JP5394358B2 - Parallel link robot with posture change mechanism with 3 degrees of freedom - Google Patents

Parallel link robot with posture change mechanism with 3 degrees of freedom Download PDF

Info

Publication number
JP5394358B2
JP5394358B2 JP2010278173A JP2010278173A JP5394358B2 JP 5394358 B2 JP5394358 B2 JP 5394358B2 JP 2010278173 A JP2010278173 A JP 2010278173A JP 2010278173 A JP2010278173 A JP 2010278173A JP 5394358 B2 JP5394358 B2 JP 5394358B2
Authority
JP
Japan
Prior art keywords
axis
movable member
holder
parallel
rotating member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010278173A
Other languages
Japanese (ja)
Other versions
JP2011056661A (en
Inventor
聡 木下
光 山城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FANUC Corp
Original Assignee
FANUC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FANUC Corp filed Critical FANUC Corp
Priority to JP2010278173A priority Critical patent/JP5394358B2/en
Publication of JP2011056661A publication Critical patent/JP2011056661A/en
Application granted granted Critical
Publication of JP5394358B2 publication Critical patent/JP5394358B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/003Programme-controlled manipulators having parallel kinematics
    • B25J9/0045Programme-controlled manipulators having parallel kinematics with kinematics chains having a rotary joint at the base
    • B25J9/0051Programme-controlled manipulators having parallel kinematics with kinematics chains having a rotary joint at the base with kinematics chains of the type rotary-universal-universal or rotary-spherical-spherical, e.g. Delta type manipulators

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Description

本発明は、パラレルリンクロボットに関する。   The present invention relates to a parallel link robot.

基礎部材となる固定部材に複数のモータを取付け、該アクチュエータの出力部に連結されたリンクをそれぞれ駆動して、各リンクの先端に取付けた可動部材の位置,姿勢を制御するようにしたパラレルリンクロボットは種々の形態のものが開発されている。パラレルリンクロボットは、基礎部材と可動部材とを複数のリンクで繋ぐ構造であるので、高精度、高剛性、高速といった特徴を有する。このような特徴から、パラレルリンクロボットは、高速ハンドリングや組立用ロボットとして広く知られている。   A parallel link in which a plurality of motors are attached to a fixed member as a base member, and a link connected to the output portion of the actuator is driven to control the position and posture of a movable member attached to the tip of each link. Various types of robots have been developed. Since the parallel link robot has a structure in which the base member and the movable member are connected by a plurality of links, the parallel link robot has characteristics such as high accuracy, high rigidity, and high speed. Due to these characteristics, parallel link robots are widely known as high-speed handling and assembly robots.

特許文献1には図11に示されるパラレルリンクロボットが開示されている。図11に示されるパラレルリンクロボットは、デルタ型と呼ばれる構造を採用しており、1つの基礎部材200と1つの可動部材208を備えている。
基礎部材200は3つの回転アクチュエータ213を有し、各回転アクチュエータが基礎部材200と共に一体的な要素をなす1つの固定部分を有し、その軸202が同一平面上にある。各駆動リンク204が剛性組立体の形でそれらの一端215でそれぞれ各回転軸202に取付けられている。各駆動リンク204の他端216が、カルダン型の2つの二重関節部によって2つの受動リンク205a,205bと共に一体的な要素をなす。 その他、受動リンク205a,205bの2つの群の各々が、カルダン型の2つの二重関節部207a,207bにより可動部材208に連結されており、従って可動部材208の運動を駆動リンク204の作動により制御することができる。そして、可動部材208にハンド209などの作業用部材を配置することができる。
Patent Document 1 discloses a parallel link robot shown in FIG. The parallel link robot shown in FIG. 11 adopts a structure called a delta type, and includes one base member 200 and one movable member 208.
The base member 200 has three rotary actuators 213, each rotary actuator having one fixed part that forms an integral element with the base member 200, and its axis 202 is in the same plane. Each drive link 204 is attached to each rotating shaft 202 at its one end 215 in the form of a rigid assembly. The other end 216 of each drive link 204 forms an integral element with the two passive links 205a, 205b by two cardan-type double joints. In addition, each of the two groups of the passive links 205a and 205b is connected to the movable member 208 by two cardan-type double joint portions 207a and 207b. Can be controlled. A working member such as the hand 209 can be disposed on the movable member 208.

可動部材208にはハンドなどの作業用部材の姿勢を変更するための第4軸と呼ばれる姿勢変更軸を有し、該第4軸は可動部材208の面に垂直な軸線である。ハンド209などの作業部材は、駆動シャフト214を介して基礎部材200に配置された回転モータ211によって回転駆動される。3つの前記アクチュエータ213や回転モータ211は制御装置212によって制御される。   The movable member 208 has a posture changing axis called a fourth axis for changing the posture of a working member such as a hand, and the fourth axis is an axis perpendicular to the surface of the movable member 208. A work member such as the hand 209 is rotationally driven by a rotation motor 211 disposed on the base member 200 via a drive shaft 214. The three actuators 213 and the rotary motor 211 are controlled by a control device 212.

特公平4−45310号公報Japanese Examined Patent Publication No. 4-45310

前述した特許文献1に開示されるパラレルリンクロボットは、可動部材208に配置されたハンド209などの作業用部材の姿勢を変更するために第4軸と呼ばれる姿勢変更軸を備えている。しかしながら、第4軸のみでは傾斜面に部品を取付ける作業を行うことはできなかった。   The parallel link robot disclosed in Patent Document 1 described above includes a posture change axis called a fourth axis in order to change the posture of a working member such as the hand 209 disposed on the movable member 208. However, it was not possible to perform the work of attaching the component to the inclined surface with only the fourth axis.

そこで本発明の目的は、上記事情に鑑みて、姿勢変更軸の自由度を増加したパラレルリンクロボットを提供することである。   Accordingly, an object of the present invention is to provide a parallel link robot in which the degree of freedom of the posture changing axis is increased in view of the above circumstances.

本願の請求項1に係る発明は、基礎部材と可動部材の間を駆動リンクと受動リンクからなる3組のリンク機構を並列に関節接続すると共に、前記可動部材にエンドエフェクタの姿勢を制御するための3自由度を有する姿勢変更機構部を備えたパラレルリンクロボットにおいて、前記可動部材に、前記可動部材と3つの前記受動リンクを接続する各関節部の回転軸線を含む平面に対して垂直な第4軸線回りに回転可能に接続された第1回転部材と、前記第1回転部材に、前記第4軸線に直交する第5軸線回りに回転可能に接続された第2回転部材と、前記第2回転部材に、前記第5軸線に直交する第6軸線回りに回転可能に接続された第3回転部材を備え、前記可動部材には3つの入力軸が設けられ、該3つの入力軸は、前記可動部材と3つの前記受動リンクを接続する各関節部の回転軸線を含む平面に対して垂直かつ互いに平行な軸であり、前記姿勢変更機構部を駆動する3つのモータは前記基礎部材上に配置され、前記3つのモータからの各駆動力をそれぞれ伝達する3本の独立した駆動シャフトを有し、該駆動シャフトは、前記3つの入力軸のそれぞれの軸回りに回転出来るように連結され、前記3つのモータからの各駆動力は、前記姿勢変更機構部に配置されたギヤを介して、前記第4軸線回り、前記第5軸線回り、前記第6軸線回りに前記第1回転部材、前記第2回転部材、前記第3回転部材を駆動することを特徴とするパラレルリンクロボットである。 In the invention according to claim 1 of the present application, three sets of link mechanisms including a drive link and a passive link are jointly connected in parallel between the base member and the movable member, and the attitude of the end effector is controlled by the movable member. In the parallel link robot provided with the posture changing mechanism unit having three degrees of freedom, the movable member is connected to the movable member and the three passive links. A first rotating member connected to be rotatable about four axes, a second rotating member connected to the first rotating member to be rotatable about a fifth axis orthogonal to the fourth axis, and the second The rotating member includes a third rotating member connected to be rotatable about a sixth axis orthogonal to the fifth axis , and the movable member is provided with three input shafts, and the three input shafts are Movable member and three The axes that are perpendicular to and parallel to the plane that includes the rotation axis of each joint that connects the passive links, and the three motors that drive the posture changing mechanism are disposed on the base member, Each having three independent drive shafts for transmitting each drive force from the motor, the drive shafts being connected so as to be rotatable about the respective axes of the three input shafts; Each driving force is transmitted around the fourth axis, around the fifth axis, around the sixth axis via the gears arranged in the posture changing mechanism, and the first rotating member, the second rotating member, A parallel link robot that drives a third rotating member.

