WO2022179558A1 - 一种气体浓度的检测方法和气体检测装置 - Google Patents

一种气体浓度的检测方法和气体检测装置 Download PDF

Info

Publication number
WO2022179558A1
WO2022179558A1 PCT/CN2022/077654 CN2022077654W WO2022179558A1 WO 2022179558 A1 WO2022179558 A1 WO 2022179558A1 CN 2022077654 W CN2022077654 W CN 2022077654W WO 2022179558 A1 WO2022179558 A1 WO 2022179558A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
gas concentration
preset
detection
reference value
Prior art date
Application number
PCT/CN2022/077654
Other languages
English (en)
French (fr)
Inventor
吴承禹
Original Assignee
杭州三花研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110216392.5A external-priority patent/CN114965867A/zh
Priority claimed from CN202110590203.0A external-priority patent/CN115407017A/zh
Application filed by 杭州三花研究院有限公司 filed Critical 杭州三花研究院有限公司
Publication of WO2022179558A1 publication Critical patent/WO2022179558A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00

Definitions

  • the present application relates to the technical field of gas detection, and in particular, to a gas concentration detection method and a gas detection device.
  • the collected gas concentration value is directly calculated with the stored original zero point reference value to obtain the final gas concentration detection value.
  • the collected gas concentration value will have a large drift.
  • the gas concentration detection method of the related art does not consider the zero point value drift, and the gas concentration detection accuracy not tall.
  • the present application provides a gas concentration detection method and a gas detection device, which can improve the accuracy of gas concentration detection.
  • the present application provides a method for detecting gas concentration, comprising the following steps:
  • the gas concentration detection value after the zero-point reference value is updated is corrected.
  • the gas concentration detection method of the present application will detect the gas concentration in the environment to obtain the first value after reaching the zero-point reference value calibration time, because the new zero-point reference value will be subject to the first value as the real-time monitoring value.
  • the new zero-point reference value is used to correct the gas concentration detection data after the zero-point reference value update, which can reduce the influence of the zero-point reference value drift on the detection accuracy, and the gas concentration detection method has high accuracy.
  • the present application provides a gas detection device, comprising:
  • a processing module comprising: one or more processors, a memory, and one or more computer programs, wherein the one or more computer programs are stored in the memory, the one or more computer programs
  • the program includes instructions; when the instructions are executed by the processor, the instructions cause the apparatus to implement the method for detecting gas concentration according to the first aspect;
  • the collection module is used for collecting gas concentration information, and generating an electrical detection signal according to the gas concentration information and transmitting it to the processing module.
  • the gas detection device of the present application which implements the aforementioned gas concentration detection method, detects the gas concentration in the environment after reaching the zero-point reference value calibration time to obtain the first value, because the new zero-point reference value will be Affected by the first value as the real-time monitoring value, the new zero-point reference value is used to correct the gas concentration detection data after the zero-point reference value is updated, which can reduce the influence of the zero-point reference value drift on the detection accuracy, and the accuracy of the gas detection device. high degree.
  • FIG. 1 is a schematic flowchart of an embodiment of a method for detecting gas concentration of the application
  • FIG. 2 is a schematic flowchart of steps S10 and S20 as shown in FIG. 1;
  • FIG. 3 is a schematic flowchart of step S201 as shown in FIG. 2;
  • Fig. 4 is the method schematic diagram of another embodiment of the detection method of the gas concentration of the present application.
  • Fig. 5 is the method schematic diagram of still another embodiment of the detection method of the gas concentration of the present application.
  • FIG. 6 is a schematic flowchart of the existence of steps to detect whether there is manual intervention in an embodiment of the gas concentration detection method of the present application
  • Fig. 7 is the method schematic diagram of still another embodiment of the detection method of gas concentration of the present application.
  • FIG. 8 is a schematic flowchart of step S41 as shown in FIG. 7;
  • FIG. 9 is a schematic flowchart of determining a new zero-point reference value under a specific embodiment as shown in FIG. 7;
  • FIG. 10 is a schematic flow chart of the sampling process of the gas concentration detection value of the application.
  • FIG. 11 is a schematic diagram of the gas concentration sampling method of the application.
  • FIG. 12 is a schematic structural diagram of an embodiment of the gas detection device of the present application.
  • FIG. 13 is a schematic structural diagram of an embodiment of the air conditioning system of the present application.
  • FIG. 14 is a schematic structural diagram of another embodiment of the gas detection device of the present application.
  • Refrigerants such as Freon (R22) used in air-conditioning systems can cause damage to the ozone layer in the atmosphere, easily leading to the formation of a hole in the ozone layer, allowing sunlight to directly irradiate the earth's surface.
  • R32 chemical name is difluoromethane, which is a halogenated hydrocarbon, chemical formula is CH 2 F 2
  • R32 is slightly flammable, and can form explosive mixtures when mixed with air. When encountering heat sources or open flames, there is a danger of combustion and explosion, and there is a potential safety hazard. Therefore, real-time detection of R32 concentration in the air around the refrigerant conveying pipeline of the air-conditioning system is one of the means to eliminate potential safety hazards.
  • the gas detection device is used to detect and alarm the gas concentration.
  • the gas sensor in the gas detection device can collect the gas concentration signal, and transmit the collected gas concentration signal to the processing module of the gas detection device.
  • the processing module of the device performs processing, so that the gas detection device and the air-conditioning system will take corresponding countermeasures, such as taking alarm processing, to ensure the safety of the air-conditioning system.
  • the gas detection device will store the original zero-point reference value internally when it leaves the factory.
  • the so-called "zero-point” means that when the gas sensor does not start to work or is placed in relatively pure air or artificial gas, the collected data undergoes analog-to-digital conversion (The concentration value/voltage value displayed after A/D) conversion, the concentration value/voltage value at this time is not necessarily zero, but it can be regarded as the "zero point" of the gas detection device, and the actual measurement value is obtained by Calculated from the current concentration/voltage value and the zero-point reference value.
  • the zero-point reference value of the gas detection device when leaving the factory is all calibrated, and the measurement data is within the error range.
  • the zero point reference value always adopts the stored original zero point reference value, and the collected gas concentration value is directly calculated with the stored original zero point reference value to obtain the final gas concentration detection value.
  • This gas concentration detection method does not consider the influence of zero point value drift, and the accuracy is not high.
  • the gas detection device will also have problems such as drift of the zero point reference value due to the difference of the measured ambient temperature and humidity, as well as the aging of the components and the consumption of the sensitive components.
  • the present application proposes a gas concentration detection method and a gas detection device, which can reduce the influence of zero point reference value drift on gas concentration detection, and have high detection accuracy.
  • FIG. 1 is a schematic diagram of an embodiment of a method for detecting gas concentration of the present application.
  • the method provided in this embodiment can be applied to a gas detection device, and the gas detection device can be applied to an air conditioning system such as a household air conditioner and a vehicle air conditioner, and can also be applied to a refrigeration device such as a refrigerator.
  • the air-conditioning system may include a refrigerant transportation pipeline (or heat exchanger pipeline, etc.) for conveying refrigerant (such as R32), and the gas detection device can be used to detect the gas concentration around the refrigerant transportation pipeline to determine whether there is refrigerant leakage. Helps to eliminate security risks.
  • the above-mentioned detection method may include the following steps:
  • step S10 may be determined by judging whether the calibration time of the zero-point reference value is reached, that is, after the calibration time of the zero-point reference value is reached, step S10 is executed to detect the gas concentration in the environment to obtain the corresponding The first gas concentration value.
  • the first gas concentration value may be a voltage value, a current value or other types of electrical signal values, or even a value in a concentration unit.
  • the first gas concentration value is collected by the collection module in the gas detection device.
  • the collection module may include a sensor, an amplifying filter circuit, an analog-to-digital converter, etc.
  • the concentration signal can be processed by amplifying filter circuit and analog-to-digital converter to obtain gas concentration value.
  • the sensor may be a semiconductor sensor, and the sensor may also be an infrared optical sensor, an electrochemical sensor, a solid electrolyte sensor, or a catalytic combustion sensor.
  • the zero-point reference value may be used to correct the second gas concentration value obtained by subsequent sampling to obtain a gas concentration detection value, and the gas concentration detection value may be used for alarm judgment.
  • the gas detection device also stores the original zero-point reference value when it leaves the factory. After the completion of step S20, the zero-point reference value will be obtained, and the zero-point reference value obtained through step S20 will replace the stored original value. and when the gas concentration detection method is cycled in the gas detection device, the zero reference value obtained through this step S20 will replace the original stored zero reference value or the zero reference obtained in the S20 step of the previous cycle. value. That is, in a gas detection device,
  • the zero-point reference value is obtained based on the collected first gas concentration value, the zero-point reference value and the second gas concentration value are affected by almost the same temperature and humidity, and the effect of temperature and humidity on the zero-point reference value can offset the second gas concentration value Influenced by temperature and humidity, the obtained detection value can eliminate the influence of temperature and humidity, and the detection method of gas concentration has high accuracy.
  • step S10 and step S20 may include the following steps:
  • Step S10 may include collecting multiple times to obtain multiple first gas concentration values. For example, in the first time period T1 (eg, 30 seconds), the data is collected every 5 seconds to obtain a plurality of first gas concentration values, which is not limited herein.
  • step S201 a zero-point reference value is obtained based on the plurality of first gas concentration values.
  • step S201 may include: obtaining a zero-point reference value based on a median value of a plurality of first gas concentration values.
  • step S201 may include: obtaining a zero-point reference value based on a minimum value of a plurality of first gas concentration values.
  • the manner of obtaining the zero-point reference value based on the plurality of first gas concentration values is not limited to this.
  • step S201 may include the following steps:
  • the zero-point reference value obtained last time is used as the current zero-point reference value.
  • the preset reference value can be determined according to the alarm threshold value of the refrigerant type or type. For example, if the alarm threshold value M1 of the refrigerant (such as R32) is 5000ppm, the preset reference value can be set to be much smaller than the alarm threshold value M1.
  • the reference value is set to 10%*M1. That is to say, if the average value A of the plurality of first gas concentration values is smaller than the preset reference value (such as 10%*M1), the average value (or median, etc.) of the plurality of first gas concentration values can be used as the zero point Reference value.
  • the average value A of the multiple first gas concentration values is greater than or equal to the preset reference value (such as 10%*M1), the average value A of the multiple first gas concentration values cannot be used as the zero-point reference value, and is selected to be stored in the gas
  • the original zero-point reference value in the detection device or the zero-point reference value obtained last time is used as the current zero-point reference value. And after the current zero-point reference value is obtained, the zero-point reference value remains unchanged until the next steps S10 and S20 are performed.
  • steps S10 and S20 are completed, the zero-point reference value is obtained, and the gas concentration sampling stage is entered, and in the gas concentration sampling stage, the second gas concentration value is collected and obtained.
  • the detection value may be determined according to the difference between the second gas concentration value and the zero-point reference value.
  • the formula or method for correcting the second gas concentration value based on the zero-point reference value may be determined according to the type of refrigerant or the actual gas concentration collection environment (such as temperature and humidity, etc.), which is not limited herein.
  • the zero-point reference value and the second gas concentration value can cancel each other due to the influence of temperature and humidity
  • the use of the zero-point reference value to correct the second gas concentration value can eliminate the influence of temperature and humidity, and the obtained detection value more precise.
  • steps S10, S20, S30, and S40 are performed sequentially in chronological order.
  • step S30 is performed before step S20, and steps S10, S30, S20 and S40 are performed in chronological order.
  • step S10 the following steps are further included before step S10:
  • step S1 determine whether it is the first time to perform gas concentration detection, if yes, go to step S10; if not, go to step S2;
  • step S2 determine whether the time period T has elapsed, if so, go to step S10, if not, go to step S30;
  • step S2 the time is counted from the beginning of the gas concentration detection method.
  • step S2 if it is determined that the elapsed time is greater than or equal to the time period T, the time is cleared and the time is restarted from the time of clearing. .
  • step S40 that is, the second gas concentration value is corrected based on the zero-point reference value, and after the detection value is obtained, the process returns to step S1. That is to say, after the gas detection device is started, the detection of the gas concentration is continuously performed to obtain the real-time detection value. That is, after the completion of steps S10 and S20 once, in the next time period T2 (time period T2 is the time period T minus the time when steps S10 and S20 are completed once), steps S30 and S40 are continuously performed, and after the time period elapses After T2, the next steps S10 and S20 are performed again, and this cycle is performed.
  • steps S10 and S20 are performed once to obtain a zero-point reference value, so as to continuously update the zero-point reference value instead of a fixed zero-point reference value.
  • steps S30 and S40 are repeatedly performed, wherein the collected gas concentration value is corrected by the obtained zero point reference value to obtain the detection value, which further improves the detection accuracy and reduces the error.
  • steps S10 and S20 are performed once, then S30 and S40 are continuously performed in the next time period T2, and the zero-point reference value obtained in steps S10 and S20 is used for the next time period T2. in steps S30 and S40.
  • the time period T2 is 5 hours.
  • a plurality of second gas concentration values and detection values can be acquired in real time within 5 hours after the completion of steps S10 and S20 once.
