向に延出してスライダ41の移動をガイドするガイド部材42と、上下方向に延出すると共にスライダ41に固定されたボールねじナット(図示せず)に螺合されるボールねじ軸43(昇降軸)と、ボールねじ軸43を回転駆動する昇降用駆動モータ44と、を備える。昇降装置40は、昇降用駆動モータ44によりボールねじ軸43を回転駆動することにより、スライダ41に固定されたベース25をガイド部材42に沿って上下に移動させる。 The base 25 is provided so as to be able to move up and down with respect to the base 26 by an elevating device 40 installed on the base 26 . As shown in FIGS. 1 and 2, the lifting device 40 includes a slider 41 fixed to the base 25 and a guide member 42 fixed to the base 26 and extending vertically to guide the movement of the slider 41 . , a ball screw shaft 43 (elevating shaft) extending vertically and screwed into a ball screw nut (not shown) fixed to the slider 41; And prepare. The elevator device 40 moves the base 25 fixed to the slider 41 up and down along the guide member 42 by rotationally driving the ball screw shaft 43 by the elevator drive motor 44 .
 回転3軸機構50は、上下方向に延在する姿勢保持用軸33を介して第2アーム22の先端部に連結されている。回転3軸機構50は、互いに直交する第1回転軸51,第2回転軸52および第3回転軸(先端軸53)と、第1回転軸51を回転させる第1回転軸駆動モータ55と、第2回転軸52を回転させる第2回転軸駆動モータ56と、先端軸53を駆動する先端軸駆動装置60と、を備える。第1回転軸51は、姿勢保持用軸33に対して直交姿勢で支持されている。第2回転軸52は、第1回転軸51に対して直交姿勢で支持されている。第3回転軸(先端軸53)は、第2回転軸52に対して直交姿勢で支持されている。先端軸53には、当該先端軸53aと同軸上に位置するように負荷部としてのエンドエフェクタEFが保持される。 The rotating 3-axis mechanism 50 is connected to the distal end of the second arm 22 via a posture holding shaft 33 extending in the vertical direction. The rotating three-axis mechanism 50 includes a first rotating shaft 51, a second rotating shaft 52, and a third rotating shaft (tip shaft 53) that are orthogonal to each other, a first rotating shaft drive motor 55 that rotates the first rotating shaft 51, A second rotary shaft drive motor 56 that rotates the second rotary shaft 52 and a tip shaft drive device 60 that drives the tip shaft 53 are provided. The first rotating shaft 51 is supported in a posture perpendicular to the posture holding shaft 33 . The second rotating shaft 52 is supported in an orthogonal posture with respect to the first rotating shaft 51 . The third rotating shaft (tip shaft 53 ) is supported in a posture orthogonal to the second rotating shaft 52 . The tip shaft 53 holds an end effector EF as a load portion so as to be coaxial with the tip shaft 53a.
 本実施形態では、ロボット本体20は、第1アーム駆動モータ35と第2アーム駆動モータ36と昇降装置40とによるX軸方向,Y軸方向およびZ軸方向の3方向の並進運動と、回転3軸機構50によるX軸回り(ピッチング),Y軸回り(ローリング)およびZ軸回り(ヨーイング)の3方向の回転運動との組み合わせにより、先端軸53、すなわちエンドエフェクタEFを任意の姿勢で任意の位置へ移動させることができる。 In this embodiment, the robot main body 20 performs translational motion in three directions of the X-axis direction, the Y-axis direction, and the Z-axis direction by the first arm drive motor 35, the second arm drive motor 36, and the lifting device 40, and rotates in three directions. In combination with rotational motion in three directions around the X-axis (pitching), around the Y-axis (rolling), and around the Z-axis (yawing) by the shaft mechanism 50, the tip shaft 53, that is, the end effector EF can be moved in any posture and in any desired position. position can be moved.
