WO2022179051A1 - 标注光纤波长的方法 - Google Patents

标注光纤波长的方法 Download PDF

Info

Publication number
WO2022179051A1
WO2022179051A1 PCT/CN2021/110239 CN2021110239W WO2022179051A1 WO 2022179051 A1 WO2022179051 A1 WO 2022179051A1 CN 2021110239 W CN2021110239 W CN 2021110239W WO 2022179051 A1 WO2022179051 A1 WO 2022179051A1
Authority
WO
WIPO (PCT)
Prior art keywords
code
receiving end
spreading code
signal
wavelength
Prior art date
Application number
PCT/CN2021/110239
Other languages
English (en)
French (fr)
Inventor
郑家骏
吴敏洁
王明辉
周俊
张吉利
朱建银
Original Assignee
江苏科大亨芯半导体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏科大亨芯半导体技术有限公司 filed Critical 江苏科大亨芯半导体技术有限公司
Priority to US17/642,831 priority Critical patent/US12034477B2/en
Publication of WO2022179051A1 publication Critical patent/WO2022179051A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0272Transmission of OAMP information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • H04B10/0775Performance monitoring and measurement of transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0256Optical medium access at the optical channel layer
    • H04J14/0258Wavelength identification or labelling

Definitions

  • the invention relates to the technical field of optical fiber communication, in particular to a method for marking the wavelength of an optical fiber.
  • wavelength division multiplexing is widely used to increase the capacity of a single fiber.
  • the wavelength of the optical fiber is mostly marked by the top-adjusting signal, that is, a small-amplitude low-frequency sinusoidal signal is superimposed for each wavelength.
  • the presence or absence of the sinusoidal signal can transmit low-speed digital information, and the frequency of the low-frequency sinusoidal signal is used for the wavelength. Marking, that is to say, the light wave carries its own wavelength information through the top-adjusting signal.
  • the light wave signal after top adjustment is shown in Figure 1.
  • the top-modulated FM signal is a superimposed low-frequency sinusoidal signal, and its presence or absence is equivalent to a top-modulated AM signal. Because of the specific circuit implementation, both the top and bottom of the light wave will be modulated, and the modulation amplitude of the top top is larger than that of the bottom bottom.
  • the top modulation amplitude is consistent with the top modulation signal code, and the signal code may be generated by performing some encoding on the signal source (for example, Manchester encoding).
  • Figure 2 shows the schematic diagram of the modulation and demodulation principle that can realize the top modulation signal with the low-speed sinusoidal signal. Performing amplitude modulation on the main signal will damage the quality of the main signal, thereby reducing the sensitivity of the receiving end. From the frequency domain point of view, the spectrum of the generated signal after top-modulation is the result of convolution of the spectrum of the top-modulation signal and the spectrum of the main signal.
  • the top-adjusting signal includes not only the low-speed digital signal spectrum but also the low-frequency sinusoidal signal used to mark the wavelength, which makes the final generated signal spectrum quite different from the original main signal spectrum.
  • the technical problem to be solved by the present invention is to overcome the problems of damage to the main signal and difficulty in hardware implementation caused by the sinusoidal signal used to mark wavelengths in the prior art.
  • the first aspect of the present invention provides a method for marking the wavelength of an optical fiber by a transmitting end, including:
  • Spread codes are deployed on both the sender and receiver
  • both the spreading code of the transmitting end and the spreading code of the receiving end establish a corresponding relationship with the corresponding wavelength in the wavelength table.
  • the spreading code is an orthogonal code or a pseudo-random sequence.
  • using the spreading code of the transmitting end to perform spreading processing on the signal code includes:
  • the spread code xi When the signal code is "0", the spread code xi is output, and when the signal code is "1", the spread code xi is inverted and output.
  • selecting the spreading code of the receiving end to perform despreading processing on the signal code by the receiving end includes:
  • using the spreading code of the receiving end to perform sliding despreading on the received extended signal code includes:
  • the relation coefficient determines whether the spreading code of the receiver is the same as that of the sender.
  • the non-normalized cross-correlation coefficients of two bits "0" and "1" are calculated, and it is judged whether the spreading code of the receiving end is the same as that of the transmitting end according to the cross-correlation coefficients of the two bits.
  • the same code includes:
  • the spreading code of the receiving end is the same as that of the transmitting end
  • the spreading code at the receiving end is different from the spreading code at the sending end.
  • the spreading code of the receiving end after judging that the spreading code of the receiving end is different from the spreading code of the sending end, continue to judge whether the sliding distance of the spreading code of the receiving end is equal to the bit width of the spreading code, and if the result of the judgment is yes, then replace the spreading code of the receiving end.
  • the code continues to perform the step of sliding despreading; if the judgment result is no, use the original spreading code of the receiving end to continue to perform the step of sliding despreading.
  • a second aspect of the present invention provides a method for marking the wavelength of an optical fiber by the receiving end demodulating the transmitting end, which is characterized by comprising:
  • the receiving end that receives the optical signal resource is used for receiving the optical signal processed by the top-adjusting end of the transmitting end;
  • Select the spreading code of the receiving end use the spreading code of the receiving end to perform sliding despreading on the received expanded signal code, when the spreading code of the receiving end is the same as the spreading code of the sending end, obtain the original signal code of the sending end, and according to The spreading code at the receiving end obtains the corresponding wavelength.
