WO2022180018A1 - Faserverstärktes komposit-material mit styrol(co)polymer und naturfasern - Google Patents

Faserverstärktes komposit-material mit styrol(co)polymer und naturfasern Download PDF

Info

Publication number
WO2022180018A1
WO2022180018A1 PCT/EP2022/054357 EP2022054357W WO2022180018A1 WO 2022180018 A1 WO2022180018 A1 WO 2022180018A1 EP 2022054357 W EP2022054357 W EP 2022054357W WO 2022180018 A1 WO2022180018 A1 WO 2022180018A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
composite material
polymer
styrene
fibre
Prior art date
Application number
PCT/EP2022/054357
Other languages
English (en)
French (fr)
Inventor
Nils Becker
Felix KLAUCK
Pierre JUAN
Jonathan LIMBECK
Konstantin Suhre
Original Assignee
Ensinger Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ensinger Gmbh filed Critical Ensinger Gmbh
Priority to KR1020237030430A priority Critical patent/KR20230152041A/ko
Priority to AU2022226373A priority patent/AU2022226373A1/en
Priority to JP2023550564A priority patent/JP2024506982A/ja
Priority to CA3208023A priority patent/CA3208023A1/en
Priority to EP22707136.2A priority patent/EP4297970A1/de
Priority to CN202280015932.6A priority patent/CN116847982A/zh
Publication of WO2022180018A1 publication Critical patent/WO2022180018A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/08Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the cooling method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • B32B5/262Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary characterised by one fibrous or filamentary layer being a woven fabric layer
    • B32B5/263Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary characterised by one fibrous or filamentary layer being a woven fabric layer next to one or more woven fabric layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2025/00Use of polymers of vinyl-aromatic compounds or derivatives thereof as moulding material
    • B29K2025/04Polymers of styrene
    • B29K2025/08Copolymers of styrene, e.g. AS or SAN, i.e. acrylonitrile styrene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2311/00Use of natural products or their composites, not provided for in groups B29K2201/00 - B29K2309/00, as reinforcement
    • B29K2311/10Natural fibres, e.g. wool or cotton
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/0022Bright, glossy or shiny surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/0026Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0063Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0094Geometrical properties
    • B29K2995/0097Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/10Building elements, e.g. bricks, blocks, tiles, panels, posts, beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/044 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/055 or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/42Alternating layers, e.g. ABAB(C), AABBAABB(C)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • B32B2260/023Two or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/06Vegetal fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/06Vegetal fibres
    • B32B2262/062Cellulose fibres, e.g. cotton
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/06Vegetal fibres
    • B32B2262/062Cellulose fibres, e.g. cotton
    • B32B2262/065Lignocellulosic fibres, e.g. jute, sisal, hemp, flax, bamboo
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/08Animal fibres, e.g. hair, wool, silk
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/406Bright, glossy, shiny surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/718Weight, e.g. weight per square meter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/738Thermoformability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2437/00Clothing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2451/00Decorative or ornamental articles

