WO2022179302A1 - 配电网自愈重构规划方法、装置及终端 - Google Patents

配电网自愈重构规划方法、装置及终端 Download PDF

Info

Publication number
WO2022179302A1
WO2022179302A1 PCT/CN2021/143324 CN2021143324W WO2022179302A1 WO 2022179302 A1 WO2022179302 A1 WO 2022179302A1 CN 2021143324 W CN2021143324 W CN 2021143324W WO 2022179302 A1 WO2022179302 A1 WO 2022179302A1
Authority
WO
WIPO (PCT)
Prior art keywords
particle
distribution network
value
fitness function
update
Prior art date
Application number
PCT/CN2021/143324
Other languages
English (en)
French (fr)
Inventor
贺春光
安佳坤
郭伟
檀晓林
王涛
张菁
陈贺
孙鹏飞
杨书强
刘海涛
赵子珩
范文奕
赵阳
翟广心
张章
黄凯
郝志方
侯若松
韩璟琳
唐帅
李光毅
Original Assignee
国网河北省电力有限公司经济技术研究院
国家电网有限公司
石家庄科林电气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国网河北省电力有限公司经济技术研究院, 国家电网有限公司, 石家庄科林电气股份有限公司 filed Critical 国网河北省电力有限公司经济技术研究院
Publication of WO2022179302A1 publication Critical patent/WO2022179302A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Definitions

