WO2022179217A1 - 一种电源控制方法、装置及设备 - Google Patents

一种电源控制方法、装置及设备 Download PDF

Info

Publication number
WO2022179217A1
WO2022179217A1 PCT/CN2021/133123 CN2021133123W WO2022179217A1 WO 2022179217 A1 WO2022179217 A1 WO 2022179217A1 CN 2021133123 W CN2021133123 W CN 2021133123W WO 2022179217 A1 WO2022179217 A1 WO 2022179217A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
bosa
control
control signal
onu
Prior art date
Application number
PCT/CN2021/133123
Other languages
English (en)
French (fr)
Inventor
阮超
陈炼
魏奇文
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022179217A1 publication Critical patent/WO2022179217A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • G05B19/0423Input/output
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/24Pc safety
    • G05B2219/24215Scada supervisory control and data acquisition

Definitions

  • the present application relates to the technical field of optical communication, and in particular, to a power control method, device, and device.
  • Optical fiber transmission as the current mainstream communication transmission scheme, is widely used in scenarios such as enterprises and home terminals.
  • Optical Network Unit (ONU) is used as the bearer terminal node of Fiber To The Home (FTTH). It is widely distributed in the entire optical network.
  • FTTH Fiber To The Home
  • ONU equipment is gradually becoming miniaturized. The consumption density increases sharply. Therefore, the miniaturization of the device and the increase in power consumption will lead to an increase in the unit energy density of the ONU device, and a significant increase in the operating temperature of the electronic components.
  • the bi-directional optical subassembly is the core device of the ONU device and is a temperature-sensitive device.
  • the working temperature of the ONU equipment directly affects the working temperature of the BOSA, and also affects the service life of the BOSA.
  • how to reduce the working temperature of the BOSA and improve the service life of the BOSA there is no better optimization scheme at present.
  • Embodiments of the present application provide a power control method, device, and device, which can achieve the purpose of reducing BOSA power consumption and operating temperature by dynamically controlling the power supply time of the BOSA power supply.
  • an embodiment of the present application provides a power control method, the method is applied to an optical network unit ONU, and the ONU includes an optical transceiver integrated component BOSA, a BOSA power supply for A first control terminal for whether the BOSA emits light, and a second control terminal for controlling whether the BOSA power supply supplies power, the method includes:
  • a second time when the second control signal takes effect is determined based on the first time, the second time is earlier than the first time, and the second control signal is used by the second control terminal to control the BOSA power supply to supply power ;
  • the second control signal is asserted at the second time.
  • the BOSA power can be turned on in advance before the BOSA starts to emit light, that is, the second time is determined based on the first time, and the second time is earlier than the first time, thus
  • the power consumption of the BOSA is reduced, the operating temperature of the BOSA is lowered, and the service life of the BOSA is improved.
  • the determining the first time when the first control signal takes effect based on the ON time of the uplink transmission includes:
  • the first time is determined according to the working mode of the ONU and the first clock signal; wherein, the working mode of the ONU includes that the first control terminal periodically controls the BOSA to emit light, and the first clock signal is a clock signal shared by the first control terminal and the second control terminal.
  • the first time can be determined based on the working mode of the ONU and the first clock signal, which improves the accuracy of determining the first time.
  • the first control signal is specifically used for the optical physical layer PHY in the ONU to drive the BOSA to emit light.
  • the first control terminal may send a first control signal to the optical PHY in the ONU, and the optical PHY drives the BOSA to emit light according to the received first control signal.
  • the determining the second time when the second control signal takes effect based on the first time includes:
  • the first time difference is a set difference between the first time and the second time
  • the second time is determined based on the difference between the first time and the first time.
  • the first time difference refers to the time difference between when the BOSA power supply starts to supply power and the BOSA starts to emit light.
  • the BOSA power supply can start to supply power before the BOSA starts to emit light, so the first The time difference can be greater than 0.
  • it also includes:
  • a fourth time when the fourth control signal takes effect is determined based on the third time, the fourth time is later than the third time, and the fourth control signal is used by the second control terminal to control the BOSA power supply to stop powered by;
  • the fourth control signal is asserted at the fourth time.
  • the BOSA power can also be turned off after the BOSA stops emitting light, that is, the determination based on the third time
  • the fourth time is later than the third time, thereby further reducing the power consumption of the BOSA, reducing the working temperature of the BOSA, and improving the service life of the BOSA.
  • the third control signal is specifically used by the optical PHY in the ONU to drive the BOSA to stop emitting light.
  • the first control end sends a third control signal to the optical PHY in the ONU, and the optical PHY drives the BOSA to stop emitting light according to the received third control signal.
  • the determining the fourth time when the fourth control signal takes effect based on the third time includes:
  • the second time difference is a set difference between the fourth time and the third time
  • the fourth time is determined based on the difference between the third time and the second time.
  • the second time difference refers to the time difference between the time when the BOSA stops emitting light and the BOSA power supply stops supplying power.
  • the BOSA power supply and BOSA can stop at the same time, or the BOSA power supply can stop emitting light for a period of time. Then stop the power supply, so the second time difference can be greater than or equal to 0.
  • the time difference between the first time and the second time, and/or the time difference between the third time and the first time, and/or the first time is adjustable in different uplink transmission periods of the ONU.
  • the time difference between the first time and the second time, the time difference between the third time and the first time, and the time difference between the fourth time and the third time, in the ONU It can be adjusted in different uplink transmission cycles, which improves the flexibility of power control.
  • the first control end and the second control end are located in the central processing unit CPU of the ONU, and share a clock of the CPU.
  • the first control terminal and the second control terminal use the same time source to achieve clock synchronization between the two. Since the CPU includes multiple times, the first control terminal and the second control terminal The time source used may be a clock of the CPU.
  • the first control terminal and the second control terminal are located in the PONMAC of the ONU and share an internal clock of the PONMAC.
  • a PONMAC is integrated in the ONU, for example, the CPU of the ONU is integrated with a PONMAC, then the first control terminal and the second control terminal can be located in the PONMAC, and the time source used by the two is PONMAC This ensures that the first control terminal and the second control terminal use the same time source to maintain clock synchronization without increasing the hardware cost of the ONU.
  • an embodiment of the present application provides a power supply control device, characterized in that the device is used to control an optical network unit ONU, and the ONU includes an optical transceiver integrated component BOSA, a BOSA power supply for supplying power to the BOSA, A first control terminal for controlling whether the BOSA emits light, and a second control terminal for controlling whether the BOSA power supply supplies power, the device includes:
  • the first determination module is used for at least one uplink transmission period of the ONU to determine the first time when the first control signal takes effect based on the ON time of the uplink transmission, and the first control signal is used for the first control terminal to control
  • the BOSA emits light
  • a second determining module configured to determine a second time when the second control signal takes effect based on the first time, the second time is earlier than the first time, and the second control signal is used for the second control
  • the terminal controls the BOSA power supply
  • the first control module is configured to make the second control signal take effect at the second time.
  • an embodiment of the present application provides a power control device, characterized in that the device is used to control an optical network unit ONU, and the ONU includes an optical transceiver integrated component BOSA, a BOSA power supply for supplying power to the BOSA, A first control terminal for controlling whether the BOSA emits light, and a second control terminal for controlling whether the BOSA power supply supplies power, the device includes: a processor, and the processor is coupled to a memory;
  • the memory for storing computer instructions
  • the processor executes the computer instructions, causing the apparatus to perform:
  • a second time when the second control signal takes effect is determined based on the first time, the second time is earlier than the first time, and the second control signal is used by the second control terminal to control the BOSA power supply to supply power ;
  • the second control signal is asserted at the second time.
  • the determining the first time when the first control signal takes effect based on the ON time of the uplink transmission includes:
  • the first time is determined according to the working mode of the ONU and the first clock signal; wherein, the working mode of the ONU includes that the first control terminal periodically controls the BOSA to emit light, and the first clock signal is a clock signal shared by the first control terminal and the second control terminal.
  • the first control signal is specifically used for the optical physical layer PHY in the ONU to drive the BOSA to emit light.
  • the determining the second time when the second control signal takes effect based on the first time includes:
  • the first time difference is a set difference between the first time and the second time
  • the second time is determined based on the difference between the first time and the first time.
  • the device further executes:
  • a fourth time when the fourth control signal takes effect is determined based on the third time, the fourth time is later than the third time, and the fourth control signal is used by the second control terminal to control the BOSA power supply to stop powered by;
  • the fourth control signal is asserted at the fourth time.
  • the third control signal is specifically used by the optical PHY in the ONU to drive the BOSA to stop emitting light.
  • the determining the fourth time when the fourth control signal takes effect based on the third time includes:
  • the second time difference is a set difference between the fourth time and the third time
  • the fourth time is determined based on the difference between the third time and the second time.
  • the time difference between the first time and the second time, and/or the time difference between the third time and the first time, and/or the first time is adjustable in different uplink transmission periods of the ONU.
  • the first control end and the second control end are located in the central processing unit CPU of the ONU, and share a clock of the CPU.
  • the first control terminal and the second control terminal are located in a passive optical network PON medium access control MAC of the ONU, and share an internal clock of the PONMAC.
  • an embodiment of the present application provides a computer storage medium, where the computer storage medium includes computer instructions, when the computer instructions are executed on a power control device, the device causes the device to execute the above-mentioned first aspect.
  • an embodiment of the present application provides a computer program product, when program codes included in the computer program product are executed by a processor in a power control device, the method described in the first aspect above is implemented.
  • the power control method, device, and device provided by the embodiments of the present application can achieve the purpose of reducing BOSA power consumption and operating temperature by dynamically controlling the power supply time of the BOSA power supply.
  • FIG. 1 is a schematic diagram of a network architecture of a passive optical network
  • FIG. 2 is a schematic diagram of an energy saving mode
  • Fig. 3 is a kind of structural representation of ONU
  • FIG. 4 is a schematic diagram of a power supply control process provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a power control method provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a power control method provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a power supply control device provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a power control device according to an embodiment of the present application.
  • words such as “exemplary”, “such as” or “for example” are used to mean serving as an example, illustration or illustration. Any embodiments or designs described in the embodiments of the present application as “exemplary,” “such as,” or “by way of example” should not be construed as preferred or advantageous over other embodiments or designs. Rather, use of words such as “exemplary,” “such as,” or “by way of example” is intended to present the related concepts in a specific manner.
  • the term "and/or" is only an association relationship for describing associated objects, indicating that there may be three relationships, for example, A and/or B, which may indicate: A alone exists, A alone exists There is B, and there are three cases of A and B at the same time.