Definitions

  • the invention relates to a fiber-reinforced composite material containing a thermoplastic polymer matrix of at least one styrene (co)polymer and at least one natural fiber component.
  • This composite material can, for. B. be produced by pressing in the layer structure using pressure and heat.
  • the material combines structural rigidity, good workability and pleasing aesthetics, making it suitable for a variety of applications, including high performance.
  • the fiber-reinforced composite material is also characterized by its high surface gloss.
  • Fiber-reinforced composite materials have been known for years and consist of a large number of reinforcing fibers embedded in a polymer matrix.
  • the areas of application for fiber-reinforced composite materials are diverse. For example, they are used in the automotive and aviation industries.
  • the materials are intended to prevent the matrix from breaking or otherwise fragmenting and to reduce the risk of accidents caused by scattered component pieces.
  • Many fiber-reinforced composite materials are able to absorb relatively high forces under load before the material fails.
  • the fiber-reinforced composite materials of the present invention are characterized by high strength and rigidity combined with low density and other advantageous properties, such as good resistance to aging and corrosion.
  • the strength and stiffness of the composite materials are adjustable to the direction and type of loading.
  • the fibers are particularly important for the strength and stiffness of the fiber composite material.
  • the fiber arrangement determines the mechanical properties of the fiber composite material.
  • the matrix serves in particular to direct most of the forces to be absorbed to the individual fibers and to keep the spatial arrangement of the fibers in the desired orientation. Since both the type of fibers and the matrix materials can be varied, numerous combinations of fibers and matrix materials are possible.
  • Endless fiber-reinforced composites are used for the highest demands on strength and rigidity of the fiber composite materials.
  • the length of the fibers is limited only by the final component, which is introduced in particular as a woven or non-crimp fabric and with a high resulting fiber volume content. This results in a high degree of specific interface between the fiber system and matrix in the component or semi-finished product.
  • good impregnation of the continuous fibres, fabrics or gels with the polymer matrix is often technically challenging.
  • fiber-reinforced materials have the potential to be used in various areas, it should be possible to produce them with high-quality surfaces without the need for additional, complex work steps.
  • Good optical properties are important for many applications, such as the possibility of using the fiber-reinforced composite materials to achieve elements or components with smooth surfaces (e.g. low surface waviness, lack of holes or depressions), decorativeness and high transparency. Up to now, these optical properties could not be achieved with many fiber-reinforced composite materials.
  • an economical and environmentally friendly production of the fiber-reinforced composite material is desirable. Recycling is also important.
  • the fiber-reinforced composite material should be easy to process, largely inert to conventional solvents, have good resistance to stress cracking and have a glossy, textured or smooth surface.
  • WO 2016/170104 relates to a composite material containing 30 to 95% by weight of a thermoplastic material, 5 to 70% by weight of reinforcing fibers and 0 to 40% by weight of other additives.
  • the thermoplastic material should have good processability, the MVR (220/10) is given as 10-70 cm 3 /10 min.
  • WO 2008/058971 describes molding compositions with good mechanical properties, in which two reinforcing fibers with different properties are used.
  • the reinforcing fibers are each used with different adhesion promoter compositions, which cause different fiber-matrix adhesions.
  • the reinforcing fibers must be introduced into the matrix as complex networks. Such an approach requires an undesirably complex and labor intensive manufacturing process.
  • WO 2008/119678 discloses glass fiber-reinforced compositions whose mechanical properties are improved by using maleic anhydride-containing styrene copolymer. However, the use of short fibers is taught.
  • US 2011/0020572 describes organic sheet components with a hybrid design with a highly flowable polycarbonate component and suitable additives, such as hyperbranched polyester, ethylene/(meth)acrylate copolymers or low molecular weight polyalkylene glycol esters.
  • WO 2008/110539 teaches single-layer composites in which glass fibers are embedded in a molding compound.
  • CA-A 2862396 describes a method for producing composite materials consisting of a core structure and at least one surface plate which is connected to the core structure.
  • WO 2016/170131 describes the use of a fiber composite material made from different layers with a sandwich structure, which contains a foam component as a layer.
  • WO 2012/104436 describes a composite material based on a natural fiber-reinforced plastic that contains at least one layer of a spunlace fleece made of natural fibers as the reinforcing material.
  • WO 2016/170148 describes a method for producing a fiber composite material from amorphous, modified polymers with reinforcing fibers. These organo sheets are made from a thermoplastic molding compound and reinforcing fibers. The molding compound has a chemically reactive functionality, the surface of the reinforcing fiber is treated with silane.
  • WO 2016/170103 relates to a fiber composite material W with increased transparency, the copolymer forming bonds with the surface of embedded fibers through functional groups.
  • WO 2016/170145 describes a layered thermoplastic fiber composite material and its use and production by introducing a sheet into a thermoplastic matrix.
  • WO 2016/026920 describes fiber composite materials that are based on polylactic acid and can contain various natural fibers.
  • WO 2019/063620 relates to fiber-reinforced composite materials that contain at least one continuous fibrous reinforcement material in combination with at least one essentially amorphous matrix polymer composition.
  • WO 2019/063621 relates to the production of such fiber-reinforced composites.
  • WO 2019/063625 describes fiber-reinforced composite materials with improved fiber-matrix adhesion made from at least 50% by weight of continuous reinforcement material and an essentially amorphous matrix.
  • WO 2019/063626 relates to the use of such composite materials as starting material in a thermoforming process for the production of shaped bodies.
  • one object is to provide a composite material that is easy to process, which is largely inert to a large number of solvents, has good stress cracking resistance and (flexural) strength properties and also has good optical and aesthetic requirements fulfilled, such as surface gloss and/or surface structure.
  • the production should be implemented with little technical effort and few work steps.
  • the composite material should be lightweight (low density) and preferably easy to recycle.
  • the fiber-reinforced composite materials described which contain at least one natural fiber as a reinforcing material (B) in combination with a thermoplastic polymer matrix of at least one styrene (co)polymer (A), this task (s) solve. They have better (surface) properties than composite materials with other thermoplastic polymer matrices.
  • the specific combination of at least one natural fiber, such as flax, as reinforcement material (B) with a thermoplastic polymer matrix of at least one styrene (co)polymer (A) under mild conditions enables the production of composite material which has particularly shiny surfaces without the need for additional process steps, such as coating steps.
  • the invention relates in particular to a fiber-reinforced composite material (K) containing a thermoplastic polymer matrix and at least one natural fiber component, the composite material (K) containing (or consisting of): at least 45% (v/v) , in particular 45-70% (v/v), of at least one styrene (co)polymer (A), often styrene-acrylonitrile, as the polymer matrix;
  • the natural fiber fabric (B) often consists of natural fibers from the group consisting of: flax fiber, cotton fiber, kenaf fiber, jute fiber, hemp fiber, cellulose fiber, sisal fiber, chitin fiber, keratin fiber, bamboo fiber, coconut fiber; and/or from pretreated natural fibers from the group consisting of: flax fibre, cotton fibre, kenaf fibre, jute fibre, hemp fibre, cellulose fibre, sisal fibre, chitin fibre, keratin fibre, bamboo fibre, coconut fibre. Flax fibers are particularly suitable.
  • the above-mentioned natural fiber fabrics differ in their processability, but also in their density; the density at 20° C. (ISO 1183) is, for example, 1.3-1.45 g/cm 3 for flax fibers and 1.1-1.2 g/cm 3 for coconut fibers.
  • the styrene (co)polymer (A) preferably contains at least one styrene-acrylonitrile copolymer and/or at least one ⁇ -methyl-styrene-acrylonitrile copolymer.
  • Component (A) may also contain, for example, a modified S-AN copolymer, for example a maleic anhydride modified SAN. Combinations of two different SAN copolymers, which differ in their AN content, and an SAN-MA copolymer component have also proven particularly useful as component (A) for the composite material (K).
  • the natural fiber fabric (B) can be a flax fiber fabric, for example a woven fabric.
  • a woven fabric with a linear mass density of 100-600 tex, preferably 150-450 tex can be used as the natural fiber sheet (B).
  • This natural fiber fabric (B) often has a basis weight of 100-600 g/m 2 , preferably 150-450 g/m 2 .
  • At least one additive (D) can be used in the composite material (K); it can be, for example, a release agent or a lubricant.
  • the additive(s) are often used in an amount of 0.05 - 5% (v/v), based on the total volume of the composite material.
  • the composite material (K) contains (or consists of)
  • the composite material (K) contains (or consists of)
  • the composite material (K) according to the invention has a high gloss. It preferably has a 20° gloss of at least 40 and a 60° gloss of at least 70 when the gloss is measured according to the ISO 2813 (2015) standard.
  • the polymer matrix preferably has high transparency.
  • the styrene (co)polymer (A) often has such a high level of transparency that the natural fibers of the natural fiber fabric (B) are (well) visible on the surface of the composite material (K). This allows a natural and optically appealing appearance to be achieved. Coatings can often be dispensed with.