  • FIG. 5 shows a control method of a gas detection device according to an embodiment of the present application, and the method may include:
  • a detection value B is obtained; based on the detection value B, an alarm is performed.
  • each detected value B obtained in the above-described gas concentration detection method can be used for alarm judgment. For example, if the detected value is greater than the alarm threshold, prompt information, such as sound and light alarm, will be issued to prompt the user to deal with it in time.
  • a plurality of alarm thresholds may be set in the gas detection device, such as a preset first threshold M1, a preset second threshold M2 and a preset third threshold M3.
  • a preset first threshold M1 is 5000 ppm
  • the preset second threshold M2 is 8000 ppm
  • the preset third threshold M3 is 12000 ppm. It can be seen that the above-mentioned preset reference value may be determined according to the preset first threshold value M1.
  • the detection value B is compared with a plurality of alarm thresholds, so that the detection value B of different concentration levels can be alarmed at different levels.
  • the alarm is performed, which may include the following steps:
  • the value of the third threshold M3 is greater than the value of the second threshold M2, and the value of the second threshold M2 is greater than the value of the first threshold M1.
  • the first level alarm is used to indicate a low level of refrigerant leakage.
  • the second level alarm is used to indicate the degree of leakage in the refrigerant.
  • the third-level alarm is used to indicate a high degree of refrigerant leakage.
  • the gas detection device or the air-conditioning system may include a prompt module, which is used to issue a sound or light alarm, such as a sound alarm by a horn, a power amplifier or a buzzer, etc., and a light by an LED warning light.
  • step S505 if it is detected that multiple detection values B obtained within the first accumulated time period (eg, for a period of time, for example, for 30 seconds) are all greater than or equal to the preset first threshold M1 (eg, 5000ppm) , and is less than the second threshold M2 (eg 8000ppm), it is determined that the refrigerant leaks at a low level, and a first-level alarm is issued.
  • the preset first threshold M1 eg, 5000ppm
  • M2 eg 8000ppm
  • the first-level alarm (such as the prompt module of the air-conditioning system to start the first-level alarm, etc.) may include issuing a low-decibel prompt sound, and the LED warning light emits light, etc., prompting the user to deal with it in time (such as manual intervention, such as user operation) to cut off the power supply, suspend or shut down the operation of the equipment, or perform troubleshooting, etc.) to avoid accidents.
  • a low-decibel prompt sound such as the prompt module of the air-conditioning system to start the first-level alarm, etc.
  • the first-level alarm may include issuing a low-decibel prompt sound, and the LED warning light emits light, etc., prompting the user to deal with it in time (such as manual intervention, such as user operation) to cut off the power supply, suspend or shut down the operation of the equipment, or perform troubleshooting, etc.) to avoid accidents.
  • the gas detection device is used in an air-conditioning system.
  • the air-conditioning system includes an air-conditioning controller, a compressor and a valve.
  • the air-conditioning controller is a control module of the air-conditioning system, and the air-conditioning controller is used to control the compressor and the valve.
  • performing the first-level alarm further includes transmitting the detected value signal and the first-level alarm signal to an air-conditioning controller of the air-conditioning system, and the like.
  • the air-conditioning controller performs corresponding processing according to the detected value and the first-level alarm signal. Such as reducing the operating power of the compressor, closing the valve, etc.
  • step S503 if it is detected that the plurality of detection values B obtained within the second accumulated time period (eg, for a period of time, such as for 30 seconds) are all greater than or equal to the preset second threshold M2 (eg, 8000ppm), and When it is less than the third threshold M3 (eg 12000ppm), the degree of leakage in the refrigerant is determined, and a second-level alarm is performed.
  • the preset second threshold M2 eg, 8000ppm
  • M3 eg 12000ppm
  • the second-level alarm (such as the prompt module of the air-conditioning system to activate the second-level alarm, etc.) includes a medium-decibel prompt tone, and an LED warning light emits light, etc., and prompts the user to deal with it (such as manual intervention, etc.) in time to avoid the occurrence of ACCIDENT.
  • performing the second-level alarm further includes transmitting the detected value signal and the second-level alarm signal to the air-conditioning controller of the air-conditioning system.
  • the air conditioner controller performs corresponding processing according to the detected value and the second-level alarm signal. For example, stop the compressor, close the valve, etc.
  • step S501 if it is detected that the plurality of detection values B obtained within the third cumulative time period (eg, for a period of time, such as for 30 seconds) are all greater than or equal to the preset third threshold M3 (eg, 12000ppm), then Determine a high degree of refrigerant leakage and issue a third-level alarm.
  • the preset third threshold M3 eg, 12000ppm
  • the third-level alarm (such as the prompt module of the air-conditioning system starts the third-level alarm, etc.), the third-level alarm includes a high-decibel prompt sound, and the LED warning light emits light, etc., and prompts the user to deal with it in time (such as manual intervention, etc.) ) to avoid accidents.
  • performing the third-level alarm further includes transmitting the detected value and the third-level alarm signal to the air-conditioning controller of the air-conditioning system.
  • the air-conditioning controller performs corresponding processing according to the detected value and the third-level alarm signal. Such as turn off the air conditioning system control relay, or cut off the power supply.
  • the method provided in this embodiment adopts the stage alarm (such as the first level alarm, the second level alarm, the third level alarm, etc.)
  • the method can gradually remind the user visually and audibly, and transmit the detected value and the alarm signal to the control module (air conditioner controller) of the air conditioning system, and the control module of the air conditioning system can perform corresponding actions without the user processing. handling to avoid accidents.
  • the refrigerant if it is detected that multiple detection values obtained in a continuous period of time are all smaller than the preset first threshold value M1 (that is, the gas concentration detection value is within the first concentration range), it is determined that the refrigerant has not leaked, and it is not necessary to Send an alert message. If it is detected that multiple detection values obtained in a continuous period of time are all greater than or equal to the preset first threshold value M1 and less than the preset second threshold value M2 (that is, the gas concentration detection value is within the second concentration range), it is determined that the refrigerant is low If the degree of leakage occurs, a third-level alarm will be issued.
  • the preset first threshold value M1 that is, the gas concentration detection value is within the first concentration range
  • the degree of refrigerant neutralization leaks for a second level of alarm If it is detected that multiple detection values obtained in a continuous period of time are all greater than or equal to the preset second threshold value M2 and less than the preset third threshold value M3 (that is, the gas concentration detection value is within the third concentration range), determine the degree of refrigerant neutralization leaks for a second level of alarm. If it is detected that multiple detection values obtained in a continuous period of time are all greater than or equal to the preset third threshold M3 (ie, the gas concentration detection value is within the fourth concentration range), it is determined that the refrigerant leaks to a high degree, and a first-level alarm is performed.
  • the alarm if it is detected that the detected value B for a period of time is in the corresponding concentration range (such as the first concentration range, the second concentration range, the third concentration range and the fourth concentration range) , you can switch to the corresponding level of alarm.
  • concentration range such as the first concentration range, the second concentration range, the third concentration range and the fourth concentration range
  • the first-level alarm if it is detected that multiple detected values B within a period of time (such as 30 seconds) are in the second concentration range, the first-level alarm will be switched to the second-level alarm. .
  • the method may further include the following steps:
  • the preset first mode includes stopping the alarm, stopping the light flashing alarm or stopping the sound alarm, etc., and/or, clearing the gas concentration value obtained by sampling, and clearing the above-mentioned accumulated time period, etc.
  • the gas detection device includes a gas sensing element for sensing gas concentration information, and a heating element (such as a heating wire) for heating to provide the gas sensing element with a necessary working temperature.
  • Presetting the first mode may include cutting off power to the heating element, or supplying power to the heating element in a low duty cycle power supply manner. Control the heating wire to stop heating (such as cutting off the power supply of the semiconductor heating wire, etc.), or use a low duty cycle power supply method to control the heating wire to heat to reduce power consumption and save energy.
  • the preset first mode also includes suspending all steps in the control method of the gas detection device, including suspending the steps of S1 , S2 , S10 , S20 , S30 , and S40 .
  • the method may further include:
  • the gas detection device processes according to the preset first mode, and re-executes S703.
  • re-executing S1 refers to restarting the steps in the control method of the gas detection device, and the system re-executes steps S1, S2, S10, S20, S30, S40 and the like.
  • the time period t may be 10 minutes, and the time period t starts timing after processing according to the preset first mode, but the present application is not limited to this.
  • step S704 includes, after the processing according to the preset first mode, the time period t has elapsed, and the heating element is controlled to resume normal heating.
  • the present application also provides another method for detecting gas concentration, as shown in FIG. 7 , the method includes:
  • Step S41 after reaching the zero-point reference value calibration time, the gas concentration in the environment is detected to obtain the first value correspondingly.
  • Step S41 is similar to step S10 in the previous embodiment, the first value is updated in real time by detecting the surrounding environment of the gas detection device, and at the moment of measuring the first value, that is, the gas concentration detection value of the current surrounding environment, it is not possible to determine whether the current value is The leakage of the gas to be detected, therefore, whether the first value can be used as the zero-point reference value needs to be further judged through step S42. For example, in the process of sampling the gas in the surrounding environment, the leakage of the gas to be detected happens, and at this time, the first value representing the current gas concentration is relatively large.
  • the built-in or external timer module accumulates the gas detection device work time. If its accumulated working duration is greater than or equal to a preset duration threshold, the control generates a calibration instruction for calibrating the current zero-point reference value. For example, the accumulated usage time of the gas detection device, when the accumulated duration exceeds 24 hours, is calculated as one day, the usage duration of the gas detection device can be stored in the memory storage unit, and the factory zero reference value data C0 is also stored in the memory. in the storage unit. When the cumulative working time of the gas detection device exceeds 90 days, the self-calibration function will be activated accordingly. The processing module generates the above calibration instruction to instruct the zero reference value to be calibrated.
  • the trigger condition for generating the calibration instruction may be other conditions.
  • the processing module Control generates the above calibration instructions.
  • the processing module can Control generates the above calibration instructions.
  • the step of obtaining the first value needs to be performed. As shown in FIG. 8 , the step of obtaining the first value includes step S1001 and step S1002 .
  • step S1001 the initial value of the gas concentration detection value of the current environment is obtained.
  • Step S1002 Convert the initial value to a first value corresponding to the standard environment according to the compensation data of the current environment relative to the standard environment.
  • the standard environment includes at least one of a preset temperature condition and a preset humidity condition.
  • step S1001 includes:
  • Step S50 sampling multiple times to obtain multiple gas concentration detection values A'.
  • Step S51 calculating the average value of a plurality of gas concentration detection values as the initial value A.
  • the average value is the initial value of the gas concentration detection value of the current environment. For example, within a preset time period (eg, 1 hour), the data is collected every 1 minute (60 times in total) to obtain 60 gas concentration detection values. After the gas concentration detection value of the first preset sampling number is obtained through multiple sampling, the average value of the gas concentration detection value relative to the first preset sampling number is calculated to reduce random errors in the detection process, and the average value is used as the current value. The initial value of the ambient gas concentration detection value.
  • the gas concentration values measured by the gas detection device are also different under different temperature and humidity environments. Specifically, when the gas detection device is used When detecting the content of a certain gas in the air, it is necessary to correct the gas concentration measurement value in a non-standard environment according to the temperature information and humidity information of the surrounding environment of the gas detection device, which can reduce the measurement error in different environments.
  • its zero-point reference value is a value set in a standard working environment, and the standard environment can be an environment with a temperature of 20°C and a humidity of 65%.
  • the product will be used in different temperature and humidity environments, so it is necessary to correct the output data of the gas detection device in combination with the temperature and humidity information.
  • the initial value of the gas concentration detection value of the current environment is the initial measurement value obtained by the gas detection device by detecting the content of the target gas in the air under the current temperature and humidity environment, that is, it has not yet been determined according to the surrounding environment. Ambient temperature and humidity information to correct initial measurements.
  • Both the temperature value and the humidity value are environmental factors that affect the initial value of the gas concentration detected by the gas detection device.
  • only one environmental factor may be considered: the temperature value, that is, the gas concentration of the gas detection device is calculated according to the temperature value. Compensation value; in another embodiment, only another environmental factor may be considered: humidity value, that is, the gas concentration compensation value of the gas detection device is calculated according to the humidity value.
  • two environmental factors may be considered simultaneously: temperature value and humidity value, that is, the gas concentration compensation value of the gas detection device is calculated according to the temperature value and the humidity value.
  • the method provided by this application further includes:
  • Step S1003 acquiring the temperature value T1 of the current environment.
  • Step S1004 determining the gas concentration compensation value T.
  • the gas concentration compensation value T is a variable related to the temperature value T1.
  • the gas concentration compensation value calculated in the embodiment of the present application is used to correct the initial value of the gas concentration detected by the gas detection device.