 姿勢保持装置37は、第1アーム21および第2アーム22の姿勢によらず回転3軸機構50の姿勢(第1回転軸51の向き)を一定の向きに保持するものである。姿勢保持装置37は、第1回転軸51の軸方向が常時、左右方向(X軸方向)となるように第1関節軸31の回転角度と第2関節軸32の回転角度とに基づいて姿勢保持用軸33の回転角度を制御する。これにより、3方向の並進運動の制御と3方向の回転運動の制御とをそれぞれ独立して行なうことが可能となり、制御が容易となる。 The posture holding device 37 holds the posture of the rotating three-axis mechanism 50 (orientation of the first rotating shaft 51) in a constant direction regardless of the postures of the first arm 21 and the second arm 22. The posture holding device 37 maintains the posture based on the rotation angle of the first joint shaft 31 and the rotation angle of the second joint shaft 32 so that the axial direction of the first rotating shaft 51 is always in the left-right direction (X-axis direction). It controls the rotation angle of the holding shaft 33 . As a result, control of translational motion in three directions and control of rotational motion in three directions can be performed independently of each other, facilitating control.
 先端軸駆動装置60は、図2~図4に示すように、フレーム61と駆動モータ62と動力伝達機構63と連結軸65と軸受け部材67と把持部材69と力覚センサ70とを備える。 The distal end shaft driving device 60 includes a frame 61, a driving motor 62, a power transmission mechanism 63, a connecting shaft 65, a bearing member 67, a gripping member 69, and a force sensor 70, as shown in FIGS.
 フレーム61は、第2回転軸52に固定された矩形状のフレームであり、第2回転軸52の駆動により第2回転軸52と一体となって回転する。駆動モータ62は、その回転軸62aが第2回転軸52の軸線方向と平行となるようにフレーム61に固定されている。連結軸65は、上下方向に延在するようにフレーム61に支持されている。すなわち、連結軸65は、駆動モータ62の回転軸62aおよび第2回転軸52に対して直交方向に延在する。 The frame 61 is a rectangular frame fixed to the second rotating shaft 52 and rotates integrally with the second rotating shaft 52 when the second rotating shaft 52 is driven. The drive motor 62 is fixed to the frame 61 so that its rotating shaft 62 a is parallel to the axial direction of the second rotating shaft 52 . The connecting shaft 65 is supported by the frame 61 so as to extend vertically. That is, the connecting shaft 65 extends in a direction orthogonal to the rotation shaft 62 a of the drive motor 62 and the second rotation shaft 52 .
 動力伝達機構63は、駆動モータ62の回転軸62aに取り付けられた傘歯車63aと、連結軸65に取り付けられると共に傘歯車63aと噛み合う傘歯車63bと、を有する。動力伝達機構63は、互いに直交する駆動モータ62の回転軸62aと連結軸65とを接続して駆動モータ62からの動力を連結軸65に伝達する。 The power transmission mechanism 63 has a bevel gear 63a attached to the rotating shaft 62a of the drive motor 62, and a bevel gear 63b attached to the connecting shaft 65 and meshing with the bevel gear 63a. The power transmission mechanism 63 connects the rotating shaft 62a of the drive motor 62 and the connecting shaft 65, which are perpendicular to each other, to transmit power from the driving motor 62 to the connecting shaft 65. As shown in FIG.
 力覚センサ70は、外力としてX軸,Y軸およびZ軸の各軸方向に作用する力成分と各軸周りに作用するトルク成分とを検出するものである。力覚センサ70は、図5に示すように、力が作用する作用部71と、内周側で作用部71を支持する環状の支持部72と、作用部71と支持部72との間に周方向に所定の間隔をおいて配置され作用部71に作用する力を検出する検出部73と、を有する。図4に示すように、支持部72の上面は、連結軸65の下端に形成されたフランジ部65aの下面に重ね合わせられて連結される。また、支持部72の下面は、筒状の固定部材66の上端に形成されたフランジ部66aの上面に重ね合わせられて連結される。固定部材66の筒状の外周面は、軸受け部材67の内輪67aの内周面に固定される。すなわち、支持部72は、固定部材66を介して軸受け部材67の内輪67aに固定される。軸受け部材67の外輪67bは、フレーム61に固定される。これにより、連結軸65および力覚センサ70の支持部72は、軸受け部材67を介してフレーム61に回転可能に支持される。 The force sensor 70 detects force components acting in the directions of the X-, Y-, and Z-axes as external forces, and torque components acting around the respective axes. As shown in FIG. 5 , the force sensor 70 includes an action portion 71 to which force acts, an annular support portion 72 that supports the action portion 71 on the inner peripheral side, and a force between the action portion 71 and the support portion 72 . and a detection portion 73 that is arranged at a predetermined interval in the circumferential direction and detects a force acting on the action portion 71 . As shown in FIG. 4 , the upper surface of the support portion 72 is superimposed