  • the term "plurality" means two or more.
  • multiple systems refer to two or more systems
  • multiple screen terminals refer to two or more screen terminals.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implying the indicated technical features. Thus, a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature.
  • the terms “including”, “including”, “having” and their variants mean “including but not limited to” unless specifically emphasized otherwise.
  • FIG 1 is a schematic diagram of the network architecture of a passive optical network (Passive Optical Networks, PON). ), and an Optical Distribution Network (ODN).
  • the ODN is a point-to-multipoint structure, and one OLT is connected to multiple ONUs through an optical splitter (Spliter) in the ODN.
  • the PON in FIG. 1 may include different networking modes such as Ethernet Passive Optical Network (EPON), Gigabit Passive Optical Network (GPON).
  • EPON Ethernet Passive Optical Network
  • GPON Gigabit Passive Optical Network
  • the power supply control involved in this application may refer to the power supply control of the ONU in FIG. 1 , specifically to reduce the BOSA power consumption and operating temperature of the ONU by dynamically controlling the power supply time of the BOSA power supply of the ONU. Purpose.
  • FIG. 2 is a schematic diagram of an energy saving mode.
  • the ONU can be used to periodically turn on upstream transmission and downstream reception to reduce the power consumption of the ONU through the cooperation of the OLT and the ONU when the ONU is idle.
  • This energy-saving method can reduce the working temperature of the ONU device, and lower the working temperature of the BOSA in the ONU device from the side.
  • the energy-saving mode may include three energy-saving modes: a doze (Doze) mode, a cycle (Cyclic) mode, and a wake-up (Watchful) mode.
  • Doze doze
  • Cyclic cycle
  • Watchful wake-up
  • the downlink receiving frame is always turned on, and the uplink sending frame is turned on periodically.
  • Cyclic mode is closed periodically in both uplink and downlink, and the receiving central office wakes up only in the time slot when the service is opened.
  • the central office is the OLT in Figure 1, and the wake-up operation is sent by the OLT. For example, when the ONU device is in a dormant state, the OLT needs to wake up the ONU first to send data to the ONU, otherwise the sent data will be lost.
  • Watchful mode is to periodically turn on downlink reception in Cyclic mode, but only receives the wake-up operation of the central office and does not accept services. Compared with Cyclic mode, Watchful mode has better latency performance.
  • the Cyclic and Doze modes can be realized by adjusting the time width of the downlink wake-up pulse through the Watchful mode.
  • the ONU power consumption management scheme shown in FIG. 2 requires the cooperation of the OLT and the ONU, and the implementation is complicated. At the same time, the ONU must be in an idle state, which is more effective for the ONU device to work in a low-speed and low-traffic mode, but cannot achieve the purpose of saving power consumption in the scenario where the ONU needs to be woken up frequently.
  • the power supply control involved in this application may refer to dynamic control of the BOSA power supply that supplies power in the upstream direction in FIG. 2 .
  • FIG 3 is a schematic diagram of the structure of an ONU; as shown in Figure 3, for the BOSA on-board ONU, it usually includes three main components: Central Processing Unit (CPU), Optical Physical Layer (PHY), and BOSA. part. Among them, the CPU integrates PON MAC (Medium Access Control, medium access control), the PON MAC is used to interact with the optical PHY, and the BOSA is used to realize the mutual conversion between photoelectric signals.
  • CPU Central Processing Unit
  • PHY Optical Physical Layer
  • BOSA Part.
  • the CPU integrates PON MAC (Medium Access Control, medium access control)
  • the PON MAC is used to interact with the optical PHY
  • the BOSA is used to realize the mutual conversion between photoelectric signals.
  • VCCT_ENABLE is the power enable signal, and the CPU controls the power module to supply power to BOSA;
  • TXEN is the light-emitting enable signal, which is sent by the CPU to the optical PHY, that is, after the CPU sends the TXEN signal to the optical PHY, the optical PHY drives the BOSA to emit light through the light-emitting diode (ie LD+/LD-) after receiving the TXEN signal;
  • TXSD is the sending light indication signal, which is sent to the CPU by the optical PHY;
  • RXSD is the received light indication signal, which is sent to the CPU by the optical PHY;
  • TX_DATA is the transmit data channel
  • RX_DATA is the receive data channel
  • the CPU sends the data to the optical PHY through TX_DATA, and the CPU controls the optical PHY to emit light through the TXEN signal.
  • the optical PHY detects that the TXEN signal is valid, it converts the TX_DATA data into the data to be transmitted.
  • the optical PHY sends a TXSD signal to the CPU.
  • the BOSA converts the optical signal into a telecommunication signal and transmits it to the optical PHY, and the optical PHY informs the CPU that the optical signal is received through the RXSD signal.
  • the CPU in Figure 3 turns the power module on or off via the VCCT_ENABLE signal.
  • the power module in Fig. 3 is connected with the BOSA sending part, and supplies power for the BOSA sending part specially.
  • the power module When the BOSA emits light, the power module must be turned on to supply power to the BOSA, otherwise the light will be abnormal.
  • the power supply control involved in the present application may refer to dynamic control of the power supply module in FIG. 3 that specifically supplies power for the BOSA sending part.
  • the power supply module in FIG. 3 that supplies power for the BOSA sending part is defined uniformly as a BOSA power supply, and other embodiments are the same as this, and will not be repeated here.
  • the power module in FIG. 3 can be implemented by a metal-oxide-semiconductor field effect transistor (metal oxide semiconductor, MOS) transistor.
  • MOS metal-oxide-semiconductor field effect transistor
  • VCCT_ENABLE is low level, turn on the MOS tube, and supply power for the BOSA sending part.
  • the system can turn on the MOS transistor to supply power to the BOSA sending part by pulling VCCT_ENABLE low, so that no matter whether the BOSA needs to emit light or not, the power module always supplies power to the BOSA, resulting in a certain power loss.
  • the uplink bandwidth of actual users of home terminal products is usually low.
  • the uplink bandwidth generally does not exceed 30M, and BOSA is in the process of emitting light.
  • the uplink transmission period is 125uS, and there is a certain period of time in the entire 125uS time slot that no light is emitted.
  • the upstream bandwidth is 30M
  • the time slot of 125uS only emits light for about 3.69uS
  • the power consumption when the power is turned on is about 30% of that when the light is on, so if the BOSA needs to emit light, the power module will always Power is supplied to the transmitting part of the BOSA, resulting in a certain loss of power consumption.
  • the present application provides a power control method, device and device.
  • the BOSA power can be dynamically controlled by dynamic control. Power supply time to achieve the purpose of reducing BOSA power consumption and operating temperature.
  • the precise synchronization between the VCCT_ENABLE signal and the TXEN signal and the adjustable time difference can be adapted to different peripheral circuit devices, and it does not depend on the OLT and ONT coordination and the ONU must be in an idle state.
  • GPON is used as an example for illustration above, the solution of the present invention is not limited to ONUs in GPON scenarios, and ONUs of other PON networks are also applicable.
  • FIG. 4 is a schematic diagram of a power control process provided by an embodiment of the present application.
  • both TXEN and VCCT_ENABLE are control signals of the PON MAC
  • the XPON clock is the internal clock of the PON MAC
  • t1 and t2 are the time differences between TXEN and VCCT_ENABLE.
  • TXEN is active low, indicating light
  • VCCT_ENABLE is active low, indicating that BOSA power is turned on.
  • the specific implementation process includes:
  • the time difference between the TXEN and VCCT_ENABLE signals is realized through the delay control module inside the PON MAC.
  • t1 is the leading time
  • t2 is the trailing time
  • the leading time t1 is used to turn on the VCCT_ENABLE signal in advance
  • the trailing time t2 is used to delay the closing of the VCCT_ENABLE signal.
  • the preamble delay control module parses the preamble delay vector, and analyzes the number of clock signal pulses that need to be delayed through the preamble delay vector.
  • the BOSA power is turned on.
  • the preamble delay module starts timing, and reaches point b after the timing ends.
  • the TXEN signal is pulled low and starts to instruct the optical PHY to emit light.
  • the time difference between point a and point b is t1, and the lead time delay is completed.
  • the valid time length of TXEN (the time difference between point b and point c) is determined by the ONU within the PON MAC that allocates the light-emitting time slot.
  • the VCCT_ENABLE signal in Figure 4 is a switch signal, if the user does not need to use the dynamic switch VCCT_ENABLE signal can directly output a low level or a high level.
  • the value range of t1 may be greater than 0. That is to say, since the power module must be turned on to supply power to the BOSA when the BOSA is emitting light, otherwise the light will be abnormal, so the VCCT_ENABLE signal must be locked and a low pulse must be output before the TXEN signal is pulled low.
  • the post-derivation delay control module analyzes the post-derivation delay vector, and analyzes the number of clock signal pulses that need to be delayed through the back-derivation delay vector.
  • the post-delay module starts to count, and reaches point d when the count ends, and the time difference between points c and d is post-lead time t2.
  • VCCT_ENABLE is pulled high, and the transmit power of BOSA is turned off at this time.
  • t1 may be greater than or equal to 0.
  • the above-mentioned preamble delay control and postamble delay control are repeatedly performed.
  • the uplink transmission period in this application is 125us
  • the BOSA power supply can be dynamically controlled to achieve the purpose of reducing BOSA power consumption and operating temperature.
  • the effective time length of TXEN can be adjusted according to the size of the uplink data, but the maximum value is less than 125us.
  • the specific sizes of t1 and t2 can be preconfigured.
  • the effective TXEN signal is about 5.7uS.
  • the current is about 100mA when it is emitting light, and about 30mA when it is not emitting light.
  • the power control scheme adopted in this application can avoid the unnecessary increase of BOSA temperature, and effectively improve the service life of BOSA in high temperature scenarios.
  • this solution does not increase the hardware cost of the ONU.
  • the method can be used for an ONU, and the ONU includes a BOSA (BOSA in FIG. 3 ), a BOSA power supply (as in FIG. 3 ) that supplies power to the BOSA power module), a first control terminal for controlling whether the BOSA emits light (such as the control terminal of TXEN in FIG. 3 ), and a second control terminal for controlling whether the BOSA power supply is powered or not (such as the VCCT_ENABLE in FIG. 3 ) Control terminal);
  • the first control terminal and the second control terminal can be located in the CPU in Fig. 3, and share a clock of this CPU; Also can be located in PON MAC, and share the internal clock of this PON MAC, this PON MAC Integrated in the CPU in Figure 3.
  • the power control method may include the following steps:
  • the ONU For at least one uplink transmission period of the ONU, determine the first time when the first control signal takes effect based on the ON time of the uplink transmission, and the first control signal is used for the first control terminal to control the BOSA to emit light.
  • the ONU device may periodically turn on the uplink transmission, and the time when the uplink transmission is turned on each time is the first time when the first control signal takes effect.
  • the first control signal may be the TXEN signal in FIG. 4 , and the low level is active, that is, the first control terminal sends the first control signal to the optical PHY in the ONU (such as the optical PHY in FIG. 3 ), and the optical PHY transmits the first control signal according to the received
  • the first control signal drives the BOSA (the BOSA in FIG. 3 ) to emit light.
  • the first time may be point b in FIG. 4 , that is, the time when the control BOSA (the BOSA in FIG. 3 ) starts to emit light.
  • the first time may be determined according to the working mode of the ONU and the first clock signal; wherein, the working mode of the ONU includes that the first control terminal periodically The BOSA is controlled to emit light, and the first clock signal is a clock signal shared by the first control terminal and the second control terminal.
  • the working mode of the ONU can refer to the Doze mode, Cyclic mode and Watchful mode shown in FIG. 2 .
  • the BOSA is periodically controlled to emit light in the uplink direction.
  • the first clock signal is the clock signal of the CPU; if the first control terminal and the second control terminal are located in the PONMAC and share the internal clock of the PONMAC, the first clock signal is the clock signal of the PONMAC (the XPON clock signal in FIG. 4 ).
  • the PONMAC can be integrated in the CPU in FIG. 3 .
  • S502. Determine a second time when the second control signal takes effect based on the first time, the second time is earlier than the first time, and the second control signal is used by the second control terminal to control the BOSA power supply.
  • the ONU device may periodically turn on the BOSA power supply, and each time the BOSA power supply is turned on is the second time when the second control signal takes effect.
  • the ONU device may periodically turn on the BOSA power supply, and each time the BOSA power supply is turned on is the second time when the second control signal takes effect.