  • a third aspect of the present invention provides a method for marking optical fiber wavelengths by a system, the system includes a sending end and a receiving end, and the method includes:
  • Spread codes are deployed on both the sender and receiver
  • the receiving end that receives the optical signal resource is used for receiving the optical signal processed by the top-adjusting end of the transmitting end;
  • Select the spreading code of the receiving end use the spreading code of the receiving end to perform sliding despreading on the received expanded signal code, when the spreading code of the receiving end is the same as the spreading code of the sending end, obtain the original signal code of the sending end, and according to The spreading code at the receiving end obtains the corresponding wavelength.
  • the present invention uses the spreading code that has a corresponding relationship with the wavelength to spread and despread the signal code. Due to spectrum spreading, the modulation depth of the AM signal can be greatly reduced, so that the top-modulation signal hardly affects the main signal. After spreading, a fixed-bandwidth low-pass filter can be used to further reduce the impact on the main signal.
  • the receiver can use a fixed-bandwidth low-pass filter in the top-adjusting signal path, which makes the design and implementation of the filter involved easier. The complexity of hardware design is significantly reduced, and the extension code is used to perform wavelength labeling.
  • FIG. 1 is a schematic diagram of a light wave signal after top adjustment in the prior art.
  • FIG. 2 is a schematic diagram of the modulation and demodulation of the prior art capable of realizing the modulation and demodulation signal with a low-speed sinusoidal signal.
  • FIG. 3 is a partial enlarged schematic view of FIG. 2 .
  • FIG. 4 is a schematic flowchart of a method for marking the wavelength of an optical fiber according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a communication process between a sender and a receiver according to an embodiment of the present invention.
  • FIG. 6 is a corresponding relationship diagram between a wavelength and a spreading code according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a Walsh code sliding cross-correlation coefficient according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a Walsh code sliding autocorrelation coefficient according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a sliding cross-correlation coefficient of an m code with a run length of 5 selected according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a sliding autocorrelation coefficient of an m code with a run number of 5 selected according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a light wave signal after top adjustment according to an embodiment of the present invention.
  • FIG. 12 is a hardware schematic diagram of an embodiment of the present invention.
  • the present invention provides a flowchart of the method for labeling the wavelength of an optical fiber shown in FIG.
  • the method mainly consists of two executive bodies, the two executive bodies are the sending end and the receiving end, respectively.
  • the spreading code is embedded in the transmitted top modulation signal, and direct spread spectrum is adopted.
  • Figure 5 shows a schematic diagram of the communication process between the sender and the receiver.
  • a method for marking the wavelength of an optical fiber specifically includes the following steps:
  • S100 Spreading codes are deployed on both the transmitting end and the receiving end.
  • the wavelengths are marked with spreading codes, and a set of spreading codes is selected in one-to-one correspondence with the wavelengths of the light waves to be marked. This correspondence is pre-defined and the same at the sending end and the receiving end.
  • the sending end sends the corresponding spreading code according to its own wavelength, and the receiving end inverts the corresponding light wavelength according to the detected spreading code.
  • the spreading code can be an orthogonal code, such as a Walsh code, or a pseudo-random sequence, such as an m-sequence. For example, as shown in FIG. 6, a corresponding relationship diagram between wavelengths and spreading codes is shown.
  • the 12 32-bit Walsh codes in FIG. 6 are selected from the available 31 codes.
  • the other ones that are not used are the codes with 16 maximum values for 1 autocorrelation coefficient, the codes with 8 maximum and minimum values for 2 autocorrelation coefficients, and the codes with 4 maximum values and 4 minimum values for 4 autocorrelation coefficients.
  • 8 autocorrelation coefficients have codes with 2 maximum values and 2 minimum values, 2 codes with a run number of 1 and a run length of 16, and 2 autocorrelation coefficients with 2 codes close to the maximum value (that is, 28).
  • These unused codes may be misjudged when the receiver captures the spreading codes, and additional steps are needed to confirm them, so they are not used for the time being.
  • Walsh cross-correlation is good, different Walsh codes are completely orthogonal, and the cross-correlation coefficient is 0. However, the sliding cross-correlation coefficient and the sliding auto-correlation coefficient after the Walsh code delay are not all 0, and even the correlation coefficient is equal to 1 (that is, false synchronization), as shown in FIG. 7 and FIG. 8 .
  • the 25 24-bit m-codes in FIG. 6 are selected from pseudo-random codes generated by the primitive polynomial x 24 +x 7 +x 2 +x+1 with an initial value of 0x800000.
  • the runs are 1, 2, 3, 4, 5 and 1, 2, 3, 4, respectively, corresponding to the number of runs being 5 and the number of runs being 4, respectively.
  • Two adjacent codes are separated by at least 144.
  • the selected m codes are not completely orthogonal, but the sliding cross-correlation coefficient and the sliding auto-correlation coefficient are not greater than 0.5, and there is no false synchronization.
  • FIG. 9 shows the relationship between the sliding cross-correlation coefficient and the sliding step size of the m code with a run number of 5, wherein the line with the cross-correlation coefficient of 1 is the autocorrelation coefficient, which is used to display different sliding step size regions.
  • FIG. 10 shows the sliding autocorrelation coefficient of the m code with the run number of 5. It can be seen that the autocorrelation coefficient is -1 or +1 only when it is synchronized, and is not greater than 0.5 in other cases.