on and connected to the lower surface of the flange portion 65 a formed at the lower end of the connecting shaft 65 . In addition, the lower surface of the support portion 72 is superimposed and connected to the upper surface of the flange portion 66a formed at the upper end of the cylindrical fixing member 66. As shown in FIG. A tubular outer peripheral surface of the fixing member 66 is fixed to an inner peripheral surface of an inner ring 67 a of the bearing member 67 . That is, the support portion 72 is fixed to the inner ring 67 a of the bearing member 67 via the fixing member 66 . An outer ring 67 b of the bearing member 67 is fixed to the frame 61 . Thereby, the connecting shaft 65 and the support portion 72 of the force sensor 70 are rotatably supported by the frame 61 via the bearing member 67 .
 また、作用部71の下面には、先端軸53の上端に連結され、当該先端軸53の下端には、図示しない保持部を介して負荷部としてのエンドエフェクタEFが取り付けられる。さらに、作用部71の上面は、第2負荷部としての把持部材69の基端部が連結される。把持部材69は、連結軸65に対して外径方向に延在するように設けられている。このように、本実施形態では、力覚センサ70の作用部71の下面には先端軸53を介してエンドエフェクタEFが連結され、作用部71の上面には把持部材69が直接に連結されており、作用部71には上面および下面の両面から力が作用するように構成される。これにより、エンドエフェクタEFから受ける力と把持部材69から受ける力とを単一の力覚センサ70により検出することができる。 The lower surface of the action portion 71 is connected to the upper end of the tip shaft 53, and the lower end of the tip shaft 53 is attached with an end effector EF as a load portion via a holding portion (not shown). Further, the upper surface of the action portion 71 is connected to the proximal end portion of the gripping member 69 as the second load portion. The gripping member 69 is provided so as to extend radially outward from the connecting shaft 65 . As described above, in the present embodiment, the end effector EF is connected to the lower surface of the acting portion 71 of the force sensor 70 via the tip shaft 53, and the gripping member 69 is directly connected to the upper surface of the acting portion 71. It is configured such that force acts on the action portion 71 from both the upper surface and the lower surface. Thereby, the force received from the end effector EF and the force received from the grasping member 69 can be detected by the single force sensor 70 .
 先端軸53は、図4に示すように、軸受け部材67の内輪67aに挿通されている。本実施形態では、内輪67aの内周面には、力覚センサ70の支持部72に連結された固定部材66の筒状の外周面が固定され、先端軸53は、固定部材66の内周に挿通されている。固定部材66の筒状の内周面と先端軸53の外周面との間には、図4に示すように、径方向に所定の隙間が設けられている。これにより、力覚センサ70の作用部71に連結される先端軸53と力覚センサ70の支持部72に固定される固定部材66(内輪67a)とが干渉しないようにして、干渉によって力覚センサ70が意図しない力を検出するのを防止することができる。 The tip shaft 53 is inserted through the inner ring 67a of the bearing member 67, as shown in FIG. In this embodiment, the cylindrical outer peripheral surface of the fixed member 66 connected to the support portion 72 of the force sensor 70 is fixed to the inner peripheral surface of the inner ring 67a, and the distal end shaft 53 extends from the inner peripheral surface of the fixed member 66. is inserted into the As shown in FIG. 4, a predetermined radial gap is provided between the cylindrical inner peripheral surface of the fixing member 66 and the outer peripheral surface of the tip shaft 53 . As a result, the distal end shaft 53 connected to the acting portion 71 of the force sensor 70 and the fixed member 66 (inner ring 67a) fixed to the support portion 72 of the force sensor 70 are prevented from interfering with each other, and the force sense is generated by the interference. It is possible to prevent the sensor 70 from detecting an unintended force.