  • the gas concentration compensation value may be a positive value or a negative value. The specific calculation of the gas concentration compensation value The process is explained in the steps below.
  • step S1002 includes step S1005, determining the first value X1.
  • the first value X1 is obtained by mathematical operation according to the gas concentration compensation value and the initial value. It should be noted that the steps S1003 and S1004 of obtaining the gas concentration compensation value and the steps S50 and S51 of obtaining the initial value may be executed synchronously. Of course, the steps S50 and S51 of obtaining the initial value may also be executed first, and then the steps S1003 and S1004 of obtaining the gas concentration compensation value may be executed. Or conversely, the steps S1003 and S1004 of obtaining the gas concentration compensation value are executed first, and then the steps S50 and S51 of obtaining the initial value are executed.
  • the calibration method of the gas detection device mainly adopts the method of the gas concentration compensation value corresponding to the temperature value, calculates the gas concentration compensation value according to the temperature information of the surrounding environment, and uses the gas concentration compensation value to perform the gas concentration compensation value. Correction to reduce the error of the gas concentration value measured by the gas detection device in different temperature environments.
  • using the temperature value to determine the gas concentration compensation value can relatively reduce the correction complexity of the gas detection device, reduce the product cost, and reduce the gas concentration measured by the gas detection device in different environments.
  • the value error is improved, and the measurement accuracy of the gas detection device is improved.
  • step S1004 may be specifically, determining the gas concentration compensation value corresponding to the temperature value according to the corresponding relationship between the temperature value and the gas concentration compensation value.
  • the corresponding relationship between the temperature value and the gas concentration compensation value can be stored in the form of table data, and different temperature values correspond to different gas concentration compensation values. way to obtain the gas concentration compensation value.
  • the target gas concentration in the air measured by the gas detection device is 500 ppm, that is, when the temperature value T1 is 20
  • the initial value A of the target gas concentration measured in the environment of 500 ppm is 500ppm
  • the temperature value T1 is subtracted from the standard ambient temperature value T0
  • the difference between the temperature value T1 and the standard ambient temperature value T0 is 0, which corresponds to the difference.
  • the gas concentration compensation value is also 0, and there is no need to correct the initial gas concentration value A.
  • the initial gas concentration value A is the target gas concentration value of the gas detection device, that is, the first value.
  • the target gas concentration in the air measured by the gas detection device is 500ppm, that is, the initial value A of the gas concentration measured in the environment where the temperature value T2 is 26 degrees is 500ppm.
  • the temperature value T2 is subtracted from the standard ambient temperature value T0, and the difference between the temperature value T2 and the standard ambient temperature value T0 is +6 degrees, and the gas concentration compensation value corresponding to the difference is determined by looking up the table to +120ppm , the gas concentration compensation value and the gas concentration initial value A are accumulated to obtain the first value of the target gas concentration as 620 ppm.
  • the corresponding relationship between the temperature value and the gas concentration compensation value may also be a fitted functional relationship or other corresponding relationship.
  • step S50 sampling multiple times within a preset time period according to the first preset sampling quantity, and obtaining the gas concentration detection value obtained by each sampling, including:
  • Step S60 Divide the preset duration into a preset first number of time periods on an average in chronological order, and divide each of the time periods into an average of a preset second number of sampling segments;
  • Step S61 performing at least one sampling in at least one sampling section of each time period
  • Step S62 acquiring the gas concentration detection value obtained by each sampling.
  • the preset duration (such as 1 hour) is evenly divided into the preset first number (such as 6) time periods, that is, in 1 hour, it can be divided into the first time period.
  • Time period (10min), 2nd period (10min), 3rd period (10min), 4th period (10min), 5th period (10min) and 6th period (10min) are evenly divided into a preset second number (such as 10) of sampling periods.
  • the first period can be divided into 10 sampling periods on average, and the duration of each sampling period is 1min, and the other 5 time periods The same paragraph.
  • Sampling is performed in the second sampling period of the first time period, and the sampling times are greater than or equal to one;
  • Sampling is performed in the second sampling period of the second time period, and the sampling times are greater than or equal to one;
  • Sampling is performed in the second sampling period of the third time period, and the number of sampling times is greater than or equal to one;
  • Sampling is performed in the second sampling period of the fourth time period, and the sampling times are greater than or equal to one;
  • Sampling is performed in the second sampling period of the fifth time period, and the number of sampling times is greater than or equal to one;
  • Sampling is performed in the second sampling period of the sixth time period, and the number of sampling times is greater than or equal to one.
  • sampling can be performed in a sampling period of the same time sequence in each time period.
  • sampling can also be performed in sampling segments of different time sequences in each time segment.
  • the relatively long preset duration can ensure that sampling is carried out in the time range with the largest possible span, and at the same time, sampling is carried out in each time period, which can ensure that the sampling time points are relatively scattered and not easy to concentrate, which is beneficial to Reduce errors caused by fluctuations in ambient gas concentration during sampling.
  • the accuracy of calculating the initial value of the gas concentration detection value in the current environment is improved.
  • step S41 After step S41, step S42 and step S43 are continued.
  • Step S42 if the first value satisfies the preset condition, update the current zero point reference value according to the preset rule to obtain a new zero point reference value.
  • Step S42 may be similar to the implementation manners of S301 to S306 described in the foregoing embodiments. Further, in other embodiments of the present application, referring to FIG. 9 , step S42 may be performed by the following steps:
  • Step S421 compare the magnitudes of the first numerical value and the second numerical value, where the second numerical value is a numerical value obtained by multiplying the current zero point reference value and a preset coefficient, and the preset coefficient is greater than 1.
  • the second value is not always a fixed value.
  • the second value when the gas detection device is shipped from the factory, its original zero-point reference value is recorded as C0.
  • the preset coefficient may be a value greater than 1, the setting of the preset coefficient may be based on the actual situation, and the value of the preset coefficient may also be other values, and the present application does not limit the value of the preset system.
  • the preset coefficient can be set according to the use time of the gas detection device and the empirical data of zero point drift. After the gas detection device runs or is used for a long time, its zero point reference value will shift. For example, the voltage value corresponding to the zero point reference value becomes smaller.
  • the preset system is set to a value greater than 1 to make The estimated zero-point reference value is closer to the real zero-point reference value.
  • the calibration of the zero-point reference value does not only rely solely on the first value or the second value, but correspondingly, the value of the zero-point reference value can be relatively more accurate.
  • Step S422 taking the relatively smaller value of the first value and the second value as the new zero point reference value.
  • the relatively small value of the first value and the second value is used as the current new zero point reference value to cover the previous old zero point reference value, that is, the newly obtained zero point reference value will replace the stored original zero point reference value.
  • the zero point reference value of , or the last zero point reference value obtained.
  • the gas detection device uses the new zero-point reference value to detect the gas concentration information in the subsequent use process. Since the current value of the new zero-point reference value is replaced by comparing the magnitude of the first value and the second value and then taking a relatively small value, in this way, the value of the zero-point reference value will be affected by the comparison of the above two values , which is beneficial to improve the calibration accuracy of the zero reference value.
  • Step S43 using the new zero-point reference value to correct the gas concentration detection value after the zero-point reference value is updated.
  • the present application provides a gas detection device 700.
  • the gas detection device 700 includes a collection module 710 and a processing module 720:
  • the acquisition module 710 is used for acquiring the gas concentration value, and generates an electrical detection signal according to the gas concentration value and transmits it to the processing module 720;
  • Processing module 720 includes:
  • the gas detection device 700 performs the following steps:
  • the second gas concentration value is corrected based on the zero-point reference value to obtain a detection value.
  • the gas detection device 700 when the instruction is executed by the processor, the gas detection device 700 is caused to perform acquisition to obtain the first gas concentration value before the acquisition to obtain the second gas concentration value;
  • step S1 determine whether it is the first time to perform gas concentration detection, and if so, perform step collection to obtain a first gas concentration value; if not, perform step S2;
  • step S1 After the second gas concentration value is corrected based on the zero-point reference value to obtain a detected value, the process returns to step S1.
  • the gas detection device 700 when the instruction is executed by the processor, the gas detection device 700 is caused to execute:
  • a zero point reference value is obtained.
  • the gas detection device 700 when the instruction is executed by the device, the gas detection device 700 is caused to execute:
  • obtaining the zero-point reference value includes the following steps:
  • the zero point reference value is determined according to the stored original zero point reference value
  • the current zero reference value is determined according to the zero reference value obtained last time.
  • the gas detection device 700 further includes a temperature detection module 703 , a filter circuit module 704 , and an analog-to-digital conversion circuit module 705 .
  • the temperature detection module 703 is electrically connected to the processing module 720 for detecting ambient temperature information and generating electrical signals that can be transmitted to the processing module 720 according to the ambient temperature information.
  • the temperature detection module 703 may be a common NTC (Negative Temperature Coefficient) thermistor element, and of course, the temperature detection module 703 may also be other types of temperature detection elements.
  • NTC Negative Temperature Coefficient
  • the electrical detection signal generated by the acquisition module 710 is a voltage detection signal
  • the filter circuit module 704 is used for filtering the voltage detection signal.
  • the filter circuit module 704 may include resistive elements and capacitive elements, which may filter out interference signals in the voltage detection signal.
  • the gas detection device 700 further includes a conversion circuit module, the electrical detection signal generated by the gas detection probe is a current detection signal, and the conversion circuit module is electrically connected to the gas detection probe for converting the current detection signal into a voltage detection signal Signal.
  • the conversion circuit module may include a conversion resistance element. By selecting a conversion resistance with an appropriate resistance value, on the one hand, the current detection signal can be converted into a voltage detection signal, and on the other hand, the signal can be preliminarily amplified for subsequent processing.
  • the analog-to-digital conversion circuit module 706 is electrically connected between the filter circuit module 704 and the processing module 720 to convert the filtered voltage detection signal into a digital voltage signal, and transmit the digital voltage signal to the processing module 720 for analog-to-digital conversion.
  • the circuit module 706 can be an AD conversion chip, and its function is to convert the analog signal into a digital signal.
  • each module of the gas detection device 700 shown in the above figure is only a division of logical functions, and in actual implementation, it may be fully or partially integrated into a physical entity, or may be physically separated.
  • these modules can all be implemented in the form of software calling through processing elements; they can also all be implemented in hardware; some modules can also be implemented in the form of software calling through processing elements, and some modules can be implemented in hardware.
  • the controller may be a separately established processing element, or may be integrated in a certain chip of the air conditioning system.
  • the implementation of other modules is similar.
  • all or part of these modules can be integrated together, and can also be implemented independently.
  • each step of the above-mentioned method or each of the above-mentioned modules can be completed by an integrated logic circuit of hardware in the processor element or an instruction in the form of software.
  • the gas detection device 700 may be applied to the air conditioning system 800 .
  • FIG. 13 it is a schematic structural diagram of an embodiment of an air conditioning system 800 .
  • the air conditioning system 800 may include: the gas detection device 700 provided as shown in FIG. 7 , an air conditioning controller 810 and a communication module 820 .
  • the air-conditioning controller 810 is a control module of the air-conditioning system 800 , and is used to control components (eg, compressors, valves) in the air-conditioning system 800 .
  • the communication module 820 is hardware and is a physical interface, its input end is connected to the gas detection device 700 , and its output end is connected to the air conditioning controller 810 for realizing signal transmission between the gas detection device 700 and the air conditioning controller 810 .
  • the gas detection device 700 sends the detected detection value signal and the alarm signal (such as the first-level alarm signal, the second-level alarm signal, the third-level alarm signal) to the communication module 820, and the communication module 820 then sends the detection value signal to the communication module 820.
  • the alarm signals (eg, the first-level alarm signal, the second-level alarm signal, the third-level alarm signal) are sent to the air-conditioning controller 810, so that the air-conditioning controller 810 controls the components (eg, compressors, valves) in the air-conditioning system 800 to
  • the specific principles or functions may refer to the methods provided in the method embodiments shown in the figures, and details are not described herein again.
  • the communication module may be an RS485 communication module.
  • the air conditioning system 800 may further include a refrigerant conveying pipe for conveying refrigerant (eg, R32), etc., and the gas detection device 700 is used for detecting the gas concentration near the refrigerant conveying pipe.
  • refrigerant eg, R32
  • the gas detection device 700 is used for detecting the gas concentration near the refrigerant conveying pipe.
  • the above-mentioned processor and the memory can communicate with each other through an internal connection path to transmit control and/or data signals, the memory is used for storing a computer program, and the processor is used for calling and running the computer program from the memory.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