  • the invention belongs to the technical field of distribution network reconfiguration, and in particular relates to a distribution network self-healing reconfiguration planning method, device and terminal.
  • the intelligence of the distribution network is an inevitable trend in the development of the modern distribution network, and the self-healing ability is the key feature of the intelligent distribution network, including the self-prevention ability and the self-recovery ability of the intelligent distribution network.
  • self-prevention refers to the timely discovery of potential risks through operating status assessment under normal conditions, and measures to be taken to prevent and eliminate hidden faults in time;
  • self-recovery refers to the rapid completion of fault location and isolation when the system is disturbed or damaged by faults.
  • the power supply is transferred to complete the power supply recovery.
  • the improvement of the self-healing ability of the intelligent distribution network is conducive to improving the quality of power supply and user experience, and ensuring the safety, reliability and economy of system operation.
  • the self-healing reconfiguration planning method of distribution network mainly relies on intelligent algorithms, such as particle swarm algorithm, neural network algorithm, ant colony algorithm, etc.
  • the present invention provides a distribution network self-healing reconfiguration planning method, device and terminal to solve the problem that the existing distribution network self-healing reconfiguration planning method is difficult to ensure both computational efficiency and computational accuracy.
  • a first aspect of the embodiments of the present invention provides a method for planning self-healing and reconfiguration of a distribution network, including:
  • the population parameters include the number of particles, the fitness function and the initial feasible solution of the particles, where each particle corresponds to a topology structure of the distribution network;
  • the optimal individual in the current population is determined, and the distribution network topology structure corresponding to the optimal individual is the determined distribution network reconstruction scheme.
  • the distribution network information includes constraints, distribution network structure and reconfiguration goals
  • setting the population parameters according to the distribution network information includes:
  • Constraints are detected on particles and the particles that cannot meet the constraints are corrected until all particles meet the constraints.
  • the expression for the velocity function is:
  • V i (t+1) V i (t)+c 1 r 1 (pBest i -X i (t))+c 2 r 2 (gBest -X i (t))
  • V i (t) represents the speed of the i particle at time t
  • X i (t) represents the feasible solution of the i particle at time t
  • t represents the number of update iterations
  • c 1 , c 2 represent the preset acceleration coefficients
  • r 1 and r 2 represent random parameters
  • pBest i represents the optimal historical value of i particle
  • gBest represents the optimal historical value of the population.
  • screening and analyzing the historical value of the fitness function value of the particle to update the speed function includes:
  • the pBest i in the velocity function is randomly generated according to the first distribution probability model.
  • screening and analyzing the historical value of the fitness function value of the particle to update the speed function includes:
  • the gBest in the velocity function is randomly generated according to the second distribution probability model.
  • a second aspect of the embodiments of the present invention provides a distribution network self-healing reconfiguration planning device, including:
  • the acquisition module is used to acquire the distribution network information
  • the initialization module is used to set the population parameters according to the distribution network information.
  • the population parameters include the number of particles, the fitness function and the initial feasible solution of the particles, wherein each particle corresponds to a topology structure of the distribution network;
  • the calculation module is used to calculate the fitness function value of each particle
  • the function update module is used to screen and analyze the historical value of the fitness function value of the particle to update the speed function, which represents the probability that the corresponding branch is connected to the distribution network;
  • the particle update module is used to update the feasible solution and speed of the iterative particle according to the current speed function of the particle, the speed is used to update the feasible solution of the particle, and the feasible solution is used to calculate the fitness function value of the particle;
  • the termination module is used to recalculate the fitness function value of each particle and proceed to the next iteration when the number of update iterations does not reach the set value;
  • the optimal individual in the current population is determined, and the distribution network topology structure corresponding to the optimal individual is the distribution network reconstruction scheme.
  • a third aspect of the embodiments of the present invention provides a terminal, including a memory, a processor, and a computer program stored in the memory and running on the processor. More steps to reconstruct the planning method.
  • a fourth aspect of the embodiments of the present invention provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, any method for self-healing and reconfiguration planning of a distribution network is implemented. step.
  • the present invention has the following beneficial effects:
  • the invention provides a fault self-healing reconfiguration planning method for a distribution network.
  • the method includes: acquiring distribution network information; setting population parameters according to the distribution network information, where the population parameters include the number of particles, a fitness function and an initial feasible solution of the particles , where each particle corresponds to the topology of a distribution network; calculate the fitness function value of each particle; screen and analyze the historical value of the particle fitness function value to update the velocity function, which represents the corresponding branch connection The probability of entering the distribution network; update the feasible solution and speed of the iterative particle according to the current speed function of the particle, the speed is used to update the feasible solution of the particle, and the feasible solution is used to calculate the fitness function value of the particle; if the number of update iterations does not reach the set value If the number of update iterations reaches the set value, the optimal individual in the current population is determined, and the distribution network topology corresponding to the optimal individual is Determined distribution network reconfiguration scheme.
  • the present invention screens and analyzes the historical value of the fitness function value of the particle to generate a speed function, which can speed up the convergence speed of the algorithm, avoid falling into a local optimum situation, and can achieve the premise of not affecting the calculation effect. improve computational efficiency.
  • Fig. 1 is the realization flow chart of the distribution network self-healing reconfiguration planning method provided by the embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a distribution network self-healing reconfiguration planning device provided by an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a terminal provided by an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a power distribution network used in an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the optimization result of an embodiment of the present invention to the distribution network in the embodiment
  • FIG. 6 is a schematic diagram of the optimization result of the distribution network in the embodiment using the prior art.
  • FIG. 1 shows an implementation flow chart of the method for planning self-healing and reconfiguration of a distribution network provided by an embodiment of the present invention, which is described in detail as follows:
  • Step 101 obtaining distribution network information
  • Step 102 setting a population parameter according to the distribution network information, the population parameter includes the number of particles, the fitness function and the initial feasible solution of the particle, wherein each particle corresponds to a topology structure of the distribution network;
  • the distribution network information includes constraints, distribution network structure, and reconstruction goals
  • constraints can be:
  • k is the node
  • N k is the total number of nodes
  • ET k is the set of starting points of inflow arcs about node k
  • EF k is the set of starting points of outgoing arcs about node k
  • D k is the network loss of node k.
  • S j represents the power flowing on the jth branch in the distribution network structure
  • S jmax represents the maximum power value allowed on the jth branch.
  • I ij represents the current on the branch whose endpoint is node i and node j
  • I ijmax represents the maximum transmission current allowed on the branch whose endpoint is node i and node j.
  • V j represents the voltage of node j
  • V jmin represents the minimum voltage allowed by node j
  • V jmax represents the maximum voltage allowed by node j.
  • S t represents the actual carrying power of the transformer
  • S tmax is the maximum allowable power of the transformer.
  • g k represents the network topology structure presented by the distribution network fault system after reconstruction
  • GR represents the set of network radiation structure topology under the condition that the power supply can be guaranteed.
  • L 1 , L 2 , and L 3 are the recovery power of the system's first-class, second-class, and third-class loads, respectively;
  • n, k are the number of 1st, 2nd and 3rd loads in the distribution network system respectively;
  • a, b, and c are the weight coefficients of the loads at all levels
  • x i , x j , and x k are the power supply states of different levels of load, 1 when power is available, and 0 when power is not available.
  • the focus of this goal is on operation, and the focus of optimization and reconfiguration is to minimize the total network loss target of the line and make greater use of the active power output by the power supply.
  • the fitness function corresponding to this objective is:
  • P i is the active power flowing into the terminal on the i-th line
  • Q i is the reactive power flowing into the terminal on the i-th line
  • U i is the voltage amplitude flowing into the end node on the i-th line
  • R i is the resistance value of the i-th line circuit
  • K i is the switching state of the i-th line, 0 when disconnected from the distribution network, and 1 when connected to the distribution network;
  • n is the number of switches in the distribution network.
  • the focus of this goal is the power supply quality of the distribution network system, and the balance of power flow distribution has a huge impact on the power supply quality.
  • a reasonable power flow distribution can effectively improve the uniform distribution of voltage.
  • the fitness function corresponding to this objective is:
  • NR is the line set of the distribution network
  • S i is the complex power flowing through the i-th line
  • Simax is the maximum power capacity of the i-th line.
  • ⁇ i , ⁇ j represent the weight of the cost to operate each switch
  • n are the number of segment switches and the number of tie switches, respectively;
  • c i is the switch state of the i-th segment in the distribution network. If it is in the closed state before and after reconstruction, it will be assigned a value of 1, and if it is changed from closed to open during the reconstruction process, it will be assigned a value of 0;
  • o j represents the state of the tie switch in the distribution network. If it remains open, it is 0, and if it is turned off, it is 1.
  • setting the population parameters according to the distribution network information includes:
  • n particles need to be randomly generated in the feasible solution set, each particle contains all the variables of the model, and each particle can represent a topology structure, that is, the reconstruction scheme of the distribution network, usually n nodes correspond to with an n ⁇ n matrix.
  • the generation of the initial feasible solution can be generated by a random distribution of ⁇ -1,0,1 ⁇ .
  • Step 103 calculating the fitness function value of each particle
  • the four objective functions in the model and the artificially specified weight coefficients are calculated to calculate the particle fitness value. And based on the fitness value, the historical optimal value of the population and the individual historical optimal value are found, and the velocity function of each particle is constructed to provide the basis for the search direction of the particle.
  • the method before calculating the fitness function value of each particle, the method further includes:
  • Constraints are detected on particles and the particles that cannot meet the constraints are corrected until all particles meet the constraints.
  • radiometric detection is often used to detect the network topology of all particles.
  • Step 104 screening and analyzing the historical value of the fitness function value of the particle to update the velocity function, the velocity function representing the probability that the corresponding branch is connected to the distribution network;
  • V i (t+1) V i (t)+c 1 r 1 (pBest i -X i (t))+c 2 r 2 (gBest -X i (t))
  • V i (t) represents the speed of the i particle at time t
  • X i (t) represents the feasible solution of the i particle at time t