  • the 25 m codes selected in Fig. 6 do not exhaust all the 2 24 -1 codes generated by the primitive polynomial, that is to say, more m codes satisfying the condition can be found if necessary.
  • the modulated top signal source usually performs Manchester encoding before transmission, so that the number of consecutive 0s or 1s in the transmitted signal code does not exceed 2.
  • the expanded test code is:
  • the sliding cross-correlation coefficient between two spreading codes and the sliding auto-correlation coefficient of one spreading code are defined as (1) and (2), respectively:
  • the transmitting end sends the signal code, and uses the spreading code of the transmitting end to perform spreading processing on the signal code.
  • using the spreading code of the transmitting end to perform extension processing on the signal code includes:
  • the symbol that defines the signal code is "0" and/or "1", for example, the signal code is 01;
  • S300 Perform top-adjustment processing on the optical signal by using the expanded signal code, and send the top-adjusted optical signal to the receiving end.
  • top modulation is to modulate the expanded higher-speed code with the high-frequency components removed to the amplitude of the main signal, that is, to the top of the main signal. Because of the spectrum expansion, the modulation depth can be very small, which is almost the same as the main signal. No effect.
  • the receiving end that receives the optical signal resource is configured to receive the optical signal processed by the top adjustment at the transmitting end, as shown in FIG. 11 .
  • S600 Select the spreading code of the receiving end, use the spreading code of the receiving end to perform sliding despreading on the received expanded signal code, when the spreading code of the receiving end is the same as the spreading code of the sending end, obtain the original signal code of the sending end, and according to The spreading code at the receiving end obtains the corresponding wavelength.
  • using the spreading code of the receiving end to perform sliding despreading on the received expanded signal code includes multiplying the receiving end's spreading code and the received expanded signal code bit by bit, and calculating "0" and "1".
  • the spreading code of the receiving end is the same as the spreading code of the transmitting end, that is, the original signal code of the transmitting end is obtained, and the corresponding wavelength is obtained according to the spreading code of the receiving end;
  • the spreading code is different from the spreading code at the sending end.
  • the cross-correlation coefficient obtained by adding all the symbols of "0" is 8
  • the cross-correlation coefficient obtained by adding all the symbols of "1” is -8. Since the cross-correlation coefficient is -8 is less than -6 and 8 is greater than 6 , so the spreading code at the receiving end is the same as the spreading code at the sending end, and the fiber wavelength corresponding to the original signal code 01 and the spreading code can be obtained at this time.
  • FIG. 11 a schematic diagram of a light wave signal after top-adjustment according to an embodiment of the present invention is shown in FIG. 11
  • FIG. 12 a hardware schematic diagram thereof is shown in FIG. 12 .
  • Each spreading code corresponds to a specific wavelength, and the spreading code extends the signal code to obtain the expanded signal code.
  • the transmission filter is a low-pass filter, which can filter out the high-frequency components of the expanded signal code to reduce the impact on the main signal. Since the number of bits of the signal code and the spread code is fixed, and the code speed is also fixed, so the low-pass filter The bandwidth of the device is also fixed.
  • Top adjustment is to modulate the signal code with the high frequency components removed to the amplitude of the main signal, that is, to the top of the main signal. Because of spectral spreading, the modulation depth can be small with little effect on the main signal.
  • Electro-optical conversion, optical fiber signal and photoelectric conversion complete the transmission of the modulated top signal through light waves.
  • the main signal and the top signal are split into two channels, and each is filtered with a different filter.
  • the original DC blocking capacitor on the main channel can remain unchanged, and the original cut-off frequency will also remain unchanged, and the main channel receiver behind it will also remain unchanged. constant.
  • a low-pass filter with a fixed bandwidth can be used to filter out noise and the residue on the top signal after the main signal is photoelectrically converted.
  • Despreading is to use the spreading code to recover the spread top modulation signal. If the noise and the residual of the main signal are not filtered out, because the spread spectrum has processing gain, the original top-modulated signal can also be recovered after despreading.
  • the original signal code After the restored top-modulation signal is demodulated, that is, data judgment and other operations, the original signal code can be obtained.
  • the spreading code is used in spreading and despreading. Only when the same spreading code is used by the transmitter and the receiver, the correlation detection peak will appear, and the top modulation information can be correctly demodulated. That is to say, the receiving end can determine which spreading code is used by the transmitting end, and according to the pre-defined correspondence, it also knows the wavelength of the optical fiber sent by the transmitting end, thus completing the method of using the spreading code to mark the wavelength.
  • the present invention uses the spreading code that has a corresponding relationship with the wavelength to spread and despread the signal code. Due to spectrum spreading, the modulation depth of the AM signal can be greatly reduced, so that the top-modulation signal hardly affects the main signal. After spreading, a fixed-bandwidth low-pass filter can be used to further reduce the impact on the main signal.
  • the receiver can use a fixed-bandwidth low-pass filter in the top-adjusting signal path, which makes the design and implementation of the filter involved easier. The complexity of hardware design is significantly reduced, and the extension code is used to perform wavelength labeling.
  • the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