本申请实施例提供一种气体浓度的检测方法和气体检测装置,所述方法包括:在到达零点基准值校准时间之后,对环境中的气体浓度进行检测以对应得到第一数值;若所述第一数值满足预设条件,则对当前的零点基准值按照预设规则进行更新以得到新的零点基准值;采用所述新的零点基准值,对所述零点基准值更新之后的气体浓度检测数值进行修正。所述方法能够提高对气体浓度检测的准确度。

Description

一种气体浓度的检测方法和气体检测装置 技术领域
本申请涉及气体检测技术领域,特别涉及一种气体浓度的检测方法和气体检测装置。
背景技术
相关技术的气体浓度的检测方法,是将采集得到的气体浓度值直接与存储的原始的零点基准值进行运算,以得到最终的气体浓度检测值。然而,相同的气体浓度环境,在不同的温湿度影响下,所采集得到的气体浓度值会存在较大漂移,相关技术的气体浓度的检测方法未考虑零点值漂移的情况,气体浓度检测准确度不高。
发明内容
本申请提供了一种气体浓度的检测方法和气体检测装置,能够提高对气体浓度检测的准确度。
第一方面,本申请提供了一种气体浓度的检测方法,包括如下步骤:
在到达零点基准值校准时间之后,对环境中的气体浓度进行检测以对应得到第一数值;
若所述第一数值满足预设条件,则对当前的零点基准值按照预设规则进行更新以得到新的零点基准值;
采用所述新的零点基准值,对所述零点基准值更新之后的气体浓度检测数值进行修正。
本申请的气体浓度的检测方法,会在到达零点基准值校准时间后,对环境中的气体浓度进行检测以对应得到第一数值,由于新的零点基准值是会受到作为实时监测值的第一数值的影响,用新的零点基准值对零点基准值更新之后的气体浓度检测数据进行修正,能够降低零点基准值漂移对检测准确度的影响,气体浓度的检测方法准确度高。
第二方面,本申请提供一种气体检测装置,包括:
处理模块,所述处理模块包括:一个或多个处理器、存储器、以及一个或多个计算机程序,其中所述一个或多个计算机程序被存储在所述存储器中,所述一个或多个计算机程序包括指令;当所述指令被所述处理器执行时,使得所述装置实现如第一方面所述的气体浓度的检测方法;以及
采集模块,用于采集气体浓度信息,并根据所述气体浓度信息产生电性检测信号传输至所述处理模块。
本申请的气体检测装置,其执行前述的气体浓度的检测方法,会在到达零点基准值校准时间后,对环境中的气体浓度进行检测以对应得到第一数值,由于新的零点基准值是会受到作为实时监测值的第一数值的影响,用新的零点基准值对零点基准值更新之后的气体浓度检测数据进行修正,能够降低零点基准值漂移对检测准确度的影响,气体检测装置的准确度高。
附图说明
图1为本申请气体浓度的检测方法一个实施例的流程示意图;
图2为如图1所示的步骤S10与S20的流程示意图;
图3为如图2所示的步骤S201的流程示意图;
图4为本申请气体浓度的检测方法的另一个实施例的方法示意图;
图5为本申请气体浓度的检测方法的又一个实施例的方法示意图;
图6为本申请气体浓度的检测方法的一个实施例中存在步骤检测是否有人工干预处理的流程示意图;
图7为本申请气体浓度的检测方法的又一个实施例的方法示意图;
图8为如图7所示的步骤S41的流程示意图;
图9为如图7所示的一种具体实施方式下确定新的零点基准值的流程示意图;
图10为本申请对气体浓度检测值采样过程的流程示意图;
图11为本申请气体浓度采样方式示意图;
图12为本申请气体检测装置一个实施例的结构示意图;
图13为本申请空调系统一个实施例的结构示意图;
图14为本申请气体检测装置的另一个实施例的结构示意图。
具体实施方式
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
在空调系统中所用的制冷剂如氟利昂(R22)会对大气臭氧层造成破坏,易导致形成臭氧层空洞,使得阳光紫外线直接照射至地球表面。为了保护大气臭氧层,目前的空调系统中开始采用R32(化学名为二氟甲烷,是一种卤代烃,化学式为CH 2F 2)作为冷媒。但是,R32具有微可燃性,与空气混合能形成爆炸性混合物,遇热源或明火存在燃烧爆炸的危险,存在安全隐患。因此,对空调系统的冷媒输送管道周围的空气中R32浓度进行实时检测是消除安全隐患的手段之一。
举例地,气体检测装置用于对气体浓度进行检测并报警,气体检测装置中的气体传感器可以对气体浓度信号进行采集,将采集得到的气体浓度信号传递至气体检测装置的处理模块,由气体检测装置的处理模块进行处理,从而气体检测装置与空调系统会做出相应的对策,如采取报警处理,以保证空调系统的使用安全性。
气体检测装置在出厂时会在内部存储原始的零点基准值,所谓的“零点”就是在气体传感器没有开始工作或者置于相对纯净的空气或者人造气体中时,所采集的数据经过模数转换(A/D)转换后所显示的浓度值/电压值,此时的浓度值/电压值并不一定为零,但是可以将其视为气体检测装置的“零点”,而实际的测量值是通过当前的浓度/电压数值与零点基准值进行运算得到的。出厂时的气体检测装置的零点基准值都是标定好的,测量数据都在误差范围内。相关技术的气体浓度检测方法,零点基准值一直采用存储的原始的零点基准值,将采集得到的气体浓度值直接与存储的原始的零点基准值进行运算,以得到最终的气体浓度检测值,这种气体浓度检测方法未考虑零点值漂移的影响,准确度不高。在实 际中,测量环境温湿度的不同、以及随着元器件的老化和敏感元件的消耗等,气体检测装置也会出现零点基准值漂移等问题。
本申请提出一种气体浓度的检测方法和气体检测装置,能够降低零点基准值漂移对气体浓度检测的影响,检测准确度较高。
图1为本申请气体浓度的检测方法一个实施例的方法示意图。本实施例中提供的方法可以应用于气体检测装置中,气体检测装置可以应用于诸如家用空调、车用空调等空调系统中,也可以应用于冰箱等制冷设备中。空调系统可以包括用于输送冷媒(如R32)的冷媒输送管道(或者换热器管道等),气体检测装置可以用于检测冷媒输送管道周围的气体浓度,以判断是否存在冷媒泄露等现象,有利于消除安全隐患。
如图1所示,上述检测方法可以包括如下步骤:
S10、采集得到第一气体浓度值。
在本实施例中,步骤S10可以通过判断是否达到零点基准值的校准时间来确定是否执行,即在达到零点基准值校准时间后,就执行步骤S10,对环境中的气体浓度进行检测以对应得到第一气体浓度值。需要注意的是,第一气体浓度值可以为电压值,也可以为电流值或者其他类型的电信号值,甚至可以为浓度单位的数值。
步骤S10中,由气体检测装置中的采集模块采集得到第一气体浓度值,采集模块可以包括传感器、放大滤波电路以及模数转换器等,传感器用于采集冷媒输送管道周围的气体浓度信号,气体浓度信号可以通过放大滤波电路以及模数转换器等进行处理,得到气体浓度值。传感器可以为半导体式传感器,传感器还可以为红外光学式传感器、电化学式传感器、固体电解质式传感器或者催化燃烧式传感器等。
S20、基于第一气体浓度值,获得零点基准值。
在本实施例中,零点基准值可以用于对后续采样得到的第二气体浓度值进行修正,以得到气体浓度检测值,该气体浓度检测值可以用于进行报警判断。值得注意的是,在本实施例中,气体检测装置在出厂时也存储有原始的零点基准值,S20步骤完成之后,会获得零点基准值,经S20步骤得到的零点基准值会取代存储的原始的零点基准值;且当气体浓度检测方法在气体检测装置中循环进行时,经本次S20步骤得到的零点基准值会取代存储的原始的零点基准值或上一次循环的S20步骤得到的零点基准值。即在气体检测装置中,
在一个时间点只存在一个零点基准值,在一个时间点不能同时存在两个零点基准值,新获得的的零点基准值会取代存储的原始的零点基准值或上一次获得的零点基准值。由于零点基准值是基于采集得到的第一气体浓度值而获得,因此零点基准值与第二气体浓度值受到几乎相同的温湿度影响,零点基准值受到的温湿度影响可以抵消第二气体浓度值受到的温湿度影响,从而获得的检测值能够消除温湿度影响,气体浓度的检测方法准确度高。
如图2所示,步骤S10以及步骤S20可以包括如下步骤:
S101、多次采集,以得到多个第一气体浓度值;
S201、基于多个第一气体浓度值,获得零点基准值。
在步骤S101之前,可以上电一段时间(如5分钟,在此不受限制)以完成加热模块预热动作。步 骤S10可以包括,多次采集,以得到多个第一气体浓度值。例如,在第一时间段T1(如30秒)内的每间隔5秒采集一次,以得到多个第一气体浓度值,在此不受限制。
在步骤S201中,基于多个第一气体浓度值,获得零点基准值。其中一种可能的实现方式中,步骤S201可以包括:基于多个第一气体浓度值的中值,获得零点基准值。其中又一种可能的实现方式中,步骤S201可以包括:基于多个第一气体浓度值的最小值,获得零点基准值。本实施例中,基于多个第一气体浓度值以获得零点基准值的方式不以此为限。
如图3所示,其中一种可能的实现方式中,步骤S201可以包括如下步骤:
S301、计算多个第一气体浓度值的平均值A;
S302、判断多个第一气体浓度值的平均值A是否小于预设基准值;
S303、若多个第一气体浓度值的平均值A小于预设基准值,则将多个第一气体浓度值的平均值A作为零点基准值;
S304、若多个第一气体浓度值的平均值A大于或等于预设基准值,判断是否为第一次进行气体浓度检测;
S305、若本次气体浓度检测为第一次进行气体浓度检测,则将存储的原始零点基准值作为零点基准值;
S306、若本次气体浓度检测不是第一次进行气体浓度检测,则将上一次获得的零点基准值作为本次的零点基准值。
