WO2020164502A1 - 传输信息的方法和装置 - Google Patents

传输信息的方法和装置 Download PDF

Info

Publication number
WO2020164502A1
WO2020164502A1 PCT/CN2020/074824 CN2020074824W WO2020164502A1 WO 2020164502 A1 WO2020164502 A1 WO 2020164502A1 CN 2020074824 W CN2020074824 W CN 2020074824W WO 2020164502 A1 WO2020164502 A1 WO 2020164502A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
message
information
maximum number
mimo layers
Prior art date
Application number
PCT/CN2020/074824
Other languages
English (en)
French (fr)
Inventor
徐海博
邝奕如
王键
罗海燕
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910290418.3A external-priority patent/CN111565464B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202080007548.2A priority Critical patent/CN113366899A/zh
Priority to EP20755731.5A priority patent/EP3897058A4/en
Priority to US17/426,940 priority patent/US20220104052A1/en
Publication of WO2020164502A1 publication Critical patent/WO2020164502A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • This application relates to the field of communications, and more specifically, to methods and devices for transmitting information in the field of communications.
  • terminal equipment In the case of high-speed data transmission, terminal equipment is configured with high multiple-input multiple-output layer (MIMO layer), large bandwidth and multiple carriers, which will cause the terminal equipment to overheat .
  • MIMO layer multiple-input multiple-output layer
  • high MIMO, large bandwidth and multi-carrier configuration will also cause excessive power consumption of terminal equipment.
  • the auxiliary information (UE assistance information) with overheating indication information can be sent to the base station so that the base station can adjust the communication parameters configured for the terminal device, such as the number of secondary cells, antenna layer The number of MIMO layers, the number of antenna ports and the maximum aggregate bandwidth, etc., to solve the current overheating problem of terminal equipment.
  • the terminal device can also send auxiliary information to the base station so that the base station can adjust the communication parameters configured for the terminal device, such as the number of secondary cells, the number of antenna layers, and the number of antenna ports. Maximum aggregate bandwidth, etc.
  • MR-DC multi-radio dual connectivity
  • two access network devices primary base station and secondary base station
  • the secondary base station also needs to adjust the communication parameters configured for the terminal equipment to solve the overheating problem of the terminal equipment or Reduce the power consumption of terminal equipment.
  • the DU also needs to adjust the communication parameters configured for the terminal device.
  • This application provides a method and device for transmitting information, which can configure a suitable maximum number of MIMO layers, maximum number of SCells, or maximum aggregate bandwidth for terminal equipment to solve the problem of terminal equipment overheating.
  • a method for transmitting information including: a first network device receiving a first message sent by a terminal device, the first message including first overheating assistance information, and the first overheating assistance information for indicating the terminal Whether the device is overheated; the first network device determines a second message according to the first overheating auxiliary information, the second message is used to instruct the second network device to adjust the communication parameter configured for the terminal device, and the communication parameter includes at least one of the following Parameters: the number of uplink secondary cells, the number of downlink secondary cells, the number of wireless antenna layer MIMO layers of the uplink multiple input multiple output, the number of downlink MIMO layers, the uplink aggregate bandwidth, the downlink aggregate bandwidth; the first network device sends to the second network device The second message.
  • the communication parameters may include the maximum number of uplink secondary cells (Scells), the maximum number of downlink secondary cells (Scells), and the FR1 frequency band range ( ⁇ 6GHz frequency band) that the terminal device expects to be temporarily configured.
  • Scells the maximum number of uplink secondary cells
  • Scells the maximum number of downlink secondary cells
  • FR1 frequency band range ⁇ 6GHz frequency band
  • the maximum number of uplink MIMO layers on the serving cell of the FR1 serving cell, the maximum number of downlink MIMO layers on the FR1 serving cell, the maximum number of uplink MIMO layers on the serving cell of the FR2 frequency band (>6GHz band), and the maximum number of uplink MIMO layers on the FR2 serving cell The maximum number of downlink MIMO layers, the maximum uplink aggregation bandwidth of the uplink carrier on FR1, the maximum downlink aggregation bandwidth of the downlink carrier on FR1, the maximum uplink aggregation bandwidth of the uplink carrier on FR2, and the maximum downlink aggregation bandwidth of the downlink carrier on FR2 At least one of.
  • the maximum number of MIMO layers in the auxiliary information (including the maximum number of uplink MIMO layers of the serving cell on FR1, the maximum number of downlink MIMO layers of the serving cell on FR1, and FR2 At least one of the maximum number of uplink MIMO layers of the serving cell on the above and the maximum number of downlink MIMO layers of the serving cell on FR2) can be the maximum number of MIMO layers on the serving cell of the SCG that the terminal device expects SN to configure; or it can be The terminal device expects the maximum number of MIMO layers on the MCG serving cell configured by the MN; or it can be the maximum number of MIMO layers on the MCG serving cell that the terminal device expects the MN to configure and the SN configured SCG; or The terminal device expects the maximum number of MIMO layers on the serving cell of the MCG configured by the MN and the maximum number of MIMO layers on the serving cell of the SCG configured by the SN.
  • the maximum aggregate bandwidth in the auxiliary information (including the maximum uplink aggregate bandwidth of the uplink carrier on FR1, the maximum downlink aggregate bandwidth of the downlink carrier on FR1, and the uplink on FR2 At least one of the maximum uplink aggregate bandwidth of the carrier and the maximum downlink aggregate bandwidth of the downlink carrier on FR2) can be the maximum aggregate bandwidth value of the carrier that the terminal device expects SN to configure; or it can also be the carrier and SN that the terminal device expects the MN to configure The maximum value of the aggregate bandwidth of the configured carriers.
  • the second message may also be used to request the second network device to configure communication parameters for the terminal device.
  • the foregoing second message may not include any communication parameters. After the overheating problem of the terminal device is solved, the second message does not include any information related to communication parameters, which is not limited in this application.
  • the first message is a message with overheating assistance information sent by the terminal device to the MN.
  • the terminal device When the terminal device is overheated, it will send an overheating message to the MN.
  • the overheating message includes the overheating auxiliary information.
  • the overheating auxiliary information can include the communication parameters currently supported by the terminal device. This communication parameter is a parameter configuration that can solve the overheating problem of the terminal device. .
  • the MN and SN can obtain the radio capability of the terminal device, and the communication parameter reported by the terminal device in the case of overheating is less than the communication corresponding to the wireless communication capability. parameter.
  • the terminal device can support 31 SCells when the terminal device is not overheated.
  • the overheating auxiliary information sent by the terminal device to the MN indicates that the current terminal device expects the largest temporary configuration
  • the number of Scells is 6. In other words, only when the sum of the number of Scells configured by the MN and SN for the terminal device is less than or equal to 6, can the overheating problem of the terminal device be solved.
  • the overheating assistance information reported by the terminal device to the MN may include the maximum number of Scells.
  • the overheating assistance information reported by the terminal device to the MN may include at least one of the maximum number of Scells, the maximum number of MIMO layers, and the maximum aggregate bandwidth.
  • the method further includes: the first network device receives a third message sent by the second network device, the third message is a response message to the second message, and The third message is used to indicate the communication parameters configured by the second network device for the terminal device.
  • the terminal device When the terminal device is overheated, it will carry the currently supported communication parameters in the overheating auxiliary information.
  • the overheating auxiliary information does not include any information. Therefore, the MN can determine whether the terminal device is currently overheated according to whether the overheating auxiliary information carries information.
  • the MN receives the overheating message sent by the terminal device, and determines that the terminal device has an overheating problem based on the overheating auxiliary information in the overheating message. After the MN determines that the terminal device has an overheating problem, the MN and SN need to configure the communication parameters for the terminal device according to the communication parameters expected by the terminal device, so as to solve the overheating problem of the terminal device.
  • the MN may indicate through the second message that the SN needs to adjust the communication parameters configured for the terminal device. For different types of communication parameters included, the second message may correspondingly include different information.
  • the SN will inform the MN of the communication parameters configured for the terminal device through a third message, which can be understood as a response message to the second message. For the second message including different information types, the third message correspondingly includes different information types. For details, please refer to related descriptions in the embodiment.
  • the MN can notify the SN that the terminal device has an overheating problem, or notify the SN Provide auxiliary information determined by the MN to solve the overheating problem of terminal equipment.
  • the auxiliary information may include the communication parameters that the MN indicates that the SN can or is allowed to configure the terminal device, or the auxiliary information may include the communication parameters reported by the terminal device to solve the overheating problem.
  • the SN can select the communication parameters used to solve the overheating problem of the terminal equipment from the auxiliary information provided by the MN, thereby configuring the communication parameters for the terminal equipment.
  • the SN can configure the terminal device with a suitable maximum number of MIMO layers, maximum number of SCells, or maximum aggregate bandwidth to help the terminal device alleviate the overheating problem.
  • the MN can also notify the SN that the terminal device overheating problem has been solved, and can restore the maximum capacity configuration supported by the terminal device or the original configuration of the terminal device when it is connected to the MN and SN.
  • the second message further includes a frequency band combination list, and the frequency band combination list includes at least one frequency band combination configured by the second network device for the terminal device.
  • the second message further includes first information, and the first information is used to indicate the maximum uplink secondary cell configured by the second network device for the terminal device Number and/or maximum number of downlink secondary cells.
  • the second message further includes second information, and the second information is used to indicate the maximum auxiliary value reported by the terminal device in the first overheating assistance information.
  • the number of cells, where the maximum number of secondary cells includes the maximum number of uplink secondary cells and/or the maximum number of downlink secondary cells.
  • the second message further includes third information, and the third information is used to indicate the desired configuration of the terminal device on serving cells in different frequency ranges.
  • the third information is also used to indicate the maximum uplink MIMO layer configured by the second network device for the terminal device on serving cells in different frequency ranges.
  • the number and the maximum number of downlink MIMO layers are not limited.
  • the second message further includes fourth information, and the fourth information is used to indicate that in a different frequency range, the second network device is the terminal device
  • the fourth information is also used to indicate the maximum aggregate bandwidth value of the uplink carrier configured by the second network device for the terminal device in different frequency ranges
  • the maximum aggregate bandwidth value of the downlink carrier is not limited.
  • the second message further includes fifth information, and the fifth information is used to indicate the maximum aggregate value reported by the terminal device in the first overheating assistance information. Bandwidth value.
  • the second message further includes sixth information, and the sixth information is used to indicate that the terminal device has an overheating problem.
  • the second message further includes seventh information, and the seventh information is used to instruct the terminal device to solve the overheating problem.
  • the second message when the terminal device has an overheating problem, the second message further includes second overheating assistance information, and the second overheating assistance information includes the first At least one of information, second information, third information, fourth information, and fifth information; when the terminal device overheating problem is solved, the second overheating auxiliary information does not contain any information.
  • the first network device is the primary node device in dual connectivity
  • the second network device is the secondary node device in dual connectivity
  • the second message Is the secondary node modification request message
  • the third message is the secondary node modification request response message
  • a method for transmitting information including: a second network device receives a second message sent by a first network device, the second message is used to instruct the second network device to adjust the communication configured for the terminal device Parameters, the communication parameters include at least one of the following parameters: the number of uplink secondary cells, the number of downlink secondary cells, the number of uplink multiple-input multiple-output wireless antenna layer MIMO layers, the number of downlink MIMO layers, the uplink aggregate bandwidth, and the downlink aggregate bandwidth;
  • the second network device configures the communication parameter for the terminal device according to the second message.
  • the method further includes: the second network device determines a third message according to the communication parameter; the third message sent by the second network device to the first network device Message, the third message is a response message to the second message, and the third message is used to indicate the communication parameters configured by the second network device for the terminal device.
  • the second message further includes a frequency band combination list, and the frequency band combination list includes at least one frequency band combination configured by the second network device for the terminal device.
  • the second message further includes first information, and the first information is used to indicate the maximum uplink secondary cell configured by the second network device for the terminal device Number and/or maximum number of downlink secondary cells.
  • the second message further includes second information, and the second information is used to indicate the maximum auxiliary information reported by the terminal device in the first overheating assistance information. Number of cells.
  • the second message further includes third information, and the third information is used to indicate the desired configuration of the terminal device on serving cells in different frequency ranges.
  • the third information is also used to indicate the maximum uplink MIMO layer configured by the second network device for the terminal device on serving cells in different frequency ranges.
  • the number and the maximum number of downlink MIMO layers are not limited.
  • the second message further includes fourth information, and the fourth information is used to indicate that in a different frequency range, the second network device is the terminal device
  • the fourth information is also used to indicate the maximum aggregate bandwidth value of the uplink carrier configured by the second network device for the terminal device in different frequency ranges
  • the maximum aggregate bandwidth value of the downlink carrier is not limited.
  • the second message further includes fifth information, and the fifth information is used to indicate the maximum aggregate value reported by the terminal device in the first overheating assistance information. Bandwidth value.
  • the second message further includes sixth information, and the sixth information is used to indicate that the terminal device has an overheating problem.
  • the second message further includes seventh information, and the seventh information is used to instruct the terminal device to solve the overheating problem.
  • the second message when the terminal device has an overheating problem, the second message further includes second overheating assistance information, and the second overheating assistance information includes the first At least one of information, second information, third information, fourth information, and fifth information; when the terminal device overheating problem is solved, the second overheating auxiliary information does not contain any information.
  • the first network device is the primary node device in dual connectivity
  • the second network device is the secondary node device in dual connectivity
  • the second message Is the secondary node modification request message
  • the third message is the secondary node modification request response message
  • a communication device including: a receiving unit configured to receive a first message sent by a terminal device, the first message including first overheating auxiliary information, and the first overheating auxiliary information for indicating the terminal device Whether it is overheated; a processing unit, configured to determine a second message according to the first overheating auxiliary information, the second message is used to instruct the second network device to adjust the communication parameter configured for the terminal device, and the communication parameter includes at least one of the following Parameters: the number of uplink secondary cells, the number of downlink secondary cells, the number of wireless antenna layer MIMO layers of the uplink multiple input multiple output, the number of downlink MIMO layers, the uplink aggregate bandwidth, the downlink aggregate bandwidth; the sending unit is used to send to the second network device The second message.
  • the receiving unit is further configured to receive a third message sent by the second network device, where the third message is a response message to the second message, and the third message Used to indicate the communication parameters configured by the second network device for the terminal device.
  • the second message further includes a frequency band combination list, and the frequency band combination list includes at least one frequency band combination configured by the second network device for the terminal device.
  • the second message further includes first information, and the first information is used to indicate the maximum uplink secondary cell configured by the second network device for the terminal device Number and/or maximum number of downlink secondary cells.
  • the second message further includes second information, and the second information is used to indicate the maximum auxiliary value reported by the terminal device in the first overheating assistance information. Number of cells.
  • the second message further includes third information, which is used to indicate the desired configuration of the terminal device on serving cells in different frequency ranges. Maximum number of uplink MIMO layers and/or maximum number of downlink MIMO layers.
  • the third information is also used to indicate the maximum uplink MIMO layer configured by the second network device for the terminal device on serving cells in different frequency ranges.
  • the number and the maximum number of downlink MIMO layers are not limited.
  • the second message further includes fourth information, and the fourth information is used to indicate that in a different frequency range, the second network device is the terminal device
  • the fourth information is also used to indicate the maximum aggregate bandwidth value of the uplink carrier configured by the second network device for the terminal device in different frequency ranges
  • the maximum aggregate bandwidth value of the downlink carrier is not limited.
  • the second message further includes fifth information, and the fifth information is used to indicate the maximum aggregate value reported by the terminal device in the first overheating assistance information. Bandwidth value.
  • the second message further includes sixth information, and the sixth information is used to indicate that the terminal device has an overheating problem.
  • the second message further includes seventh information, and the seventh information is used to instruct the terminal device to solve the overheating problem.
  • the second message when the terminal device has an overheating problem, the second message further includes second overheating assistance information, and the second overheating assistance information includes the first At least one of information, second information, third information, fourth information, and fifth information; when the terminal device overheating problem is solved, the second overheating auxiliary information does not contain any information.
  • the communication device is a master node device in dual connectivity
  • the second network device is a secondary node device in dual connectivity
  • the second message is a secondary node device in dual connectivity.
  • a node modification request message, and the third message is a secondary node modification request response message.
  • a communication device including: a receiving unit configured to receive a second message sent by a first network device, the second message being used to instruct the second network device to adjust the communication parameters configured for the terminal device ,
  • the communication parameters include at least one of the following parameters: the number of uplink secondary cells, the number of downlink secondary cells, the number of uplink multiple-input multiple-output wireless antenna layer MIMO layers, the number of downlink MIMO layers, the uplink aggregate bandwidth, and the downlink aggregate bandwidth; processing unit, It is used to configure the communication parameter for the terminal device according to the second message.
  • the processing unit is further configured to determine a third message according to the communication parameter; the apparatus further includes a sending unit configured to send the first network device to the first network device Three messages, the third message is a response message to the second message, and the third message is used to indicate the communication parameter configured by the second network device for the terminal device.
  • the second message further includes a frequency band combination list, and the frequency band combination list includes at least one frequency band combination configured by the second network device for the terminal device.
  • the second message further includes first information, and the first information is used to indicate the maximum uplink secondary cell configured by the second network device for the terminal device Number and/or maximum number of downlink secondary cells.
  • the second message further includes second information, and the second information is used to indicate the maximum auxiliary value reported by the terminal device in the first overheating assistance information. Number of cells.
  • the second message further includes third information, and the third information is used to indicate the desired configuration of the terminal device on serving cells in different frequency ranges.
  • the third information is also used to indicate the maximum uplink MIMO layer configured by the second network device for the terminal device on serving cells in different frequency ranges.
  • the number and the maximum number of downlink MIMO layers are not limited.
  • the second message further includes fourth information, and the fourth information is used to indicate that in a different frequency range, the second network device is the terminal device
  • the fourth information is also used to indicate the maximum aggregate bandwidth value of the uplink carrier configured by the second network device for the terminal device in different frequency ranges
  • the maximum aggregate bandwidth value of the downlink carrier is not limited.
  • the second message further includes fifth information, and the fifth information is used to indicate the maximum aggregate value reported by the terminal device in the first overheating assistance information. Bandwidth value.
  • the second message further includes sixth information, and the sixth information is used to indicate that the terminal device has an overheating problem.
  • the second message further includes seventh information, and the seventh information is used to instruct the terminal device to solve the overheating problem.
  • the second message when the terminal device has an overheating problem, the second message further includes second overheating assistance information, and the second overheating assistance information includes the first At least one of information, second information, third information, fourth information, and fifth information; when the terminal device overheating problem is solved, the second overheating auxiliary information does not contain any information.
  • the first network device is the primary node device in dual connectivity
  • the communication device is the secondary node device in dual connectivity
  • the second message is the secondary node device in dual connectivity.
  • a node modification request message, and the third message is a secondary node modification request response message.
  • a method for transmitting information is provided, which is applied to a network architecture including a central unit CU and a distribution unit DU, including: the central unit receives a first message sent by a terminal device, the first message including overheating assistance information The overheating auxiliary information is used to indicate whether the terminal device is overheated; the central unit determines a second message according to the overheating auxiliary information, and the second message is used to instruct the distribution unit to adjust the communication parameters configured for the terminal device.
  • the parameters include the number of wireless antenna layer MIMO layers for uplink and/or downlink multiple input multiple output; the central unit sends the second message to the distribution unit.
  • the first message is an overheating message sent by the terminal device to the CU.
  • the overheating assistance information may include the maximum number of MIMO layers currently supported by the terminal device, and the maximum number of MIMO layers is a parameter configuration that can solve the overheating problem of the terminal device.
  • the terminal device when the terminal device establishes a connection with the base station, it will report the maximum capability under normal conditions to the base station, and the communication parameters reported by the terminal device under overheating conditions are less than the communication parameters corresponding to the maximum capability under normal conditions.
  • the maximum number of supported MIMO layers reported to the CU by the terminal device in a normal state is 4 layers, that is, the maximum number of MIMO layers configured by the CU and DU for the terminal device is both 4 layers.
  • the overheating assistance information sent by the terminal device to the CU indicates that the maximum number of MIMO layers that the current terminal device expects for temporary configuration is 2 layers. In other words, only the CU and DU are the maximum MIMO layers configured by the terminal device. When the number is less than or equal to 2, the overheating problem of the terminal equipment can be solved.
  • the CU when the terminal device has an overheating problem in the CU-DU network, after the CU receives the overheating message reported by the terminal device, the CU can reconfigure the maximum number of MIMO layers for the terminal device. At the same time, it can let the DU know the maximum number of MIMO layers configured by the current CU for the terminal device, so as to ensure that the maximum number of MIMO layers configured for the terminal device does not exceed the maximum number of MIMO layers configured for the terminal device when the terminal device is scheduled for data transmission. , Thereby solving the overheating problem of terminal equipment.
  • the second message includes the overheating assistance information
  • the overheating assistance information includes first information
  • the first information is used to indicate different frequency ranges that the terminal device is expected to configure The maximum number of uplink MIMO layers and/or the maximum number of downlink MIMO layers on the serving cell.
  • the second message includes the overheating auxiliary information, and the overheating auxiliary information does not include any information.
  • the method further includes: the central unit receiving a third message sent by the distribution unit, where the third message is a response message to the second message.
  • the first message is a terminal device context modification request message
  • the second message is a terminal device context modification response message
  • the second message includes second information, and the second information is used to indicate the serving cells in different frequency ranges configured by the distribution unit for the terminal device The maximum number of uplink MIMO layers and/or the maximum number of downlink MIMO layers.
  • a method for transmitting information is provided, which is applied to a network architecture including a central unit CU and a distribution unit DU, including: the distribution unit receives a second message sent by the central unit, and the second message is used to indicate the The distribution unit adjusts the communication parameters configured for the terminal device.
  • the communication parameters include the number of uplink and/or downlink multiple-input multiple-output wireless antenna layer MIMO layers; the distribution unit is the terminal according to the second message sent by the central unit. The maximum number of MIMO layers for device configuration.
  • the method further includes: the distribution unit determines a third message according to the maximum number of MIMO layers, where the third message is a response message of the second message; the distribution unit Send a third message to the central unit.
  • the second message includes the overheating assistance information
  • the overheating assistance information includes first information
  • the first information is used to indicate the desired configuration of the terminal device The maximum number of uplink MIMO layers and/or the maximum number of downlink MIMO layers on serving cells in different frequency ranges.
  • the second message includes the overheating auxiliary information, and the overheating auxiliary information does not include any information.
  • the method further includes: the central unit receiving a third message sent by the distribution unit, where the third message is a response message to the second message.
  • the first message is a terminal device context modification request message
  • the second message is a terminal device context modification response message
  • the second message includes second information, and the second information is used to indicate the serving cells in different frequency ranges configured by the distribution unit for the terminal device The maximum number of uplink MIMO layers and/or the maximum number of downlink MIMO layers.
  • a communication device including: a receiving unit configured to receive a first message sent by a terminal device, the first message including overheating auxiliary information, the overheating auxiliary information is used to indicate whether the terminal device is overheated; processing Unit for determining a second message according to the overheating assistance information, the second message for instructing the distribution unit to adjust the communication parameters configured for the terminal device, the communication parameters including uplink and/or downlink multiple input multiple output wireless The number of MIMO layers of the antenna layer; the sending unit is used to send the second message to the distribution unit.
  • the second message includes the overheating assistance information
  • the overheating assistance information includes first information
  • the first information is used to indicate different frequency ranges that the terminal device is expected to configure The maximum number of uplink MIMO layers and/or the maximum number of downlink MIMO layers on the serving cell.
  • the second message includes the overheating auxiliary information, and the overheating auxiliary information does not include any information.
  • the receiving unit is further configured to receive a third message sent by the distribution unit, where the third message is a response message to the second message.
  • the first message is a terminal device context modification request message
  • the second message is a terminal device context modification response message
  • the second message includes second information, and the second information is used to indicate the serving cells in different frequency ranges configured by the distribution unit for the terminal device The maximum number of uplink MIMO layers and/or the maximum number of downlink MIMO layers.
  • a communication device including: a receiving unit, configured to receive a second message sent by a central unit, the second message being used to instruct the distribution unit to adjust the communication parameter configured for the terminal device, the communication parameter The number of wireless antenna layer MIMO layers including uplink and/or downlink multiple input multiple output; the processing unit is configured to configure the maximum number of MIMO layers for the terminal device according to the second message sent by the central unit.
  • the processing unit is further configured to determine a third message according to the maximum number of MIMO layers, where the third message is a response message of the second message;
  • the device also includes a sending unit for sending a third message to the central unit.
  • the second message includes the overheating assistance information
  • the overheating assistance information includes first information
  • the first information is used to indicate the desired configuration of the terminal device The maximum number of uplink MIMO layers and/or the maximum number of downlink MIMO layers on serving cells in different frequency ranges.
  • the second message includes the overheating auxiliary information, and the overheating auxiliary information does not include any information.
  • the receiving unit is further configured to receive a third message sent by the distribution unit, where the third message is a response message to the second message.
  • the first message is a terminal device context modification request message
  • the second message is a terminal device context modification response message
  • the second message includes second information, and the second information is used to indicate the serving cells in different frequency ranges configured by the distribution unit for the terminal device The maximum number of uplink MIMO layers and/or the maximum number of downlink MIMO layers.
  • a communication device in a ninth aspect, has the function of realizing the first network device (such as a primary base station) in the method design of the first aspect.
  • the functions can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above functions.
  • a communication device in a tenth aspect, has the function of implementing the second network device (for example, a secondary base station) in the method design of the second aspect.
  • the second network device for example, a secondary base station
  • These functions can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above functions.
  • a network device including a transceiver and a processor.
  • the network device further includes a memory.
  • the processor is used to control the transceiver to send and receive signals
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program from the memory, so that the network device executes any one of the above-mentioned first aspect or the first aspect. The method in the implementation mode.
  • a network device including a transceiver and a processor.
  • the network device further includes a memory.
  • the processor is used to control the transceiver to send and receive signals
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program from the memory, so that the network device executes any one of the above-mentioned second aspect or the second aspect. The method in the implementation mode.
  • a network device including a transceiver and a processor.
  • the network device further includes a memory.
  • the processor is used to control the transceiver to send and receive signals
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program from the memory, so that the network device executes any one of the third aspect or the third aspect described above. The method in the implementation mode.
  • a network device including a transceiver and a processor.
  • the network device further includes a memory.
  • the processor is used to control the transceiver to send and receive signals
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program from the memory, so that the network device executes any one of the foregoing fourth aspect or the fourth aspect. The method in the implementation mode.
  • a communication system which includes the communication device of the third aspect and the communication device of the fourth aspect; or, the system includes the communication device of the seventh aspect and the communication device of the eighth aspect.
  • a communication device may be a network device designed in the above method or a chip set in the network device.
  • the communication device includes a processor, coupled with a memory, and can be used to execute instructions in the memory to implement the method executed by the network device in the first aspect or any one of the possible implementation manners of the first aspect, or to implement the foregoing A method executed by a network device in the fifth aspect or any one of the possible implementation manners of the fifth aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled with the communication interface.
  • the communication interface may be a transceiver, or an input/output interface.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a communication device may be a network device designed in the above method or a chip set in the network device.
  • the communication device includes a processor, coupled with a memory, and can be used to execute instructions in the memory to implement the method executed by the network device in the second aspect or any one of the possible implementation manners of the second aspect, or to implement the first The method executed by the network device in the sixth aspect or any one of the possible implementation manners of the sixth aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled with the communication interface.