  • t represents the number of update iterations
  • c 1 , c 2 represent the preset acceleration coefficients
  • r 1 represents a random parameter
  • pBest i represents the optimal historical value of i particle
  • gBest represents the optimal historical value of the population
  • the acceleration coefficient is a key coefficient used to control the convergence speed of the algorithm and the breadth of optimization. It needs to be manually specified according to different optimization problems or repeatedly tested according to the calculation results.
  • the random parameters are used to make the particle speed of each update iteration random.
  • the historical value of the fitness function value of the particle is screened and analyzed to update the speed function including:
  • the pBest i in the velocity function is randomly generated according to the first distribution probability model.
  • screening and analyzing the historical value of the fitness function value of the particle to update the speed function includes:
  • the gBest in the velocity function is randomly generated according to the second distribution probability model.
  • excellent values are selected from the particle history values and the population optimal history values according to the proportions of m and n, respectively, to form elite sets P and Q. Analyze the opening and closing probability of the node switch in the elite centralized, and randomly generate pBest i and gBest in the speed function according to the probability, and substitute them into the speed function.
  • Step 105 update the feasible solution and speed of the iterative particle according to the current speed function of the particle, the speed is used to update the feasible solution of the particle, and the feasible solution is used to calculate the fitness function value of the particle;
  • the particles update the network structure topology matrix of particle values according to the updated velocity function.
  • the velocity function of the particle represents the probability that each branch is connected to the distribution network. The higher the speed, the greater the probability that the branch is connected to the distribution network.
  • Step 106 if the number of update iterations does not reach the set value, recalculate the fitness function value of each particle, and enter the next iteration;
  • Step 107 if the number of update iterations reaches the set value, the optimal individual in the current population is determined, and the distribution network topology structure corresponding to the optimal individual is the determined distribution network reconstruction scheme.
  • this embodiment is used to reconfigure the distribution network shown in FIG. 4 .
  • the distribution network has a total of 36 nodes, including one transformer node (110kV/10kV) , and the rest are load nodes and intermediate switch nodes. Among them, load 4 and load 5 are first-level loads, and the rest of the loads are third-level loads.
  • the model of the line is shown in the figure. Due to the rapid growth of load in this area, the debt ratio of transformers has increased year by year, and the grid structure is not strong enough. Once a fault occurs, it may lead to large-scale power outages.
  • the present invention is superior to particle swarm algorithm in various system indicators, and can effectively provide control strategies for the system after the fault, reduce the power outage time, make the power grid return to the normal state quickly, and realize true intelligence operation.
  • the present invention first obtains the distribution network information; then, the population parameters are set according to the distribution network information, and the population parameters include the number of particles, the fitness function and the initial feasible solution of the particles, wherein each particle corresponds to a topology structure of the distribution network.
  • the present invention screens and analyzes the historical value of the fitness function value of the particle to generate a speed function, which can speed up the convergence speed of the algorithm, avoid falling into a local optimum situation, and can achieve the premise of not affecting the calculation effect. improve computational efficiency.
  • FIG. 2 shows a schematic structural diagram of a distribution network self-healing and reconfiguration planning device provided by an embodiment of the present invention. For convenience of description, only parts related to the embodiment of the present invention are shown, and the details are as follows:
  • the distribution network self-healing reconfiguration planning device includes:
  • the initialization module 22 is used to set the population parameters according to the distribution network information, the population parameters include the number of particles, the fitness function and the initial feasible solution of the particles, wherein each particle corresponds to a topology structure of the distribution network;
  • the calculation module 23 is used to calculate the fitness function value of each particle
  • the function update module 24 is used to screen and analyze the historical value of the fitness function value of the particle to update the speed function, and the speed function represents the probability that the corresponding branch is connected to the distribution network;
  • the particle update module 25 is used to update the feasible solution and speed of the iterative particle according to the current speed function of the particle, the speed is used to update the feasible solution of the particle, and the feasible solution is used to calculate the fitness function value of the particle;
  • the termination module 26 is used to recalculate the fitness function value of each particle and perform the next iteration when the number of update iterations does not reach the set value;
  • the optimal individual in the current population is determined, and the distribution network topology structure corresponding to the optimal individual is the distribution network reconstruction scheme.
  • the distribution network information includes constraints, distribution network structure and reconfiguration goals
  • the initialization module includes:
  • the quantity setting unit is used to set the number of population particles according to the structure of the distribution network, and the number of particles is the number of nodes in the distribution network;
  • the initial value setting unit is used to set the initial velocity and initial feasible solution for each particle
  • the function setting unit is used to set the population fitness function according to the reconstruction target.
  • Constraints are detected on particles and the particles that cannot meet the constraints are corrected until all particles meet the constraints.
  • the expression for the velocity function is:
  • V i (t+1) V i (t)+c 1 r 1 (pBest i -X i (t))+c 2 r 2 (gBest -X i (t))
  • V i (t) represents the speed of the i particle at time t
  • X i (t) represents the feasible solution of the i particle at time t
  • t represents the number of update iterations
  • c 1 , c 2 represent the preset acceleration coefficients
  • r 1 and r 2 represent random parameters
  • pBest i represents the optimal historical value of i particle
  • gBest represents the optimal historical value of the population.
  • the function update module includes:
  • the individual optimal determination unit is used to determine the optimal historical value of each particle according to the historical value of the fitness function value of the particle;
  • the first screening unit is used for screening the optimal historical value of each particle according to the preset ratio to obtain the first elite set
  • the first analysis unit is used to analyze the opening and closing frequencies of each node in the first elite set to obtain the first opening and closing frequencies
  • a first model generating unit configured to generate a first distribution probability model according to the first switching frequency
  • the first sampling unit is used to randomly generate pBest i in the speed function according to the first distribution probability model.
  • the function update module includes:
  • the global optimal determination unit is used to determine the optimal historical value of the population according to the historical value of the fitness function value of the particle;
  • the second screening unit is used to screen the optimal historical value of the population according to the preset ratio to obtain the second elite set;
  • the second analysis unit is used to analyze the opening and closing frequencies of each node in the second elite set to obtain the second opening and closing frequencies
  • a second model generating unit configured to generate a second distribution probability model according to the second switching frequency
  • the second sampling unit is configured to randomly generate gBest in the speed function according to the second distribution probability model.
  • FIG. 3 is a schematic diagram of a terminal provided by an embodiment of the present invention.
  • the terminal 3 of this embodiment includes: a processor 30 , a memory 31 , and a computer program 32 stored in the memory 31 and executable on the processor 30 .
  • the processor 30 executes the computer program 32
  • the steps in each of the foregoing embodiments of the distribution network self-healing reconfiguration planning method are implemented, for example, steps 101 to 103 shown in FIG. 1 .
  • the processor 30 executes the computer program 32
  • the functions of the modules/units in the above-mentioned device embodiments, such as the functions of the modules 21 to 26 shown in FIG. 2, and the above-mentioned quantity setting unit and initial value setting unit are realized.
  • function setting unit individual optimal determination unit, first screening unit, first analysis unit, first model generation unit, first sampling unit, global optimal determination unit, second screening unit, second analysis unit, second The function of the model generation unit and the second sampling unit.
  • the computer program 32 can be divided into one or more modules/units, and the one or more modules/units are stored in the memory 31 and executed by the processor 30 to complete the this invention.
  • the one or more modules/units may be a series of computer program instruction segments capable of performing specific functions, and the instruction segments are used to describe the execution process of the computer program 32 in the terminal 3 .
  • the terminal 3 may be a computing device such as a desktop computer, a notebook, a handheld computer, and a cloud server.
  • the terminal may include, but is not limited to, the processor 30 and the memory 31 .
  • FIG. 3 is only an example of the terminal 3, and does not constitute a limitation on the terminal 3. It may include more or less components than the one shown in the figure, or combine some components, or different components, such as
  • the terminal may also include input and output devices, network access devices, buses, and the like.
  • the so-called processor 30 may be a central processing unit (Central Processing Unit, CPU), or other general-purpose processors, digital signal processors (Digital Signal Processors, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory 31 may be an internal storage unit of the terminal 3 , such as a hard disk or a memory of the terminal 3 .
  • the memory 31 can also be an external storage device of the terminal 3, such as a plug-in hard disk equipped on the terminal 3, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card, Flash card (Flash Card) and so on.
  • the memory 31 may also include both an internal storage unit of the terminal 3 and an external storage device.
  • the memory 31 is used to store the computer program and other programs and data required by the terminal.
  • the memory 31 can also be used to temporarily store data that has been output or will be output.
  • the disclosed apparatus/terminal and method may be implemented in other manners.
  • the device/terminal embodiments described above are only illustrative.
  • the division of the modules or units is only a logical function division.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated modules/units if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the present invention can implement all or part of the processes in the methods of the above embodiments, and can also be completed by instructing relevant hardware through a computer program, and the computer program can be stored in a computer-readable storage medium.
  • the computer program includes computer program code, and the computer program code may be in the form of source code, object code, executable file or some intermediate form, and the like.
  • the computer-readable medium may include: any entity or device capable of carrying the computer program code, a recording medium, a U disk, a removable hard disk, a magnetic disk, an optical disk, a computer memory, a read-only memory (ROM, Read-Only Memory) , Random Access Memory (RAM, Random Access Memory), electric carrier signal, telecommunication signal and software distribution medium, etc.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • electric carrier signal telecommunication signal and software distribution medium, etc.
  • the content contained in the computer-readable media may be appropriately increased or decreased according to the requirements of legislation and patent practice in the jurisdiction, for example, in some jurisdictions, according to legislation and patent practice, the computer-readable media Excluded are electrical carrier signals and telecommunication signals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明适用于配电网重构技术领域,提供了一种配电网自愈重构规划方法、装置及终端。其中,该方法包括:获取配电网信息;根据配电网信息设置种群参数;计算每个粒子的适应度函数值;对粒子的适应度函数值的历史值进行筛选分析,以更新速度函数;根据粒子当前的速度函数更新迭代粒子的可行解和速度;若更新迭代次数未达到设定值,则重新计算每个粒子的适应度函数值,进入下一次迭代;若更新迭代次数达到设定值,则确定当前种群中的最优个体,最优个体对应的配电网拓扑结构为确定的配电网重构方案。本发明在粒子群算法的基础上,对粒子的适应度函数值的历史值进行筛选分析生成速度函数,可以在不影响计算效果的前提下提高计算效率。