 また、駆動モータ62の回転軸62aと先端軸53との間に動力伝達機構63を介在させることで、駆動モータ62の回転軸62aを先端軸53とは異なる軸に配置しつつ、エンドエフェクタEFを先端軸53と同軸に取り付けることができる。これにより、駆動モータ62の回転軸62aと先端軸53とエンドエフェクタEFとを同軸に配置するものに比して、軸長をより短縮することができる。 Further, by interposing the power transmission mechanism 63 between the rotating shaft 62a of the drive motor 62 and the distal end shaft 53, the rotating shaft 62a of the driving motor 62 is arranged on a different shaft from the distal end shaft 53, and the end effector EF can be operated. can be attached coaxially with the tip shaft 53 . As a result, the shaft length can be further shortened compared to a configuration in which the rotation shaft 62a of the drive motor 62, the distal end shaft 53, and the end effector EF are arranged coaxially.
 さらに、力覚センサ70の作用部71の上面には、把持部材69が連結されている。このため、操作者は、手動によりロボット本体20を動かしてロボット本体20の動作を記録するダイレクトティーチングを行なう場合において、把持部材69を把持してアームを直接動かすことができ、操作が容易となる。また、この際、力覚センサ70で把持部材69から加わる外力を検出することができるため、ロボット本体20の動作をより正確に記録することができる。勿論、エンドエフェクタEFを把持してロボット本体20を動かすことでダイレクトティーチングを行なうこともできる。この場合、把持部材69を省略してもよい。 Furthermore, a grasping member 69 is connected to the upper surface of the acting portion 71 of the force sensor 70 . Therefore, when the operator manually moves the robot body 20 and performs direct teaching to record the motion of the robot body 20, the operator can directly move the arm by gripping the grip member 69, which facilitates the operation. . Further, at this time, the force sensor 70 can detect the external force applied from the gripping member 69, so that the motion of the robot body 20 can be recorded more accurately. Of course, direct teaching can also be performed by gripping the end effector EF and moving the robot body 20 . In this case, the gripping member 69 may be omitted.
 ここで、実施形態の主要な要素と請求の範囲に記載した本開示の主要な要素との対応関係について説明する。即ち、本実施形態の第1アーム21と第2アーム22と回転3軸機構50とが本開示のロボットアームに相当し、軸受け部材67の内輪67aが軸受け部材の内輪に相当し、軸受け部材67の外輪67bが軸受け部材の外輪に相当し、力覚センサ70の支持部72が力覚センサの支持部に相当し、力覚センサ70の作用部71が力覚センサの作用部に相当し、先端軸53やエンドエフェクタEFが負荷部に相当する。また、把持部材69が第2負荷部に相当する。また、連結軸65が連結部材に相当し、フレーム61がフレームに相当し、動力伝達機構63が動力伝達部材に相当する。また、傘歯車63a,63bが傘歯車に相当する。 Here, the correspondence between the main elements of the embodiment and the main elements of the present disclosure described in the claims will be described. That is, the first arm 21, the second arm 22, and the rotating three-axis mechanism 50 of the present embodiment correspond to the robot arm of the present disclosure, the inner ring 67a of the bearing member 67 corresponds to the inner ring of the bearing member, and the bearing member 67 corresponds to the outer ring of the bearing member, the supporting portion 72 of the force sensor 70 corresponds to the supporting portion of the force sensor, the acting portion 71 of the force sensor 70 corresponds to the acting portion of the force sensor, The tip shaft 53 and the end effector EF correspond to the load section. Also, the gripping member 69 corresponds to the second load section. Further, the connecting shaft 65 corresponds to a connecting member, the frame 61 corresponds to a frame, and the power transmission mechanism 63 corresponds to a power transmission member. Also, the bevel gears 63a and 63b correspond to bevel gears.
 なお、本開示は上述した実施形態に何ら限定されることはなく、本開示の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 It goes without saying that the present disclosure is by no means limited to the above-described embodiments, and can be implemented in various forms as long as they fall within the technical scope of the present disclosure.
