WO2022178893A1 - 通信方法及装置 - Google Patents

通信方法及装置 Download PDF

Info

Publication number
WO2022178893A1
WO2022178893A1 PCT/CN2021/078338 CN2021078338W WO2022178893A1 WO 2022178893 A1 WO2022178893 A1 WO 2022178893A1 CN 2021078338 W CN2021078338 W CN 2021078338W WO 2022178893 A1 WO2022178893 A1 WO 2022178893A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency band
band combination
terminal device
network device
match
Prior art date
Application number
PCT/CN2021/078338
Other languages
English (en)
French (fr)
Inventor
贾玖玲
陈洪强
韩磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202180003827.6A priority Critical patent/CN115918242A/zh
Priority to PCT/CN2021/078338 priority patent/WO2022178893A1/zh
Publication of WO2022178893A1 publication Critical patent/WO2022178893A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a communication method and apparatus.
  • 5G networks have emerged as the times require.
  • 5G base stations due to the difficulty and cost of construction of 5G base stations, most of the 5G base stations have not been installed in place.
  • operators considering the widespread popularity of 4G networks and the acceptance of the majority of users, operators generally use non-independent networking (non-independent networking). -stand alone, NSA) networking method to speed up the deployment process of 5G network.
  • the NSA networking adopts the 4G-5G dual connection (EN-DC) method, anchoring the 5G new radio (NR) control plane (control plane) to the 4G long term evolution (LTE) core network, 5G NR is used to carry services on the user plane.
  • the control plane is the channel used to send and schedule signaling required for resources
  • the user plane is the channel used to transmit user data. Due to the particularity of EN-DC, a high degree of cooperation between the terminal equipment and the base station is required to provide normal and high-quality data services. Otherwise, network compatibility problems are more likely to be exposed.
  • the terminal device may report the EN-DC frequency band combination supported by the terminal device to the 4G base station.
  • the 4G base station delivers the EN-DC frequency band combination to the terminal device to configure the terminal device to activate carrier aggregation (CA), so that the terminal device enters the dual connectivity state.
  • CA carrier aggregation
  • the EN-DC frequency band combination delivered by the 4G base station does not match the EN-DC frequency band combination supported by the terminal device, so that the terminal device cannot use the EN-DC frequency band combination delivered by the 4G base station.
  • the terminal device will initiate a radio resource control (radio resource control, RRC) re-establishment process.
  • RRC radio resource control
  • the RRC re-establishment process initiated by the terminal device may be rejected by the network side, or the RRC re-establishment process may fail, thus causing the terminal device to disconnect from the 4G network and affecting the normal communication of the terminal device.
  • the present application provides a communication method for reducing the probability of the terminal device disconnecting the 4G network when the EN-DC frequency band combination issued by the network device does not match the EN-DC frequency band combination supported by the terminal device, and improving the Communication stability of the device.
  • a first aspect provides a communication method, including: a terminal device sends capability information to a network device, where the capability information is used to indicate a first EN-DC frequency band combination; the terminal device receives an RRC reconfiguration message sent by the network device, the RRC reconfiguration message It is used to indicate the second EN-DC frequency band combination; when the second EN-DC frequency band combination does not match the first EN-DC frequency band combination, the terminal device sends the secondary cell group failure information to the network device.
  • the terminal device sends the secondary cell group failure information to the first network device to indicate that the EN-DC configuration fails, while avoiding Trigger the RRC re-establishment process.
  • the RRC re-establishment process is not triggered, it can be ensured that the terminal device and the first network device maintain a connection, thereby ensuring normal communication between the terminal device and the first network device.
  • the second EN-DC frequency band combination does not match the first EN-DC frequency band combination, including at least one of the following situations: the frequency bands in the second EN-DC frequency band combination do not match the first EN-DC frequency band combination. frequency bands in the DC frequency band combination; or, the bandwidth in the second EN-DC frequency band combination does not match the bandwidth in the first EN-DC frequency band combination; or, the maximum number of carrier units in the second EN-DC frequency band combination does not match the first EN-DC frequency band combination The maximum number of carrier units in one EN-DC band combination; or, the multi-input multi-output (MIMO) capability in the second EN-DC band combination does not match the MIMO capability in the first EN-DC band combination or, the frequency points in the second EN-DC frequency band combination do not match the frequency points in the first EN-DC frequency band combination.
  • MIMO multi-input multi-output
  • the method before the terminal device sends the capability information to the network device, the method further includes: the terminal device receives capability inquiry information sent by the network device, where the capability inquiry information is used to request the terminal device to report the capability information.
  • the method before the terminal device receives the RRC reconfiguration message sent by the network device, the method further includes: the terminal device receives measurement configuration information sent by the network device; and the terminal device sends a measurement report to the network device. Based on this design, the network side can select an appropriate base station as the secondary node of the terminal device based on the measurement report reported by the terminal device.
  • the terminal device receiving the RRC reconfiguration message sent by the network device includes: the terminal device receives the RRC reconfiguration message from the network device through SRB1.
  • the method further includes: the terminal device sends an RRC reconfiguration complete message to the network device. Based on this design, it can be avoided that the network side does not receive the response of the terminal equipment to the RRC reconfiguration message for a long time, and mistakenly thinks that the terminal equipment is abnormal.
  • the network device supports the 4G communication standard.
  • a communication method including: a network device receives capability information from a terminal device, where the capability information is used to indicate a first EN-DC frequency band combination; the network device sends an RRC reconfiguration message to the terminal device, and the RRC reconfiguration message It is used to indicate the second EN-DC frequency band combination; in the case that the second EN-DC frequency band combination does not match the first EN-DC frequency band combination, the network device receives the secondary cell group failure information from the terminal device.
  • the second EN-DC frequency band combination does not match the first EN-DC frequency band combination, including at least one of the following situations: the frequency bands in the second EN-DC frequency band combination do not match the first EN-DC frequency band combination. frequency bands in the DC frequency band combination; or, the bandwidth in the second EN-DC frequency band combination does not match the bandwidth in the first EN-DC frequency band combination; or, the maximum number of carrier units in the second EN-DC frequency band combination does not match the first EN-DC frequency band combination Maximum number of carrier units in one EN-DC band combination; or, the MIMO capability in the second EN-DC band combination does not match the MIMO capability in the first EN-DC band combination; or, in the second EN-DC band combination does not match the frequencies in the first EN-DC band combination.
  • the method before the network device receives the capability information from the terminal device, the method further includes: the network device sends capability inquiry information to the terminal device, where the capability inquiry information is used to request the terminal device to report the capability information.
  • the method before the network device sends the RRC reconfiguration message to the terminal, the method further includes: the network device sends measurement configuration information to the terminal device; and the network device receives a measurement report from the terminal device.
  • the network device sending the RRC reconfiguration message to the terminal device includes: the network device sends the RRC reconfiguration message to the terminal device through SRB1.
  • the method further includes: the network device receives an RRC reconfiguration complete message from the terminal device.
  • the network device supports the 4G communication standard.
  • a communication device including: a processing module and a communication module; the communication module is configured to send capability information to a network device, where the capability information is used to indicate a first EN-DC frequency band combination; configuration message, the RRC reconfiguration message is used to indicate the second EN-DC frequency band combination; the processing module shown is used to determine that the second EN-DC frequency band combination does not match the first EN-DC frequency band combination; the communication module is also used for When the processing module determines that the second EN-DC frequency band combination does not match the first EN-DC frequency band combination, the secondary cell group failure information is sent to the network device.
  • the second EN-DC frequency band combination does not match the first EN-DC frequency band combination, including at least one of the following situations: the frequency bands in the second EN-DC frequency band combination do not match the first EN-DC frequency band combination. frequency bands in the DC frequency band combination; or, the bandwidth in the second EN-DC frequency band combination does not match the bandwidth in the first EN-DC frequency band combination; or, the maximum number of carrier units in the second EN-DC frequency band combination does not match the first EN-DC frequency band combination Maximum number of carrier units in one EN-DC band combination; or, the MIMO capability in the second EN-DC band combination does not match the MIMO capability in the first EN-DC band combination; or, in the second EN-DC band combination does not match the frequencies in the first EN-DC band combination.
  • the communication module is further configured to receive capability inquiry information sent by the network device, and the capability inquiry information is used to request reporting of capability information.
  • the communication module is further configured to receive measurement configuration information sent by the network device, and send a measurement report to the network device.
  • the communication module configured to receive the RRC reconfiguration message sent by the network device, includes: receiving the RRC reconfiguration message from the network device through SRB1.
  • the communication module is further configured to send an RRC reconfiguration complete message to the network device.
  • the network device supports the 4G communication standard.
  • a communication device including a communication module and a processing module.
  • the communication module is used to receive capability information from the terminal device, where the capability information is used to indicate the first EN-DC frequency band combination; the processing module is used to generate an RRC reconfiguration message, and the RRC reconfiguration message is used to indicate the second EN-DC frequency band.
  • the communication module is further configured to send an RRC reconfiguration message to the terminal equipment; in the case that the second EN-DC frequency band combination does not match the first EN-DC frequency band combination, receive secondary cell group failure information from the terminal equipment.
  • the second EN-DC frequency band combination does not match the first EN-DC frequency band combination, including at least one of the following situations: the frequency bands in the second EN-DC frequency band combination do not match the first EN-DC frequency band combination. frequency bands in the DC frequency band combination; or, the bandwidth in the second EN-DC frequency band combination does not match the bandwidth in the first EN-DC frequency band combination; or, the maximum number of carrier units in the second EN-DC frequency band combination does not match the first EN-DC frequency band combination Maximum number of carrier units in one EN-DC band combination; or, the MIMO capability in the second EN-DC band combination does not match the MIMO capability in the first EN-DC band combination; or, in the second EN-DC band combination does not match the frequencies in the first EN-DC band combination.
  • the communication module is further configured to send capability inquiry information to the terminal device, where the capability inquiry information is used to request the terminal device to report capability information.
  • the communication module is further configured to send measurement configuration information to the terminal device; and receive a measurement report from the terminal device.
  • the communication module configured to send the RRC reconfiguration message to the terminal device, includes: sending the RRC reconfiguration message to the terminal device through SRB1.
  • the communication module is further configured to receive an RRC reconfiguration complete message from the terminal device.
  • the communication device is applied to a network device, and the network device supports a 4G communication standard.
  • a communication device in a fifth aspect, includes a processor and a transceiver, and the processor and the transceiver are used to implement any one of the methods provided in the first aspect or the second aspect.
  • the processor is configured to perform processing actions in the corresponding method
  • the transceiver is configured to perform the actions of receiving/transmitting in the corresponding method.
  • a computer-readable storage medium stores computer instructions that, when the computer instructions are executed on a computer, cause the computer to execute any one of the first aspect or the second aspect. method.
  • a computer program product carrying computer instructions when the computer instructions are executed on a computer, the computer enables the computer to execute any one of the methods provided in the first aspect or the second aspect.
  • a chip including: a processing circuit and a transceiver pin, where the processing circuit and the transceiver pin are used to implement the method provided in the first aspect or the second aspect.
  • the processing circuit is used for executing the processing actions in the corresponding method
  • the transceiver pins are used for executing the actions of receiving/transmitting in the corresponding method.
  • FIG. 1 is a schematic structural diagram of a dual connection provided by an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of another dual connection provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of another dual connection provided by an embodiment of the present application.
  • FIG. 4 is a flowchart of a dual connection provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of the hardware structure of a terminal device and a network device according to an embodiment of the present application
  • FIG. 6 is a flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 7 is a flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a communication apparatus according to an embodiment of the present application.
  • DC dual connectivity
  • MN master node
  • SN secondary node
  • the master node and the core network are connected through the S1/NG interface.
  • the master node and the core network include at least a control plane connection, and may also have a user plane connection.
  • the S1 interface includes S1-U and S1-C.
  • the NG interface includes NG-U and NG-C. Among them, S1-U/NG-U represents the user plane connection, and S1-C/NG-C represents the control plane connection.
  • the master node may also be called a master base station or a master access network device, and the SN may also be called a secondary base station or a slave access network device.
  • the master node manages a primary cell (PCell).
  • the primary cell refers to the cell deployed at the primary frequency point and accessed during the initial connection establishment process or RRC connection re-establishment process initiated by the terminal device, or the cell indicated as the primary cell during the handover process.
  • the primary node may also manage one or more secondary cells (secondary cells, SCells).
  • secondary cells secondary cells
  • MCG master cell group
  • the secondary node manages a primary secondary cell (PSCell).