Description

配电网自愈重构规划方法、装置及终端 技术领域
本发明属于配电网重构技术领域,尤其涉及一种配电网自愈重构规划方法、装置及终端。
背景技术
配电网智能化是现代配电网发展的必然趋势,自愈能力是智能配电网的关键特征,包括智能配电网的自我预防能力与自我恢复能力。其中,自我预防是指正常状态下,通过运行状态评估及时发现潜在风险,并采取措施及时预防和消除故障隐患;自我恢复是指系统受到扰动或故障破坏时,快速完成故障定位和隔离,并通过转供电完成供电恢复。智能配电网自愈能力的提高,有利于提升供电质量和用户体验,保障系统运行的安全性、可靠性和经济性。
目前,配电网的自愈重构规划方法主要依靠智能算法来实现,如粒子群算法、神经网络算法、蚁群算法等。
然而,这些算法中,普遍存在的问题是计算效率和计算精度之间存在矛盾。当计算精度要求较高时,往往计算量很大,计算速度很慢;反之,当计算速度提升时,精度往往不能够让人满意(经典粒子群算法就是这个问题的代表)。
发明内容
有鉴于此,本发明提供了一种配电网自愈重构规划方法、装置及终端,以解决现有的配电网的自愈重构规划方法难以同时保证计算效率和计算精度的问题。
本发明实施例的第一方面提供了一种配电网自愈重构规划方法,包括:
获取配电网信息;
根据配电网信息设置种群参数,种群参数包括粒子数量、适应度函数和粒子初始可行解,其中每个粒子对应一个配电网的拓扑结构;
计算每个粒子的适应度函数值;
对粒子的适应度函数值的历史值进行筛选分析,以更新速度函数,速度函数表示对应支路联入配电网的概率;
根据粒子当前的速度函数更新迭代粒子的可行解和速度,速度用于更新粒子的可行解, 可行解用于计算粒子的适应度函数值;
若更新迭代次数未达到设定值,则重新计算每个粒子的适应度函数值,进入下一次迭代;
若更新迭代次数达到设定值,则确定当前种群中的最优个体,最优个体对应的配电网拓扑结构为确定的配电网重构方案。
可选的,配电网信息包括约束条件、配电网结构和重构目标;
相应的,根据配电网信息设置种群参数包括:
根据配电网结构设置种群粒子数量,粒子数量为配电网中的节点数;
为每个粒子设置初始速度和初始可行解;
根据重构目标设置种群适应度函数。
可选的,在计算每个粒子的适应度函数值之前,还包括:
对粒子进行约束条件检测并修正不能满足约束条件的粒子,直至全部粒子满足约束条件。
可选的,速度函数的表达式为:
V i(t+1)=V i(t)+c 1r 1(pBest i-X i(t))+c 2r 2(gBest-X i(t))
其中,V i(t)表示i粒子在t时刻的速度,X i(t)表示i粒子在t时刻的可行解,t表示更新迭代次数,c 1、c 2表示预设的加速系数,r 1、r 2表示随机参数,pBest i表示i粒子的最优历史值,gBest表示种群的最优历史值。
可选的,对粒子的适应度函数值的历史值进行筛选分析,以更新速度函数包括:
根据粒子的适应度函数值的历史值确定每个粒子的最优历史值;
根据预设比例对每个粒子的最优历史值进行筛选,得到第一精英集;
分析第一精英集中各个节点的开闭频率,得到第一开闭频率;
根据第一开闭频率生成第一分布概率模型;
根据第一分布概率模型随机生成速度函数中的pBest i
可选的,对粒子的适应度函数值的历史值进行筛选分析,以更新速度函数包括:
根据粒子的适应度函数值的历史值确定种群的最优历史值;
根据预设比例对种群的最优历史值进行筛选,得到第二精英集;
分析第二精英集中各个节点的开闭频率,得到第二开闭频率;
根据第二开闭频率生成第二分布概率模型;
根据第二分布概率模型随机生成速度函数中的gBest。
本发明实施例的第二方面提供了一种配电网自愈重构规划装置,包括:
获取模块,用于获取配电网信息;
初始化模块,用于根据配电网信息设置种群参数,种群参数包括粒子数量、适应度函数和粒子初始可行解,其中每个粒子对应一个配电网的拓扑结构;
计算模块,用于计算每个粒子的适应度函数值;
函数更新模块,用于对粒子的适应度函数值的历史值进行筛选分析,以更新速度函数,速度函数表示对应支路联入配电网的概率;
粒子更新模块,用于根据粒子当前的速度函数更新迭代粒子的可行解和速度,速度用于更新粒子的可行解,可行解用于计算粒子的适应度函数值;
终止模块,用于在更新迭代次数未达到设定值时,重新计算每个粒子的适应度函数值,进行下一次迭代;
或,在更新迭代次数达到设定值时,确定当前种群中的最优个体,最优个体对应的配电网拓扑结构为配电网重构方案。
本发明实施例的第三方面提供了一种终端,包括存储器、处理器以及存储在存储器中并可在处理器上运行的计算机程序,处理器执行计算机程序时实现如任一项配电网自愈重构规划方法的步骤。
本发明实施例的第四方面提供了一种计算机可读存储介质,计算机可读存储介质存储有计算机程序,计算机程序被处理器执行时实现如任一项配电网自愈重构规划方法的步骤。
本发明与现有技术相比存在的有益效果是:
本发明提供了一种配电网故障自愈重构规划方法,该方法包括:获取配电网信息;根据配电网信息设置种群参数,种群参数包括粒子数量、适应度函数和粒子初始可行解,其中每个粒子对应一个配电网的拓扑结构;计算每个粒子的适应度函数值;对粒子的适应度函数值的历史值进行筛选分析,以更新速度函数,速度函数表示对应支路联入配电网的概率;根据粒子当前的速度函数更新迭代粒子的可行解和速度,速度用于更新粒子的可行解,可行解用于计算粒子的适应度函数值;若更新迭代次数未达到设定值,则重新计算每个粒子的适应度函数值,进入下一次迭代;若更新迭代次数达到设定值,则确定当前种群中的最优个体,最优个体对应的配电网拓扑结构为确定的配电网重构方案。本发明在粒子群算法的基础上,对粒子的适应度函数值的历史值进行筛选分析生成速度函数,可以加快算法的收敛速度,避免陷入局部最优的情况,可以在不影响计算效果的前提下提高计算效率。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需 要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的配电网自愈重构规划方法的实现流程图;
图2是本发明实施例提供的配电网自愈重构规划装置的结构示意图;
图3是本发明实施例提供的终端的示意图;
图4是本发明的一个实施例中使用的配电网的结构示意图;
图5是本发明的一个实施例对实施例中的配电网的优化结果示意图;
图6是使用现有技术对实施例中的配电网的优化结果示意图。
具体实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本发明实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本发明。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本发明的描述。
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图通过具体实施例来进行说明。
参见图1,其示出了本发明实施例提供的配电网自愈重构规划方法的实现流程图,详述如下:
步骤101,获取配电网信息;
步骤102,根据配电网信息设置种群参数,种群参数包括粒子数量、适应度函数和粒子初始可行解,其中每个粒子对应一个配电网的拓扑结构;
在本实施例中,配电网信息包括约束条件、配电网结构和重构目标;
其中,约束条件可以为:
(1)潮流约束
配电网系统进行重构后,整个系统必须满足潮流约束,确保系统运行稳定,约束条件公式为:
Figure PCTCN2021143324-appb-000001
其中,k为节点,N k为节点总数量,
Figure PCTCN2021143324-appb-000002
为节点k的输入功率,
Figure PCTCN2021143324-appb-000003
为节点k 的输出功率,ET k为关于节点k的流入弧的起点集合,EF k为关于节点k的流出弧的起点集合,D k为节点k的网络损耗。
(2)馈线容量约束,约束条件公式为:
S j≤S jmax
其中,S j代表配电网结构中第j条支路上流动的功率,S jmax代表第j条支路上允许的最大功率值。
(3)线路电流约束,约束条件公式为:
I ij≤I ijmax
其中,I ij表示端点为节点i、节点j的支路上的电流,I ijmax表示端点为节点i、节点j的支路上允许的最大传输电流。
(4)母线电压约束,约束条件公式为:
V jmin≤V j≤V jmax
其中,V j代表节点j的电压,V jmin表示节点j允许的最小电压,V jmax表示节点j允许的最大电压。
(5)变压器过载约束,约束条件公式为:
S t≤S tmax
其中,S t代表变压器实际承载功率,S tmax是该变压器最大允许功率。
(6)网络拓扑结构约束,约束条件公式为:
g k∈G R
其中,g k表示配电网故障系统在重构后呈现的网络拓扑结构,G R表示在可以保证供电的情况下,网络辐射结构拓扑的集合。
在对配电网系统进行重构规划时,其网络结构必须满足一般运行条件,即仍保持辐射状运行,杜绝出现环网的情况,并尽可能减少孤岛的存在。
重构目标可以为:
(1)负荷恢复程度最大化
此目标用于恢复应系统故障而造成的符合损失。与此目标对应的适应度函数为:
Figure PCTCN2021143324-appb-000004
其中,L 1,L 2,L 3分别为系统1级、2级、3级负荷的恢复功率;
m,n,k分别为配电网系统中1级、2级、3级负荷的个数;
a,b,c分别为各级负荷的权重系数;
x i,x j,x k为不同等级负荷供电状态,可供电时为1,不可供电时为0。