  • the communication interface may be a transceiver or an input/output interface.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a computer program product comprising: computer program code, when the computer program code is run on a computer, the computer executes the methods in the above aspects.
  • a computer-readable medium stores program code, and when the computer program code runs on a computer, the computer executes the methods in the above-mentioned aspects.
  • a first network device receives a first message sent by a terminal device.
  • the first message includes first overheating assistance information, including auxiliary information for reducing power consumption;
  • the first network device determines a second message according to the first overheating assistance information, the second message is used to instruct the second network device to adjust the communication parameter configured for the terminal device, and the communication parameter includes at least one of the following Parameters: the number of uplink secondary cells, the number of downlink secondary cells, the number of wireless antenna layer MIMO layers for uplink multiple input multiple output, the number of downlink MIMO layers, the uplink aggregate bandwidth, and the downlink aggregate bandwidth;
  • the first message is a message sent by the terminal device to the MN for reducing power consumption.
  • the message includes auxiliary information
  • the auxiliary information may include the communication parameters that the terminal device currently expects to configure, and the communication parameters are parameter configurations that can reduce the power consumption of the terminal device.
  • the auxiliary information may include communication parameters currently expected to be configured by the terminal device, and the communication parameters are parameter configurations that can reduce the power consumption of the terminal device.
  • the auxiliary information may include one or more of the following: the number of MIMO layers desired by the terminal device, the aggregate bandwidth, and the number of secondary cells.
  • the maximum number of MIMO layers in the auxiliary information may be the maximum number of MIMO layers on the serving cell of the SCG that the terminal device expects SN to configure; or It is the maximum number of MIMO layers on the MCG serving cell that the terminal device expects the MN to configure; or it can be the maximum number of MIMO layers on the MCG serving cell that the terminal device expects the MN to configure and the SN configures SCG; It includes the maximum number of MIMO layers on the serving cell of the MCG configured by the MN and the maximum number of MIMO layers on the serving cell of the SCG configured by the SN.
  • the maximum aggregate bandwidth in the auxiliary information (including the maximum uplink aggregate bandwidth of the uplink carrier on FR1, the maximum downlink aggregate bandwidth of the downlink carrier on FR1, and the maximum aggregate bandwidth of the downlink carrier on FR2)
  • At least one of the maximum uplink aggregate bandwidth of the uplink carrier and the maximum downlink aggregate bandwidth of the downlink carrier on FR2) may be the maximum aggregate bandwidth value of the carrier that the terminal device expects the SN to configure; or it may be the carrier and the carrier that the terminal device expects the MN to configure.
  • the maximum value of the sum of the aggregate bandwidth of the carriers configured by the SN may be the maximum aggregate bandwidth value of the carrier that the terminal device expects the SN to configure.
  • the communication parameters may include the maximum number of uplink secondary cells (Scells), the maximum number of downlink secondary cells (Scells), and the FR1 frequency range ( ⁇ 6GHz) that the terminal device expects to be temporarily configured.
  • Scells the maximum number of uplink secondary cells
  • Scells the maximum number of downlink secondary cells
  • ⁇ 6GHz the FR1 frequency range
  • the maximum number of uplink MIMO layers on the serving cell of the frequency band), the maximum number of downlink MIMO layers on the serving cell of FR1, the maximum number of uplink MIMO layers on the serving cell of the FR2 frequency band (>6GHz band), and the maximum number of uplink MIMO layers on the serving cell of FR2 The maximum number of downlink MIMO layers, the maximum uplink aggregation bandwidth of the uplink carrier on FR1, the maximum downlink aggregation bandwidth of the downlink carrier on FR1, the maximum uplink aggregation bandwidth of the uplink carrier on FR2, and the maximum downlink aggregation bandwidth of the downlink carrier on FR2 At least one of them.
  • the various possible implementation manners of the first aspect can be combined with the twentieth aspect to further solve the terminal device's need to reduce power consumption.
  • the terminal device when the terminal device desires to reduce power consumption, it will carry the currently supported communication parameters in the auxiliary information for reducing power consumption.
  • the auxiliary information does not include any information. Therefore, the base station can determine whether the terminal device currently expects to reduce power consumption according to whether the auxiliary information for reducing power consumption carries information.
  • this application also provides a terminal device, a device (such as a chip), a computer storage device, or a computer program product that can implement the method of the twentieth aspect.
  • FIG. 1 is a schematic diagram of the architecture of a mobile communication system applicable to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of the architecture of an example of a multi-air port dual-connection communication system provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of an example of interaction between a terminal device and a base station when the terminal device is overheated according to an embodiment of the present application.
  • FIG. 4 is a schematic interaction diagram of an example of a method for transmitting information provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an example of a CU-DU separated communication system provided by an embodiment of the present application.
  • FIG. 6 is a schematic interaction diagram of an example of a method for transmitting information provided by an embodiment of the present application.
  • Fig. 7 is a schematic block diagram of an example of a communication device according to an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of another example of a communication device according to an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of another example of a communication device according to an embodiment of the present application.
  • FIG. 10 is a schematic block diagram of another example of a communication device according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • 5G 5th generation
  • NR new radio
  • FIG. 1 is a schematic diagram of the architecture of a mobile communication system applicable to an embodiment of the present application.
  • the mobile communication system 100 may include a core network device 110, a wireless access network device 120, and at least one terminal device (the terminal device 130 and the terminal device 140 in FIG. 1).
  • the terminal device is connected to the wireless access network device in a wireless manner
  • the wireless access network device is connected to the core network device in a wireless or wired manner.
  • the core network device and the wireless access network device can be separate and different physical devices, or they can integrate the functions of the core network device and the logical function of the wireless access network device on the same physical device, or it can be a physical device It integrates the functions of part of the core network equipment and part of the wireless access network equipment.
  • the terminal device can be a fixed location or movable.
  • Fig. 1 is only a schematic diagram.
  • the communication system may also include other network equipment, such as wireless relay equipment and wireless backhaul equipment, which are not shown in Fig. 1.
  • the embodiments of the present application do not limit the number of core network equipment, radio access network equipment, and terminal equipment included in the mobile communication system.
  • the wireless access network device 120 is an access device that a terminal device accesses to the mobile communication system in a wireless manner.
  • the wireless access network device 120 may be: a base station, an evolved base station (evolved node B, eNB), a home base station, an access point (AP) in a wireless fidelity (wireless fidelity, WIFI) system, and a wireless medium
  • the relay node, the wireless backhaul node, the transmission point (transmission point, TP), or the transmission and reception point (transmission and reception point, TRP), etc. can also be the base station (gNode B, gNB) in the NR system, or it can also be Components or part of equipment that constitute a base station, such as a central unit (CU), a distributed unit (DU), or a baseband unit (BBU), etc.
  • CU central unit
  • DU distributed unit
  • BBU baseband unit
  • wireless access network equipment is referred to as network equipment.
  • network equipment in this application refers to wireless access network equipment.
  • the network device may refer to the network device itself, or may be a chip applied to the network device to complete the wireless communication processing function.
  • the terminal device in the mobile communication system 100 may also be called a terminal, user equipment (UE), mobile station (mobile station, MS), mobile terminal (mobile terminal, MT), and so on.
  • the terminal equipment in the embodiments of this application can be a mobile phone, a tablet computer (Pad), a computer with wireless transceiver function, and can also be applied to virtual reality (VR) and augmented reality (AR). ), industrial control (industrial control), self-driving (self-driving), remote medical, smart grid, transportation safety, smart city, and smart home ) And other wireless terminal devices.
  • the aforementioned terminal devices and chips applicable to the aforementioned terminal devices are collectively referred to as terminal devices. It should be understood that the embodiments of the present application do not limit the specific technology and specific device form adopted by the terminal device.
  • the embodiments of the present application can be applied to downlink data transmission, can also be applied to uplink data transmission, and can also be applied to device-to-device (D2D) data transmission.
  • the data sending device is the network device
  • the data receiving device is the terminal device. After the terminal device receives the downlink data, it will send feedback information to the network device to notify the network device whether the downlink data is correct by the terminal device receive.
  • the data sending device is a terminal device, and the data receiving device is a network device. After the network device receives the uplink data, it will send feedback information to the terminal device to notify the terminal device whether the uplink data is correct by the network device receive.
  • D2D signal transmission the data sending device is a terminal device, and the data receiving device is also a terminal device.
  • the data transmission direction of the embodiment of the present application is not limited.
  • the LTE base station is the primary base station (master node)
  • the NR base station is the secondary base station (secondary node)
  • the primary base station is connected to 4G core network (evolved packet core, EPC) dual connectivity (E-UTRAN-NR dual connectivity, EN-DC).
  • EPC evolved packet core
  • the network architecture shown in Figure 2 (b) is based on the evolved LTE base station (next generation evolved node B, Ng-eNB) as the primary node, the NR base station (gNB) as the secondary base station, and the primary base station is connected to The dual connection mode (NG-RAN E-UTRA-NR dual connectivity, NGEN-DC) of the 5G core network (5G core, 5GC).
  • Ng-eNB evolved LTE base station
  • gNB NR base station
  • NGEN-DC 5G core network
  • the network architecture shown in Figure 2 (c) is based on a dual connectivity mode (NR-E-UTRA dual connectivity, in which the NR base station is the primary base station, the LTE base station is the secondary base station, and the primary base station is connected to the 5G core network).
  • NR-E-UTRA dual connectivity in which the NR base station is the primary base station, the LTE base station is the secondary base station, and the primary base station is connected to the 5G core network).
  • NE-DC dual connectivity mode
  • the network architecture shown in Figure 2 (d) is based on a dual connectivity mode in which one NR base station is the primary base station, the other NR base station is the secondary base station, and the primary base station is connected to the 5G core network (NR-NR dual connectivity , NR-DC).
  • NR-NR dual connectivity NR-DC
  • the terminal device may have overheating problems in the case of high-speed data transmission.
  • the current standard stipulates that the terminal device can send an overheating message (UE assistance information) with an overheating assistance cell to the base station after the overheating problem occurs or the overheating problem is alleviated.
  • the overheating auxiliary cell will contain the overheating auxiliary message provided by the terminal device; after the overheating problem of the terminal device is alleviated, the overheating auxiliary cell does not contain any overheating auxiliary message.
  • the terminal device can also send auxiliary information to report its desired configuration to the base station.
  • the overheating auxiliary information reported by the terminal device is different.
  • the overheating assistance information may include: uplink (UL) or downlink (downlink) supported by the terminal device , DL) classification; the maximum number of secondary cells (secondary cells, Scells) temporarily configured on the UL/DL supported by the terminal device.
  • the auxiliary information may include: the maximum number of UL/DL temporarily configured Scells supported by the terminal device, and the number of Scells refers to Scells under LTE and PScell/Scell under NR The sum of PScells, where the PScell is the secondary cell configured by the primary base station for the terminal equipment.
  • the terminal device works in a 5G independent networking (new radio standard alone, NR SA) scenario
  • the NR base station works independently, and the NR base station is connected to the 5G core network.
  • the auxiliary information may include: the maximum number of temporarily configured Scells on the UL/DL supported by the terminal device; the maximum number of MIMO layers per frequency range (Frequency Range) temporarily configured on the UL/DL supported by the terminal device; the maximum number of MIMO layers supported by the terminal device The maximum aggregate bandwidth of each frequency range FR temporarily configured on UL/DL.
  • FIG. 3 is an example of the interaction diagram between the terminal device and the base station when the terminal device is overheated according to an embodiment of the present application. As shown in Figure 3, the process includes:
  • the terminal equipment is determined to be overheated
  • the terminal device reports an overheating message with an overheating auxiliary cell to the MN, and the overheating message is used to indicate the maximum number of Scells that the terminal device expects to temporarily configure;
  • the MN After receiving the overheating message reported by the terminal device, the MN obtains the maximum number of Scells in the overheating auxiliary cell. The MN determines the maximum number of Scells configured for the terminal device by the MN and the SN, and the MN determines the band combination list (BC-list) configured for the terminal device according to the capabilities of the terminal device;
  • the MN sends a modification request (SN modification request) to the SN.
  • the modification request includes the BC-list determined by the MN to notify the SN.
  • the MN determines the maximum number of Scells that the SN can configure for the terminal device, it can limit the maximum number of Scells that the SN configures for the terminal device by setting the appropriate allowed BC-list MR-DC, and initiate an SN
  • the updated allowed BC-List MR-DC is carried in the SN modification request message and sent to the SN.
  • the MN updates the allowed BC-list MR-DC in order to solve the overheating problem of the terminal device by reducing the number of carriers, the SN cannot know the reason for the MN update.
  • the SN When the SN configures the Scell for the terminal device, it may When requesting other Scells that cannot solve the overheating problem of the terminal equipment, the SN informs the MN of the re-requested Scells, which causes unnecessary signaling interaction between the MN and the SN.
  • the number of uplink carriers and the number of downlink carriers that the SN can configure for terminal equipment cannot be separately restricted. Therefore, notifying the SN of the number of Scells that can be configured for the terminal device through the modification request in the existing protocol cannot solve the problem of overheating of the terminal device.
  • the terminal device reports a message with auxiliary information to the MN.
  • the message reported by the terminal device to the MN in addition to the aforementioned maximum number of Scells supported by the terminal device, it may also include the maximum number of MIMO layers supported by the terminal device and/or the maximum number of temporary configurations supported by the terminal device. Aggregate bandwidth. After the MN receives the maximum number of temporarily configured MIMO layers and/or the maximum aggregate bandwidth supported by the terminal device reported by the terminal device, the MN currently cannot determine the maximum number of temporarily configured MIMO layers and/or the maximum number of temporarily configured MIMO layers supported by the terminal device.
  • the temporarily configured maximum aggregate bandwidth supported is notified to the SN, that is, the SN cannot be notified of the maximum number of MIMO layers that can be temporarily configured for the terminal device and the maximum aggregate bandwidth that can be temporarily configured for the terminal device, which cannot solve the overheating problem of the terminal device. Or the configuration cannot be modified to reduce power consumption for the terminal device.
  • this application proposes a method of transmitting information.
  • the secondary base station can know that the terminal device has an overheating problem or the terminal device is expected to reduce power consumption. Therefore, the terminal device can be configured with the appropriate number of secondary cells, the maximum number of MIMO layers, and the maximum aggregate bandwidth, or the terminal device can schedule uplink and/or downlink data transmission according to the maximum number of MIMO layers supported by the terminal device.
  • the following embodiment uses the terminal overheating problem as an example to illustrate the method of the present application. It should be understood that when the terminal desires to reduce power consumption, the terminal device may also send auxiliary information to the network device.
  • the auxiliary information may include, for example, the number of MIMO layers desired by the terminal device, the aggregate bandwidth, and the number of secondary cells. Therefore, the method in the following embodiment is also suitable for solving the power consumption problem of the terminal device.
  • FIG. 4 is a schematic interaction diagram of an example of a method 400 for transmitting information provided by an embodiment of the present application. Hereinafter, each step of the method 400 will be described in detail.
  • the method 400 is described by taking the terminal device and the base station (the primary base station MN and the secondary base station SN) as the executor of the method 400 as an example.
  • the execution subject of the method 400 may also be a chip applied to a terminal device and a chip applied to a base station.
  • S401 The terminal device determines that overheating occurs; or the terminal device expects to reduce power consumption.
  • the terminal device sends a first message to the MN, where the first message includes first overheating auxiliary information; or the first message includes auxiliary information for reducing power consumption.
  • the first message is an overheating message sent by the terminal device to the MN.
  • the terminal device When the terminal device is overheated, it will send an overheating message to the MN.
  • the overheating message includes the overheating auxiliary information.
  • the overheating auxiliary information can include the communication parameters currently supported by the terminal device. This communication parameter is a parameter configuration that can solve the overheating problem of the terminal device. .
  • the first message is a message sent by the terminal device to the MN for reducing power consumption.
  • the message includes auxiliary information, and the auxiliary information may include communication parameters currently expected to be configured by the terminal device, and the communication parameters are parameter configurations that can reduce the power consumption of the terminal device.
  • the communication parameters may include the maximum number of uplink secondary cells (Scells), the maximum number of downlink secondary cells (Scells), and the maximum uplink MIMO layer on the serving cell in the FR1 frequency range (frequency bands ⁇ 6GHz) that the terminal device expects to be temporarily configured.
  • Scells the maximum number of uplink secondary cells
  • Scells the maximum number of downlink secondary cells
  • FR1 frequency range frequency bands ⁇ 6GHz
  • the maximum number of downlink MIMO layers on the serving cell of FR1, the maximum number of uplink MIMO layers on the serving cell of the FR2 frequency band (frequency band >6GHz), the maximum number of downlink MIMO layers on the serving cell of FR2, and the uplink on FR1 At least one of the maximum uplink aggregation bandwidth of the carrier, the maximum downlink aggregation bandwidth of the downlink carrier on FR1, the maximum uplink aggregation bandwidth of the uplink carrier on FR2, and the maximum downlink aggregation bandwidth of the downlink carrier on FR2.
  • the MN and SN can obtain the radio capability of the terminal device, and the communication parameter reported by the terminal device is less than this when it is overheated or when it is expected to reduce power consumption. Communication parameters corresponding to wireless communication capabilities.
  • the terminal device can support 31 SCells when the terminal device is not overheated.
  • the overheating auxiliary information sent by the terminal device to the MN indicates that the current terminal device expects the largest temporary configuration
  • the number of Scells is 6. In other words, only when the sum of the number of Scells configured by the MN and SN for the terminal device is less than or equal to 6, the overheating problem of the terminal device can be solved.
  • the maximum aggregate bandwidth of the uplink carrier in the FR1 frequency band ( ⁇ 6GHz band) that the terminal device can support without overheating is 100M, that is, MN and SN are configured for the terminal device
  • the sum of the maximum aggregate bandwidth of uplink carriers in the FR1 frequency band range is 100M.
  • the overheating auxiliary information sent by the terminal device to the MN indicates that the temporary configuration maximum aggregate bandwidth expected by the current terminal device is 20M. In other words, only the sum of the maximum aggregate bandwidth configured by the MN and SN for the terminal device is less than or When it is equal to 20M, the overheating problem of the terminal equipment can be solved.
  • the maximum number of uplink MIMO layers that the terminal device can support on the serving cell in the FR1 frequency range ( ⁇ 6GHz band) in the non-overheating condition is 4 layers, that is, MN and SN are
  • the maximum number of uplink MIMO layers on the serving cell in the FR1 frequency band range ( ⁇ 6GHz frequency band) configured by the terminal device is all 4 layers.
  • the maximum number of uplink MIMO layers is 2 layers, in other words Only when the maximum number of uplink MIMO layers on the serving cell in the FR1 frequency band ( ⁇ 6GHz frequency band) configured for the terminal equipment respectively is less than or equal to 2, the overheating problem of the terminal equipment can be solved.
  • the overheating assistance information reported by the terminal device to the MN or the assistance used to reduce power consumption may include at least one of the maximum number of Scells, the maximum number of MIMO layers, and the maximum aggregate bandwidth.
  • the maximum number of MIMO layers in the auxiliary information (including the maximum number of uplink MIMO layers of the serving cell on FR1, the maximum number of downlink MIMO layers of the serving cell on FR1, and the maximum uplink MIMO layer of the serving cell on FR2
  • the maximum number of downlink MIMO layers of the serving cell on FR2 can be the maximum number of MIMO layers on the serving cell of the SCG that the terminal device expects SN to configure; or it can also be the service of the MCG that the terminal device expects the MN to configure The maximum number of MIMO layers on the cell; or it can also be the maximum number of MIMO layers on the serving cell where the terminal device expects the MCG configured by the MN and the serving cell where the SN configures the SCG; or it can also include the MCG service that the terminal device expects the MN to configure The maximum number of MIMO layers on the cell and the maximum number of MIMO layers on the serving cell where the SN configures SCG.
  • the maximum aggregate bandwidth in the auxiliary information may be the maximum aggregate bandwidth value of the carrier that the terminal device expects SN configuration; or it may be the sum of the carrier that the terminal device expects MN configuration and the aggregate bandwidth of the SN configuration carrier Maximum value.
  • the MN receives the first message sent by the terminal device, and determines the second message according to the first overheating auxiliary information included in the first message or the auxiliary information for reducing power consumption.
  • S404 The MN sends a second message to the SN.
  • the SN configures communication parameters for the terminal device according to the second message sent by the MN, and determines a third message according to the configured communication parameters.
  • the MN can determine whether the terminal device is currently overheated according to whether the overheating auxiliary information carries information.
  • the terminal device when the terminal device desires to reduce power consumption, it will carry currently supported communication parameters in the auxiliary information for reducing power consumption.
  • the auxiliary information does not include any information. Therefore, the MN can determine whether the terminal device currently expects to reduce power consumption according to whether the auxiliary information for reducing power consumption carries information.
  • the MN receives the first message sent by the terminal device, and determines, according to the auxiliary information in the first message, that the terminal device has an overheating problem or that the terminal device expects to reduce power consumption. After the MN determines that the terminal device has overheating problems or desires to reduce power consumption, the MN and SN need to configure communication parameters for the terminal device according to the communication parameters expected by the terminal device, so as to solve the overheating problem of the terminal device or allow the terminal device to reduce power consumption.
  • the MN may indicate through the second message that the SN needs to adjust the communication parameters configured for the terminal device. For different types of communication parameters included, the second message may correspondingly include different information.
  • the SN will inform the MN of the communication parameters configured for the terminal device through a third message, which can be understood as a response message to the second message. For the second message including different information types, the third message correspondingly includes different information types.
  • the second message is a secondary node modification request message (S-Node modification request)
  • the third message is a secondary node modification request confirmation message (S-Node modification request acknowldege).
  • the second message further includes a frequency band combination list, and the frequency band combination list includes at least one frequency band combination configured by the second network device for the terminal device.
  • each frequency band combination in the band combination list is used to indicate the frequency band that the SN can or is allowed to temporarily configure for the terminal device. If the overheating assistance information reported by the terminal device includes the maximum number of temporarily configured Scells expected by the terminal device, the frequency band combination list may be included in the second message.
  • the maximum number of (P)Scells that can be configured by the base station is 10.
  • the current expected configuration is reported to the MN in the overheating auxiliary information.
  • the number of Scells is 8.
  • the MN can determine according to the 8 reported by the terminal device that the number of Scells that the SN can configure for the terminal device is 2, 4, or 6, and the MN passes the frequency band combination list corresponding to the number of (P)Scells 2, 4, and 6 through the second message Notify SN.
  • SN can select a frequency band combination from the frequency band combination list. The SN will configure PSCell and SCell for terminal equipment according to the selected frequency band combination.
  • the third message sent by the SN to the MN may include the frequency band combination selected by the SN to configure the terminal device.
  • the MN can determine the frequency band combination that it can configure for the terminal device.
  • the MN will configure the SCell for the terminal device according to the frequency band combination selected by itself.
  • the second message further includes first information, and the first information is used to indicate the maximum number of uplink secondary cells and/or the maximum number of downlink secondary cells configured by the SN for the terminal device.
  • the first information is used to indicate the set of the maximum number of uplink secondary cells and/or the maximum number of downlink secondary cells that the SN can or is allowed to configure for the terminal device. In particular, only one value can be included in the set.
  • the maximum number of uplink Scells currently expected to be configured is reported to the MN in the overheating auxiliary information to be 8.
  • the MN can determine according to the 8 reported by the terminal device that the maximum number of uplink Scells that the SN can configure for the terminal device is 4, and the MN informs the SN through the second message that the maximum number of uplink Scells that the SN can configure for the terminal device is 4.
  • the SN receives the second message, according to the MN's instruction, the sum of the number of uplink PSCells and Scells configured for the terminal device cannot exceed 4.
  • the first information may indicate 4 Scells.
  • the third message sent by the SN to the MN may include the number of Scells 4 selected by the SN to configure the terminal device.
  • the second message further includes second information, which is used to indicate the maximum number of uplink secondary cells and/or the maximum downlink number reported by the terminal device in the first overheating assistance information Number of auxiliary cells.
  • the maximum number of uplink Scells currently expected to be configured is reported to the MN in the overheating auxiliary information as 8.
  • the MN can determine the maximum number of uplink SCells that it wants to configure for the terminal device, for example, 5, so that the SN is allowed to configure the maximum number of uplink PSCells and SCells for the terminal device to 3, the MN can report the terminal device to 8 and allow the SN The maximum number 3 configured for the terminal device is notified to the SN through the second message.
  • the SN can follow the MN's decision, that is, configure a maximum of 3 uplink SCells for the terminal device, or determine the maximum uplink SCell that can be configured for the terminal device according to the maximum number of uplink SCells that the terminal device expects to configure The number of SCells, for example, 5.
  • the second message may include sixth information, and the sixth information is used to indicate that the terminal device has an overheating problem.
  • the MN informs the SN of the included information indicating that the terminal device has an overheating problem, and the SN can know that the current terminal device has an overheating problem. Therefore, when the MN sends the configurable number of Scells to the SN, the SN can be configured directly according to the number of Scells sent by the MN, and will not apply for other Scells, avoiding redundant information exchange between MN and SN, and it can be solved.
  • the overheating problem of existing terminal equipment is a configurable number of Scells to the SN.
  • the second message may further include seventh information, and the seventh information is used to indicate that the overheating problem of the terminal device is solved.
  • the MN informs the SN including the information that indicates that the terminal device overheating problem has been solved, and the SN can know that the current terminal device overheating problem has been solved. Therefore, the SN can be configured according to the number of Scells sent by the MN, or apply for another number of Scells to configure the Scell for the terminal device, or configure the Scell for the terminal device according to the maximum capacity supported by the terminal device when the terminal device is overheated.
  • the third message sent by the SN to the MN may include the maximum number of uplink secondary cells and/or the maximum number of downlink secondary cells that the SN selects from the above set and configured for the terminal device.
  • the third message sent by the SN to the MN may include the maximum number of uplink secondary cells and/or the maximum number of downlink secondary cells that the SN selects from the above set to configure for the terminal device; the third message sent by the SN to the MN It may also include the maximum number of uplink secondary cells and/or the maximum number of downlink secondary cells that the SN determines from the MN according to the second information to request configuration for the terminal device.
  • the requested maximum number of uplink secondary cells and/or maximum number of downlink secondary cells are not included in the above set.
  • the third message sent by the SN to the MN may include the frequency band combination selected by the SN from the frequency band combination list.
  • the third message sent by the SN to the MN may include the frequency band selected by the SN from the above frequency band combination list Combination, the third message sent by the SN to the MN may also include the frequency band combination requested by the MN determined by the SN according to the second information.
  • the requested frequency band combination is not included in the above frequency band combination list.
  • the second message further includes third information, which is used to indicate the maximum number of uplink MIMO layers and/or the maximum number of uplink MIMO layers that the terminal device expects to configure on serving cells in different frequency ranges. Number of downlink MIMO layers.
  • the maximum number of uplink MIMO layers that can be configured by the base station is 6.
  • the terminal device has an overheating problem, it is reported to the MN in the overheating auxiliary information.
  • the maximum number of uplink MIMO layers expected by the terminal device is 4.
  • the MN can notify the SN through the third information of the second message that the maximum number of uplink MIMO layers on the serving cell on FR1 configured for the terminal device is 4.
  • the second message may include the number of MIMO layers that are expected to be configured reported by the terminal device.
  • the maximum MIMO layer configured by the MN and the SN for the terminal device is equal, or the number of expected configured MIMO layers reported by the terminal device contained in the second message is the maximum MIMO layer on the serving cell of the SCG that the terminal device expects the SN to configure The number of layers.