  • PSCell primary secondary cell
  • the primary and secondary cell may be a cell that the terminal device accesses during the random access process initiated to the secondary node, or a cell on another secondary node where the terminal device skips the random access process and initiates data transmission during the secondary node change process, Or the cell on the secondary node that is accessed in the random access process is initiated when the synchronous reconfiguration process is performed.
  • the secondary node may also manage one or more secondary cells.
  • the cells on the secondary node that provide services for the terminal equipment, such as the primary and secondary cells and the secondary cells on the secondary node, may be collectively referred to as SCG.
  • the primary cell and the primary and secondary cells are collectively referred to as a special cell (special cell, SpCell).
  • the dual-connection network can be implemented in multiple ways, which are described below with examples.
  • FIG. 1 it is a schematic diagram of an LTE-NR dual connectivity (EUTRA-NR dual connectivity, EN-DC) network.
  • the EN-DC network is a dual connection between the 4G radio access network and 5G NR, with the LTE base station (LTE eNB) as the MN and the NR base station (NR gNB) as the SN.
  • LTE eNB LTE base station
  • NR gNB NR base station
  • S1 interface between the LTE eNB and the evolved Packet Core (EPC) of the LTE system, at least a control plane connection and a user plane connection.
  • EPC evolved Packet Core
  • FIG. 1 there is an S1-U interface between the NR gNB and the EPC, that is, only a user plane connection is possible.
  • FIG. 2 it is a schematic diagram of an NR-LTE dual connectivity (NR-E-UTRA Dual Connectivity, NE-DC) network.
  • the NE-DC network is a dual connection between the 4G radio access network and 5G NR under the 5G core network.
  • the NR base station (gNB) is used as the MN
  • the LTE base station (ng-eNB) is used as the SN
  • both the MN and the SN are connected to the 5G core network ( 5th Generation Core Network, 5GC).
  • 5G core network 5th Generation Core Network, 5GC
  • FIG. 3 it is a schematic diagram of the 5G core network LTE-NR dual connectivity (Next Generation E-UTRA-NR Dual Connectivity, NGEN-DC) network.
  • the NGEN-DC network is a dual connection between the 4G radio access network and 5G NR under the 5G core network.
  • the LTE base station (ng-eNB) acts as the MN
  • the NR base station (gNB) acts as the SN
  • both the MN and the SN are connected to the 5GC.
  • ng-eNB acts as the MN
  • gNB acts as the SN
  • both the MN and the SN are connected to the 5GC.
  • there is an NG interface between the ng-eNB and the 5GC which can establish a control plane connection and a user plane connection for the terminal device, and the gNB sends the user plane data to the 5GC through the ng-eNB.
  • there is an NG-U interface between the gNB and the 5GC which only establishes a user plane connection for
  • the user plane connection may not be established between the SN and the core network, but data is transferred via the MN.
  • the layer offloads the data of the terminal device to the SN, where the offloaded data is in the form of, for example, a PDCP protocol data unit (protocol data unit, PDU).
  • PDU protocol data unit
  • the EN-DC dual connection establishment process in the related art includes the following steps:
  • the terminal device registers with the LTE network.
  • the eNB decides to add a gNB as a secondary node.
  • the eNB sends a secondary node addition request message to the gNB.
  • the secondary node addition request message is used to request the gNB to act as the secondary node of the terminal device.
  • the secondary node addition request message may carry RRC and radio bearer configuration.
  • the secondary node addition request message may also carry information related to the function, security, etc. of the terminal device.
  • the gNB sends a secondary node addition request confirmation message to the eNB.
  • the secondary node addition request confirmation message is used to respond to the secondary node addition request message.
  • the eNB sends an RRC reconfiguration (reconfiguration) message to the terminal device.
  • the RRC reconfiguration message is used to configure the 5G radio bearer for the terminal device.
  • the terminal device accesses the 5G cell.
  • the terminal device sends an RRC reconfiguration complete message to the eNB.
  • the eNB sends a secondary node reconfiguration complete message to the gNB.
  • the terminal device completes the establishment of the EN-DC dual connection.
  • SRB is used to transmit RRC messages and NAS messages.
  • SRBs can be divided into the following categories:
  • SRB0 established on the common control channel (common control channel, CCCH), used to transmit RRC messages.
  • SRB1 established on a dedicated control channel (DCCH)
  • DCCH dedicated control channel
  • SRB3 established on the DCCH, is used to transmit the RRC message between the terminal device and the gNB serving as the secondary base station in the EN-DC scenario.
  • frequency band refers to the frequency range of electromagnetic waves.
  • Table 1 shows the 3GPP regulations on E-UTRA working frequency bands.
  • the frequency band number of the 4G network starts with “B", for example, B20 represents the frequency band with the frequency band number 20 in the 4G network.
  • the frequency band number of the 5G network starts with "N", for example, N78 represents the frequency band with the frequency band number 78 in the 5G network.
  • the frequency point refers to the center frequency of a frequency band (or sub-band). It should be understood that, regardless of E-UTRA or NR, a working frequency band may be divided into multiple sub-bands, and one sub-band may be referred to as a carrier unit (component carrier, CC). In the frequency domain, a carrier unit can be regarded as a cell.
  • component carrier component carrier
  • F UL F UL_low +0.1(N UL -N offs-UL ).
  • F UL is the frequency point of the uplink frequency band
  • F UL_low is the minimum uplink frequency of the E-UTRA working frequency band where the uplink frequency band is located
  • N UL is the frequency point number of the uplink frequency band
  • N offs-UL is the location of the uplink frequency band. The lowest uplink frequency point number of the E-UTRA working frequency band.
  • F DL F DL_low +0.1(N DL -N offs -DL ).
  • F DL is the frequency point of the downlink frequency band
  • FDL_low is the minimum downlink frequency of the E-UTRA working frequency band where the downlink frequency band is located
  • N DL is the frequency point number of the downlink frequency band
  • N offs-DL is the location of the downlink frequency band. The lowest downlink frequency point number of the E-UTRA working frequency band.
  • CA Carrier aggregation
  • Carrier aggregation refers to the aggregation of two or more carrier elements together to support a larger transmission bandwidth.
  • Types of carrier aggregation include: intra-band carrier aggregation and inter-band carrier aggregation. Intra-Band carrier aggregation is further divided into continuous (contiguous) and non-contiguous (non-contiguous).
  • the CA bandwidth class (bandwidth class) is used to indicate the aggregated transmission bandwidth configuration (ATBC) and the maximum number of contiguous CCs.
  • Table 2 shows the meanings of different values of the CA bandwidth level.
  • the communication method provided by the embodiment of the present application may be applied to an EN-DC dual-connection scenario or other DC scenarios, and the embodiment of the present application does not limit the specific architecture of the dual-connection network to which the communication method is adapted.
  • the following embodiments mainly take an EN-DC dual connection scenario as an example to describe the communication method provided by the embodiment of the present application.
  • the terminal device is a device with a wireless transceiver function.
  • Terminal equipment can be deployed on land, including indoor or outdoor, handheld or vehicle; can also be deployed on water (such as ships, etc.); can also be deployed in the air (such as aircraft, balloons and satellites, etc.).
  • the terminal equipment may be user equipment (user equipment, UE).
  • the UE includes a handheld device, a vehicle-mounted device, a wearable device or a computing device with a wireless communication function.
  • the UE may be a mobile phone, a tablet computer, or a computer with a wireless transceiver function.
  • the terminal device may also be a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal device in industrial control, a wireless terminal device in unmanned driving, and a wireless terminal in telemedicine. equipment, wireless terminal equipment in smart grid, wireless terminal equipment in smart city, wireless terminal equipment in smart home, etc.
  • the apparatus for implementing the function of the terminal device may be the terminal device, or may be an apparatus capable of supporting the terminal device to implement the function, such as a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • network devices include but are not limited to: access points (access points, APs) in wireless fidelity (wireless fidelity, WiFi) systems, such as home gateways, routers, servers, switches, bridges, etc., Evolved Node B (evolved Node B, eNB), radio network controller (radio network controller, RNC), Node B (Node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver) station, BTS), home base station (for example, home evolved Node B, or home Node B, HNB), baseband unit (baseband unit, BBU), wireless relay node, wireless backhaul node, transmission point (transmission and reception point, TRP or transmission point, TP), etc., can also be 5G, such as a gNB in a new radio (new radio, NR) system, or a transmission point (TRP or TP), one or a group of base stations in a 5G system ( Including
  • the network device may adopt a centralized unit (centralized unit, CU)-DU architecture. That is, the network device may be composed of a CU and at least one DU. In this case, some functions of the network device are deployed on the CU, and another part of the functions of the network device are deployed on the DU.
  • CU and DU are functionally divided according to the protocol stack.
  • CU is deployed with RRC layer, PDCP layer, and service data adaptation protocol (SDAP) layer in the protocol stack
  • DU is deployed with radio link control (radio link control, RLC) layer, media access control (media access control, MAC) layer, and physical layer (physical layer, PHY).
  • RLC radio link control
  • MAC media access control
  • PHY physical layer
  • DU has the processing capability of RLC, MAC and PHY. It can be understood that the division of the above functions is only an example, and does not constitute a limitation on the CU and the DU. That is to say, there may also be other ways of functional division between the CU and the DU, which are not described in detail in this embodiment of the present application.
  • FIG. 5 is a schematic diagram of a hardware structure of a network device and a terminal device according to an embodiment of the present application.
  • the terminal device includes at least one processor 101 and at least one transceiver 103 .
  • the terminal device may further include an output device 104 , an input device 105 and at least one memory 102 .
  • the processor 101, the memory 102 and the transceiver 103 are connected by a bus.
  • the processor 101 may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more modules for controlling the execution of the programs of the present application. integrated circuit.
  • the processor 101 may also include multiple CPUs, and the processor 101 may be a single-CPU processor or a multi-CPU processor.
  • a processor herein may refer to one or more devices, circuits, or processing cores for processing data (eg, computer program instructions).
  • the memory 102 may be read-only memory (ROM) or other type of static storage device that can store static information and instructions, random access memory (RAM), or other type of static storage device that can store information and instructions It can also be an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disk storage, CD-ROM storage (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or capable of carrying or storing desired program code in the form of instructions or data structures and capable of being executed by a computer Any other medium accessed is not limited in this embodiment of the present application.
  • the memory 102 may exist independently and be connected to the processor 101 through a bus.
  • the memory 102 may also be integrated with the processor 101 .
  • the memory 102 is used for storing the application program code for executing the solution of the present application, and the execution is controlled by the processor 101 .
  • the processor 101 is configured to execute the computer program codes stored in the memory 102, so as to implement the methods provided by the embodiments of the present application.
  • the transceiver 103 can use any transceiver-like device for communicating with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), etc. .
  • the transceiver 103 includes a transmitter Tx and a receiver Rx.
  • the output device 104 communicates with the processor 101 and can display information in a variety of ways.
  • the output device 104 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector (projector) Wait.
  • the input device 105 is in communication with the processor 101 and can receive user input in a variety of ways.
  • the input device 105 may be a mouse, a keyboard, a touch screen device, a sensor device, or the like.
  • the network device includes at least one processor 201 , at least one memory 202 , at least one transceiver 203 and at least one network interface 204 .
  • the processor 201, the memory 202, the transceiver 203 and the network interface 204 are connected by a bus.
  • the network interface 204 is used for connecting with core network equipment through a link, or connecting with a network interface of other network equipment through a wired or wireless link (not shown in the figure), which is not specifically limited in this embodiment of the present application.
  • the processor 201, the memory 202, and the transceiver 203 reference may be made to the description of the processor 101, the memory 102, and the transceiver 103 in the terminal device, and details are not repeated here.
  • a communication method provided by an embodiment of the present application includes the following steps:
  • the first network device sends an RRC reconfiguration message to the terminal device.
  • the terminal device receives the RRC reconfiguration information sent by the first network device.
  • the RRC reconfiguration information includes the second EN-DC frequency band combination.
  • the first network device supports a 4G communication standard.
  • the first network device may be an eNB.
  • the second EN-DC frequency band combination is an EN-DC frequency band combination configured for use by the terminal device.
  • the EN-DC band combination includes EUTRA parameters and NR parameters.
  • EUTRA parameters are used to configure EUTRA frequency bands.
  • NR parameters are used to configure the NR band.
  • the EUTRA parameter is used to configure one or more of the following parameters: MIMO capability, maximum number of CCs, frequency band, frequency point, and bandwidth.
  • the NR parameter is used to configure one or more of the following parameters: MIMO capability, maximum number of CCs, frequency band, frequency point, and bandwidth.
  • MIMO refers to the use of multiple transmit and receive antennas at the transmitter and receiver, respectively, so that signals are transmitted through multiple antennas at the transmitter and receiver, thereby improving communication quality or providing data transmission.
  • the MIMO capability may be represented by the number of layers, where the number of layers is the number of different data streams transmitted in parallel.
  • the MIMO capability may be layer 2, layer 4, layer 8, etc., which is not limited.
  • the MIMO capability may also be classified into an uplink MIMO capability and a downlink MIMO capability.
  • the uplink MIMO capability and the downlink MIMO capability may also be configured differently.
  • the current protocol stipulates that the maximum value of the uplink MIMO capability is 4 layers, and the maximum value of the downlink MIMO capability is 8 layers.
  • the EUTRA parameter may include a CA bandwidth level to indicate the maximum number of CCs and the bandwidth of the EUTRA frequency band.
  • the NR parameter may include a CA bandwidth level to indicate the maximum number of CCs and bandwidth for the NR band.
  • CA bandwidth level reference may be made to the foregoing description, which will not be repeated here.
  • the terminal device registers with the network through the first network device, and an SRB1 is established between the terminal device and the first network device.
  • the first network device sends an RRC reconfiguration message to the terminal device through SRB1, where the RRC reconfiguration message includes the second EN-DC frequency band combination.
  • the first network device sends measurement configuration information to the terminal; the terminal device performs cell measurement based on the measurement configuration information; the first network device may receive a measurement report from the terminal device, and determine the first network device according to the measurement report.