  • the invention also relates to a method for producing a fiber-reinforced composite material (K), as described above, in which the method includes the following method steps a) to d): a) Layer structure of at least one thermoplastic layer of styrene(co)- polymer (A), optionally containing the further polymer component (C) and/or additive component (D); b) layer structure of at least one layer of the natural fiber fabric (B); c) Pressing the superimposed layers of polymer matrix and natural fiber fabrics in a heated tool at a temperature of 160-240° C., preferably 180-220° C., and at a pressure of 15-25 bar, preferably 18-22 bar ; and d) cooling the fiber-reinforced composite material (K) to a temperature below the glass transition temperature (T g ) of the styrene (co)polymer (A), at a pressure of 15
  • the process for producing a fiber-reinforced composite material (K) preferably includes the following process steps a) to d): a) Layer structure of at least one, in particular at least two, thermoplastic layers with an average thickness of 0.05-0.75 mm, in particular an average thickness of 0.1-0.5 mm, from the styrene (co)polymer (A), optionally containing the further polymer component (C) and/or additive component (D); b) layer structure of at least one, in particular at least two layers of the natural fiber fabric (B) with an average thickness of 0.05-0.75 mm, in particular an average thickness of 0.1-0.5 mm; c) pressing the superimposed layers of natural fiber fabric (B) between thermoplastic layers containing (A) in a heated tool at a temperature of 180-230°C and at a pressure of 15-25 bar; and d) cooling the fiber-reinforced composite material (K) to a temperature below the glass transition temperature (T g ) of the styrene (
  • the layer structure can B.2 to 20 layers, often 3 to 12 layers, it can contain e.g.:
  • the composite material (K) obtained preferably has an average thickness of ⁇ 4 mm, preferably ⁇ 3.5 mm, particularly preferably ⁇ 3.0 mm.
  • the invention also relates to the use of a composite material (K) as described or as produced by a method as described, as a structural element for components and/or aesthetic applications. The following uses are particularly relevant:
  • the composite material (K) obtained has an average overall thickness of ⁇ 3.0 mm or ⁇ 2.0 mm.
  • the minimum thickness of the composite material (K) is usually 0.1 mm, often 0.1 mm.
  • the material can be used uncoated, but can also be further treated.
  • Component (A) thermoplastic polymer matrix
  • the composite material (K) contains at least 45% (v/v), generally 45-70% (v/v), based on the total volume of the thermoplastic molding composition, of styrene (co)polymer(s) as component A
  • the thermoplastic molding composition according to the invention contains one or more styrene (co)polymers as component A. Any suitable comonomers can be present in the copolymers in addition to styrene. It is preferably one or more styrene-acrylonitrile copolymers and/or one or more alpha-methylstyrene-acrylonitrile copolymers.
  • a mixture of several SAN copolymers with a MAH-modified styrene-acrylonitrile copolymer is often used.
  • all styrene-acrylonitrile copolymers, alpha-methylstyrene-acrylonitrile copolymers or mixtures thereof which are known to the person skilled in the art and are described in the literature can be used as component A.
  • preferred components A are mixtures of these styrene-acrylonitrile copolymers and/or ⁇ -methylstyrene-acrylonitrile copolymers with one another.
  • thermoplastic component A usually has a density at 20°C (ISO 1183) of 1.01 to 1.15 (g/cm 3 ).
  • Component (B) (natural fiber component)
  • the natural fiber sheet (B) which can be used in the invention comprises at least one natural fiber and/or a fiber derived from a natural material.
  • component B is present in the composite material (K) in a proportion of 30 to 55% (v/v), preferably 32 to 50% (v/v), based on the total volume.
  • v/v the composite material
  • Several natural fibers can also be combined.
  • Fibers are materials that continuously form discrete, elongated pieces, much like pieces of thread, from which fabrics can be made.
  • Natural fibers can come from different (natural) sources, e.g. B. from the group consisting of: kenaf fibers, jute fibers, flax fibers, hemp fibers, cellulose fibers, cotton fibers, sisal fibers, chitin fibers, keratin fibers and coconut fibers.
  • the fiber-reinforced composite material K preferably contains a flax fiber fabric as component B.
  • the linear bulk density is 100-600 tex, preferably 150-450 tex, and the basis weight is 100-600 g/m 2 , preferably 150-450 g/m 2 .
  • Component B generally has a density at 20° C. (ISO 1183) of 1.1 to 1.6 (g/cm 3 ), often, for example in the case of flax fibers, of 1.3 to 1.45 (g/cm 3 ).
  • Component (C) is a density at 20° C. (ISO 1183) of 1.1 to 1.6 (g/cm 3 ), often, for example in the case of flax fibers, of 1.3 to 1.45 (g/cm 3 ).
  • Component C can be another polymer component that differs from component A.
  • Component C is contained in the composite material in a proportion of 0 to 10% (v/v), often 0.05 to 5%, based on the total volume.
  • component C are, for example, polyethylene, Polypropylene, polycarbonate, polyamide, PLA and others.
  • the other polymer component C generally has a density at 20° C. (ISO 1183) of 0.9 to 1.3 (g/cm 3 ).
  • Component D is one or more additives that are present in the fiber-reinforced composite material in a proportion of 0 to 10% (v/v), based on total volume are included. Furthermore, the thermoplastic composition may contain additives within a range that does not impair the properties of the composition of the present invention.
  • Component D consists of one or more additives, preferably selected from the group consisting of release agents, lubricants, pigments, mold release agents, waxes, dyes, flame retardants, antioxidants, stabilizers against the effects of light, heat and UV stabilizers, powdered fillers, reinforcing agents, Antistatic agents, adhesion promoters (wetting agents) or mixtures thereof.
  • release agents or lubricants are preferred in an amount of 0.05 to 5% (v/v) based on the total volume.
  • the additive component D often has - depending on the type - a density at 20°C (ISO 1183) in the range from 0.9 to 2.0 (g/cm 3 ).
  • the production of the fiber-reinforced composite material (K) basically includes a layer structure (components (A) and (B)), pressing in a tool under the influence of heat and pressure, and cooling of the material.
  • the layered structure consists of at least one thermoplastic layer of styrene (co)polymer (A), optionally containing further polymer component (C) and/or the additive component (D), and at least one layer of the natural fiber fabric ( B) made.
  • the components are preferably set out in layers arranged one above the other (eg natural fiber fabric (B) between styrene (co)polymer (A): (A)-((B)-(A)) n .
  • Pressing is then carried out by melting the styrene (co)polymer and connecting the layers of components A and B. This process is carried out in a heated tool at a temperature of 160 - 240°C and a pressure of 15 - 25 made in cash. A preferred temperature is 180-220° C., a preferred pressure is 18-22 bar. Finally, the fiber-reinforced composite material is cooled under pressure in the pressing tool to a temperature below the glass transition temperature (T g ) of component (A).
  • T g glass transition temperature
  • the fiber-reinforced composite material (K) offers a wide range of applications. It is suitable as a starting material for the production of shaped bodies by a thermoforming process, as a film material or as a coating, as a packaging material or as a textile fabric or fabric. A preferred use is above all as a light, structural element for components and/or aesthetic applications. The material can be reused and recycled.
  • thermoplastic molding compounds (A1) and (A2) Two different thermoplastic molding compounds (A1) and (A2) are produced:
  • Viscosity number 58.0-66.0 cm 3 /g
  • the densities of these styrene-acrylonitrile copolymers are about 1.08 g/cm 3 .
  • PETS pentaerytritol tetrastearate
  • the density of the polypropylene molding composition (A2) is 0.90 g/cm 3 .
  • the natural fiber component (B) used in the tests was:
  • Flax fiber fabric flax fiber twill fabric 2/2, basis weight 300 g/m 2 ,
  • flax fiber fabric (ampliTex 5040, 300 g/m 2 , 300 tex) was used as natural fiber fabric (B), and SAN copolymer film (150 ⁇ m) as thermoplastic component (A) in the example according to the invention (see above ); or a PP thermoplastic film (135 ⁇ m) in the comparative example, as characterized above.
  • the layers were pressed at a temperature of 210° C. under a pressure of 20 bar for a period T 1 of 5 s.
  • the tool was then cooled to 60° C. over a period T 2 of 25 min at a pressure of 20 bar.
  • the composite material was then removed and examined mechanically, optically and with regard to the surface.
  • the SAN layer in the composite material according to the invention (in each case) had an average thickness of 0.150 mm.
  • the PP layer in the comparative composite material (each) had an average thickness of 0.135 mm.
  • the flax fiber fabric (in each case) in the composite material according to the invention had an average thickness of 0.207 mm.
  • the flax fiber fabric also had an average thickness of 0.207 mm in the comparison composite material.
  • Table 1 shows parameters for manufactured fiber-reinforced composite materials (K)
  • the total thickness measured after experimental fabrication was slightly greater than the calculated thickness of each composite material.
  • the composite material according to the invention contained about 45% by weight polymer matrix and about 55% by weight fibrous tissue.
  • the PP-based composite material contained about 37% by weight polymer matrix and about 63% by weight fibrous tissue.
  • the fiber-reinforced composite materials (K) obtained were mechanically examined and characterized by means of gloss measurements according to the ISO 2813 (2015) standard.
  • Mechanical characterization can be done via impact strength, notched impact strength and others.
  • the storage stability at different temperatures and humidities can also be examined comparatively.
  • Table 2 shows the results of the gloss measurement to characterize the fiber-reinforced composite material (K) It has been shown that the fiber-reinforced composite material (K) with styrene copolymer as the thermoplastic polymer matrix (A) according to the invention can be used in a simple production process to produce a composite material with low density, good mechanical properties and also significantly increased gloss (e.g. gloss 20° or gloss 60°) is obtained.
  • This material is also ecologically beneficial, e.g. it can easily be fed into a recycling process.
  • Analogous composite materials can also be easily produced with other natural fiber fabrics in a corresponding manner, in particular based on cotton fiber, kenaf fiber, jute fiber, hemp fiber, cellulose fiber, sisal fiber, chitin fiber, keratin fiber, bamboo fiber, coconut fiber and/or from pretreated natural fibers.