本发明涉及一种标注光纤波长的方法,包括在发送端和接收端均部署有扩展码;发送信码,以及利用发送端的扩展码对信码进行扩展处理;使用扩展后的信码对光信号进行调顶处理,向接收端发送调顶处理后的光信号,由接收端选取接收端的扩展码对信码进行解扩处理,得到发送端原始的信码,并根据接收端的扩展码获得对应的波长。本发明使用与波长具有对应关系的扩展码对信码进行扩展和解扩,由于频谱扩展的原因,可以通过大幅度减少调幅信号的调制深度使得调顶信号几乎不对主信号造成影响,而且使得涉及到的滤波器设计和实现更加容易,显著减少了硬件设计的复杂度,实现利用扩展码来进行波长标注。

Description

标注光纤波长的方法 技术领域
本发明涉及光纤通信技术领域,尤其是指一种标注光纤波长的方法。
背景技术
在光纤通信中,波分复用被广泛用来增加单条光纤容量。为了有效地跟踪和管理通信网络中所使用光波的波长,让每个光波自带波长信息无疑会带来很大的便利。目前多是使用调顶信号标注光纤波长,即为每个波长叠加一个小幅度的低频正弦信号,正弦信号的有无可以传递低速的数字信息,而低频正弦信号的频率被用来对该波长进行标注,也就是说该光波通过调顶信号携带了自身波长信息。
调顶后的光波信号如图1所示。其中的调顶调频信号就是叠加的低频正弦信号,它的有无就相当于是调顶调幅信号。因为具体电路实现的原因光波上顶和下底都会被调制,上顶调制幅度比下底调制幅度大。调顶幅度跟调顶信码一致,信码有可能是经过对信源进行某种编码(例如曼彻斯特编码)产生的。
可以实现带低速正弦信号的调顶信号的调制解调原理图如图2所示。在主信号上面进行振幅调制,会对主信号质量造成损伤,从而引起接收端灵敏度的降低。从频域来看,调顶后生成信号的频谱是调顶信号频谱与主信号频谱卷积的结果。调顶信号不但包括了低速的数字信号频谱也包括了用来标注波长的低频正弦信号,这就使得最终生成的信号频谱与原来的主信号频谱差别比较大。
为了减少调顶信号对主信号的影响,通常需要在调顶信号通路加发送低通滤波器,滤除调幅信号和正弦信号的高次谐波。但是因为用来标注波长的正弦信号的频率有较大的变化范围,这就要求所加的发送低通滤波器的带宽是可变的。因为这个正弦信号的频率比调顶的调幅信号的频谱宽很多,会造成调顶调幅信号的高次谐波不能被有效的滤除。除非在调幅信号之后,与正弦信号相乘之前再加一个信码低通滤波器,这无疑增加了系统的复杂性和实现难度,如图3所示。
发明内容
为此,本发明所要解决的技术问题在于克服现有技术中用来标注波长的正弦信号所带来的主信号受损及硬件实现难度大的问题。
为解决上述技术问题,本发明第一方面提供了一种由发送端标注光纤波长的方法,包括:
在发送端和接收端均部署有扩展码;
发送信码,以及利用所述发送端的扩展码对所述信码进行扩展处理;
使用扩展后的信码对光信号进行调顶处理,向所述接收端发送调顶处理后的光信号,由接收端选取接收端的扩展码对信码进行解扩处理,得到发送端原始的信码,并根据接收端的扩展码获得对应的波长。
在本发明的一个实施例中,所述发送端的扩展码和接收端的扩展码均与波长表中对应的波长建立对应关系。
在本发明的一个实施例中,所述扩展码为正交码或伪随机序列。
在本发明的一个实施例中,利用所述发送端的扩展码对所述信码进行扩展处理包括:
定义信码的码元为“0”和/或“1”;
选择扩展码x=(x 1,x 2,x 3,...,x i,...,x n),其中x i∈{-1,+1},i=1,2,3,...n;
当信码为“0”时,将所述扩展码x i输出,当信码为“1”时,将所述扩展码x i取反后输出。
在本发明的一个实施例中,由接收端选取接收端的扩展码对信码进行解扩处理包括:
选取接收端的扩展码,使用所述接收端的扩展码对接收到的扩展后的信码进行滑动解扩,当接收端的扩展码与发送端的扩展码相同时,发送端的原始信码会被正确地解调出来。
在本发明的一个实施例中,使用所述接收端的扩展码对接收到的扩展后的信码进行滑动解扩包括:
逐位将所述接收端的扩展码与接收到的扩展后的信码相乘,计算“0”和“1”两个位的非归一化的互相关系数,根据所述两个位的互相关系数判断接收端的扩展码是否与发送端的扩展码相同。
在本发明的一个实施例中,计算“0”和“1”两个位的非归一化的互相关系数,根据所述两个位的互相关系数判断接收端的扩展码是否与发送端的扩展码相同包括:
定义阈值;
分别将“0”和“1”两个位的所有码元相加计算两个位的互相关系数,判断互相关系数是否在阈值范围以内;
若判断结果为否,则接收端的扩展码与发送端的扩展码相同;
若判断结果为是,则接收端的扩展码与发送端的扩展码不同。
在本发明的一个实施例中,在判断接收端的扩展码与发送端的扩展码不同后,继续判断接收端的扩展码的滑动距离是否等于扩展码位宽,若判断结果为是,则更换接收端的扩展码继续执行滑动解扩的步骤;若判断结果为否,则使用原先的接收端的扩展码继续执行滑动解扩的步骤。
本发明第二方面提供了一种由接收端解调发送端标注光纤波长的方法,其特征在于,包括:
接收光信号资源的接收端用于接收发送端经过调顶处理后的光信号;
去除光信号的光波后,得到发送端经过扩展后的信码,以及
选取接收端的扩展码,使用所述接收端的扩展码对接收到的扩展后的信码进行滑动解扩,当接收端的扩展码与发送端的扩展码相同时,得到发送端原始的信码,并根据接收端的扩展码获得对应的波长。
本发明第三方面提供了一种由系统标注光纤波长的方法,所述系统包括发送端和接收端,所述方法包括:
由发送端执行以下步骤:
在发送端和接收端均部署有扩展码;
发送信码,以及利用所述发送端的扩展码对所述信码进行扩展处理;
使用扩展后的信码对光信号进行调顶处理,向所述接收端发送调顶处理后的光信号,由接收端选取接收端的扩展码对信码进行解扩处理,得到发送端原始的信码,并根据接收端的扩展码获得对应的波长;
由接收端执行以下步骤:
接收光信号资源的接收端用于接收发送端经过调顶处理后的光信号;
去除光信号的光波后,得到发送端经过扩展后的信码,以及
选取接收端的扩展码,使用所述接收端的扩展码对接收到的扩展后的信码进行滑动解扩,当接收端的扩展码与发送端的扩展码相同时,得到发送端原始的信码,并根据接收端的扩展码获得对应的波长。
本发明的上述技术方案相比现有技术具有以下优点:
本发明使用与波长具有对应关系的扩展码对信码进行扩展和解扩,由于频谱扩展的原因,可以通过大幅度减少调幅信号的调制深度使得调顶信号几乎不对主信号造成影响,而且发送端在扩频后可以使用固定带宽的低通滤波器以进一步减少对主信号的影响,接收端在调顶信号通路可以使用固定带宽的低通滤波器,使得涉及到的滤波器设计和实现更加容易,显著减少了硬件设计的复杂度,实现利用扩展码来进行波长标注。
附图说明
为了使本发明的内容更容易被清楚的理解,下面根据本发明的具体实施例并结合附图,对本发明作进一步详细的说明,其中
图1是现有技术调顶后的光波信号示意图。
图2是现有技术可以实现带低速正弦信号的调顶信号的调制解调原理图。
图3是图2的局部放大示意图。
图4是本发明实施例一种标注光纤波长的方法的流程示意图。
图5是本发明实施例发送端与接收端通信过程的示意图。
图6是本发明实施例一种波长与扩展码的对应关系图。
图7是本发明实施例Walsh码滑动互相关系数的示意图。
图8是本发明实施例Walsh码滑动自相关系数的示意图。
图9是本发明实施例挑选的游程数为5的m码的滑动互相关系数的示意图。
图10是本发明实施例挑选的游程数为5的m码的滑动自相关系数的示意图。
图11是本发明实施例调顶后的光波信号的示意图。
图12是本发明实施例的硬件原理图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
为了更好的理解本发明实施例公开的一种标注光纤波长的方法,本发明给出了图4所示的标注光纤波长的方法流程图,从图4能够知道,本发明一种标注光纤波长的方法中主要由两个执行主体,两个执行主体分别是发送端和接收端,为了将扩展码从发送端传递到接收端,把扩展码嵌入到发送的调顶信号中,采取直接扩频的方式来进行,图5给出了发送端与接收端通信过程的示意图。
结合图4和图5所示,本发明实施例一种标注光纤波长的方法,具体包括以下步骤:
S100:在发送端和接收端均部署有扩展码。
示例地,利用扩展码来标注波长,选定一组扩展码与需要标注的光波波长一一对应。这一对应关系在发送端和接收端是预先定义且相同的,发送端根据自身的波长发送对应的扩展码,接收端根据检测到的扩展码反推出对应的光波波长。扩展码可以是正交码,例如Walsh码,也可以是伪随机序列, 例如m序列。例如图6所示的一种波长与扩展码的对应关系图。
示例地,图6中的12个32位Walsh码是从可用的31个码中挑选出来的。其它不用的是1个自相关系数出现16个最大值的码,2个自相关系数出现8个最大值和最小值的码,4个自相关系数出现4个最大值和4个最小值的码,8个自相关系数出现2个最大值和2个最小值的码,2个游程数为1游程为16的码,2个自相关系数出现2个接近最大值(也就是28)的码。这些不用的码在接收端捕获扩展码的时候有误判的可能,需要额外的步骤来确认,故暂且不用。Walsh互相关性好,不同Walsh码是完全正交的,互相关系数为0。但是Walsh码延时后的滑动互相关系数和滑动自相关系数就不全为0了,甚至还会呈现相关系数等于1(也就是假同步)的情况,如图7和图8所示。
示例地,图6中的25个24位m码是从本原多项式x 24+x 7+x 2+x+1在初始值为0x800000的情况下产生的伪随机码挑选出来的。游程分别为1,2,3,4,5和1,2,3,4,分别对应游程数为5和游程数为4。相邻两个码间隔至少144。除了可以标注两套12波的波长,还有一个保留只做扩频和解扩,不做波长标注。挑选出来的m码不是完全正交的,但滑动互相关系数和滑动自相关系数都不大于0.5,并且不会呈现假同步的情况。图9示意游程数为5的m码的滑动互相关系数与滑动步长的关系,其中出现互相关系数为1的那条线是自相关系数,用来显示不同的滑动步长区域。图10示意游程数为5的m码的滑动自相关系数,可见只有同步的时候自相关系数才是-1或者+1,其它情况下都不大于0.5。图6中挑选的25个m码并没有穷尽所有由本原多项式产生的2 24-1个码,也就是说,如果需要的话还可以找到更多的满足条件的m码。
示例地,调顶信源通常会在发送前进行曼彻斯特编码,这样发送的信码中连续0或者1的个数就不会超过2。我们用包含5个位的一段信码“00110”作为测试码来进行相关系数的计算。扩展后的测试码为:
z=(z 1,z 2,...,z n,z n+1,z n+2,...,z 5n)
=(x 1,x 2,...,x n,x 1,x 2,...,x n,-x 1,-x 2,...,-x n,-x 1,-x 2,...,-x n,x 1,x 2,...,x n);