  • the second network device acts as the secondary node of the terminal device.
  • the first network device may also blindly configure the second network device as the secondary node of the terminal device without receiving the measurement report of the terminal device.
  • the first network device may send a secondary node addition request message to the second network device.
  • the first network device receives a secondary node addition request confirmation message from the second network device.
  • the specific details of the secondary node addition request message and the secondary node addition request confirmation message can be referred to the foregoing introduction, which will not be repeated here.
  • the terminal device may also have established an EN-DC. That is, the terminal device establishes connections with both the first network device and the second network device.
  • the first network device may perform step S201 according to the actual situation (for example, when the SCG configuration needs to be modified).
  • the second network device supports a 5G communication standard.
  • the second network device may be a gNB.
  • the terminal device determines that the second EN-DC frequency band combination cannot be complied with (unable to comply with).
  • step S202 may be implemented as: the terminal device cannot comply with at least one parameter included in the EUTRA parameter in the second EN-DC frequency band combination, and/or the terminal device cannot comply with the NR parameter included in the second EN-DC frequency band combination at least one parameter of .
  • the terminal device sends secondary cell group failure information (SCG failure information) to the first network device.
  • SCG failure information secondary cell group failure information
  • the first network device receives the secondary cell group failure information sent by the terminal device.
  • the secondary cell group failure information is used to indicate that adding the secondary cell group fails.
  • the secondary cell group failure information may further include a failure type.
  • the failure type may also have other names, such as failure cause, failure cause, etc., which are not limited.
  • the terminal device sends the secondary cell group failure information to the first network device to trigger the network side to release/change the secondary cell group, but does not affect the connection between the terminal device and the first network device. That is, after the terminal device sends the secondary cell group failure information to the first network device, the terminal device is still in the connected state in the 4G network, thereby ensuring that the related services (such as VOLTE services or data services) of the terminal device in the 4G network can be used. Process normally.
  • the first network device may also send an RRC reconfiguration message to the terminal device, where the RRC reconfiguration message may be used to instruct to keep, change or release the secondary cell group .
  • the terminal device sends an auxiliary signal to the first network device.
  • Cell group failure information to indicate EN-DC configuration failure and avoid triggering the RRC re-establishment process. In this way, since the RRC re-establishment process is not triggered, it can be ensured that the terminal device and the first network device maintain a connection, thereby ensuring normal communication between the terminal device and the first network device.
  • the communication method may further include step S204 after step S202 .
  • the terminal device sends an RRC reconfiguration complete message to the first network device.
  • the first network device receives the RRC reconfiguration complete message from the terminal device.
  • the RRC reconfiguration complete message is used to indicate that the RRC reconfiguration is completed.
  • this embodiment of the present application does not limit the execution sequence between step S204 and step S203.
  • step S204 may be performed first, and then step S203 may be performed.
  • the terminal device has not established the EN-DC, which means that the terminal device has not established the SCG. Therefore, the terminal device first sends an RRC reconfiguration complete message to the first network device, so that the network side can know that the SCG is established successfully. After that, the terminal device sends a secondary cell group failure message to the first network device to trigger the network side to execute the SCG release/change procedure.
  • step S203 may be performed first, and then step S204 may be performed.
  • the terminal device Based on step S204, the terminal device normally completes the RRC reconfiguration process between the terminal device and the first network device by sending an RRC reconfiguration complete message to the first network device. In this way, because the first network device has not received the response of the terminal device to the RRC reconfiguration message for a long time, it is avoided that the terminal device is abnormal.
  • FIG. 6 The embodiment shown in FIG. 6 is specifically described below in conjunction with the capability reporting process of the terminal device.
  • a communication method provided by an embodiment of the present application includes the following steps:
  • the first network device sends capability enquiry (capability enquiry) information to the terminal device.
  • the terminal device receives capability inquiry information from the first network device.
  • the capability inquiry information is used to request capability information of the terminal device.
  • the terminal device sends capability information to the first network device.
  • the first network device receives capability information from the terminal device.
  • the capability information is used to indicate the first EN-DC frequency band combination.
  • the first EN-DC frequency band combination is an EN-DC frequency band combination supported by the terminal device.
  • the first EN-DC frequency band combination may be one or more, which is not limited in this embodiment of the present application.
  • the first network device sends an RRC reconfiguration message to the terminal device.
  • the terminal device receives the RRC reconfiguration message from the first network device.
  • step S303 may refer to the specific introduction of step S201 in FIG. 6 , which will not be repeated here.
  • the terminal device determines that the second EN-DC frequency band combination does not match the first EN-DC frequency band combination.
  • the second EN-DC frequency band combination does not match the first EN-DC frequency band combination, including one or more of the following situations:
  • Case 1 The frequency bands in the second EN-DC frequency band combination do not match the frequency bands in the first EN-DC frequency band combination.
  • the frequency band configured by EUTRA parameters in the second EN-DC frequency band combination is different from the frequency band configured by EUTRA parameters in the first EN-DC frequency band combination; and/or, the second EN-DC frequency band combination
  • the frequency band configured by the NR parameter in the first EN-DC frequency band combination is different from the frequency band configured by the NR parameter in the first EN-DC frequency band combination.
  • the frequency band in the first EN-DC frequency band combination is B3+N79
  • the frequency band in the second EN-DC frequency band is B3+N78. Since N79 is different from N78, the frequency band in the first EN-DC frequency band combination is not Match the bands in the first EN-DC band combination.
  • Case 2 The bandwidth in the second EN-DC frequency band combination is greater than the bandwidth in the first EN-DC frequency band combination.
  • the bandwidth configured by EUTRA parameters in the second EN-DC frequency band combination is greater than the bandwidth configured by EUTRA parameters in the first EN-DC frequency band combination; and/or, in the second EN-DC frequency band combination
  • the bandwidth configured by the NR parameter is larger than the bandwidth configured by the NR parameter in the first EN-DC frequency band combination.
  • the above-mentioned bandwidth may be an uplink bandwidth or a downlink bandwidth.
  • Case 3 The maximum number of CCs in the second EN-DC frequency band combination is greater than the maximum number of CCs in the first EN-DC frequency band combination.
  • the maximum number of CCs configured by EUTRA parameters in the second EN-DC frequency band combination is greater than the maximum number of CCs configured by EUTRA parameters in the first EN-DC frequency band combination; and/or, the second EN-DC The maximum number of CCs configured by the NR parameter in the DC frequency band combination is different from the maximum number of CCs configured by the NR parameter in the first EN-DC frequency band combination.
  • the frequency bands in the first EN-DC frequency band combination are B3+N78, the maximum number of CCs corresponding to B3 is 1, and the maximum number of CCs corresponding to N78 is 1.
  • the frequency bands in the second EN-DC frequency band combination are B3+N78, the maximum number of CCs corresponding to B3 is 1, and the maximum number of CCs corresponding to N78 is 2. Since the maximum number of CCs corresponding to N78 in the first EN-DC frequency band combination is smaller than the maximum number of CCs corresponding to N78 in the second EN-DC frequency band combination, the second EN-DC frequency band combination does not match the first EN-DC frequency band combination.
  • Case 4 The MIMO capability in the second EN-DC frequency band combination does not match the MIMO capability in the first EN-DC frequency band combination.
  • the MIMO capability configured by EUTRA parameters in the second EN-DC frequency band combination is greater than the MIMO capability configured by EUTRA parameters in the first EN-DC frequency band combination; and/or, the second EN-DC frequency band
  • the MIMO capability configured by the NR parameter in the combination is greater than the MIMO capability configured by the NR parameter in the first EN-DC frequency band combination.
  • the frequency bands in the first EN-DC frequency band combination are B3+N78, the MIMO capability corresponding to B3 is 2, and the MIMO capability corresponding to N78 is 4.
  • the frequency band in the second EN-DC frequency band combination is B3+N78, the MIMO capability corresponding to B3 is 4, and the MIMO capability corresponding to N78 is 4. Since the MIMO capability corresponding to B3 in the first EN-DC frequency band combination is smaller than the MIMO capability corresponding to B3 in the second EN-DC frequency band combination, the second EN-DC frequency band combination does not match the first EN-DC frequency band combination.
  • Case 5 The frequency points in the second EN-DC frequency band combination do not match the frequency points in the first EN-DC frequency band combination.
  • the frequency point configured by the EUTRA parameter in the second EN-DC frequency band combination is different from the frequency point configured by the EUTRA parameter in the first EN-DC frequency band combination; and/or, the second EN-DC The frequency point configured by the NR parameter in the frequency band combination is different from the frequency point configured by the NR parameter in the first EN-DC frequency band combination.
  • the second EN-DC frequency band combination does not match the first EN-DC frequency band combination, which means that the terminal device cannot comply with the second EN-DC frequency band combination.
  • the terminal device sends the secondary cell group failure information to the first network device.
  • the first network device receives the secondary cell group failure information from the terminal device.
  • step S305 may refer to the specific introduction of step S203 in FIG. 6 , and details are not repeated here.
  • the terminal device sends the secondary cell group failure information to the first network device to indicate the EN-DC configuration failure, while avoiding triggering the RRC re-establishment process. In this way, since the RRC re-establishment process is not triggered, it can be ensured that the terminal device and the first network device maintain a connection, thereby ensuring normal communication between the terminal device and the first network device.
  • the terminal or the first network device includes corresponding hardware structures and/or software modules for executing each function.
  • the embodiments of this application can be implemented in hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of the technical solutions of the embodiments of the present application.
  • the communication device may be divided into functional units according to the foregoing method examples.
  • each functional unit may be divided corresponding to each function, or two or more functions may be integrated into one processing unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units. It should be noted that the division of units in the embodiments of the present application is illustrative, and is only a logical function division, and other division methods may be used in actual implementation.
  • the communication device includes a processing module 301 and a communication module 302 .
  • the communication device is a terminal device or a part of the terminal device
  • the processing module 301 is configured to generate a message (such as capability information, secondary cell group failure information, RRC reconfiguration complete message, etc.), and execute the process shown in FIG. 6 .
  • step S202 in FIG. 8 step S304 in FIG. 8 .
  • the communication module 302 is configured to execute steps S201 and S203 in FIG. 6 , step S204 in FIG. 7 , and steps S301 - S303 and S305 in FIG. 8 .
  • the communication module 302 in FIG. 9 may be implemented by the transceiver 103 in FIG. 5
  • the processing module 301 in FIG. 9 may be implemented by the processor 101 in FIG. 5
  • the embodiments of the present application do not impose any limitation on this.
  • the communication apparatus is a network device or a part of the network device, and the processing module 301 is configured to generate a message (for example, an RRC reconfiguration message, etc.).
  • the communication module 302 is configured to execute steps S201 and S203 in FIG. 6 , step S204 in FIG. 7 , and steps S301 - S303 and S305 in FIG. 8 .
  • the communication module 302 in FIG. 9 may be implemented by the transceiver 203 in FIG. 5
  • the processing module 301 in FIG. 9 may be implemented by the processor 201 in FIG. 5
  • the embodiments of the present application do not impose any limitation on this.
  • Embodiments of the present application further provide a computer program product carrying computer instructions, when the computer instructions are executed on the computer, the computer enables the computer to execute the methods in the above-mentioned FIGS. 6-8 .
  • Embodiments of the present application further provide a computer-readable storage medium, where the computer-readable storage medium stores computer instructions, and when the computer instructions are executed on the computer, causes the computer to execute the methods in the foregoing FIG. 6 to FIG. 8 .
  • An embodiment of the present application further provides a chip, including: a processing circuit and a transceiver pin, where the processing circuit and the transceiver pin are used to implement the methods in FIGS. 6 to 8 .
  • the processing circuit is used for executing the processing actions in the corresponding method
  • the transceiver pins are used for executing the actions of receiving/transmitting in the corresponding method.
  • the computer instructions may be stored in or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line, DSL) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that a computer can access, or a data storage device such as a server, a data center, or the like that includes an integration of one or more available media.
  • the available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, digital video disc (DVD)), or semiconductor media (eg, solid state disk (SSD)) Wait.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple devices. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each functional unit may exist independently, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware, or may be implemented in the form of hardware plus software functional units.
  • the present application can be implemented by means of software plus necessary general-purpose hardware, and of course hardware can also be used, but in many cases the former is a better implementation manner .
  • the technical solutions of the present application can be embodied in the form of software products in essence, or the parts that make contributions to the prior art.
  • the computer software products are stored in a readable storage medium, such as a floppy disk of a computer. , a hard disk or an optical disk, etc., including several instructions to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute the methods described in the various embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法及装置,涉及通信技术领域,用于在网络设备下发的EN-DC频段组合与终端设备支持的EN-DC频段组合不匹配的情况下,降低终端设备断开4G网络连接的概率,提高终端设备的通信稳定性。该方法包括:终端设备向第一网络设备发送能力信息,能力信息用于指示第一EN-DC频段组合,第一EN-DC频段组合为终端设备支持的EN-DC频段组合;终端设备接收第一网络设备发送的RRC重配置消息,RRC重配置消息用于指示第二EN-DC频段组合,第二EN-DC频段组合为配置给终端设备使用的EN-DC频段组合;当第二EN-DC频段组合与第一EN-DC频段组合不匹配时,终端设备向第一网络设备发送辅小区组失败信息。