  • the second time may be point a in FIG. 4 , that is, the time when the BOSA power is turned on in advance.
  • the second control signal can be the VCCT_ENABLE signal in FIG. 4, and the low level is active, that is, the second control terminal sends a second control signal to the BOSA power supply (the power supply module in FIG. 3), and the BOSA power supply receives the second control signal according to the second control signal.
  • the signal starts powering the BOSA (BOSA in Figure 3).
  • a first time difference may be obtained, where the first time difference is a set difference between the first time and the second time; based on the first time difference and the first time difference , to determine the second time.
  • the first time difference may be t1 in FIG. 4 , so that the second time may be determined by the first time difference and the first time difference, that is, point a in FIG. 4 .
  • the first time difference can be greater than 0, and its specific size is adjustable in different uplink transmission periods of the ONU, that is, the specific size of each t1 in FIG. 4 is adjustable, and each t1 can be equal or different. Part t1 may be equal and part t1 may be unequal.
  • the power of the BOSA can be turned on in advance, so as to prevent the BOSA from constantly emitting light.
  • the BOSA power can be turned on in advance before the BOSA starts to emit light, that is, the second time is determined based on the first time, and the second time is earlier than the first time.
  • the power consumption of BOSA is reduced, the working temperature of BOSA is lowered, and the service life of BOSA is improved.
  • FIG. 6 is a schematic flowchart of a power supply control method provided by an embodiment of the present application; the method is based on the method shown in FIG. 5 . As shown in FIG. 6 , the power supply control method may further include the following steps:
  • the first time may be point b in FIG. 4 , that is, the time when the control BOSA (the BOSA in FIG. 3 ) starts to emit light.
  • the third time may be point c in FIG. 4 , that is, the time when the control BOSA (such as the BOSA in FIG. 3 ) stops emitting light.
  • the specific size of the time difference between the third time and the first time is adjustable in different uplink transmission periods of the ONU. For example, the time difference between the third time and the first time is adjusted according to the amount of uplink data. , if the amount of uplink data is small, the time difference between the third time and the first time can be reduced; if the amount of uplink data is large, the time difference between the third time and the first time can be increased.
  • the third control signal may be the TXEN signal in FIG. 4 , and the high level is active, that is, the first control terminal sends the third control signal to the optical PHY in the ONU (the optical PHY in FIG. 3 ), and the optical PHY sends the third control signal according to the received
  • the third control signal drives the BOSA (the BOSA in FIG. 3 ) to stop emitting light.
  • S602. Determine a fourth time when the fourth control signal takes effect based on the third time, the fourth time is later than the third time, and the fourth control signal is used by the second control terminal to control the BOSA power supply to stop supplying power.
  • the fourth time may be point d in FIG. 4 , that is, the time when the BOSA power is turned off.
  • the fourth control signal can be the VCCT_ENABLE signal in FIG. 4, and the high level is active, that is, the second control terminal sends the fourth control signal to the BOSA power supply (the power supply module in FIG. 3), and the BOSA power supply is based on the received fourth control signal.
  • the signal stops powering the BOSA (BOSA in Figure 3).
  • a second time difference may be obtained, where the second time difference is a set difference between the fourth time and the third time; based on the third time and the second time difference , to determine the fourth time.
  • the second time difference may be t2 in FIG. 4 , so that the second time may be determined by the difference between the first time and the first time, that is, point d in FIG. 4 .
  • the second time difference may be greater than 0 or equal to 0.
  • its specific size is adjustable in different uplink transmission periods of the ONU, that is, the specific size of each t2 in Figure 4 is adjustable, and each t2 can be equal or unequal, and can also be partially t2 is equal, part t2 is unequal.
  • the power of the BOSA can be turned off, so as to avoid the loss of power consumption caused by turning on the power module of the BOSA when the BOSA is not emitting light.
  • the BOSA power supply can also be turned off after the BOSA stops emitting light, that is, the fourth time is determined based on the third time, And the fourth time is later than the third time, thereby further reducing the power consumption of the BOSA, reducing the working temperature of the BOSA, and improving the service life of the BOSA.
  • FIG. 7 is a schematic structural diagram of a power supply control device provided by an embodiment of the present application.
  • the device can be used in an ONU, and the ONU includes a BOSA (BOSA in FIG. 3 ) and a BOSA power supply (as in FIG. 3 ) that supplies power to the BOSA power module), a first control terminal for controlling whether the BOSA emits light (such as the control terminal of TXEN in FIG. 3 ), and a second control terminal for controlling whether the BOSA power supply is powered or not (such as the VCCT_ENABLE in FIG. 3 ) Control terminal);
  • the first control terminal and the second control terminal can be located in the CPU in Fig. 3, and share a clock of this CPU;
  • the first determination module 71 is configured to, for at least one uplink transmission period of the ONU, determine the first time when the first control signal takes effect based on the ON time of the uplink transmission, and the first control signal is used for the first control terminal controlling the BOSA to emit light;
  • the second determination module 72 is configured to determine, based on the first time, a second time when the second control signal is effective, the second time is earlier than the first time, and the second control signal is used for the second time
  • the control terminal controls the BOSA power supply to supply power
  • the first control module 73 is configured to make the second control signal take effect at the second time.
  • the first determining module 71 is specifically configured to determine the first time according to the working mode of the ONU and the first clock signal; wherein, the working mode of the ONU includes that the first control terminal periodically controls all the time.
  • the BOSA emits light
  • the first clock signal is a clock signal shared by the first control terminal and the second control terminal.
  • the first control signal is specifically used for the optical physical layer PHY in the ONU to drive the BOSA to emit light.
  • the second determining module 72 is specifically configured to obtain a first time difference, where the first time difference is a set difference between the first time and the second time; based on the first time and the second time A time difference determines the second time.
  • the first time difference may be adjustable in different uplink transmission periods of the ONU.
  • the power control device may also include:
  • a third determination module 74 configured to determine a third time when a third control signal takes effect based on the first time, and the third control signal is used by the first control terminal to control the BOSA to stop emitting light;
  • a fourth determination module 75 configured to determine a fourth time when the fourth control signal takes effect based on the third time, the fourth time is later than the third time, and the fourth control signal is used for the second
  • the control terminal controls the BOSA power supply to stop supplying power
  • the second control module 76 is configured to enable the fourth control signal to take effect at the fourth time.
  • the time difference between the third time and the first time may be adjustable in different uplink transmission periods of the ONU.
  • the third control signal is specifically used for the optical PHY in the ONU to drive the BOSA to stop emitting light.
  • the fourth determination module 75 is specifically configured to obtain a second time difference, where the second time difference is a set difference between the fourth time and the third time; based on the third time and the third time The second time difference determines the fourth time.
  • the second time difference may be adjustable in different uplink transmission periods of the ONU.
  • the above-mentioned device is used to execute the power control method in the embodiment shown in the above-mentioned FIG. 5 or FIG. 6 , and the implementation principle and technical effect of the corresponding program module in the device are the same as those shown in the above-mentioned implementation shown in FIG. 5 or FIG. 6 .
  • the description in the power supply control method in the example is similar, and the working process of the device may refer to the corresponding process in the power supply control method in the embodiment shown in FIG. 5 or FIG. 6 , which will not be repeated here.
  • FIG. 8 is a schematic structural diagram of a power supply control device according to an embodiment of the present application.
  • the power supply control device can be used in an ONU to implement the power supply control method in the above method embodiment.
  • the ONU includes a BOSA (BOSA in FIG. 3 ), a BOSA power supply for supplying power to the BOSA (power module in FIG. 3 ), and a first control terminal for controlling whether the BOSA emits light (such as TXEN in FIG. 3 ) control terminal) and a second control terminal (the control terminal of VCCT_ENABLE in FIG. 3 ) for controlling whether the BOSA power supply supplies power; wherein, the first control terminal and the second control terminal can be located in the CPU in FIG.
  • Fig. 8 shows the main components of the power control device, as shown in Fig. 8 shown:
  • the power control device includes at least one processor 811 , at least one transmission medium 812 and at least one memory 813 .
  • the processor 811 , the memory 813 and the input and output interface 812 are connected.
  • the processor 811 is mainly used to process communication protocols and communication data, control the entire power supply control device, execute software programs, and process data of the software programs.
  • the power control device may include a baseband processor and a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data.
  • the central processing unit is mainly used to control the entire power control device, execute software programs, and process data of software programs.
  • the processor 811 in FIG. 8 may integrate the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit may also be independent processors, interconnected by technologies such as a bus.
  • the power control device may include multiple baseband processors to adapt to different network standards, the power control device may include multiple central processors to enhance its processing capability, and the power control device
  • the individual components can be connected by various buses.
  • the baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data may be built in the processor, or may be stored in the memory in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • the memory 813 is mainly used to store software programs and data.
  • the memory 813 may exist independently and be connected to the processor 811 .
  • the memory 813 may be integrated with the processor 811, for example, integrated within a chip, that is, an on-chip memory, or the memory 813 may be an independent storage element, which is not limited in this embodiment of the present application.
  • the memory 813 can store program codes for implementing the technical solutions of the embodiments of the present application, and is controlled and executed by the processor 811 .
  • Embodiments of the present application also provide a computer storage medium, where the computer storage medium includes computer instructions, when the computer instructions are executed on the power supply control device, the power supply control device can execute the above-mentioned power supply control method.
  • An embodiment of the present application further provides a computer program product, characterized in that, when the program code included in the computer program product is executed by a processor in a power supply control device, the above-mentioned power supply control method is implemented.
  • processor in the embodiments of the present application may be a central processing unit (central processing unit, CPU), and may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), application-specific integrated circuits (application specific integrated circuit, ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • CPU central processing unit
  • DSP digital signal processors
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor or any conventional processor.
  • the method steps in the embodiments of the present application may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
  • Software instructions can be composed of corresponding software modules, and software modules can be stored in random access memory (RAM), flash memory, read-only memory (ROM), programmable read-only memory (programmable rom) , PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically erasable programmable read-only memory (electrically EPROM, EEPROM), registers, hard disks, removable hard disks, CD-ROMs or known in the art in any other form of storage medium.
  • An exemplary storage medium is coupled to the processor, such that the processor can read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage medium may reside in an ASIC.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted over a computer-readable storage medium.
  • the computer instructions can be sent from one website site, computer, server, or data center to another website site by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.) , computer, server or data center.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes an integration of one or more available media.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media (eg, solid state disks (SSDs)), and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Optical Communication System (AREA)