(2)线路有功损耗最小化
此目标侧重点在运行方面,优化重构的重点则在于使线路的总网损目标最小,更大程度利用电源输出的有功功率。与此目标对应的适应度函数为:
Figure PCTCN2021143324-appb-000005
其中,P i为第i条线路上流入末端的有功功率;
Q i为第i条线路上流入末端的无功功率;
U i为第i条线路上流入末端节点的电压幅值;
R i为第i条线路电路阻值;
K i为第i条线路投切状态,与配电网断开时为0,与配电网相连为1;
n为配电网开关个数。
(3)负荷不平衡率最小化
此目标的侧重点为配电网系统的供电质量,则潮流分布均衡对供电质量有着巨大影响,合理的潮流分布,可以有效改善电压的均匀分布态势。与此目标对应的适应度函数为:
Figure PCTCN2021143324-appb-000006
其中,N R为配电网的线路集合;
S i为流过第i条线路的复功率;
S imax为第i条线路的最大功率容量。
(4)开关操作次数最小化
此目标侧重考虑配电网的稳定性,则可以从开关次数尽可能小的角度考虑。与此目标对应的适应度函数为:
Figure PCTCN2021143324-appb-000007
其中,λ i,λ j表示操作各个开关所需要付出代价的权重;
m,n分别为分段开关数量和联络开关数量;
c i为配电网中第i个分段开关状态。若重构前后位闭合状态则赋值1,若重构过程中由闭合成为打开,则赋值为0;
o j表示配电网中联络开关的状态,若保持打开,则为0,若有打开变为关闭,则为1。
相应的,根据配电网信息设置种群参数包括:
根据配电网结构设置种群粒子数量,粒子数量为配电网中的节点数;
为每个粒子设置初始速度和初始可行解;
根据重构目标设置种群适应度函数。
在本实施例中,需要在可行解集中随机产生n个粒子,每个粒子包含模型的所有变量,每个粒子都可以代表一个拓扑结构,即配电网的重构方案,通常n个节点对应着一个n×n的矩阵。初始可行解的生成可以通过{-1,0,1}随机分布生成。
步骤103,计算每个粒子的适应度函数值;
在本实施例中,对不同的网络拓扑结构、不同的开关组合方式,计算模型中四个目标函数和人为规定的权重系数,计算粒子适应度值。并以适应度值为依据,找到种群历史最优值和个体历史最优值,以此构造各个粒子的速度函数,为粒子的搜索方向提供依据。
在本实施例中,在计算每个粒子的适应度函数值之前,还包括:
对粒子进行约束条件检测并修正不能满足约束条件的粒子,直至全部粒子满足约束条件。
在随机生成粒子的初始可行解时,需要避开在实际中无法连接的节点。生成的结果一般无法满足配电网闭环设计和开环运行的原则,因此,辐射性检测常被用于对所有粒子的网络拓扑结构进行检测。
步骤104,对粒子的适应度函数值的历史值进行筛选分析,以更新速度函数,速度函数表示对应支路联入配电网的概率;
在本实施例中,速度函数的表达式为:
V i(t+1)=V i(t)+c 1r 1(pBest i-X i(t))+c 2r 2(gBest-X i(t))
其中,V i(t)表示i粒子在t时刻的速度,X i(t)表示i粒子在t时刻的可行解,t表示更新迭代次数,c 1、c 2表示预设的加速系数,r 1、r 2表示随机参数,pBest i表示i粒子的最优历史值,gBest表示种群的最优历史值;
相应的,粒子可行解的表达式为:
X i(t+1)=X i(t)+V i(t+1)
其中,加速系数用于控制算法收敛速度和寻优广度的关键系数,需要根据不同优化问题进行人为规定或根据计算结果反复测试,随机参数用于使每次更新迭代的粒子速度具有随机性。
在本实施例中,对粒子的适应度函数值的历史值进行筛选分析,以更新速度函数包括:
根据粒子的适应度函数值的历史值确定每个粒子的最优历史值;
根据预设比例对每个粒子的最优历史值进行筛选,得到第一精英集;
分析第一精英集中各个节点的开闭频率,得到第一开闭频率;
根据第一开闭频率生成第一分布概率模型;
根据第一分布概率模型随机生成速度函数中的pBest i
可选的,对粒子的适应度函数值的历史值进行筛选分析,以更新速度函数包括:
根据粒子的适应度函数值的历史值确定种群的最优历史值;
根据预设比例对种群的最优历史值进行筛选,得到第二精英集;
分析第二精英集中各个节点的开闭频率,得到第二开闭频率;
根据第二开闭频率生成第二分布概率模型;
根据第二分布概率模型随机生成速度函数中的gBest。
在本实施例中,按比例m和n分别从粒子历史值和种群最优历史值中筛选出优秀值,组成精英集P和Q。分析精英集中节点开关的开启、关闭概率,按照概率随机生成速度函数中的pBest i和gBest,代入速度函数中。
步骤105,根据粒子当前的速度函数更新迭代粒子的可行解和速度,速度用于更新粒子的可行解,可行解用于计算粒子的适应度函数值;
在本实施例中,粒子根据更新后的速度函数,更新粒子值网络结构拓扑矩阵。粒子的速度函数表示的是各个支路联入配电网的概率,速度越大,支路联入配电网的概率越大。
步骤106,若更新迭代次数未达到设定值,则重新计算每个粒子的适应度函数值,进入下一次迭代;
步骤107,若更新迭代次数达到设定值,则确定当前种群中的最优个体,最优个体对应的配电网拓扑结构为确定的配电网重构方案。
在本发明的一个具体的实施例中,使用本实施例对图4所示的配电网进行重构规划,该配电网一共有36个节点,其中包括1个变压器节点(110kV/10kV),剩余的为负荷节点和中间开关节点。其中,负荷4,负荷5为一级负荷,其余负荷均为3级负荷。线路的型号如图所示。该地区由于负荷的快速增长,导致变压器负债率逐年提高,且网架结构不够坚强,一旦出现故障,可能导致大面积停电。
观察该网架结构,当23-24、15-16、0-27任何一条线路发生故障时,都会导致系统解列,形成孤岛。以一种最严重的情形,即三条线路同时故障,来对比两类算法的优劣性。
规划结果如图5所示,现有的粒子群算法的规划结果如图6所示,计算数据对比如下表所示:
从故障重构的角度来看,本发明在各项系统指标均优于粒子群算法,能够有效的为故障后的系统提供控制策略,降低停电时间,使电网迅速恢复正常状态,实现真正的智能化操作。
  故障恢复前 改进粒子群算法 粒子群算法
系统平均电压/p.u. 0.854 0.952 0.946
系统最低电压/p.u. 0.801 0.903 0.917
负荷恢复程度 0.42 1 1
供电平均恢复时间 - 1min20s 1min34s
负荷不平衡率 0.284 0.177 0.197
线路有功损耗/kVA 5432.54 4667.19 4821.41
开关操作次数/次 - 6 6
由上可知,本发明首先获取配电网信息;然后根据配电网信息设置种群参数,种群参数包括粒子数量、适应度函数和粒子初始可行解,其中每个粒子对应一个配电网的拓扑结构;计算每个粒子的适应度函数值;对粒子的适应度函数值的历史值进行筛选分析,以更新速度函数,速度函数表示对应支路联入配电网的概率;根据粒子当前的速度函数更新迭代粒子的可行解和速度,速度用于更新粒子的可行解,可行解用于计算粒子的适应度函数值;若更新迭代次数未达到设定值,则重新计算每个粒子的适应度函数值,进入下一次迭代;若更新迭代次数达到设定值,则确定当前种群中的最优个体,最优个体对应的配电网拓扑结构为确定的配电网重构方案。本发明在粒子群算法的基础上,对粒子的适应度函数值的历史值进行筛选分析生成速度函数,可以加快算法的收敛速度,避免陷入局部最优的情况,可以在不影响计算效果的前提下提高计算效率。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
以下为本发明的装置实施例,对于其中未详尽描述的细节,可以参考上述对应的方法实施例。
图2示出了本发明实施例提供的配电网自愈重构规划装置的结构示意图,为了便于说明,仅示出了与本发明实施例相关的部分,详述如下:
如图2所示,配电网自愈重构规划装置包括:
获取模块21,用于获取配电网信息;
初始化模块22,用于根据配电网信息设置种群参数,种群参数包括粒子数量、适应度函数和粒子初始可行解,其中每个粒子对应一个配电网的拓扑结构;
计算模块23,用于计算每个粒子的适应度函数值;
函数更新模块24,用于对粒子的适应度函数值的历史值进行筛选分析,以更新速度函数,速度函数表示对应支路联入配电网的概率;
粒子更新模块25,用于根据粒子当前的速度函数更新迭代粒子的可行解和速度,速度用于更新粒子的可行解,可行解用于计算粒子的适应度函数值;
终止模块26,用于在更新迭代次数未达到设定值时,重新计算每个粒子的适应度函数值,进行下一次迭代;
或,在更新迭代次数达到设定值时,确定当前种群中的最优个体,最优个体对应的配电网拓扑结构为配电网重构方案。
可选的,配电网信息包括约束条件、配电网结构和重构目标;
相应的,初始化模块包括:
数量设置单元,用于根据配电网结构设置种群粒子数量,粒子数量为配电网中的节点数;
初始值设置单元,用于为每个粒子设置初始速度和初始可行解;
函数设置单元,用于根据重构目标设置种群适应度函数。
可选的,在计算每个粒子的适应度函数值之前,还包括:
对粒子进行约束条件检测并修正不能满足约束条件的粒子,直至全部粒子满足约束条件。
可选的,速度函数的表达式为:
V i(t+1)=V i(t)+c 1r 1(pBest i-X i(t))+c 2r 2(gBest-X i(t))
其中,V i(t)表示i粒子在t时刻的速度,X i(t)表示i粒子在t时刻的可行解,t表示更新迭代次数,c 1、c 2表示预设的加速系数,r 1、r 2表示随机参数,pBest i表示i粒子的最优历史值,gBest表示种群的最优历史值。