Description

通信方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
随着移动互联网的迅猛发展,为了更好地满足人们对于提供数据管道的无线网络的运行速度以及带宽的需求,5G网络应运而生。但是,由于5G基站的建设难度和建设成本都比较大,大部分5G基站还没有安装到位,同时考虑到4G网络的广泛普及以及广大用户的接受程度,目前运营商普遍使用非独立组网(non-stand alone,NSA)组网方式来加快5G网络的部署进程。
NSA组网采用4G-5G双连接(EN-DC)方式,将5G新空口(new radio,NR)控制面(control plane)锚定于4G长期演进(long term evolution,LTE)的核心网,5G NR用于承载用户面(user plane)的业务。控制面就是用来发送、调度资源所需信令的通道,用户面就是传输用户数据的通道。由于EN-DC的特殊性,需要终端设备和基站侧的高度配合才能提供正常的高质量的数据业务,否则更易暴露网络的兼容性问题。
例如,终端设备在进行NSA网络接入的过程中,终端设备可以向4G基站上报终端设备支持的EN-DC频段组合。之后,4G基站向终端设备下发EN-DC频段组合,以配置终端设备激活载波聚合(carrier aggregation,CA),使得终端设备进入双连接态。
但是,一些情况下,4G基站下发的EN-DC频段组合与终端设备支持的EN-DC频段组合不匹配,导致终端设备并不能采用4G基站下发的EN-DC频段组合。这种情况下,按照现有的通信协议,终端设备会发起无线资源控制(radio resource control,RRC)重建立流程。终端设备发起的RRC重建立流程可能被网络侧拒绝,或者RRC重建立流程失败,从而导致终端设备断开4G网络的连接,影响终端设备的正常通信。
发明内容
本申请提供一种通信方法,用于在网络设备下发的EN-DC频段组合与终端设备支持的EN-DC频段组合不匹配的情况下,降低终端设备断开4G网络连接的概率,提高终端设备的通信稳定性。
第一方面,提供一种通信方法,包括:终端设备向网络设备发送能力信息,能力信息用于指示第一EN-DC频段组合;终端设备接收网络设备发送的RRC重配置消息,RRC重配置消息用于指示第二EN-DC频段组合;在第二EN-DC频段组合与第一EN-DC频段组合不匹配的情况下,终端设备向网络设备发送辅小区组失败信息。
基于上述技术方案,在第一EN-DC频段组合不匹配第二EN-DC频段组合的情况下,终端设备向第一网络设备发送辅小区组失败信息,以指示EN-DC配置失败,同时避免触发RRC重建立流程。这样一来,由于未触发RRC重建立流程,可以保证终端设备和第一网络设备维持连接,进而保证终端设备和第一网络设备之间的正常通信。
一种可能的设计中,第二EN-DC频段组合与第一EN-DC频段组合不匹配,包括以下情形中的至少一种:第二EN-DC频段组合中的频段不匹配第一EN-DC频段组合中的频段;或者,第二EN-DC频段组合中的带宽不匹配第一EN-DC频段组合中的带 宽;或者,第二EN-DC频段组合中的最大载波单元数量不匹配第一EN-DC频段组合中的最大载波单元数量;或者,第二EN-DC频段组合中的多输入多输出(multi input multi output,MIMO)能力不匹配第一EN-DC频段组合中的MIMO能力;或者,第二EN-DC频段组合中的频点不匹配第一EN-DC频段组合中的频点。
一种可能的设计中,在终端设备向网络设备发送能力信息之前,该方法还包括:终端设备接收网络设备发送的能力询问信息,能力询问信息用于请求终端设备上报能力信息。
一种可能的设计中,在终端设备接收网络设备发送的RRC重配置消息之前,该方法还包括:终端设备接收网络设备发送的测量配置信息;终端设备向网络设备发送测量报告。基于该设计,网络侧基于终端设备上报的测量报告,可以选择合适的基站作为终端设备的辅节点。
一种可能的设计中,终端设备接收网络设备发送的RRC重配置消息,包括:终端设备通过SRB1接收来自网络设备的RRC重配置消息。
一种可能的设计中,该方法还包括:终端设备向网络设备发送RRC重配置完成消息。基于该设计,可以避免网络侧长时间未收到终端设备对RRC重配置消息的响应,而误认为终端设备出现异常。
一种可能的设计中,网络设备支持4G通信制式。
第二方面,提供一种通信方法,包括:网络设备接收来自终端设备的能力信息,能力信息用于指示第一EN-DC频段组合;网络设备向终端设备发送RRC重配置消息,RRC重配置消息用于指示第二EN-DC频段组合;在第二EN-DC频段组合与第一EN-DC频段组合不匹配的情况下,网络设备接收来自终端设备的辅小区组失败信息。
一种可能的设计中,第二EN-DC频段组合与第一EN-DC频段组合不匹配,包括以下情形中的至少一种:第二EN-DC频段组合中的频段不匹配第一EN-DC频段组合中的频段;或者,第二EN-DC频段组合中的带宽不匹配第一EN-DC频段组合中的带宽;或者,第二EN-DC频段组合中的最大载波单元数量不匹配第一EN-DC频段组合中的最大载波单元数量;或者,第二EN-DC频段组合中的MIMO能力不匹配第一EN-DC频段组合中的MIMO能力;或者,第二EN-DC频段组合中的频点不匹配第一EN-DC频段组合中的频点。
一种可能的设计中,在网络设备接收来自终端设备的能力信息之前,该方法还包括:网络设备向终端设备发送能力询问信息,能力询问信息用于请求终端设备上报能力信息。
一种可能的设计中,在网络设备向终端发送RRC重配置消息之前,该方法还包括:网络设备向终端设备发送测量配置信息;网络设备接收来自终端设备的测量报告。
一种可能的设计中,网络设备向终端设备发送RRC重配置消息,包括:网络设备通过SRB1向终端设备发送RRC重配置消息。
一种可能的设计中,该方法还包括:网络设备接收来自终端设备的RRC重配置完成消息。
一种可能的设计中,网络设备支持4G通信制式。
第三方面,提供一种通信装置,包括:处理模块和通信模块;通信模块,用于向 网络设备发送能力信息,能力信息用于指示第一EN-DC频段组合;接收网络设备发送的RRC重配置消息,RRC重配置消息用于指示第二EN-DC频段组合;所示处理模块,用于确定第二EN-DC频段组合与第一EN-DC频段组合不匹配;通信模块,还用于在处理模块确定第二EN-DC频段组合与第一EN-DC频段组合不匹配的情况下,向网络设备发送辅小区组失败信息。
一种可能的设计中,第二EN-DC频段组合与第一EN-DC频段组合不匹配,包括以下情形中的至少一种:第二EN-DC频段组合中的频段不匹配第一EN-DC频段组合中的频段;或者,第二EN-DC频段组合中的带宽不匹配第一EN-DC频段组合中的带宽;或者,第二EN-DC频段组合中的最大载波单元数量不匹配第一EN-DC频段组合中的最大载波单元数量;或者,第二EN-DC频段组合中的MIMO能力不匹配第一EN-DC频段组合中的MIMO能力;或者,第二EN-DC频段组合中的频点不匹配第一EN-DC频段组合中的频点。
一种可能的设计中,通信模块,还用于接收网络设备发送的能力询问信息,能力询问信息用于请求上报能力信息。
一种可能的设计中,通信模块,还用于接收网络设备发送的测量配置信息;向网络设备发送测量报告。
一种可能的设计中,通信模块,用于接收网络设备发送的RRC重配置消息,包括:通过SRB1接收来自网络设备的RRC重配置消息。
一种可能的设计中,通信模块,还用于向网络设备发送RRC重配置完成消息。
一种可能的设计中,网络设备支持4G通信制式。
第四方面,提供一种通信装置,包括通信模块和处理模块。通信模块,用于接收来自终端设备的能力信息,能力信息用于指示第一EN-DC频段组合;处理模块,用于生成RRC重配置消息,RRC重配置消息用于指示第二EN-DC频段组合;通信模块,还用于向终端设备发送RRC重配置消息;在第二EN-DC频段组合与第一EN-DC频段组合不匹配的情况下,接收来自终端设备的辅小区组失败信息。
一种可能的设计中,第二EN-DC频段组合与第一EN-DC频段组合不匹配,包括以下情形中的至少一种:第二EN-DC频段组合中的频段不匹配第一EN-DC频段组合中的频段;或者,第二EN-DC频段组合中的带宽不匹配第一EN-DC频段组合中的带宽;或者,第二EN-DC频段组合中的最大载波单元数量不匹配第一EN-DC频段组合中的最大载波单元数量;或者,第二EN-DC频段组合中的MIMO能力不匹配第一EN-DC频段组合中的MIMO能力;或者,第二EN-DC频段组合中的频点不匹配第一EN-DC频段组合中的频点。
一种可能的设计中,通信模块,还用于向终端设备发送能力询问信息,能力询问信息用于请求终端设备上报能力信息。
一种可能的设计中,通信模块,还用于向终端设备发送测量配置信息;接收来自终端设备的测量报告。
一种可能的设计中,通信模块,用于向终端设备发送RRC重配置消息,包括:通过SRB1向终端设备发送RRC重配置消息。
一种可能的设计中,通信模块,还用于接收来自终端设备的RRC重配置完成消息。
一种可能的设计中,通信装置应用于网络设备,网络设备支持4G通信制式。
第五方面,提供一种通信装置,所述通信装置包括处理器和收发器,处理器和收发器用于实现上述第一方面或第二方面提供的任意一种方法。其中,处理器用于执行相应方法中的处理动作,收发器用于执行相应方法中的接收/发送的动作。
第六方面,提供一种计算机可读存储介质,所述计算机可读存储介质存储计算机指令,当该计算机指令在计算机上运行时,使得计算机执行第一方面或第二方面所提供的任意一种方法。
第七方面,提供一种携带计算机指令的计算机程序产品,当该计算机指令在计算机上运行时,使得计算机执行第一方面或第二方面所提供的任意一种方法。
第八方面,提供一种芯片,包括:处理电路和收发管脚,处理电路和收发管脚用于实现上述第一方面或第二方面所提供的方法。其中,处理电路用于执行相应方法中的处理动作,收发管脚用于执行相应方法中的接收/发送的动作。
需要说明的是,上述第三方面至第八方面中任一种设计所带来的技术效果可以参见第一方面或第二方面中对应设计所带来的技术效果,此处不再赘述。
附图说明
图1为本申请实施例提供的一种双连接的架构示意图;
图2为本申请实施例提供的另一种双连接的架构示意图;
图3为本申请实施例提供的另一种双连接的架构示意图;
图4为本申请实施例提供的一种双连接的流程图;
图5为本申请实施例提供的一种终端设备和网络设备的硬件结构示意图;
图6为本申请实施例提供的一种通信方法的流程图;
图7为本申请实施例提供的另一种通信方法的流程图;
图8为本申请实施例提供的另一种通信方法的流程图;
图9为本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
在本申请的描述中,除非另有说明,“/”表示“或”的意思,例如,A/B可以表示A或B。本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。此外,“至少一个”是指一个或多个,“多个”是指两个或两个以上。“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
需要说明的是,本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
下面是对本申请所涉及的专业术语的简单介绍,以便于本领域技术人员对方案的理解。
1、双连接
在无线通信技术领域中,为了提升用户的吞吐率,引入了双连接(dual connectivity, DC)技术。DC可以支持两个或两个以上基站同时为一个终端设备提供数据传输服务。这些基站中包括一个主节点(master node,MN),以及一个或多个辅节点(secondary node,SN)。
主节点与核心网(core network,CN)之间通过S1/NG接口连接。主节点与核心网之间至少包括控制面连接,还可以有用户面连接。S1接口包括S1-U和S1-C。NG接口包括NG-U和NG-C。其中,S1-U/NG-U代表用户面连接,S1-C/NG-C代表控制面连接。
辅节点与核心网之间可以具有用户面连接,也可以不具有用户面连接。当辅节点与核心网之间不具有用户面连接时,终端设备的数据可以由主节点在分组数据汇聚协议(packet data convergence protocol,PDCP)层分流给辅节点。该主节点又可被称为主基站或主接入网设备,SN又可被称为辅基站或辅接入网设备。
在双连接场景下,主节点管理一个主小区(primary cell,PCell)。其中,主小区是指部署在主频点,且在终端设备发起初始连接建立过程或RRC连接重建立过程中接入的小区,或者在切换过程中指示为主小区的小区。
进一步地,除主小区外,主节点还可以管理一个或多个辅小区(secondary cell,SCell)。主节点下为终端设备提供服务的小区,如主小区、主节点下的辅小区,可以统称为主小区组(master cell group,MCG)。
辅节点管理一个主辅小区(primary secondary cell,PSCell)。其中,主辅小区可以是终端设备向辅节点发起随机接入过程中接入的小区,或者终端设备在辅节点改变过程中跳过随机接入过程发起数据传输的另一辅节点上的小区,或者执行同步重配置流程时发起随机接入过程中接入的辅节点上的小区。
进一步地,除主辅小区外,辅节点还可以管理一个或多个辅小区。辅节点上为终端设备提供服务的小区,如主辅小区、辅节点上的辅小区,可以统称为SCG。
为便于描述,在NR协议中,将主小区和主辅小区统称为特别小区(special cell,SpCell)。