Abstract

一种电源控制方法、装置及设备,方法用于ONU,ONU包括BOSA、为BOSA供电的BOSA电源、用于控制BOSA是否发光的第一控制端、以及用于控制BOSA电源是否供电的第二控制端,方法包括:针对ONU的至少一个上行发送周期,基于上行发送的开启时间确定第一控制信号生效的第一时间,第一控制信号用于第一控制端控制BOSA发光(S501);基于第一时间确定第二控制信号生效的第二时间,第二时间早于第一时间,第二控制信号用于第二控制端控制BOSA电源供电(S502);在第二时间使第二控制信号生效(S503),从而降低了BOSA功耗,降低了BOSA工作温度,提高了BOSA使用寿命。

Description

一种电源控制方法、装置及设备
本申请要求于2021年2月23日提交中国国家知识产权局、申请号为202110202024.5、申请名称为“一种电源控制方法、装置及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光通信技术领域,尤其涉及一种电源控制方法、装置及设备。
背景技术
光纤传输作为目前主流的通信传输方案,在企业、家庭终端等场景中应用极为广泛,光网络单元(Optical Network Unit,ONU)作为光纤到户(Fiber To The Home,FTTH)的承载终端节点,在整个光网络中分布十分广泛。随着芯片的集成度越来越高、ONU在家居场景中易于安装的客户诉求越来越强烈,ONU设备逐渐走向小型化;此外,ONU设备的功能越来越强大,导致ONU设备整机功耗密度急剧增大。因此,设备小型化和功耗增大,将导致ONU设备单位能量密度增加,电子元器件工作温度也随之明显提高。
光收发一体组件(bi-directional optical subassembly,BOSA)作为ONU设备的核心器件,且是温度敏感器件。ONU设备工作温度直接影响到BOSA的工作温度,同时影响BOSA使用寿命。但是,如何降低BOSA工作温度,提高BOSA使用寿命,目前还没有更好的优化方案。
发明内容
本申请实施例提供了一种电源控制方法、装置及设备,可以通过动态控制BOSA电源的供电时间来达到降低BOSA功耗和工作温度的目的。
第一方面,本申请实施例提供了一种电源控制方法,所述方法应用于光网络单元ONU,所述ONU包括光收发一体组件BOSA、为所述BOSA供电的BOSA电源、用于控制所述BOSA是否发光的第一控制端、以及用于控制所述BOSA电源是否供电的第二控制端,所述方法包括:
针对所述ONU的至少一个上行发送周期,基于上行发送的开启时间确定第一控制信号生效的第一时间,所述第一控制信号用于所述第一控制端控制所述BOSA发光;
基于所述第一时间确定第二控制信号生效的第二时间,所述第二时间早于所述第一时间,所述第二控制信号用于所述第二控制端控制所述BOSA电源供电;
在所述第二时间使所述第二控制信号生效。
也就是说,在该方法中,针对ONU的每个上行发送周期,可以在BOSA开始发光之前提前打开BOSA电源,即基于第一时间确定第二时间,且第二时间早于第一时间,从而在保证了BOSA正常工作的前提下,降低了BOSA功耗,降低了BOSA工作温度,提高了BOSA使用寿命。
在一种可能的实现方式中,所述基于上行发送的开启时间确定第一控制信号生效的第一时间,包括:
根据所述ONU的工作模式和第一时钟信号,确定所述第一时间;其中,所述ONU的工作模式包括所述第一控制端周期性地控制所述BOSA发光,所述第一时钟信号为所述第一控制端 和第二控制端共用的时钟信号。
也就是说,在该实现方式中,可以基于ONU的工作模式和第一时钟信号确定第一时间,提高了确定第一时间的准确性。
在一种可能的实现方式中,所述第一控制信号具体用于所述ONU中的光物理层PHY驱动所述BOSA发光。
也就是说,在该实现方式中,第一控制端可以向ONU中的光PHY发送第一控制信号,光PHY根据接收到的第一控制信号驱动BOSA发光。
在一种可能的实现方式中,所述基于所述第一时间确定第二控制信号生效的第二时间,包括:
获取第一时间差,所述第一时间差为所述第一时间与所述第二时间之间的设定差值;
基于所述第一时间与所述第一时间差,确定所述第二时间。
也就是说,在该实现方式中,第一时间差指的是BOSA电源开始供电和BOSA开始发光之间的时间差,为了保证BOSA能够正常发光,BOSA电源可以在BOSA开始发光之前开始供电,故而第一时间差可以大于0。
在一种可能的实现方式中,还包括:
基于所述第一时间确定第三控制信号生效的第三时间,所述第三控制信号用于所述第一控制端控制所述BOSA停止发光;
基于所述第三时间确定第四控制信号生效的第四时间,所述第四时间晚于所述第三时间,所述第四控制信号用于所述第二控制端控制所述BOSA电源停止供电;
在所述第四时间使所述第四控制信号生效。
也就是说,在该实现方式中,针对ONU的每个上行发送周期,除了可以在BOSA开始发光之前提前打开BOSA电源之外,还可以在BOSA停止发光之后关闭BOSA电源,即基于第三时间确定第四时间,且第四时间晚于第三时间,从而进一步降低了BOSA功耗,降低了BOSA工作温度,提高了BOSA使用寿命。
在一种可能的实现方式中,所述第三控制信号具体用于所述ONU中的光PHY驱动所述BOSA停止发光。
也就是说,在该实现方式中,第一控制端向ONU中的光PHY发送第三控制信号,光PHY根据接收到的第三控制信号驱动BOSA停止发光。
在一种可能的实现方式中,所述基于所述第三时间确定第四控制信号生效的第四时间,包括:
获取第二时间差,所述第二时间差为所述第四时间与所述第三时间之间的设定差值;
基于所述第三时间与所述第二时间差,确定所述第四时间。
也就是说,在该实现方式中,第二时间差指的是BOSA停止发光与BOSA电源停止供电之间的时间差,此时BOSA电源可以和BOSA同时停止,也可以在BOSA停止发光一段时间后BOSA电源再停止供电,故而第二时间差可以大于或等于0。
在一种可能的实现方式中,所述第一时间与所述第二时间之间的时间差、和/或所述第三时间与所述第一时间之间的时间差、和/或所述第四时间与所述第三时间之间的时间差,在所述ONU的不同上行发送周期内是可调的。
也就是说,在该实现方式中,第一时间与第二时间之间的时间差、第三时间与第一时间之间的时间差、第四时间与所述第三时间之间的时间差,在ONU的不同上行发送周期内均可以是可调的,提高了电源控制的灵活性。
在一种可能的实现方式中,所述第一控制端与所述第二控制端位于所述ONU的中央处理器CPU内、且共用所述CPU的一个时钟。
也就是说,在该实现方式中,第一控制端和第二控制端采用相同的时间源,就是为了达到二者时钟同步,由于CPU内包括多个时间,第一控制端和第二控制端采用的时间源可以为CPU的一个时钟。
在一种可能的实现方式中,所述第一控制端与所述第二控制端位于所述ONU的PONMAC内、且共用所述PONMAC的内部时钟。
也就是说,在该实现方式中,若ONU内集成有PONMAC,比如:ONU的CPU集成有PONMAC,那么第一控制端和第二控制端可以位于该PONMAC内,二者使用的时间源为PONMAC的内部时钟,这样既保证了第一控制端和所述第二控制端采用相同的时间源保持时钟同步,还不增加ONU的硬件成本。
第二方面,本申请实施例提供了一种电源控制装置,其特征在于,所述装置用于控制光网络单元ONU,所述ONU包括光收发一体组件BOSA、为所述BOSA供电的BOSA电源、用于控制所述BOSA是否发光的第一控制端、以及用于控制所述BOSA电源是否供电的第二控制端,所述装置包括:
第一确定模块,用于针对所述ONU的至少一个上行发送周期,基于上行发送的开启时间确定第一控制信号生效的第一时间,所述第一控制信号用于所述第一控制端控制所述BOSA发光;
第二确定模块,用于基于所述第一时间确定第二控制信号生效的第二时间,所述第二时间早于所述第一时间,所述第二控制信号用于所述第二控制端控制所述BOSA电源供电;
第一控制模块,用于在所述第二时间使所述第二控制信号生效。
第三方面,本申请实施例提供了一种电源控制设备,其特征在于,所述设备用于控制光网络单元ONU,所述ONU包括光收发一体组件BOSA、为所述BOSA供电的BOSA电源、用于控制所述BOSA是否发光的第一控制端、以及用于控制所述BOSA电源是否供电的第二控制端,所述设备包括:处理器,所述处理器与存储器耦合;
所述存储器用于存储计算机指令;
当所述设备运行时,所述处理器执行所述计算机指令,使得所述设备执行:
针对所述ONU的至少一个上行发送周期,基于上行发送的开启时间确定第一控制信号生效的第一时间,所述第一控制信号用于所述第一控制端控制所述BOSA发光;
基于所述第一时间确定第二控制信号生效的第二时间,所述第二时间早于所述第一时间,所述第二控制信号用于所述第二控制端控制所述BOSA电源供电;