预设基准值可以根据冷媒种类或类型的报警阈值来确定,例如,冷媒(如R32)的报警阈值M1为5000ppm,则预设基准值可以被设定为远小于报警阈值M1,例如,预设基准值被设定为10%*M1。也就是说,若多个第一气体浓度值的平均值A小于预设基准值(如10%*M1),则可以将多个第一气体浓度值的平均值(或中值等)作为零点基准值。若多个第一气体浓度值的平均值A大于或等于预设基准值(如10%*M1),则多个第一气体浓度值的平均值A不能作为零点基准值,并选用存储于气体检测装置中的原始零点基准值或使用上一次获得的零点基准值作为本次的零点基准值。且在获得本次的零点基准值后,零点基准值保持不变,直至进行下一次的S10与S20步骤。
S30、获取采集得到的第二气体浓度值。
也就是说,在步骤S10与S20结束后,获得零点基准值,并进入气体浓度采样阶段,在气体浓度采样阶段内,采集得到第二气体浓度值。
S40、基于零点基准值对第二气体浓度值进行修正,获得检测值。
在步骤S40中,可以根据第二气体浓度值与零点基准值的差值,确定检测值。或者,基于零点基准值对第二气体浓度值进行修正的公式或方法可以根据冷媒类型或实际气体浓度采集环境(如温湿度等)来确定,在此不受限制。
可以理解的是,由于零点基准值与第二气体浓度值受到温湿度的影响可以相互抵消,因此,采用零点基准值对第二气体浓度值进行修正,可以消除温湿度的影响,得到的检测值更加准确。
在本实施例中,步骤S10、S20、S30以及S40按时间先后顺序依次次进行。
在其中一种可能的实现方式中,步骤S30在步骤S20之前进行,步骤S10、S30、S20以及S40按 时间先后顺序依次次进行。
其中一种可能的实现方式中,如图4所示,在步骤S10之前还包括如下步骤:
S1、判断是否为第一次进行气体浓度检测,若是,则进行步骤S10;若否,则进行步骤S2;
S2、判断是否经过时间段T,若是,则进行步骤S10,若否,则进行步骤S30;
在步骤S2中,时间自气体浓度的检测方法开始时计时,当进行步骤S2,若判断为经过的计时时间大于或等于时间段T,则计时的时间清零,并从清零时刻开始重新计时。
在步骤S40完成之后,即基于零点基准值对第二气体浓度值进行修正,获得检测值之后,返回步骤S1。也就是说,气体检测装置启动后,气体浓度的检测不断进行,以得到实时的检测值。即在一次的步骤S10与S20完成后,在紧接着的时间段T2(时间段T2为时间段T减去一次步骤S10与S20完成的时间)内,不断进行步骤S30与S40,在经过时间段T2后,再重新进行下一次的步骤S10与S20,以此循环进行。
也就是说,每间隔时间段T2,执行一次步骤S10与S20,以获得零点基准值,从而不断地更新零点基准值,而非固定不变的零点基准值。在每个时间段T2内,重复执行步骤S30与S40,其中,采集得到的气体浓度值由获得的零点基准值进行修正,以得到检测值,进一步地提高了检测准确度,降低误差。
换句话说,进行一次的步骤S10与S20,则在接下来的时间段T2内不断进行S30与S40,且一次步骤S10与S20所获得的零点基准值用于接下来的时间段T2内不断进行的步骤S30与S40中。
可选地,时间段T2为5小时。在一次的步骤S10与S20完成后的5小时内可以实时采集得到多个第二气体浓度值与检测值。
可以理解的是,上述实施例中的部分或全部步骤或操作仅是示例,本申请实施例还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照上述实施例呈现的不同的顺序来执行,并且有可能并非要执行上述实施例中的全部操作。
如图5所示为本申请一个实施例的气体检测装置的控制方法,方法可以包括:
利用如图1至图4所示实施例提供的气体浓度的检测方法,获得检测值B;基于检测值B,进行报警。
也就是说,上述的气体浓度的检测方法中获得的每个检测值B可以用于进行报警判断。例如,若检测值大于报警阈值,则发出提示信息,如声光报警等,以提示用户及时进行处理等。
在本实施例中,气体检测装置中可以设置多个报警阈值,如预设第一阈值M1,预设第二阈值M2以及预设第三阈值M3。例如,根据传感器特性或冷媒种类(如R32),可以确定预设第一阈值M1为5000ppm,预设第二阈值M2为8000ppm,预设第三阈值M3为12000ppm。可以看出的是,上述预设基准值可以根据预设第一阈值M1确定。
也就是说,在步骤基于检测值B,进行报警中,将检测值B与多个报警阈值进行比较,以使得不同浓度等级的检测值B,能够进行不同等级的报警。
其中一种可能的实现方式中,如图5所示,基于检测值B,进行报警,可以包括如下步骤:
S501、判断检测值B在第一累计时长内获得的多个检测值B是否均大于或等于预设第三阈值M3;
S502、若S501判断为是,则进行第一等级报警;
S503、若S501判断为否,则判断检测值B在第二累计时长内获得的多个检测值B是否均大于或等于预设第二阈值M2;
S504、若S503判断为是,则进行第二等级报警;
S505、若S503判断为否,则判断检测值B在第二累计时长内获得的多个检测值B是否均大于或等于预设第二阈值M1;
S506、若S505判断为是,则进行第三等级报警。
上述的第三阈值M3的数值大于第二阈值M2的数值,第二阈值M2的数值大于第一阈值M1的数值。
第一等级报警用于提示冷媒低程度泄露。第二等级报警用于提示冷媒中程度泄露。第三等级报警用于提示冷媒高程度泄露。在本实施例中,气体检测装置或空调系统可以包括提示模块,提示模块用于发出声音或灯光报警,如利用喇叭、功放或蜂鸣器等发出声音报警等,由LED警示灯发出灯光等。
也就是说,在步骤S505中,若检测到在第一累计时长(如持续一段时间,如持续30秒)内获得的多个检测值B均大于或等于预设第一阈值M1(如5000ppm),且小于第二阈值M2(如8000ppm),则确定冷媒低程度泄露,并发出第一等级报警。第一等级报警(如空调系统的提示模块启动第一等级报警等)可以包括发出低分贝提示音,以及LED警示灯发出灯光等,以及时提示用户进行处理(如人工干预处理,如用户进行操作以切断电源、暂停或关闭设备运行或者进行故障排查等),以避免发生事故。
气体检测装置用于空调系统,空调系统包括空调控制器、压缩机与阀门,空调控制器为空调系统的控制模块,空调控制器用于控制压缩机与阀门。可选的,进行第一等级报警还包括将检测值信号与第一等级报警信号传输给空调系统的空调控制器等。空调控制器根据检测值与第一等级报警信号进行相应的处理。如降低压缩机运行功率,关闭阀门等。
可以理解的是,若在确定冷媒低程度泄露的情况下,用户没有进行处理(如人工干预处理等),冷媒持续泄露,使得浓度升高。因此,在步骤S503中,若检测到在第二累计时长(如持续一段时间,如持续30秒)内获得的多个检测值B均大于或等于预设第二阈值M2(如8000ppm),且小于第三阈值M3(如12000ppm)时,则确定冷媒中程度泄露,并进行第二等级报警。第二等级报警(如空调系统的提示模块启动第二等级报警等)包括发出中分贝提示音,以及LED警示灯发出灯光等,以及时提示用户进行处理(如人工干预处理等),以避免发生事故。
可选地,进行第二等级报警还包括将检测值信号与第二等级报警信号传输给空调系统的空调控制器。空调控制器根据检测值与第二等级报警信号进行相应的处理。如如停止压缩机运行,关闭阀门等。
可以理解的是,若在确定冷媒中程度泄露的情况下,用户没有进行处理(如人工干预处理等),冷媒持续泄露,使得浓度升高。因此,在步骤S501中,若检测到在第三累计时长(如持续一段时间,如持续30秒)内获得的多个检测值B均大于或等于预设第三阈值M3(如12000ppm),则确定冷媒高程度泄露,并进行第三等级报警。第三等级报警(如空调系统的提示模块启动第三等级报警等),第三等级报警包括发出高分贝提示音,以及LED警示灯发出灯光等,以及时提示用户进行处理(如人工干预 处理等),以避免发生事故。
可选的,进行第三等级报警还包括将检测值与第三等级报警信号传输给空调系统的空调控制器。空调控制器根据检测值与第三等级报警信号进行相应的处理。如关闭空调系统控制继电器,或切断电源等。
可以看出的是,在发生冷媒泄露的情况下,随着气体浓度的升高,本实施例提供的方法采用阶段报警(如第一等级报警、第二等级报警以及第三等级报警等)的方式,能够在视觉以及听觉上逐渐提醒用户,并将检测值和报警信号传输至空调系统的控制模块(空调控制器),由空调系统的控制模块能够在没有用户进行处理的情况下进行相应的处理,有利于避免发生事故。
在本实施例中,若检测到在持续一段时间内获得的多个检测值均小于预设第一阈值M1(即气体浓度检测值处于第一浓度范围内),则确定冷媒未泄露,可以不发出提示信息。若检测到在持续一段时间内获得的多个检测值均大于或等于预设第一阈值M1且小于预设第二阈值M2(即气体浓度检测值处于第二浓度范围内),则确定冷媒低程度泄露,进行第三等级报警。若检测到持续一段时间内获得的多个检测值均大于或等于预设第二阈值M2且小于预设第三阈值M3(即气体浓度检测值处于第三浓度范围内),则确定冷媒中程度泄露,以进行第二等级报警。若检测到持续一段时间内获得的多个检测值均大于或等于预设第三阈值M3(即气体浓度检测值处于第四浓度范围内),则确定冷媒高程度泄露,进行第一等级报警。
相应地,在进行报警后,若检测到在持续一段时间内的检测值B处于相应的浓度范围(如第一浓度范围、第二浓度范围、第三浓度范围以及第四浓度范围)的情况下,可以切换至进行相应等级的报警。例如,在进行第一等级报警后,若检测到在持续一段时间(如30秒)内的多个检测值B均处于第二浓度范围,则将进行第一等级报警切换为进行第二等级报警。