本発明により、姿勢変更軸の自由度を増加したパラレルリンクロボットを提供することができる。   According to the present invention, it is possible to provide a parallel link robot in which the degree of freedom of the posture change axis is increased.

3軸の姿勢変更機構部を備えたパラレルリンクロボットの概略構成図である。It is a schematic block diagram of the parallel link robot provided with the triaxial attitude | position change mechanism part. パラレルリンクロボットの概略縦断面図である。It is a schematic longitudinal cross-sectional view of a parallel link robot. パラレルリンクロボットの可動部材および姿勢変更機構部を示す拡大斜視図である。It is an expansion perspective view which shows the movable member and attitude | position change mechanism part of a parallel link robot. 姿勢変更機構部の側面外観図である。It is a side external view of a posture change mechanism part. 本発明の実施形態である特異点が発生することを回避可能な姿勢変更機構部の外観図である。It is an external view of the attitude | position change mechanism part which can avoid that the singular point which is embodiment of this invention generate | occur | produces. 本発明の実施形態であるフランジ面を傾斜させた姿勢変更機構部を備えたパラレルリンクロボットの概略構成図である。It is a schematic block diagram of the parallel link robot provided with the attitude | position change mechanism part which inclined the flange surface which is embodiment of this invention. フランジ面を傾斜させた姿勢変更機構部にハンドを取付けた状態を説明する図である。It is a figure explaining the state which attached the hand to the attitude | position change mechanism part which inclined the flange surface. フランジ面を傾斜させた姿勢変更機構部の内部の概略構造を説明する図である。It is a figure explaining the schematic structure inside the attitude | position change mechanism part which inclined the flange surface. 姿勢変更機構部駆動機構の要部拡大断面図で、(a)ホルダ組立体を示す断面図、及び(b)ホルダ組立体を示す他の縦断面図である。It is a principal part expanded sectional view of an attitude | position change mechanism part drive mechanism, (a) Sectional drawing which shows a holder assembly, (b) Other longitudinal sectional views which show a holder assembly. 姿勢変更機構部駆動機構の要部拡大図である。It is a principal part enlarged view of an attitude | position change mechanism part drive mechanism. 従来技術であるパラレルリンクロボットの概略構成図である。It is a schematic block diagram of the parallel link robot which is a prior art.

以下、本発明の実施形態を図面と共に説明する。
図1は、3軸の姿勢変更機構部を備えたパラレルリンクロボットの概略構成図である。
パラレルリンクロボットPRは、基礎部材12と可動部材100を備えており、並列配置される3組のリンク構造により基礎部材12と可動部材100とを連結してなるパラレルメカニズム形式の可動部材駆動機構16を有し、可動部材100は基礎部材12に対して3軸並進運動のみを行う(換言すれば、3自由度のパラレルメカニズムを備えた)構成である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a parallel link robot including a three-axis posture changing mechanism unit.
The parallel link robot PR includes a base member 12 and a movable member 100, and a parallel member type movable member drive mechanism 16 formed by connecting the base member 12 and the movable member 100 by three sets of link structures arranged in parallel. The movable member 100 is configured to perform only a three-axis translational movement with respect to the base member 12 (in other words, provided with a parallel mechanism having three degrees of freedom).

本発明の一実施形態であるパラレルリンクロボットPRは、更に可動部材100に3軸の回転運動が可能な姿勢変更機構部102と、姿勢変更機構部102を可動部材100に対して3軸周りに回転させるための姿勢変更機構部駆動機構20を備えている。
基礎部材12は、パラレルリンクロボットPRの設置面に据え置かれる円弧壁状のスタンド22の上端に、側方へ水平に張り出すように固定して設けられている板状構造体から構成される。基礎部材12は、後述する可動部材駆動機構16及び姿勢変更機構部駆動機構20の構成要素群を担持する静止部材である。基礎部材12には、駆動用のモータや動力伝達機構などを覆うカバー24が、基礎部材12の上側に着脱自在に固定して取付けられている。
The parallel link robot PR according to an embodiment of the present invention further includes a posture change mechanism unit 102 capable of rotating the movable member 100 in three axes and a posture change mechanism unit 102 around the three axes with respect to the movable member 100. An attitude change mechanism drive mechanism 20 for rotation is provided.
The base member 12 is composed of a plate-like structure that is fixedly provided on the upper end of an arc wall-like stand 22 that is installed on the installation surface of the parallel link robot PR so as to project horizontally to the side. The base member 12 is a stationary member that carries a component group of a movable member drive mechanism 16 and a posture change mechanism section drive mechanism 20 described later. A cover 24 that covers a driving motor, a power transmission mechanism, and the like is fixed to the base member 12 so as to be detachably fixed to the upper side of the base member 12.

可動部材駆動機構16は、互いに並列に配置される3組のリンク構造26と、それらのリンク構造26を個々に駆動する3台のサーボモータ28(図2に1台のみ示す)とを備えている。各組のリンク構造26は、複数の回転対偶(ヒンジジョイント)及び補助リンクを介して基礎部材12及び対応するサーボモータ28の出力部に関節接続される駆動リンク30と、回転対偶を介して駆動リンク30の末端に関節接続される一対の平行受動リンク32とを備える。平行受動リンク32はその末端で、回転対偶を介して可動部材100に関節接続される。   The movable member drive mechanism 16 includes three sets of link structures 26 arranged in parallel to each other, and three servo motors 28 (only one is shown in FIG. 2) for individually driving the link structures 26. Yes. Each set of link structures 26 is driven via a rotary link and a drive link 30 that is articulated to the output of the base member 12 and the corresponding servo motor 28 via a plurality of rotary pairs (hinge joints) and auxiliary links. A pair of parallel passive links 32 articulated at the ends of the links 30. The parallel passive link 32 is articulated at its end to the movable member 100 via a rotating pair.