两个扩展码之间的滑动互相关系数和一个扩展码的滑动自相关系数定义分别为(1)和(2):
Figure PCTCN2021110239-appb-000001
Figure PCTCN2021110239-appb-000002
式中,x和y是其中两个扩展码,x i,y i∈{-1,+1},i=1,2,3,...n,两个码之间的滑动互相关系数越小越好,一个码的滑动自相关系数越小越好。
S200:发送端发送信码,以及利用发送端的扩展码对信码进行扩展处理。
示例地,请参阅图5所示,利用发送端的扩展码对信码进行扩展处理包括:
定义信码的码元为“0”和/或“1”,例如信码为01;
选择扩展码x=(x 1,x 2,x 3,...,x i,...,x n),其中x i∈{-1,+1},i=1,2,3,...n,例如发送端的扩展码是+1-1-1+1-1+1+1-1,为了方便计算相关系数用“-1”来取代0,用“+1”取代1,利用高码率的扩展码+1-1-1+1-1+1+1-1将原来信码01的频谱扩展,当信码是“0”时,将扩展码x i输出,当信码为“1”时,将扩展码x i取反后输出,即获得扩展后的信码为+1-1-1+1-1+1+1-1-1+1+1-1+1-1-1+1。
S300:使用扩展后的信码对光信号进行调顶处理,向接收端发送调顶处理后的光信号。
示例地,调顶是把去掉高频分量的已扩展较高速码调制到主信号的幅度上,也就是调制到主信号的顶部,因为频谱扩展的原因,调制深度可以很小,对主信号几乎没有影响。
S400:接收光信号资源的接收端用于接收发送端经过调顶处理后的光信号,如图11所示。
S500:接收端去除光信号的光波后,得到发送端经过扩展后的信码。
S600:选取接收端的扩展码,使用接收端的扩展码对接收到的扩展后的信码进行滑动解扩,当接收端的扩展码与发送端的扩展码相同时,得到发送端原始的信码,并根据接收端的扩展码获得对应的波长。
示例地,使用接收端的扩展码对接收到的扩展后的信码进行滑动解扩包括逐位将接收端的扩展码与接收到的扩展后的信码相乘,计算“0”和“1”两个位的非归一化的互相关系数,根据两个位的互相关系数判断接收端的扩展码是否与发送端的扩展码相同。具体包括:首先定义阈值,例如阈值为-6和6;然后分别将“0”和“1”两个位的所有码元相加计算两个位的互相关系数,判断互相关系数是否在阈值范围以内,若判断结果为否,则接收端的扩展码与发送端的扩展码相同,即得到发送端原始的信码,并根据接收端的扩展码获得对应的波长;若判断结果为是,则接收端的扩展码与发送端的扩展码不同,这时候继续判断接收端的扩展码的滑动距离是否等于扩展码位宽,若判断结果为是,则更换接收端的扩展码继续执行滑动解扩的步骤;若判断结果为否,则使用原先的接收端的扩展码继续执行滑动解扩的步骤。例如“0”的所有码元相加得到的互相关系数为8,“1”的所有码元相加得到的互相关系数为-8,由于互相关系数为-8小于-6且8大于6,因此接收端的扩展码和发送端的扩展码相同,这时即可得到原始信码为01和扩展码对应的光纤波长。
还有本发明实施例调顶后的光波信号的示意图如图11所示,其硬件原理图如图12所示。
每个扩展码与一个特定的波长对应,扩展码对信码进行扩展后得到扩展后的信码。
发送滤波器是低通滤波器,可以把已扩展的信码的高频分量滤除以降低对主信号的影响,由于信码和扩展码的位数固定,码速也固定,所以低通滤波器的带宽也是固定的。
调顶是把去掉高频分量的信码调制到主信号的幅度上,也就是调制到主信号的顶部。因为频谱扩展的原因,调制深度可以很小,对主信号几乎没有影响。
电光转换,光纤信号和光电转换完成已调顶信号通过光波的传输。
在接收端,主信号和调顶信号分成两个通道,并各自用不同的滤波器进行滤波。
因为调顶信号的调制深度很小,对主信号的影响很小,所以在主通道上的原有的隔直电容可以不变,原来的截止频率也就不变,后面的主通道接收机也不变。
在调顶通道上,除了隔直电容,可以使用一个固定带宽的低通滤波器来滤除噪声和主信号经过光电转换后在调顶信号上的残余。
解扩是利用扩展码把已扩的调顶信号恢复出来。如果噪声和主信号的残余没有滤除干净,因为扩频有处理增益,经过解扩后原始的调顶信号也是可以被恢复出来的。
恢复后的调顶信号经过解调,也就是数据判决等操作,就可以得到原始的信码了。
扩展码用在扩展和解扩中,只有当发送端和接收端使用的扩展码是同一个的情况下,才会出现相关性检测峰值,调顶信息才能被正确的解调出来。也就是说,接收端可以确定发送端使用了哪个扩展码,根据预先定义的对应关系,也就知道了发送端发送的光纤的波长,如此即完成了利用扩展码来标注波长的方法。
本发明使用与波长具有对应关系的扩展码对信码进行扩展和解扩,由于频谱扩展的原因,可以通过大幅度减少调幅信号的调制深度使得调顶信号几 乎不对主信号造成影响,而且发送端在扩频后可以使用固定带宽的低通滤波器以进一步减少对主信号的影响,接收端在调顶信号通路可以使用固定带宽的低通滤波器,使得涉及到的滤波器设计和实现更加容易,显著减少了硬件设计的复杂度,实现利用扩展码来进行波长标注。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的 步骤。
显然,上述实施例仅仅是为清楚地说明所作的举例,并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