在所述第二时间使所述第二控制信号生效。
在一种可能的实现方式中,所述基于上行发送的开启时间确定第一控制信号生效的第一时间,包括:
根据所述ONU的工作模式和第一时钟信号,确定所述第一时间;其中,所述ONU的工作模式包括所述第一控制端周期性地控制所述BOSA发光,所述第一时钟信号为所述第一控制端和第二控制端共用的时钟信号。
在一种可能的实现方式中,所述第一控制信号具体用于所述ONU中的光物理层PHY驱动所述BOSA发光。
在一种可能的实现方式中,所述基于所述第一时间确定第二控制信号生效的第二时间,包括:
获取第一时间差,所述第一时间差为所述第一时间与所述第二时间之间的设定差值;
基于所述第一时间与所述第一时间差,确定所述第二时间。
在一种可能的实现方式中,所述设备还执行:
基于所述第一时间确定第三控制信号生效的第三时间,所述第三控制信号用于所述第一控制端控制所述BOSA停止发光;
基于所述第三时间确定第四控制信号生效的第四时间,所述第四时间晚于所述第三时间,所述第四控制信号用于所述第二控制端控制所述BOSA电源停止供电;
在所述第四时间使所述第四控制信号生效。
在一种可能的实现方式中,所述第三控制信号具体用于所述ONU中的光PHY驱动所述BOSA停止发光。
在一种可能的实现方式中,所述基于所述第三时间确定第四控制信号生效的第四时间,包括:
获取第二时间差,所述第二时间差为所述第四时间与所述第三时间之间的设定差值;
基于所述第三时间与所述第二时间差,确定所述第四时间。
在一种可能的实现方式中,所述第一时间与所述第二时间之间的时间差、和/或所述第三时间与所述第一时间之间的时间差、和/或所述第四时间与所述第三时间之间的时间差,在所述ONU的不同上行发送周期内是可调的。
在一种可能的实现方式中,所述第一控制端与所述第二控制端位于所述ONU的中央处理器CPU内、且共用所述CPU的一个时钟。
在一种可能的实现方式中,所述第一控制端与所述第二控制端位于所述ONU的无源光网络PON介质访问控制MAC内、且共用所述PONMAC的内部时钟。
第四方面,本申请实施例提供了一种计算机存储介质,所述计算机存储介质包括计算机指令,当所述计算机指令在电源控制设备上运行时,使得所述设备执行执行上述第一方面所述的方法。
第五方面,本申请实施例提供了一种计算机程序产品,所述计算机程序产品包含的程序代码被电源控制设备中的处理器执行时,实现上述第一方面所述的方法。
本申请实施例提供的电源控制方法、装置及设备,可以通过动态控制BOSA电源的供电时间来达到降低BOSA功耗和工作温度的目的。
附图说明
图1是一种无源光网络的网络架构示意图;
图2是一种节能模式示意图;
图3是一种ONU的结构示意图;
图4是本申请实施例提供的一种电源控制过程的示意图;
图5是本申请实施例提供的一种电源控制方法的流程示意图;
图6是本申请实施例提供的一种电源控制方法的流程示意图;
图7是本申请实施例提供的一种电源控制装置的结构示意图;
图8为本申请实施例提供的一种电源控制设备的结构示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图,对本申请实 施例中的技术方案进行描述。
在本申请实施例的描述中,“示例性的”、“例如”或者“举例来说”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”、“例如”或者“举例来说”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”、“例如”或者“举例来说”等词旨在以具体方式呈现相关概念。
在本申请实施例的描述中,术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,单独存在B,同时存在A和B这三种情况。另外,除非另有说明,术语“多个”的含义是指两个或两个以上。例如,多个系统是指两个或两个以上的系统,多个屏幕终端是指两个或两个以上的屏幕终端。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
图1是一种无源光网络(Passive Optical Networks,PON)的网络架构示意图;如图1所示,PON由光线路终端(Optical LineTerminal,OLT)、ONU或光网络终端(Optical network terminal,ONT)、以及光分配网络(Optical Distribution Network,ODN)组成。其中,ODN为点到多点结构,一个OLT经ODN中的分光器(Spliter)连接多个ONU。
图1中的PON可以包括以太网无源光网络(Ethernet Passive OpticalNetwork,EPON)、吉比特无源光网络(GigabitPassiveOpticalNetwork,GPON)等不同的组网方式。
需要说明的是,本申请涉及到的电源控制可以指的是对图1中的ONU进行电源控制,具体为通过动态控制ONU的BOSA电源的供电时间来达到降低ONU的BOSA功耗和工作温度的目的。
图2是一种节能模式示意图。在对图1中的ONU进行功耗管理时,可以通过OLT和ONU的协同,在ONU设备空闲时,使用周期性的开启上行发送和下行接收方式降低ONU设备功耗。该节能方式可以降低ONU设备的工作温度,从侧面降低ONU设备中BOSA的工作温度。如图2所示,该节能方式可以包括三种节能模式:打盹(Doze)模式、周期(Cyclic)模式以及唤醒(Watchful)模式。
其中,Doze模式是一直开启下行接收帧,周期性打开上行发送帧。
Cyclic模式是在上下行均周期性的关闭,仅仅在业务打开的时隙内接收局端唤醒。其中,局端是图1中的OLT,唤醒操作由OLT发送。比如ONU设备处于休眠状态,OLT需要首先唤醒ONU才能给ONU发送数据,否则发送数据会丢失。
Watchful模式是在Cyclic模式上周期性的短暂打开下行接收,但仅仅接收局端唤醒操作,不接受业务。相对于Cyclic模式,Watchful模式具有更好的时延性能。其中Cyclic和Doze模式可以通过Watchful模式调整下行唤醒脉冲的时间宽度来实现。
但是,图2所示的ONU功耗管理方案需要OLT和ONU进行配合,且实现复杂。同时,ONU必须处于空闲状态,对于ONU设备工作在低速低流量模式下比较有效,而对于需要频繁唤醒ONU的场景下并不能达到节省功耗的目的。
需要说明的是,本申请涉及到的电源控制可以指的是为图2中上行方向供电的BOSA电源进行动态控制。
图3是一种ONU的结构示意图;如图3所示,对于BOSA在板的ONU,通常包括中央处理器(Central Processing Unit,CPU)、光物理层(Physical Layer,PHY)、BOSA三个主要 部分。其中,CPU内部集成PON MAC(Medium Access Control,介质访问控制),该PON MAC用于与光PHY之间交互,BOSA用于实现光电信号之间的相互转换。
其中,VCCT_ENABLE为电源使能信号,CPU控制电源模块为BOSA供电;
TXEN为发光使能信号,由CPU发送给光PHY,即CPU向光PHY发送TXEN信号后,光PHY收到TXEN信号后通过发光二极管(即LD+/LD-)驱动BOSA发光;
TXSD为发送光指示信号,由光PHY发送给CPU;
RXSD为接收光指示信号,由光PHY发送给CPU;
TX_DATA为发送数据通道;
RX_DATA为接收数据通道;
比如:在ONU需要对OLT发送数据时,由CPU将数据通过TX_DATA发送至光PHY,同时CPU通过TXEN信号控制光PHY发光,光PHY检测到TXEN信号有效后,将TX_DATA数据转换成需要传输的数据,通过LD+/LD-驱动BOSA对外发光。在光PHY开始驱动LD+/LD-对外发光时,光PHY对CPU发送TXSD信号。
又比如:在ONU接收到OLT发送的光信号后,BOSA将光信号转换成电信信号传输给光PHY,同时光PHY通过RXSD信号告知CPU收到光信号。
图3中的CPU通过VCCT_ENABLE信号打开或关闭电源模块。
图3中的电源模块与BOSA发送部分相连接,并专门为BOSA发送部分供电。在BOSA发光时电源模块必须打开给BOSA供电,否则发光异常。
需要说明的是,本申请涉及到的电源控制可以指的是对图3中专门为BOSA发送部分供电的电源模块进行动态控制。在本申请中,图3中专门为BOSA发送部分供电的电源模块统一定义为BOSA电源,其他实施例与此相同,不再赘述。