Abstract

Ein faserverstärktes Komposit-Material (K), enthaltend eine thermoplastische Polymermatrix und mindestens eine Naturfaser-Komponente, ist technisch vorteilhaft, wenn es enthält: mindestens 45 % (v/v) eines Styrol(co)polymers (A) als Polymermatrix; 30 - 55 % (v/v) eines Naturfaser-Flächengebildes (B) als Naturfaser-Komponente; optional 0 - 10 % (v/v einer weiteren Polymer-Komponente (C), und optional 0 - 10 % mindestens eines Additivs (D), wobei die Volumenprozente der Komponenten (A) bis (D) zusammen 100 Volumenprozent des Komposit-Materials (K) ergeben.

Description

Faserverstärktes Komposit-Material mit Styrol(co)polymer und Naturfasern
Beschreibung
Die Erfindung betrifft ein faserverstärktes Komposit-Material, das eine thermoplastische Polymermatrix aus mindestens einem Styrol(co)polymer und mindestens eine Naturfa ser-Komponente enthält. Dieses Komposit-Material kann z. B. durch ein Verpressen im Lagenaufbau unter Anwendung von Druck und Hitze hergestellt werden. Das Material kombiniert strukturelle Steifheit, gute Verarbeitbarkeit und ansprechende Ästhetik, wodurch es sich für diverse Anwendungen, auch im Bereich „High Performance“ eignet. Gegenüber bekannten Materialien zeichnet sich das faserverstärktes Komposit-Material auch durch seinen hohen Oberflächenglanz aus.
Faserverstärkte Komposit-Materialen sind seit Jahren bekannt und bestehen aus einer Vielzahl von Verstärkungsfasern, die in eine Polymermatrix eingebettet sind. Die Anwen dungsbereiche von faserverstärkten Komposit-Materialen sind vielfältig. Zum Beispiel werden sie in der Automobil- und Luftfahrt-Industrie eingesetzt. Die Materialien sollen u.a. ein Brechen oder sonstige Fragmentierungen der Matrix verhindern und die Unfall gefahr durch verstreute Bauteilstücke reduzieren. Viele faserverstärkte Komposit-Mate rialen sind in der Lage, relativ hohe Kräfte unter Belastung aufzunehmen, bevor es zum Versagensfall des Materials kommt. Die faserverstärkten Komposit-Materialien der vor liegenden Erfindung zeichnen sich im Vergleich zu konventionellen Werkstoffen durch hohe Festigkeit und Steifigkeit bei gleichzeitig geringer Dichte und weiteren vorteilhaften Eigenschaften, wie guter Alterungs- und Korrosionsbeständigkeit aus.
Die Festigkeit und Steifigkeit der Komposit-Materialien sind an die Belastungsrichtung und die Art der Belastung anpassbar. Dabei sind die Fasern für die Festigkeit und Stei figkeit des Faserverbundwerkstoffs besonders wichtig. Darüber hinaus bestimmt die Fa ser-Anordnung die mechanischen Eigenschaften des Faserverbundwerkstoffs. Die Mat rix dient insbesondere dazu, den größten Teil der aufzunehmenden Kräfte auf die ein zelnen Fasern zu leiten und die räumliche Anordnung der Fasern in der gewünschten Orientierung zu halten. Da sowohl die Art der Fasern als auch die Matrixmaterialien va riiert werden können, sind zahlreiche Kombinationen von Fasern und Matrixmaterialien möglich.
Für höchste Anforderungen an Festigkeit und Steifigkeit der Faserverbund-Werkstoffe werden endlosfaserverstärkte Verbünde eingesetzt. Hierbei begrenzt erst das finale Bauteil die Länge der Fasern, die insbesondere als Gewebe oder Gelege und bei hohem resultierendem Faservolumengehalt eingebracht werden. Damit ergibt sich im Bauteil oder Halbzeug ein hohes Maß an spezifischer Grenzfläche zwischen Fasersystem und Matrix. Im Unterschied zur Imprägnierung von Kurzfasern in Spritzgussprozessen ist eine gute Imprägnierung der Endlosfasern, Gewebe oder Gele gen durch die Polymermatrix oftmals technisch herausfordernd.
Trotz der mechanischen Anforderungen an ein faserverstärktes Komposit-Material müs sen auch ästhetische und wirtschaftliche Ansprüche erfüllt werden. Da faserverstärkte Werkstoffe das Potenzial haben, in verschiedenen Bereichen Anwendung zu finden, soll ten sie mit hochwertigen Oberflächen herstellbar sein, ohne dass weitere, komplexe Ar- beitsschritte notwendig sind. Für viele Anwendungen sind gute optische Eigenschaften wichtig, wie die Möglichkeit, mittels der faserverstärkten Komposit-Materialien Elemente oder Bauteile mit glatten Oberflächen (u.a. geringer Oberflächenwelligkeit, Fehlen von Löchern oder Vertiefungen), Dekorationsfähigkeit und hoher Transparenz zu erreichen. Diese optischen Eigenschaften können mit vielen faserverstärkten Komposit-Materialien bislang nicht erzielt werden. Darüber hinaus ist eine wirtschaftliche und umweltfreundli che Herstellung des faserverstärkten Komposit-Materials erwünscht. Auch das Recyc ling ist von Bedeutung.
Daher ist es erwünscht, leichte, faserverstärkte Komposit-Materialien bereitzustellen, die ein breites Anwendungsspektrum haben. Wünschenswert sind gute optische Eigen schaften sowie die Möglichkeit, aus dem faserverstärkten Komposit-Material verschie dene Elemente mit glänzenden, strukturierten oder glatten Oberflächen herzustellen.
Das faserverstärkte Komposit-Material soll leicht zu verarbeiten sein, weitgehend inert gegenüber herkömmlichen Lösungsmitteln sein, eine gute Spannungsrissbeständigkeit aufweisen und eine glänzende strukturierte oder glatte Oberfläche haben.
Im Stand der Technik werden bereits verschiedene Verbundwerkstoffe mit Thermoplas ten und Fasern beschrieben.
WO 2016/170104 bezieht sich auf einen Verbundwerkstoff, der 30 bis 95 Gew.-% eines thermoplastischen Materials, 5 bis 70 Gew.-% Verstärkungsfasern und 0 bis 40 Gew.-% weitere Additive enthält. Das thermoplastische Material soll eine gute Verarbeitbarkeit haben, der MVR (220/10) wird mit 10-70 cm3/10 min angegeben.
WO 2008/058971 beschreibt Formmassen mit guten mechanischen Eigenschaften, bei denen zwei Verstärkungsfasern mit unterschiedlichen Eigenschaften verwendet werden. Die Verstärkungsfasern werden jeweils mit verschiedenen Haftvermittler-Zusammenset zungen verwendet, welche unterschiedliche Faser-Matrix-Haftungen bewirken. Die Ver- stärkungsfasern müssen als komplexe Netzwerke in die Matrix eingebracht werden. Ein solches Vorgehen setzt ein unerwünscht komplexes und arbeitsintensives Herstel lungsverfahren voraus.
WO 2008/119678 offenbart Glasfaser-verstärkte Zusammensetzungen, welche durch Verwendung von Maleinsäureanhydrid-haltigem Styrol-Copolymer in den mechanischen Eigenschaften verbessert werden. Es wird jedoch der Einsatz von Kurzfasern gelehrt.
US 2011/0020572 beschreibt Organoblech-Bauteile mit einem Hybrid-Design mit einer hoch fließfähigen Polycarbonat-Komponente und geeigneten Additiven, wie hyperver- zweigte Polyester, Ethylen/(Meth)acrylat Copolymere oder niedermolekulare Polyalky lenglykolester.
WO 2008/110539 lehrt einschichtige Verbundstoffe, bei denen Glasfasern in eine Form masse eingebettet werden.
WO 2014/163227 offenbart ein Verfahren zur Herstellung von Verbundplatten. CA- A 2862396 beschreibt ein Verfahren zur Herstellung von Verbundwerkstoffen bestehend aus einer Kernstruktur und mindestens einer Oberflächenplatte, welche mit der Kern struktur verbunden wird.
Von Van de Velde et al. (2001) werden in „Thermoplastic pultrusion of natural fibre rein forced composites, Composite Structures“, Volume 54 (2-3), 355-360, Flachsfasern als Verstärkung für (thermoplastische) Materialien beschrieben. Als Herstellungsprozess wird für die Materialien hier die Pultrusion als Methode der Wahl dargelegt.
WO 2016/170131 beschreibt die Verwendung eines Faserverbund-Werkstoffs aus ver schiedenen Lagen mit Sandwich-Struktur, wobei dieser eine Schaumstoff-Komponente als Schicht enthält. WO 2012/104436 beschreibt einen Verbundwerkstoff auf Basis eines Naturfaser-verstärkten Kunststoffs, der mindestens eine Lage eines Spunlace-Vlieses aus Naturfasern als Verstärkungsmaterial enthält.
WO 2016/170148 beschreibt ein Verfahren zur Herstellung eines Faserverbund-Werk- stoffs aus amorphen, modifizierten Polymeren mit Verstärkungsfasern. Diese Organo- bleche werden aus einer thermoplastischen Formmasse und Verstärkungsfasern herge- stellt. Die Formmasse weist eine chemisch reaktive Funktionalität auf, die Oberfläche der Verstärkungsfaser ist mit Silan behandelt.
WO 2016/170103 betrifft einen Faserverbund-Werkstoff W mit erhöhter Lichtdurchläs sigkeit, wobei das Copolymer durch funktionelle Gruppen mit der Oberfläche von einge- betteten Fasern Bindungen eingeht. WO 2016/170145 beschreibt einen schichtartig aufgebauten thermoplastischen Faser- verbund-Werkstoff, sowie dessen Verwendung und Herstellung durch Einbringen eines Flächengebildes in eine thermoplastische Matrix.
WO 2016/026920 beschreibt Faserverbund-Werkstoffe, die auf Polymilchsäure basieren und verschiedene Naturfasern enthalten können.
WO 2019/063620 betrifft faserverstärkte Verbundwerkstoffe, die mindestens ein konti- nuierliches faserförmiges Verstärkungsmaterial in Kombination mit mindestens einer im wesentlichen amorphen Matrixpolymerzusammensetzung enthalten. WO 2019/063621 betrifft die Herstellung solcher faserverstärkten Verbundwerkstoffe.
WO 2019/063625 beschreibt faserverstärkte Verbundwerkstoffe mit verbesserter Faser- Matrix- Haftung aus mindestens 50 Gew.-% kontinuierlichem Verstärkungsmaterial und einer im wesentlichen amorphen Matrix. WO 2019/063626 betrifft die Verwendung sol cher Verbundwerkstoffe als Ausgangsmaterial in einem Thermoformverfahren zur Her stellung von Formkörpern. Im Hinblick auf den Stand der Technik liegt eine Aufgabe darin, ein gut zu verarbeitendes Komposit-Material bereitzustellen, das gegen eine Vielzahl an Lösungsmitteln weitge hend inert ist, gut spannungsrissbeständige und (biege)feste Eigenschaften hat und das zudem auch gute optische und ästhetische Anforderungen erfüllt, wie Oberflächenglanz und/oder Oberflächenstruktur. Die Herstellung soll mit geringem technischem Aufwand und wenigen Arbeitsschritten umgesetzt werden. Das Komposit-Material soll leicht sein (geringe Dichte) und vorzugsweise einfach durch Recycling aufzuarbeiten sein.