  • the third message may include the maximum number of MIMO layers, or may not include the maximum number of MIMO layers, which is not limited in this application.
  • the third information is also used to indicate that the maximum number of uplink MIMO layers and the maximum number of downlink MIMO layers configured by the second network device for the terminal device on serving cells in different frequency ranges are different. Restricted.
  • the second network device can configure the maximum number of uplink MIMO layers and the maximum number of the terminal device.
  • the number of downlink MIMO layers no longer has the previous terminal device overheating problem or the desire to reduce power consumption the first network device informs the second network device that the maximum number of uplink MIMO layers and the maximum number of downlink MIMO layers can be configured.
  • the MN after the MN receives the first message with the overheating auxiliary information or the auxiliary information for reducing power consumption reported by the terminal device, the MN initiates the SN modification process.
  • the MN sends an S-Node modification request message to the SN.
  • the S-Node modification request message can include the third information.
  • the value of the third information is the corresponding MIMO layer value reported by the terminal device in the overheating auxiliary information or the auxiliary information for reducing power consumption.
  • the maximum number of temporarily configured MIMO layers on the serving cell on FR1 expected by the terminal device specifically includes: (1) The maximum number of uplink MIMO layers temporarily configured on the serving cell on FR1 expected by the terminal device; where, the first value It is used to indicate that the maximum number of uplink MIMO layers that the terminal device can be configured on the serving cell on FR1 is not limited, that is, it is the same as the maximum number of uplink MIMO layers that the terminal device can support as reported by the terminal device in the terminal device capability report message.
  • the SN can configure the terminal device with the maximum number of uplink MIMO layers on the serving cell on FR1
  • the MN informs the SN of the limitation on the maximum number of uplink MIMO layers on the serving cell on FR1 that can be configured for the terminal device.
  • the maximum number of downlink MIMO layers temporarily configured on the serving cell on FR1 expected by the terminal device; where the first value is used to indicate the maximum number of downlink MIMO layers that the terminal device can be configured on the serving cell on FR1 is not limited , That is, the same as the maximum number of uplink MIMO layers that can be supported by the terminal equipment reported by the terminal equipment in the terminal equipment capability report message.
  • the first value is also used to indicate that the overheating problem of the terminal device has been resolved or the terminal device no longer expects to reduce power consumption, and the SN can configure the terminal device with the maximum number of downlink MIMO layers on the serving cell on FR1.
  • the MN informs the SN of the limitation on the maximum number of downlink MIMO layers on the serving cell on FR1 that can be configured for the terminal device.
  • the maximum number of temporarily configured MIMO layers on the serving cell on FR2 expected by the terminal device specifically includes: (1) The maximum number of uplink MIMO layers temporarily configured on the serving cell on FR2 expected by the terminal device; among them, the first The value is used to indicate that the maximum number of uplink MIMO layers that the terminal device can be configured on the serving cell on FR2 is not limited, that is, it is the same as the maximum number of uplink MIMO layers that can be supported by the terminal device reported in the terminal device capability report message.
  • the first value is also used to indicate that the overheating problem of the terminal device has been solved or the terminal device no longer expects to reduce power consumption, and the SN can configure the terminal device with the maximum number of uplink MIMO layers on the serving cell on FR2.
  • the MN informs the SN of the limitation of the maximum number of uplink MIMO layers on the serving cell on FR2 that can be configured for the terminal device.
  • the maximum number of downlink MIMO layers temporarily configured on the serving cell on FR2 expected by the terminal device; where the first value is used to indicate the maximum number of downlink MIMO layers that the terminal device can be configured on the serving cell on FR2 is not limited , That is, the same as the maximum number of uplink MIMO layers that can be supported by the terminal equipment reported by the terminal equipment in the terminal equipment capability report message.
  • the first value is also used to indicate that the overheating problem of the terminal device has been resolved or the terminal device no longer expects to reduce power consumption, and the SN can configure the terminal device for the maximum number of downlink MIMO layers on the serving cell on FR2.
  • the MN informs the SN of the limitation of the maximum number of downlink MIMO layers on the serving cell on FR2 that can be configured for the terminal device.
  • the first value here can be embodied in the form of information bit values, or a "no restriction" indication information is carried in the third information, which is used to indicate that the terminal device is on a serving cell of a different frequency and can be configured
  • a "no restriction" indication information is carried in the third information, which is used to indicate that the terminal device is on a serving cell of a different frequency and can be configured
  • the second message further includes sixth information, the sixth information being used to indicate that the terminal device has an overheating problem or that the terminal device desires to reduce power consumption.
  • the second message further includes seventh information, which is used to indicate that the overheating problem of the terminal device is solved or that the terminal device no longer expects to reduce power consumption.
  • the second message further includes fourth information, the fourth information being used to indicate a list of the maximum aggregate bandwidth of the uplink carrier configured by the second network device for the terminal device in different frequency ranges And/or a list of the maximum aggregate bandwidth of the downlink carrier, where the maximum aggregate bandwidth list includes at least one aggregate bandwidth value.
  • the MN after the MN receives the first message with the overheating auxiliary information or the auxiliary information for reducing power consumption reported by the terminal device, the MN initiates the SN modification process.
  • the MN sends an S-Node modification request message to the SN. If the overheating assistance information reported by the terminal device or the assistance information for reducing power consumption includes the temporarily configured maximum aggregate bandwidth of the carrier on FR1 that the terminal device expects, the fourth information is included in the S-Node modification request message, specifically include:
  • the list of maximum aggregate bandwidth values may contain only one value.
  • the list of maximum aggregate bandwidth values may contain only one value.
  • the fourth information is included in the S-Node modification request message, specifically include:
  • the list of maximum aggregate bandwidth values may contain only one value.
  • the list of maximum aggregate bandwidth values may contain only one value.
  • the maximum aggregate bandwidth of the uplink carrier on FR1 configured by the base station can be supported as 200M.
  • the configured maximum aggregate bandwidth is 100M.
  • the MN can select according to the 100M reported by the terminal device so that the SN can configure the maximum aggregate bandwidth of the uplink carrier on FR1 for the terminal device to be 10M, 20M, 40M, and 80M. 10M, 20M, 40M and 80M can be understood as the list of maximum aggregate bandwidth.
  • the MN notifies the SN of the maximum aggregate bandwidth list through the second message.
  • the SN can select 20M from 10M, 20M, 40M, and 80M, that is, the SN determines that the maximum aggregate bandwidth of the uplink carrier on the FR1 configured for the terminal device is 20M.
  • the third message sent by the SN to the MN may include the maximum aggregate bandwidth 20M of the uplink carrier on FR1 that the SN selects to configure for the terminal device.
  • the fourth information is also used to indicate the maximum aggregate bandwidth value of the uplink carrier and the maximum aggregate bandwidth value of the downlink carrier configured by the second network device for the terminal device in different frequency ranges Unrestricted.
  • the first value in the fourth information is also used to indicate that the overheating problem of the terminal device has been resolved or the terminal device no longer expects to reduce power consumption, and the maximum aggregate bandwidth that the SN can configure for the terminal device no longer has the previous terminal
  • the MN informs the SN of the limitation of the maximum aggregate bandwidth that can be configured for the terminal device.
  • the MN after the MN receives the first message with the overheating auxiliary information or the auxiliary information for reducing power consumption reported by the terminal device, the MN initiates the SN modification process.
  • the MN sends an S-Node modification request message to the SN.
  • the overheating auxiliary information reported by the terminal device or the auxiliary information for reducing power consumption includes the maximum aggregate bandwidth of the carrier on FR1 temporarily configured as expected by the terminal device
  • the fourth information is included in the S-Node modification request message; and
  • the value of the four information is a value other than the above-mentioned first value.
  • the SN can or is allowed to temporarily configure the maximum aggregate bandwidth of all carriers on FR1 for the terminal device, which specifically includes:
  • the list of maximum aggregate bandwidth values may contain only one value.
  • the first value is used to indicate that the maximum aggregate bandwidth value of the uplink carrier on the FR1 that the terminal device can be configured is not limited.
  • the first value is also used to indicate that the overheating problem of the terminal device has been solved, and the SN can configure the terminal device for the maximum aggregate bandwidth of the uplink carrier on FR1.
  • the MN informs the SN The limitation of the maximum aggregate bandwidth of uplink carriers on FR1 that can be configured for terminal equipment.
  • the list of maximum aggregate bandwidth values may contain only one value.
  • the first value is used to indicate that the maximum aggregate bandwidth value of the downlink carrier on the FR1 that the terminal device can be configured is not limited.
  • the first value is also used to indicate that the overheating problem of the terminal device has been resolved or the terminal device no longer expects to reduce power consumption, and the maximum aggregate bandwidth of the downlink carrier on FR1 that the SN can configure for the terminal device is no longer before
  • the MN informs the SN of the limitation on the maximum aggregate bandwidth of the downlink carrier on FR1 that can be configured for the terminal device.
  • the fourth information is included in the S-Node modification request message; and
  • the value of the fourth information is a value other than the aforementioned first value.
  • the SN can or is allowed to temporarily configure the maximum aggregate bandwidth of all carriers on FR1 for the terminal device, which specifically includes:
  • the list of maximum aggregate bandwidth values may contain only one value.
  • the first value is used to indicate that the maximum aggregate bandwidth value of the uplink carrier on FR2 that the terminal device can be configured is not limited.
  • the first value is also used to indicate that the overheating problem of the terminal device has been resolved or the terminal device no longer expects to reduce power consumption, and the maximum aggregate bandwidth of the uplink carrier on FR2 that the SN can configure for the terminal device is no longer before
  • the MN informs the SN of the limitation on the maximum aggregate bandwidth of the uplink carrier on FR2 that can be configured for the terminal device.
  • the list of maximum aggregate bandwidth values may contain only one value.
  • the first value is used to indicate that the maximum aggregate bandwidth value of the downlink carrier on FR2 that the terminal device can be configured is not limited.
  • the first value is also used to indicate that the overheating problem of the terminal device has been resolved or the terminal device no longer expects to reduce power consumption, and the maximum aggregate bandwidth of the downlink carrier on FR2 that the SN can configure for the terminal device is no longer before
  • the MN informs the SN of the limitation on the maximum aggregate bandwidth of the downlink carrier on FR2 that can be configured for the terminal device.
  • the first value introduced above can also be embodied in the form of information bit values, or the fourth information carries a "no restriction" indication information, which is used to indicate that the terminal device can be configured on different frequencies
  • the maximum aggregate bandwidth value which is not limited in this application.
  • the second message further includes fifth information, which is used to instruct the terminal device to report in the first overheating auxiliary information or auxiliary information for reducing power consumption.
  • Maximum aggregate bandwidth value may be the maximum aggregate bandwidth value of the carrier that the terminal device expects to configure by the SN; or it may also be the maximum value of the sum of the carrier that the terminal device expects to configure by the MN and the aggregate bandwidth of the carrier configured by the SN.
  • the third information in the S-Node modification request message may also include the temporary The configured maximum aggregate bandwidth value of the uplink carrier and/or the maximum aggregate bandwidth value of the downlink carrier on all FR1.
  • the overheating auxiliary information reported by the terminal device or the auxiliary information for reducing power consumption contains the temporarily configured maximum aggregate bandwidth of the uplink carrier and/or the downlink carrier on FR2 that the terminal device expects, the first in the S-Node modification request message
  • the three pieces of information may also include the maximum aggregate bandwidth value of all uplink carriers and/or the maximum aggregate bandwidth value of downlink carriers that are temporarily configured on the FR2 expected by the terminal device.
  • the terminal device when it has an overheating problem, it reports to the MN in the overheating auxiliary information that the maximum aggregate bandwidth of the uplink carrier on the FR1 currently expected to be configured is 100M.
  • the MN may notify the SN through the fifth information in the second message that the maximum aggregate bandwidth of the uplink carrier on the FR1 currently expected to be configured by the terminal device is 100M.
  • the SN can configure an aggregate bandwidth of less than or equal to 100M, such as 80M, for the terminal device.
  • the second message further includes sixth information, which is used to indicate that the terminal device has an overheating problem or that the terminal device desires to reduce power consumption.
  • the MN informs the SN of the included information indicating that the terminal device has an overheating problem, and the SN can know that the current terminal device has an overheating problem. Therefore, when the MN sends the configurable maximum aggregate bandwidth to the SN, the SN can directly configure the maximum aggregate bandwidth sent by the MN without applying for other maximum aggregate bandwidths, avoiding redundant information exchange between MN and SN. It can solve the overheating problem of the existing terminal equipment.
  • the second message further includes seventh information, which is used to indicate that the overheating problem of the terminal device is solved or the terminal device no longer expects to reduce power consumption.
  • the MN informs the SN including the information that indicates that the terminal device overheating problem has been solved, and the SN can know that the current terminal device overheating problem has been solved. Therefore, the SN can be configured according to the maximum aggregate bandwidth sent by the MN, or apply for other maximum aggregate bandwidth to configure the aggregate bandwidth for the terminal device, or configure the aggregate bandwidth for the terminal device according to the maximum capacity supported by the terminal device when the terminal device is not overheated.
  • the second message includes the fourth information
  • the SN indicated in the fourth information can or is allowed to configure for the terminal device
  • the number of values in the uplink carrier maximum aggregate bandwidth list on FR1 is greater than one
  • the third message sent may include the maximum aggregate bandwidth of the uplink carrier on the FR1 configured for the terminal device selected by the SN from the above list.
  • the second message includes the fourth information
  • the SN indicated in the fourth information can or is allowed to configure for the terminal device
  • the number of values in the list of the maximum aggregate bandwidth of the downlink carrier on FR1 is greater than one
  • the third message sent may include the maximum aggregate bandwidth of the downlink carrier on the FR1 configured for the terminal device selected by the SN from the above list.
  • the SN sends a message to the MN
  • the third message sent may include the maximum aggregate bandwidth of the uplink carrier on the FR2 configured for the terminal device selected by the SN from the above list.
  • the second message includes the fourth information
  • the SN indicated in the fourth information can or is allowed to configure for the terminal device
  • the number of values in the list of the maximum aggregate bandwidth of the downlink carrier on FR2 is greater than one
  • the third message sent may include the maximum aggregate bandwidth of the downlink carrier on the FR2 configured for the terminal device selected by the SN from the foregoing list.
  • the third message sent by the SN to the MN may include the maximum aggregate bandwidth of the downlink carrier on FR1 configured for the terminal device selected by the SN from the above list; the third message sent by the SN to the MN may also include the direction determined by the SN according to the fifth information.
  • the MN requests the maximum aggregate bandwidth of the uplink carrier on FR1 configured for the terminal device. The maximum aggregate bandwidth of uplink carriers on FR1 requested by this request is not included in the above list.
  • the third message sent by the SN to the MN may include the maximum aggregate bandwidth of the downlink carrier on FR1 configured for the terminal device selected by the SN from the above list; the third message sent by the SN to the MN may also include the direction determined by the SN according to the fifth information.
  • the MN requests the maximum aggregate bandwidth of the downlink carrier on FR1 configured for the terminal device. The requested maximum aggregate bandwidth of downlink carriers on FR1 is not included in the above list.
  • the number of values in the list of the maximum aggregate bandwidth of the uplink carrier on FR2 is greater than one
  • the third message sent by the SN to the MN may include the maximum aggregate bandwidth of the downlink carrier on FR2 configured for the terminal device selected by the SN from the above list; the third message sent by the SN to the MN may also include the direction determined by the SN according to the fifth information.
  • the MN requests the maximum aggregate bandwidth of the uplink carrier on FR2 configured for the terminal device.
  • the maximum aggregate bandwidth of uplink carriers on FR2 of the request is not included in the above list.
  • the third message sent by the SN to the MN may include the maximum aggregate bandwidth of the downlink carrier on FR2 configured for the terminal device selected by the SN from the above list; the third message sent by the SN to the MN may also include the direction determined by the SN according to the fifth information.
  • the MN requests the maximum aggregate bandwidth of downlink carriers on FR2 configured for the terminal device. The requested maximum aggregate bandwidth of downlink carriers on FR2 is not included in the above list.
  • the above describes the types of different communication parameters, the types of information that can be included in the second message, and the types of information of the third message through different situations.
  • the overheating assistance information reported by the terminal device to the MN may include at least one of the maximum number of Scells, the maximum number of MIMO layers, and the maximum aggregate bandwidth. Therefore, for the MR-DC scenario, the second message (secondary node modification request message) sent by the MN to the SN can include the maximum number of uplink secondary cells, the maximum number of downlink secondary cells, the maximum number of uplink MIMO layers, the maximum number of downlink MIMO layers, At least one of the maximum uplink aggregate bandwidth and the maximum downlink aggregate bandwidth.
  • the second message when the terminal device has an overheating problem or the terminal device desires to reduce power consumption, the second message further includes second overheating auxiliary information or auxiliary information for reducing power consumption.
  • the overheating auxiliary information or the auxiliary information for reducing power consumption includes at least one of the first information, the second information, the third information, the fourth information, and the fifth information.
  • the second overheating auxiliary information or the auxiliary information for reducing power consumption may not include any information content, or only the seventh information , which is used to notify the SN that the overheating problem of the terminal device has been resolved or the terminal device no longer expects to reduce power consumption.
  • the various information listed above may be carried in different information elements in the second message (secondary node modification request message).
  • the first information, the second information, the third information, the fourth information, the fifth information, the second overheating auxiliary information introduced above, and the auxiliary information for reducing power consumption may be included in the information.
  • the first information, the second information, the third information, the fourth information, the fifth information, and the second overheating auxiliary information introduced above may be included in the auxiliary information for reducing power consumption.
  • Cell MRDC-assistanceInfo may be included in the above-mentioned sixth information and seventh information.
  • the sixth information is that the reason for the MN to notify the SN to send the frequency band combination list is due to overheating of the terminal device, or because the terminal device desires to reduce power consumption; or, the sixth information The reason why the MN notifies the SN to send the ConfigRestrictInfoSCG is due to the overheating of the terminal device, which is because the terminal device expects to reduce power consumption.
  • two values are added to the cause contained in the existing S-Node modification request message to instruct the MN to send the S-Node modification request message or the MN initiates the SN modification process because the terminal device has overheating or the terminal device
  • the overheating problem has been resolved, or it is used to instruct the MN to send the S-Node modification request message or the MN initiates the SN modification process because the terminal device expects to reduce power consumption or no longer expects to reduce power consumption.
  • the MN can notify the SN
  • the terminal device has an overheating problem or the terminal device expects to reduce power consumption, or provide the SN with auxiliary information determined by the MN to solve the terminal device overheating problem or reduce the power consumption of the terminal device.
  • the auxiliary information may include communication parameters that the MN indicates that the SN can or is allowed to configure the terminal device, or the auxiliary information may include communication parameters reported by the terminal device for solving overheating problems or for reducing power consumption.
  • the SN can select the communication parameters used to solve the overheating problem of the terminal device or reduce the power consumption of the terminal device from the auxiliary information provided by the MN, thereby configuring the communication parameters for the terminal device.
  • the SN can be allowed to configure the terminal device with the appropriate maximum number of MIMO layers, maximum number of SCells or maximum aggregate bandwidth to help the terminal device alleviate the overheating problem or Help terminal equipment reduce power consumption.
  • the MN can also notify the SN that the terminal device overheating problem has been resolved or the terminal device no longer expects to reduce power consumption, and can restore the maximum capacity supported by the terminal device Configuration or the configuration when the terminal device is connected to the MN and SN.
  • 5G 5G base stations
  • NR gNB 5G base stations
  • CU Central unit
  • DU distributed unit
  • the control plane protocol layer (radio resource control, RRC) of the access network is located in the central unit.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • RLC radio link control
  • media access control media access
  • the control, MAC control, MAC
  • Phy physical layer
  • the communication parameters required by the terminal device can be configured by the CU and scheduled by the DU; Or configured by DU.
  • the terminal device can report the overheating message with the overheating auxiliary cell to the main base station, that is, the terminal device can report the overheating with the overheating auxiliary cell to the CU news.
  • the CU receives the maximum number of temporarily configured MIMO layers reported by the terminal device that the terminal device supports, there are two possible situations:
  • the CU configures the maximum number of MIMO layers in each serving cell for the terminal device, then the CU reconfigures the maximum number of MIMO layers, and the DU also needs to know, otherwise the DU will have problems when scheduling data transmission for the terminal device .
  • the DU configures the maximum number of MIMO layers used by the terminal equipment on each serving cell, in order to solve the overheating problem of the terminal equipment, the DU needs to know the maximum number of temporarily configured MIMO layers supported by the terminal equipment.
  • the overheating information reported by the terminal device is an RRC message
  • the DU does not have a corresponding RRC layer
  • the information content included in the overheating message cannot be obtained, so that the DU cannot obtain it.
  • Corresponding information the DU cannot be configured with the maximum number of MIMO layers expected by the terminal device, which cannot solve the overheating problem of the terminal device.
  • this application also proposes a method of transmitting information.
  • the DU can know that the terminal device has overheated, and then configure the terminal device appropriately The maximum MIMO layer, or the ability to schedule uplink and/or downlink data transmission for the terminal device according to the maximum number of MIMO layers supported by the terminal device.
  • FIG. 6 is a schematic interaction diagram of an example of a method 600 for transmitting information according to an embodiment of the present application. Hereinafter, each step of the method 600 will be described in detail.
  • the method 600 is described by taking the terminal device, the CU, and the DU as the execution subject of the method 600 as an example.
  • the execution subject of the method 600 may also be a chip applied to a terminal device and a chip applied to a CU and a DU.
  • S601 The terminal device determines that overheating occurs.
  • the terminal device sends a first message to the CU, where the first message includes overheating auxiliary information, where the overheating auxiliary information is used to indicate whether the terminal device is overheated.
  • the first message is an overheating message (UE assistance information with overheating assistance information) sent by the terminal device to the CU.
  • the overheating assistance information may include the maximum number of MIMO layers that the terminal device expects to be temporarily configured.
  • the maximum number of MIMO layers is a parameter configuration that can solve the overheating problem of the terminal device.
  • the terminal device when the terminal device establishes a connection with the base station, it will report the maximum capability under normal conditions to the base station, and the communication parameters reported by the terminal device under overheating conditions are less than the communication parameters corresponding to the maximum capability under normal conditions.
  • the maximum number of MIMO layers reported by the terminal device in a normal state is 4 layers, that is, the maximum number of MIMO layers configured by the CU for the terminal device is all 4 layers.
  • the overheating assistance information sent by the terminal device to the CU indicates that the current terminal device expects the maximum number of MIMO layers to be temporarily configured as 2 layers, so that when the CU reconfigures the terminal device with the maximum MIMO layer number of 2, DU also needs to know to solve the overheating problem of terminal equipment.
  • the CU receives the first message sent by the terminal device, and determines the second message according to the overheating assistance information included in the first message.
  • the second message is used to instruct the DU to adjust the communication parameters configured for the terminal device, and the communication parameters include the number of uplink and/or downlink MIMO layers.
  • S604 The CU sends a second message to the DU.
  • the DU receives the second message sent by the CU.
  • the DU determines the maximum number of MIMO layers that can be configured or scheduled for the terminal device according to the second message sent by the CU, and determines the third message according to the maximum number of MIMO layers.
  • the SN sends the third message to the MN.
  • the CU receives a third message sent by the DU, where the third message is a response message to the second message.
  • the CU can determine whether the terminal device is currently overheated according to whether the overheating auxiliary information carries information.
  • the first message is a terminal device context modification request message (UE context modification request)
  • the second message is a terminal device context modification response message (UE context modification response).
  • the second message includes the overheating assistance information
  • the overheating assistance information includes first information
  • the first information is used to indicate different frequency ranges that the terminal device is expected to configure.
  • the maximum number of MIMO layers that can support DU configuration is 8.
  • the terminal device has an overheating problem, report it to the CU in the overheating auxiliary information, and the current service on FR1 On the cell, the number of MIMO layers expected by the terminal device is 4.
  • the CU receives the terminal device overheating message reported by the terminal device, the CU initiates the terminal device context modification process.
  • the CU sends a UE context modification request message to the DU.
  • the CU determines that the terminal device reconfigures the maximum uplink MIMO used by the terminal device on the serving cell on FR1 The number of layers and/or the maximum number of downlink MIMO layers.
  • the CU includes the maximum number of uplink MIMO layers and/or the maximum number of downlink MIMO layers configured for the terminal device on each serving cell on FR1 in the UE context modification request message.
  • the CU determines that the terminal device reconfigures the maximum uplink MIMO used by the terminal device on the serving cell on FR2 The number of layers and/or the maximum number of downlink MIMO layers.
  • the CU includes the maximum number of uplink MIMO layers and/or the maximum number of downlink MIMO layers configured for the terminal device on each serving cell on FR2 in the UE context modification request message.
  • the CU determines that the terminal device reconfigures the maximum number of uplink MIMO layers and/or the maximum number of downlink MIMO layers used by the terminal device on the FR1 serving cell, the CU is in the UE
  • the context modification request message contains the maximum number of uplink MIMO layers and/or the maximum number of downlink MIMO layers configured for the terminal device on each serving cell on FR1.
  • the CU determines that the terminal device reconfigures the maximum number of uplink MIMO layers and/or the maximum number of downlink MIMO layers used by the terminal device on the FR2 serving cell, the CU is in the UE
  • the context modification request message contains the maximum number of uplink MIMO layers and/or the maximum number of downlink MIMO layers configured for the terminal device on each serving cell on FR2.
  • the above information may be included in an RRC information element (RRC information) sent by the CU to the DU.
  • RRC information RRC information element
  • the CU receives the overheating message with the overheating auxiliary information reported by the UE;
  • the CU receives the auxiliary information that the terminal device is overheated from the MN.
  • terminal device overheating assistance information described above may be carried on the newly added information element in the context modification request message, which is not limited in this application.
  • the maximum number of MIMO layers sent by the CU to the DU is the maximum number of MIMO layers reported by the terminal device. Therefore, the second message may include the number of MIMO layers that are expected to be configured reported by the terminal device, and the maximum MIMO layers configured for the terminal device by the CU and DU are equal. At this time, the third message may include the maximum number of MIMO layers, or may not include the maximum number of MIMO layers, which is not limited in this application.
  • the second message includes the auxiliary overheating information, and the auxiliary overheating information does not include any information.
  • the second message includes second information, and the second information is used to indicate the maximum uplink MIMO layer on serving cells in different frequency ranges configured by the distribution unit for the terminal device. Number and/or the maximum number of downlink MIMO layers.
  • the CU When the CU receives the overheating message reported by the terminal device, the CU initiates the process of modifying the context of the terminal device.
  • the CU sends a UE context modification request message to the DU.
  • the UE context modification request message includes the following information:
  • the maximum number of downlink MIMO layers temporarily configured on the serving cell on FR1 that the terminal device prefers; where the first value is used to indicate the maximum number of downlink MIMO layers that the terminal device can configure on the serving cell on FR1 is not limited , That is, the same as the maximum number of uplink MIMO layers that can be supported by the terminal equipment reported by the terminal equipment in the terminal equipment capability report message.
  • the value of the second information listed above is a corresponding value reported by the terminal device in the overheating assistance information.
  • the UE context modification request message includes the following information:
  • the maximum number of uplink MIMO layers temporarily configured on the serving cell on FR2 that the terminal device prefers; where the first value is used to indicate the maximum number of uplink MIMO layers that the terminal device can configure on the serving cell on FR2 is not limited , That is, the same as the maximum number of uplink MIMO layers that can be supported by the terminal equipment reported by the terminal equipment in the terminal equipment capability report message.