 例えば、上述した実施形態では、先端軸駆動装置60は、回転軸62aが先端軸53と同軸の連結軸65と直交するように配置された駆動モータ62と、傘歯車63a,63aにより互いに直交する回転軸62aと連結軸65とを連結して駆動モータ62からの動力を連結軸65に伝達する動力伝達機構63と、を備えるものとした。これに対して、図6に示すように、他の実施形態に係る先端軸駆動装置160は、回転軸162aが連結軸165と平行となるように配置された駆動モータ162と、ベルト163aにより互いに平行な回転軸162と連結軸165とを連結して駆動モータ162からの動力を連結軸165に伝達する動力伝達機構163と、を備えてもよい。 For example, in the above-described embodiment, the distal end shaft driving device 60 includes a driving motor 62 having a rotation shaft 62a arranged so as to be orthogonal to a connecting shaft 65 coaxial with the distal end shaft 53, and bevel gears 63a, 63a. A power transmission mechanism 63 that connects the rotating shaft 62 a and the connecting shaft 65 to transmit the power from the drive motor 62 to the connecting shaft 65 is provided. On the other hand, as shown in FIG. 6, a distal end shaft driving device 160 according to another embodiment includes a driving motor 162 arranged such that a rotating shaft 162a is parallel to a connecting shaft 165, and a belt 163a. A power transmission mechanism 163 that connects the parallel rotating shaft 162 and the connecting shaft 165 to transmit power from the driving motor 162 to the connecting shaft 165 may be provided.
 また、上述した実施形態では、先端軸駆動装置60は、力覚センサ70の作用部71の上下両面にそれぞれ負荷部が連結されるものとしたが、いずれか一方の面のみに負荷部が連結されてもよい。 Further, in the above-described embodiment, the distal end shaft driving device 60 has the load portions connected to both upper and lower surfaces of the action portion 71 of the force sensor 70, but the load portion is connected to only one of the surfaces. may be
 また、上述した実施形態では、ロボット10は、3方向の並進運動と3方向の回転運動とが可能な7軸の多関節ロボットとして構成されるものとした。しかし、軸の数はいくつであっても構わない。また、ロボット10は、いわゆる垂直多関節ロボットや水平多関節ロボットなどにより構成されてもよい。 Also, in the above-described embodiment, the robot 10 is configured as a seven-axis articulated robot capable of translational motion in three directions and rotational motion in three directions. However, the number of axes can be any number. Also, the robot 10 may be configured by a so-called vertical articulated robot, a horizontal articulated robot, or the like.
 以上説明したように、本開示のロボットでは、駆動モータにより回転する力覚センサの支持部を軸受け部材の内輪に固定すると共に、軸受け部材の内輪に挿通させて力覚センサの作用部に負荷部を連結する。これにより、軸受け部材の内輪と負荷部との干渉によって意図せぬ力を力覚センサが検知してしまうのを防止することができる。 As described above, in the robot according to the present disclosure, the support portion of the force sensor rotated by the drive motor is fixed to the inner ring of the bearing member, and the load portion is inserted through the inner ring of the bearing member to act on the force sensor acting portion. concatenate Accordingly, it is possible to prevent the force sensor from detecting an unintended force due to interference between the inner ring of the bearing member and the load portion.
 また、こうした本開示のロボットにおいて、前記作用部の前記負荷部が連結された面とは反対側の面に連結された第2負荷部を備えてもよい。こうすれば、力覚センサにより負荷部と第2負荷部とから加わる力をそれぞれ検出することができる。 Further, the robot of the present disclosure may further include a second load section connected to a surface of the action section opposite to the surface to which the load section is connected. With this configuration, the force sensor can detect the force applied from the load section and the second load section.