駆動リンク30は、サーボモータ28により駆動されて、基礎部材12に対して鉛直な仮想平面に沿って多彩に揺動する。平行受動リンク32は、駆動リンク30の揺動に伴い、同じ仮想平面上で変位する。このとき、1組のリンク構造26の平行受動リンク32は、可動部材100を介して他の2組のリンク構造26の平行受動リンク32に連結されているので、3組のリンク構造26の平行受動リンク32は、3つの駆動リンク30の揺動態様に応じて受動式に多彩に揺動する。   The drive link 30 is driven by the servo motor 28 and swings in various ways along a virtual plane perpendicular to the base member 12. The parallel passive link 32 is displaced on the same virtual plane as the drive link 30 swings. At this time, since the parallel passive links 32 of the one set of link structures 26 are connected to the parallel passive links 32 of the other two sets of link structures 26 via the movable member 100, the parallel sets of the three sets of link structures 26 are parallel. The passive link 32 swings variously in a passive manner according to the swing mode of the three drive links 30.

3組のリンク構造26は、それぞれの駆動リンク30が、基礎部材12上で互いに中心角120度ずつ離れた3箇所の固定位置で、基礎部材12に接続されるとともに、それぞれの受動リンク32が、可動部材100で互いに中心角120度ずつ離れた3箇所の固定位置で、可動部材100に接続される。その結果、可動部材駆動機構16の動作により、可動部材100は基礎部材12に対して3軸並進運動のみを遂行する。   In the three sets of link structures 26, each drive link 30 is connected to the base member 12 at three fixed positions separated from each other by a central angle of 120 degrees on the base member 12, and each passive link 32 is connected to the base member 12. The movable member 100 is connected to the movable member 100 at three fixed positions separated from each other by a central angle of 120 degrees. As a result, the movable member 100 performs only a three-axis translational movement with respect to the base member 12 by the operation of the movable member driving mechanism 16.

図2に示されるように、基礎部材12には、3組の可動部材駆動機構16に含まれる駆動用の3台のサーボモータ28(図2には1台のみ示す)および姿勢変更機構部駆動機構20(図2には1つのみ示す)が配置されている。基礎部材12には、カバー24側に突出する中空円筒状の座部56が形成され、ホルダ組立体50の外側ホルダ44が、回転軸受装置58の内輪が外側ホルダ44の外周面の軸線方向一端(図で下端)領域に固定される一方、回転軸受装置58の外輪が中空円筒状の取付部材60の内周面に固定され、取付部材60の座部56の軸線方向一端(図で上端)に固定される(図10参照)。   As shown in FIG. 2, the base member 12 includes three servo motors 28 for driving (only one is shown in FIG. 2) included in the three sets of movable member driving mechanisms 16 and driving of the attitude changing mechanism unit. A mechanism 20 (only one is shown in FIG. 2) is arranged. The base member 12 is formed with a hollow cylindrical seat 56 projecting toward the cover 24, and the outer holder 44 of the holder assembly 50 is connected to the inner ring of the rotary bearing device 58 at one end in the axial direction of the outer peripheral surface of the outer holder 44. While the outer ring of the rotary bearing device 58 is fixed to the inner peripheral surface of the hollow cylindrical mounting member 60, one end in the axial direction of the seat portion 56 of the mounting member 60 (upper end in the drawing) (See FIG. 10).

図4は、姿勢変更機構部102の姿勢変更機構部の側面外観図である。姿勢変更機構部102は可動部材100に接続されており、姿勢変更機構部102は、3つの平行受動リンクを接続する関節部36の回転軸線を含む平面に対して垂直な第4軸線106aを中心軸としてその周りに回転可能な第1回転部材106と、第5軸線108aを中心軸としてその周りに回転可能な第2回転部材108と、第6軸線110aを中心軸としてその周りに回転可能な第3回転部材110を備えている。   FIG. 4 is a side external view of the posture changing mechanism unit of the posture changing mechanism unit 102. The posture changing mechanism unit 102 is connected to the movable member 100, and the posture changing mechanism unit 102 is centered on a fourth axis 106a perpendicular to a plane including the rotation axis of the joint unit 36 connecting the three parallel passive links. A first rotating member 106 that can be rotated around it as a shaft, a second rotating member 108 that can be rotated around the fifth axis 108a as a central axis, and a shaft that can rotate around the sixth axis 110a as a central axis A third rotating member 110 is provided.

図3は、本発明の一実施形態におけるパラレルリンクロボットPRの可動部材100および姿勢変更機構部102を示す拡大斜視図である。可動部材100は、図示しない空洞部を有する円筒状部材からなり、その外周の3箇所に、可動部材駆動機構16の3組のリンク構造26の平行受動リンク32を接続する接続部104が形成される。可動部材100の空洞部には、回転軸受装置や動力伝達機構が収容され(図8参照)、可動部材100の図で姿勢変更機構部102が回転可能に支持される。   FIG. 3 is an enlarged perspective view showing the movable member 100 and the posture changing mechanism unit 102 of the parallel link robot PR in one embodiment of the present invention. The movable member 100 is formed of a cylindrical member having a hollow portion (not shown), and connection portions 104 for connecting the parallel passive links 32 of the three sets of link structures 26 of the movable member drive mechanism 16 are formed at three locations on the outer periphery thereof. The A rotary bearing device and a power transmission mechanism are accommodated in the hollow portion of the movable member 100 (see FIG. 8), and the posture changing mechanism portion 102 is rotatably supported in the view of the movable member 100.

姿勢変更機構部102は、第4軸線106aを中心として回転可能に可動部材100に接続される第1回転部材106と、第4軸線106aに直交する第5軸線108aを中心として回転可能に接続される第2回転部材108と、第5軸線108aに直交する第6軸線110aを中心として回転可能に第2回転部材108に接続される第3回転部材110とを備える。そして、第3回転部材110にツール(図示せず)を取付けるための第1フランジ面112が設けられる。姿勢変更機構部102は、平行受動リンク32を接続する関節部36の回転軸線を含む平面に対して垂直な第4軸線周りに回転可能となるように、第1回転部材が可動部材100に接続されている。   The posture changing mechanism unit 102 is connected to the first rotating member 106 connected to the movable member 100 so as to be rotatable about the fourth axis 106a, and to be rotatable about the fifth axis 108a orthogonal to the fourth axis 106a. And a third rotating member 110 connected to the second rotating member 108 so as to be rotatable about a sixth axis 110a orthogonal to the fifth axis 108a. A first flange surface 112 for attaching a tool (not shown) to the third rotating member 110 is provided. The posture changing mechanism unit 102 connects the first rotating member to the movable member 100 so that the posture changing mechanism unit 102 can rotate around a fourth axis perpendicular to the plane including the rotation axis of the joint 36 connecting the parallel passive link 32. Has been.

3個の姿勢変更機構部駆動機構20のうち、第1の姿勢変更機構部駆動機構20は、第1の自在継手80−1および歯車列等(図8参照)の動力伝達要素を介して第1回転部材106に接続される第1の伝動部材54−1を備える。第1の伝動部材54−1は、第1のサーボモータ52(図10参照)により回転駆動される第1の外側ホルダ44の回転を第1回転部材106に伝達して、第1回転部材106を第4軸線106aの周りで回転運動させる。   Of the three attitude change mechanism section drive mechanisms 20, the first attitude change mechanism section drive mechanism 20 has a first universal joint 80-1 and a power train element such as a gear train (see FIG. 8). The 1st transmission member 54-1 connected to the 1 rotation member 106 is provided. The first transmission member 54-1 transmits the rotation of the first outer holder 44, which is rotationally driven by the first servo motor 52 (see FIG. 10), to the first rotation member 106. Is rotated around the fourth axis 106a.