Es wurde überraschend festgestellt, dass die beschriebenen faserverstärkten Komposit- Materialien, welche mindestens eine Naturfaser als Verstärkungsmaterial (B) in Kombi- nation mit einer thermoplastischen Polymermatrix aus mindestens einem Styrol(co)po- lymer (A) enthalten, diese Aufgabe(n) lösen. Sie haben bessere (Oberflächen-)Eigen- schaften als Komposit-Materialien mit anderen thermoplastischen Polymermatrices.
Die spezifische Kombination aus mindestens einer Naturfaser, wie Flachs, als Verstär- kungsmaterial (B) mit einer thermoplastischen Polymermatrix aus mindestens einem Styrol(co)polymer (A) unter milden Bedingungen ermöglicht die Herstellung von Kompo sit-Material, welches besonders glänzende Oberflächen aufweist, ohne dass dafür wei tere Verfahrensschritte, wie Beschichtungsschritte, notwendig sind. Die Erfindung bezieht sich insbesondere auf ein faserverstärktes Komposit-Material (K), enthaltend eine thermoplastische Polymermatrix und mindestens eine Naturfaser-Kom ponente, wobei das Komposit-Material (K) enthält (oder besteht aus): mindestens 45 % (v/v), insbesondere 45 - 70 % (v/v), mindestens eines Styrol(co)poly- mers (A), oftmals Styrol-Acrylnitril, als Polymermatrix;
30 - 55 % (v/v), insbesondere 32 - 50 % (v/v), mindestens eines Naturfaser-Flächenge bildes (B) als Naturfaser-Komponente; optional 0 - 10 % (v/v), insbesondere 0 - 9 % (v/v), oftmals 0,1 - 9 % (v/v) mindestens einer weiteren Polymer-Komponente (C), die von Komponente (A) verschieden ist; und optional 0-10 % (v/v), insbesondere 0,05- 5 % (v/v), mindestens eines Additivs (D), wobei die Volumenprozente der Komponenten (A) bis (D) zusammen 100 Volumenpro zent des Komposit-Materials (K) ergeben.
Im Komposit-Material (K) besteht das Naturfaser-Flächengebilde (B) oftmals aus Natur fasern aus der Gruppe bestehend aus: Flachsfaser, Baumwollfaser, Kenaffaser, Jutefa ser, Hanffaser, Cellulosefaser, Sisalfaser, Chitinfaser, Keratinfaser, Bambusfaser, Ko kosfaser; und/oder aus vorbehandelten Naturfasern aus der Gruppe bestehend aus: Flachsfaser, Baumwollfaser, Kenaffaser, Jutefaser, Hanffaser, Cellulosefaser, Sisalfa ser, Chitinfaser, Keratinfaser, Bambusfaser, Kokosfaser. Flachs-Fasern sind besonders geeignet. Die o.g. Naturfaser-Flächengebilde unterscheiden sich in der Verarbeitbarkeit, aber auch in der Dichte; die Dichte bei 20°C (ISO 1183) liegt z.B. bei Flachsfasern bei 1 ,3-1 ,45 g/cm3 und bei Kokosfasern bei 1,1 -1,2 g/cm3.
Im Komposit-Material (K) enthält das Styrol(co)polymer (A) vorzugsweise mindestens ein Styrol-Acrylnitril-Copolymer und/oder mindestens ein a-Methyl-Styrol-Acrylnitril-Co- polymer. Komponente (A) kann auch z.B. ein modifiziertes S-AN-Copolymer enthalten, z.B. ein durch Maleinsäureanhydrid-modifiziertes SAN. Auch Kombinationen aus zwei unterschiedlichen SAN-Copolymeren, die sich im AN-Gehalt unterscheiden, und einer S-AN-MSA-Copolymer-Komponente, haben sich als Komponente (A) für das Komposit- Material (K) besonders bewährt.
Im Komposit-Material (K) kann es sich bei dem Naturfaser-Flächengebilde (B) um ein Flachsfaser-Flächengebilde, z.B. um ein Gewebe, handeln. Im Komposit-Material (K) kann als Naturfaser-Flächengebilde (B) z.B. ein Fasergewebe mit einer linearen Mas sendichte von 100 - 600 tex, bevorzugt 150 - 450 tex eingesetzt werden. Dieses Natur faser-Flächengebilde (B) hat oftmals ein Flächengewicht von 100 - 600 g/m2, bevorzugt 150 - 450 g/m2. Im Komposit-Material (K) kann mindestens ein Additiv (D) eingesetzt werden, es kann sich z.B. um ein Trennmittel oder ein Schmiermittel handeln. Die Additiv(e) werden oft mals in einer Menge von 0,05 - 5 % (v/v) eingesetzt, bezogen auf das gesamte Volumen des Komposit-Materials.
Oftmals enthält das Komposit-Material (K) (oder besteht aus)
45 - 60 % (v/v) mindestens eines Styrol(co)polymers (A);
32-50 % (v/v) mindestens eines Naturfaser-Flächengebildes (B);
0 - 9 % (v/v) mindestens einer weiteren Polymer-Komponente (C), die von (A) verschieden ist; und 0,05 - 5 % (v/v) mindestens eines Additivs (D).
In einer Ausführungsform enthält das Komposit-Material (K) (oder besteht aus)
45 - 55 % (v/v) mindestens eines Styrol(co)polymers (A);
40-50 % (v/v) mindestens eines Flachsfaser-Flächengebildes (B);
0 - 5 % (v/v) mindestens einer weiteren Polymer-Komponente (C), die von (A) verschieden ist; und 0,05 - 5 % (v/v) mindestens eines Additivs (D).
Das Komposit-Material (K) gemäß der Erfindung hat insbesondere einen hohen Glanz. Es hat vorzugsweise bei Messung des Glanzes gemäß Norm ISO 2813 (2015) einen Glanz 20° von mindestens 40, und einen Glanz 60° von mindestens 70 aufweist.
Im Komposit-Material (K) gemäß der Erfindung hat die Polymer-Matrix vorzugsweise eine hohe Transparenz. Das Styrol(co)polymer (A) hat oftmals eine so hohe Transpa renz, dass die Naturfasern des Naturfaser-Flächengebilde (B) an der Oberfläche des Komposit-Materials (K) (gut) sichtbar sind. Hierdurch lässt sich eine natürliche und op tisch ansprechende Anmutung erreichen. Auf Beschichtungen kann oftmals verzichtet werden.
Ein Gegenstand der Erfindung ist auch ein Verfahren zur Herstellung eines faserver stärkten Komposit-Materials (K), wie oben beschrieben, bei dem das Verfahren folgende Verfahrensschritte a) bis d) beinhaltet: a) Lagenaufbau mindestens einer thermoplastischen Schicht aus Styrol(co)-polymer (A), ggf. enthaltend die weitere Polymerkomponente (C) und/oder Additiv-Komponente (D); b) Lagenaufbau mindestens einer Schicht des Naturfaser-Flächengebildes (B); c) Verpressen der übereinander angeordneten Lagen aus Polymermatrix und Naturfa ser-Flächengebilden in einem beheizten Werkzeug bei einer Temperatur von 160- 240°C, bevorzugt 180 - 220°C, und bei einem Druck von 15 - 25 bar, bevorzugt 18 - 22 bar; und d) Abkühlen des faserverstärkten Komposit-Materials (K) auf eine Temperatur unterhalb der Glasübergangstemperatur (Tg) des Styrol(co)polymers (A), bei einem Druck von 15
- 25 bar, bevorzugt 18-22 bar.
Das Verfahren zur Herstellung eines faserverstärkten Komposit-Materials (K) beinhaltet vorzugsweise folgende Verfahrensschritte a) bis d): a) Lagenaufbau von mindestens einer, insbesondere mindestens zwei thermoplasti schen Schichten mit einer mittleren Dicke von 0,05 - 0,75 mm, insbesondere einer mitt leren Dicke von 0,1 - 0,5 mm, aus dem Styrol(co)polymer (A), ggf. enthaltend die weitere Polymerkomponente (C) und/oder Additiv-Komponente (D); b) Lagenaufbau von mindestens einer, insbesondere mindestens zwei Schichten des Naturfaser-Gewebes (B) mit einer mittleren Dicke von 0,05 - 0,75 mm, insbesondere einer mittleren Dicke von 0,1 - 0,5 mm; c) Verpressen der übereinander angeordneten Lagen aus Naturfaser-Gewebe (B) zwi schen thermoplastischen Schichten, enthaltend (A), in einem beheizten Werkzeug bei einer Temperatur von 180 - 230°C, und bei einem Druck von 15-25 bar; und d) Abkühlen des faserverstärkten Komposit-Materials (K) auf eine Temperatur unterhalb der Glasübergangstemperatur (Tg) des Styrol(co)polymers (A), bei einem Druck von 15
- 25 bar.
Der Lagenaufbau kann z. B.2 bis 20 Lagen, oftmals 3 bis 12 Lagen, aufweisen, er kann z.B. beinhalten:
A- B-A- B- A A- B-A- B- A- B-A A- A- B-A- A- B-A- A A-A-B-A-A-B-A-A-B-A-A.
Auch Variationen der jeweiligen Schichtdicken (Angaben sind jeweils auf einzelne Schichten bezogen) sind möglich.
Beim Verfahren zur Herstellung eines faserverstärkten Komposit-Materials (K) weist das erhaltene Komposit-Material (K) vorzugsweise eine mittlere Dicke von < 4 mm, bevor zugt von < 3,5 mm, besonders bevorzugt von < 3,0 mm auf. Die Erfindung betrifft auch die Verwendung eines Komposit-Materials (K) wie beschrie ben oder wie hergestellt durch ein Verfahren gemäß der Beschreibung, als strukturelles Element für Bauteile und/oder ästhetische Applikationen. Als Verwendungen kommen insbesondere in Frage:
(i) Ausgangsmaterial zur Herstellung von Formkörpern durch ein Verfahren des Thermoformens;
(ii) Folienmaterial oder Beschichtung;
(iii) Verpackungsmaterial; oder
(iv) textiles Flächengebilde oder Stoff.
In einem bevorzugten Verfahren zur Herstellung eines erfindungsgemäßen faserver stärkten Komposit-Materials (K) weist das erhaltene Komposit-Material (K) eine mittlere Gesamt-Dicke von < 3,0 mm oder < 2,0 mm auf. Die Mindestdicke des Komposit-Mate- rials(K) ist i.d.R. 0,1 mm, oftmals 0,1 mm. Das Material kann unbeschichtet verwendet werden, kann aber auch noch weiter behandelt werden.
Die bevorzugten Komponenten werden nachfolgend beschrieben.
Komponente (A) (thermoplastische Polymermatrix)
Das Kompositmaterial (K) enthält mindestens 45 % (v/v), in der Regel 45 - 70 % (v/v), bezogen auf das Gesamtvolumen der thermoplastischen Formmasse, an Styrol(co)po- lymer(en) als Komponente A. Als Komponente A enthält die erfindungsgemäße thermo plastische Formmasse ein oder mehrere Styrol(co)polymere. Dabei können in den Co polymeren neben Styrol beliebige, geeignete Co-Monomere vorliegen. Bevorzugt han delt es sich um ein oder mehrere Styrol-Acrylnitril-Copolymere und/oder ein oder meh rere alpha-Methylstyrol-Acrylnitril-Copolymere.
Oftmals wird eine Mischung mehrerer SAN-Copolymere mit einem MAH-modifizierten Styrol-Acrylnitril Copolymer eingesetzt. Als Komponente A sind jedoch grundsätzlich alle dem Fachmann bekannten und in der Literatur beschriebenen Styrol-Acrylnitril-Copoly- mere, alpha-Methylstyrol-Acrylnitril-Copolymere oder deren Mischungen einsetzbar. Ebenfalls bevorzugte Komponenten A sind Mischungen dieser Styrol-Acrylnitril-Copoly- mere und/oder a-Methylstyrol-Acrylnitril-Copolymere untereinander.
Die thermoplastische Komponente A hat in der Regel eine Dichte bei 20°C (ISO 1183) von 1,01 bis 1,15 (g/cm3). Komponente (B) (Naturfaser-Komponente)
Das Naturfaser-Flächengebilde (B), das im Rahmen der Erfindung verwendet werden kann, umfasst mindestens eine Naturfaser und/oder eine aus einem natürlichen Material abgeleitete Faser. Erfindungsgemäß ist die Komponente B im Komposit-Material (K) in einem Anteil von 30 bis 55 % (v/v), vorzugsweise von 32 bis 50 % (v/v), bezogen auf das Gesamtvolumen, vorhanden. Es können auch mehrere Naturfasern kombiniert werden.