  • the maximum number of downlink MIMO layers temporarily configured on the serving cell on FR2 that the terminal device prefers; where the first value is used to indicate the maximum number of downlink MIMO layers that the terminal device can configure on the serving cell on FR2 is not limited , That is, the same as the maximum number of uplink MIMO layers that can be supported by the terminal equipment reported by the terminal equipment in the terminal equipment capability report message.
  • the value of the second information listed above is a corresponding value reported by the terminal device in the overheating assistance information.
  • the UE context modification request message includes the first value of one or more of the second information listed above.
  • the second message includes second information
  • the second information is UE Assistance Information with overheating assistance information reported by the terminal device.
  • the CU When the CU receives the overheating message reported by the terminal device, the CU initiates the terminal device context modification process.
  • the CU sends a UE context modification request message to the DU.
  • the UE context modification request message contains UE assistance information with overheating assistance information:
  • the UE context modification response message contains the following optional information:
  • (1) DU is the maximum number of uplink MIMO layers on each serving cell configured by the terminal equipment
  • (2) DU is the maximum number of downlink MIMO layers on each serving cell configured by the terminal equipment.
  • the CU when the terminal device has an overheating problem in the CU-DU network, after the CU receives the overheating message reported by the terminal device, the CU can reconfigure the maximum number of MIMO layers for the terminal device. At the same time, it can let the DU know the maximum number of MIMO layers configured by the current CU for the terminal device, so as to ensure that the maximum number of MIMO layers configured for the terminal device does not exceed the maximum number of MIMO layers configured for the terminal device when the terminal device is scheduled for data transmission. , Thereby solving the overheating problem of terminal equipment.
  • FIG. 7 shows a schematic block diagram of a communication device 700 according to an embodiment of the present application.
  • the device 700 may correspond to the main base station described in the above method 400, or may be a chip or component applied to the main base station, and the device 700 may Each module or unit is respectively used to execute each action or processing procedure performed by the master base station in the above method 400.
  • the communication device 700 may include: a receiving unit 710, a processing unit 720, and a sending unit 730.
  • the receiving unit 710 is configured to receive a first message sent by a terminal device, where the first message includes first overheating auxiliary information, and the first overheating auxiliary information is used to indicate whether the terminal device is overheated.
  • the processing unit 720 is configured to determine a second message according to the first overheating auxiliary information, where the second message is used to instruct the second network device to adjust the communication parameter configured for the terminal device, and the communication parameter includes at least one of the following parameters: The number of uplink secondary cells, the number of downlink secondary cells, the number of wireless antenna layer MIMO layers of the uplink multiple input multiple output, the number of downlink MIMO layers, the uplink aggregate bandwidth, and the downlink aggregate bandwidth.
  • the sending unit 730 is configured to send the second message to the second network device.
  • the receiving unit 710 is further configured to receive a third message sent by the second network device, the third message is a response message to the second message, and the third message is used to indicate the The communication parameter configured by the second network device for the terminal device.
  • the receiving unit 710 is used to execute S402 in the method 400
  • the processing unit 720 is used to execute S403 in the method 400
  • the sending unit 730 is used to execute S404 in the method 400.
  • Each unit executes the specific steps of the above-mentioned corresponding steps. The process has been described in detail in the method 400, and for the sake of brevity, it will not be repeated here.
  • FIG. 8 shows a schematic block diagram of a communication device 800 according to an embodiment of the present application.
  • the device 800 may correspond to the secondary base station described in the above method 400, or may be a chip or component applied to the secondary base station, and in the device 800 Each module or unit is respectively used to execute each action or processing procedure performed by the master base station in the above method 400.
  • the communication device 800 may include: a receiving unit 810, a processing unit 820, and a sending unit 830.
  • the receiving unit 810 is configured to receive a second message sent by the first network device, where the second message is used to instruct the second network device to adjust the communication parameters configured for the terminal device, and the communication parameters include at least one of the following parameters: uplink The number of secondary cells, the number of downlink secondary cells, the number of wireless antenna layer MIMO layers of the uplink multiple input multiple output, the number of downlink MIMO layers, the uplink aggregate bandwidth, and the downlink aggregate bandwidth.
  • the processing unit 820 is configured to configure the communication parameter for the terminal device according to the second message.
  • processing unit 820 is further configured to determine the third message according to the communication parameter.
  • the sending unit 830 is configured to send the third message to the first network device, the third message is a response message to the second message, and the third message is used to indicate that the second network device is the terminal device Configured communication parameters.
  • the receiving unit 810 is used to perform S404 in the method 400
  • the processing unit 820 is used to perform S405 in the method 400
  • the sending unit 830 is used to perform S406 in the method 400.
  • Each unit executes the specific steps of the above-mentioned corresponding steps. The process has been described in detail in the method 400, and for the sake of brevity, it will not be repeated here.
  • FIG. 9 shows a schematic block diagram of a communication device 900 according to an embodiment of the present application.
  • the device 900 may correspond to the central unit CU described in the above method 600, or may be a chip or component applied to the CU, and in the device 900 Each module or unit is used to execute each action or processing procedure performed by the CU in the above method 600.
  • the communication device 900 may include: a receiving unit 910, a processing unit 920, and a sending unit 930.
  • the receiving unit 910 is configured to receive a first message sent by a terminal device, where the first message includes overheating auxiliary information, and the overheating auxiliary information is used to indicate whether the terminal device is overheated.
  • the processing unit 920 is configured to determine a second message according to the overheating assistance information, the second message is used to instruct the distribution unit to adjust the communication parameters configured for the terminal device, and the communication parameters include uplink and/or downlink multiple input multiple output The number of MIMO layers of the wireless antenna layer.
  • the sending unit 930 is configured to send the second message to the distribution unit.
  • the receiving unit 910 is used to perform S602 in the method 600
  • the processing unit 920 is used to perform S603 in the method 600
  • the sending unit 930 is used to perform S604 in the method 600.
  • Each unit performs the specific steps of the above-mentioned corresponding steps. The process has been described in detail in the method 600, for the sake of brevity, it is not repeated here.
  • FIG. 10 shows a schematic block diagram of a communication device 1000 according to an embodiment of the present application.
  • the device 1000 may correspond to the central unit CU described in the above method 600, or may be a chip or component applied to the CU, and in the device 1000 Each module or unit is used to execute each action or processing procedure performed by the CU in the above method 600.
  • the communication device 1000 may include: a receiving unit 1010, a processing unit 1020, and a sending unit 1030.
  • the receiving unit 1010 is configured to receive a second message sent by the central unit, where the second message is used to instruct the distribution unit to adjust the communication parameters configured for the terminal device, and the communication parameters include uplink and/or downlink multiple-input multiple-output wireless Antenna layer MIMO layer number.
  • the processing unit 1020 is configured to configure the maximum number of MIMO layers for the terminal device according to the second message sent by the central unit.
  • the processing unit 1020 is further configured to determine a third message according to the maximum number of MIMO layers, and the third message is a response message to the second message.
  • the device 1000 further includes a sending unit 1030, configured to send a third message to the central unit.
  • the receiving unit 1010 is used to perform S604 in the method 600
  • the processing unit 1020 is used to perform S605 in the method 600
  • the sending unit 1030 is used to perform S606 in the method 600.
  • Each unit executes the specific steps of the above-mentioned corresponding steps. The process has been described in detail in the method 600, and for the sake of brevity, it will not be repeated here.
  • FIG. 11 is a schematic structural diagram of a network device 1100 provided by an embodiment of the present application.
  • the network device 1100 for example, a base station, CU, or DU
  • the network device 1100 includes a processor 1110 and a transceiver 1120.
  • the network device 1100 further includes a memory 1130.
  • the processor 1110, the transceiver 1120, and the memory 1130 communicate with each other through internal connection paths to transfer control and/or data signals.
  • the memory 1130 is used to store computer programs, and the processor 1110 is used to call from the memory 1130. And run the computer program to control the transceiver 1120 to send and receive signals.
  • the foregoing processor 1110 and the memory 1130 may be combined into one processing device, and the processor 1110 is configured to execute the program code stored in the memory 1130 to implement the functions of the base station, CU, or DU in the foregoing method embodiment.
  • the memory 1130 may also be integrated in the processor 1110 or independent of the processor 1110.
  • the transceiver 1120 may be implemented by a transceiver circuit.
  • the above-mentioned network equipment may also include an antenna 1140 for sending the downlink data or downlink control signaling output by the transceiver 1120 through a wireless signal, or receiving uplink data or uplink control signaling and sending it to the transceiver 820 for further processing.
  • the apparatus 1100 may correspond to the primary base station and the secondary base station in the method 400 according to the embodiment of the present application, and the apparatus 1100 may also be a chip or component applied to a base station; or the apparatus 1100 may correspond to an implementation according to the present application.
  • the device 1100 may also be a chip or component applied to the CU or DU.
  • each module in the device 1100 implements the corresponding process in the method 400 in FIG. 4 or the method 600 in FIG. 6.
  • the memory 1130 is used to store program codes so that the processor 1110 controls when the program codes are executed.
  • the processor 1110 is configured to execute S403 and S405 in the method 400 and execute S603 and S605 in the method 600.
  • the transceiver 1120 is used to execute S402, S404, and S406 in the method 400, and execute S602, S604, and S606 in the method 600.
  • the specific process of each unit performing the above corresponding steps has been described in detail in the methods 400 and 600, and for the sake of brevity, it will not be repeated here.
  • the number of MIMO layers in this application may also be the number of antenna ports. Therefore, the number of MIMO layers reported by the terminal device to the MN or SN, and the number of MIMO layers notified by the MN to the SN may also be the number of antenna ports.
  • first”, “second” and “third” in the embodiments of the present application are only for distinction and should not constitute any limitation on the present application.
  • first overheating auxiliary information and “second overheating auxiliary information” in the embodiments of the present application indicate overheating auxiliary information containing different information content.
  • the size of the sequence number of each process does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not correspond to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative, the division of the units is only a logical function division, and there may be other division methods in actual implementation, for example, multiple units or components may be combined.
  • the displayed or discussed mutual coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units.