3個の姿勢変更機構部駆動機構20のうち、第2の姿勢変更部駆動機構20のうち、第2の姿勢変更部駆動機構20は、第2の自在継手80−2および歯車列(図8参照)の動力伝達要素を介して第2回転部材108に接続される第2の伝動部材54−2を備える。
第2の伝動部材54−2は、第2のサーボモータ52(図10参照)により回転駆動される第2の外側ホルダ44の回転を第2回転部材108に伝達して、第2回転部材108を第5軸線108aの周りで回転運動させる。
Of the three posture change mechanism unit drive mechanisms 20, of the second posture change unit drive mechanisms 20, the second posture change unit drive mechanism 20 includes a second universal joint 80-2 and a gear train (FIG. 8). A second transmission member 54-2 connected to the second rotation member 108 via a power transmission element (see FIG. 1).
The second transmission member 54-2 transmits the rotation of the second outer holder 44 that is rotationally driven by the second servo motor 52 (see FIG. 10) to the second rotation member 108, and the second rotation member 108. Is rotated around the fifth axis 108a.

3個の姿勢変更機構部駆動機構20のうち、第3の姿勢変更部駆動機構20のうち、第3の自在継手80−3および歯車列等(図8参照)の動力伝達要素を介して第3回転部材110に接続される第3の伝動部材54−3を備える。第3の伝動部材54−3は、第3のサーボモータ52により回転駆動される第3の外側ホルダ44の回転を第3回転部材110に伝達して、第3回転部材110を第6軸線110aの周りで回転させる。第3回転部材110は、エンドエフェクタを取付けるためのフランジ面を先端に有する。
3軸周りの回転が可能な姿勢変更機構部102を備えたパラレルリンクロボットPRは、姿勢変更機構部102のフランジ面に装着されたエンドエフェクタ(図示せず)に3軸並進運動と3軸回転運動とを適宜組み合わせて遂行させることができる。
Of the three attitude change mechanism drive mechanisms 20, of the third attitude change mechanism drive mechanism 20, the third universal joint 80-3 and the gear train and the like (see FIG. 8) are used for power transmission. A third transmission member 54-3 connected to the three-rotation member 110 is provided. The third transmission member 54-3 transmits the rotation of the third outer holder 44, which is rotationally driven by the third servo motor 52, to the third rotation member 110, and transmits the third rotation member 110 to the sixth axis 110a. Rotate around. The third rotating member 110 has a flange surface at the tip for attaching an end effector.
The parallel link robot PR provided with the posture changing mechanism unit 102 capable of rotating around three axes is subjected to three-axis translation and three-axis rotation by an end effector (not shown) mounted on the flange surface of the posture changing mechanism unit 102. It can be performed in combination with exercise.

図3や図4に示される姿勢変更機構部102を備えたパラレルリンクロボットPRでは、平行受動リンク32を接続する各関節部36の回転軸線を含む平面と平行な平面(パラレルリンクロボットPRを床置した場合は水平面内)が、使用頻度が高い領域である。第1フランジ面112が水平になった場合は、第4軸線106aと第6軸線110aとが平行な配置関係になることから、特異点となる。特異点とは、第6軸線110aの位置を特定する場合、第4軸線106aは第6軸線110aの周りのどこかの角度位置となることから、位置の演算を行う場合に解が一義的に決められない状態という。   In the parallel link robot PR having the posture changing mechanism unit 102 shown in FIGS. 3 and 4, a plane parallel to the plane including the rotation axis of each joint unit 36 connecting the parallel passive links 32 (the parallel link robot PR is installed on the floor). When placed, the horizontal plane) is a frequently used area. When the first flange surface 112 becomes horizontal, the fourth axis line 106a and the sixth axis line 110a have a parallel arrangement relationship, which is a singular point. The singular point is that when the position of the sixth axis 110a is specified, the fourth axis 106a becomes an angular position somewhere around the sixth axis 110a, so that the solution is uniquely determined when calculating the position. It is said that it cannot be decided.

そこで図5に示されるように、特異点が発生しないように、第6軸線110aとフランジ面に垂直な第7軸線112aが所定角度αを有するように、第3回転部材110に第2フランジ面を設ける。このような構造とすることで、第2フランジ面114が水平になっても、第4軸線106aと第6軸線110aとが平行にならず、使用頻度が高い水平面内が特異点となることを回避することができる。所定角度αとしては30度から60度とすると、ハンド122を取付けてハンド122に作業を行なわせるのに好適である。   Therefore, as shown in FIG. 5, the second flange surface is provided on the third rotating member 110 so that the sixth axis 110 a and the seventh axis 112 a perpendicular to the flange surface have a predetermined angle α so that no singular point is generated. Is provided. By adopting such a structure, even when the second flange surface 114 is horizontal, the fourth axis 106a and the sixth axis 110a are not parallel, and the horizontal plane with high use frequency becomes a singular point. It can be avoided. If the predetermined angle α is 30 degrees to 60 degrees, it is suitable for attaching the hand 122 and causing the hand 122 to perform work.

第3回転部材110に第6軸線110aと第2フランジ面114に垂直な軸線が所定角度を持つようにして第2フランジ面114を設けるシンプルな構造により、使用頻度が高い水平面内が特異点となることを回避できる。これにより、安価でコンパクトな姿勢変更機構を実現でき、各軸の動作も理解し易く、パラレルリンクロボットPRの使い勝手が格段に向上する。また、ハンドやツールの取付部に角度を付ける必要がなくなり、ハンドやツールの制作が容易になる上、安価にそれらを製造することができる。   Due to the simple structure in which the second flange surface 114 is provided on the third rotating member 110 so that the axis perpendicular to the sixth axis 110a and the second flange surface 114 has a predetermined angle, the horizontal plane that is frequently used is a singular point. Can be avoided. Thereby, an inexpensive and compact posture changing mechanism can be realized, the operation of each axis can be easily understood, and the usability of the parallel link robot PR is greatly improved. In addition, it is not necessary to provide an angle to the attachment portion of the hand or tool, making it easier to produce the hand or tool and making them inexpensively.

図6は、本発明の実施形態であるフランジ面を傾斜させた姿勢変更機構部を備えたパラレルリンクロボットPRの概略構成図である。傾斜した第2フランジ面を備えた姿勢変更機構部102のフランジ面に、ワークを把持しワークを移動させるなどの作業を行うハンド(図7参照)が取付けられる。   FIG. 6 is a schematic configuration diagram of a parallel link robot PR provided with a posture changing mechanism unit in which the flange surface is inclined according to the embodiment of the present invention. A hand (see FIG. 7) for performing work such as gripping and moving the workpiece is attached to the flange surface of the posture changing mechanism unit 102 having the inclined second flange surface.