Fasern sind Materialien, die kontinuierlich diskrete, längliche Stücke bilden, ähnlich wie Fadenstücke, aus welchen Flächengebilde erstellt werden können. Naturfasern können aus verschiedenen (natürlichen) Quellen stammen, z. B. aus der Gruppe, bestehend aus: Kenaffasern, Jutefasern, Flachsfasern, Hanffasern, Zellulosefasern, Baumwollfa- sern, Sisalfasern, Chitinfasern, Keratinfasern und Kokosfasern. Bevorzugt enthält das Faserverstärkte Komposit-Material K als Komponente B ein Flachsfaser-Flächengebilde.
Gemäß einer bevorzugten Ausführungsform der vorliegenden Erfindung beträgt die line are Massendichte von 100-600 tex, bevorzugt 150-450 tex, sowie das Flächengewicht 100-600 g/m2, bevorzugt 150-450 g/m2.
Die Komponente B hat in der Regel eine Dichte bei 20°C (ISO 1183) von 1 ,1 bis 1,6 (g/cm3), oftmals, z.B. bei Flachsfasern, von 1,3 bis 1 ,45 (g/cm3). Komponente (C)
Die Komponente C kann eine weitere Polymerkomponente sein, die sich von der Kom ponente A unterscheidet. Die Komponente C ist in dem Komposit-Material in einem An teil von 0 bis 10 % (v/v), oftmals 0,05 bis 5 % bezogen auf das Gesamtvolumen, enthal- ten. Von besonderem Interesse als Komponente C sind z.B. Polyethylen, Polypropylen, Polycarbonat, Polyamid, PLA und andere.
Die weitere Polymer-Komponente C hat in der Regel eine Dichte bei 20°C (ISO 1183) von 0,9 bis 1,3 (g/cm3).
Komponente (D) (Additive)
Bei der Komponenten D handelt es sich um einen oder mehrere Zusatzstoffe, die in dem faserverstärkten Komposit-Material in einem Anteil von 0 bis 10 % (v/v), bezogen auf Gesamtvolumen, enthalten sind. Weiterhin kann die thermoplastische Zusammenset zung Zusatzstoffe (Additive) in einem Bereich enthalten, in dem die Eigenschaften der Zusammensetzung der vorliegenden Erfindung nicht beeinträchtigt werden. Komponente D besteht aus einem oder mehreren Additiven, vorzugsweise ausgewählt aus der Gruppe bestehend aus Trennmitteln, Schmiermitteln, Pigmenten, Formentrenn mittel, Wachse, Farbstoffe, Flammschutzmittel, Antioxidantien, Stabilisatoren gegen Lichteinwirkung, Wärme- und UV-Stabilisatoren, pulverförmige Füllstoffe, Verstärkungs mittel, Antistatika, Haftvermittler (Netzmittel) oder Mischungen daraus.
Insbesondere werden Trennmittel oder Schmiermittel in einer Menge von 0,05 bis 5 % (v/v), bezogen auf das Gesamtvolumen, bevorzugt. Die Additiv-Komponente D hat oft mals - je nach Typus - eine Dichte bei 20°C (ISO 1183) im Bereich von 0,9 bis 2,0 (g/cm3).
Herstellungsverfahren
Die Herstellung des faserverstärkten Komposit-Materials (K) beinhaltet grundsätzlich ei nen Lagenaufbau (aus den Komponenten (A) und (B)), ein Verpressen in einem Werk- zeug unter Einwirkung von Hitze und Druck sowie ein Abkühlen des Materials.
Als erste Verfahrensschritte wird der Lagenaufbau aus mindestens einer thermoplasti schen Schicht aus Styrol(co)polymer (A), ggf. enthaltend weitere Polymerkomponente (C) und/oder die Additiv-Komponente (D), und mindestens einer Schicht des Naturfaser- Flächengebildes (B) vorgenommen. Bevorzugt werden die Komponenten in übereinan der angeordneten Lagen (z.B. Naturfaser-Gewebe (B) zwischen Styrol(co)polymer (A): (A) -((B)-(A))n dargelegt.
Das Verpressen erfolgt anschließend durch einen Schmelzevorgang des Styrol(co)poly- mers und das Verbinden der Lagen der Komponenten A und B. Dieser Vorgang wird in einem beheizten Werkzeug bei einer Temperatur von 160 - 240°C und bei einem Druck von 15 - 25 bar vorgenommen. Eine bevorzugte Temperatur beträgt 180 - 220°C, ein bevorzugter Druck beträgt 18 - 22 bar. Abschließend wird das faserverstärkte Komposit- Material unter Druck im Press-Werkzeug abgekühlt auf eine Temperatur unterhalb der Glasübergangstemperatur (Tg) der Komponente (A).
Anwendungen
Das faserverstärkte Komposit-Material (K) bietet dank seiner strukturellen, mechani- sehen sowie ästhetisch vorteilhaften Eigenschaften ein breites Anwendungsgebiet. Es eignet sich als Ausgangsmaterial zur Herstellung von Formkörpern durch ein Verfah ren des Thermoformens, als Folienmaterial oder als Beschichtung, als Verpackungsma terial oder als textiles Flächengebilde oder Stoff. Eine bevorzugte Verwendung liegt vor allem in der Nutzung als leichtes, strukturelles Element für Bauteile und/oder ästheti schen Applikationen. Eine Wiederverwendung des Materials und ein Recycling sind gut möglich.
Die Erfindung wird durch die Beispiele und Ansprüche näher erläutert.
Beispiele
Verwendete Materialien
Zwei unterschiedliche thermoplastische Formmassen (A1) und (A2) werden hergestellt:
A1) SAN-Copolymer Zusammensetzung, enthaltend:
(A1.1) 33,23 Gew.-% Styrol-Acrylnitril Copolymer, 22,4-24,4 Gew.-% Acrylnitril,
MVR (220 °C/5 kg) = 19,0-29,0 cm3/10 min, Vicat B50 = 96,0-102,0 °C,
Viskositätszahl = 58,0-66,0 cm3/g
(A1.2) 33,23 Gew.-% Styrol Acrylnitril Copolymer, 25-29 Gew.-% Acrylnitril,
MVR (220 °C/10 kg) = 80-120 cm3/10 min
(A1.3) 33,24 Gew.-% Styrol-Acrylnitril-Maleinsäureanhydrid Copolymer,
23,5-26,0 Gew.-% Acrylnitril, Viskositätszahl = 61,0-67,5 cm3/g
Die Dichten dieser Styrol-Acrylnitril-Copolymere betragen ca. 1.08 g/cm3.
(A1.4) 0,30 Gew.-% PETS (Pentaerytritol-tetrastearate) als Trennmittel,
Additiv mit Dichte 0,94 g/cm3.
A2) für Vergleichsbeispiel: Polypropylen-Zusammensetzung, enthaltend:
(A2.1) 94,35 Gew.-% eines PP-Homo- oder Copolymer mit einem MFR (230/2,16) = 80- 120 g/10 min, Biegemodul 1550 Mpa, Izod (23 °C) 5,5 kJ/m2, Impact-Copolymer, nukle- iert, antistatisch, RIGIDEX P 380-H100 (von INEOS Olefins & Polymers), Dichte 0,90 g/cm3. (A2.2) 5 Gew.-% eines polar funktionalisierten Polypropylens mit gepfropftem Malein säureanhydrid MFR (190/0,325) 9-13 g/10 min, gepfropftes Maleinsäureanhydrid 0,17- 0,21 Gew.-%, PRIEX 20093 von BYK (A2.3) 0,65 Gew.-% eines Entformungsmittels auf Basis von Glycerinmonostearat,
Additiv (DIMODAN HP, von Danisco).
Die Dichte der Polypropylen-Formmasse (A2) beträgt 0.90 g/cm3.
Als Naturfaser-Komponente (B) wurde bei den Versuchen eingesetzt:
Flachsfasergewebe: Flachsfaser-Köpergewebe 2/2, Flächengewicht 300 g/m2,
300 tex Garn in Kette und Schuss, von Hersteller Bcomp (CH); ampliTex™ Art. Nr. 5040), Dichte beträgt 1.45 g/cm3.
Herstellung des jeweiligen faserverstärkten Komposit-Materials (K)
Zur Herstellung der faserverstärkten Komposit-Materialen (K) wurden in einer statischen Heißpresse (Vogt P400S) verschiedene Lagenaufbaus aus thermoplastischer Polymer matrix (als Folie) und Naturfaser-Komponente (Fasergewebe) bereitgestellt. Das Press werkzeug wurde auf die angestrebte Temperatur erwärmt. Die jeweiligen Lagen des Komposit-Materials wurden unter Druck für einen Zeitraum T1 (z.B. einige Sekunden) verpresst. Abschließend wurde das Werkzeug für einen Zeitraum T2 (z.B. einige Minu- ten) abgekühlt und das Material entnommen.
In den Beispielen wurde als Naturfaser-Gewebe (B) Flachsfasergewebe (ampliTex 5040, 300 g/m2, 300 tex) eingesetzt, sowie als thermoplastische Komponente (A) SAN-Copo- lymer-Folie (150 pm) im erfindungsgemäßen Beispiel (s.o.); bzw. eine PP-Thermoplast- Folie (135 pm) im Vergleichsbeispiel, wie oben charakterisiert.
Das Verpressen der Lagen erfolgte bei einer Temperatur von 210 °C unter 20 bar Druck für einen Zeitraum T 1 von 5 s. Das Werkzeug wurde anschließend über einen Zeitraum T2 von 25 min bei 20 bar Druck auf 60 °C gekühlt. Das Komposit-Material wurde dann entnommen und mechanisch, optisch und bzgl. der Oberfläche untersucht.
Die SAN-Lage im erfindungsgemäßen Komposit-Material hatte (jeweils) eine mittlere Di cke von 0,150 mm. Die PP-Lage im Vergleichs-Ko posit-Material hatte (jeweils) eine mittlere Dicke von 0,135 mm. Das Flachs-Fasergewebe hatte (jeweils) im erfindungsgemäßen Komposit- Material hatte eine mittlere Dicke von 0,207 mm. Das Flachs-Fasergewebe hatte im Ver gleichs-Komposit-Material ebenfalls eine mittlere Dicke von 0,207 mm.
Tabelle 1 zeigt Parameter zu hergestellten faserverstärkten Komposit-Materialien (K)
Figure imgf000014_0001
Die nach der experimentellen Herstellung gemessene Gesamtdicke war geringfügig grö- ßer als die berechnete Dicke des jeweiligen Komposit-Materials. Das erfindungsgemäße Komposit-Material enthielt etwa 45 Gew.-% Polymer-Matrix und etwa 55 Gew.-% Faser gewebe. Das PP-basierte Komposit-Material enthielt etwa 37 Gew.-% Polymer-Matrix und etwa 63 Gew.-% Fasergewebe. Die erhaltenen faserverstärkten Komposit-Materialien (K) wurden mechanisch unter sucht und mittels Glanzmessungen gemäß Norm ISO 2813 (2015) charakterisiert.
Mechanische Charakterisierung kann über Schlagzähigkeit, Kerbschlagzähigkeit und andere erfolgen. Auch die Lagerstabilität bei verschiedenen Temperaturen und Feuch- tigkeiten kann vergleichend untersucht werden.
Tabelle 2 zeigt die Ergebnisse der Glanzmessung zur Charakterisierung des faserver stärkten Komposit-Materials (K)
Figure imgf000014_0002
Es konnte gezeigt werden, dass durch das erfindungsgemäße faserverstärkte Komposit- Material (K) mit Styrolcopolymer als thermoplastischer Polymermatrix (A) in einem ein- fachen Herstellungsvorgang ein Komposit-Material mit niedriger Dichte, guten mechani schen Eigenschaften und ferner deutlich erhöhtem Glanz (z.B. Glanz 20° oder Glanz 60°) erhalten wird.
Dieses Material ist auch ökologisch von Vorteil, es kann z.B. einfach einem Recycling- Verfahren zugeführt werden.
Die daraus hergestellten Formkörper zeigten sich ästhetisch ansprechend, mechanisch belastbar und gut lagerfähig. Analoge Komposit-Materialien lassen sich in entsprechender weise einfach auch mit anderen Naturfaser-Geweben hersteilen, insbesondere basierend auf Baumwollfaser, Kenaffaser, Jutefaser, Hanffaser, Cellulosefaser, Sisalfaser, Chitinfaser, Keratinfaser, Bambusfaser, Kokosfaser und/oder aus vorbehandelten Naturfasern.