另外,图3中的电源模块可以通过金属—氧化物—半导体场效应晶体管(metal oxide semiconductor,MOS)管来实现。具体为:VCCT_ENABLE为低电平,打开MOS管,为BOSA发送部分供电。在单板启动系统初始化过程中,系统可以通过将VCCT_ENABLE拉低,从而打开MOS管给BOSA发送部分供电,这样无论BOSA是否需要发光,该电源模块一直为BOSA供电,造成了一定的功耗损失。比如:对于家庭终端产品实际用户的上行带宽通常较低,以具有千兆位功能的无源光网络(Gigabit-Capable Passive Optical Networks,GPON)为例上行带宽一般不超过30M,BOSA在发光的过程中,上行发送周期为125uS,而整个125uS的时隙中存在一定时间不发光。以GPON为例,上行带宽为30M时,125uS的时隙隙仅仅约3.69uS发光,并且,不发光时打开电源功耗约为发光时的30%,所以若无论BOSA是否需要发光,电源模块一直为BOSA的发送部分供电,从而造成了一定的功耗损失。
因此,为了解决在BOSA未发光时,打开电源模块所造成的功耗损失,本申请提供了一种电源控制方法、装置及设备,在周期性打开上行发送帧时,可以通过动态控制BOSA电源的供电时间来达到降低BOSA功耗和工作温度的目的。比如:通过将VCCT_ENABLE集成至PON MAC内部,实现VCCT_ENABLE信号与TXEN信号精准同步且时间差可调,可以适应不同外围电路器件,同时不依赖于OLT和ONT协调和ONU必须处于空闲态的限制。需要说明的是,虽然上文是以GPON进行举例说明,但本发明方案并不限于GPON场景下的ONU,其他PON网络的ONU也同样适用。
下面通过具体实施例进行说明。
图4是本申请实施例提供的一种电源控制过程的示意图。如图6所示,TXEN和VCCT_ENABLE均为PON MAC的控制信号,XPON时钟为PON MAC内部时钟,t1和t2为TXEN与 VCCT_ENABLE的时间差。TXEN低电平有效,表示发光,VCCT_ENABLE低有效,表示打开BOSA电源。具体实现过程包括:
第一、将控制BOSA电源的控制信号VCCT_ENABLE集成至PON MAC内部。VCCT_ENABLE脉冲的产生需要与TXEN采用相同的时钟源,即保证时钟同步。
第二、通过PON MAC内部的延时控制模块实现TXEN和VCCT_ENABLE信号时间差。其中t1为前导时间,t2为后导时间,前导时间t1用于提前打开VCCT_ENABLE信号,后导时间t2用于延迟关闭VCCT_ENABLE信号。
前导延时控制模块对前导延时向量进行解析,通过前导延时向量解析出需要延时的时钟信号脉冲个数,延时控制模块依据解析出来的脉冲个数锁定VCCT_ENABLE信号并输出低脉冲,即图4中a点,此时BOSA电源打开。同时,前导延时模块开始计时,计时结束后达到b点,此时TXEN信号拉低,开始指示光PHY发光。a点和b点时间差值为t1,完成前导时间延时。TXEN有效时间长度(b点和c点时间差值)由PON MAC内部的ONU分配发光时隙确定。
其中,图4中的VCCT_ENABLE信号属于开关信号,若用户不需要使用动态开关VCCT_ENABLE信号可以直接输出低电平或高电平。
值得说明的是,t1的取值范围可以为大于0。也就是说,由于在BOSA发光时电源模块必须打开给BOSA供电,否则发光异常,所以TXEN信号拉低之前必须先锁定VCCT_ENABLE信号并输出低脉冲。
第三,实现后导延时时间控制。首先后导延时控制模块对后导延时向量进行解析,通过后导延时向量解析出需要延时的时钟信号脉冲个数。当前时间达到c点,即TXEN无效时,后导延时模块开始计数,计数结束时达到d点,c、d两点之间的时间差为后导时间t2。到达d点时VCCT_ENABLE拉高,此时关闭BOSA的发送电源。
值得说明的是,t1的取值范围可以为大于或等于0。
第四,针对每个上行发送周期,即上行发送周期为125us,重复执行上述前导延时控制和后导延时控制。
值得说明的是,本申请中的上行发送周期为125us,针对每个上行发送周期,均可以通过动态控制BOSA电源来达到降低BOSA功耗和工作温度的目的。其中,TXEN有效时间长度可以根据上行数据量的大小来调整,但其最大值小于125us。t1和t2的具体大小可以预先配置。
以300Mbps(下行)/50Mbps(上行)为例:
在上行带宽为50Mbps时,TXEN信号有效约为5.7uS。按照前导时间t1和后导时间t2各位1us计算,实际BOSA的供电电源约为7.7uS,相对于整个125us的周期内一直供电的供电时间占比为7.7/125=6.16%。
以GPON BOSA方案为例,发光时电流约为100mA,不发光时电流约为30mA。本申请采用的电源控制方案节省功耗约为3.3V×30mA×(100%-6.16%)=0.092W,避免温度升高0.092W×73.9℃/W=6.79度。
按照电子元器件温度每升高10度寿命降低的一半的规则,本申请采用的电源控制方案能避免BOSA温度非必要的升高,有效提升高温场景下BOSA使用寿命。
此外,该方案不额外增加ONU的硬件成本。
图5是本申请实施例提供的一种电源控制方法的流程示意图;该方法可以用于ONU,该ONU包括BOSA(如图3中的BOSA)、为BOSA供电的BOSA电源(如图3中的电源模块)、用于控制BOSA是否发光的第一控制端(如图3中的TXEN的控制端)、以及用于控制所述BOSA电源是否供电的第二控制端(如图3中的VCCT_ENABLE的控制端);其中,第一控制端和第二控 制端可以位于图3中CPU内,且共用该CPU的一个时钟;也可以位于PON MAC内,且共用该PON MAC的内部时钟,该PON MAC集成在图3中CPU内。如图5所示,该电源控制方法可以包括以下步骤:
S501、针对ONU的至少一个上行发送周期,基于上行发送的开启时间确定第一控制信号生效的第一时间,第一控制信号用于第一控制端控制BOSA发光。
具体地,为了降低ONU设备功耗,ONU设备可以周期性地开启上行发送,每次开启上行发送的时间为第一控制信号生效的第一时间。
第一控制信号可以为图4中的TXEN信号,低电平有效,即第一控制端向ONU中的光PHY(如图3中的光PHY)发送第一控制信号,光PHY根据接收到的第一控制信号驱动BOSA(如图3中的BOSA)发光。
第一时间可以为图4中的b点,即控制BOSA(如图3中的BOSA)开始发光的时间。
在基于上行发送的开启时间确定第一控制信号生效的第一时间时,可以根据ONU的工作模式和第一时钟信号,确定第一时间;其中,ONU的工作模式包括第一控制端周期性地控制BOSA发光,第一时钟信号为第一控制端和第二控制端共用的时钟信号。
其中,ONU的工作模式可以参见图2所示的打盹(Doze)模式、周期(Cyclic)模式以及唤醒(Watchful)模式,在这些模式中上行方向均是周期性地控制BOSA发光。
若第一控制端和第二控制端位于图3中CPU内,且共用该CPU的一个时钟,则该第一时钟信号为该CPU的时钟信号;若第一控制端和第二控制端位于PONMAC内,且共用该PONMAC的内部时钟,则该第一时钟信号为该PONMAC的时钟信号(如图4中的XPON时钟信号)。其中,PONMAC可以集成在图3中CPU内。
S502、基于第一时间确定第二控制信号生效的第二时间,第二时间早于第一时间,第二控制信号用于第二控制端控制BOSA电源供电。
具体地,为了进一步降低ONU设备功耗,ONU设备可以周期性地开启BOSA电源供电,每次开启BOSA电源供电为第二控制信号生效的第二时间。并且,为了保证BOSA正常工作,需要在每次开启上行发送之前开启BOSA电源供电,即第二时间早于第一时间。
第二时间可以为图4中的a点,即提前打开BOSA电源的时间。
第二控制信号可以为图4中的VCCT_ENABLE信号,低电平有效,即第二控制端向BOSA电源(如图3中的电源模块)发送第二控制信号,BOSA电源根据接收到的第二控制信号开始为BOSA(如图3中的BOSA)供电。
在基于第一时间确定第二控制信号生效的第二时间时,可以获取第一时间差,第一时间差为第一时间与第二时间之间的设定差值;基于第一时间与第一时间差,确定第二时间。
其中,第一时间差可以为图4中的t1,这样可以通过第一时间与第一时间差来确定的第二时间,即图4中的a点。
第一时间差可以大于0,其具体大小在ONU的不同上行发送周期内是可调的,即图4中各个t1的具体大小是可调的,各个t1可以均相等,也可以均不等,还可以部分t1相等,部分t1不等。
S503、在第二时间使第二控制信号生效。
具体地,控制BOSA开始发光的时间之前,可以提前打开BOSA电源,这样避免了BOSA出现发光常。
由上述实施例可见,针对ONU的每个上行发送周期,可以在BOSA开始发光之前提前打开BOSA电源,即基于第一时间确定第二时间,且第二时间早于第一时间,从而在保证了BOSA 正常工作的前提下,降低了BOSA功耗,降低了BOSA工作温度,提高了BOSA使用寿命。