水平面内に置かれたワークを把持する際は、ハンド122(図7参照)を真下に向ける必要がある。ハンド122のハンド取付部120を第2フランジ面114に装着する。前述したようにフランジ面を傾斜させた姿勢変更機構部102を用いたパラレルリンクロボットPRでは、第2フランジ面114を水平にしてハンド122を真下に向けた場合でも、第4軸線106aと第6軸線110aとは平行にならず、水平面内が特異点となることを回避できる。   When gripping a workpiece placed in a horizontal plane, the hand 122 (see FIG. 7) needs to be directed downward. The hand mounting portion 120 of the hand 122 is attached to the second flange surface 114. As described above, in the parallel link robot PR using the posture changing mechanism unit 102 in which the flange surface is inclined, even when the second flange surface 114 is horizontal and the hand 122 is directed directly downward, the fourth axis 106a and the sixth axis It is not parallel to the axis 110a, and it can be avoided that the horizontal plane becomes a singular point.

図8は、フランジ面を傾斜させた姿勢変更機構部の内部の概略構造を説明する図である。姿勢変更機構部102を回転駆動する駆動力は、おのおの独立した3つの姿勢変更機構部駆動機構20の駆動シャフト54−1,54−2,54−3により伝達される(図3参照)。この駆動力は、可動部材100上に平行受動リンク32を接続する各関節部36の軸線を含む平面に対して、垂直かつ互いに平行な軸周りに回転可能にベアリングを介して接続された入力軸に自在継手(ユニバーサルジョイント)80−1,80−2,80−3(図3参照)を介して伝達される。   FIG. 8 is a diagram illustrating a schematic structure inside the posture changing mechanism section in which the flange surface is inclined. The driving force for rotationally driving the posture change mechanism unit 102 is transmitted by the drive shafts 54-1, 54-2, 54-3 of the three independent posture change mechanism unit drive mechanisms 20 (see FIG. 3). This driving force is applied to an input shaft connected via a bearing so as to be rotatable about an axis perpendicular to and parallel to each other with respect to a plane including the axis of each joint portion 36 connecting the parallel passive link 32 on the movable member 100. Are transmitted through universal joints 80-1, 80-2, 80-3 (see FIG. 3).

この入力軸の先端には各々ギヤ4−1,5−1,6−1(ギヤ5−1,ギヤ6−1は図示せず)が固定されている。第1回転部材106はベアリングを介して、可動部材100に対して回転可能に接続されている。第1回転部材106にはギヤ4−2が固定されており、ギヤ4−1とギヤ4−2が噛み合い、ギヤ4−1に伝達された回転駆動力がギヤ4−2に伝達され、第1回転部材106が回転する。   Gears 4-1, 5-1 and 6-1 (gears 5-1 and 6-1 are not shown) are fixed to the tips of the input shafts. The first rotating member 106 is rotatably connected to the movable member 100 via a bearing. A gear 4-2 is fixed to the first rotating member 106, the gear 4-1 and the gear 4-2 are meshed, and the rotational driving force transmitted to the gear 4-1 is transmitted to the gear 4-2. One rotation member 106 rotates.

第1回転部材106には、ベアリングを介してギヤ5−2,5−3が回転可能に接続されている。ギヤ5−2とギヤ5−3とは駆動力を伝達できるように固定されている。ギヤ5−4は第2回転部材108に固定され、第2回転部材108はベアリングを介して回転可能に第1回転部材に接続されている。ギヤ5−1に伝達された駆動力が、ギヤ5−2、ギヤ5−3、ギヤ5−4と伝達され、第2回転部材108が回転する。また、第3回転部材110は、ギヤ6−1(図示せず)に伝達された駆動力がギヤ6−2、ギヤ6−3、ギヤ6−4、ギヤ6−5、ギヤ6−6と伝達されることによって回転する。なお、ギヤ同士、ギヤと回転部材との固定は、動力が伝達できればよく、ボルト結合、キー結合、接着結合など、その結合手段は適宜選択して採用すればよい。   Gears 5-2 and 5-3 are rotatably connected to the first rotating member 106 through bearings. The gear 5-2 and the gear 5-3 are fixed so that a driving force can be transmitted. The gear 5-4 is fixed to the second rotating member 108, and the second rotating member 108 is rotatably connected to the first rotating member via a bearing. The driving force transmitted to the gear 5-1 is transmitted to the gear 5-2, the gear 5-3, and the gear 5-4, and the second rotating member 108 rotates. In addition, the third rotating member 110 has a driving force transmitted to the gear 6-1 (not shown) as a gear 6-2, a gear 6-3, a gear 6-4, a gear 6-5, and a gear 6-6. It is rotated by being transmitted. Note that the gears and the gears and the rotating member may be fixed as long as power can be transmitted, and the coupling means such as bolt coupling, key coupling, and adhesive coupling may be appropriately selected and employed.

図9は、姿勢変更機構部駆動機構の要部拡大断面図で、(a)ホルダ組立体を示す断面図、及び(b)ホルダ組立体を示す他の縦断面図である。姿勢変更機構部駆動機構20は、姿勢変更機構部102に取付けて可動部材100に設置されるハンド(図7参照)やツールの姿勢を制御するための駆動機構である。本発明の実施形態によるパラレルリンクロボットPRでは、3つの互いに独立して動作可能な3個の姿勢変更機構部駆動機構20を備える。基礎部材12には、図2に示す座部56と同様の3個の座部56が、3組のリンク構造26の略中心を囲む適当な位置に形成され、個々のホルダ組立体50の外側ホルダ44が対応の座部56に取付けられる。それにより、3個の姿勢変更機構部駆動機構20は、それぞれのホルダ組立体50の第1軸線44aを互いに平行に配置して構成される。   FIG. 9 is an enlarged cross-sectional view of the main part of the posture changing mechanism drive mechanism, (a) a cross-sectional view showing the holder assembly, and (b) another vertical cross-sectional view showing the holder assembly. The posture change mechanism unit drive mechanism 20 is a drive mechanism that is attached to the posture change mechanism unit 102 and controls the posture of a hand (see FIG. 7) and a tool installed on the movable member 100. The parallel link robot PR according to the embodiment of the present invention includes three posture change mechanism unit driving mechanisms 20 that can operate independently of each other. The base member 12 is formed with three seats 56 similar to the seats 56 shown in FIG. 2 at appropriate positions surrounding substantially the center of the three sets of link structures 26, and the outer sides of the individual holder assemblies 50. A holder 44 is attached to the corresponding seat 56. Accordingly, the three posture changing mechanism unit driving mechanisms 20 are configured by arranging the first axes 44a of the respective holder assemblies 50 in parallel with each other.

姿勢変更機構部駆動機構20は、3個の中空円筒状のホルダ44,46,48を互いに回転可能に、かつ3重の入れ子式に組み合わせて構成されるホルダ組立体50と、ホルダ組立体50の外側ホルダ44を回転駆動するサーボモータ52(図10参照)と、ホルダ組立体50の内側ホルダ48に直線移動(すなわち直動)可能に受容される棒状の駆動シャフト54とを備えている。   The posture changing mechanism section drive mechanism 20 includes a holder assembly 50 configured by combining three hollow cylindrical holders 44, 46, and 48 in a mutually rotatable and triple nested manner, and the holder assembly 50. Servo motor 52 (see FIG. 10) that rotationally drives the outer holder 44 and a rod-like drive shaft 54 that is received by the inner holder 48 of the holder assembly 50 so as to be linearly movable (ie, linearly movable).