  • each functional unit in each embodiment of the present application may be integrated into one physical entity, or each unit may correspond to one physical entity alone, or two or more units may be integrated into one physical entity.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种传输信息的方法和装置,该方法包括第一网络设备接收终端设备发送的过热消息,过热消息包括过热辅助信息,过热辅助信息用于指示该终端设备是否过热;该第一网络设备根据过热辅助信息,确定第二消息,该第二消息用于指示第二网络设备调整为该终端设备配置的通信参数,第一网络设备向该第二网络设备发送该第二消息,当终端设备过热时,能够让辅节点为终端设备配置合适通信参数以解决过热问题;当终端设备过热问题解决后,主节点还可以通知辅节点,终端设备过热问题已经解决。

Description

传输信息的方法和装置 技术领域
本申请涉及通信领域,并且更具体地,涉及通信领域中传输信息的方法和装置。
背景技术
在高速数据传输的情况下,终端设备由于配置了高的多输入多输出的无线天线层数(multiple-input multiple-output layer,MIMO layer)、大带宽和多载波,会导致终端设备出现过热问题。此外,高MIMO,大带宽和多载波配置也会导致终端设备的功率消耗过高的问题。
为了解决终端设备的过热问题,或者优化终端设备的功耗,需要在终端设备和网络设备之间进行不同的信息交互。当终端设备在出现过热问题或者过热问缓解后,可以向基站发送带有过热指示信息的辅助信息(UE assistance information),以便基站可以调整为终端设备配置的通信参数,例如辅小区数、天线层数MIMO layer,天线端口数和最大聚合带宽等,以解决当前终端设备的过热问题。当终端设备期望降低通信配置以便降低功耗时,终端设备也可以向基站发送辅助信息,以便基站可以调整为终端设备配置的通信参数,例如辅小区数、天线层数MIMO layer,天线端口数和最大聚合带宽等。
但是,对于多空口双连接(multi-radio dual connectivity,MR-DC)的网络架构,通过两个接入网设备(主基站和辅基站)同时为终端设备提供业务传输。当终端设备出现过热问题,或者终端设备期望降低功耗时,除了主基站需要调整为终端设备配置的通信参数,辅基站也需要调整为终端设备配置的通信参数,以解决终端设备的过热问题或者降低终端设备的功耗。另外,对于基于CU-DU的接入网架构,当终端设备出现过热问题或者期望降低功耗时,除了CU需要调整为终端设备配置的通信参数外,DU也需要调整为终端设备配置的通信参数,以解决终端设备的过热问题或者降低终端设备的功耗。
发明内容
本申请提供了一种传输信息的方法和装置,该方法能够为终端设备配置合适最大MIMO layer数、最大SCell数目或者最大聚合带宽,以解决终端设备过热问题。
第一方面,提供了一种传输信息的方法,包括:第一网络设备接收终端设备发送的第一消息,该第一消息包括第一过热辅助信息,该第一过热辅助信息用于指示该终端设备是否过热;该第一网络设备根据该第一过热辅助信息,确定第二消息,该第二消息用于指示第二网络设备调整为该终端设备配置的通信参数,该通信参数包括以下至少一种参数:上行辅小区数、下行辅小区数、上行多输入多输出的无线天线层MIMO layer数、下行MIMO layer数、上行聚合带宽、下行聚合带宽;第一网络设备向该第二网络设备发送该第二消息。
结合第一方面,在一些可能的实现方式中,该通信参数可以包括终端设备期望临时配置的最大上行辅小区(Scell)数、最大下行辅小区(Scell)数、FR1频段范围(<6GHz的频段)的服务小区上的最大上行MIMO layer数、FR1的服务小区上的最大下行MIMO layer数、FR2频段范围(>6GHz的频段)的服务小区上的最大上行MIMO layer数、FR2的服务小区上的最大下行MIMO layer数,FR1上的上行载波的最大上行聚合带宽,FR1上的下行载波的最大下行聚合带宽,FR2上的上行载波的最大上行聚合带宽和FR2上的下行载波的最大下行聚合带宽中的至少一种。
结合第一方面,在一些可能的实现方式中,所述辅助信息中的最大MIMO layer数(包括FR1上的服 务小区的最大上行MIMO layer数、FR1上的服务小区的最大下行MIMO layer数、FR2上的服务小区的最大上行MIMO layer数和FR2上的服务小区的最大下行MIMO layer数中的至少一个)可以是终端设备期望SN配置的SCG的服务小区上的最大MIMO layer数;或者也可以是终端设备期望MN配置的MCG的服务小区上的最大MIMO layer数;或者也可以是终端设备期望MN配置的MCG的服务小区以及SN配置SCG的服务小区上的最大MIMO layer数;或者也可以分别包含终端设备期望MN配置的MCG的服务小区上的最大MIMO layer数以及SN配置SCG的服务小区上的最大MIMO layer数。
结合第一方面,在一些可能的实现方式中,所述辅助信息中的最大聚合带宽(包括FR1上的上行载波的最大上行聚合带宽,FR1上的下行载波的最大下行聚合带宽,FR2上的上行载波的最大上行聚合带宽和FR2上的下行载波的最大下行聚合带宽中的至少一个)可以是终端设备期望SN配置的载波的最大聚合带宽值;或者也可以是终端设备期望MN配置的载波和SN配置的载波的聚合带宽的和的最大值。
应理解,该第二消息还可以用于请求第二网络设备为终端设备配置通信参数。
还应理解,上述第二消息还可以不包括任何通信参数。当终端设备过热问题解决之后,该第二消息不包括任何与通信参数有关的信息,本申请对此不作限定。
可选地,该第一消息是终端设备向MN发送的带有过热辅助信息的消息。当终端设备出现过热时,会向MN发送过热消息,该过热消息中包括过热辅助信息,过热辅助信息可以包括该终端设备当前支持的通信参数,该通信参数是可以解决终端设备过热问题的参数配置。
应理解,终端设备在和该MN和SN建立连接时,MN和SN可以获取到终端设备的无线通信能力(radio capability),终端设备在过热情况下上报的通信参数小于该无线通信能力对应的通信参数。
例如,根据终端设备的无线通信能力,终端设备在非过热情况下,可以支持31个SCell当终端设备出现过热时,终端设备向MN发送的过热辅助信息中指示当前终端设备期望的临时配置最大的Scell数的为6个,换言之,只有MN和SN分别为终端设备配置的Scell数的总和小于或等于6个时,才可以解决终端设备的过热问题。
还应理解,当终端设备出现过热,在MR-DC场景中,终端设备向MN上报的过热辅助信息中都可以包括最大Scell数。此外,对于NE-DC和NR-DC场景中,终端设备向MN上报的过热辅助信息中可以包括最大Scell数、最大MIMO layer数和最大聚合带宽中的至少一种。
结合第一方面,在某些可能的实现方式中,该方法还包括:该第一网络设备接收该第二网络设备发送的第三消息,该第三消息为该第二消息的响应消息,且该第三消息用于指示该第二网络设备为该终端设备配置的通信参数。
当终端设备出现过热时,会在过热辅助信息中携带当前支持的通信参数。当终端设备过热问题解决时,该过热辅助信息中不包括任何信息。因此,MN可以根据过热辅助信息中是否携带信息来判断终端设备当前是否过热。
MN接收终端设备发送的过热消息,根据过热消息中过热辅助信息确定终端设备发生了过热问题。当MN确定终端设备发生过热问题之后,MN和SN需要按照终端设备期望的通信参数,为终端设备配置通信参数,从而解决终端设备的过热问题。MN可以通过第二消息指示SN需要调整为该终端设备配置的通信参数,针对通信参数包括的不同类型,该第二消息可以对应包括不同的信息。此外,SN会将为终端设备配置的通信参数通过第三消息告诉MN,该第三消息可以理解为第二消息的响应消息。针对第二消息包括不同的信息种类,该第三消息对应包括不同的信息种类,具体请参见实施例部分相关描述。
通过上述技术方案,在双连接的网络架构中,对于主节点设备(MN)和辅节点设备(SN),当终端 设备发生过热问题时,MN可以向SN通知终端设备发生过热问题,或者向SN提供MN确定的用于解决终端设备过热问题的辅助信息。该辅助信息可以包括MN指示SN可以或者被允许为终端设备配置的通信参数,或者该辅助信息可以包括终端设备上报的用于解决过热问题的通信参数。使得SN可以从MN提供的辅助信息中,选择用于解决终端设备过热问题的通信参数,从而为终端设备配置通信参数。当终端设备工作于MR-DC场景下发生过热问题后,能够让SN为终端设备配置合适最大MIMO layer数、最大SCell数目或者最大聚合带宽以帮助终端设备缓解过热问题。当终端设备过热问题解决时,MN还可以向SN通知终端设备过热问题已经解决,并可以恢复终端设备所支持的最大能力的配置或者终端设备原来和MN、SN连接时的配置。
结合第一方面和上述实现方式,在某些可能的实现方式中,该第二消息还包括频段组合列表,该频段组合列表包括该第二网络设备为该终端设备配置的至少一个频段组合。
结合第一方面和上述实现方式,在某些可能的实现方式中,该第二消息还包括第一信息,该第一信息用于指示该第二网络设备为该终端设备配置的最大上行辅小区数和/或最大下行辅小区数。
结合第一方面和上述实现方式,在某些可能的实现方式中,该第二消息还包括第二信息,该第二信息用于指示该终端设备在该第一过热辅助信息中上报的最大辅小区数,其中,最大辅小区数包括最大上行辅小区数和/或最大下行辅小区数。
结合第一方面和上述实现方式,在某些可能的实现方式中,该第二消息还包括第三信息,该第三信息用于指示在不同频率范围的服务小区上,该终端设备期望配置的最大上行MIMO layer数和/或最大下行MIMO layer数。
结合第一方面和上述实现方式,在某些可能的实现方式中,该第三信息还用于指示在不同频率范围的服务小区上,该第二网络设备为该终端设备配置的最大上行MIMO layer数和最大下行MIMO layer数不受限制。
结合第一方面和上述实现方式,在某些可能的实现方式中,该第二消息还包括第四信息,该第四信息用于指示在不同频率范围内,该第二网络设备为该终端设备配置的上行载波的最大聚合带宽列表和/或下行载波的最大聚合带宽列表,该最大聚合带宽列表包括至少一个聚合带宽值。
结合第一方面和上述实现方式,在某些可能的实现方式中,该第四信息还用于指示在不同频率范围内,该第二网络设备为该终端设备配置的上行载波的最大聚合带宽值和下行载波的最大聚合带宽值不受限制。
结合第一方面和上述实现方式,在某些可能的实现方式中,该第二消息还包括第五信息,该第五信息用于指示该终端设备在该第一过热辅助信息中上报的最大聚合带宽值。
结合第一方面和上述实现方式,在某些可能的实现方式中,该第二消息还包括第六信息,该第六信息用于指示该终端设备发生过热问题。
结合第一方面和上述实现方式,在某些可能的实现方式中,该第二消息还包括第七信息,该第七信息用于指示该终端设备过热问题解决。
结合第一方面和上述实现方式,在某些可能的实现方式中,当该终端设备发生过热问题时,该第二消息还包括第二过热辅助信息,该第二过热辅助信息中包括该第一信息,第二信息,第三信息,第四信息和第五信息中的至少一项;当该终端设备过热问题解决时,该第二过热辅助信息中不包含任何信息。
结合第一方面和上述实现方式,在某些可能的实现方式中,该第一网络设备是双连接中的主节点设备,该第二网络设备是双连接中的辅节点设备,该第二消息是辅节点修改请求消息,该第三消息是辅节点修改请求响应消息。
第二方面,提供了一种传输信息的方法,包括:第二网络设备接收第一网络设备发送的第二消息,该第二消息用于指示该第二网络设备调整为该终端设备配置的通信参数,该通信参数包括以下至少一种参数:上行辅小区数、下行辅小区数、上行多输入多输出的无线天线层MIMO layer数、下行MIMO layer数、上行聚合带宽、下行聚合带宽;该第二网络设备根据该第二消息为该终端设备配置该通信参数。
结合第二方面,在某些可能的实现方式中,该方法还包括:该第二网络设备根据该通信参数,确定第三消息;该第二网络设备向该第一网络设备发送的该第三消息,该第三消息为该第二消息的响应消息,且该第三消息用于指示该第二网络设备为该终端设备配置的通信参数。
结合第二方面和上述实现方式,在某些可能的实现方式中,该第二消息还包括频段组合列表,该频段组合列表包括该第二网络设备为该终端设备配置的至少一个频段组合。
结合第二方面和上述实现方式,在某些可能的实现方式中,该第二消息还包括第一信息,该第一信息用于指示该第二网络设备为该终端设备配置的最大上行辅小区数和/或最大下行辅小区数。
结合第二方面和上述实现方式,在某些可能的实现方式中,该第二消息还包括第二信息,该第二信息用于指示该终端设备在该第一过热辅助信息中上报的最大辅小区数。
结合第二方面和上述实现方式,在某些可能的实现方式中,该第二消息还包括第三信息,该第三信息用于指示在不同频率范围的服务小区上,该终端设备期望配置的最大上行MIMO layer数和/或最大下行MIMO layer数。
结合第二方面和上述实现方式,在某些可能的实现方式中,该第三信息还用于指示在不同频率范围的服务小区上,该第二网络设备为该终端设备配置的最大上行MIMO layer数和最大下行MIMO layer数不受限制。
结合第二方面和上述实现方式,在某些可能的实现方式中,该第二消息还包括第四信息,该第四信息用于指示在不同频率范围内,该第二网络设备为该终端设备配置的上行载波的最大聚合带宽列表和/或下行载波的最大聚合带宽列表,该最大聚合带宽列表包括至少一个聚合带宽值。
结合第二方面和上述实现方式,在某些可能的实现方式中,该第四信息还用于指示在不同频率范围内,该第二网络设备为该终端设备配置的上行载波的最大聚合带宽值和下行载波的最大聚合带宽值不受限制。
结合第二方面和上述实现方式,在某些可能的实现方式中,该第二消息还包括第五信息,该第五信息用于指示该终端设备在该第一过热辅助信息中上报的最大聚合带宽值。
结合第二方面和上述实现方式,在某些可能的实现方式中,该第二消息还包括第六信息,该第六信息用于指示该终端设备发生过热问题。
结合第二方面和上述实现方式,在某些可能的实现方式中,该第二消息还包括第七信息,该第七信息用于指示该终端设备过热问题解决。
结合第二方面和上述实现方式,在某些可能的实现方式中,当该终端设备发生过热问题时,该第二消息还包括第二过热辅助信息,该第二过热辅助信息中包括该第一信息,第二信息,第三信息,第四信息和第五信息中的至少一项;当该终端设备过热问题解决时,该第二过热辅助信息中不包含任何信息。
结合第二方面和上述实现方式,在某些可能的实现方式中,该第一网络设备是双连接中的主节点设备,该第二网络设备是双连接中的辅节点设备,该第二消息是辅节点修改请求消息,该第三消息是辅节点修改请求响应消息。
第三方面,提供了一种通信装置,包括:接收单元,用于接收终端设备发送的第一消息,该第一消息包括第一过热辅助信息,该第一过热辅助信息用于指示该终端设备是否过热;处理单元,用于根据该 第一过热辅助信息,确定第二消息,该第二消息用于指示第二网络设备调整为该终端设备配置的通信参数,该通信参数包括以下至少一种参数:上行辅小区数、下行辅小区数、上行多输入多输出的无线天线层MIMO layer数、下行MIMO layer数、上行聚合带宽、下行聚合带宽;发送单元,用于向该第二网络设备发送该第二消息。
结合第三方面,在某些可能的实现方式中,该接收单元还用于接收该第二网络设备发送的第三消息,该第三消息为该第二消息的响应消息,且该第三消息用于指示该第二网络设备为该终端设备配置的通信参数。
结合第三方面和上述实现方式,在某些可能的实现方式中,该第二消息还包括频段组合列表,该频段组合列表包括该第二网络设备为该终端设备配置的至少一个频段组合。
结合第三方面和上述实现方式,在某些可能的实现方式中,该第二消息还包括第一信息,该第一信息用于指示该第二网络设备为该终端设备配置的最大上行辅小区数和/或最大下行辅小区数。
结合第三方面和上述实现方式,在某些可能的实现方式中,该第二消息还包括第二信息,该第二信息用于指示该终端设备在该第一过热辅助信息中上报的最大辅小区数。
结合第三方面和上述实现方式,在某些可能的实现方式中,该第二消息还包括第三信息,该第三信息用于指示在不同频率范围的服务小区上,该终端设备期望配置的最大上行MIMO layer数和/或最大下行MIMO layer数。
结合第三方面和上述实现方式,在某些可能的实现方式中,该第三信息还用于指示在不同频率范围的服务小区上,该第二网络设备为该终端设备配置的最大上行MIMO layer数和最大下行MIMO layer数不受限制。
结合第三方面和上述实现方式,在某些可能的实现方式中,该第二消息还包括第四信息,该第四信息用于指示在不同频率范围内,该第二网络设备为该终端设备配置的上行载波的最大聚合带宽列表和/或下行载波的最大聚合带宽列表,该最大聚合带宽列表包括至少一个聚合带宽值。
结合第三方面和上述实现方式,在某些可能的实现方式中,该第四信息还用于指示在不同频率范围内,该第二网络设备为该终端设备配置的上行载波的最大聚合带宽值和下行载波的最大聚合带宽值不受限制。
结合第三方面和上述实现方式,在某些可能的实现方式中,该第二消息还包括第五信息,该第五信息用于指示该终端设备在该第一过热辅助信息中上报的最大聚合带宽值。
结合第三方面和上述实现方式,在某些可能的实现方式中,该第二消息还包括第六信息,该第六信息用于指示该终端设备发生过热问题。
结合第三方面和上述实现方式,在某些可能的实现方式中,该第二消息还包括第七信息,该第七信息用于指示该终端设备过热问题解决。
结合第三方面和上述实现方式,在某些可能的实现方式中,当该终端设备发生过热问题时,该第二消息还包括第二过热辅助信息,该第二过热辅助信息中包括该第一信息,第二信息,第三信息,第四信息和第五信息中的至少一项;当该终端设备过热问题解决时,该第二过热辅助信息中不包含任何信息。
结合第三方面和上述实现方式,在某些可能的实现方式中,该通信装置是双连接中的主节点设备,该第二网络设备是双连接中的辅节点设备,该第二消息是辅节点修改请求消息,该第三消息是辅节点修改请求响应消息。
第四方面,提供了一种通信装置,包括:接收单元,用于接收第一网络设备发送的第二消息,该第二消息用于指示该第二网络设备调整为该终端设备配置的通信参数,该通信参数包括以下至少一种参数: 上行辅小区数、下行辅小区数、上行多输入多输出的无线天线层MIMO layer数、下行MIMO layer数、上行聚合带宽、下行聚合带宽;处理单元,用于根据该第二消息为该终端设备配置该通信参数。
结合第四方面,在某些可能的实现方式中,该处理单元还用于根据该通信参数,确定第三消息;所述装置还包括发送单元,用于向该第一网络设备发送的该第三消息,该第三消息为该第二消息的响应消息,且该第三消息用于指示该第二网络设备为该终端设备配置的通信参数。
结合第四方面和上述实现方式,在某些可能的实现方式中,该第二消息还包括频段组合列表,该频段组合列表包括该第二网络设备为该终端设备配置的至少一个频段组合。
结合第四方面和上述实现方式,在某些可能的实现方式中,该第二消息还包括第一信息,该第一信息用于指示该第二网络设备为该终端设备配置的最大上行辅小区数和/或最大下行辅小区数。
结合第四方面和上述实现方式,在某些可能的实现方式中,该第二消息还包括第二信息,该第二信息用于指示该终端设备在该第一过热辅助信息中上报的最大辅小区数。
结合第四方面和上述实现方式,在某些可能的实现方式中,该第二消息还包括第三信息,该第三信息用于指示在不同频率范围的服务小区上,该终端设备期望配置的最大上行MIMO layer数和/或最大下行MIMO layer数。
结合第四方面和上述实现方式,在某些可能的实现方式中,该第三信息还用于指示在不同频率范围的服务小区上,该第二网络设备为该终端设备配置的最大上行MIMO layer数和最大下行MIMO layer数不受限制。
结合第四方面和上述实现方式,在某些可能的实现方式中,该第二消息还包括第四信息,该第四信息用于指示在不同频率范围内,该第二网络设备为该终端设备配置的上行载波的最大聚合带宽列表和/或下行载波的最大聚合带宽列表,该最大聚合带宽列表包括至少一个聚合带宽值。
结合第四方面和上述实现方式,在某些可能的实现方式中,该第四信息还用于指示在不同频率范围内,该第二网络设备为该终端设备配置的上行载波的最大聚合带宽值和下行载波的最大聚合带宽值不受限制。
结合第四方面和上述实现方式,在某些可能的实现方式中,该第二消息还包括第五信息,该第五信息用于指示该终端设备在该第一过热辅助信息中上报的最大聚合带宽值。
结合第四方面和上述实现方式,在某些可能的实现方式中,该第二消息还包括第六信息,该第六信息用于指示该终端设备发生过热问题。
结合第四方面和上述实现方式,在某些可能的实现方式中,该第二消息还包括第七信息,该第七信息用于指示该终端设备过热问题解决。
结合第四方面和上述实现方式,在某些可能的实现方式中,当该终端设备发生过热问题时,该第二消息还包括第二过热辅助信息,该第二过热辅助信息中包括该第一信息,第二信息,第三信息,第四信息和第五信息中的至少一项;当该终端设备过热问题解决时,该第二过热辅助信息中不包含任何信息。
结合第四方面和上述实现方式,在某些可能的实现方式中,该第一网络设备是双连接中的主节点设备,该通信装置是双连接中的辅节点设备,该第二消息是辅节点修改请求消息,该第三消息是辅节点修改请求响应消息。
第五方面,提供了一种传输信息的方法,应用于包括中心单元CU和分布单元DU的网络架构中,包括:该中心单元接收终端设备发送的第一消息,该第一消息包括过热辅助信息,该过热辅助信息用于指示该终端设备是否过热;该中心单元根据该过热辅助信息,确定第二消息,该第二消息用于指示该分布单元调整为该终端设备配置的通信参数,该通信参数包括上行和/或下行多输入多输出的无线天线层 MIMO layer数;该中心单元向该分布单元发送该第二消息。
可选地,该第一消息是终端设备向CU发送的过热消息。当该过热消息中包括过热辅助信息,过热辅助信息可以包括该终端设备当前支持的最大MIMO layer数,该最大MIMO layer数是可以解决终端设备过热问题的参数配置。
应理解,终端设备在和基站建立连接时,会向基站上报正常状态下的最大能力,终端设备在过热情况下上报的通信参数小于正常状态下的最大能力对应的通信参数。
例如,终端设备正常状态下向CU上报的支持的最大MIMO layer数为4层,即CU和DU为终端设备配置的最大MIMO layer数都为4层。当终端设备出现过热时,终端设备向CU发送的过热辅助信息中指示当前终端设备期望的临时配置最大的最大MIMO layer数为2层,换言之,只有CU和DU分别为终端设备配置的最大MIMO layer数都小于或等于2时,才可以解决终端设备的过热问题。
通过上述技术方案,当终端设备在CU-DU网络下发生过热问题时,CU收到终端设备上报的过热消息后,CU可以为终端设备重配最大MIMO layer数。同时,能够让DU知道当前CU为终端设备配置的最大MIMO layer数,从而为终端设备调度的数据传输时,保证为终端设备配置的最大MIMO layer数不超过CU为终端设备配置的最大MIMO layer数,从而解决终端设备的过热问题。
结合第五方面,在某些可能的实现方式中,该第二消息包括该过热辅助信息,该过热辅助信息中包括第一信息,该第一信息用于指示该终端设备期望配置的不同频率范围的服务小区上的最大上行MIMO layer数和/或最大下行MIMO layer数。
结合第五方面和上述实现方式,在某些可能的实现方式中,该第二消息包括该过热辅助信息,该过热辅助信息中不包括任何信息。
结合第五方面和上述实现方式,在某些可能的实现方式中,该方法还包括:该中心单元接收该分布单元发送的第三消息,该第三消息是该第二消息的响应消息。
结合第五方面和上述实现方式,在某些可能的实现方式中,该第一消息是终端设备上下文修改请求消息,该第二消息是终端设备上下文修改响应消息。
结合第五方面和上述实现方式,在某些可能的实现方式中,该第二消息中包括第二信息,该第二信息用于指示该分布单元为该终端设备配置的不同频率范围的服务小区上的最大上行MIMO layer数和/或最大下行MIMO layer数。
第六方面,提供了一种传输信息的方法,应用于包括中心单元CU和分布单元DU的网络架构中,包括:该分布单元接收中心单元发送的第二消息,该第二消息用于指示该分布单元调整为该终端设备配置的通信参数,该通信参数包括上行和/或下行多输入多输出的无线天线层MIMO layer数;该分布单元根据该中心单元发送的第二消息,为所述终端设备配置最大MIMO layer数。
结合第六方面,在某些可能的实现方式中,该方法还包括:该分布单元根据该最大MIMO layer数确定第三消息,该第三消息是所述第二消息的响应消息;该分布单元向中心单元发送第三消息。
结合第六方面和上述实现方式,在某些可能的实现方式中,该第二消息包括该过热辅助信息,该过热辅助信息中包括第一信息,该第一信息用于指示该终端设备期望配置的不同频率范围的服务小区上的最大上行MIMO layer数和/或最大下行MIMO layer数。
结合第六方面和上述实现方式,在某些可能的实现方式中,该第二消息包括该过热辅助信息,该过热辅助信息中不包括任何信息。
结合第六方面和上述实现方式,在某些可能的实现方式中,该方法还包括:该中心单元接收该分布单元发送的第三消息,该第三消息是该第二消息的响应消息。
结合第六方面和上述实现方式,在某些可能的实现方式中,该第一消息是终端设备上下文修改请求消息,该第二消息是终端设备上下文修改响应消息。
结合第六方面和上述实现方式,在某些可能的实现方式中,该第二消息中包括第二信息,该第二信息用于指示该分布单元为该终端设备配置的不同频率范围的服务小区上的最大上行MIMO layer数和/或最大下行MIMO layer数。
第七方面,提供了一种通信装置,包括:接收单元,用于接收终端设备发送的第一消息,该第一消息包括过热辅助信息,该过热辅助信息用于指示该终端设备是否过热;处理单元,用于根据该过热辅助信息,确定第二消息,该第二消息用于指示该分布单元调整为该终端设备配置的通信参数,该通信参数包括上行和/或下行多输入多输出的无线天线层MIMO layer数;发送单元,用于向该分布单元发送该第二消息。
结合第七方面,在某些可能的实现方式中,该第二消息包括该过热辅助信息,该过热辅助信息中包括第一信息,该第一信息用于指示该终端设备期望配置的不同频率范围的服务小区上的最大上行MIMO layer数和/或最大下行MIMO layer数。
结合第七方面和上述实现方式,在某些可能的实现方式中,该第二消息包括该过热辅助信息,该过热辅助信息中不包括任何信息。
结合第七方面和上述实现方式,在某些可能的实现方式中,该接收单元还用于接收该分布单元发送的第三消息,该第三消息是该第二消息的响应消息。
结合第七方面和上述实现方式,在某些可能的实现方式中,该第一消息是终端设备上下文修改请求消息,该第二消息是终端设备上下文修改响应消息。
结合第七方面和上述实现方式,在某些可能的实现方式中,该第二消息中包括第二信息,该第二信息用于指示该分布单元为该终端设备配置的不同频率范围的服务小区上的最大上行MIMO layer数和/或最大下行MIMO layer数。
第八方面,提供了一种通信装置,包括:接收单元,用于接收中心单元发送的第二消息,该第二消息用于指示该分布单元调整为该终端设备配置的通信参数,该通信参数包括上行和/或下行多输入多输出的无线天线层MIMO layer数;处理单元,用于根据该中心单元发送的第二消息,为所述终端设备配置最大MIMO layer数。
结合第八方面和上述实现方式,在某些可能的实现方式中,该处理单元还用于根据该最大MIMO layer数确定第三消息,该第三消息是所述第二消息的响应消息;该装置还包括发送单元,用于向中心单元发送第三消息。
结合第八方面和上述实现方式,在某些可能的实现方式中,该第二消息包括该过热辅助信息,该过热辅助信息中包括第一信息,该第一信息用于指示该终端设备期望配置的不同频率范围的服务小区上的最大上行MIMO layer数和/或最大下行MIMO layer数。
结合第八方面和上述实现方式,在某些可能的实现方式中,该第二消息包括该过热辅助信息,该过热辅助信息中不包括任何信息。
结合第八方面和上述实现方式,在某些可能的实现方式中,该接收单元,还用于接收该分布单元发送的第三消息,该第三消息是该第二消息的响应消息。
结合第八方面和上述实现方式,在某些可能的实现方式中,该第一消息是终端设备上下文修改请求消息,该第二消息是终端设备上下文修改响应消息。
结合第八方面和上述实现方式,在某些可能的实现方式中,该第二消息中包括第二信息,该第二信 息用于指示该分布单元为该终端设备配置的不同频率范围的服务小区上的最大上行MIMO layer数和/或最大下行MIMO layer数。
第九方面,提供了一种通信装置,该通信装置具有实现上述第一方面的方法设计中的第一网络设备(例如主基站)的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
第十方面,提供了一种通信装置,该通信装置具有实现上述第二方面的方法设计中的第二网络设备(例如辅基站)的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
第十一方面,提供一种网络设备,包括收发器和处理器。可选地,该网络设备还包括存储器。该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该网络设备执行上述第一方面或第一方面任意一种可能的实现方式中的方法。
第十二方面,提供一种网络设备,包括收发器和处理器。可选地,该网络设备还包括存储器。该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该网络设备执行上述第二方面或第二方面任意一种可能的实现方式中的方法。
第十三方面,提供一种网络设备,包括收发器和处理器。可选地,该网络设备还包括存储器。该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该网络设备执行上述第三方面或第三方面任意一种可能的实现方式中的方法。
第十四方面,提供一种网络设备,包括收发器和处理器。可选地,该网络设备还包括存储器。该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该网络设备执行上述第四方面或第四方面任意一种可能的实现方式中的方法。
第十五方面,提供了一种通信系统,该系统包括上述第三方面的通信装置以及第四方面的通信装置;或者,该系统包括上述第七方面的通信装置以及第八方面的通信装置。
第十六方面,提供一种通信装置,该通信装置可以为上述方法设计中的网络设备,或者为设置在网络设备中的芯片。该通信装置包括:处理器,与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面或第一方面中任意一种可能的实现方式中网络设备所执行的方法,或者以实现上述第五方面或第五方面中任意一种可能的实现方式中网络设备所执行的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
当该通信装置为终端设备时,该通信接口可以是收发器,或,输入/输出接口。
当该通信装置为配置于终端设备中的芯片时,该通信接口可以是输入/输出接口。
可选地,该收发器可以为收发电路。可选地,该输入/输出接口可以为输入/输出电路。
第十七方面,提供了一种通信装置,该通信装置可以为上述方法设计中的网络设备,或者为设置在网络设备中的芯片。该通信装置包括:处理器,与存储器耦合,可用于执行存储器中的指令,以实现上述第二方面或第二方面任意一种可能的实现方式中网络设备所执行的方法,或者以实现上述第六方面或第六方面中任意一种可能的实现方式中网络设备所执行的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
当该通信装置为网络设备时,该通信接口可以是收发器,或,输入/输出接口。
当该通信装置为配置于网络设备中的芯片时,该通信接口可以是输入/输出接口。
可选地,该收发器可以为收发电路。可选地,该输入/输出接口可以为输入/输出电路。
第十八方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计 算机程序代码在计算机上运行时,使得计算机执行上述各方面中的方法。
第十九方面,提供了一种计算机可读介质,所述计算机可读介质存储有程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述各方面中的方法。
第二十方面,提供了一种传输信息的方法,第一网络设备接收终端设备发送的第一消息,所述第一消息包括第一过热辅助信息,包括用于降低功耗的辅助信息;所述第一网络设备根据所述第一过热辅助信息,确定第二消息,所述第二消息用于指示第二网络设备调整为所述终端设备配置的通信参数,所述通信参数包括以下至少一种参数:上行辅小区数、下行辅小区数、上行多输入多输出的无线天线层MIMO layer数、下行MIMO layer数、上行聚合带宽、下行聚合带宽;
结合第二十方面,在某些可能的实现方式中,该第一消息是终端设备向MN发送的用于降低功耗的消息。