其中一种可能的实现方式中,如图6所示,方法还可以包括如下步骤:
S701、检测是否有人工干预处理;
S702、若检测是有人工干预处理,则按照预设第一模式进行处理。
也就是说,在进行报警后,若存在人工干预处理(例如用户按下按钮,以取消报警),则按照预设第一模式进行处理。预设第一模式包括停止报警,以停止灯光闪烁报警或停止声音报警等,和/或,清除采样得到的气体浓度值,以及清除上述累计时长等。
可选地,气体检测装置包括用于感应气体浓度信息的气敏元件,和用于加热以为气敏元件提供必要工作温度的加热元件(如加热丝)。预设第一模式可以包括切断加热元件的电源,或者采取低占空比供电方式给加热元件进行供电。控制加热丝停止加热(如切断半导体加热丝的电源等),或者采用低占空比供电的方式,控制加热丝进行加热,以降低功耗,节省能源。
预设第一模式还包括暂停进行气体检测装置的控制方法中的所有步骤,包括暂停进行S1、S2、S10、S20、S30、S40等步骤。
其中一种可能的实现方式中,方法还可以包括:
S703、在按照预设第一模式进行处理后,判断是否经过时间段t;
S704、若在按照预设第一模式进行处理后,已经过时间段t,则重新执行S1。
S705、若在按照预设第一模式进行处理后,未经过时间段t,则气体检测装置按照预设第一模式处理,并重新执行S703。
在S704中,重新执行S1指的是重新启动气体检测装置的控制方法中的步骤,系统重新进行S1、S2、S10、S20、S30、S40等步骤。
可选地,时间段t可为10分钟,时间段t自按照预设第一模式进行处理后开始计时,但本申请不以此为限。
需要指出的是,步骤S704包括,在按照预设第一模式进行处理后,已经过时间段t,控制加热元件恢复正常加热。
在本申请的其他实施方式中,本申请还提供了另一种气体浓度的检测方法,如图7所示,该方法包括:
步骤S41,在到达零点基准值校准时间之后,对环境中的气体浓度进行检测以对应得到第一数值。
步骤S41与前述实施方式中的步骤S10类似,第一数值是通过检测气体检测装置周围环境而实时更新的,在测量第一数值即当前周围环境的气体浓度检测值的时刻,并不能确定当前是否有待检测气体的泄露,因此第一数值是否能作为零点基准值使用需要通过步骤S42进一步判断。例如,在对周围环境中的气体采样过程中,正好发生了待检测气体的泄露,此时表征当前气体浓度的第一数值相对偏大。
由于气体检测装置的零点基准值漂移程度较大的问题通常是在气体检测装置工作较长时间后出现,因此当气体检测装置上电后,通过内置或外置的计时器模块累计气体检测装置的工作时长。如果其累计的工作时长大于等于预设的时长阈值,则控制生成用于启动校准当前的零点基准值的校准指令。示例的,累计气体检测装置的使用时长,当累计时长超过24小时,则计算为一天,气体检测装置的使用时长可以存储在记忆存储单元中,出厂时的零点基准值数据C0也存储在该记忆存储单元中。当气体检测装置的累计的工作时长超过90天,则会相应的启动自校准功能。处理模块生成上述校准指令,以指示对零点基准值进行校准。
当然,在本申请的其他实施方式中,生成校准指令的触发条件可以为其他条件,示例的,如通过累计气体检测装置的采样次数,当采样次数达到采样次数的预设阈值后,则处理模块控制生成上述校准指令。又例如,通过判断浓度的检测结果与已知确切浓度的气体的浓度值的偏差是否大于预设阈值,如是,则说明当前的气体检测装置的检测结果不再准确,相应的,则处理模块可以控制生成上述校准指令。
基于上述校准指令,则需进行第一数值的获取步骤,如图8所示,该获取第一数值的步骤包括步骤S1001和步骤S1002。
其中,步骤S1001、获取当前环境的气体浓度检测值的初始值。
步骤S1002、根据当前环境相对于标准环境的补偿数据,将初始值转换为标准环境对应的第一数值。标准环境包括预设温度条件和预设湿度条件中的至少一种。
参考图9,步骤S1001包括:
步骤S50、多次采样,得到多个气体浓度检测值A’。
具体的,在采样时,需要按照第一预设采样数量在预设时长内多次采样,获取每次采样得到的气体浓度检测值。
步骤S51、计算多个气体浓度检测值的平均值,作为初始值A。
也就是说,该平均值为当前环境的气体浓度检测值的初始值。例如,在预设时长(如1个小时)内的每间隔1分钟采集一次(共60次),以得到60个气体浓度检测值。通过多次采样获取第一预设采样数目的气体浓度检测值后,计算气体浓度检测值相对第一预设采样数量的平均值,以减小检测过程中的随机误差,将该平均值作为当前环境的气体浓度检测值的初始值。
在气体检测装置的运行过程中,由于周围环境的温度、湿度等因素的变化,不同的温度、湿度环境下,气体检测装置测出的气体浓度值也不相同,具体的,当利用气体检测装置检测空气中的某种气体的含量时,需要根据气体检测装置周围环境的温度信息、湿度信息,对非标准环境中的气体浓度测量值进行修正,这样可以减少在不同环境下的测量误差。
通常,在气体检测装置出厂前,其零点基准值都是在标准工况环境下设定的数值,标准环境可以为温度为20℃、湿度为65%的环境。但是气体检测装置出厂后,产品会应用在不同的温湿度环境中,因此需要结合温湿度信息对气体检测装置的输出数据进行修正。
在本申请的实施方式中,当前环境的气体浓度检测值的初始值为在当前温度和湿度环境下,气体检测装置通过检测空气中的目标气体的含量得到的初始测量值,即还未根据周围环境的温度和湿度信息进行修正的初始测量值。
温度值和湿度值均为影响气体检测装置检测的气体浓度初始值的环境因素,在一种实施方式中,可以只考虑一种环境因素:温度值,即根据温度值计算气体检测装置的气体浓度补偿值;在另一种实施方式中,还可以只考虑另一种环境因素:湿度值,即根据湿度值计算气体检测装置的气体浓度补偿值。在又一种实施方式中,还可以同时考虑两种环境因素:温度值和湿度值,即根据温度值和湿度值计算气体检测装置的气体浓度补偿值。
具体的,参考图4的示意,在计算第一数值X1之前还需要获取当前环境相对于标准环境下的气体浓度补偿值,具体的,本申请提供的方法还包括:
步骤S1003、获取当前环境的温度值T1。
步骤S1004、确定气体浓度补偿值T。
气体浓度补偿值T是与温度值T1相关的变量。本申请实施方式中计算出的气体浓度补偿值用于修正气体检测装置检测到的气体浓度的初始值,该气体浓度补偿值可以是正值,也可以是负值,气体浓度补偿值的具体计算过程在下面的步骤进行说明。
相应的,步骤S1002中包括步骤S1005、确定第一数值X1。
第一数值X1是根据气体浓度补偿值和初始值进行数学运算得到。需要注意的是,获取气体浓度补偿值的步骤S1003、S1004和获取初始值的步骤S50、S51可以同步运行。当然,也可以先运行获取初始值的步骤S50、S51,然后运行获取气体浓度补偿值的步骤S1003、S1004。或者反过来,先运行获取气体浓度补偿值的步骤S1003、S1004,然后运行获取初始值的步骤S50、S51。
本申请实施方式提供的气体检测装置的校准方法,主要采用温度值对应的气体浓度补偿值的方式, 根据周围环境的温度信息计算气体浓度补偿值,利用该气体浓度补偿值对气体浓度初始值进行修正,减少气体检测装置在不同温度环境下测出的气体浓度值误差。
因为温度是影响气体检测精度的主要因素,采用温度值确定气体浓度补偿值同时可以相对减少气体检测装置的修正复杂度,降低产品成本,以及可以减少气体检测装置在不同环境下测出的气体浓度值误差,提高气体检测装置的测量精度。
其中,步骤S1004的实现可以具体为,根据温度值与气体浓度补偿值的对应关系,确定与温度值对应的气体浓度补偿值。
温度值与气体浓度补偿值的对应关系可以是以表格数据的形式进行存储,不同的温度值对应不同的气体浓度补偿值,这样,在获取到当前环境的温度值后,就可以通过查表的方式得到气体浓度补偿值。
示例的,以标准环境温度值T0为20度的环境下,如果当前环境温度值T1为20度的环境,气体检测装置测量得到的空气中的目标气体浓度为500ppm,即在温度值T1为20度的环境下测量得到的目标气体浓度初始值A为500ppm,将温度值T1减去标准环境温度值T0,得到温度值T1和标准环境温度值T0的差值为0,则与该差值对应的气体浓度补偿值也为0,无需对气体浓度初始值A进行修正,气体浓度初始值A即为气体检测装置的气体浓度目标值,即第一数值。
又如,在温度值T2为26度的环境下,气体检测装置测量得到的空气中的目标气体浓度为500ppm,即在温度值T2为26度的环境下测量得到的气体浓度初始值A为500ppm,将温度值T2减去标准环境温度值T0,得到温度值T2和标准环境温度值T0的差值为+6度,通过查表的方式确定与该差值对应的气体浓度补偿值为+120ppm,将该气体浓度补偿值与气体浓度初始值A进行累加,得到目标气体浓度的第一数值为620ppm。当然,温度值与气体浓度补偿值的对应关系也可以是拟合的函数关系或者其他对应关系。
参考图10所示,针对步骤S50,按照第一预设采样数量在预设时长内多次采样,获取每次采样得到的气体浓度检测值,包括:
步骤S60、按照时间顺序,将所述预设时长平均分为预设第一数量的时间段,将每个所述时间段平均分为预设第二数量的采样段;
步骤S61、在每个所述时间段的至少一个采样段内进行至少一次的采样;
步骤S62、获取每次采样得到的气体浓度检测值。
参考图11所示,按照时间顺序,将预设时长(如1个小时)平均分为预设第一数量(如6个)的时间段,即在1个小时中,可以划分为第1个时间段(10min)、第2个时间段(10min)、第3个时间段(10min)、第4个时间段(10min)、第5个时间段(10min)和第6个时间段(10min)。每个时间段又平均分为预设第二数量(如10个)的采样段,如第1个时间段可以平均划分为10个采样段,每个采样段的时长为1min,其他5个时间段同理。