Claims

Patentansprüche
1. Faserverstärktes Komposit-Material (K), enthaltend eine thermoplastische Poly mermatrix und mindestens eine Naturfaser-Komponente, wobei das Komposit-Material (K) enthält: mindestens 45 % (v/v), insbesondere 45 - 70 % (v/v), mindestens eines Sty- rol(co)polymers (A) als Polymermatrix;
30 - 55 % (v/v), insbesondere 32 - 50 % (v/v), mindestens eines Naturfaser-Flä chengebildes (B) als Naturfaser-Komponente; optional 0 - 10 % (v/v), insbesondere 0 - 9 % (v/v), mindestens einerweiteren Po lymer-Komponente (C), die von Komponente (A) verschieden ist; und optional 0-10 % (v/v), insbesondere 0,05- 5 % (v/v), mindestens eines Additivs (D), wobei die Volumenprozente der Komponenten (A) bis (D) zusammen 100 Volu menprozent des Komposit-Materials (K) ergeben.
2. Komposit-Material (K) gemäß Anspruch 1, wobei das Naturfaser-Flächenge bilde (B) gebildet wird aus Naturfasern aus der Gruppe bestehend aus: Flachsfa ser, Baumwollfaser, Kenaffaser, Jutefaser, Hanffaser, Cellulosefaser, Sisalfaser, Chitinfaser, Keratinfaser, Bambusfaser, Kokosfaser; und/oder aus vorbehandelten Naturfasern aus der Gruppe bestehend aus: Flachsfaser, Baumwollfaser, Kenaf faser, Jutefaser, Hanffaser, Cellulosefaser, Sisalfaser, Chitinfaser, Keratinfaser, Bambusfaser, Kokosfaser.
3. Komposit-Material (K) gemäß mindestens einem der Ansprüche 1 oder 2, wobei das Styrol (co) polymer (A) mindestens ein Styrol-Acrylnitril-Copolymer und/oder mindestens ein a-Methyl-Styrol-Acrylnitril-Copolymer enthält.
4. Komposit-Material (K) gemäß mindestens einem der Ansprüche 1 bis 3, wobei es sich bei dem Naturfaser-Flächengebilde (B) um ein Flachsfaser-Flächengebilde handelt.
5. Komposit-Material (K) gemäß mindestens einem der Ansprüche 1 bis 4, wobei es sich bei dem Naturfaser-Flächengebilde (B) um ein Fasergewebe mit einer linea ren Massendichte von 100 - 600 tex, bevorzugt 150 - 450 tex handelt.
6. Komposit-Material (K) gemäß mindestens einem der Ansprüche 1 bis 5, wobei das Naturfaser-Flächengebilde (B) ein Flächengewicht von 100 - 600 g/m2, bevorzugt 150 - 450 g/m2 aufweist.
7. Komposit-Material (K) gemäß mindestens einem der Ansprüche 1 bis 6, wobei es sich bei dem mindestens einen Additiv (D) um ein Trennmittel oder ein Schmier mittel handelt, und dieses in einer Menge von 0,05 - 5 % (v/v) eingesetzt wird, be zogen auf das gesamte Volumen des Komposit-Materials.
8. Komposit-Material (K) gemäß mindestens einem der Ansprüche 1 bis 7 enthaltend 45 - 60 % (v/v) mindestens eines Styrol(co)polymers (A); 32-50 % (v/v) mindestens eines Naturfaser-Flächengebildes (B); 0 - 9 % (v/v) mindestens einerweiteren Po lymer-Komponente (C), die von (A) verschieden ist; und 0,05 - 5 % (v/v) mindes tens eines Additivs (D).
9. Komposit-Material (K) gemäß mindestens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass es bei Messung des Glanzes gemäß Norm ISO 2813 (2015) einen Glanz 20° von mindestens 40 und einen Glanz 60° von mindestens 70 auf weist.
10. Komposit-Material (K) gemäß mindestens einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das Styrol(co)polymer (A) eine so hohe Transparenz auf weist, dass die Naturfasern des Naturfaser-Flächengebilde (B) an der Oberfläche des Komposit-Materials (K) sichtbar sind.
11. Verfahren zur Herstellung eines faserverstärkten Komposit-Materials (K) gemäß mindestens einem der Ansprüche 1 bis 10, bei dem das Verfahren folgende Ver fahrensschritte a) bis d) beinhaltet: a) Lagenaufbau mindestens einer thermoplastischen Schicht aus Styrol(co)- polymer (A), ggf. enthaltend die weitere Polymerkomponente (C) und/oder Additiv- Komponente (D); b) Lagenaufbau mindestens einer Schicht des Naturfaser-Flächengebildes (B); c) Verpressen der übereinander angeordneten Lagen aus Polymermatrix und Naturfaser-Flächengebilden in einem beheizten Werkzeug bei einer Temperatur von 160 - 240°C, bevorzugt 180 - 220°C, und bei einem Druck von 15 - 25 bar, bevorzugt 18 - 22 bar; und d) Abkühlen des faserverstärkten Komposit-Materials (K) auf eine Temperatur un terhalb der Glasübergangstemperatur (Tg) des Styrol(co)polymers (A), bei einem Druck von 15 - 25 bar, bevorzugt 18 - 22 bar.
12. Verfahren zur Herstellung eines faserverstärkten Komposit-Materials (K) nach An spruch 11 , bei dem das Verfahren folgende Verfahrensschritte a) bis d) beinhaltet: a) Lagenaufbau von mindestens einer, insbesondere mindestens zwei thermo plastischen Schichten mit einer mittleren Dicke von 0,05 - 0,75 mm aus dem Sty- rol(co)polymer (A), ggf. enthaltend die weitere Polymerkomponente (C) und/oder Additiv-Komponente (D); b) Lagenaufbau von mindestens einer, insbesondere mindestens zwei Schichten des Naturfaser-Gewebes (B) mit einer mittleren Dicke von 0,05 - 0,75 mm; c) Verpressen der übereinander angeordneten Lagen aus Naturfaser-Gewebe (B) zwischen thermoplastischen Schichten, enthaltend (A), in einem beheizten Werkzeug bei einer Temperatur von 180 - 230°C, und bei einem Druck von 15 - 25 bar; und d) Abkühlen des faserverstärkten Komposit-Materials (K) auf eine Temperatur un terhalb der Glasübergangstemperatur (Tg) des Styrol(co)polymers (A), bei einem Druck von 15 - 25 bar.
13. Verfahren zur Herstellung eines faserverstärkten Komposit-Materials (K) nach min destens einem der Ansprüche 11 oder 12, bei dem das erhaltene Komposit-Mate- rial (K) eine mittlere Dicke von < 4 mm, bevorzugt von < 3,5 mm, besonders be vorzugt von < 3,0 mm aufweist.
14. Verwendung eines Komposit-Materials (K) gemäß mindestens einem der Ansprü che 1 bis 10 oder hergestellt durch ein Verfahren gemäß mindestens einem der Ansprüche 11 bis 13, als strukturelles Element für Bauteile und/oder ästhetische Applikationen.
15. Verwendung eines Komposit-Materials (K) gemäß mindestens einem der Ansprü che 1 bis 10 oder hergestellt durch ein Verfahren gemäß mindestens einem der Ansprüche 11 bis 13, als:
(i) Ausgangsmaterial zur Herstellung von Formkörpern durch ein Verfahren des Thermoformens;
(ii) Folienmaterial oder Beschichtung;
(iii) Verpackungsmaterial; oder
(iv) textiles Flächengebilde oder Stoff.
PCT/EP2022/054357 2021-02-23 2022-02-22 Faserverstärktes komposit-material mit styrol(co)polymer und naturfasern WO2022180018A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020237030430A KR20230152041A (ko) 2021-02-23 2022-02-22 스티렌 (코)폴리머 및 천연 섬유를 갖는 섬유-강화 복합 물질
AU2022226373A AU2022226373A1 (en) 2021-02-23 2022-02-22 Fiber-reinforced composite material having styrene (co)polymer and natural fibers
JP2023550564A JP2024506982A (ja) 2021-02-23 2022-02-22 スチレン(コ)ポリマー及び天然繊維を有する繊維強化複合材料
CA3208023A CA3208023A1 (en) 2021-02-23 2022-02-22 Fiber-reinforced composite material having styrene (co)polymer and natural fibers
EP22707136.2A EP4297970A1 (de) 2021-02-23 2022-02-22 Faserverstärktes komposit-material mit styrol(co)polymer und naturfasern
CN202280015932.6A CN116847982A (zh) 2021-02-23 2022-02-22 具有苯乙烯(共)聚合物和天然纤维的纤维增强复合材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP21158765.4 2021-02-23
EP21158765 2021-02-23

Publications (1)

Publication Number Publication Date
WO2022180018A1 true WO2022180018A1 (de) 2022-09-01

Family

ID=74732644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/054357 WO2022180018A1 (de) 2021-02-23 2022-02-22 Faserverstärktes komposit-material mit styrol(co)polymer und naturfasern

Country Status (7)

Country Link
EP (1) EP4297970A1 (de)
JP (1) JP2024506982A (de)
KR (1) KR20230152041A (de)
CN (1) CN116847982A (de)
AU (1) AU2022226373A1 (de)
CA (1) CA3208023A1 (de)
WO (1) WO2022180018A1 (de)