依据主节点和辅节点各自支持的通信制式,双连接网络可以有多种实现方式,下面举例说明。
如图1所示,为LTE-NR双连接(EUTRA-NR dual connectivity,EN-DC)网络的示意图。EN-DC网络是4G无线接入网与5G NR的双连接,LTE基站(LTE eNB)作为MN,NR基站(NR gNB)作为SN。如图1中的(a)所示,LTE eNB与LTE系统的演进型分组核心网(evolved Packet Core,EPC)之间存在S1接口,至少有控制面连接,可以还有用户面连接。如图1中的(b)所示,NR gNB和EPC之间存在S1-U接口,即只可以有用户面连接。
如图2所示,为NR-LTE双连接(NR-E-UTRA Dual Connectivity,NE-DC)网络的示意图。NE-DC网络是5G核心网下的4G无线接入网与5G NR的双连接,NR基站(gNB)作为MN,LTE基站(ng-eNB)作为SN,且MN和SN都连接5G核心网(5th Generation Core Network,5GC)。如图2中的(a)所示,gNB与5GC之间存在NG接口,可以为终端设备建立控制面连接和用户面连接,ng-eNB通过gNB向5GC发送用户面数据。如图2中的(b)所示,ng-eNB与5GC之间存在NG-U接口,仅为 终端设备建立用户面连接,ng-eNB直接向5GC发送用户面数据。
如图3所示,为5G核心网LTE-NR双连接(Next Generation E-UTRA-NR Dual Connectivity,NGEN-DC)网络的示意图。NGEN-DC网络是5G核心网下的4G无线接入网与5G NR的双连接,LTE基站(ng-eNB)作为MN,NR基站(gNB)作为SN,且MN和SN都连接5GC。如图3中的(a)所示,ng-eNB与5GC之间存在NG接口,可以为终端设备建立控制面连接和用户面连接,gNB通过ng-eNB向5GC发送用户面数据。如图3中的(b)所示,gNB与5GC之间存在NG-U接口,仅为终端设备建立用户面连接,gNB直接向5GC发送用户面数据。
在图1至图3的双连接网络中,SN和核心网之间也可以不建立用户面连接,而是经由MN传递数据,例如,在下行方向上,终端设备的数据先到达MN,MN在PDCP层将终端设备的数据分流给SN,其中分流的数据的形式例如为PDCP协议数据单元(protocol data unit,PDU)。
2、双连接建立流程
如图4所示,相关技术中EN-DC双连接建立流程包括以下步骤:
S100、终端设备注册到LTE网络。
S101、eNB决定添加gNB作为辅节点。
S102、eNB向gNB发送辅节点添加请求消息。
其中,辅节点添加请求消息用于请求gNB作为终端设备的辅节点。
可选的,辅节点添加请求消息可以携带RRC和无线承载配置。
可选的,辅节点添加请求消息还可以携带与终端设备的功能、安全等方面相关的信息。
S103、gNB向eNB发送辅节点添加请求确认消息。
其中,辅节点添加请求确认消息用于响应辅节点添加请求消息。
S104、eNB向终端设备发送RRC重配置(reconfiguration)消息。
其中,RRC重配置消息用于为终端设备配置5G的无线承载。
S105、终端设备接入5G小区。
S106、终端设备向eNB发送RRC重配置完成消息。
S107、eNB向gNB发送辅节点重配置完成消息。
基于图4所示的流程,终端设备完成EN-DC双连接的建立。
3、信令无线承载(signaling radio bearer,SRB)
SRB用于传输RRC消息和NAS消息。SRB可以分为以下几类:
(1)SRB0,建立在公共控制信道(common control channel,CCCH)上,用于传输RRC消息。
(2)SRB1,建立在专用控制信道(dedicated control channel,DCCH)上,主要用于传输RRC消息,还可以以内嵌方式与RRC消息一起传输NAS消息。
(3)SRB2,在安全模式完成以后,建立在DCCH上,以可靠安全方式专门传输NAS消息。
(4)SRB3,建立在DCCH上,用于传输EN-DC场景下终端设备与作为辅基站的gNB之间的RRC消息。
4、频段(band)
在通信技术领域,频段是指电磁波的频率范围。示例性的,表1示出3GPP对E-UTRA工作频段的规定。
表1
Figure PCTCN2021078338-appb-000001
示例性的,下文中4G网络的频段号以“B”开头,例如B20即代表4G网络中频段号为20的频段。5G网络的频段号以“N”开头,例如N78即代表5G网络中频段号为78的频段。
5、频点
频点是指一个频段(或者子频段)的中心频率。应理解,无论E-UTRA或者NR,一个工作频段可以被划分为多个子频段,一个子频段可以被称为一个载波单元(component carrier,CC)。在频域上,一个载波单元可以被视为一个小区。
示例性的,下面介绍E-UTRA中对于频点的计算方式。
对于上行频段来说,F UL=F UL_low+0.1(N UL-N offs-UL)。其中,F UL为该上行频段的频点,F UL_low为该上行频段所在的E-UTRA工作频段的最小上行频率,N UL为该上行频段的频点号,N offs-UL为该上行频段所在的E-UTRA工作频段的最低上行频点号。
对于下行频段来说,F DL=F DL_low+0.1(N DL-N offs-DL)。其中,F DL为该下行频段的频点,F DL_low为该下行频段所在的E-UTRA工作频段的最小下行频率,N DL为该下行频段的频点号,N offs-DL为该下行频段所在的E-UTRA工作频段的最低下行频点号。
6、载波聚合(carrier aggregation,CA)
载波聚合是指将两个或更多的载波单元聚合在一起以支持更大的传输带宽。
载波聚合的类型包括:频段内(intra-Band)载波聚合和频段间(inter-band)载波聚合。Intra-Band载波聚合又分为连续(contiguous)和非连续(non-contiguous)。
对于intra-Band contiguous CA,以CA带宽等级(bandwidth class)来指示聚合传输带宽配置(aggregated transmission bandwidth configuration,ATBC)以及最大连续的CC数量。
示例性的,表2示出CA带宽等级的不同取值的含义。
表2
CA带宽等级 ATBC 最大连续的CC数量
A ATBC≤100MHz 1
B ATBC=25MHz 2
C 100MHz<ATBC≤200MHz 2
D 200MHz<ATBC≤300MHz 3
…… …… ……
以上是对本申请实施例所涉及的术语的介绍,在此统一说明,以下不再赘述。
本申请实施例提供的通信方法可以应用于EN-DC双连接场景下,或者其他DC场景下,本申请实施例对于该通信方法适应的双连接网络的具体架构并不进行限定。以下实施例主要以EN-DC双连接场景为例,对本申请实施例提供的通信方法进行说明。
在本申请实施例中,终端设备是一种具有无线收发功能的设备。终端设备可以被部署在陆地上,包括室内或室外、手持或车载;也可以被部署在水面上(如轮船等);还可以被部署在空中(例如飞机、气球和卫星上等)。终端设备可以是用户设备(user equipment,UE)。其中,UE包括具有无线通信功能的手持式设备、车载设备、可穿戴设备或计算设备。示例性地,UE可以是手机(mobile phone)、平板电脑或带无线收发功能的电脑。终端设备还可以是虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制中的无线终端设备、无人驾驶中的无线终端设备、远程医疗中的无线终端设备、智能电网中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。本申请实施例中,用于实现终端设备的功能的装置可以是终端设备,也可以是能够支持终端设备实现该功能的装置,例如芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
在本申请实施例中,网络设备包括但不限于:无线保真(wireless fidelity,WiFi)系统中的接入点(access point,AP),如家庭网关、路由器、服务器、交换机、网桥等,演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved Node B,或home Node B,HNB)、基带单元(baseband unit,BBU),无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)等,还可以为5G,如,新空口(new radio,NR)系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(baseband unit,BBU),或,分布式单元(distributed unit,DU)、具有基站功能的路边单元(road side unit,RSU)等。
可选的,网络设备可以采用集中式单元(centralized unit,CU)-DU架构。也即,网络设备可以由CU和至少一个DU构成。这种情况下,网络设备的部分功能部署在CU上,网络设备的另一部分功能部署在DU上。CU和DU是按照协议栈进行功能切分。作为一种实现方式,CU部署有协议栈中的RRC层,PDCP层,以及业务数据适应协议(service data adaptation protocol,SDAP)层;DU部署有协议栈中的无线链路控制(radio link control,RLC)层,媒体介入控制(media access control,MAC)层,以及物理层(physical layer,PHY)。从而,CU具有RRC、PDCP和SDAP的处理能力。DU具有RLC、MAC和PHY的处理能力。可以理解的是,上述功能的切分仅为一个示例,不构成对CU和DU的限定。也就是说,CU和DU之间还可以有其他功能 切分的方式,本申请实施例在此不予赘述。
示例性的,图5为本申请实施例提供的网络设备和终端设备的硬件结构示意图。
终端设备包括至少一个处理器101和至少一个收发器103。可选的,终端设备还可以包括输出设备104、输入设备105和至少一个存储器102。
处理器101、存储器102和收发器103通过总线相连接。处理器101可以是一个通用中央处理器(central processing unit,CPU)、微处理器、特定应用集成电路(application-specific integrated circuit,ASIC),或者一个或多个用于控制本申请方案程序执行的集成电路。处理器101也可以包括多个CPU,并且处理器101可以是一个单核(single-CPU)处理器或多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路或用于处理数据(例如计算机程序指令)的处理核。
存储器102可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备、随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,本申请实施例对此不作任何限制。存储器102可以是独立存在,通过总线与处理器101相连接。存储器102也可以和处理器101集成在一起。其中,存储器102用于存储执行本申请方案的应用程序代码,并由处理器101来控制执行。处理器101用于执行存储器102中存储的计算机程序代码,从而实现本申请实施例提供的方法。
收发器103可以使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网、无线接入网(radio access network,RAN)、无线局域网(wireless local area networks,WLAN)等。收发器103包括发射机Tx和接收机Rx。
输出设备104和处理器101通信,可以以多种方式来显示信息。例如,输出设备104可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备105和处理器101通信,可以以多种方式接收用户的输入。例如,输入设备105可以是鼠标、键盘、触摸屏设备或传感设备等。
网络设备包括至少一个处理器201、至少一个存储器202、至少一个收发器203和至少一个网络接口204。处理器201、存储器202、收发器203和网络接口204通过总线相连接。其中,网络接口204用于通过链路与核心网设备连接,或者通过有线或无线链路与其它网络设备的网络接口进行连接(图中未示出),本申请实施例对此不作具体限定。另外,处理器201、存储器202和收发器203的相关描述可参考终端设备中处理器101、存储器102和收发器103的描述,在此不再赘述。
下面结合说明书附图对本申请实施例进行具体介绍。
如图6所示,为本申请实施例提供的一种通信方法,该方法包括以下步骤:
S201、第一网络设备向终端设备发送RRC重配置消息。相应的,终端设备接收第 一网络设备发送的RRC重配置信息。其中,RRC重配置信息包括第二EN-DC频段组合。
可选的,第一网络设备支持4G通信制式。示例性的,第一网络设备可以为eNB。
在本申请实施例中,第二EN-DC频段组合为配置给终端设备使用的EN-DC频段组合。示例性的,EN-DC频段组合包括EUTRA参数和NR参数。EUTRA参数用于配置EUTRA频段。NR参数用于配置NR频段。