可选的,函数更新模块包括:
个体最优确定单元,用于根据粒子的适应度函数值的历史值确定每个粒子的最优历史值;
第一筛选单元,用于根据预设比例对每个粒子的最优历史值进行筛选,得到第一精英集;
第一分析单元,用于分析第一精英集中各个节点的开闭频率,得到第一开闭频率;
第一模型生成单元,用于根据第一开闭频率生成第一分布概率模型;
第一采样单元,用于根据第一分布概率模型随机生成速度函数中的pBest i
可选的,函数更新模块包括:
全局最优确定单元,用于根据粒子的适应度函数值的历史值确定种群的最优历史值;
第二筛选单元,用于根据预设比例对种群的最优历史值进行筛选,得到第二精英集;
第二分析单元,用于分析第二精英集中各个节点的开闭频率,得到第二开闭频率;
第二模型生成单元,用于根据第二开闭频率生成第二分布概率模型;
第二采样单元,用于根据第二分布概率模型随机生成速度函数中的gBest。
图3是本发明一实施例提供的终端的示意图。如图3所示,该实施例的终端3包括:处理器30、存储器31以及存储在所述存储器31中并可在所述处理器30上运行的计算机程序32。所述处理器30执行所述计算机程序32时实现上述各个配电网自愈重构规划方法实施例中的步骤,例如图1所示的步骤101至步骤103。或者,所述处理器30执行所述计算机程序32时实现上述各装置实施例中各模块/单元的功能,例如图2所示模块21至26的功能,以及上述数量设置单元、初始值设置单元、函数设置单元、个体最优确定单元、第一筛选单元、第一分析单元、第一模型生成单元、第一采样单元、全局最优确定单元、第二筛选单元、第二分析单元、第二模型生成单元和第二采样单元的功能。
示例性的,所述计算机程序32可以被分割成一个或多个模块/单元,所述一个或者多个模块/单元被存储在所述存储器31中,并由所述处理器30执行,以完成本发明。所述一个或多个模块/单元可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述所述计算机程序32在所述终端3中的执行过程。
所述终端3可以是桌上型计算机、笔记本、掌上电脑及云端服务器等计算设备。所述终端可包括,但不仅限于,处理器30、存储器31。本领域技术人员可以理解,图3仅仅是终端3的示例,并不构成对终端3的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如所述终端还可以包括输入输出设备、网络接入设备、总线等。
所称处理器30可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述存储器31可以是所述终端3的内部存储单元,例如终端3的硬盘或内存。所述存储器31也可以是所述终端3的外部存储设备,例如所述终端3上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,所述存储器31还可以既包括所述终端3的内部存储单元也包括外部存储设备。所述存储器31用于存储所述计算机程序以及所述终端所需的其他程序和数据。所述存储器31还可以用于暂时地存储已经输出或者将要输出的数据。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述 的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
在本发明所提供的实施例中,应该理解到,所揭露的装置/终端和方法,可以通过其它的方式实现。例如,以上所描述的装置/终端实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、 计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质等。需要说明的是,所述计算机可读介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括是电载波信号和电信信号。
以上所述实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种配电网自愈重构规划方法,其特征在于,包括:
    获取配电网信息;
    根据所述配电网信息设置种群参数;所述种群参数包括粒子数量、适应度函数和粒子初始可行解,其中每个粒子对应一个配电网的拓扑结构;
    计算每个粒子的适应度函数值;
    对粒子的适应度函数值的历史值进行筛选分析,以更新速度函数;所述速度函数表示对应支路联入配电网的概率;
    根据粒子当前的速度函数更新迭代粒子的可行解和速度;所述速度用于更新粒子的可行解,所述可行解用于计算粒子的适应度函数值;
    若更新迭代次数未达到设定值,则重新计算每个粒子的适应度函数值,进入下一次迭代;
    若更新迭代次数达到设定值,则确定当前种群中的最优个体,所述最优个体对应的配电网拓扑结构为确定的配电网重构方案。
  2. 根据权利要求1所述的配电网自愈重构规划方法,其特征在于,所述配电网信息包括约束条件、配电网结构和重构目标;
    相应的,所述根据所述配电网信息设置种群参数包括:
    根据所述配电网结构设置种群粒子数量,所述粒子数量为配电网中的节点数;
    为每个粒子设置初始速度和初始可行解;
    根据所述重构目标设置种群适应度函数。
  3. 根据权利要求2所述的配电网自愈重构规划方法,其特征在于,在计算每个粒子的适应度函数值之前,还包括:
    对粒子进行约束条件检测并修正不能满足约束条件的粒子,直至全部粒子满足约束条件。
  4. 根据权利要求1至3任一项所述的配电网自愈重构规划方法,其特征在于,所述速度函数的表达式为:
    V i(t+1)=V i(t)+c 1r 1(pBest i-X i(t))+c 2r 2(gBest-X i(t))
    其中,V i(t)表示i粒子在t时刻的速度,X i(t)表示i粒子在t时刻的可行解,t表示更新迭代次数,c 1、c 2表示预设的加速系数,r 1、r 2表示随机参数,pBest i表示i粒子的最优历史值, gBest表示种群的最优历史值。
  5. 根据权利要求4所述的配电网自愈重构规划方法,其特征在于,所述对粒子的适应度函数值的历史值进行筛选分析,以更新速度函数包括:
    根据所述粒子的适应度函数值的历史值确定每个粒子的最优历史值;
    根据预设比例对所述每个粒子的最优历史值进行筛选,得到第一精英集;
    分析所述第一精英集中各个节点的开闭频率,得到第一开闭频率;
    根据所述第一开闭频率生成第一分布概率模型;
    根据所述第一分布概率模型随机生成速度函数中的pBest i
  6. 根据权利要求4所述的配电网自愈重构规划方法,其特征在于,所述对粒子的适应度函数值的历史值进行筛选分析,以更新速度函数包括:
    根据所述粒子的适应度函数值的历史值确定种群的最优历史值;
    根据预设比例对所述种群的最优历史值进行筛选,得到第二精英集;
    分析所述第二精英集中各个节点的开闭频率,得到第二开闭频率;
    根据所述第二开闭频率生成第二分布概率模型;
    根据所述第二分布概率模型随机生成速度函数中的gBest。
  7. 一种配电网自愈重构规划装置,其特征在于,包括:
    获取模块,用于获取配电网信息;
    初始化模块,用于根据所述配电网信息设置种群参数,所述种群参数包括粒子数量、适应度函数和粒子初始可行解,其中每个粒子对应一个配电网的拓扑结构;
    计算模块,用于计算每个粒子的适应度函数值;
    函数更新模块,用于对粒子的适应度函数值的历史值进行筛选分析,以更新速度函数,所述速度函数表示对应支路联入配电网的概率;
    粒子更新模块,用于根据粒子当前的速度函数更新迭代粒子的可行解和速度,所述速度用于更新粒子的可行解,所述可行解用于计算粒子的适应度函数值;
    终止模块,用于在更新迭代次数未达到设定值时,重新计算每个粒子的适应度函数值,进行下一次迭代;
    或,在更新迭代次数达到设定值时,确定当前种群中的最优个体,所述最优个体对应的配电网拓扑结构为配电网重构方案。
  8. 根据权利要求7所述的配电网自愈重构规划装置,其特征在于,所述配电网信息包括约束条件、配电网结构和重构目标;
    相应的,所述初始化模块包括:
    数量设置单元,用于根据所述配电网结构设置种群粒子数量,所述粒子数量为配电网中的节点数;
    初始值设置单元,用于为每个粒子设置初始速度和初始可行解;
    函数设置单元,用于根据所述重构目标设置种群适应度函数。
  9. 一种终端,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如上的权利要求1至6中任一项所述配电网自愈重构规划方法的步骤。
  10. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如上的权利要求1至6中任一项所述配电网自愈重构规划方法的步骤。
PCT/CN2021/143324 2021-02-25 2021-12-30 配电网自愈重构规划方法、装置及终端 WO2022179302A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110211013.3 2021-02-25
CN202110211013.3A CN112803404B (zh) 2021-02-25 2021-02-25 配电网自愈重构规划方法、装置及终端