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008058971A1 (de) 2006-11-14 2008-05-22 Bond-Laminates Gmbh Faserverbund-werkstoff und verfahren zu dessen herstellung
WO2008110539A1 (de) 2007-03-13 2008-09-18 Basf Se Faserverbundwerkstoff
WO2008119678A1 (en) 2007-03-29 2008-10-09 Basf Se Glass fiber reinforced abs compositions with improved stiffness and toughness
US20110020572A1 (en) 2009-07-25 2011-01-27 Lanxess Deutschland Gmbh Structural organosheet-component
WO2012104436A1 (de) 2011-02-04 2012-08-09 Ecco Gleittechnik Gmbh Verbundwerkstoff auf basis eines naturfaserverstärkten kunststoffes
CA2862396A1 (en) 2012-01-26 2013-10-24 E. I. Du Pont De Nemours And Company Method of making a sandwich panel
WO2014163227A1 (ko) 2013-04-04 2014-10-09 주식회사 오코 3면 보강심재를 갖춘 복합패널 제조공법 및 이를 이용한 복합패널
WO2015185573A1 (de) * 2014-06-04 2015-12-10 Lisa Dräxlmaier GmbH Faserverstärktes verbundelement und verfahren zu dessen herstellung
WO2016026920A1 (en) 2014-08-21 2016-02-25 Styrolution Group Gmbh Polylactic acid composites with natural fibers
WO2016170127A1 (de) * 2015-04-22 2016-10-27 Ineos Styrolution Group Gmbh Thermoplastische faserverbund-werkstoffe auf basis von styrol-copolymeren und verfahren zu deren herstellung
WO2016170103A1 (de) 2015-04-22 2016-10-27 Ineos Styrolution Group Gmbh Transluzente faserverbund-werkstoffe aus chemisch modifizierten polymeren
WO2016170131A1 (de) 2015-04-22 2016-10-27 Ineos Styrolution Group Gmbh Verwendung eines faserverbund-werkstoffs mit sandwich-struktur und schaumstoff-komponente
WO2016170148A1 (de) 2015-04-22 2016-10-27 Ineos Styrolution Group Gmbh Verfahren zur herstellung eines faserverbund-werkstoffs aus amorphen, chemisch modifizierten polymeren mit verstärkungsfasern
WO2016170104A1 (de) 2015-04-22 2016-10-27 Ineos Styrolution Group Gmbh Styrol-polymer basierte organobleche für weisse ware
WO2016170145A1 (de) 2015-04-22 2016-10-27 Ineos Styrolution Group Gmbh Verfahren zur herstellung von faserverbund-werkstoffen aus amorphen, chemisch modifizierten polymeren
WO2019063625A1 (en) 2017-09-26 2019-04-04 Ineos Styrolution Group Gmbh FIBER REINFORCED COMPOSITE HAVING ENHANCED FIBER-MATRIX ADHESION
WO2019063620A1 (en) 2017-09-26 2019-04-04 Ineos Styrolution Group Gmbh FIBER-REINFORCED COMPOSITE HAVING REDUCED SURFACE RISE
WO2019063621A1 (en) 2017-09-26 2019-04-04 Ineos Styrolution Group Gmbh PROCESS FOR THE PRODUCTION OF FIBER REINFORCED COMPOSITES
WO2019063626A1 (en) 2017-09-26 2019-04-04 Ineos Styrolution Group Gmbh MOLDED OBJECT AND METHOD FOR PRODUCING THE MOLDED OBJECT

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008058971A1 (de) 2006-11-14 2008-05-22 Bond-Laminates Gmbh Faserverbund-werkstoff und verfahren zu dessen herstellung
WO2008110539A1 (de) 2007-03-13 2008-09-18 Basf Se Faserverbundwerkstoff
WO2008119678A1 (en) 2007-03-29 2008-10-09 Basf Se Glass fiber reinforced abs compositions with improved stiffness and toughness
US20110020572A1 (en) 2009-07-25 2011-01-27 Lanxess Deutschland Gmbh Structural organosheet-component
WO2012104436A1 (de) 2011-02-04 2012-08-09 Ecco Gleittechnik Gmbh Verbundwerkstoff auf basis eines naturfaserverstärkten kunststoffes
CA2862396A1 (en) 2012-01-26 2013-10-24 E. I. Du Pont De Nemours And Company Method of making a sandwich panel
WO2014163227A1 (ko) 2013-04-04 2014-10-09 주식회사 오코 3면 보강심재를 갖춘 복합패널 제조공법 및 이를 이용한 복합패널
WO2015185573A1 (de) * 2014-06-04 2015-12-10 Lisa Dräxlmaier GmbH Faserverstärktes verbundelement und verfahren zu dessen herstellung
WO2016026920A1 (en) 2014-08-21 2016-02-25 Styrolution Group Gmbh Polylactic acid composites with natural fibers
WO2016170127A1 (de) * 2015-04-22 2016-10-27 Ineos Styrolution Group Gmbh Thermoplastische faserverbund-werkstoffe auf basis von styrol-copolymeren und verfahren zu deren herstellung
WO2016170103A1 (de) 2015-04-22 2016-10-27 Ineos Styrolution Group Gmbh Transluzente faserverbund-werkstoffe aus chemisch modifizierten polymeren
WO2016170131A1 (de) 2015-04-22 2016-10-27 Ineos Styrolution Group Gmbh Verwendung eines faserverbund-werkstoffs mit sandwich-struktur und schaumstoff-komponente
WO2016170148A1 (de) 2015-04-22 2016-10-27 Ineos Styrolution Group Gmbh Verfahren zur herstellung eines faserverbund-werkstoffs aus amorphen, chemisch modifizierten polymeren mit verstärkungsfasern
WO2016170104A1 (de) 2015-04-22 2016-10-27 Ineos Styrolution Group Gmbh Styrol-polymer basierte organobleche für weisse ware
WO2016170145A1 (de) 2015-04-22 2016-10-27 Ineos Styrolution Group Gmbh Verfahren zur herstellung von faserverbund-werkstoffen aus amorphen, chemisch modifizierten polymeren
WO2019063625A1 (en) 2017-09-26 2019-04-04 Ineos Styrolution Group Gmbh FIBER REINFORCED COMPOSITE HAVING ENHANCED FIBER-MATRIX ADHESION
WO2019063620A1 (en) 2017-09-26 2019-04-04 Ineos Styrolution Group Gmbh FIBER-REINFORCED COMPOSITE HAVING REDUCED SURFACE RISE
WO2019063621A1 (en) 2017-09-26 2019-04-04 Ineos Styrolution Group Gmbh PROCESS FOR THE PRODUCTION OF FIBER REINFORCED COMPOSITES
WO2019063626A1 (en) 2017-09-26 2019-04-04 Ineos Styrolution Group Gmbh MOLDED OBJECT AND METHOD FOR PRODUCING THE MOLDED OBJECT

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VAN DE VELDE ET AL.: "Thermoplastic pultrusion of natural fibre reinforced composites", COMPOSITE STRUCTURES, vol. 54, no. 2-3, 2001, pages 355 - 360

Also Published As

Publication number Publication date
EP4297970A1 (de) 2024-01-03
KR20230152041A (ko) 2023-11-02
AU2022226373A1 (en) 2023-08-24
CN116847982A (zh) 2023-10-03
CA3208023A1 (en) 2022-09-01
JP2024506982A (ja) 2024-02-15

Similar Documents

Publication Publication Date Title
Maiti et al. Sustainable fiber‐reinforced composites: A Review
Rokbi et al. Effect of processing parameters on tensile properties of recycled polypropylene based composites reinforced with jute fabrics
EP3286256B1 (de) Transluzente faserverbund-werkstoffe aus chemisch modifizierten polymeren
EP3286258B1 (de) Verfahren zur herstellung eines faserverbund-werkstoffs aus amorphen, chemisch modifizierten polymeren mit verstärkungsfasern
EP3150756A1 (de) Verfahren zur herstellung eines faser-matrix-halbzeugs
DE102005039709A1 (de) Glasfaservliese, Harzmatten sowie Verfahren zu deren Herstellung
EP2539396B1 (de) Kompositzusammensetzung, verfahren zu deren herstellung, formteil und verwendung
DE102011101650A1 (de) Verfahren zur Herstellung eines Formgegenstands eines organischen faserverstärkten Polyolefinharzes
DE102017117350A1 (de) Recycelte polypropylenzusammensetzungen und fahrzeugkomponenten
Lee et al. Mechanical properties of kenaf fibre reinforced floreon biocomposites with magnesium hydroxide filler
EP3286257B1 (de) Verfahren zur herstellung von faserverbund-werkstoffen aus amorphen, chemisch modifizierten polymeren
DE102007031467A1 (de) Verfahren zur Herstellung eines faserverstärkten Verbundstoffs und Verbundstoff
DE112009000765T5 (de) Geschäumter Formgegenstand und Verfahren zur Herstellung des geschäumten Formgegenstands
DE112009003836T5 (de) Expansionsformkörper und Verfahren zur Herstellung eines Expansionsformkörper
WO2022180018A1 (de) Faserverstärktes komposit-material mit styrol(co)polymer und naturfasern
Chaitanya et al. Processing of lignocellulosic fiber-reinforced biodegradable composites
Augustia et al. Effect of date palm fiber loadings on the mechanical properties of high density polyethylene/date palm fiber composites
EP3285998A1 (de) Verwendung von faserverbund-werkstoffen zur herstellung von transparenten bzw. transluzenten formkörpern
WO2015185573A1 (de) Faserverstärktes verbundelement und verfahren zu dessen herstellung
EP3951044A1 (de) Verfahren zur herstellung eines offenen kohlenstofffaserbündels und faserverstärktes verbundmaterial
Preechawattanasakul et al. Multilayer biocomposites of PLA woven fabric and PBS sheets using compression molding process
EP3274161B1 (de) Verfahren zur herstellung faserverstärkter formkörper, danach hergestellte faserverstärkte formkörper und deren verwendung
WO2008019515A1 (de) Faserverstärktes thermoplastisches halbzeug
Kanakannavar et al. Compressive properties of 3D braided flax fiber textile fabric reinforced PLA composites
DE10349110B3 (de) Faserstrang enthaltend Naturfasern und Kompositwerkstoff verstärkt mit Naturfasern sowie Verwendung von beiden

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22707136

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/009267

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 3208023

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 202280015932.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023550564

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2022226373

Country of ref document: AU

Date of ref document: 20220222

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023016457

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112023016457

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230816

ENP Entry into the national phase

Ref document number: 20237030430

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022707136

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022707136

Country of ref document: EP

Effective date: 20230925