在采样时,可以按照如下方式进行采样:
在第1个时间段的第2个采样段内进行采样,采样次数大于等于1次;
在第2个时间段的第2个采样段内进行采样,采样次数大于等于1次;
在第3个时间段的第2个采样段内进行采样,采样次数大于等于1次;
在第4个时间段的第2个采样段内进行采样,采样次数大于等于1次;
在第5个时间段的第2个采样段内进行采样,采样次数大于等于1次;
在第6个时间段的第2个采样段内进行采样,采样次数大于等于1次。
即可以在每个时间段的相同时序的采样段内进行采样。当然也可以在每个时间段的不同时序的采样段内进行采样。
相对较长时间的预设时长可以保证在跨度尽可能大的时间范围内进行采样,同时在每个时间段内都进行采样,可以保证采样的时间点相对分散,而不容易集中,从而有利于降低采样过程的环境气体浓度波动造成的误差。从而提高对当前环境的气体浓度检测值的初始值计算的准确性。
参考图7,在步骤S41之后还继续执行步骤S42和步骤S43。
步骤S42,若第一数值满足预设条件,则对当前的零点基准值按照预设规则进行更新以得到新的零点基准值。
步骤S42可以和前述实施方式中所介绍的S301至S306的实现方式类似,进一步的,在本申请的其他实施方式中,可以参考图9,步骤S42中可以通过如下步骤执行:
步骤S421,比较第一数值与第二数值的大小,第二数值为当前的零点基准值与预设系数相乘后的数值,预设系数大于1。
第二数值并不是始终固定的数值。示例的,当气体检测装置在出厂时,其原始零点基准值记为C0,此时,第一次对零点基准值进行校准时,第二数值可以记为X2,则第二数值X2的值可以是X2=C0*1.05,1.05为预设系数。如果气体检测装置已经经过至少一次以上的校准,则第二数值X2的值可以是X2=CX*1.05,CX为前一次更新校准之后的得到的零点基准值,即CX为本次待更新的零点基准值。
预设系数可以为大于1的值,预设系数的设定可以根据实际情况,预设系数的值也可以是其他值,本申请不对预设系统的值进行限制。预设系数可以根据气体检测装置的使用时长和零点漂移的经验数据进行设定。气体检测装置在长时间运行或者使用之后,其零点基准值会偏移,如零点基准值对应的电压值变小,相应的,为了补偿零点基准值,预设系统设置为大于1的值可以使得预估得到的零点基准值更接近真实的零点基准值。
通过第一数值和第二数值之间的比较,可以提取二者之间更合适的数值作为新的零点基准值使用。因此,零点基准值的校准不仅仅单一的只依靠第一数值或者第二数值,相应的,零点基准值的数值可以相对更加准确。
步骤S422,将第一数值和第二数值中相对较小的数值作为新的零点基准值。
经过上述校准过程,第一数值和第二数值中相对较小的值作为当前的新的零点基准值覆盖了之前的旧的零点基准值,也即新获得的的零点基准值会取代存储的原始的零点基准值或上一次获得的零点基准值。相应的,气体检测装置在后续使用过程中采用该新的零点基准值去进行气体浓度信息的检测。由于当前的新的零点基准值的数值的替换方式是通过比较第一数值和第二数值的大小后取相对较小的数值,这样设置,零点基准值的数值会受上述两个数值比较的影响,有利于提高对零点基准值的校准的准确性。
步骤S43,采用新的零点基准值,对零点基准值更新之后的气体浓度检测数值进行修正。可以理解的是,上述实施例中的部分或全部步骤骤或操作仅是示例,本申请实施例还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照上述实施例呈现的不同的顺序来执行,并且有可能并非要执行上述实施例中的全部操作。
如图12所示,本申请提供一种气体检测装置700,气体检测装置700包括采集模块710与处理模块720:
采集模块710用于采集得到气体浓度值,并根据气体浓度值产生电性检测信号传输至处理模块720;
处理模块720,所述处理模块720包括:
一个或多个处理器;存储器;以及一个或多个计算机程序,其中所述一个或多个计算机程序被存储在所述存储器中,所述一个或多个计算机程序包括指令,当所述指令被所述处理器执行时,使得气体检测装置700执行以下步骤:
采集得到第一气体浓度值;
基于第一气体浓度值,获得零点基准值;
采集得到第二气体浓度值;
基于零点基准值对所述第二气体浓度值进行修正,获得检测值。
其中一种可能的实现方式中,当所述指令被所述处理器执行时,使得气体检测装置700执行采集得到第一气体浓度值在所述采集得到第二气体浓度值之前;
在采集得到第一气体浓度值之前还包括如下步骤:
S1、判断是否为第一次进行气体浓度检测,若是,则进行步骤采集得到第一气体浓度值;若否,则进行步骤S2;
S2、判断是否经过时间T,若是,则进行步骤所述采集得到第一气体浓度值,若否,则进行步骤采集得到第二气体浓度值;
在所述基于所述零点基准值对所述第二气体浓度值进行修正,获得检测值之后,返回步骤S1。
其中一种可能的实现方式中,当所述指令被所述处理器执行时,使得气体检测装置700执行:
采集得到的第一气体浓度值,基于所述第一气体浓度值,获得零点基准值,包括如下步骤:
多次采集,以得到多个第一气体浓度值;
基于多个所述第一气体浓度值,获得零点基准值。
其中一种可能的实现方式中,当指令被装置执行时,使得气体检测装置700执行:
基于多个第一气体浓度值,获得零点基准值,包括如下步骤:
计算多个第一气体浓度值的平均值;
判断多个第一气体浓度值的平均值是否小于预设基准值;
若多个第一气体浓度值的平均值小于预设基准值,则根据多个第一气体浓度值的平均值,确定零点基准值;
若多个第一气体浓度值的平均值大于预设基准值,判断是否为第一次进行气体浓度检测;
若本次气体浓度检测为第一次进行气体浓度检测,则根据存储的原始零点基准值确定零点基准值;
若本次气体浓度检测不是第一次进行气体浓度检测,则根据上一次获得的零点基准值确定本次的零点基准值。
参考图14,进一步的,在本申请的一些实施方式中,气体检测装置700还包括温度检测模块703、滤波电路模块704、模数转换电路模块705。
温度检测模块703与处理模块720电连接,用于检测环境温度信息并根据环境温度信息产生能够传输至处理模块720的电性信号。温度检测模块703可以是普通的NTC(Negative Temperature Coefficient)热敏电阻元件,当然温度检测模块703也可以是别的类型的温度检测元件。
采集模块710所产生的电性检测信号为电压检测信号,滤波电路模块704用以对电压检测信号滤波。滤波电路模块704可以包括电阻元件和电容元件,其可以滤除电压检测信号中的干扰信号。
在一些实施方式中,气体检测装置700还包括转换电路模块,气体检测探头所产生的电性检测信号为电流检测信号,转换电路模块与气体检测探头电连接,用以转换电流检测信号为电压检测信号。转换电路模块可以包括转换电阻元件,通过选择合适阻值的转换电阻,一方面能够将电流检测信号转换为电压检测信号,另一方面还能同时对信号进行初步的放大,以便后续的处理。
模数转换电路模块706电性连接于滤波电路模块704和处理模块720之间,用以将滤波后的电压检测信号转换为数字电压信号,并将数字电压信号传输给处理模块720,模数转换电路模块706可以为AD转换芯片,其作用是把模拟信号转换成数字信号。
应理解以上图所示的气体检测装置700的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块以软件通过处理元件调用的形式实现,部分模块通过硬件的形式实现。例如,控制器可以为单独设立的处理元件,也可以集成在空调系统的某一个芯片中实现。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
气体检测装置700可应用于空调系统800中。如图13所示,为空调系统800一个实施例的结构示意图。空调系统800可以包括:如图7所示提供的气体检测装置700、空调控制器810与通讯模块820。空调控制器810为空调系统800的控制模块,用于控制空调系统800中的元件(如压缩机、阀门)。通讯模块820为硬件,是一个物理接口,其输入端连接气体检测装置700,其输出端连接空调控制器810,以用于实现气体检测装置700与空调控制器810之间的信号传输。例如气体检测装置700将检测到的检测值信号与报警信号(如第一等级报警信号、第二等级报警信号、第三等级报警信号)发送至通讯模块820,通讯模块820再将检测值信号与报警信号(如第一等级报警信号、第二等级报警信号、第三等级报警信号)发送至空调控制器810,以使得空调控制器810控制空调系统800中的元件(如压缩机、阀门)以做出对应处理,具体原理或功能可以参考图所示方法实施例中提供的方法,在此不再赘述。可选的,通讯模块可为RS485通讯模块。
进一步地,空调系统800还可以包括冷媒输送管道,用于输送冷媒(如R32)等,所述气体检测装置700用于检测所述冷媒输送管道附近的气体浓度。
上述处理器和存储器之间可以通过内部连接通路互相通信,传递控制和/或数据信号,该存储器用于存储计算机程序,该处理器用于从该存储器中调用并运行该计算机程序。
以上所述,仅为本申请的具体实施方式,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。本申请的保护范围应以所述权利要求的保护范围为准。