其中,EUTRA参数用于配置以下参数中的一项或者多项:MIMO能力、CC最大数量、频段、频点、带宽。NR参数用于配置以下参数中的一项或者多项:MIMO能力、CC最大数量、频段、频点、带宽。
MIMO是指在发射端和接收端分别使用多个发射天线和接收天线,使信号通过发射端与接收端的多个天线进行传输,从而改善通信质量或者提供数据传输量。可选的,MIMO能力可以以层数来表征,层数即为并行传输不同数据流的数目。示例性的,MIMO能力可以为2层、4层、8层等,对此不作限定。
可选的,MIMO能力还可以分为上行MIMO能力和下行MIMO能力。上行MIMO能力和下行MIMO能力还可以配置得不相同。例如,目前协议规定上行MIMO能力的最大值为4层,下行MIMO能力的最大值为8层。
可选的,EUTRA参数可以包括CA带宽等级,以指示EUTRA频段的CC最大数量以及带宽。NR参数可以包括CA带宽等级,以指示NR频段的CC最大数量以及带宽。其中,CA带宽等级可以参考前文的描述,在此不再赘述。
作为一种可能的实现方式,终端设备通过第一网络设备注册到网络中,终端设备与第一网络设备之间建立有SRB1。第一网络设备通过SRB1向终端设备发送RRC重配置消息,所述RRC重配置消息包括第二EN-DC频段组合。
可选的,在步骤S201之前,第一网络设备向终端发送测量配置信息;终端设备基于测量配置信息进行小区测量;第一网络设备可以从终端设备接收测量报告,并根据该测量报告,确定第二网络设备作为终端设备的辅节点。或者,第一网络设备也可以在未接收到终端设备的测量报告的情况下,盲配置第二网络设备作为终端设备的辅节点。之后,第一网络设备可以向第二网络设备发送辅节点添加请求消息。第一网络设备接收来自第二网络设备的辅节点添加请求确认消息。其中,辅节点添加请求消息,以及辅节点添加请求确认消息的具体细节可以参考前文的介绍,在此不再赘述。
可选的,在步骤S201之前,终端设备还可以已建立EN-DC。也即,终端设备与第一网络设备、第二网络设备均建立连接。第一网络设备可以根据实际情况(例如在需要修改SCG配置的情况下),执行步骤S201。
可选的,第二网络设备支持5G通信制式。示例性的,第二网络设备可以为gNB。
S202、终端设备确定不能遵从(unable to comply with)第二EN-DC频段组合。
示例性的,步骤S202可以实现为:终端设备不能遵从第二EN-DC频段组合中EUTRA参数所包括的至少一个参数,和/或终端设备不能遵从第二EN-DC频段组合中NR参数所包括的至少一个参数。
可选的,“不能遵从”也可以替换为其他描述,例如“不能支持”等,对此不作限制。
S203、终端设备向第一网络设备发送辅小区组失败信息(SCG failure information)。相应的,第一网络设备接收终端设备发送的辅小区组失败信息。
其中,辅小区组失败信息用于指示添加辅小区组失败。
可选的,辅小区组失败信息还可以包括失败类型。其中,失败类型也可以有其他名称,例如失败原因、故障原因等,对此不作限定。
应理解,终端设备向第一网络设备发送辅小区组失败信息,以触发网络侧释放/改变辅小区组,但并不影响终端设备与第一网络设备之间的连接。也即,在终端设备向第一网络设备发送辅小区组失败信息之后,终端设备在4G网络中还处于连接态,从而保证终端设备在4G网络中的相关业务(例如VOLTE业务或者数据业务)可以正常处理。
可选的,在步骤S203之后,第一网络设备还可以向终端设备发送RRC重配置消息,该RRC重配置消息可以用于指示保持(keep)、改变(change)或者释放(release)辅小区组。
基于图6所示的实施例,在EN-DC配置流程中,若第一终端设备为终端设备配置的第二EN-DC频段组合不能被终端设备遵从,则终端设备向第一网络设备发送辅小区组失败信息,以指示EN-DC配置失败,同时避免触发RRC重建立流程。这样一来,由于未触发RRC重建立流程,可以保证终端设备和第一网络设备维持连接,进而保证终端设备和第一网络设备之间的正常通信。
可选的,基于图6所示的实施例,如图7所示,该通信方法在步骤S202之后还可以包括步骤S204。
S204、终端设备向第一网络设备发送RRC重配置完成消息。相应的,第一网络设备接收来自终端设备的RRC重配置完成消息。
其中,RRC重配置完成消息用于指示RRC重配置完成。
可选的,本申请实施例不限制步骤S204与步骤S203之间的执行顺序。
示例性的,若终端设备在步骤S201之前还未建立EN-DC,则可以先执行步骤S204,再执行步骤S203。应理解,终端设备未建立EN-DC,表示终端设备没有建立SCG。因此,终端设备先向第一网络设备发送RRC重配置完成消息,可以使得网络侧获知SCG建立成功。之后,终端设备再向第一网络设备发送辅小区组失败消息,以触发网络侧来执行SCG释放/改变流程。
示例性的,若终端设备在步骤S201之前已建立EN-DC,则可以先执行步骤S203,再执行步骤S204。
基于步骤S204,终端设备通过向第一网络设备发送RRC重配置完成消息,以正常完成终端设备与第一网络设备之间的RRC重配置流程。这样一来,避免第一网络设备由于长时间未接收到终端设备对于RRC重配置消息的响应,而认为终端设备出现异常。
下面结合终端设备的能力上报流程,具体说明图6所示实施例。
如图8所示,为本申请实施例提供的一种通信方法,该方法包括以下步骤:
S301(可选的)、第一网络设备向终端设备发送能力询问(capability enquiry)信息。相应的,终端设备接收来自第一网络设备的能力询问信息。
其中,能力询问信息用于请求终端设备的能力信息。
S302、终端设备向第一网络设备发送能力信息。相应的,第一网络设备接收来自终端设备的能力信息。
其中,能力信息用于指示第一EN-DC频段组合。第一EN-DC频段组合为终端设备支持的EN-DC频段组合。
可选的,第一EN-DC频段组合可以是一个或者多个,本申请实施例对此不作限制。
S303、第一网络设备向终端设备发送RRC重配置消息。相应的,终端设备接收来自第一网络设备的RRC重配置消息。
其中,步骤S303的描述可以参考图6中的步骤S201的具体介绍,在此不再赘述。
S304、终端设备确定第二EN-DC频段组合与第一EN-DC频段组合不匹配。
可选的,第二EN-DC频段组合与第一EN-DC频段组合不匹配,包括以下情形中的一个或多个:
情形一、第二EN-DC频段组合中的频段不匹配第一EN-DC频段组合中的频段。
作为一种可能的实现方式,第二EN-DC频段组合中EUTRA参数所配置的频段不同于第一EN-DC频段组合中EUTRA参数所配置的频段;和/或,第二EN-DC频段组合中NR参数所配置的频段不同于第一EN-DC频段组合中NR参数所配置的频段。
举例来说,第一EN-DC频段组合中的频段为B3+N79,第二EN-DC中的频段为B3+N78,由于N79不同于N78,因此第一EN-DC频段组合中的频段不匹配第一EN-DC频段组合中的频段。
情形二、第二EN-DC频段组合中的带宽大于第一EN-DC频段组合中的带宽。
作为一种可能的实现方式,第二EN-DC频段组合中EUTRA参数所配置的带宽大于第一EN-DC频段组合中EUTRA参数所配置的带宽;和/或,第二EN-DC频段组合中NR参数所配置的带宽大于第一EN-DC频段组合中NR参数所配置的带宽。可选的,上述带宽可以为上行带宽或者下行带宽。
情形三、第二EN-DC频段组合中的最大CC数量大于第一EN-DC频段组合中的最大CC数量。
作为一种可能的实现方式,第二EN-DC频段组合中EUTRA参数所配置的最大CC数量大于第一EN-DC频段组合中EUTRA参数所配置的最大CC数量;和/或,第二EN-DC频段组合中NR参数所配置的最大CC数量不同于第一EN-DC频段组合中NR参数所配置的最大CC数量。
举例来说,第一EN-DC频段组合中的频段为B3+N78,B3对应的最大CC数量为1,N78对应的最大CC数量为1。第二EN-DC频段组合中的频段为B3+N78,B3对应的最大CC数量为1,N78对应的最大CC数量为2。由于第一EN-DC频段组合中N78对应的最大CC数量小于第二EN-DC频段组合中N78对应的最大CC数量,因此第二EN-DC频段组合与第一EN-DC频段组合不匹配。
情形四、第二EN-DC频段组合中的MIMO能力不匹配第一EN-DC频段组合中的MIMO能力。
作为一种可能的实现方式,第二EN-DC频段组合中EUTRA参数所配置的MIMO能力大于第一EN-DC频段组合中EUTRA参数所配置的MIMO能力;和/或,第二EN-DC频段组合中NR参数所配置的MIMO能力大于第一EN-DC频段组合中NR参 数所配置的MIMO能力。
举例来说,第一EN-DC频段组合中的频段为B3+N78,B3对应的MIMO能力为2,N78对应的MIMO能力为4。第二EN-DC频段组合中的频段为B3+N78,B3对应的MIMO能力为4,N78对应的MIMO能力为4。由于第一EN-DC频段组合中B3对应的MIMO能力小于第二EN-DC频段组合中B3对应的MIMO能力,因此第二EN-DC频段组合与第一EN-DC频段组合不匹配。
情形五、第二EN-DC频段组合中的频点不匹配第一EN-DC频段组合中的频点。
作为一种可能的实现方式,第二EN-DC频段组合中EUTRA参数所配置的频点不同于第一EN-DC频段组合中EUTRA参数所配置的频点;和/或,第二EN-DC频段组合中NR参数所配置的频点不同于第一EN-DC频段组合中NR参数所配置的频点。
应理解,第二EN-DC频段组合与第一EN-DC频段组合不匹配,代表终端设备不能遵从第二EN-DC频段组合。
S305、终端设备向第一网络设备发送辅小区组失败信息。相应的,第一网络设备接收来自终端设备的辅小区组失败信息。
其中,步骤S305的描述可以参考图6中的步骤S203的具体介绍,在此不再赘述。
基于图8所示的实施例,在第一EN-DC频段组合不匹配第二EN-DC频段组合的情况下,终端设备向第一网络设备发送辅小区组失败信息,以指示EN-DC配置失败,同时避免触发RRC重建立流程。这样一来,由于未触发RRC重建立流程,可以保证终端设备和第一网络设备维持连接,进而保证终端设备和第一网络设备之间的正常通信。
上述主要从方法的角度对本申请实施例提供的方案进行了介绍。可以理解的是,终端或者第一网络设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本申请中所公开的实施例描述的各示例的单元及算法步骤,本申请实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的技术方案的范围。
本申请实施例可以根据上述方法示例对通信装置进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
如图9所示,为本申请实施例提供的一种通信装置,该通信装置包处理模块301和通信模块302。
一种可能的实现方式中,通信装置为终端设备或者终端设备的一部分,处理模块301用于生成消息(例如能力信息、辅小区组失败信息、RRC重配置完成消息等),以及执行图6中的步骤S202,图8中的步骤S304。通信模块302用于执行图6中的步骤S201和S203,图7中的步骤S204,图8中的步骤S301-S303、S305。
可选的,结合图5所示的终端设备,图9中的通信模块302可以由图5中的收发 器103来实现,图9中的处理模块301可以由图5中的处理器101来实现,本申请实施例对此不作任何限制。
另一种可能的实现方式中,通信装置为网络设备或者网络设备的一部分,处理模块301用于生成消息(例如RRC重配置消息等)。通信模块302用于执行图6中的步骤S201和S203,图7中的步骤S204,图8中的步骤S301-S303、S305。
可选的,结合图5所示的网络设备,图9中的通信模块302可以由图5中的收发器203来实现,图9中的处理模块301可以由图5中的处理器201来实现,本申请实施例对此不作任何限制。
本申请实施例还提供一种携带计算机指令的计算机程序产品,当该计算机指令在计算机上运行时,使得计算机执行上述图6-图8中的方法。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储计算机指令,当该计算机指令在计算机上运行时,使得计算机执行上述图6-图8中的方法。
本申请实施例还提供一种芯片,包括:处理电路和收发管脚,处理电路和收发管脚用于实现上述图6-图8中的方法。其中,处理电路用于执行相应方法中的处理动作,收发管脚用于执行相应方法中的接收/发送的动作。
本领域普通技术人员可以理解:在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个设备上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案 的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个功能单元独立存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可借助软件加必需的通用硬件的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在可读取的存储介质中,如计算机的软盘,硬盘或光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (32)