结合第二十方面,在某些可能的实现方式中,该消息中包括辅助信息,辅助信息可以包括该终端设备当前期望配置的通信参数,该通信参数是可以降低终端设备的功耗的参数配置辅助信息可以包括该终端设备当前期望配置的通信参数,该通信参数是可以降低终端设备的功耗的参数配置。例如该辅助信息可以包括以下一项或多项:终端设备期望MIMO layer数,聚合带宽,辅小区数。
结合第二十方面,在一些可能的实现方式中,所述辅助信息中的最大MIMO layer数(包括FR1上的服务小区的最大上行MIMO layer数、FR1上的服务小区的最大下行MIMO layer数、FR2上的服务小区的最大上行MIMO layer数和FR2上的服务小区的最大下行MIMO layer数中的至少一个)可以是终端设备期望SN配置的SCG的服务小区上的最大MIMO layer数;或者也可以是终端设备期望MN配置的MCG的服务小区上的最大MIMO layer数;或者也可以是终端设备期望MN配置的MCG的服务小区以及SN配置SCG的服务小区上的最大MIMO layer数;或者也可以分别包含终端设备期望MN配置的MCG的服务小区上的最大MIMO layer数以及SN配置SCG的服务小区上的最大MIMO layer数。
结合第二十方面,在一些可能的实现方式中,所述辅助信息中的最大聚合带宽(包括FR1上的上行载波的最大上行聚合带宽,FR1上的下行载波的最大下行聚合带宽,FR2上的上行载波的最大上行聚合带宽和FR2上的下行载波的最大下行聚合带宽中的至少一个)可以是终端设备期望SN配置的载波的最大聚合带宽值;或者也可以是终端设备期望MN配置的载波和SN配置的载波的聚合带宽的和的最大值。
结合第二十方面,在一些可能的实现方式中,该通信参数可以包括终端设备期望临时配置的最大上行辅小区(Scell)数、最大下行辅小区(Scell)数、FR1频段范围(<6GHz的频段)的服务小区上的最大上行MIMO layer数、FR1的服务小区上的最大下行MIMO layer数、FR2频段范围(>6GHz的频段)的服务小区上的最大上行MIMO layer数、FR2的服务小区上的最大下行MIMO layer数,FR1上的上行载波的最大上行聚合带宽,FR1上的下行载波的最大下行聚合带宽,FR2上的上行载波的最大上行聚合带宽和FR2上的下行载波的最大下行聚合带宽中的至少一种。
此外,结合第一方面的各种可能的实现方式可以与第二十方面结合,进一步解决终端设备降低功耗需求。
因此,在第二十方面中,当终端设备期望降低功耗时,会在用于降低功耗的辅助信息中携带当前支持的通信参数。当终端设备不期望降低功耗时,该辅助信息中不包括任何信息。因此,基站可以根据用于降低功耗的辅助信息中是否携带信息来判断终端设备当前是否期望降低功耗。
此外,在其他一些方面中,本申请还提供终端设备、装置(例如芯片)、计算机存储设备或计算机程序产品可以实现第二十方面的方法。
附图说明
图1是适用于本申请实施例的移动通信系统的架构示意图。
图2是本申请实施例提供的一例多空口双连接通信系统的架构示意图。
图3是本申请实施例提供的一例终端设备过热时和基站之间的交互示意图。
图4是本申请实施例提供的一例传输信息的方法的示意性交互图。
图5是本申请实施例提供的一例CU-DU分离的通信系统的架构示意图。
图6是本申请实施例提供的一例传输信息的方法的示意性交互图。
图7是本申请实施例的一例通信装置的示意性框图。
图8是本申请实施例的另一例通信装置的示意性框图。
图9是本申请实施例的另一例通信装置的示意性框图。
图10是本申请实施例的另一例通信装置的示意性框图。
图11是本申请实施例提供的网络设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、第五代(5th generation,5G)移动通信系统或新无线(new radio,NR)通信系统以及未来的移动通信系统等。
图1是适用于本申请实施例的移动通信系统的架构示意图。如图1所示,该移动通信系统100可以包括核心网设备110、无线接入网设备120和至少一个终端设备(如图1中的终端设备130和终端设备140)。终端设备通过无线的方式与无线接入网设备相连,无线接入网设备通过无线或有线方式与核心网设备连接。核心网设备与无线接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端设备可以是固定位置的,也可以是可移动的。图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图1中未画出。本申请的实施例对该移动通信系统中包括的核心网设备、无线接入网设备和终端设备的数量不做限定。
在移动通信系统100中,无线接入网设备120是终端设备通过无线方式接入到该移动通信系统中的接入设备。该无线接入网设备120可以是:基站、演进型基站(evolved node B,eNB)、家庭基站、无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为NR系统中的基站(gNode B,gNB),或者,还可以是构成基站的组件或一部分设备,如汇聚单元(central unit,CU)、分布式单元(distributed unit,DU)或基带单元(baseband unit,BBU)等。应理解,本申请的实施例中,对无线接入网设备所采用的具体技术和具体设备形态不做限定。在本申请中,无线接入网设备简称网络设备,如果无特殊说明,在本申请中,网络设备均指无线接入网设备。在本申请中,网络设备可以是指网络设备本身,也可以是应用于网络设备中完成无线通信处理功能的芯片。
该移动通信系统100中的终端设备也可以称为终端、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。本申请实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑,还可以是应用于虚拟现实(virtual reality,VR)、 增强现实(augmented reality,AR)、工业控制(industrial control)、无人驾驶(self driving)、远程医疗(remote medical)、智能电网(smart grid)、运输安全(transportation safety)、智慧城市(smart city)以及智慧家庭(smart home)等场景中的无线终端设备。本申请中将前述终端设备及可应用于前述终端设备的芯片统称为终端设备。应理解,本申请实施例对终端设备所采用的具体技术和具体设备形态不做限定。
本申请的实施例可以适用于下行数据传输,也可以适用于上行数据传输,还可以适用于设备到设备(device to device,D2D)的数据传输。对于下行数据传输,数据的发送设备是网络设备,数据的接收设备是终端设备,终端设备接收到下行数据后,会向网络设备发送反馈信息,用于通知网络设备该下行数据是否被终端设备正确接收。对于上行数据传输,数据的发送设备是终端设备,数据的接收设备是网络设备,网络设备接收到上行数据后,会向终端设备发送反馈信息,用于通知终端设备该上行数据是否被网络设备正确接收。对于D2D的信号传输,数据的发送设备是终端设备,数据的接收设备也是终端设备。本申请的实施例数据的传输方向不做限定。
在第五代(the fifth generation,5G)移动通信系统的初始阶段,由于第四代(the forth generation,4G)移动通信系统网络和5G新无线(new radio,NR)通信系统网络会共存,为了充分利用现有的4G网络,运营商会部署通过4G接入网,即演进的UMTS陆地无线接入网(evolved UMTS terrestrial radio access network,E-UTRAN)和5G接入网(NR)同时为终端设备提供业务传输的网络。另外也可以部署通过两个5G NR接入网同时为终端设备提供业务传输的网络。这种通过两个接入网设备同时为终端设备提供业务传输的网络架构称为多空口双连接(multi-radio dual connectivity,MR-DC)。
具体地,如图2中的(a)图所示的网络架构,以LTE基站(eNB)为主基站(master node),NR基站(gNB)为辅基站(secondary node),并且主基站连接到4G核心网(evolved packet core,EPC)的双连接方式(E-UTRAN-NR dual connectivity,EN-DC)。
如图2中的(b)图所示的网络架构,是以演进的LTE基站(next generation evolved node B,Ng-eNB)为主节点,NR基站(gNB)为辅基站,并且主基站连接到5G核心网(5G core,5GC)的双连接方式(NG-RAN E-UTRA-NR dual connectivity,NGEN-DC)。
如图2中的(c)图所示的网络架构,是以NR基站为主基站,LTE基站为辅基站,并且主基站连接到5G核心网的双连接方式(NR-E-UTRA dual connectivity,NE-DC)。
如图2中的(d)图所示的网络架构,是以一个NR基站为主基站,另外一个NR基站为辅基站,并且主基站连接到5G核心网的双连接方式(NR-NR dual connectivity,NR-DC)。
如背景技术所介绍,终端设备在高速数据传输的情况下,会出现过热问题。为了解决终端设备的过热问题,目前标准中规定了终端设备在出现过热问题或者过热问缓解后,终端设备可以向基站发送带有过热辅助(overheating asssistance)信元的过热消息(UE assistance information)。在终端设备发生过热问题时,过热辅助信元中会包含终端设备提供的过热辅助消息;在终端设备过热问题缓解后,过热辅助信元不包含任何的过热辅助消息。此外,当终端设备期望降低功耗时,终端设备也可以发送辅助信息,向基站上报自己期望的配置。
针对上述图2中介绍的四种不同的MR-DC网络架构的场景,终端设备上报的过热辅助信息不同。具体地,当终端设备工作于4G独立组网(long term evolution standard alone,LTE SA)场景下时,过热辅助信息可以包括:终端设备支持的上行链路(uplink,UL)或者下行链路(downlink,DL)的分类;终端设备支持的UL/DL上临时配置的辅小区(secondary cell,Scell)的最大数目。当终端设备工作于EN-DC场景下时,辅助信息可以包括:终端设备支持的UL/DL临时配置的Scell的最大数目,并 且该Scell的数目是指LTE下的Scell和NR下的PScell/Scell的总和,其中PScell为主基站为终端设备配置的辅小区。当终端设备工作在5G独立组网(new radio standard alone,NR SA)场景下时,NR基站独立工作,并且NR基站连接到5G核心网。辅助信息可以包括:终端设备支持的UL/DL上临时配置的Scell的最大数目;终端设备支持的UL/DL上临时配置的每个频率范围(Frequency Range)的最大MIMO layer数;终端设备支持的UL/DL上临时配置的每个频率范围FR的最大聚合带宽。
由此可知,当终端设备工作于图2中任一种MR-DC场景下,终端设备发生过热问题时或者需要降低功耗时,终端设备会向主基站MN上报带有用于解决过热问题或者用于降低功耗的辅助信息的消息。以终端设备发生过热问题为例,图3是本申请实施例提供的一例终端设备过热时和基站之间的交互示意图。如图3所示,该过程包括:
1.终端设备确定出现过热;
2.终端设备向MN上报带有过热辅助信元的过热消息,该过热消息用于指示终端设备期望临时配置的Scell的最大数目;
3.MN收到终端设备上报的过热消息后,获取过热辅助信元中的Scell的最大数目。MN决定MN和SN各自给终端设备配置的Scell的最大数目,MN根据终端设备的能力确定为终端设备配置的频段组合列表(band combination list,BC-list);
4.MN向SN发送修改请求(SN modification request),该修改请求包括MN确定过的BC-list通知给SN。
通过上述过程可知,当MN确定SN可以为终端设备配置的Scell的最大数目后,可以通过设置合适的allowed BC-list MR-DC来限制SN给终端设备配置的最大的Scell的数目,并发起SN修改过程,在SN修改请求消息中携带更新后的allowed BC-List MR-DC,并发给SN。在该过程中,当MN为了通过降低载波数来解决终端设备过热问题而更新allowed BC-list MR-DC后,SN无法获知MN更新的原因,在SN为终端设备配置Scell的过程中,可能会请求其它的不能解决终端设备过热问题的Scell数,SN将重新请求的Scell数再告诉MN,造成MN和SN之间的不必要的信令交互。此外,通过allowed BC-list MR-DC无法分别限制SN能够给终端设备配置的上行载波数和下行载波数。因此,通过现有协议中的修改请求向SN通知可以为终端设备配置的Scell数,并不能解决终端设备过热问题。
在另外一种可能的情况中,当终端设备发生过热问题后,或者期望降低功耗时,终端设备向MN上报带有辅助信息的消息。此时,终端设备向MN上报的消息中,除了前述终端设备支持临时配置的Scell的最大数目之外,还可以包括终端设备支持的临时配置的最大MIMO layer数和/或支持的临时配置的最大聚合带宽。当MN收到终端设备上报的终端设备支持的临时配置的最大MIMO layer数和/或支持的临时配置的最大聚合带宽后,目前MN并不能将终端设备支持的临时配置的最大MIMO layer数和/或支持的临时配置的最大聚合带宽通知到SN,即无法让SN知道可以为终端设备临时配置的最大MIMO layer数和可以为终端设备临时配置的最大聚合带宽,从而不能解决终端设备的过热问题,或者无法修改配置来为终端设备降低功耗。
为了解决终端设备的过热问题或者为终端设备降低功耗,本申请提出一种传输信息的方法,通过在网络设备间的信息交互,使得辅基站能够知道终端设备发生过热问题或者终端设备期望降低功耗,进而为终端设备配置合适的辅小区数、最大MIMO layer数和最大聚合带宽,或者能够按照终端设备支持的最大MIMO layer数来为终端设备调度上行和/或下行的数据传输。
如下实施例以终端发生过热问题为例来说明本申请的方法。应理解,当终端期望降低功耗时,终端设备也可以向网络设备发送辅助信息,辅助信息中例如可以包括终端设备期望MIMO layer数,聚合带 宽,辅小区数。因此,如下实施例中的方法也适用于解决终端设备的功耗问题。
图4是本申请实施例提供的一例传输信息的方法400的示意性交互图。下面,对方法400的每个步骤进行详细说明。
应理解,在本申请实施例中,以终端设备和基站(主基站MN和辅基站SN)作为执行方法400的执行主体为例,对方法400进行说明。作为示例而非限定,执行方法400的执行主体也可以是应用于终端设备的芯片和应用于基站的芯片。
S401,终端设备确定出现过热;或者终端设备期望降低功耗。
S402,终端设备向MN发送第一消息,所述第一消息包括第一过热辅助信息;或者所述第一消息包括用于降低功耗的辅助信息。
可选地,该第一消息是终端设备向MN发送的过热消息。当终端设备出现过热时,会向MN发送过热消息,该过热消息中包括过热辅助信息,过热辅助信息可以包括该终端设备当前支持的通信参数,该通信参数是可以解决终端设备过热问题的参数配置。
或者,该第一消息是终端设备向MN发送的用于降低功耗的消息。该消息中包括辅助信息,辅助信息可以包括该终端设备当前期望配置的通信参数,该通信参数是可以降低终端设备的功耗的参数配置。
示例性的,通信参数可以包括终端设备期望临时配置的最大上行辅小区(Scell)数、最大下行辅小区(Scell)数、FR1频段范围(<6GHz的频段)的服务小区上的最大上行MIMO layer数、FR1的服务小区上的最大下行MIMO layer数、FR2频段范围(>6GHz的频段)的服务小区上的最大上行MIMO layer数、FR2的服务小区上的最大下行MIMO layer数,FR1上的上行载波的最大上行聚合带宽,FR1上的下行载波的最大下行聚合带宽,FR2上的上行载波的最大上行聚合带宽和FR2上的下行载波的最大下行聚合带宽中的至少一种。
应理解,终端设备在和该MN和SN建立连接时,MN和SN可以获取到终端设备的无线通信能力(radio capability),终端设备在过热情况下或期望降低功耗时上报的通信参数小于该无线通信能力对应的通信参数。
例如,根据终端设备的无线通信能力,终端设备在非过热情况下,可以支持31个SCell当终端设备出现过热时,终端设备向MN发送的过热辅助信息中指示当前终端设备期望的临时配置最大的Scell数的为6个,换言之,只有MN和SN为终端设备配置的Scell数的总和小于或等于6个时,才可以解决终端设备的过热问题。
又例如,根据终端设备的无线通信能力,终端设备在非过热情况下,可以支持的FR1频段范围(<6GHz的频段)上的上行载波的最大聚合带宽为100M,即MN和SN为终端设备配置的FR1频段范围上的上行载波的最大聚合带宽的总和为100M。当终端设备出现过热时,终端设备向MN发送的过热辅助信息中指示当前终端设备期望的临时配置最大聚合带宽的为20M,换言之,只有MN和SN为终端设备配置的最大聚合带宽的总和小于或等于20M时,才可以解决终端设备的过热问题。
又例如,根据终端设备的无线通信能力,终端设备在非过热情况下,在FR1频段范围(<6GHz的频段)上服务小区上可以支持的上行最大MIMO layer数为4层,即MN和SN为终端设备配置的FR1频段范围(<6GHz的频段)上的服务小区上的上行最大MIMO layer数都为4层。当终端设备出现过热时,终端设备向MN发送的过热辅助信息中指示当前终端设备期望的临时配置FR1频段范围(<6GHz的频段)上的服务小区上的上行最大MIMO layer数为2层,换言之,只有MN和SN分别为终端设备配置的FR1频段范围(<6GHz的频段)上的服务小区上的上行最大MIMO layer数都小于或等于2时,才可以解决终端设备的过热问题。
还应理解,当终端设备出现过热,或者当终端设备期望降低功耗时,在图2列举的多种MR-DC场景中,终端设备向MN上报的过热辅助信息或者用于降低功耗的辅助信息中可以包括最大Scell数、最大MIMO layer数和最大聚合带宽中的至少一种。
可选的,所述辅助信息中的最大MIMO layer数(包括FR1上的服务小区的最大上行MIMO layer数、FR1上的服务小区的最大下行MIMO layer数、FR2上的服务小区的最大上行MIMO layer数和FR2上的服务小区的最大下行MIMO layer数中的至少一个)可以是终端设备期望SN配置的SCG的服务小区上的最大MIMO layer数;或者也可以是终端设备期望MN配置的MCG的服务小区上的最大MIMO layer数;或者也可以是终端设备期望MN配置的MCG的服务小区以及SN配置SCG的服务小区上的最大MIMO layer数;或者也可以分别包含终端设备期望MN配置的MCG的服务小区上的最大MIMO layer数以及SN配置SCG的服务小区上的最大MIMO layer数。
可选的,所述辅助信息中的最大聚合带宽(包括FR1上的上行载波的最大上行聚合带宽,FR1上的下行载波的最大下行聚合带宽,FR2上的上行载波的最大上行聚合带宽和FR2上的下行载波的最大下行聚合带宽中的至少一个)可以是终端设备期望SN配置的载波的最大聚合带宽值;或者也可以是终端设备期望MN配置的载波和SN配置的载波的聚合带宽的和的最大值。
S403,MN接收终端设备发送的第一消息,根据第一消息包括的第一过热辅助信息或者用于降低功耗的辅助信息,确定第二消息。
S404,MN向SN发送第二消息。
S405,SN根据MN发送的第二消息为所述终端设备配置通信参数,并根据该配置通信参数确定第三消息。
S406,SN向MN发送所述第三消息。
应理解,在S402中,介绍了当终端设备出现过热时,会在过热辅助信息中携带当前支持的通信参数。当终端设备过热问题解决时,该过热辅助信息中不包括任何信息。因此,MN可以根据过热辅助信息中是否携带信息来判断终端设备当前是否过热。
此外,应理解,当终端设备期望降低功耗时,会在用于降低功耗的辅助信息中携带当前支持的通信参数。当终端设备不期望降低功耗时,该辅助信息中不包括任何信息。因此,MN可以根据用于降低功耗的辅助信息中是否携带信息来判断终端设备当前是否期望降低功耗。
MN接收终端设备发送的第一消息,根据第一消息中的辅助信息确定终端设备发生了过热问题或者终端设备期望降低功耗。当MN确定终端设备发生过热问题或者期望降低功耗之后,MN和SN需要按照终端设备期望的通信参数,为终端设备配置通信参数,从而解决终端设备的过热问题,或者让终端设备降低功耗。MN可以通过第二消息指示SN需要调整为该终端设备配置的通信参数,针对通信参数包括的不同类型,该第二消息可以对应包括不同的信息。此外,SN会将为终端设备配置的通信参数通过第三消息告诉MN,该第三消息可以理解为第二消息的响应消息。针对第二消息包括不同的信息种类,该第三消息对应包括不同的信息种类。
可选地,该第二消息是辅节点修改请求消息(S-Node modification request),该第三消息是辅节点修改请求确认消息(S-Node modification request acknowldege)。
以下将针对Scell数、MIMO layer数和聚合带宽三种不同的通信参数,介绍本申请实施例中第二消息、第三消息的不同内容。
情况一:Scell数
在一种可能的实现方式中,该第二消息还包括频段组合列表,该频段组合列表包括该第二网络设备 为该终端设备配置的至少一个频段组合。
应理解,该频段组合(band combination)列表中每一个频段组合用于指示SN可以或者被允许临时为终端设备配置的频段。如果终端设备上报的过热辅助信息中包含终端设备期望的临时配置的最大Scell数,在该第二消息中可以包含该频段组合列表。
示例性的,终端设备在不过热的情况下,最大可支持基站配置的(P)Scell数为10个,当终端设备发生过热问题时,在过热辅助信息中上向MN上报当前所期望配置的Scell数为8个。MN可以根据终端设备上报的8确定SN可以为终端设备配置的Scell数为2个、4个或者6个,MN将对应(P)Scell数2、4和6的频段组合列表通过该第二消息通知SN。SN可以从该频段组合列表中选择一个频段组合。SN将按照所选择的频段组合为终端设备配置PSCell和SCell。
当第二消息包括频段组合列表时,SN向MN发送的第三消息可以包括SN选择为终端设备配置的频段组合。MN根据SN选择的频段组合,可以确定自己可以为终端设备配置的频段组合。MN将按照自己所选择的频段组合为终端设备配置SCell。
在另一种可能的实现方式中,该第二消息还包括第一信息,该第一信息用于指示SN为该终端设备配置的最大上行辅小区数和/或最大下行辅小区数。或者说,该第一信息用于指示SN可以或者被允许为该终端设备配置的最大上行辅小区数和/或最大下行辅小区数的集合。特殊的,该集合中可以只包括一个值。
示例性的,当终端设备发生过热问题时,在过热辅助信息中上向MN上报当前所期望配置的最大上行Scell数为8个。MN可以根据终端设备上报的8确定SN可以为终端设备配置的最大上行Scell数为4个,MN将SN可以为终端设备配置的最大上行Scell数为4个通过该第二消息通知SN。SN接收到该第二消息后,按照MN的指示,为终端设备配置的上行PSCell和Scell的个数的总和不能超过4个。这里第一信息可以指示4个Scell。
当第二消息包括上述介绍的第一信息时,SN向MN发送的第三消息可以包括SN选择为终端设备配置的Scell数4。
在另一种可能的实现方式中,该第二消息还包括第二信息,该第二信息用于指示该终端设备在该第一过热辅助信息中上报的最大上行辅小区数和/或最大下行辅小区数。
示例性的,当终端设备发生过热问题时,在过热辅助信息中向MN上报当前所期望配置的最大上行Scell数为8个。MN可以确定自己希望为终端设备配置的最大上行SCell数,例如5个,这样SN被允许为终端设备配置的最大上行PSCell和SCell的个数为3个MN可以将终端设备上报的8以及允许SN为终端设备配置的最大个数3通过该第二消息通知SN。SN收到上述两个数值后,SN可以遵循MN的决定,即最多为终端设备配置3个上行SCell,也可以根据终端设备期望配置的最大上行SCell数,自己确定可以为终端设备配置的最大上行SCell数,例如5个。
可选地,MN确定终端设备发生过热问题时,可以在该第二消息包括第六信息,该第六信息用于指示该终端设备发生过热问题。
示例性的,当终端设备发生过热问题时,MN将包括的指示终端设备发生过热问题的信息告诉SN,SN就可以知道当前终端设备发生过热问题。从而当MN向SN发送可配置的Scell数时,SN就可以直接按照MN发送的Scell数进行配置,不会另外申请其他的Scell数,避免了MN和SN之间多余的信息交互,就可以解决现有的终端设备的过热问题。
可选地,MN确定终端设备的过热问题已经解决时,可以在该第二消息中还包括第七信息,该第七信息用于指示该终端设备过热问题解决。
同理,当终端设备过热问题解决后,MN将包括的指示终端设备发生过热问题已经解决的信息告诉SN,SN就可以知道当前终端设备过热问题已经解决。从而SN可以按照MN发送的Scell数进行配置,或者申请其他的Scell数为终端设备配置Scell,又或者按照终端设备不过热时支持的最大能力为终端设备配置Scell。
当第二消息包括第一信息,并且第一信息中指示的SN可以或者被允许为该终端设备配置的最大上行辅小区数和/或最大下行辅小区数的集合中的值的个数大于1个时,SN向MN发送的第三消息可以包括SN从上述集合中选择为终端设备配置的最大上行辅小区数和/或最大下行辅小区数。
当第二消息包括第一信息和第二信息,并且第一信息中指示的SN可以或者被允许为该终端设备配置的最大上行辅小区数和/或最大下行辅小区数的集合中的值的个数大于1个时,SN向MN发送的第三消息可以包括SN从上述集合中选择为终端设备配置的最大上行辅小区数和/或最大下行辅小区数;SN向MN发送的第三消息还可以包括SN根据第二信息确定的向MN请求为终端设备配置的最大上行辅小区数和/或最大下行辅小区数。该请求的最大上行辅小区数和/或最大下行辅小区数不包含在上述集合中。
当第二消息中包括频段组合列表,并且该列表中包含的频段组合的个数大于1个时,SN向MN发送的第三消息可以包括SN从上述频段组合列表中选择的频段组合。
当第二消息中包括频段组合列表和第二信息,并且该列表中包含的频段组合的个数大于1个时,SN向MN发送的第三消息可以包括SN从上述频段组合列表中选择的频段组合,SN向MN发送的第三消息还可以包括SN根据第二信息确定的向MN请求的频段组合。该请求的频段组合不包含在上述频段组合列表中。
情况二:MIMO layer数
在一种可能的实现方式中,该第二消息还包括第三信息,该第三信息用于指示在不同频率范围的服务小区上,该终端设备期望配置的最大上行MIMO layer数和/或最大下行MIMO layer数。
示例性的,终端设备在不过热的情况下,最大可支持基站配置的最大上行MIMO layer数为6,当终端设备发生过热问题时,在过热辅助信息中上向MN上报,当前在FR1上的服务小区上,终端设备所期望配置的最大上行MIMO layer数为4。MN可以通过该第二消息的第三信息通知SN,为终端设备配置的FR1上的服务小区上的最大上行MIMO layer数为4。
应理解,在这种情况下,MN发送给SN的最大MIMO layer数就为终端设备上报的最大MIMO layer数。因此,该第二消息就可以包含终端设备上报的所期望配置的MIMO layer数。可选的,MN和SN为终端设备配置的最大MIMO layer相等,或者第二消息中包含的终端设备上报的所期望配置的MIMO layer数为终端设备期望SN配置的SCG的服务小区上的最大MIMO layer数。此时,第三消息可以包括该最大MIMO layer数,也可以不包括该最大MIMO layer数,本申请对此不做限定。
在另一种可能的实现方式中,该第三信息还用于指示在不同频率范围的服务小区上,该第二网络设备为该终端设备配置的最大上行MIMO layer数和最大下行MIMO layer数不受限制。
或者,第三信息中的一个值还用于指示该终端设备的过热问题已经解决,或者终端设备不再期望降低功耗,第二网络设备可以给该终端设备配置的最大上行MIMO layer数和最大下行MIMO layer数不再有之前终端设备发生过热问题或者期望降低功耗时,第一网络设备通知第二网络设备可以为配置的最大上行MIMO layer数和最大下行MIMO layer数的限制。
示例性的,当MN收到终端设备上报的带有过热辅助信息或者用于降低功耗的辅助信息的第一消息后,MN发起SN修改过程。MN向SN发送S-Node modification request消息。如果终端设备上报的过热辅助信息中或者用于降低功耗的辅助信息中包含终端设备期望的FR1上的服务小区上临时配置的最 大MIMO layer数,在S-Node modification request消息中可以包含第三信息。可选地,并且第三信息的取值为终端设备在过热辅助信息或者用于降低功耗的辅助信息中上报的对应的MIMO layer值。
其中,终端设备期望的FR1上的服务小区上临时配置的最大MIMO layer数,具体包括:(1)终端设备期望的FR1上的服务小区上临时配置的最大上行MIMO layer数;其中,第一值用于指示终端设备在FR1上的服务小区上可以被配置的上行最大MIMO layer数没有限制,即和终端设备在终端设备能力上报消息中上报的终端设备能支持的最大上行MIMO layer数相同。
或者,该第一值还用于指示该终端设备的过热问题已经解决,或者该终端设备不再期望降低功耗,SN可以给该终端设备配置的FR1上的服务小区上的最大上行MIMO layer数不再有之前终端设备发生过热问题或者期望降低功耗时,MN通知SN可以为终端设备配置的FR1上的服务小区上的最大上行MIMO layer数的限制。
(2)终端设备期望的FR1上的服务小区上临时配置的最大下行MIMO layer数;其中,第一值用于指示终端设备在FR1上的服务小区上可以被配置的下行最大MIMO layer数没有限制,即和终端设备在终端设备能力上报消息中上报的终端设备能支持的最大上行MIMO layer数相同。
或者,该第一值还用于指示该终端设备的过热问题已经解决或者该终端设备不再期望降低功耗,SN可以给该终端设备配置的FR1上的服务小区上的最大下行MIMO layer数不再有之前终端设备发生过热问题或者期望降低功耗时,MN通知SN可以为终端设备配置的FR1上的服务小区上的最大下行MIMO layer数的限制。
同理,终端设备期望的FR2上的服务小区上临时配置的最大MIMO layer数,具体包括:(1)终端设备期望的FR2上的服务小区上临时配置的最大上行MIMO layer数;其中,第一值用于指示终端设备在FR2上的服务小区上可以被配置的上行最大MIMO layer数没有限制,即和终端设备在终端设备能力上报消息中上报的终端设备能支持的最大上行MIMO layer数相同。
或者,该第一值还用于指示该终端设备的过热问题已经解决或者该终端设备不再期望降低功耗,SN可以给该终端设备配置的FR2上的服务小区上的最大上行MIMO layer数不再有之前终端设备发生过热问题或者期望降低功耗时,MN通知SN可以为终端设备配置的FR2上的服务小区上的最大上行MIMO layer数的限制。
(2)终端设备期望的FR2上的服务小区上临时配置的最大下行MIMO layer数;其中,第一值用于指示终端设备在FR2上的服务小区上可以被配置的下行最大MIMO layer数没有限制,即和终端设备在终端设备能力上报消息中上报的终端设备能支持的最大上行MIMO layer数相同。
或者,该第一值还用于指示该终端设备的过热问题已经解决或者该终端设备不再期望降低功耗,SN可以给该终端设备配置的FR2上的服务小区上的最大下行MIMO layer数不再有之前终端设备发生过热问题或者期望降低功耗时,MN通知SN可以为终端设备配置的FR2上的服务小区上的最大下行MIMO layer数的限制。
可选地,这里第一值可以通过信息比特值的形式进行体现,或者在第三信息中携带一个“no restriction”的指示信息,用于指示终端设备在不同频率的服务小区上,可以被配置的最大MIMO layer数没有限制,本申请对此不作限定。
可选地,该第二消息还包括第六信息,该第六信息用于指示该终端设备发生过热问题或者该终端设备期望降低功耗。
可选地,该第二消息还包括第七信息,该第七信息用于指示该终端设备过热问题解决或者该终端设备不再期望降低功耗。
情况三:聚合带宽
在一种可能的实现方式中,该第二消息还包括第四信息,该第四信息用于指示在不同频率范围内,该第二网络设备为该终端设备配置的上行载波的最大聚合带宽列表和/或下行载波的最大聚合带宽列表,该最大聚合带宽列表包括至少一个聚合带宽值。
示例性的,当MN收到终端设备上报的带有过热辅助信息或者用于降低功耗的辅助信息的第一消息后,MN发起SN修改过程。MN向SN发送S-Node modification request消息。如果终端设备上报的过热辅助信息中或者用于降低功耗的辅助信息中包含终端设备期望的临时配置的FR1上的载波的最大聚合带宽,在S-Node modification request消息中包含第四信息,具体包括:
(1)SN可以或者被允许临时为终端设备配置的所有FR1上的上行载波的最大聚合带宽值的列表。
可选地,该最大聚合带宽值的列表中可以只包含一个值。
(2)SN可以或者被允许临时为终端设备配置的所有FR1上的下行载波的最大聚合带宽值的列表。
可选地,该最大聚合带宽值的列表中可以只包含一个值。
如果终端设备上报的过热辅助信息中或者用于降低功耗的辅助信息中包含终端设备期望的临时配置的FR2上的载波的最大聚合带宽,在S-Node modification request消息中包含第四信息,具体包括:
(1)SN可以或者被允许临时为UE配置的所有FR2上的上行载波的最大聚合带宽值的列表。
可选地,该最大聚合带宽值的列表中可以只包含一个值。
(2)SN可以或者被允许临时为UE配置的所有FR2上的下行载波的最大聚合带宽值的列表。
可选地,该最大聚合带宽值的列表中可以只包含一个值。
示例性的,终端设备在不过热的情况下,可支持基站配置的FR1上的上行载波的最大聚合带宽为200M,当终端设备发生过热问题时,在过热辅助信息中上向MN上报当前所期望配置的最大聚合带宽为100M。MN可以根据终端设备上报的100M选择让SN可以为终端设备配置的FR1上的上行载波的最大聚合带宽为10M、20M、40M和80M。10M、20M、40M和80M可以理解为最大聚合带宽列表。MN将最大聚合带宽列表通过该第二消息通知SN。SN可以从10M、20M、40M和80M中选择20M,即SN决定为终端设备配置的FR1上的上行载波的最大聚合带宽为20M。
当第二消息包括最大聚合带宽列表时,SN向MN发送的第三消息可以包括SN选择为终端设备配置的FR1上的上行载波的最大聚合带宽20M。MN收到SN为终端设备配置的聚合带宽20M时,MN就知道可以为终端设备配置的FR1上的上行载波的最大聚合带宽为100M-20M=80M。
在另一种可能的实现方式中,该第四信息还用于指示在不同频率范围内,该第二网络设备为该终端设备配置的上行载波的最大聚合带宽值和下行载波的最大聚合带宽值不受限制。
或者,第四信息中的第一值还用于指示该终端设备的过热问题已经解决或者该终端设备不再期望降低功耗,SN可以给该终端设备配置的最大聚合带宽数不再有之前终端设备发生过热问题时该终端设备期望降低功耗时,MN通知SN可以为终端设备配置的最大聚合带宽数的限制。
示例性的,当MN收到终端设备上报的带有过热辅助信息或者用于降低功耗的辅助信息的第一消息后,MN发起SN修改过程。MN向SN发送S-Node modification request消息。如果终端设备上报的过热辅助信息或者用于降低功耗的辅助信息中包含终端设备期望的临时配置的FR1上的载波的最大聚合带宽,在S-Node modification request消息中包含第四信息;并且第四信息的取值为除上述第一值之外的值。其中,SN可以或者被允许为终端设备临时配置的所有FR1上的载波的最大聚合带宽,具体包括:
(1)SN可以或者被允许临时为终端设备配置的所有FR1上的上行载波的最大聚合带宽值的列表。
可选地,该最大聚合带宽值的列表中可以只包含一个值。
其中,第一值用于指示终端设备可以被配置的FR1上的上行载波的最大聚合带宽值没有限制。
或者,第一值还用于指示该终端设备的过热问题已经解决,SN可以给该终端设备配置的FR1上的上行载波的最大聚合带宽数不再有之前终端设备发生过热问题时,MN通知SN可以为终端设备配置的FR1上的上行载波最大聚合带宽数的限制。
(2)SN可以或者被允许临时为终端设备配置的所有FR1上的下行载波的最大聚合带宽的列表。
可选地,该最大聚合带宽值的列表中可以只包含一个值。
其中,第一值用于指示终端设备可以被配置的FR1上的下行载波的最大聚合带宽值没有限制。
或者,第一值还用于指示该终端设备的过热问题已经解决或者该终端设备不再期望降低功耗,SN可以给该终端设备配置的FR1上的下行载波的最大聚合带宽数不再有之前终端设备发生过热问题时或者该终端设备期望降低功耗时,MN通知SN可以为终端设备配置的FR1上的下行载波最大聚合带宽数的限制。
如果终端设备上报的过热辅助信息中或者用于降低功耗的辅助信息中包含终端设备期望的临时配置的FR2上的载波的最大聚合带宽,在S-Node modification request消息中包含第四信息;并且第四信息的取值为除上述第一值之外的值。其中,SN可以或者被允许为终端设备临时配置的所有FR1上的载波的最大聚合带宽,具体包括:
(1)SN可以或者被允许临时为终端设备配置的所有FR2上的上行载波的最大聚合带宽值的列表。
可选地,该最大聚合带宽值的列表中可以只包含一个值。
其中,第一值用于指示终端设备可以被配置的FR2上的上行载波的最大聚合带宽值没有限制。
或者,第一值还用于指示该终端设备的过热问题已经解决或者该终端设备不再期望降低功耗,SN可以给该终端设备配置的FR2上的上行载波的最大聚合带宽数不再有之前终端设备发生过热问题时或者该终端设备期望降低功耗时,MN通知SN可以为终端设备配置的FR2上的上行载波最大聚合带宽数的限制。
(2)SN可以或者被允许临时为终端设备配置的所有FR2上的下行载波的最大聚合带宽值的列表。
可选地,该最大聚合带宽值的列表中可以只包含一个值。
其中,第一值用于指示终端设备可以被配置的FR2上的下行载波的最大聚合带宽值没有限制。
或者,第一值还用于指示该终端设备的过热问题已经解决或者该终端设备不再期望降低功耗,SN可以给该终端设备配置的FR2上的下行载波的最大聚合带宽数不再有之前终端设备发生过热问题或者该终端设备期望降低功耗时,MN通知SN可以为终端设备配置的FR2上的下行载波最大聚合带宽数的限制。
可选地,以上介绍的第一值也可以通过信息比特值的形式进行体现,或者在第四信息中携带一个“no restriction”的指示信息,用于指示终端设备在不同频率上,可以被配置的最大聚合带宽值没有限制,本申请对此不作限定。
在另一种可能的实现方式中,该第二消息还包括第五信息,该第五信息用于指示该终端设备在该第一过热辅助信息中或者用于降低功耗的辅助信息中上报的最大聚合带宽值。该最大聚合带宽值可以是终端设备期望SN配置的载波的最大聚合带宽值;或者也可以是终端设备期望MN配置的载波和SN配置的载波的聚合带宽的和的最大值。
如果终端设备上报的过热辅助信息中包含终端设备期望的临时配置的FR1上的上行载波和/或下行载波的最大聚合带宽,S-Node modification request消息中第三信息还可以包括终端设备期望的临时 配置的所有FR1上的上行载波的最大聚合带宽值和/或下行载波的最大聚合带宽值。
如果终端设备上报的过热辅助信息中或者用于降低功耗的辅助信息中包含终端设备期望的临时配置的FR2上的上行载波和/或下行载波的最大聚合带宽,S-Node modification request消息中第三信息还可以包括终端设备期望的临时配置的所有FR2上的上行载波的最大聚合带宽值和/或下行载波的最大聚合带宽值。
示例性的,当终端设备发生过热问题时,在过热辅助信息中向MN上报当前所期望配置的FR1上的上行载波最大聚合带宽100M。MN可以通过该第二消息中的第五信息通知SN,终端设备当前所期望配置的FR1上的上行载波最大聚合带宽100M。SN可以为终端设备配置小于等于100M的聚合带宽,例如80M。
可选地,该第二消息还包括第六信息,该第六信息用于指示该终端设备发生过热问题或者终端设备期望降低功耗。
示例性的,当终端设备发生过热问题时,MN将包括的指示终端设备发生过热问题的信息告诉SN,SN就可以知道当前终端设备发生过热问题。从而当MN向SN发送可配置的最大聚合带宽时,SN就可以直接按照MN发送的最大聚合带宽进行配置,不会另外申请其他的最大聚合带宽,避免了MN和SN之间多余的信息交互,就可以解决现有的终端设备的过热问题。
可选地,该第二消息还包括第七信息,该第七信息用于指示该终端设备过热问题解决或者终端设备不再期望降低功耗。
同理,当终端设备过热问题解决后,MN将包括的指示终端设备发生过热问题已经解决的信息告诉SN,SN就可以知道当前终端设备过热问题已经解决。从而SN可以按照MN发送的最大聚合带宽进行配置,或者申请其他的最大聚合带宽为终端设备配置聚合带宽,又或者按照终端设备不过热时支持的最大能力为终端设备配置聚合带宽。
当第二消息包括第四信息,并且第四信息中指示的SN可以或者被允许为该终端设备配置的FR1上的上行载波最大聚合带宽列表中的值的个数大于1个时,SN向MN发送的第三消息可以包括SN从上述列表中选择为终端设备配置的FR1上的上行载波最大聚合带宽。
当第二消息包括第四信息,并且第四信息中指示的SN可以或者被允许为该终端设备配置的FR1上的下行载波最大聚合带宽列表中的值的个数大于1个时,SN向MN发送的第三消息可以包括SN从上述列表中选择为终端设备配置的FR1上的下行载波最大聚合带宽。
当第二消息包括第四信息,并且第四信息中指示的SN可以或者被允许为该终端设备配置的FR2上的上行载波最大聚合带宽列表中的值的个数大于1个时,SN向MN发送的第三消息可以包括SN从上述列表中选择为终端设备配置的FR2上的上行载波最大聚合带宽。
当第二消息包括第四信息,并且第四信息中指示的SN可以或者被允许为该终端设备配置的FR2上的下行载波最大聚合带宽列表中的值的个数大于1个时,SN向MN发送的第三消息可以包括SN从上述列表中选择为终端设备配置的FR2上的下行载波最大聚合带宽。
当第二消息包括第四信息和第五信息,并且第四信息中指示的SN可以或者被允许为该终端设备配置的FR1上的上行载波最大聚合带宽列表中的值的个数大于1个时,SN向MN发送的第三消息可以包括SN从上述列表中选择为终端设备配置的FR1上的下行载波最大聚合带宽;SN向MN发送的第三消息还可以包括SN根据第五信息确定的向MN请求为终端设备配置的FR1上的上行载波最大聚合带宽。该请求的FR1上的上行载波最大聚合带宽不包含在上述列表中。
当第二消息包括第四信息和第五信息,并且第四信息中指示的SN可以或者被允许为该终端设备配置的FR1上的下行载波最大聚合带宽列表中的值的个数大于1个时,SN向MN发送的第三消息可以包括 SN从上述列表中选择为终端设备配置的FR1上的下行载波最大聚合带宽;SN向MN发送的第三消息还可以包括SN根据第五信息确定的向MN请求为终端设备配置的FR1上的下行载波最大聚合带宽。该请求的FR1上的下行载波最大聚合带宽不包含在上述列表中。
当第二消息包括第四信息和第五信息,并且第四信息中指示的SN可以或者被允许为该终端设备配置的FR2上的上行载波最大聚合带宽列表中的值的个数大于1个时,SN向MN发送的第三消息可以包括SN从上述列表中选择为终端设备配置的FR2上的下行载波最大聚合带宽;SN向MN发送的第三消息还可以包括SN根据第五信息确定的向MN请求为终端设备配置的FR2上的上行载波最大聚合带宽。该请求的FR2上的上行载波最大聚合带宽不包含在上述列表中。
当第二消息包括第四信息和第五信息,并且第四信息中指示的SN可以或者被允许为该终端设备配置的FR2上的下行载波最大聚合带宽列表中的值的个数大于1个时,SN向MN发送的第三消息可以包括SN从上述列表中选择为终端设备配置的FR2上的下行载波最大聚合带宽;SN向MN发送的第三消息还可以包括SN根据第五信息确定的向MN请求为终端设备配置的FR2上的下行载波最大聚合带宽。该请求的FR2上的下行载波最大聚合带宽不包含在上述列表中。
以上通过不同的情况介绍了针对不同通信参数的类型,第二消息中可以包括的信息种类,以及第三消息的信息种类。
应理解,针对图2列举的多种MR-DC场景中,终端设备向MN上报的过热辅助信息中都可以包括最大Scell数、最大MIMO layer数和最大聚合带宽中的至少一种。因此,对于MR-DC场景,MN向SN发送的第二消息(辅节点修改请求消息)中可以包括最大上行辅小区数、最大下行辅小区数、最大上行MIMO layer数、最大下行MIMO layer数、最大上行聚合带宽、最大下行聚合带宽中的至少一种。
在另一种可能的实现方式中,当该终端设备发生过热问题或者终端设备期望降低功耗时,该第二消息还包括第二过热辅助信息或者用于降低功耗的辅助信息,该第二过热辅助信息中或者用于降低功耗的辅助信息中包括该第一信息,第二信息,第三信息,第四信息和第五信息中的至少一项,当该终端设备过热问题解决或者终端设备不再期望降低功耗时,该第二过热辅助信息中或者用于降低功耗的辅助信息中不包含任何信息。
应理解,这里的第二过热辅助信息不同于前述的第一辅助信息。
此外,当终端设备过热问题解决或者终端设备不再期望降低功耗时,该第二过热辅助信息中或者用于降低功耗的辅助信息中可以不包括任何信息内容,也可以仅包括第七信息,即用于通知SN,终端设备的过热问题已经解决或者该终端设备不再期望降低功耗。
下面对于上述列举的各种信息,可以承载在第二消息(辅节点修改请求消息)中不同的信元中。
在一种可能的实现方式中,上述介绍的第一信息,第二信息,第三信息、第四信息、第五信息、第二过热辅助信息,用于降低功耗的辅助信息可以包含在信元ConfigRestrctInfoSCG中。
在另外一种可能的实现方式中,上述介绍的第一信息,第二信息,第三信息、第四信息、第五信息、第二过热辅助信息,用于降低功耗的辅助信息可以包含在信元MRDC-assistanceInfo中。在一种可能的实现方式中,上述的第六信息和第七信息可以通过以下几种方式包含在以下任意一种信元中:
1、包含在ConfigRestrctInfoSCG或者MRDC-assistanceInfo中
可选地,当第二消息包括频段组合列表时,第六信息是MN通知SN发送频段组合列表的原因是由于终端设备发生过热问题,或者是由于终端设备期望降低功耗;或者,第六信息是MN通知SN发送ConfigRestrictInfoSCG的原因是由于终端设备发生过热问题,后者是由于终端设备期望降低功耗。
2、包含在CG-ConfigInfo中
3、直接包含在S-Node modification request消息中
具体地,在现有的S-Node modification request消息中包含的cause中增加两个值来分别指示MN发送S-Node modification request消息或者MN发起SN修改过程的原因是终端设备发生过热问题或者终端设备过热问题已经解决,或者用于指示MN发送S-Node modification request消息或者MN发起SN修改过程的原因是终端设备期望降低功耗或者不再期望降低功耗。
通过上述技术方案,在双连接的网络架构中,对于主节点设备(MN)和辅节点设备(SN),当终端设备发生过热问题时或者当终端设备期望降低功耗时,MN可以向SN通知终端设备发生过热问题或者终端设备期望降低功耗,或者向SN提供MN确定的用于解决终端设备过热问题或者降低终端设备功耗的辅助信息。该辅助信息可以包括MN指示SN可以或者被允许为终端设备配置的通信参数,或者该辅助信息可以包括终端设备上报的用于解决过热问题或者用于降低功耗的通信参数。使得SN可以从MN提供的辅助信息中,选择用于解决终端设备过热问题或者降低终端设备功耗的通信参数,从而为终端设备配置通信参数。当终端设备工作于MR-DC场景下发生过热问题或者终端设备期望降低功耗时,能够让SN为终端设备配置合适最大MIMO layer数、最大SCell数目或者最大聚合带宽以帮助终端设备缓解过热问题或者帮助终端设备降低功耗。当终端设备过热问题解决或者终端设备不再期望降低功耗时,MN还可以向SN通知终端设备过热问题已经解决或者终端设备不再期望降低功耗,并可以恢复终端设备所支持的最大能力的配置或者终端设备原来和MN、SN连接时的配置。
以上针对MN和SN组成的接入网架构,介绍了本申请提供的一种传输信息的方法,在5G中,引入了一种新的接入网架构,把5G的基站(NR gNB)分为中心单元(central unit,CU)和分布单元(distributed unit,DU)。接入网的控制面协议层(radio resource control,RRC)位于中心单元。接入网的用户面协议层中分组数据汇聚协议(packet data convergence protocol,PDCP)层位于中心单元,其余协议层包括无线链路控制(radio link control,RLC)层,媒体接入控制(media access control,MAC)层和物理层(physical layer,Phy)位于分布单元。其网络架构如图5中的(a)图所示。
对于图5中的(b)图所示CU-DU的架构下,终端设备和主节点设备(主基站)的通信过程中,终端设备需要的通信参数可以由CU进行配置,由DU进行调度;或者由DU进行配置。
当终端设备在CU-DU架构的接入网下发生过热问题后,终端设备可以向主基站上报带有过热辅助信元的过热消息,即终端设备可以向CU上报带有过热辅助信元的过热消息。当CU收到终端设备上报的终端设备所支持的临时配置的最大MIMO layer数后,会有以下两种可能的情况:
(1)如果由CU为终端设备配置在每个服务小区上的最大MIMO layer数,那么CU重配了最大MIMO layer数,DU也需要知道,否则DU在为终端设备调度数据传输时会出现问题。
(2)如果由DU为终端设备配置在每个服务小区上的所用的最大MIMO layer数,那么为了解决终端设备的过热问题,需要让DU知道终端设备所支持的临时配置的最大MIMO layer数。
综上所述,无论是上述哪种情况,因为终端设备上报的过热信息是RRC消息,该、因为DU没有对应的RRC层,无法获取该过热消息中包括的信息内容,使得DU都无法获取到对应的信息。使得DU不能终端设备所期望的最大MIMO layer数,为终端设备配置,不能解决终端设备的过热问题。
为了解决终端设备的过热问题,本申请还提出一种传输信息的方法,通过在网络设备的CU和DU之间的信息交互,使得DU能够知道终端设备发生过热问题,进而为终端设备配置合适的最大MIMO layer,或者能够按照终端设备支持的最大MIMO layer数来为终端设备调度上行和/或下行的数据传输。
图6是本申请实施例提供的一例传输信息的方法600的示意性交互图。下面,对方法600的每个步骤进行详细说明。
应理解,在本申请实施例中,以终端设备、CU和DU作为执行方法600的执行主体为例,对方法600进行说明。作为示例而非限定,执行方法600的执行主体也可以是应用于终端设备的芯片和应用于CU、DU的芯片。
S601,终端设备确定出现过热。
S602,终端设备向CU发送第一消息,所述第一消息包括过热辅助信息,所述过热辅助信息用于指示所述终端设备是否过热。
可选地,该第一消息是终端设备向CU发送的过热消息(带有过热辅助信息的UE assistance information)。当该过热消息中包括过热辅助信息,过热辅助信息可以包括该终端设备期望临时配置的最大MIMO layer数,该最大MIMO layer数是可以解决终端设备过热问题的参数配置。
应理解,终端设备在和基站建立连接时,会向基站上报正常状态下的最大能力,终端设备在过热情况下上报的通信参数小于正常状态下的最大能力对应的通信参数。
例如,终端设备正常状态下上报的支持的最大MIMO layer数为4层,即CU为终端设备配置的最大MIMO layer数都为4层。当终端设备出现过热时,终端设备向CU发送的过热辅助信息中指示当前终端设备期望的临时配置最大MIMO layer数为2层,这样当CU为终端设备重配了最大MIMO layer数为2后,DU也需要知道,才可以解决终端设备的过热问题。
S603,CU接收终端设备发送的第一消息,根据所述第一消息包括的过热辅助信息,确定第二消息。
应理解,该第二消息用于指示DU调整为所述终端设备配置的通信参数,该通信参数包括上行和/或下行MIMO layer数。
S604,CU向DU发送第二消息。相应地,DU接收CU发送的第二消息。
S605,DU根据CU发送的第二消息确定可以为所述终端设备配置或者调度的最大MIMO layer数,并根据该最大MIMO layer数确定第三消息。
S606,SN向MN发送所述第三消息。相应地,CU接收DU发送的第三消息,所述第三消息是所述第二消息的响应消息。
应理解,在S602中,介绍了当终端设备出现过热时,会在过热辅助信息中携带当前支持的通信参数。当终端设备过热问题解决时,该过热辅助信息中不包括任何信息。因此,CU可以根据过热辅助信息中是否携带信息来判断终端设备当前是否过热。
在一种可能的实现方式中,该第一消息是终端设备上下文修改请求消息(UE context modification request),所述第二消息是终端设备上下文修改响应消息(UE context modification response)。
在一种可能的实现方式中,该第二消息包括所述过热辅助信息,所述过热辅助信息中包括第一信息,所述第一信息用于指示所述终端设备期望配置的不同频率范围的服务小区上的最大上行MIMO layer数和/或最大下行MIMO layer数。示例性的,终端设备在不过热的情况下,最大可支持DU配置的最大MIMO layer数为8,当终端设备发生过热问题时,在过热辅助信息中上向CU上报,当前在FR1上的服务小区上,终端设备所期望配置的MIMO layer数为4。当CU收到终端设备上报的带有终端设备过热消息后,CU发起终端设备上下文修改过程。CU向DU发送UE context modification request消息。
如果终端设备上报的过热辅助信息中包含终端设备期望的FR1上的服务小区上临时配置的最大MIMO layer数,并且CU确定为终端设备重配终端设备在FR1上的服务小区上所用的上行最大MIMO layer数和/或下行最大MIMO layer数,CU在UE context modification request消息中包含为终端设备配置的在FR1上的每个服务小区上所用的上行最大MIMO layer数和/或下行最大MIMO layer数。
如果终端设备上报的过热辅助信息中包含终端设备期望的FR2上的服务小区上临时配置的最大 MIMO layer数,并且CU确定为终端设备重配终端设备在FR2上的服务小区上所用的上行最大MIMO layer数和/或下行最大MIMO layer数,CU在UE context modification request消息中包含为终端设备配置的在FR2上的每个服务小区上所用的上行最大MIMO layer数和/或下行最大MIMO layer数。
如果终端设备上报的过热辅助信息中不包含任何信息,并且CU确定为终端设备重配终端设备在FR1上的服务小区上所用的上行最大MIMO layer数和/或下行最大MIMO layer数,CU在UE context modification request消息中包含为终端设备配置的在FR1上的每个服务小区上所用的上行最大MIMO layer数和/或下行最大MIMO layer数。
如果终端设备上报的过热辅助信息中不包含任何信息,并且CU确定为终端设备重配终端设备在FR2上的服务小区上所用的上行最大MIMO layer数和/或下行最大MIMO layer数,CU在UE context modification request消息中包含为终端设备配置的在FR2上的每个服务小区上所用的上行最大MIMO layer数和/或下行最大MIMO layer数。
可选的,上述信息可以包含在CU向DU发送的RRC信元(RRC information)中。其中,CU需要为终端设备重配在每个服务小区上所用的上行最大MIMO layer数和/或下行最大MIMO layer数的原因或者触发条件可以包括:
(1)CU收到UE上报的带有过热辅助信息的过热消息;
(2)在EN-DC配置下,CU收到MN发送的终端设备过热的辅助信息。
应理解,以上介绍的终端设备过热辅助信息可以承载在上下文修改请求消息中新增加的信元上,本申请对此不做限定。
还应理解,在这种情况下,CU发送给DU的最大MIMO layer数就为终端设备上报的最大MIMO layer数。因此,该第二消息就可以包含终端设备上报的所期望配置的MIMO layer数,CU和DU为终端设备配置的最大MIMO layer相等。此时,第三消息可以包括该最大MIMO layer数,也可以不包括该最大MIMO layer数,本申请对此不做限定。
在一种可能的实现方式中,该所述第二消息包括所述过热辅助信息,所述过热辅助信息中不包括任何信息。在一种可能的实现方式中,该第二消息中包括第二信息,所述第二信息用于指示所述分布单元为所述终端设备配置的不同频率范围的服务小区上的最大上行MIMO layer数和/或最大下行MIMO layer数。
当CU收到终端设备上报的过热消息后,CU发起终端设备上下文修改过程。CU向DU发送UE context modification request消息。
如果终端设备上报的过热辅助信息中包含终端设备期望的FR1上的服务小区上临时配置的最大MIMO layer数,在UE context modification request消息中包含以下信息:
(1)终端设备期望的FR1上的服务小区上临时配置的最大上行MIMO layer数;其中,第一值用于指示终端设备在FR1上的服务小区上可以被配置的上行最大MIMO layer数没有限制,即和终端设备在终端设备能力上报消息中上报的终端设备能支持的最大上行MIMO layer数相同。
(2)终端设备prefer的FR1上的服务小区上临时配置的最大下行MIMO layer数;其中,第一值用于指示终端设备在FR1上的服务小区上可以被配置的下行最大MIMO layer数没有限制,即和终端设备在终端设备能力上报消息中上报的终端设备能支持的最大上行MIMO layer数相同。
可选地,以上列举的第二信息的取值为终端设备在过热辅助信息上报的对应的值。
如果终端设备上报的过热辅助信息中包含终端设备prefer的FR2上的服务小区上临时配置的最大MIMO layer数,在UE context modification request消息中包含以下信息:
(1)终端设备prefer的FR2上的服务小区上临时配置的最大上行MIMO layer数;其中,第一值用于指示终端设备在FR2上的服务小区上可以被配置的上行最大MIMO layer数没有限制,即和终端设备在终端设备能力上报消息中上报的终端设备能支持的最大上行MIMO layer数相同。
(2)终端设备prefer的FR2上的服务小区上临时配置的最大下行MIMO layer数;其中,第一值用于指示终端设备在FR2上的服务小区上可以被配置的下行最大MIMO layer数没有限制,即和终端设备在终端设备能力上报消息中上报的终端设备能支持的最大上行MIMO layer数相同。
可选地,以上列举的第二信息的取值为终端设备在过热辅助信息上报的对应的值。
如果终端设备上报的过热辅助信息中不包含任何信息,在UE context modification request消息中包含以上列举的第二信息中的一项或多项中的第一值。
在一种可能的实现方式中,该第二消息中包括第二信息,所述第二信息为终端设备上报的带有过热辅助信息的UE Assistance Information。
当CU收到终端设备上报的带有过热消息后,CU发起终端设备上下文修改过程。CU向DU发送UE context modification request消息。在UE context modification request消息中包含带有过热辅助信息的UE assistance information:
DU接收到CU发送的UE context modification request消息后,给CU回复UE context modification response消息。在UE context modification response消息中包含如下可选的信息:
(1)DU为终端设备配置的每个服务小区上的上行最大MIMO layer数;
(2)DU为终端设备配置的每个服务小区上的下行最大MIMO layer数。
通过上述技术方案,当终端设备在CU-DU网络下发生过热问题时,CU收到终端设备上报的过热消息后,CU可以为终端设备重配最大MIMO layer数。同时,能够让DU知道当前CU为终端设备配置的最大MIMO layer数,从而为终端设备调度的数据传输时,保证为终端设备配置的最大MIMO layer数不超过CU为终端设备配置的最大MIMO layer数,从而解决终端设备的过热问题。
以上结合图2至图6对本申请实施例的反馈信息的传输方法做了详细说明。以下,结合图7至图10对本申请实施例的反馈信息的传输装置进行详细说明。
图7示出了本申请实施例的通信装置700的示意性框图,该装置700可以对应上述方法400中描述的主基站,也可以是应用于主基站的芯片或组件,并且,该装置700中各模块或单元分别用于执行上述方法400中主基站所执行的各动作或处理过程,如图7所示,该通信装置700可以包括:接收单元710、处理单元720和发送单元730。
接收单元710,用于接收终端设备发送的第一消息,该第一消息包括第一过热辅助信息,该第一过热辅助信息用于指示该终端设备是否过热。
处理单元720,用于根据该第一过热辅助信息,确定第二消息,该第二消息用于指示第二网络设备调整为该终端设备配置的通信参数,该通信参数包括以下至少一种参数:上行辅小区数、下行辅小区数、上行多输入多输出的无线天线层MIMO layer数、下行MIMO layer数、上行聚合带宽、下行聚合带宽。
发送单元730,用于向该第二网络设备发送该第二消息。
在某些可能的实现方式中,该接收单元710还用于接收该第二网络设备发送的第三消息,该第三消息为该第二消息的响应消息,且该第三消息用于指示该第二网络设备为该终端设备配置的通信参数。
具体地,该接收单元710用于执行方法400中的S402,该处理单元720用于执行方法400中的S403,该发送单元730用于执行方法400中的S404,各单元执行上述相应步骤的具体过程在方法400中已经详细说明,为了简洁,此处不加赘述。
图8示出了本申请实施例的通信装置800的示意性框图,该装置800可以对应上述方法400中描述的辅基站,也可以是应用于辅基站的芯片或组件,并且,该装置800中各模块或单元分别用于执行上述方法400中主基站所执行的各动作或处理过程,如图8所示,该通信装置800可以包括:接收单元810、处理单元820和发送单元830。
接收单元810,用于接收第一网络设备发送的第二消息,该第二消息用于指示该第二网络设备调整为该终端设备配置的通信参数,该通信参数包括以下至少一种参数:上行辅小区数、下行辅小区数、上行多输入多输出的无线天线层MIMO layer数、下行MIMO layer数、上行聚合带宽、下行聚合带宽。
处理单元820,用于根据该第二消息为该终端设备配置该通信参数。
可选地,该处理单元820还用于根据该通信参数,确定第三消息。
该发送单元830,用于向该第一网络设备发送的该第三消息,该第三消息为该第二消息的响应消息,且该第三消息用于指示该第二网络设备为该终端设备配置的通信参数。
具体地,该接收单元810用于执行方法400中的S404,该处理单元820用于执行方法400中的S405,该发送单元830用于执行方法400中的S406,各单元执行上述相应步骤的具体过程在方法400中已经详细说明,为了简洁,此处不加赘述。
图9示出了本申请实施例的通信装置900的示意性框图,该装置900可以对应上述方法600中描述的中心单元CU,也可以是应用于CU的芯片或组件,并且,该装置900中各模块或单元分别用于执行上述方法600中CU所执行的各动作或处理过程,如图9所示,该通信装置900可以包括:接收单元910、处理单元920和发送单元930。
接收单元910,用于接收终端设备发送的第一消息,该第一消息包括过热辅助信息,该过热辅助信息用于指示该终端设备是否过热。
处理单元920,用于根据该过热辅助信息,确定第二消息,该第二消息用于指示该分布单元调整为该终端设备配置的通信参数,该通信参数包括上行和/或下行多输入多输出的无线天线层MIMO layer数。
发送单元930,用于向该分布单元发送该第二消息。
具体地,该接收单元910用于执行方法600中的S602,该处理单元920用于执行方法600中的S603,该发送单元930用于执行方法600中的S604,各单元执行上述相应步骤的具体过程在方法600中已经详细说明,为了简洁,此处不加赘述。
图10示出了本申请实施例的通信装置1000的示意性框图,该装置1000可以对应上述方法600中描述的中心单元CU,也可以是应用于CU的芯片或组件,并且,该装置1000中各模块或单元分别用于执行上述方法600中CU所执行的各动作或处理过程,如图10所示,该通信装置1000可以包括:接收单元1010、处理单元1020和发送单元1030。
接收单元1010,用于接收中心单元发送的第二消息,该第二消息用于指示该分布单元调整为该终端设备配置的通信参数,该通信参数包括上行和/或下行多输入多输出的无线天线层MIMO layer数。
处理单元1020,用于根据该中心单元发送的第二消息,为所述终端设备配置最大MIMO layer数。
可选地,该处理单元1020还用于根据该最大MIMO layer数确定第三消息,该第三消息是所述第二消息的响应消息.