Publications (1)

Publication Number Publication Date
WO2022179302A1 true WO2022179302A1 (zh) 2022-09-01

Family

ID=75815841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/143324 WO2022179302A1 (zh) 2021-02-25 2021-12-30 配电网自愈重构规划方法、装置及终端

Country Status (2)

Country Link
CN (1) CN112803404B (zh)
WO (1) WO2022179302A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115333101A (zh) * 2022-10-12 2022-11-11 国网浙江省电力有限公司宁波市北仑区供电公司 一种智能配电柜系统及配电方法
CN115498773A (zh) * 2022-10-21 2022-12-20 山东大学 一种配电网故障自愈重构方法及系统
CN116526477A (zh) * 2023-06-30 2023-08-01 南方电网数字电网研究院有限公司 电网重构策略的确定方法、装置、计算机设备和存储介质
CN116542006A (zh) * 2023-07-07 2023-08-04 中国人民解放军陆军装甲兵学院 一种车载电源系统拓扑结构设计方法
CN116796574A (zh) * 2023-08-23 2023-09-22 江西五十铃汽车有限公司 一种驱动电机振动噪音优化方法及系统
CN116973694B (zh) * 2023-09-22 2023-12-12 国网浙江宁波市鄞州区供电有限公司 配电网故障诊断优化方法及系统
CN117574786A (zh) * 2024-01-17 2024-02-20 国网经济技术研究院有限公司 有源中压架空配电网络分段优化方法、系统及存储介质
CN117613902A (zh) * 2024-01-19 2024-02-27 北京智芯微电子科技有限公司 基于智慧开关的配网优化运行方法及装置
CN117833241A (zh) * 2024-03-04 2024-04-05 广东电网有限责任公司广州供电局 分布式智能配电网自愈控制方法及系统
CN118101720A (zh) * 2024-04-25 2024-05-28 国能信控互联技术有限公司 基于边缘云的新能源数据采集控制方法及系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112803404B (zh) * 2021-02-25 2023-03-14 国网河北省电力有限公司经济技术研究院 配电网自愈重构规划方法、装置及终端
CN113541136A (zh) * 2021-07-27 2021-10-22 广东电网有限责任公司 配电网自愈系统的配置方法、装置及电子设备
CN113689149A (zh) * 2021-10-09 2021-11-23 广东电网有限责任公司 一种配电网的规划方法及装置
CN114039331B (zh) * 2021-10-27 2023-07-21 成都交大许继电气有限责任公司 一种牵引网智能重构自愈方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104734153A (zh) * 2014-12-18 2015-06-24 国家电网公司 一种含分布式电源的配电网络重构方法
CN108832615A (zh) * 2018-05-08 2018-11-16 中国电力科学研究院有限公司 一种基于改进二进制粒子群算法的配电网重构方法及系统
WO2020077443A1 (fr) * 2018-10-16 2020-04-23 HYDRO-QUéBEC Reconstruction d'une topologie d'un réseau de distribution électrique
CN111640043A (zh) * 2020-05-19 2020-09-08 福州大学 配电网重构方法、装置、计算机设备和存储介质
CN112803404A (zh) * 2021-02-25 2021-05-14 国网河北省电力有限公司经济技术研究院 配电网自愈重构规划方法、装置及终端