Claims (16)

  1. 一种气体浓度的检测方法,其特征在于,所述检测方法包括如下步骤:
    在到达零点基准值校准时间之后,对环境中的气体浓度进行检测以对应得到第一数值;
    若所述第一数值满足预设条件,则对当前的零点基准值按照预设规则进行更新以得到新的零点基准值;
    采用所述新的零点基准值,对所述零点基准值更新之后的气体浓度检测数值进行修正。
  2. 根据权利要求1所述的一种气体浓度的检测方法,其特征在于,在到达零点基准值校准时间之后,对环境中的气体浓度进行检测以对应得到第一数值,包括如下步骤:
    多次采集,以得到多个第一数值;
    计算多个所述第一数值的平均值。
  3. 根据权利要求2所述的一种气体浓度的检测方法,其特征在于,若所述第一数值满足预设条件,则对当前的零点基准值按照预设规则进行更新以得到新的零点基准值,包括如下步骤:
    判断多个所述第一数值的平均值是否小于预设基准值;
    若多个所述第一数值的平均值小于所述预设基准值,则将多个所述第一气体浓度值的平均值作为零点基准值;
    若多个所述第一气体浓度值的平均值大于或等于所述预设基准值,判断是否为第一次进行气体浓度检测;
    若本次气体浓度检测为第一次进行气体浓度检测,则将出厂存储的原始零点基准值确定为新的零点基准值;
    若本次气体浓度检测不是第一次进行气体浓度检测,则将上一次获得的零点基准值确定为新的零点基准值。
  4. 根据权利要求1所述的气体浓度的检测方法,其特征在于,若所述第一气体浓度值满足预设条件,则对该当前存储的零点基准值按照预设规则进行更新以得到新的零点基准值,包括如下步骤:
    比较所述第一数值与第二数值的大小,所述第二数值为所述当前的零点基准值与预设系数相乘后的数值,所述预设系数大于1;
    将第一数值和第二数值中相对较小的数值作为新的零点基准值。
  5. 根据权利要求4所述的气体浓度的检测方法,其特征在于,对环境中的气体浓度进行检测以对应得到第一数值,包括:
    获取当前环境的气体浓度检测值的初始值;
    根据当前环境相对于标准环境的补偿数据,将所述初始值转换为标准环境对应的第一数值,所述标准环境包括预设温度条件和预设湿度条件中的至少一种。
  6. 根据权利要求5所述的气体浓度的检测方法,其特征在于,所述将所述初始值转换为标准环境对应的第一数值的步骤之前,包括:
    获取所述当前环境的温度值;
    根据所述温度值,确定气体浓度补偿值;
    相应的,根据当前环境相对于标准环境的补偿数据,将所述初始值转换为标准环境对应的第一数值的步骤包括:
    根据所述气体浓度补偿值和所述初始值,确定所述第一数值。
  7. 根据权利要求6所述的气体浓度的检测方法,其特征在于,所述根据所述温度值,确定气体浓度补偿值,包括:
    根据所述温度值与所述气体浓度补偿值的对应关系,确定与所述温度值对应的气体浓度补偿值。
  8. 根据权利要求5所述的气体浓度的检测方法,其特征在于,获取当前环境的气体浓度检测值的初始值,包括:
    按照第一预设采样数量在预设时长内多次采样,获取每次采样得到的气体浓度检测值;
    计算所述第一预设采样数量的气体浓度检测值的平均值,将所述平均值作为当前环境的气体浓度检测值的初始值。
  9. 根据权利要求8所述的气体浓度的检测方法,其特征在于,按照第一预设采样数量在预设时长内多次采样,获取每次采样得到的气体浓度检测值,包括:
    按照时间顺序,将所述预设时长平均分为预设第一数量的时间段,将每个所述时间段平均分为预设第二数量的采样段;
    在每个所述时间段的至少一个采样段内进行至少一次的采样;
    获取每次采样得到的气体浓度检测值。
  10. 根据权利要求1所述的气体浓度的检测方法,其特征在于,在采用所述新的零点基准值,对所述零点基准值更新之后的气体浓度检测数值进行修正之后,所述方法还包括如下步骤:
    若修正后的检测值大于预设第三报警阈值,则进行第一等级报警;
    若修正后的检测值大于预设第二报警阈值小于预设第三报警阈值,则进行第二等级报警;
    若修正后的检测值大于预设第一报警阈值小于预设第二报警阈值,则进行第三等级报警;
    其中第三报警阈值大于第二报警阈值大于第一报警阈值。
  11. 根据权利要求10所述的气体浓度的检测方法,其特征在于,包括:
    所述进行第一等级报警的步骤包括发出高分贝提示音;
    所述进行第二等级报警的步骤包括发出中分贝提示音;
    所述进行第三等级报警的步骤包括发出低分贝提示音。
  12. 根据权利要求10所述的气体浓度的检测方法,其特征在于,包括如下步骤:
    检测有人工干预处理,则按照预设第一模式处理;
    所述预设第一模式处理包括:停止报警,切断用于加热以提供工作温度的供电,或采取低占空比供电方式进行用于加热以提供工作温度的供电。
  13. 一种气体检测装置,其特征在于,包括:
    处理模块,所述处理模块包括:一个或多个处理器、存储器、以及一个或多个计算机程序,其中所述一个或多个计算机程序被存储在所述存储器中,所述一个或多个计算机程序包括指令;当所述指 令被所述处理器执行时,使得所述气体检测装置实现如权利要求1至12任一项所述的气体浓度的检测方法;
    采集模块,用于采集气体浓度信息,并根据所述气体浓度信息产生电性检测信号传输至所述处理模块。
  14. 根据权利要求13所述的气体检测装置,其特征在于,所述气体检测装置应用于空调系统,所述空调系统包括空调控制器、压缩机与阀门,所述空调控制器用于控制所述压缩机与所述阀门;所述气体检测装置包括通讯模块,所述通讯模块为物理接口,所述通讯模块用于实现气体检测装置与空调控制器的信号传输。
  15. 根据权利要求13所述的气体检测装置,其特征在于,所述气体检测装置应用于空调系统,所述空调系统包括压缩机与阀门,所述处理模块用于接收气体浓度值信号,并根据气体浓度值控制压缩机与阀门。
  16. 根据权利要求13所述的气体检测装置,其特征在于,所述气体检测装置还包括:
    温度检测模块,所述温度检测模块与所述处理模块电连接,用于检测环境温度信息并根据环境温度信息产生电性检测信号;
    滤波电路模块,所述采集模块所产生的电性检测信号为电压检测信号,所述滤波电路模块用以对所述电压检测信号滤波;
    模数转换电路模块,所述模数转换电路模块电性连接于所述滤波电路模块和所述处理模块之间,用以将滤波后的所述电压检测信号转换为数字电压信号,并将所述数字电压信号传输给所述处理模块。
PCT/CN2022/077654 2021-02-26 2022-02-24 一种气体浓度的检测方法和气体检测装置 WO2022179558A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110216392.5 2021-02-26
CN202110216392.5A CN114965867A (zh) 2021-02-26 2021-02-26 一种气体浓度的检测方法、气体检测装置及其控制方法
CN202110590203.0A CN115407017A (zh) 2021-05-28 2021-05-28 气体检测装置的校准方法和气体检测装置
CN202110590203.0 2021-05-28

Publications (1)

Publication Number Publication Date
WO2022179558A1 true WO2022179558A1 (zh) 2022-09-01

Family

ID=83047940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/077654 WO2022179558A1 (zh) 2021-02-26 2022-02-24 一种气体浓度的检测方法和气体检测装置

Country Status (1)

Country Link
WO (1) WO2022179558A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116380980A (zh) * 2023-04-10 2023-07-04 哲弗智能系统(上海)有限公司 一种气体浓度的确定方法、装置、电子设备及介质
CN116543241A (zh) * 2023-07-07 2023-08-04 杭州海康威视数字技术股份有限公司 泄露气体云团的检测方法、装置、存储介质和电子设备
CN116973521A (zh) * 2023-09-21 2023-10-31 北京燕山时代仪表有限公司 一种气体探测器的温度补偿方法、装置及气体探测器
CN116380980B (zh) * 2023-04-10 2024-07-05 哲弗智能系统(上海)有限公司 一种气体浓度的确定方法、装置、电子设备及介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101743479A (zh) * 2007-09-03 2010-06-16 三菱电机株式会社 传感器输出校正装置
CN104237132A (zh) * 2014-09-03 2014-12-24 深圳市理邦精密仪器股份有限公司 用于呼吸气体监测的智能校零方法及装置
CN107490613A (zh) * 2017-07-31 2017-12-19 广东美的制冷设备有限公司 电化学气体传感器及其校准方法、空调器
CN109556646A (zh) * 2018-11-28 2019-04-02 珠海格力电器股份有限公司 一种气体传感器校准方法、装置、存储介质及终端
CN110412217A (zh) * 2019-07-19 2019-11-05 青岛网信信息科技有限公司 气体检测系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101743479A (zh) * 2007-09-03 2010-06-16 三菱电机株式会社 传感器输出校正装置
CN104237132A (zh) * 2014-09-03 2014-12-24 深圳市理邦精密仪器股份有限公司 用于呼吸气体监测的智能校零方法及装置
CN107490613A (zh) * 2017-07-31 2017-12-19 广东美的制冷设备有限公司 电化学气体传感器及其校准方法、空调器
CN109556646A (zh) * 2018-11-28 2019-04-02 珠海格力电器股份有限公司 一种气体传感器校准方法、装置、存储介质及终端
CN110412217A (zh) * 2019-07-19 2019-11-05 青岛网信信息科技有限公司 气体检测系统

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116380980A (zh) * 2023-04-10 2023-07-04 哲弗智能系统(上海)有限公司 一种气体浓度的确定方法、装置、电子设备及介质
CN116380980B (zh) * 2023-04-10 2024-07-05 哲弗智能系统(上海)有限公司 一种气体浓度的确定方法、装置、电子设备及介质
CN116543241A (zh) * 2023-07-07 2023-08-04 杭州海康威视数字技术股份有限公司 泄露气体云团的检测方法、装置、存储介质和电子设备
CN116543241B (zh) * 2023-07-07 2023-09-15 杭州海康威视数字技术股份有限公司 泄露气体云团的检测方法、装置、存储介质和电子设备
CN116973521A (zh) * 2023-09-21 2023-10-31 北京燕山时代仪表有限公司 一种气体探测器的温度补偿方法、装置及气体探测器
CN116973521B (zh) * 2023-09-21 2023-12-22 北京燕山时代仪表有限公司 一种气体探测器的温度补偿方法、装置及气体探测器

Similar Documents

Publication Publication Date Title
WO2022179558A1 (zh) 一种气体浓度的检测方法和气体检测装置
US8890703B2 (en) Passive water heater anode rod depletion sensor algorithm
WO2020114018A1 (zh) 空调器及其控制方法
US20090107157A1 (en) Refrigerant leak-detection systems
RU2008102141A (ru) Система и способ мониторинга и управления режимом работы силового трансформатора
US10697921B2 (en) Flame rod analysis system
RU2720928C1 (ru) Электронная система охлаждения без образования конденсата и способ предотвращения образования конденсата для данной системы
CN108758970B (zh) 一种排气感温包的异常状态检测方法及压缩机保护方法
CN110848875B (zh) 一种冷媒泄漏检测方法及空调器
CN106950921A (zh) 具有控制盘的密闭监视功能的机床
KR20120050424A (ko) 중간 가스 밸브 장치 및 그 제어 방법
JP6832485B2 (ja) ガスメータ
CN115751603A (zh) 基于冷媒传感器的冷媒泄漏检测方法、装置、设备及介质
KR102389118B1 (ko) 캠핑카 에너지 관리 장치
US10031501B2 (en) Apparatus and method for detecting degradation in climate control system performance
CN109373687A (zh) 一种冰箱门冷气泄漏报警装置
JP2009063313A (ja) ガス漏洩監視システム
JP2550165B2 (ja) ガス検知装置
JPH11283147A (ja) ガス警報器
US5203687A (en) Control system for burner
US10551054B2 (en) Steam using facility management method, and steam using facility
JP2008267740A (ja) ガス遮断装置
CN114965867A (zh) 一种气体浓度的检测方法、气体检测装置及其控制方法
CN204596018U (zh) 安全切断型ic卡智能质量流量燃气表
JP3963745B2 (ja) ガス消費量推定方法及びシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22758922

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30.01.2024)