  1. 一种通信方法,其特征在于,所述方法包括:
    终端设备向网络设备发送能力信息,所述能力信息用于指示第一演进的通用陆地无线接入网络与新空口网络之间双连接EN-DC频段组合;
    所述终端设备接收所述网络设备发送的无线资源控制RRC重配置消息,所述RRC重配置消息用于指示第二EN-DC频段组合;
    在所述第二EN-DC频段组合与所述第一EN-DC频段组合不匹配的情况下,所述终端设备向所述网络设备发送辅小区组失败信息。
  2. 根据权利要求1所述的方法,其特征在于,所述第二EN-DC频段组合与所述第一EN-DC频段组合不匹配,包括以下情形中的至少一种:
    所述第二EN-DC频段组合中的频段不匹配所述第一EN-DC频段组合中的频段;或者,
    所述第二EN-DC频段组合中的带宽不匹配所述第一EN-DC频段组合中的带宽;或者,
    所述第二EN-DC频段组合中的最大载波单元数量不匹配所述第一EN-DC频段组合中的最大载波单元数量;或者,
    所述第二EN-DC频段组合中的多输入多输出MIMO能力不匹配所述第一EN-DC频段组合中的MIMO能力;或者,
    所述第二EN-DC频段组合中的频点不匹配所述第一EN-DC频段组合中的频点。
  3. 根据权利要求1或2所述的方法,其特征在于,在所述终端设备向网络设备发送能力信息之前,所述方法还包括:
    所述终端设备接收所述网络设备发送的能力询问信息,所述能力询问信息用于请求所述终端设备上报所述能力信息。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,在所述终端设备接收所述网络设备发送的RRC重配置消息之前,所述方法还包括:
    所述终端设备接收所述网络设备发送的测量配置信息;
    所述终端设备向所述网络设备发送测量报告。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述终端设备接收所述网络设备发送的RRC重配置消息,包括:
    所述终端设备通过信令无线承载SRB1接收来自所述网络设备的所述RRC重配置消息。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备向所述网络设备发送RRC重配置完成消息。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,所述网络设备支持4G通信制式。
  8. 一种通信方法,其特征在于,所述方法包括:
    网络设备接收来自终端设备的能力信息,所述能力信息用于指示第一EN-DC频段组合;
    所述网络设备向所述终端设备发送RRC重配置消息,所述RRC重配置消息用于 指示第二EN-DC频段组合;
    在所述第二EN-DC频段组合与所述第一EN-DC频段组合不匹配的情况下,所述网络设备接收来自所述终端设备的辅小区组失败信息。
  9. 根据权利要求8所述的方法,其特征在于,所述第二EN-DC频段组合与所述第一EN-DC频段组合不匹配,包括以下情形中的至少一种:
    所述第二EN-DC频段组合中的频段不匹配所述第一EN-DC频段组合中的频段;或者,
    所述第二EN-DC频段组合中的带宽不匹配所述第一EN-DC频段组合中的带宽;或者,
    所述第二EN-DC频段组合中的最大载波单元数量不匹配所述第一EN-DC频段组合中的最大载波单元数量;或者,
    所述第二EN-DC频段组合中的MIMO能力不匹配所述第一EN-DC频段组合中的MIMO能力;或者,
    所述第二EN-DC频段组合中的频点不匹配所述第一EN-DC频段组合中的频点。
  10. 根据权利要求8或9所述的方法,其特征在于,在所述网络设备接收来自终端设备的能力信息之前,所述方法还包括:
    所述网络设备向所述终端设备发送能力询问信息,所述能力询问信息用于请求所述终端设备上报所述能力信息。
  11. 根据权利要求8至10任一项所述的方法,其特征在于,在所述网络设备向所述终端发送所述RRC重配置消息之前,所述方法还包括:
    所述网络设备向所述终端设备发送测量配置信息;
    所述网络设备接收来自所述终端设备的测量报告。
  12. 根据权利要求8至11任一项所述的方法,其特征在于,所述网络设备向所述终端设备发送RRC重配置消息,包括:
    所述网络设备通过SRB1向所述终端设备发送所述RRC重配置消息。
  13. 根据权利要求8至12任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收来自所述终端设备的RRC重配置完成消息。
  14. 根据权利要求8至13任一项所述的方法,其特征在于,所述网络设备支持4G通信制式。
  15. 一种通信装置,其特征在于,包括:处理模块和通信模块;
    所述通信模块,用于向网络设备发送能力信息,所述能力信息用于指示第一EN-DC频段组合;接收所述网络设备发送的RRC重配置消息,所述RRC重配置消息用于指示第二EN-DC频段组合;
    所示处理模块,用于确定所述第二EN-DC频段组合与所述第一EN-DC频段组合不匹配;
    所述通信模块,还用于在所述处理模块确定所述第二EN-DC频段组合与所述第一EN-DC频段组合不匹配的情况下,向所述网络设备发送辅小区组失败信息。
  16. 根据权利要求15所述的通信装置,其特征在于,所述第二EN-DC频段组合与所述第一EN-DC频段组合不匹配,包括以下情形中的至少一种:
    所述第二EN-DC频段组合中的频段不匹配所述第一EN-DC频段组合中的频段;或者,
    所述第二EN-DC频段组合中的带宽不匹配所述第一EN-DC频段组合中的带宽;或者,
    所述第二EN-DC频段组合中的最大载波单元数量不匹配所述第一EN-DC频段组合中的最大载波单元数量;或者,
    所述第二EN-DC频段组合中的MIMO能力不匹配所述第一EN-DC频段组合中的MIMO能力;或者,
    所述第二EN-DC频段组合中的频点不匹配所述第一EN-DC频段组合中的频点。
  17. 根据权利要求15或16所述的通信装置,其特征在于,
    所述通信模块,还用于接收所述网络设备发送的能力询问信息,所述能力询问信息用于请求上报所述能力信息。
  18. 根据权利要求15至17任一项所述的通信装置,其特征在于,
    所述通信模块,还用于接收所述网络设备发送的测量配置信息;向所述网络设备发送测量报告。
  19. 根据权利要求15至18任一项所述的通信装置,其特征在于,所述通信模块,用于接收所述网络设备发送的RRC重配置消息,包括:
    通过SRB1接收来自所述网络设备的所述RRC重配置消息。
  20. 根据权利要求15至19任一项所述的通信装置,其特征在于,
    所述通信模块,还用于向所述网络设备发送RRC重配置完成消息。
  21. 根据权利要求15至20任一项所述的通信装置,其特征在于,所述网络设备支持4G通信制式。
  22. 一种通信装置,其特征在于,包括通信模块和处理模块;
    所述通信模块,用于接收来自终端设备的能力信息,所述能力信息用于指示第一EN-DC频段组合;
    所述处理模块,用于生成RRC重配置消息,所述RRC重配置消息用于指示第二EN-DC频段组合;
    所述通信模块,还用于向所述终端设备发送RRC重配置消息;在所述第二EN-DC频段组合与所述第一EN-DC频段组合不匹配的情况下,接收来自所述终端设备的辅小区组失败信息。
  23. 根据权利要求22所述的通信装置,其特征在于,所述第二EN-DC频段组合与所述第一EN-DC频段组合不匹配,包括以下情形中的至少一种:
    所述第二EN-DC频段组合中的频段不匹配所述第一EN-DC频段组合中的频段;或者,
    所述第二EN-DC频段组合中的带宽不匹配所述第一EN-DC频段组合中的带宽;或者,
    所述第二EN-DC频段组合中的最大载波单元数量不匹配所述第一EN-DC频段组合中的最大载波单元数量;或者,
    所述第二EN-DC频段组合中的MIMO能力不匹配所述第一EN-DC频段组合中的 MIMO能力;或者,
    所述第二EN-DC频段组合中的频点不匹配所述第一EN-DC频段组合中的频点。
  24. 根据权利要求22或23所述的通信装置,其特征在于,
    所述通信模块,还用于向所述终端设备发送能力询问信息,所述能力询问信息用于请求所述终端设备上报所述能力信息。
  25. 根据权利要求22至24任一项所述的通信装置,其特征在于,
    所述通信模块,还用于向所述终端设备发送测量配置信息;接收来自所述终端设备的测量报告。
  26. 根据权利要求22至25任一项所述的通信装置,其特征在于,所述通信模块,用于向所述终端设备发送RRC重配置消息,包括:
    通过SRB1向所述终端设备发送所述RRC重配置消息。
  27. 根据权利要求22至26任一项所述的通信装置,其特征在于,
    所述通信模块,还用于接收来自所述终端设备的RRC重配置完成消息。
  28. 根据权利要求22至27任一项所述的通信装置,其特征在于,所述通信装置应用于网络设备,所述网络设备支持4G通信制式。
  29. 一种通信装置,其特征在于,包括处理器和通信接口,所述处理器用于执行权利要求1至14中任一项所述的方法中的处理操作,所述通信接口用于执行权利要求1至14中任一项所述的方法中的通信操作。
  30. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行权利要求1至14任一项所述的方法。
  31. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机指令,当所述计算机程序产品在计算机上运行时,使得所述计算机执行权利要求1至14任一项所述的方法。
  32. 一种芯片,其特征在于,所述芯片包括处理电路和收发管脚;所述处理电路用于执行权利要求1至14中任一项所述的方法中的处理操作,所述收发管脚用于执行权利要求1至14中任一项所述的方法中的通信操作。
PCT/CN2021/078338 2021-02-27 2021-02-27 通信方法及装置 WO2022178893A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180003827.6A CN115918242A (zh) 2021-02-27 2021-02-27 通信方法及装置
PCT/CN2021/078338 WO2022178893A1 (zh) 2021-02-27 2021-02-27 通信方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/078338 WO2022178893A1 (zh) 2021-02-27 2021-02-27 通信方法及装置