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104332995B (zh) * 2014-11-14 2017-02-22 南京工程学院 基于改进粒子群算法的配电网重构优化方法
CN105631518B (zh) * 2015-12-23 2018-07-03 西安理工大学 多参数多目标混沌粒子群参数寻优方法
CN108491922A (zh) * 2018-03-21 2018-09-04 华南理工大学 基于教学和粒子群算法的主动配电网智能混合重构方法
CN109004643A (zh) * 2018-07-24 2018-12-14 南京师范大学 基于改进粒子群算法的配电网重构优化方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104734153A (zh) * 2014-12-18 2015-06-24 国家电网公司 一种含分布式电源的配电网络重构方法
CN108832615A (zh) * 2018-05-08 2018-11-16 中国电力科学研究院有限公司 一种基于改进二进制粒子群算法的配电网重构方法及系统
WO2020077443A1 (fr) * 2018-10-16 2020-04-23 HYDRO-QUéBEC Reconstruction d'une topologie d'un réseau de distribution électrique
CN111640043A (zh) * 2020-05-19 2020-09-08 福州大学 配电网重构方法、装置、计算机设备和存储介质
CN112803404A (zh) * 2021-02-25 2021-05-14 国网河北省电力有限公司经济技术研究院 配电网自愈重构规划方法、装置及终端

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115333101B (zh) * 2022-10-12 2023-04-07 国网浙江省电力有限公司宁波市北仑区供电公司 一种智能配电柜系统及配电方法
CN115333101A (zh) * 2022-10-12 2022-11-11 国网浙江省电力有限公司宁波市北仑区供电公司 一种智能配电柜系统及配电方法
CN115498773B (zh) * 2022-10-21 2023-12-05 山东大学 一种配电网故障自愈重构方法及系统
CN115498773A (zh) * 2022-10-21 2022-12-20 山东大学 一种配电网故障自愈重构方法及系统
CN116526477A (zh) * 2023-06-30 2023-08-01 南方电网数字电网研究院有限公司 电网重构策略的确定方法、装置、计算机设备和存储介质
CN116526477B (zh) * 2023-06-30 2024-03-26 南方电网数字电网研究院有限公司 电网重构策略的确定方法、装置、计算机设备和存储介质
CN116542006A (zh) * 2023-07-07 2023-08-04 中国人民解放军陆军装甲兵学院 一种车载电源系统拓扑结构设计方法
CN116796574B (zh) * 2023-08-23 2023-12-29 江西五十铃汽车有限公司 一种驱动电机振动噪音优化方法及系统
CN116796574A (zh) * 2023-08-23 2023-09-22 江西五十铃汽车有限公司 一种驱动电机振动噪音优化方法及系统
CN116973694B (zh) * 2023-09-22 2023-12-12 国网浙江宁波市鄞州区供电有限公司 配电网故障诊断优化方法及系统
CN117574786A (zh) * 2024-01-17 2024-02-20 国网经济技术研究院有限公司 有源中压架空配电网络分段优化方法、系统及存储介质
CN117574786B (zh) * 2024-01-17 2024-03-19 国网经济技术研究院有限公司 有源中压架空配电网络分段优化方法、系统及存储介质
CN117613902A (zh) * 2024-01-19 2024-02-27 北京智芯微电子科技有限公司 基于智慧开关的配网优化运行方法及装置
CN117613902B (zh) * 2024-01-19 2024-05-28 北京智芯微电子科技有限公司 基于智慧开关的配网优化运行方法及装置
CN117833241A (zh) * 2024-03-04 2024-04-05 广东电网有限责任公司广州供电局 分布式智能配电网自愈控制方法及系统
CN117833241B (zh) * 2024-03-04 2024-05-07 广东电网有限责任公司广州供电局 分布式智能配电网自愈控制方法及系统
CN118101720A (zh) * 2024-04-25 2024-05-28 国能信控互联技术有限公司 基于边缘云的新能源数据采集控制方法及系统

Also Published As

Publication number Publication date
CN112803404B (zh) 2023-03-14
CN112803404A (zh) 2021-05-14

Similar Documents

Publication Publication Date Title
WO2022179302A1 (zh) 配电网自愈重构规划方法、装置及终端
WO2022088890A1 (zh) 电网中长期检修计划的校核方法、系统、设备及存储介质
Landeros et al. Distribution network reconfiguration using feasibility-preserving evolutionary optimization
González et al. Reconfiguration of large-scale distribution networks for planning studies
CN108092284B (zh) 一种基于线性模型的三相不平衡智能配电网网络重构方法
CN111181164B (zh) 一种改进的主从分裂输配协同潮流计算方法及系统
CN109617116B (zh) 风电场群阻抗分析方法、无功控制方法及装置和发电系统
CN109474023A (zh) 智能配电网区段实时更新方法、系统、存储介质及终端
CN112103950B (zh) 一种基于改进gn分裂算法的电网分区方法
CN111834996B (zh) 电网线损计算方法和装置
Jose et al. Reliability constrained distribution feeder reconfiguration for power loss minimization
CN110632451B (zh) 一种低压有源配电网故障定位方法
Liu et al. Generalized Operational Short-Circuit Ratio for Grid Strength Assessment in Renewable Power Systems under Non-Rated Operating Conditions
CN117421622A (zh) 基于聚类算法的低压台区线损计算方法及系统
Anderson et al. Detect and identify topology change in power distribution systems using graph signal processing
Li et al. Power distribution network reconfiguration for bounded transient power loss
CN108281964A (zh) 一种基于运行和网架风险的配电网运行方式优化方法
CN109638845B (zh) 输电线路投切组合方案建立方法及装置
CN113553728A (zh) 生成智能变电站站控层应用系统模型的方法和系统
CN106849098B (zh) 电力系统的潮流计算方法
CN111651889A (zh) 输电系统高风险事件筛选方法、装置、设备及存储介质
CN112290547B (zh) 一种基于网络重构的输电网线路潮流越限求解方法及设备
CN117895498B (zh) 一种电力网络区块化目标失能的辅助决策和优化决策方法
Xu et al. Analysis of radial constraint representation methods for distribution networks
Ding et al. Review on Intelligent Optimization Technology for Survivability of Power Grid Backbone Communication Networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927726

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21927726

Country of ref document: EP

Kind code of ref document: A1