図9(a)に示すように、ホルダ組立体50の中間ホルダ46は、外側ホルダ44の内周面よりも径寸法の小さい外周面を有し、この外周面の互いに180度反対側の所定箇所に、径方向外方へ突出する一対の支軸62が形成される。それら支軸62は、それぞれの幾何学的中心線を互いに一致させるとともに中間ホルダ46の幾何学的中心線に直交させて配置される。他方、外側ホルダ44には、内周面の互いに180度反対側の所定箇所に、径方向へ貫通する一対の軸穴64が形成される。それら軸穴64は、それぞれの幾何学的中心軸線を互いに一致させるとともに外側ホルダ44の幾何学的中心軸線に直交させて配置される。   As shown in FIG. 9A, the intermediate holder 46 of the holder assembly 50 has an outer peripheral surface having a smaller diameter than the inner peripheral surface of the outer holder 44, and the outer peripheral surface has a predetermined 180 ° opposite to each other. A pair of support shafts 62 projecting radially outward are formed at the locations. The support shafts 62 are arranged so that the respective geometric center lines coincide with each other and are orthogonal to the geometric center line of the intermediate holder 46. On the other hand, the outer holder 44 is formed with a pair of shaft holes 64 penetrating in the radial direction at predetermined positions on the inner peripheral surface opposite to each other by 180 degrees. The shaft holes 64 are arranged such that the respective geometric center axes coincide with each other and are orthogonal to the geometric center axis of the outer holder 44.

中間ホルダ46は、個々の支軸62を外側ホルダ44の対応の軸穴64に挿入して、それら軸穴64に設置される一対の回転軸受装置66を介して外側ホルダ44に取付けられる。詳細には、各回転軸受装置66の外輪が外側ホルダ44の各軸穴64の内周面に固定される。この状態で、中間ホルダ46は、それ自体の幾何学的中心軸線及び第1軸線44aの双方に直交する第2軸線46aを中心として回転可能に、外側ホルダ44に内設される。   The intermediate holder 46 is attached to the outer holder 44 via a pair of rotary bearing devices 66 installed in the shaft holes 64 by inserting individual support shafts 62 into corresponding shaft holes 64 of the outer holder 44. Specifically, the outer ring of each rotary bearing device 66 is fixed to the inner peripheral surface of each shaft hole 64 of the outer holder 44. In this state, the intermediate holder 46 is installed in the outer holder 44 so as to be rotatable about a second axis 46a orthogonal to both its own geometrical center axis and the first axis 44a.

図9(b)に示すように、ホルダ組立体50の内側ホルダ48は、中間ホルダ46の内周面よりも径寸法の小さい外周面を有し、この外周面の互いに180度反対側の所定箇所に、径方向外方へ突出する支軸68が形成される。それら支軸68は、それぞれの幾何学的中心線を互いに一致させるとともに内側ホルダ48の幾何学的中心軸線に直交させて配置される。他方、中間ホルダ46には、一対の支軸62から中心角90度ずれた位置で互いに180度反対側の所定箇所に、径方向へ貫通する一対の軸穴70が形成される。それら軸穴70は、それぞれの幾何学的中心軸線を互いに一致させるとともに中間ホルダ46の幾何学的中心軸線に直交させて配置される。   As shown in FIG. 9B, the inner holder 48 of the holder assembly 50 has an outer peripheral surface having a smaller diameter than the inner peripheral surface of the intermediate holder 46, and the outer peripheral surface has a predetermined 180 ° opposite to each other. A support shaft 68 protruding outward in the radial direction is formed at the location. The support shafts 68 are arranged such that the respective geometric center lines coincide with each other and are orthogonal to the geometric center axis of the inner holder 48. On the other hand, the intermediate holder 46 is formed with a pair of shaft holes 70 penetrating in the radial direction at predetermined positions 180 degrees opposite to each other at a position shifted by 90 degrees from the pair of support shafts 62. The shaft holes 70 are arranged such that the respective geometric center axes coincide with each other and are orthogonal to the geometric center axis of the intermediate holder 46.

内側ホルダ48、個々の支軸68を中間ホルダ46の対応の軸穴70に挿入して、それら軸穴70に設置される一対の回転軸受装置72を介して中間ホルダ46に取付けられる。詳細には、各回転軸受装置72の内輪が内側ホルダ48の各支軸68の外周面に固定される一方、各回転軸受装置72の外輪が中間ホルダ46の各軸穴70の内周面に固定される。この状態で、内側ホルダ48は、それ自体の幾何学的中心線及び第2軸線46aの双方に直交する第3軸線48aを中心として回転可能に、中間ホルダ46に内設される。   The inner holder 48 and the individual support shafts 68 are inserted into corresponding shaft holes 70 of the intermediate holder 46 and attached to the intermediate holder 46 via a pair of rotary bearing devices 72 installed in the shaft holes 70. Specifically, the inner ring of each rotary bearing device 72 is fixed to the outer peripheral surface of each spindle 68 of the inner holder 48, while the outer ring of each rotary bearing device 72 is attached to the inner peripheral surface of each shaft hole 70 of the intermediate holder 46. Fixed. In this state, the inner holder 48 is installed in the intermediate holder 46 so as to be rotatable about a third axis 48a orthogonal to both its own geometrical center line and the second axis 46a.

外側ホルダ44には、その外周面の軸線方向他端(図で上端)に、動力伝達要素としてのギヤ74が固定され、サーボモータ52の出力軸76がギヤ74に連結される(図10参照)。サーボモータ52はギヤ74を介して外側ホルダ44を第1軸線44aの周りで回転駆動する。なお、ギヤ74の代わりにベルト及びプーリを動力伝達要素として使用することもできる。   A gear 74 as a power transmission element is fixed to the outer holder 44 at the other axial end of the outer peripheral surface (upper end in the figure), and an output shaft 76 of the servo motor 52 is connected to the gear 74 (see FIG. 10). ). The servo motor 52 rotationally drives the outer holder 44 around the first axis 44 a via the gear 74. In place of the gear 74, a belt and a pulley can be used as a power transmission element.

駆動シャフト54は、ホルダ組立体50の内側ホルダ48の内周面よりも径寸法の小さい外周面を有する一体物の棒状要素であり、内側ホルダ48の内部に設置される直動軸受部材78を介して内側ホルダ48に取付けられる。この状態で、駆動シャフト54は、それ自体及び内側ホルダ48の幾何学的中心軸線の双方に平行で第3軸線48aに直交する直動軸54aに沿って、全長に渡り回転拘束状態で直動可能に内側ホルダ48に受容される。図示実施形態では、直動軸54aは、駆動シャフト54及び内側ホルダ48の幾何学的中心軸線に合致する。   The drive shaft 54 is an integral rod-like element having an outer peripheral surface having a smaller diameter than the inner peripheral surface of the inner holder 48 of the holder assembly 50, and a linear motion bearing member 78 installed inside the inner holder 48 is provided. To the inner holder 48. In this state, the drive shaft 54 moves linearly in a rotationally restrained state over the entire length along a linear motion axis 54a that is parallel to both itself and the geometric center axis of the inner holder 48 and perpendicular to the third axis 48a. Possible to be received in the inner holder 48. In the illustrated embodiment, the linear axis 54 a coincides with the geometric center axis of the drive shaft 54 and the inner holder 48.