 さらに、本開示のロボットにおいて、前記駆動モータの回転軸と前記支持部とを連結する連結部材を備え、前記力覚センサは、力が作用する前記作用部を内周側で支持する環状の前記支持部を有し、前記外輪は、前記ロボットアームのフレームに固定され、前記連結部材は、前記駆動モータの回転軸に動力伝達部材を介して接続されると共に、前記駆動モータからの動力により前記負荷部と同軸に回転するように前記支持部に連結されてもよい。連結部材を設け、動力伝達部材を介して連結部材に駆動モータの回転軸を接続することにより、連結部材の回転軸(ロボットの駆動軸)を負荷部と同軸に配置しつつ、駆動モータや力覚センサの配置の自由度を確保することができる。この結果、軸長を短縮して装置(先端部駆動装置)をよりコンパクトにすることが可能となる。 Further, in the robot according to the present disclosure, a connecting member that connects the rotation shaft of the drive motor and the support portion is provided, and the force sensor has an annular shape that supports the action portion on which a force acts on an inner peripheral side. The outer ring is fixed to the frame of the robot arm, and the connecting member is connected to the rotation shaft of the drive motor via a power transmission member, and is driven by power from the drive motor. It may be connected to the support so as to rotate coaxially with the load. By providing a connection member and connecting the rotation shaft of the drive motor to the connection member via the power transmission member, the rotation shaft of the connection member (the drive shaft of the robot) is arranged coaxially with the load section, and the drive motor and the force are connected. It is possible to ensure the degree of freedom in arranging the sensor. As a result, it is possible to shorten the shaft length and make the device (tip driving device) more compact.
 連結部材と駆動モータの回転軸とを動力伝達部材を介して接続するものにおいて、前記動力伝達部材は、傘歯車であり、前記駆動モータの回転軸は、前記連結部材の軸方向に直交するように配置され、前記傘歯車を介して前記連結部材に接続されてもよい。あるいは、前記動力伝達部材は、ベルトであり、前記駆動モータの回転軸は、前記連結部材の軸方向に平行に配置され、前記ベルトを介して前記連結部材に接続されてもよい。 The power transmission member is a bevel gear, and the rotation shaft of the drive motor is perpendicular to the axial direction of the connection member. and connected to the connecting member via the bevel gear. Alternatively, the power transmission member may be a belt, and the rotating shaft of the drive motor may be arranged parallel to the axial direction of the connecting member and connected to the connecting member via the belt.
 本開示は、ロボットの製造産業などに利用可能である。 The present disclosure can be used in the robot manufacturing industry and the like.
 10 ロボット、20 ロボット本体、21 第1アーム、22 第2アーム、25 ベース、26 基台、31 第1関節軸、32 第2関節軸、33 姿勢保持用軸、35 第1アーム駆動モータ、36 第2アーム駆動モータ、37 姿勢保持装置、40 昇降装置、41 スライダ、42 ガイド部材、43 ボールねじ軸、44 昇降用駆動モータ、50 回転3軸機構、51 第1回転軸、52 第2回転軸、53 第3回転軸(先端軸)、55 第1回転軸駆動モータ、56 第2回転軸駆動モータ、60,160 先端軸駆動装置、61、161 フレーム、62,162 駆動モータ、62a,162a 回転軸、63,163 動力伝達機構、63a,63b 傘歯車、65,165 連結軸、66 固定部材、66a フランジ部、67 軸受け部材、67a 内輪、67b 外輪、69 把持部材、163a ベルト、70 力覚センサ、71 作用部、72 支持部、73 検出部、EF エンドエフェクタ。 10 Robot, 20 Robot body, 21 First arm, 22 Second arm, 25 Base, 26 Base, 31 First joint axis, 32 Second joint axis, 33 Posture holding axis, 35 First arm drive motor, 36 2nd arm drive motor, 37 posture holding device, 40 lifting device, 41 slider, 42 guide member, 43 ball screw shaft, 44 lifting drive motor, 50 rotating 3-axis mechanism, 51 first rotating shaft, 52 second rotating shaft , 53 third rotary shaft (tip shaft), 55 first rotary shaft drive motor, 56 second rotary shaft drive motor, 60, 160 tip shaft drive device, 61, 161 frame, 62, 162 drive motor, 62a, 162a rotation Shaft, 63, 163 power transmission mechanism, 63a, 63b bevel gear, 65, 165 connecting shaft, 66 fixing member, 66a flange portion, 67 bearing member, 67a inner ring, 67b outer ring, 69 gripping member, 163a belt, 70 force sensor , 71 working part, 72 supporting part, 73 detecting part, EF end effector.