图6是本申请实施例提供的一种电源控制方法的流程示意图;该方法建立在图5所示方法的基础上,如图6所示,该电源控制方法还可以包括以下步骤:
S601、基于第一时间确定第三控制信号生效的第三时间,第三控制信号用于第一控制端控制BOSA停止发光。
具体地,第一时间可以为图4中的b点,即控制BOSA(如图3中的BOSA)开始发光的时间。第三时间可以为图4中的c点,即控制BOSA(如图3中的BOSA)停止发光的时间。其中,第三时间与第一时间之间的时间差的具体大小在ONU的不同上行发送周期内是可调的,比如:根据上行数据量的大小来调整第三时间与第一时间之间的时间差,若上行数据量较小,可以调小第三时间与第一时间之间的时间差;若上行数据量较大,可以调大第三时间与第一时间之间的时间差。
第三控制信号可以为图4中的TXEN信号,高电平有效,即第一控制端向ONU中的光PHY(如图3中的光PHY)发送第三控制信号,光PHY根据接收到的第三控制信号驱动BOSA(如图3中的BOSA)停止发光。
S602、基于第三时间确定第四控制信号生效的第四时间,第四时间晚于第三时间,第四控制信号用于第二控制端控制BOSA电源停止供电。
具体地,第四时间可以为图4中的d点,即关闭BOSA电源的时间。
第四控制信号可以为图4中的VCCT_ENABLE信号,高电平有效,即第二控制端向BOSA电源(如图3中的电源模块)发送第四控制信号,BOSA电源根据接收到的第四控制信号停止为BOSA(如图3中的BOSA)供电。
在基于第三时间确定第四控制信号生效的第四时间时,可以获取第二时间差,第二时间差为第四时间与第三时间之间的设定差值;基于第三时间与第二时间差,确定第四时间。
其中,第二时间差可以为图4中的t2,这样可以通过第一时间与第一时间差来确定的第二时间,即图4中的d点。
第二时间差可以大于0,也可以等于0。在大于0时,其具体大小在ONU的不同上行发送周期内是可调的,即图4中各个t2的具体大小是可调的,各个t2可以均相等,也可以均不等,还可以部分t2相等,部分t2不等。
S603、在第四时间使第四控制信号生效。
具体地,在控制BOSA停止发光的时间之后,可以关闭BOSA电源,这样避免了在BOSA未发光时,BOSA电源打开电源模块所造成的功耗损失。
由上述实施例可见,针对ONU的每个上行发送周期,除了可以在BOSA开始发光之前提前打开BOSA电源之外,还可以在BOSA停止发光之后关闭BOSA电源,即基于第三时间确定第四时间,且第四时间晚于第三时间,从而进一步降低了BOSA功耗,降低了BOSA工作温度,提高了BOSA使用寿命。
图7为本申请实施例提供的一种电源控制装置的结构示意图,该装置可以用于ONU,该ONU包括BOSA(如图3中的BOSA)、为BOSA供电的BOSA电源(如图3中的电源模块)、用于控制BOSA是否发光的第一控制端(如图3中的TXEN的控制端)、以及用于控制所述BOSA电源是否供电的第二控制端(如图3中的VCCT_ENABLE的控制端);其中,第一控制端和第二控制端可以位于图3中CPU内,且共用该CPU的一个时钟;也可以位于PONMAC内,且共用该PONMAC的内部时钟,该PONMAC集成在图3中CPU内;如图7所示,该电源控制装置可以包括:
第一确定模块71,用于针对所述ONU的至少一个上行发送周期,基于上行发送的开启时间确定第一控制信号生效的第一时间,所述第一控制信号用于所述第一控制端控制所述BOSA发光;
第二确定模块72,用于基于所述第一时间确定第二控制信号生效的第二时间,所述第二时间早于所述第一时间,所述第二控制信号用于所述第二控制端控制所述BOSA电源供电;
第一控制模块73,用于在所述第二时间使所述第二控制信号生效。
所述第一确定模块71具体用于根据所述ONU的工作模式和第一时钟信号,确定所述第一时间;其中,所述ONU的工作模式包括所述第一控制端周期性地控制所述BOSA发光,所述第一时钟信号为所述第一控制端和第二控制端共用的时钟信号。
所述第一控制信号具体用于所述ONU中的光物理层PHY驱动所述BOSA发光。
所述第二确定模块72具体用于获取第一时间差,所述第一时间差为所述第一时间与所述第二时间之间的设定差值;基于所述第一时间与所述第一时间差,确定所述第二时间。
所述第一时间差可以在所述ONU的不同上行发送周期内是可调的。
进一步地,该该电源控制装置还可以包括:
第三确定模块74,用于基于所述第一时间确定第三控制信号生效的第三时间,所述第三控制信号用于所述第一控制端控制所述BOSA停止发光;
第四确定模块75,用于基于所述第三时间确定第四控制信号生效的第四时间,所述第四时间晚于所述第三时间,所述第四控制信号用于所述第二控制端控制所述BOSA电源停止供电;
第二控制模块76,用于在所述第四时间使所述第四控制信号生效。
所述第三时间与所述第一时间之间的时间差可以在所述ONU的不同上行发送周期内是可调的。
所述第三控制信号具体用于所述ONU中的光PHY驱动所述BOSA停止发光。
所述第四确定模块75具体用于获取第二时间差,所述第二时间差为所述第四时间与所述第三时间之间的设定差值;基于所述第三时间与所述第二时间差,确定所述第四时间。
所述第二时间差可以在所述ONU的不同上行发送周期内是可调的。
应当理解的是,上述装置用于执行上述图5或图6所示实施例中的电源控制方法,装置中的相应的程序模块,其实现原理和技术效果与上述图5或图6所示实施例中的电源控制方法中的描述类似,该装置的工作过程可参考上述图5或图6所示实施例中的电源控制方法中的对应过程,此处不再赘述。
图8为本申请实施例提供的一种电源控制设备的结构示意图,该电源控制设备可以用于ONU,用以实现上述方法实施例中的电源控制方法。其中,该ONU包括BOSA(如图3中的BOSA)、为BOSA供电的BOSA电源(如图3中的电源模块)、用于控制BOSA是否发光的第一控制端(如图3中的TXEN的控制端)、以及用于控制所述BOSA电源是否供电的第二控制端(如图3中的VCCT_ENABLE的控制端);其中,第一控制端和第二控制端可以位于图3中CPU内,且共用该CPU的一个时钟;也可以位于PONMAC内,且共用该PONMAC的内部时钟,该PONMAC集成在图3中CPU内;为了便于说明,图8示意了电源控制设备的主要部件,如图8所示:
电源控制设备包括包括至少一个处理器811、至少一个传输介质812和至少一个存储器813。处理器811、存储器813和输入输出接口812相连。
处理器811主要用于对通信协议以及通信数据进行处理,以及对整个电源控制设备进行控制,执行软件程序,处理软件程序的数据。
作为一种可选的实现方式,所述电源控制设备可以包括基带处理器和中央处理器。基带处理器主要用于对通信协议以及通信数据进行处理。中央处理器主要用于对整个电源控制设备进行控制,执行软件程序,处理软件程序的数据。
图8中的处理器811可以集成基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,所述电源控制设备可以包括多个基带处理器以适应不同的网络制式,所述电源控制设备可以包括多个中央处理器以增强其处理能力,所述电源控制设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储器中,由处理器执行软件程序以实现基带处理功能。
存储器813主要用于存储软件程序和数据。存储器813可以是独立存在,与处理器811相连。可选的,存储器813可以和处理器811集成在一起,例如集成在一个芯片之内,即片内存储器,或者存储器813为独立的存储元件,本申请实施例对此不做限定。其中,存储器813能够存储执行本申请实施例的技术方案的程序代码,并由处理器811来控制执行,被执行的各类计算机程序代码也可被视为是处理器811的驱动程序。
本申请实施例还提供了一种计算机存储介质,该计算机存储介质包括计算机指令,当计算机指令在电源控制设备上运行时,使得电源控制设备可以执行上述电源控制方法。
本申请实施例还提供了一种计算机程序产品,其特征在于,所述计算机程序产品包含的程序代码被电源控制设备中的处理器执行时,实现上述电源控制方法。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(random access memory,RAM)、闪存、只读存储器(read-only memory,ROM)、可编程只读存储器(programmable rom,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可 读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。