  1. 一种由发送端标注光纤波长的方法,其特征在于,包括:
    在发送端和接收端均部署有扩展码;
    发送信码,以及利用所述发送端的扩展码对所述信码进行扩展处理;
    使用扩展后的信码对光信号进行调顶处理,向所述接收端发送调顶处理后的光信号,由接收端选取接收端的扩展码对信码进行解扩处理,得到发送端原始的信码,并根据接收端的扩展码获得对应的波长。
  2. 根据权利要求1所述的由接收端标注光纤波长的方法,其特征在于:所述发送端的扩展码和接收端的扩展码均与波长表中对应的波长建立对应关系。
  3. 根据权利要求1所述的由接收端标注光纤波长的方法,其特征在于:所述扩展码为正交码或伪随机序列。
  4. 根据权利要求1所述的由接收端标注光纤波长的方法,其特征在于:利用所述发送端的扩展码对所述信码进行扩展处理包括:
    定义信码的码元为“0”和/或“1”;
    选择扩展码x=(x 1,x 2,x 3,…,x i,…,x n),其中x i∈{-1,+1},i=1,2,3,…n;
    当信码为“0”时,将所述扩展码x i输出,当信码为“1”时,将所述扩展码x i取反后输出。
  5. 根据权利要求1所述的由接收端标注光纤波长的方法,其特征在于:由接收端选取接收端的扩展码对信码进行解扩处理包括:
    选取接收端的扩展码,使用所述接收端的扩展码对接收到的扩展后的信码进行滑动解扩,当接收端的扩展码与发送端的扩展码相同时,发送端的原始信码会被正确地解调出来。
  6. 根据权利要求5所述的由接收端标注光纤波长的方法,其特征在于:使用所述接收端的扩展码对接收到的扩展后的信码进行滑动解扩包括:
    逐位将所述接收端的扩展码与接收到的扩展后的信码相乘,计算“0”和“1”两个位的非归一化的互相关系数,根据所述两个位的互相关系数判断接收端的扩展码是否与发送端的扩展码相同。
  7. 根据权利要求6所述的由接收端标注光纤波长的方法,其特征在于:计算“0”和“1”两个位的非归一化的互相关系数,根据所述两个位的互相关系数判断接收端的扩展码是否与发送端的扩展码相同包括:
    定义阈值;
    分别将“0”和“1”两个位的所有码元相加计算两个位的互相关系数,判断互相关系数是否在阈值范围以内;
    若判断结果为否,则接收端的扩展码与发送端的扩展码相同;
    若判断结果为是,则接收端的扩展码与发送端的扩展码不同。
  8. 根据权利要求7所述的由接收端标注光纤波长的方法,其特征在于:在判断接收端的扩展码与发送端的扩展码不同后,继续判断接收端的扩展码的滑动距离是否等于扩展码位宽,若判断结果为是,则更换接收端的扩展码继续执行滑动解扩的步骤;若判断结果为否,则使用原先的接收端的扩展码继续执行滑动解扩的步骤。
  9. 一种由接收端解调发送端标注光纤波长的方法,其特征在于,包括:
    接收光信号资源的接收端用于接收发送端经过调顶处理后的光信号;
    去除光信号的光波后,得到发送端经过扩展后的信码,以及
    选取接收端的扩展码,使用所述接收端的扩展码对接收到的扩展后的信码进行滑动解扩,当接收端的扩展码与发送端的扩展码相同时,得到发送端原始的信码,并根据接收端的扩展码获得对应的波长。
  10. 一种由系统标注光纤波长的方法,其特征在于,所述系统包括发送端和接收端,所述方法包括:
    由发送端执行以下步骤:
    在发送端和接收端均部署有扩展码;
    发送信码,以及利用所述发送端的扩展码对所述信码进行扩展处理;
    使用扩展后的信码对光信号进行调顶处理,向所述接收端发送调顶处理后的光信号,由接收端选取接收端的扩展码对信码进行解扩处理,得到发送端原始的信码,并根据接收端的扩展码获得对应的波长;
    由接收端执行以下步骤:
    接收光信号资源的接收端用于接收发送端经过调顶处理后的光信号;
    去除光信号的光波后,得到发送端经过扩展后的信码,以及
    选取接收端的扩展码,使用所述接收端的扩展码对接收到的扩展后的信码进行滑动解扩,当接收端的扩展码与发送端的扩展码相同时,得到发送端原始的信码,并根据接收端的扩展码获得对应的波长。
PCT/CN2021/110239 2021-02-26 2021-08-03 标注光纤波长的方法 WO2022179051A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/642,831 US12034477B2 (en) 2021-02-26 2021-08-03 Method for labeling optical fiber wavelength