Claims (5)

  1.  ロボットアームと、
     前記ロボットアームに固定された駆動モータと、
     前記ロボットアームに固定された軸受け部材の外輪と、
     前記外輪に沿って回転する前記軸受け部材の内輪と、
     前記内輪に固定され前記駆動モータにより回転する力覚センサの支持部と、
     前記支持部に支持される前記力覚センサの作用部と、
     前記作用部に連結され前記内輪に挿通された負荷部と、
     を備えるロボット。
    a robot arm;
    a drive motor fixed to the robot arm;
    an outer ring of a bearing member fixed to the robot arm;
    an inner ring of the bearing member that rotates along the outer ring;
    a support for a force sensor fixed to the inner ring and rotated by the drive motor;
    an action portion of the force sensor supported by the support portion;
    a load portion coupled to the action portion and inserted through the inner ring;
    A robot with
  2.  請求項1に記載のロボットであって、
     前記作用部の前記負荷部が連結された面とは反対側の面に連結された第2負荷部を備える、
     ロボット。
    The robot according to claim 1,
    A second load portion connected to a surface of the action portion opposite to the surface to which the load portion is connected,
    robot.
  3.  請求項1または2に記載のロボットであって、
     前記駆動モータの回転軸と前記支持部とを連結する連結部材を備え、
     前記力覚センサは、力が作用する前記作用部を内周側で支持する環状の前記支持部を有し、
     前記外輪は、前記ロボットアームのフレームに固定され、
     前記連結部材は、前記駆動モータの回転軸に動力伝達部材を介して接続されると共に、前記駆動モータからの動力により前記負荷部と同軸に回転するように前記支持部に連結される、
     ロボット。
    The robot according to claim 1 or 2,
    A connecting member that connects the rotation shaft of the drive motor and the support portion,
    The force sensor has an annular support portion that supports the action portion on which the force acts on the inner peripheral side,
    The outer ring is fixed to the frame of the robot arm,
    The connecting member is connected to the rotating shaft of the drive motor via a power transmission member, and is connected to the support portion so as to rotate coaxially with the load portion by power from the drive motor.
    robot.
  4.  請求項3に記載のロボットであって、
     前記動力伝達部材は、傘歯車であり、
     前記駆動モータの回転軸は、前記連結部材の軸方向に直交するように配置され、前記傘歯車を介して前記連結部材に接続される、
     ロボット。
    The robot according to claim 3,
    The power transmission member is a bevel gear,
    A rotating shaft of the drive motor is arranged perpendicular to the axial direction of the connecting member, and is connected to the connecting member via the bevel gear.
    robot.
  5.  請求項3に記載のロボットであって、
     前記動力伝達部材は、ベルトであり、
     前記駆動モータの回転軸は、前記連結部材の軸方向に平行に配置され、前記ベルトを介して前記連結部材に接続される、
     ロボット。
    The robot according to claim 3,
    The power transmission member is a belt,
    A rotating shaft of the drive motor is arranged parallel to the axial direction of the connecting member and connected to the connecting member via the belt.
    robot.
PCT/JP2021/007382 2021-02-26 2021-02-26 Robot WO2022180795A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/007382 WO2022180795A1 (en) 2021-02-26 2021-02-26 Robot
JP2023501960A JPWO2022180795A1 (en) 2021-02-26 2021-02-26