Claims (20)

  1. 一种电源控制方法,其特征在于,所述方法应用于光网络单元ONU,所述ONU包括光收发一体组件BOSA、为所述BOSA供电的BOSA电源、用于控制所述BOSA是否发光的第一控制端、以及用于控制所述BOSA电源是否供电的第二控制端,所述方法包括:
    针对所述ONU的至少一个上行发送周期,基于上行发送的开启时间确定第一控制信号生效的第一时间,所述第一控制信号用于所述第一控制端控制所述BOSA发光;
    基于所述第一时间确定第二控制信号生效的第二时间,所述第二时间早于所述第一时间,所述第二控制信号用于所述第二控制端控制所述BOSA电源供电;
    在所述第二时间使所述第二控制信号生效。
  2. 根据权利要求1所述的方法,其特征在于,所述基于上行发送的开启时间确定第一控制信号生效的第一时间,包括:
    根据所述ONU的工作模式和第一时钟信号,确定所述第一时间;其中,所述ONU的工作模式包括所述第一控制端周期性地控制所述BOSA发光,所述第一时钟信号为所述第一控制端和第二控制端共用的时钟信号。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一控制信号具体用于所述ONU中的光物理层PHY驱动所述BOSA发光。
  4. 根据权利要求1所述的方法,其特征在于,所述基于所述第一时间确定第二控制信号生效的第二时间,包括:
    获取第一时间差,所述第一时间差为所述第一时间与所述第二时间之间的设定差值;
    基于所述第一时间与所述第一时间差,确定所述第二时间。
  5. 根据权利要求1所述的方法,其特征在于,还包括:
    基于所述第一时间确定第三控制信号生效的第三时间,所述第三控制信号用于所述第一控制端控制所述BOSA停止发光;
    基于所述第三时间确定第四控制信号生效的第四时间,所述第四时间晚于所述第三时间,所述第四控制信号用于所述第二控制端控制所述BOSA电源停止供电;
    在所述第四时间使所述第四控制信号生效。
  6. 根据权利要求5所述的方法,其特征在于,所述第三控制信号具体用于所述ONU中的光PHY驱动所述BOSA停止发光。
  7. 根据权利要求5所述的方法,其特征在于,所述基于所述第三时间确定第四控制信号生效的第四时间,包括:
    获取第二时间差,所述第二时间差为所述第四时间与所述第三时间之间的设定差值;
    基于所述第三时间与所述第二时间差,确定所述第四时间。
  8. 根据权利要求5述的方法,其特征在于,所述第一时间与所述第二时间之间的时间差、和/或所述第三时间与所述第一时间之间的时间差、和/或所述第四时间与所述第三时间之间的时间差,在所述ONU的不同上行发送周期内是可调的。
  9. 根据权利要求1或5所述的方法,其特征在于,所述第一控制端与所述第二控制端位于所述ONU的中央处理器CPU内、且共用所述CPU的一个时钟。
  10. 根据权利要求1或5所所述的方法,其特征在于,所述第一控制端与所述第二控制端位于所述ONU的无源光网络PON介质访问控制MAC内、且共用所述PONMAC的内部时钟。
  11. 一种电源控制装置,其特征在于,所述装置用于控制光网络单元ONU,所述ONU包括光收发一体组件BOSA、为所述BOSA供电的BOSA电源、用于控制所述BOSA是否发光的第一控制端、以及用于控制所述BOSA电源是否供电的第二控制端,所述装置包括:
    第一确定模块,用于针对所述ONU的至少一个上行发送周期,基于上行发送的开启时间确定第一控制信号生效的第一时间,所述第一控制信号用于所述第一控制端控制所述BOSA发光;
    第二确定模块,用于基于所述第一时间确定第二控制信号生效的第二时间,所述第二时间早于所述第一时间,所述第二控制信号用于所述第二控制端控制所述BOSA电源供电;
    第一控制模块,用于在所述第二时间使所述第二控制信号生效。
  12. 一种电源控制设备,其特征在于,所述设备用于控制光网络单元ONU,所述ONU包括光收发一体组件BOSA、为所述BOSA供电的BOSA电源、用于控制所述BOSA是否发光的第一控制端、以及用于控制所述BOSA电源是否供电的第二控制端,所述设备包括:处理器,所述处理器与存储器耦合;
    所述存储器用于存储计算机指令;
    当所述设备运行时,所述处理器执行所述计算机指令,使得所述设备执行:
    针对所述ONU的至少一个上行发送周期,基于上行发送的开启时间确定第一控制信号生效的第一时间,所述第一控制信号用于所述第一控制端控制所述BOSA发光;
    基于所述第一时间确定第二控制信号生效的第二时间,所述第二时间早于所述第一时间,所述第二控制信号用于所述第二控制端控制所述BOSA电源供电;
    在所述第二时间使所述第二控制信号生效。
  13. 根据权利要求12所述的设备,其特征在于,所述基于上行发送的开启时间确定第一控制信号生效的第一时间,包括:
    根据所述ONU的工作模式和第一时钟信号,确定所述第一时间;其中,所述ONU的工作模式包括所述第一控制端周期性地控制所述BOSA发光,所述第一时钟信号为所述第一控制端和第二控制端共用的时钟信号。
  14. 根据权利要求12或13所述的设备,其特征在于,所述第一控制信号具体用于所述ONU中的光物理层PHY驱动所述BOSA发光。
  15. 根据权利要求12所述的设备,其特征在于,所述基于所述第一时间确定第二控制信号生效的第二时间,包括:
    获取第一时间差,所述第一时间差为所述第一时间与所述第二时间之间的设定差值;
    基于所述第一时间与所述第一时间差,确定所述第二时间。
  16. 根据权利要求12所述的设备,其特征在于,所述设备还执行:
    基于所述第一时间确定第三控制信号生效的第三时间,所述第三控制信号用于所述第一控制端控制所述BOSA停止发光;
    基于所述第三时间确定第四控制信号生效的第四时间,所述第四时间晚于所述第三时间,所述第四控制信号用于所述第二控制端控制所述BOSA电源停止供电;
    在所述第四时间使所述第四控制信号生效。
  17. 根据权利要求16所述的设备,其特征在于,所述第三控制信号具体用于所述ONU中的光PHY驱动所述BOSA停止发光。
  18. 根据权利要求16所述的设备,其特征在于,所述基于所述第三时间确定第四控制信号生效的第四时间,包括:
    获取第二时间差,所述第二时间差为所述第四时间与所述第三时间之间的设定差值;
    基于所述第三时间与所述第二时间差,确定所述第四时间。
  19. 根据权利要求16所述的设备,其特征在于,所述第一时间与所述第二时间之间的时间差、和/或所述第三时间与所述第一时间之间的时间差、和/或所述第四时间与所述第三时间之间的时间差,在所述ONU的不同上行发送周期内是可调的。
  20. 根据权利要求12或16所述的设备,其特征在于,所述第一控制端与所述第二控制端位于所述ONU的中央处理器CPU内、且共用所述CPU的一个时钟。
PCT/CN2021/133123 2021-02-23 2021-11-25 一种电源控制方法、装置及设备 WO2022179217A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110202024.5 2021-02-23
CN202110202024.5A CN114967512A (zh) 2021-02-23 2021-02-23 一种电源控制方法、装置及设备

Publications (1)

Publication Number Publication Date
WO2022179217A1 true WO2022179217A1 (zh) 2022-09-01

Family

ID=82954742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133123 WO2022179217A1 (zh) 2021-02-23 2021-11-25 一种电源控制方法、装置及设备

Country Status (2)

Country Link
CN (1) CN114967512A (zh)
WO (1) WO2022179217A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010219878A (ja) * 2009-03-17 2010-09-30 Nec Corp Ponシステム及び通信制御方法
JP2011114383A (ja) * 2009-11-24 2011-06-09 Oki Electric Industry Co Ltd 通信端末装置及び通信端末装置の消費電力制御方法
US20120288279A1 (en) * 2011-05-12 2012-11-15 Cortina Systems, Inc. Power control in an optical network unit
JP2013005395A (ja) * 2011-06-21 2013-01-07 Of Networks:Kk 加入者側終端装置
CN103916191A (zh) * 2012-12-31 2014-07-09 上海贝尔股份有限公司 用于光接入网络的方法和设备
CN107689840A (zh) * 2017-08-18 2018-02-13 青岛海信宽带多媒体技术有限公司 一种光网络单元中光模块的控制方法及光模块、光网络单元
CN209488588U (zh) * 2019-02-14 2019-10-11 国网山东省电力公司济南供电公司 一种用于电力通信网的onu装置
CN110943782A (zh) * 2019-12-12 2020-03-31 深圳市普威技术有限公司 光网络单元的节能方法、装置、光网络单元及存储介质

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010219878A (ja) * 2009-03-17 2010-09-30 Nec Corp Ponシステム及び通信制御方法
JP2011114383A (ja) * 2009-11-24 2011-06-09 Oki Electric Industry Co Ltd 通信端末装置及び通信端末装置の消費電力制御方法
US20120288279A1 (en) * 2011-05-12 2012-11-15 Cortina Systems, Inc. Power control in an optical network unit
JP2013005395A (ja) * 2011-06-21 2013-01-07 Of Networks:Kk 加入者側終端装置
CN103916191A (zh) * 2012-12-31 2014-07-09 上海贝尔股份有限公司 用于光接入网络的方法和设备
CN107689840A (zh) * 2017-08-18 2018-02-13 青岛海信宽带多媒体技术有限公司 一种光网络单元中光模块的控制方法及光模块、光网络单元
CN209488588U (zh) * 2019-02-14 2019-10-11 国网山东省电力公司济南供电公司 一种用于电力通信网的onu装置
CN110943782A (zh) * 2019-12-12 2020-03-31 深圳市普威技术有限公司 光网络单元的节能方法、装置、光网络单元及存储介质

Also Published As

Publication number Publication date
CN114967512A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
US8498534B2 (en) Epon with power-saving features
US8705965B2 (en) Method of recovery from sleep state of an ONU in a PON system capable of power saving
US9106984B2 (en) PON system, subscriber-side terminal apparatus, station-side terminal apparatus, and power saving method
US20120166819A1 (en) Power Management of Optical Access Networks
US20120288279A1 (en) Power control in an optical network unit
US8879594B2 (en) Efficient power control for an automatic laser driver
Zhang et al. Energy-saving scheme based on downstream packet scheduling in Ethernet passive optical networks
US20230155710A1 (en) Optical network power consumption mitigation
WO2022179217A1 (zh) 一种电源控制方法、装置及设备
US9762401B2 (en) Method and apparatus for managing data transmission in a communication network
US20190149255A1 (en) Optical network power consumption mitigation
CN108370272B (zh) 一种光网络单元发射功率控制方法、装置及光网络单元
US20120263469A1 (en) Method for Reducing Power Consumption of a Passive Optical Network
Valcarenghi et al. Energy efficiency in optical access networks
US9344215B2 (en) Systems and methods for advanced power management for optical network terminal systems on chip
Li et al. A comparison of sleep mode mechanisms for PtP and TDM-PONs
JP2017507561A (ja) 光ネットワーク要素、および光ネットワーク要素を動作させる方法
JP5919165B2 (ja) 子局装置、1対n通信システム及び子局装置の消費電力制御プログラム
JP5792132B2 (ja) 通信制御方法、局側通信装置、加入者系ポイント・トゥ・マルチポイント型光通信システム、及び記録媒体
JP2014120883A (ja) 子局装置、親局装置、光通信システムおよび帯域制御方法
JP2013030954A (ja) 通信制御方法、通信システム、局側装置および宅側装置
JP2013098600A (ja) 通信システム、局側装置および通信制御方法
JP5607206B2 (ja) Ponシステム、加入者側終端装置、局側終端装置、制御装置およびパワーセーブ方法
Lee et al. Adaptive control and performance evaluation of burst transmission in energy efficient GPON
JP2013026774A (ja) 通信制御方法、通信システム、局側装置および宅側装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927641

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21927641

Country of ref document: EP

Kind code of ref document: A1