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110218138.9 2021-02-26
CN202110218138.9A CN113037678B (zh) 2021-02-26 2021-02-26 标注光纤波长的方法

Publications (1)

Publication Number Publication Date
WO2022179051A1 true WO2022179051A1 (zh) 2022-09-01

Family

ID=76461793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110239 WO2022179051A1 (zh) 2021-02-26 2021-08-03 标注光纤波长的方法

Country Status (3)

Country Link
US (1) US12034477B2 (zh)
CN (1) CN113037678B (zh)
WO (1) WO2022179051A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113037678B (zh) * 2021-02-26 2021-11-23 江苏科大亨芯半导体技术有限公司 标注光纤波长的方法
CN113824526B (zh) * 2021-11-22 2022-02-18 北京邮电大学 一种光标记调顶的柔性光互联方法
CN114362876B (zh) * 2022-01-07 2023-12-12 武汉邮电科学研究院有限公司 一种基于码分复用的波长标签传输方法、设备及系统
CN114944868B (zh) * 2022-03-22 2024-06-28 江苏科大亨芯半导体技术有限公司 一种无源光网络的调顶系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1581756A (zh) * 2003-08-06 2005-02-16 华为技术有限公司 光调顶传输方法和系统
CN102170310A (zh) * 2011-05-06 2011-08-31 中兴通讯股份有限公司 一种光网络通道检测的方法及装置
US20120076497A1 (en) * 2006-02-21 2012-03-29 Huawei Technologies Co., Ltd. Method and Apparatus for Loading, Detecting, and Monitoring Channel-Associated Optical Signals
CN102624479A (zh) * 2012-03-30 2012-08-01 中兴通讯股份有限公司 波长标签传输方法及装置
CN113037678A (zh) * 2021-02-26 2021-06-25 江苏科大亨芯半导体技术有限公司 标注光纤波长的方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE523374C2 (sv) * 1997-07-31 2004-04-13 Ericsson Telefon Ab L M Kommunikation med hjälp av spektrumspridningsmetoder över optiska fibrer
US7702245B1 (en) * 2001-08-15 2010-04-20 Cisco Technology, Inc. Spread spectrum in-band utility communication channel
US20050019040A1 (en) * 2003-07-24 2005-01-27 Trutna William R. Optical communication system and method using spread-spectrum encoding
US20050129094A1 (en) * 2003-12-11 2005-06-16 Trutna William R.Jr. Communication system using wavelength spread-spectrum coding
CN101030822B (zh) * 2006-02-27 2012-02-01 华为技术有限公司 光网络单元和光线路终端及无源光纤接入网及其传输方法
CN101459487A (zh) * 2007-06-20 2009-06-17 华为技术有限公司 一种光标识及调制、解调方法及装置
CN101330485B (zh) * 2007-06-20 2013-02-27 华为技术有限公司 一种光标识调制、解调方法及装置
CN101729185B (zh) * 2008-10-21 2013-06-05 华为技术有限公司 光信号的标识或检测方法、装置以及标识及检测系统
CN102595259A (zh) * 2012-03-05 2012-07-18 中兴通讯股份有限公司 一种实现对波长标签进行编码的方法和系统
CN102624478B (zh) * 2012-03-16 2017-11-07 中兴通讯股份有限公司 一种波长标签加载方法和装置
CN111211860B (zh) * 2019-12-30 2022-02-08 武汉邮电科学研究院有限公司 一种基于多载波技术的波长标签的传输方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1581756A (zh) * 2003-08-06 2005-02-16 华为技术有限公司 光调顶传输方法和系统
US20120076497A1 (en) * 2006-02-21 2012-03-29 Huawei Technologies Co., Ltd. Method and Apparatus for Loading, Detecting, and Monitoring Channel-Associated Optical Signals
CN102170310A (zh) * 2011-05-06 2011-08-31 中兴通讯股份有限公司 一种光网络通道检测的方法及装置
CN102624479A (zh) * 2012-03-30 2012-08-01 中兴通讯股份有限公司 波长标签传输方法及装置
CN113037678A (zh) * 2021-02-26 2021-06-25 江苏科大亨芯半导体技术有限公司 标注光纤波长的方法

Also Published As

Publication number Publication date
CN113037678B (zh) 2021-11-23
US20230353239A1 (en) 2023-11-02
US12034477B2 (en) 2024-07-09
CN113037678A (zh) 2021-06-25

Similar Documents

Publication Publication Date Title
WO2022179051A1 (zh) 标注光纤波长的方法
JP4771646B2 (ja) ゴレイ相補系列変調によるスペクトラム拡散ディジタル通信方法、送信機および受信機
CN111565161B (zh) 一种基带发射机、基带接收机、调制解调系统和终端
EP0949765A2 (en) Digital modulation system using extended code set
CA2995500C (en) A differential chaos shift keying (dcsk) based on hybrid chaotic system
JP2008306477A (ja) 変調装置、復調装置、および音響信号伝送方法
JP3229415B2 (ja) スペクトル拡散通信方法
KR100654935B1 (ko) Ook 또는 psk 변복조를 이용한 무선 led 통신시스템
CA2318271C (en) Method and system for generating a complex pseudonoise sequence for processing a code division multiple access signal
KR101881404B1 (ko) 차동 위상 변조 방식 수중 음향 통신 시스템의 상관 폭 기반 수신장치 및 수신방법
US7418027B2 (en) Method and apparatus for ultra wideband communications system employing a spread spectrum technique transmitting a baseband signal over a wide frequency band
US20060171447A1 (en) Method for interwoven spreading codes
KR101397966B1 (ko) 수중 음향 코드 분할 다중 접속 통신 시스템에서 유사잡음 획득을 이용한 위상 오류 정정 장치 및 방법
RU2599578C2 (ru) Способ организации помехоустойчивой связи
KR101509212B1 (ko) 광 무선통신 시스템의 송신 장치 및 방법, 수신 장치 및 수신 방법
Hameed High data rate of a novel modulation scheme based on orthogonal chaotic signals
KR102650673B1 (ko) Css 신호를 이용하는 수중 통신 시스템 및 그 수중 통신방법
JP3310545B2 (ja) スペクトル拡散復調器及びこれを用いたスペクトル拡散通信装置
JP3715399B2 (ja) 符号分割多重接続方式を用いた通信装置
JP3365186B2 (ja) スペクトラム拡散通信装置
KR20070070486A (ko) 골레이 보완형 시퀀스 변조에 의한 확장 스펙트럼 디지털통신 방법
EP1844564A1 (en) Method for interwoven spreading codes
JP2009200657A (ja) 衛星通信システム、送信装置、受信装置及びそれらに用いる衛星通信方法
JP3908853B2 (ja) 干渉信号再生装置
JP3280197B2 (ja) スペクトラム拡散通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927480

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21927480

Country of ref document: EP

Kind code of ref document: A1