Publications (1)

Publication Number Publication Date
WO2022178893A1 true WO2022178893A1 (zh) 2022-09-01

Family

ID=83047720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/078338 WO2022178893A1 (zh) 2021-02-27 2021-02-27 通信方法及装置

Country Status (2)

Country Link
CN (1) CN115918242A (zh)
WO (1) WO2022178893A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117812734A (zh) * 2024-02-29 2024-04-02 荣耀终端有限公司 信息处理方法、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101064634A (zh) * 2006-04-30 2007-10-31 华为技术有限公司 频段重配置系统和方法
CN108924823A (zh) * 2017-04-12 2018-11-30 展讯通信(上海)有限公司 双连接的配置方法、装置、基站及用户设备
CN109246823A (zh) * 2017-04-27 2019-01-18 展讯通信(上海)有限公司 双系统双连接方法、装置、存储介质、基站及终端
WO2020199017A1 (zh) * 2019-03-29 2020-10-08 华为技术有限公司 重配置方法、终端设备和通信系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101064634A (zh) * 2006-04-30 2007-10-31 华为技术有限公司 频段重配置系统和方法
CN108924823A (zh) * 2017-04-12 2018-11-30 展讯通信(上海)有限公司 双连接的配置方法、装置、基站及用户设备
CN109246823A (zh) * 2017-04-27 2019-01-18 展讯通信(上海)有限公司 双系统双连接方法、装置、存储介质、基站及终端
WO2020199017A1 (zh) * 2019-03-29 2020-10-08 华为技术有限公司 重配置方法、终端设备和通信系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIANG YUE: "The Construction Solution of 4G/5G Cooperative Wireless Network Engineering", MOBILE COMMUNICATIONS, YIDONG TONGXIN ZAZHISHE, CN, vol. 2020, no. 5, 15 May 2020 (2020-05-15), CN , pages 27 - 31, XP055962502, ISSN: 1006-1010 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117812734A (zh) * 2024-02-29 2024-04-02 荣耀终端有限公司 信息处理方法、设备及存储介质

Also Published As

Publication number Publication date
CN115918242A (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
US11184886B2 (en) Method, base station, and user equipment for implementing carrier aggregation
US20190200406A1 (en) Signaling for multiple radio access technology dual connectivity in wireless network
US20160234702A1 (en) User equipment and protocol and methods for device-to-device communication
US11229077B2 (en) Data transmission method, access network device, and terminal
US11172491B2 (en) Data transmission method, apparatus and system, network element, storage medium and processor
TWI733083B (zh) 與基地台處理一雙連結的裝置及方法
WO2019192458A1 (zh) 通信方法和装置
US20210168735A1 (en) Power Determining Method and Apparatus
US20230077500A1 (en) Communication Method and Apparatus
US11381979B2 (en) Standalone unlicensed spectrum carrier aggregation combinations using dynamic frequency selection (DFS) spectrum
WO2020063441A1 (zh) 重复传输方法、终端和网络侧设备
US20190104511A1 (en) Method for establishing evolved packet system bearer and base station
US20220225128A1 (en) Information Update Method, Device, and System
US20220070926A1 (en) Communication control method and user equipment
WO2021204022A1 (zh) 一种测量方法和装置
WO2022178893A1 (zh) 通信方法及装置
WO2020164502A1 (zh) 传输信息的方法和装置
US20230133425A1 (en) Configuration method and apparatus
CN114586405B (zh) 测量报告上报方法及装置
WO2020182087A1 (zh) 一种远程干扰管理方法及装置
US20240114584A1 (en) Communication method and communication apparatus
WO2023220954A1 (zh) 通信方法、终端、通信设备以及网络设备
WO2024093735A1 (zh) 一种调度请求处理方法及装置
CN113784427B (zh) 功率控制方法及装置
WO2023142981A1 (zh) 通信方法及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927328

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21927328

Country of ref document: EP

Kind code of ref document: A1