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/007382 WO2022180795A1 (en) 2021-02-26 2021-02-26 Robot

Publications (1)

Publication Number Publication Date
WO2022180795A1 true WO2022180795A1 (en) 2022-09-01

Family

ID=83049043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/007382 WO2022180795A1 (en) 2021-02-26 2021-02-26 Robot

Country Status (2)

Country Link
JP (1) JPWO2022180795A1 (en)
WO (1) WO2022180795A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101138532B1 (en) * 2011-03-03 2012-04-25 주식회사 이턴 Device for measuring torque of robot joint and method for the same
JP2017080841A (en) * 2015-10-27 2017-05-18 キヤノン株式会社 Joint structure of robot arm, measurement method for robot device and control method for robot device
JP2017124465A (en) * 2016-01-13 2017-07-20 キヤノン株式会社 Drive mechanism, robot arm, and robot device
JP2017177279A (en) * 2016-03-30 2017-10-05 株式会社Ihi Robot system and robot controlling method
JP2018015836A (en) * 2016-07-27 2018-02-01 キヤノン株式会社 Drive mechanism and robot
JP2019504680A (en) * 2016-02-01 2019-02-21 イマジナリス エス.アール.エル. Radiation imaging device
CN111683796A (en) * 2019-09-03 2020-09-18 上海非夕机器人科技有限公司 Mechanical arm and robot
CN111702804A (en) * 2020-06-28 2020-09-25 中国科学院宁波材料技术与工程研究所 Driving joint and robot
JP2020163516A (en) * 2019-03-29 2020-10-08 セイコーエプソン株式会社 Horizontal articulated robot

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101138532B1 (en) * 2011-03-03 2012-04-25 주식회사 이턴 Device for measuring torque of robot joint and method for the same
JP2017080841A (en) * 2015-10-27 2017-05-18 キヤノン株式会社 Joint structure of robot arm, measurement method for robot device and control method for robot device
JP2017124465A (en) * 2016-01-13 2017-07-20 キヤノン株式会社 Drive mechanism, robot arm, and robot device
JP2019504680A (en) * 2016-02-01 2019-02-21 イマジナリス エス.アール.エル. Radiation imaging device
JP2017177279A (en) * 2016-03-30 2017-10-05 株式会社Ihi Robot system and robot controlling method
JP2018015836A (en) * 2016-07-27 2018-02-01 キヤノン株式会社 Drive mechanism and robot
JP2020163516A (en) * 2019-03-29 2020-10-08 セイコーエプソン株式会社 Horizontal articulated robot
CN111683796A (en) * 2019-09-03 2020-09-18 上海非夕机器人科技有限公司 Mechanical arm and robot
CN111702804A (en) * 2020-06-28 2020-09-25 中国科学院宁波材料技术与工程研究所 Driving joint and robot

Also Published As

Publication number Publication date
JPWO2022180795A1 (en) 2022-09-01

Similar Documents

Publication Publication Date Title
US8109173B2 (en) Parallel robot provided with wrist section having three degrees of freedom
US8893578B2 (en) Parallel robot provided with wrist section having three degrees of freedom
CN107921647B (en) Robot gripper
CN102059697B (en) Translating branch chain and parallel robot using same
JP2009291871A (en) Gripping hand for robot
JP4754296B2 (en) Industrial robot
JP5051555B2 (en) Robot manipulator using rotary drive
JPS5890492A (en) Robot arm device with split ball type wrist manipulator
JP7279180B2 (en) articulated robot
JP2017170604A (en) Robot, robot system, and related method
US20110106302A1 (en) Robot arm assembly and industrial robot using the same
JPWO2005102619A1 (en) Finger unit and multi-finger gripping mechanism
JPS6228145A (en) Gear row device having three degree of freedom
WO2022180795A1 (en) Robot
JP2019198960A (en) Articulated robot using link operation device
JP5394358B2 (en) Parallel link robot with posture change mechanism with 3 degrees of freedom
JPS63191585A (en) Direct-drive type multi-joint robot
CN114569247A (en) Joint for connecting surgical robot mechanical arm and end effector
JP6870092B2 (en) End effector
JP7302182B2 (en) Horizontal articulated robot
JP7154748B2 (en) ROBOT SYSTEM, PRODUCT MANUFACTURING METHOD, CONTROL METHOD, CONTROL PROGRAM, AND RECORDING MEDIUM
JPH01216786A (en) Horizontal multiple joint robot
WO2024089816A1 (en) Robot
JPH0723188Y2 (en) Swing arm device
JPH10286792A (en) Positioning device having leg composed of parallel link and machine tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927895

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023501960

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21927895

Country of ref document: EP

Kind code of ref document: A1