駆動シャフト54を回転拘束状態で案内する直動軸受部材78は、サーボモータ52の出力を駆動シャフト54にできるだけ損失無く伝えることが、ハンドやツールの姿勢制御の精度を向上させる観点で要求される。このような直動軸受部材78として、ボールスプライン装置のスプラインシャフトを好適に使用できる。この場合、駆動シャフト54は、ボールスプライン装置のスプラインシャフトの構造を有する。ボールスプライン装置の詳細については公知であるから記載を省略する。   The linear motion bearing member 78 that guides the drive shaft 54 in a rotationally restricted state is required to transmit the output of the servo motor 52 to the drive shaft 54 with as little loss as possible from the viewpoint of improving the accuracy of posture control of the hand and the tool. . As such a linear motion bearing member 78, a spline shaft of a ball spline device can be suitably used. In this case, the drive shaft 54 has a spline shaft structure of a ball spline device. Since the details of the ball spline device are known, the description is omitted.

図10に示されるように、ホルダ組立体50は基礎部材12及びサーボモータ52の出力軸76と駆動シャフト54との間で、駆動シャフト54の幾何学的中心軸線(直動軸54a)の方向へ相対移動可能な特殊構造の自在継手として機能する。つまり、外側ホルダ44が自在継手の原動側構成部品であり、内側ホルダ48が自在継手の従動側構成部品である。したがって、駆動シャフト54は、その直動軸54aが外側ホルダ44の第1軸線44aに対し平行及び斜交するいずれの位置関係においても、サーボモータ52により駆動される外側ホルダ44の回転に同期して、直動軸54aを中心に内側ホルダ48と一体的に回転する。   As shown in FIG. 10, the holder assembly 50 is disposed between the base member 12 and the output shaft 76 of the servo motor 52 and the drive shaft 54 in the direction of the geometric center axis (linear motion shaft 54 a) of the drive shaft 54. It functions as a universal joint with a special structure that can be moved relative to each other. That is, the outer holder 44 is the driving side component of the universal joint, and the inner holder 48 is the driven side component of the universal joint. Therefore, the drive shaft 54 is synchronized with the rotation of the outer holder 44 driven by the servo motor 52 in any positional relationship in which the linear movement shaft 54 a is parallel and oblique to the first axis 44 a of the outer holder 44. Thus, it rotates integrally with the inner holder 48 around the linear motion shaft 54a.

ホルダ組立体50において、外側ホルダ44に対する駆動シャフト54(つまり、第1軸線44aに対する直動軸54a)の許容傾斜角度は、外側ホルダ44、中間ホルダ46及び内側ホルダ48の相対的な位置及び寸法関係によって決まる。パラレルリンクロボットPRによる一般的な作業(ハンドリング作業)では、0度〜40度程度の範囲で駆動シャフト54が傾斜できることが望ましい。なお、3個の中空円筒状ホルダ44、46、48を3重の入れ子式に組み合わせて構成されるホルダ組立体50は、図示のように、中間ホルダ46および内側ホルダ48を外側ホルダ44の外方へ実質的に突出しないように構成できるので、要求される自在継手の能力を損なうことなくホルダ組立体50の全体寸法を比較的容易に縮小することができる。   In the holder assembly 50, the allowable inclination angle of the drive shaft 54 with respect to the outer holder 44 (that is, the linear movement shaft 54a with respect to the first axis 44a) is determined by relative positions and dimensions of the outer holder 44, the intermediate holder 46, and the inner holder 48. It depends on the relationship. In general work (handling work) by the parallel link robot PR, it is desirable that the drive shaft 54 can be tilted within a range of about 0 to 40 degrees. The holder assembly 50 configured by combining the three hollow cylindrical holders 44, 46, and 48 in a triple nested manner has the intermediate holder 46 and the inner holder 48 attached to the outer holder 44 as shown in the figure. Therefore, the overall dimensions of the holder assembly 50 can be relatively easily reduced without impairing the required universal joint capability.

特に、パラレルリンクロボットPRでは、駆動シャフト54が、パラレルメカニズム形式の可動部材駆動機構16による可動部材100及び姿勢変更機構部102の3軸並進運動に円滑に追従して、基礎部材12及びサーボモータ52の出力軸76と駆動シャフト54との間の自在継手であるホルダ組立体に対し、直動軸54aの方向へ受動的に移動することができる。それにより、可動部材100及び姿勢変更機構部102がその作動領域内の任意の(すなわち指令された)空間位置にあるときに、サーボモータ52のトルクが姿勢変更機構部102に確実に伝達される。   In particular, in the parallel link robot PR, the drive shaft 54 smoothly follows the three-axis translational movement of the movable member 100 and the posture changing mechanism unit 102 by the movable member drive mechanism 16 of the parallel mechanism type, and the base member 12 and the servo motor. The holder assembly, which is a universal joint between the output shaft 76 and the drive shaft 54, can be passively moved in the direction of the linear motion shaft 54a. As a result, when the movable member 100 and the posture changing mechanism unit 102 are in an arbitrary (that is, commanded) space position within the operation region, the torque of the servo motor 52 is reliably transmitted to the posture changing mechanism unit 102. .

ここで、前述したように、可動部材駆動機構16は、可動部材100を基礎部材12に対して3軸並進運動のみを遂行するように駆動するから、可動部材駆動機構16が動作する間、姿勢変更機構部102の入力軸は常に、ホルダ組立体50の第1軸線44aに対して平行に配置される。その結果、基礎部材12に対する駆動シャフト54の傾斜角度によらず、外側ホルダ44の角速度と姿勢変更機構部102の入力軸の各速度とが互いに一致する。   Here, as described above, the movable member driving mechanism 16 drives the movable member 100 so as to perform only the three-axis translational movement with respect to the base member 12, so that the posture is maintained while the movable member driving mechanism 16 operates. The input shaft of the change mechanism unit 102 is always arranged in parallel to the first axis 44 a of the holder assembly 50. As a result, regardless of the inclination angle of the drive shaft 54 with respect to the base member 12, the angular velocity of the outer holder 44 and the respective velocities of the input shaft of the attitude changing mechanism unit 102 coincide with each other.

上記構成では、駆動シャフト54は、可動部材100及び姿勢変更機構部102の3軸並進運動に追従して、基礎部材12に担持されるホルダ組立体50の外側ホルダ44の上方へ、多様な角度で多様な長さに渡り延出する。したがって、姿勢変更機構部駆動機構20のサーボモータ52は、外側ホルダ44に隣接した位置で、外側ホルダ44よりも可動部材100から離れる方向へは突出しないように基礎部材12に担持されることが、サーボモータ52と駆動シャフト54との相互干渉を回避する観点で有利である(図10参照)。   In the above configuration, the drive shaft 54 follows the three-axis translational movement of the movable member 100 and the posture changing mechanism unit 102, and has various angles above the outer holder 44 of the holder assembly 50 carried by the base member 12. It extends over various lengths. Therefore, the servo motor 52 of the posture changing mechanism section drive mechanism 20 is supported by the base member 12 at a position adjacent to the outer holder 44 so as not to protrude in a direction away from the movable member 100 than the outer holder 44. This is advantageous from the viewpoint of avoiding mutual interference between the servo motor 52 and the drive shaft 54 (see FIG. 10).

PR パラレルリンクロボット
12 基礎部材
16 可動部材駆動機構
20 姿勢変更機構部駆動機構
26 リンク構造
28 サーボモータ
30 駆動リンク
32 受動リンク
52 サーボモータ
54 駆動シャフト
100 可動部材
102 姿勢変更機構部
106 第1回転部材
106a 第4軸線
108 第2回転部材
108a 第5軸線
110 第3回転部材
110a 第6軸線
112 第1フランジ面
114 第2フランジ面
PR parallel link robot 12 basic member 16 movable member drive mechanism 20 posture change mechanism unit drive mechanism 26 link structure 28 servo motor 30 drive link 32 passive link 52 servo motor 54 drive shaft 100 movable member 102 posture change mechanism unit 106 first rotating member 106a Fourth axis 108 Second rotating member 108a Fifth axis 110 Third rotating member 110a Sixth axis 112 First flange surface 114 Second flange surface

Claims (1)

基礎部材と可動部材の間を駆動リンクと受動リンクからなる3組のリンク機構を並列に関節接続すると共に、前記可動部材にエンドエフェクタの姿勢を制御するための3自由度を有する姿勢変更機構部を備えたパラレルリンクロボットにおいて、
前記可動部材に、前記可動部材と3つの前記受動リンクを接続する各関節部の回転軸線を含む平面に対して垂直な第4軸線回りに回転可能に接続された第1回転部材と、前記第1回転部材に、前記第4軸線に直交する第5軸線回りに回転可能に接続された第2回転部材と、前記第2回転部材に、前記第5軸線に直交する第6軸線回りに回転可能に接続された第3回転部材を備え、
前記可動部材には3つの入力軸が設けられ、
該3つの入力軸は、前記可動部材と3つの前記受動リンクを接続する各関節部の回転軸線を含む平面に対して垂直かつ互いに平行な軸であり、
前記姿勢変更機構部を駆動する3つのモータは前記基礎部材上に配置され、
前記3つのモータからの各駆動力をそれぞれ伝達する3本の独立した駆動シャフトを有し、
該駆動シャフトは、前記3つの入力軸のそれぞれの軸回りに回転出来るように連結され、前記3つのモータからの各駆動力は、前記姿勢変更機構部に配置されたギヤを介して、前記第4軸線回り、前記第5軸線回り、前記第6軸線回りに前記第1回転部材、前記第2回転部材、前記第3回転部材を駆動することを特徴とするパラレルリンクロボット。
A posture changing mechanism having three degrees of freedom for jointly connecting three sets of link mechanisms including a drive link and a passive link between the base member and the movable member to control the posture of the end effector to the movable member. In the parallel link robot with
A first rotation member connected to the movable member so as to be rotatable about a fourth axis perpendicular to a plane including a rotation axis of each joint portion connecting the movable member and the three passive links; A second rotating member connected to one rotating member so as to be rotatable about a fifth axis orthogonal to the fourth axis, and a second rotating member rotatable about a sixth axis orthogonal to the fifth axis A third rotating member connected to the
The movable member is provided with three input shafts,
The three input shafts are axes perpendicular to and parallel to a plane including a rotation axis of each joint portion connecting the movable member and the three passive links.
Three motors for driving the posture changing mechanism are disposed on the foundation member,
Having three independent drive shafts for transmitting each drive force from the three motors,
The drive shafts are coupled so as to be able to rotate around the respective axes of the three input shafts, and each drive force from the three motors is transmitted through the gears disposed in the posture changing mechanism section. A parallel link robot that drives the first rotating member, the second rotating member, and the third rotating member around four axes, around the fifth axis, and around the sixth axis.
JP2010278173A 2010-12-14 2010-12-14 Parallel link robot with posture change mechanism with 3 degrees of freedom Active JP5394358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010278173A JP5394358B2 (en) 2010-12-14 2010-12-14 Parallel link robot with posture change mechanism with 3 degrees of freedom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010278173A JP5394358B2 (en) 2010-12-14 2010-12-14 Parallel link robot with posture change mechanism with 3 degrees of freedom

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009030876A Division JP4659098B2 (en) 2009-02-13 2009-02-13 Parallel link robot with posture change mechanism with 3 degrees of freedom

Publications (2)

Publication Number Publication Date
JP2011056661A JP2011056661A (en) 2011-03-24
JP5394358B2 true JP5394358B2 (en) 2014-01-22

Family

ID=43944902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010278173A Active JP5394358B2 (en) 2010-12-14 2010-12-14 Parallel link robot with posture change mechanism with 3 degrees of freedom

Country Status (1)

Country Link
JP (1) JP5394358B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101483081B1 (en) 2014-01-16 2015-01-21 주식회사 로보스타 Parallel robot wrist using differential gear
JP6823007B2 (en) 2018-04-27 2021-01-27 ファナック株式会社 Parallel link robot
JP7332337B2 (en) * 2019-05-27 2023-08-23 ファナック株式会社 parallel link robot
CN112518713A (en) * 2020-11-05 2021-03-19 广东省智行机器人科技有限公司 Multi-connecting-rod transmission balanced type heavy-load robot

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60172491A (en) * 1984-02-14 1985-09-05 三菱電機株式会社 Hand device for industrial robot
JPH06226680A (en) * 1993-02-05 1994-08-16 Hirotec:Kk Robot wrist structure
JP2000046140A (en) * 1998-07-31 2000-02-18 Yaskawa Electric Corp Motor-operated cylinder and parallel link robot
JP2001038671A (en) * 1999-08-02 2001-02-13 Denso Corp Articulated robot
CA2597686A1 (en) * 2005-02-11 2006-08-17 Force Dimension S.A.R.L. Device for transmitting movements and components thereof
JP2008286363A (en) * 2007-05-21 2008-11-27 Fanuc Ltd Four-degree-of-freedom restriction braking device, and parallel link type robot
JP4659098B2 (en) * 2009-02-13 2011-03-30 ファナック株式会社 Parallel link robot with posture change mechanism with 3 degrees of freedom

Also Published As

Publication number Publication date
JP2011056661A (en) 2011-03-24

Similar Documents

Publication Publication Date Title
JP4659098B2 (en) Parallel link robot with posture change mechanism with 3 degrees of freedom
JP4598864B2 (en) Parallel robot
US8893578B2 (en) Parallel robot provided with wrist section having three degrees of freedom
JP5403303B2 (en) Parallel mechanism
JP5546826B2 (en) Joint structure for multi-axis robot and robot having such joint structure
EP2152477B1 (en) Robotic manipulator using rotary drives
JP6729855B2 (en) Multi-directional driving device, robot joint mechanism, and multi-directional driving method
WO2019098273A1 (en) Multidirectional drive device, robot joint mechanism, and multidirectional drive method
JP5750029B2 (en) Joint mechanism and work attachment
JP5394358B2 (en) Parallel link robot with posture change mechanism with 3 degrees of freedom
JP4696384B2 (en) Parallel link robot
JP2010247280A (en) Universal robot device
JP6110620B2 (en) Parallel link robot
CN111168645A (en) Parallel connecting rod robot
JP2005127475A (en) Link operating device
US8141452B2 (en) Rotational motion-positioning apparatus
JPWO2018008679A1 (en) Arm drive
JP2018167365A (en) Robot arm
JP7332337B2 (en) parallel link robot
WO2022163789A1 (en) Arm robot
WO2019078283A1 (en) Double-arm-type operation device
JP2019077031A (en) Double-arm working device
JP2013013991A (en) Parallel link robot
JPS6229194B2 (en)
JPH06246562A (en) Xy induction actuator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131016

R150 Certificate of patent or registration of utility model

Ref document number: 5394358

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150