该装置1000还包括发送单元1030,用于向中心单元发送第三消息。
具体地,该接收单元1010用于执行方法600中的S604,该处理单元1020用于执行方法600中的S605,该发送单元1030用于执行方法600中的S606,各单元执行上述相应步骤的具体过程在方法600 中已经详细说明,为了简洁,此处不加赘述。
图11是本申请实施例提供的网络设备1100的结构示意图。如图11所示,该网络设备1100(例如基站、CU或者DU)包括处理器1110和收发器1120。可选地,该网络设备1100还包括存储器1130。其中,处理器1110、收发器1120和存储器1130之间通过内部连接通路互相通信,传递控制和/或数据信号,该存储器1130用于存储计算机程序,该处理器1110用于从该存储器1130中调用并运行该计算机程序,以控制该收发器1120收发信号。
上述处理器1110和存储器1130可以合成一个处理装置,处理器1110用于执行存储器1130中存储的程序代码来实现上述方法实施例中基站、CU或者DU的功能。具体实现时,该存储器1130也可以集成在处理器1110中,或者独立于处理器1110。收发器1120可以通过收发电路的方式来实现。
上述网络设备还可以包括天线1140,用于将收发器1120输出的下行数据或下行控制信令通过无线信号发送出去,或者将上行数据或上行控制信令接收后发送给收发器820进一步处理。
应理解,该装置1100可对应于根据本申请实施例的方法400中的主基站、辅基站,该装置1100也可以是应用于基站的芯片或组件;或者该装置1100可对应于根据本申请实施例的方法600中的CU或者DU,该装置1100也可以是应用于CU或者DU的芯片或组件。并且,该装置1100中的各模块实现图4中方法400或图6中方法600中的相应流程,具体地,该存储器1130用于存储程序代码,使得处理器1110在执行该程序代码时,控制该处理器1110用于执行方法400中的S403和S405,以及执行方法600中的S603和S605。该收发器1120用于执行方法400中的S402、S404和S406,执行方法600中的S602、S604和S606。各单元执行上述相应步骤的具体过程在方法400和600中已经详细说明,为了简洁,在此不再赘述。
应理解,本申请中的MIMO layer数,也可以是天线端口数。因此,终端设备上报给MN或者SN的MIMO layer数,以及MN通知给SN的MIMO layer数也可以是天线端口数。
应理解,本申请实施例中的方式、情况、类别以及实施例的划分仅是为了描述的方便,不应构成特别的限定,各种方式、类别、情况以及实施例中的特征在不矛盾的情况下可以相结合。
还应理解,本申请实施例中的“第一”、“第二”以及“第三”仅为了区分,不应对本申请构成任何限定。例如,本申请实施例中的“第一过热辅助信息”和“第二过热辅助信息”,表示包含不同信息内容的过热辅助信息。
还应理解,在本申请的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
还需要说明的是,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。下面将结合附图详细说明本申请提供的技术方案。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合的方式来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不加赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,所述单元的划分,仅仅为一种逻辑功能划分, 实际实现时可以有另外的划分方式,例如多个单元或组件可以结合。另一点,所显示或讨论的相互之间的耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接。
另外,在本申请各个实施例中的各功能单元可以集成在一个物理实体中,也可以是各个单元单独对应一个物理实体,也可以两个或两个以上单元集成在一个物理实体中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。

Claims (109)

  1. 一种传输信息的方法,其特征在于,包括:
    第一网络设备接收终端设备发送的第一消息,所述第一消息包括第一过热辅助信息,所述第一过热辅助信息用于指示所述终端设备是否过热;
    所述第一网络设备根据所述第一过热辅助信息,确定第二消息,所述第二消息用于指示第二网络设备调整为所述终端设备配置的通信参数,所述通信参数包括以下至少一种参数:上行辅小区数、下行辅小区数、上行多输入多输出的无线天线层MIMO layer数、下行MIMO layer数、上行聚合带宽、下行聚合带宽;
    所述第一网络设备向所述第二网络设备发送所述第二消息。
  2. 根据权利要求1所述的方法,其特征在于,所述通信参数具体包括:
    所述终端设备期望临时配置的最大上行辅小区数、最大下行辅小区数、第一频段范围的服务小区上的最大上行MIMO layer数、第一频段范围的服务小区上的最大下行MIMO layer数、第二频段范围频段范围的服务小区上的最大上行MIMO layer数、第二频段范围的服务小区上的最大下行MIMO layer数,第一频段范围上的上行载波的最大上行聚合带宽,第一频段范围上的下行载波的最大下行聚合带宽,第二频段范围上的上行载波的最大上行聚合带宽和第二频段范围上的下行载波的最大下行聚合带宽中的至少一种。
  3. 根据权利要求2所述的方法,其特征在于,
    所述辅助信息中的最大MIMO layer数是终端设备期望SN配置的SCG的服务小区上的最大MIMO layer数;或者,
    所述辅助信息中的最大MIMO layer数是终端设备期望MN配置的MCG的服务小区上的最大MIMO layer数;或者,
    所述辅助信息中的最大MIMO layer数是终端设备期望MN配置的MCG的服务小区以及SN配置SCG的服务小区上的最大MIMO layer数;或者,
    所述辅助信息中的最大MIMO layer数分别包含终端设备期望MN配置的MCG的服务小区上的最大MIMO layer数以及SN配置SCG的服务小区上的最大MIMO layer数;
    其中,所述辅助信息中的最大MIMO layer数包括第一频段范围上的服务小区的最大上行MIMO layer数、第一频段范围上的服务小区的最大下行MIMO layer数、第二频段范围上的服务小区的最大上行MIMO layer数和第二频段范围上的服务小区的最大下行MIMO layer数中的至少一个。
  4. 根据权利要求2所述的方法,其特征在于,
    所述辅助信息中的最大聚合带宽是终端设备期望SN配置的载波的最大聚合带宽值;或者,
    所述辅助信息中的最大聚合带宽是终端设备期望MN配置的载波和SN配置的载波的聚合带宽的和的最大值;
    其中,所述辅助信息中的最大聚合带宽包括第一频段范围上的上行载波的最大上行聚合带宽,第一频段范围上的下行载波的最大下行聚合带宽,第二频段范围上的上行载波的最大上行聚合带宽和第二频段范围上的下行载波的最大下行聚合带宽中的至少一个。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,
    第二消息还可以用于请求第二网络设备为终端设备配置通信参数。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,
    所述第一消息是终端设备向主节点设备发送的带有过热辅助信息的消息。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一网络设备接收所述第二网络设备发送的第三消息,所述第三消息为所述第二消息的响应消息,且所述第三消息用于指示所述第二网络设备为所述终端设备配置的通信参数。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述第二消息还包括频段组合列表,所述频段组合列表包括所述第二网络设备为所述终端设备配置的至少一个频段组合。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述第二消息还包括第一信息,所述第一信息用于指示所述第二网络设备为所述终端设备配置的最大上行辅小区数和/或最大下行辅小区数。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述第二消息还包括第二信息,所述第二信息用于指示所述终端设备在所述第一过热辅助信息中上报的最大辅小区数。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述第二消息还包括第三信息,所述第三信息用于指示在不同频率范围的服务小区上,所述终端设备期望配置的最大上行MIMO layer数和/或最大下行MIMO layer数。
  12. 根据权利要求11所述的方法,其特征在于,所述第三信息还用于指示在不同频率范围的服务小区上,所述第二网络设备为所述终端设备配置的最大上行MIMO layer数和最大下行MIMO layer数不受限制。
  13. 根据权利要求1至12中任一项所述的方法,其特征在于,所述第二消息还包括第四信息,所述第四信息用于指示在不同频率范围内,所述第二网络设备为所述终端设备配置的上行载波的最大聚合带宽列表和/或下行载波的最大聚合带宽列表,所述最大聚合带宽列表包括至少一个聚合带宽值。
  14. 根据权利要求13所述的方法,其特征在于,所述第四信息还用于指示在不同频率范围内,所述第二网络设备为所述终端设备配置的上行载波的最大聚合带宽值和下行载波的最大聚合带宽值不受限制。
  15. 根据权利要求14所述的方法,其特征在于,所述第二消息还包括第五信息,所述第五信息用于指示所述终端设备在所述第一过热辅助信息中上报的最大聚合带宽值。
  16. 根据权利要求1至15中任一项所述的方法,其特征在于,所述第二消息还包括第六信息,所述第六信息用于指示所述终端设备发生过热问题。
  17. 根据权利要求1至16中任一项所述的方法,其特征在于,所述第二消息还包括第七信息,所述第七信息用于指示所述终端设备过热问题解决。
  18. 根据权利要求9、10、11、13、15中任一项所述的方法,其特征在于,
    当所述终端设备发生过热问题时,所述第二消息还包括第二过热辅助信息,所述第二过热辅助信息中包括所述第一信息,第二信息,第三信息,第四信息和第五信息中的至少一项;
    当所述终端设备过热问题解决时,所述第二过热辅助信息中不包含任何信息。
  19. 根据权利要求18所述的方法,其特征在于,所述第一网络设备是双连接中的主节点设备,所述第二网络设备是双连接中的辅节点设备,所述第二消息是辅节点修改请求消息,所述第三消息是辅节点修改请求响应消息。
  20. 一种传输信息的方法,其特征在于,包括:
    第二网络设备接收第一网络设备发送的第二消息,所述第二消息用于指示所述第二网络设备 调整为终端设备配置的通信参数,所述通信参数包括以下至少一种参数:
    上行辅小区数、下行辅小区数、上行多输入多输出的无线天线层MIMO layer数、下行MIMO layer数、上行聚合带宽、下行聚合带宽;
    所述第二网络设备根据所述第二消息为所述终端设备配置所述通信参数。
  21. 根据权利要求20所述的方法,其特征在于,所述通信参数具体包括:
    所述终端设备期望临时配置的最大上行辅小区数、最大下行辅小区数、第一频段范围的服务小区上的最大上行MIMO layer数、第一频段范围的服务小区上的最大下行MIMO layer数、第二频段范围频段范围的服务小区上的最大上行MIMO layer数、第二频段范围的服务小区上的最大下行MIMO layer数,第一频段范围上的上行载波的最大上行聚合带宽,第一频段范围上的下行载波的最大下行聚合带宽,第二频段范围上的上行载波的最大上行聚合带宽和第二频段范围上的下行载波的最大下行聚合带宽中的至少一种。
  22. 根据权利要求20或21中任一项所述的方法,其特征在于,
    所述第一消息是终端设备向主节点设备发送的带有过热辅助信息的消息。
  23. 根据权利要求22所述的方法,其特征在于,
    所述辅助信息中的最大MIMO layer数是终端设备期望SN配置的SCG的服务小区上的最大MIMO layer数;或者,
    所述辅助信息中的最大MIMO layer数是终端设备期望MN配置的MCG的服务小区上的最大MIMO layer数;或者,
    所述辅助信息中的最大MIMO layer数是终端设备期望MN配置的MCG的服务小区以及SN配置SCG的服务小区上的最大MIMO layer数;或者,
    所述辅助信息中的最大MIMO layer数分别包含终端设备期望MN配置的MCG的服务小区上的最大MIMO layer数以及SN配置SCG的服务小区上的最大MIMO layer数;
    其中,所述辅助信息中的最大MIMO layer数包括第一频段范围上的服务小区的最大上行MIMO layer数、第一频段范围上的服务小区的最大下行MIMO layer数、第二频段范围上的服务小区的最大上行MIMO layer数和第二频段范围上的服务小区的最大下行MIMO layer数中的至少一个。
  24. 根据权利要求22所述的方法,其特征在于,
    所述辅助信息中的最大聚合带宽是终端设备期望SN配置的载波的最大聚合带宽值;或者,
    所述辅助信息中的最大聚合带宽是终端设备期望MN配置的载波和SN配置的载波的聚合带宽的和的最大值;
    其中,所述辅助信息中的最大聚合带宽包括第一频段范围上的上行载波的最大上行聚合带宽,第一频段范围上的下行载波的最大下行聚合带宽,第二频段范围上的上行载波的最大上行聚合带宽和第二频段范围上的下行载波的最大下行聚合带宽中的至少一个。
  25. 根据权利要求20至24中任一项所述的方法,其特征在于,
    第二消息还可以用于请求第二网络设备为终端设备配置通信参数。
  26. 根据权利要求20至25中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二网络设备根据所述通信参数,确定第三消息;
    所述第二网络设备向所述第一网络设备发送的所述第三消息,所述第三消息为所述第二消息的响应消息,且所述第三消息用于指示所述第二网络设备为所述终端设备配置的通信参数。
  27. 根据权利要求20至26中任一项所述的方法,其特征在于,所述第二消息还包括频段组 合列表,所述频段组合列表包括所述第二网络设备为所述终端设备配置的至少一个频段组合。
  28. 根据权利要求20至27中任一项所述的方法,其特征在于,所述第二消息还包括第一信息,所述第一信息用于指示所述第二网络设备为所述终端设备配置的最大上行辅小区数和/或最大下行辅小区数。
  29. 根据权利要求20至28中任一项所述的方法,其特征在于,所述第二消息还包括第二信息,所述第二信息用于指示所述终端设备在所述第一过热辅助信息中上报的最大辅小区数。
  30. 根据权利要求20至29中任一项所述的方法,其特征在于,所述第二消息还包括第三信息,所述第三信息用于指示在不同频率范围的服务小区上,所述终端设备期望配置的最大上行MIMO layer数和/或最大下行MIMO layer数。
  31. 根据权利要求30所述的方法,其特征在于,所述第三信息还用于指示在不同频率范围的服务小区上,所述第二网络设备为所述终端设备配置的最大上行MIMO layer数和最大下行MIMO layer数不受限制。
  32. 根据权利要求20至31中任一项所述的方法,其特征在于,所述第二消息还包括第四信息,所述第四信息用于指示在不同频率范围内,所述第二网络设备为所述终端设备配置的上行载波的最大聚合带宽列表和/或下行载波的最大聚合带宽列表,所述最大聚合带宽列表包括至少一个聚合带宽值。
  33. 根据权利要求32所述的方法,其特征在于,所述第四信息还用于指示在不同频率范围内,所述第二网络设备为所述终端设备配置的上行载波的最大聚合带宽值和下行载波的最大聚合带宽值不受限制。
  34. 根据权利要求33所述的方法,其特征在于,所述第二消息还包括第五信息,所述第五信息用于指示所述终端设备在所述第一过热辅助信息中上报的最大聚合带宽值。
  35. 根据权利要求20至34中任一项所述的方法,其特征在于,所述第二消息还包括第六信息,所述第六信息用于指示所述终端设备发生过热问题。
  36. 根据权利要求20至35中任一项所述的方法,其特征在于,所述第二消息还包括第七信息,所述第七信息用于指示所述终端设备过热问题解决。
  37. 根据权利要求28、29、30、32、34中任一项所述的方法,其特征在于,
    当所述终端设备发生过热问题时,所述第二消息还包括第二过热辅助信息,所述第二过热辅助信息中包括所述第一信息,第二信息,第三信息,第四信息和第五信息中的至少一项;
    当所述终端设备过热问题解决时,所述第二过热辅助信息中不包含任何信息。
  38. 根据权利要求37所述的方法,其特征在于,所述第一网络设备是双连接中的主节点设备,所述第二网络设备是双连接中的辅节点设备,所述第二消息是辅节点修改请求消息,所述第三消息是辅节点修改请求响应消息。
  39. 一种传输信息的方法,其特征在于,包括:
    中心单元CU接收终端设备发送的第一消息,所述第一消息包括过热辅助信息,所述过热辅助信息用于指示所述终端设备是否过热;
    所述中心单元根据所述过热辅助信息,确定第二消息,所述第二消息用于指示分布单元DU调整为所述终端设备配置的通信参数,所述通信参数包括上行和/或下行多输入多输出的无线天线层MIMO layer数;
    所述中心单元向所述DU发送所述第二消息。
  40. 根据权利要求39所述的方法,其特征在于,
    所述第一消息是终端设备向CU发送的过热消息。
  41. 根据权利要求39或40所述的方法,其特征在于,
    所述第二消息包括所述过热辅助信息,所述过热辅助信息中包括第一信息,所述第一信息用于指示所述终端设备期望配置的不同频率范围的服务小区上的最大上行MIMO layer数和/或最大下行MIMO layer数。
  42. 根据权利要求39或40所述的方法,其特征在于,
    所述第二消息包括所述过热辅助信息,所述过热辅助信息中不包括任何信息。
  43. 根据权利要求39至42中任一项所述的方法,其特征在于,所述方法还包括:
    所述中心单元接收所述分布单元发送的第三消息,所述第三消息是所述第二消息的响应消息。
  44. 根据权利要求39所述的方法,其特征在于,
    所述第一消息是终端设备上下文修改请求消息,所述第二消息是终端设备上下文修改响应消息。
  45. 根据权利要求44所述的方法,其特征在于,
    所述第二消息中包括第二信息,所述第二信息用于指示所述分布单元为所述终端设备配置的不同频率范围的服务小区上的最大上行MIMO layer数和/或最大下行MIMO layer数。
  46. 一种传输信息的方法,其特征在于,包括:
    分布单元DU接收中心单元CU发送的第二消息,所述第二消息用于指示所述分布单元调整为终端设备配置的通信参数,所述通信参数包括上行和/或下行多输入多输出的无线天线层MIMO layer数;
    所述分布单元根据所述中心单元发送的第二消息,为所述终端设备配置最大MIMO layer数。
  47. 根据权利要求46所述的方法,其特征在于,还包括:
    所述分布单元根据所述最大MIMO layer数确定第三消息,所述第三消息是所述第二消息的响应消息;
    所述分布单元向中心单元发送第三消息。
  48. 根据权利要求46或47所述的方法,其特征在于,
    所述第二消息包括过热辅助信息,所述过热辅助信息中包括第一信息,所述第一信息用于指示所述终端设备期望配置的不同频率范围的服务小区上的最大上行MIMO layer数和/或最大下行MIMO layer数。
  49. 根据权利要求46至48中任一项所述的方法,其特征在于,所述第二消息包括所述过热辅助信息,所述过热辅助信息中不包括任何信息。
  50. 根据权利要求46所述的方法,其特征在于,
    第一消息是终端设备上下文修改请求消息,所述第二消息是终端设备上下文修改响应消息。
  51. 根据权利要求50所述的方法,其特征在于,
    所述第二消息中包括第二信息,所述第二信息用于指示所述分布单元为所述终端设备配置的不同频率范围的服务小区上的最大上行MIMO layer数和/或最大下行MIMO layer数。
  52. 一种通信装置,其特征在于,包括:
    用于接收终端设备发送的第一消息的装置,所述第一消息包括第一过热辅助信息,所述第一过热辅助信息用于指示所述终端设备是否过热;
    用于根据所述第一过热辅助信息,确定第二消息的装置,所述第二消息用于指示第二网络设备调整为所述终端设备配置的通信参数,所述通信参数包括以下至少一种参数:上行辅小区数、下行辅小区数、上行多输入多输出的无线天线层MIMO layer数、下行MIMO layer数、上行聚合带宽、下行聚合带宽;
    用于向所述第二网络设备发送所述第二消息的装置。
  53. 根据权利要求52所述的通信装置,其特征在于,所述通信参数具体包括:
    所述终端设备期望临时配置的最大上行辅小区数、最大下行辅小区数、第一频段范围的服务小区上的最大上行MIMO layer数、第一频段范围的服务小区上的最大下行MIMO layer数、第二频段范围频段范围的服务小区上的最大上行MIMO layer数、第二频段范围的服务小区上的最大下行MIMO layer数,第一频段范围上的上行载波的最大上行聚合带宽,第一频段范围上的下行载波的最大下行聚合带宽,第二频段范围上的上行载波的最大上行聚合带宽和第二频段范围上的下行载波的最大下行聚合带宽中的至少一种。
  54. 根据权利要求53所述的通信装置,其特征在于,
    所述辅助信息中的最大MIMO layer数是终端设备期望SN配置的SCG的服务小区上的最大MIMO layer数;或者,
    所述辅助信息中的最大MIMO layer数是终端设备期望MN配置的MCG的服务小区上的最大MIMO layer数;或者,
    所述辅助信息中的最大MIMO layer数是终端设备期望MN配置的MCG的服务小区以及SN配置SCG的服务小区上的最大MIMO layer数;或者,
    所述辅助信息中的最大MIMO layer数分别包含终端设备期望MN配置的MCG的服务小区上的最大MIMO layer数以及SN配置SCG的服务小区上的最大MIMO layer数;
    其中,所述辅助信息中的最大MIMO layer数包括第一频段范围上的服务小区的最大上行MIMO layer数、第一频段范围上的服务小区的最大下行MIMO layer数、第二频段范围上的服务小区的最大上行MIMO layer数和第二频段范围上的服务小区的最大下行MIMO layer数中的至少一个。
  55. 根据权利要求53所述的通信装置,其特征在于,
    所述辅助信息中的最大聚合带宽是终端设备期望SN配置的载波的最大聚合带宽值;或者,
    所述辅助信息中的最大聚合带宽是终端设备期望MN配置的载波和SN配置的载波的聚合带宽的和的最大值;
    其中,所述辅助信息中的最大聚合带宽包括第一频段范围上的上行载波的最大上行聚合带宽,第一频段范围上的下行载波的最大下行聚合带宽,第二频段范围上的上行载波的最大上行聚合带宽和第二频段范围上的下行载波的最大下行聚合带宽中的至少一个。
  56. 根据权利要求52至55中任一项所述的通信装置,其特征在于,
    第二消息还可以用于请求第二网络设备为终端设备配置通信参数。
  57. 根据权利要求52至56中任一项所述的通信装置,其特征在于,
    所述第一消息是终端设备向主节点设备发送的带有过热辅助信息的消息。
  58. 根据权利要求52至57中任一项所述的通信装置,其特征在于,还包括:
    用于接收所述第二网络设备发送的第三消息的装置,所述第三消息为所述第二消息的响应消息,且所述第三消息用于指示所述第二网络设备为所述终端设备配置的通信参数。
  59. 根据权利要求52至58中任一项所述的通信装置,其特征在于,所述第二消息还包括频段组合列表,所述频段组合列表包括所述第二网络设备为所述终端设备配置的至少一个频段组合。
  60. 根据权利要求52至59中任一项所述的通信装置,其特征在于,所述第二消息还包括第一信息,所述第一信息用于指示所述第二网络设备为所述终端设备配置的最大上行辅小区数和/或最大下行辅小区数。
  61. 根据权利要求52至60中任一项所述的通信装置,其特征在于,所述第二消息还包括第二信息,所述第二信息用于指示所述终端设备在所述第一过热辅助信息中上报的最大辅小区数。
  62. 根据权利要求52至61中任一项所述的通信装置,其特征在于,所述第二消息还包括第三信息,所述第三信息用于指示在不同频率范围的服务小区上,所述终端设备期望配置的最大上行MIMO layer数和/或最大下行MIMO layer数。
  63. 根据权利要求62所述的通信装置,其特征在于,所述第三信息还用于指示在不同频率范围的服务小区上,所述第二网络设备为所述终端设备配置的最大上行MIMO layer数和最大下行MIMO layer数不受限制。
  64. 根据权利要求52至63中任一项所述的通信装置,其特征在于,所述第二消息还包括第四信息,所述第四信息用于指示在不同频率范围内,所述第二网络设备为所述终端设备配置的上行载波的最大聚合带宽列表和/或下行载波的最大聚合带宽列表,所述最大聚合带宽列表包括至少一个聚合带宽值。
  65. 根据权利要求64所述的通信装置,其特征在于,所述第四信息还用于指示在不同频率范围内,所述第二网络设备为所述终端设备配置的上行载波的最大聚合带宽值和下行载波的最大聚合带宽值不受限制。
  66. 根据权利要求65所述的通信装置,其特征在于,所述第二消息还包括第五信息,所述第五信息用于指示所述终端设备在所述第一过热辅助信息中上报的最大聚合带宽值。
  67. 根据权利要求52至66中任一项所述的通信装置,其特征在于,所述第二消息还包括第六信息,所述第六信息用于指示所述终端设备发生过热问题。
  68. 根据权利要求52至67中任一项所述的通信装置,其特征在于,所述第二消息还包括第七信息,所述第七信息用于指示所述终端设备过热问题解决。
  69. 根据权利要求60、61、62、64、66中任一项所述的通信装置,其特征在于,
    当所述终端设备发生过热问题时,所述第二消息还包括第二过热辅助信息,所述第二过热辅助信息中包括所述第一信息,第二信息,第三信息,第四信息和第五信息中的至少一项;
    当所述终端设备过热问题解决时,所述第二过热辅助信息中不包含任何信息。
  70. 根据权利要求69所述的通信装置,其特征在于,所述通信装置是双连接中的主节点设备,所述第二网络设备是双连接中的辅节点设备,所述第二消息是辅节点修改请求消息,所述第三消息是辅节点修改请求响应消息。
  71. 一种通信装置,其特征在于,包括:
    用于接收第一网络设备发送的第二消息的装置,所述第二消息用于指示用于调整为终端设备配置的通信参数,所述通信参数包括以下至少一种参数:上行辅小区数、下行辅小区数、上行多 输入多输出的无线天线层MIMO layer数、下行MIMO layer数、上行聚合带宽、下行聚合带宽;
    用于根据所述第二消息为所述终端设备配置所述通信参数的装置。
  72. 根据权利要求71所述的通信装置,其特征在于,所述通信参数具体包括:
    所述终端设备期望临时配置的最大上行辅小区数、最大下行辅小区数、第一频段范围的服务小区上的最大上行MIMO layer数、第一频段范围的服务小区上的最大下行MIMO layer数、第二频段范围频段范围的服务小区上的最大上行MIMO layer数、第二频段范围的服务小区上的最大下行MIMO layer数,第一频段范围上的上行载波的最大上行聚合带宽,第一频段范围上的下行载波的最大下行聚合带宽,第二频段范围上的上行载波的最大上行聚合带宽和第二频段范围上的下行载波的最大下行聚合带宽中的至少一种。
  73. 根据权利要求71或72所述的通信装置,其特征在于,
    所述第一消息是终端设备向主节点设备发送的带有过热辅助信息的消息。
  74. 根据权利要求73所述的通信装置,其特征在于,
    所述辅助信息中的最大MIMO layer数是终端设备期望SN配置的SCG的服务小区上的最大MIMO layer数;或者,
    所述辅助信息中的最大MIMO layer数是终端设备期望MN配置的MCG的服务小区上的最大MIMO layer数;或者,
    所述辅助信息中的最大MIMO layer数是终端设备期望MN配置的MCG的服务小区以及SN配置SCG的服务小区上的最大MIMO layer数;或者,
    所述辅助信息中的最大MIMO layer数分别包含终端设备期望MN配置的MCG的服务小区上的最大MIMO layer数以及SN配置SCG的服务小区上的最大MIMO layer数;
    其中,所述辅助信息中的最大MIMO layer数包括第一频段范围上的服务小区的最大上行MIMO layer数、第一频段范围上的服务小区的最大下行MIMO layer数、第二频段范围上的服务小区的最大上行MIMO layer数和第二频段范围上的服务小区的最大下行MIMO layer数中的至少一个。
  75. 根据权利要求73所述的通信装置,其特征在于,
    所述辅助信息中的最大聚合带宽是终端设备期望SN配置的载波的最大聚合带宽值;或者,
    所述辅助信息中的最大聚合带宽是终端设备期望MN配置的载波和SN配置的载波的聚合带宽的和的最大值;
    其中,所述辅助信息中的最大聚合带宽包括第一频段范围上的上行载波的最大上行聚合带宽,第一频段范围上的下行载波的最大下行聚合带宽,第二频段范围上的上行载波的最大上行聚合带宽和第二频段范围上的下行载波的最大下行聚合带宽中的至少一个。
  76. 根据权利要求71至75中任一项所述的通信装置,其特征在于,
    第二消息还可以用于请求所述通信装置为终端设备配置通信参数。
  77. 根据权利要求71至76中任一项所述的通信装置,其特征在于,还包括:
    用于根据所述通信参数,确定第三消息的装置;
    用于向所述第一网络设备发送的所述第三消息的装置,所述第三消息为所述第二消息的响应消息,且所述第三消息用于指示所述通信装置为所述终端设备配置的通信参数。
  78. 根据权利要求71至77中任一项所述的通信装置,其特征在于,所述第二消息还包括频段组合列表,所述频段组合列表包括为所述终端设备配置的至少一个频段组合。
  79. 根据权利要求71至78中任一项所述的通信装置,其特征在于,所述第二消息还包括第 一信息,所述第一信息用于指示为所述终端设备配置的最大上行辅小区数和/或最大下行辅小区数。
  80. 根据权利要求71至79中任一项所述的通信装置,其特征在于,所述第二消息还包括第二信息,所述第二信息用于指示所述终端设备在所述第一过热辅助信息中上报的最大辅小区数。
  81. 根据权利要求71至80中任一项所述的通信装置,其特征在于,所述第二消息还包括第三信息,所述第三信息用于指示在不同频率范围的服务小区上,所述终端设备期望配置的最大上行MIMO layer数和/或最大下行MIMO layer数。
  82. 根据权利要求81所述的通信装置,其特征在于,所述第三信息还用于指示在不同频率范围的服务小区上,为所述终端设备配置的最大上行MIMO layer数和最大下行MIMO layer数不受限制。
  83. 根据权利要求71至82中任一项所述的通信装置,其特征在于,所述第二消息还包括第四信息,所述第四信息用于指示在不同频率范围内,为所述终端设备配置的上行载波的最大聚合带宽列表和/或下行载波的最大聚合带宽列表,所述最大聚合带宽列表包括至少一个聚合带宽值。
  84. 根据权利要求83所述的通信装置,其特征在于,所述第四信息还用于指示在不同频率范围内,为所述终端设备配置的上行载波的最大聚合带宽值和下行载波的最大聚合带宽值不受限制。
  85. 根据权利要求84所述的通信装置,其特征在于,所述第二消息还包括第五信息,所述第五信息用于指示所述终端设备在所述第一过热辅助信息中上报的最大聚合带宽值。
  86. 根据权利要求71至85中任一项所述的通信装置,其特征在于,所述第二消息还包括第六信息,所述第六信息用于指示所述终端设备发生过热问题。
  87. 根据权利要求71至86中任一项所述的通信装置,其特征在于,所述第二消息还包括第七信息,所述第七信息用于指示所述终端设备过热问题解决。
  88. 根据权利要求79、80、81、83、85中任一项所述的通信装置,其特征在于,
    当所述终端设备发生过热问题时,所述第二消息还包括第二过热辅助信息,所述第二过热辅助信息中包括所述第一信息,第二信息,第三信息,第四信息和第五信息中的至少一项;
    当所述终端设备过热问题解决时,所述第二过热辅助信息中不包含任何信息。
  89. 根据权利要求88所述的通信装置,其特征在于,所述第一网络设备是双连接中的主节点设备,所述通信装置是双连接中的辅节点设备,所述第二消息是辅节点修改请求消息,所述第三消息是辅节点修改请求响应消息。
  90. 一种通信装置,其特征在于,包括:
    用于接收终端设备发送的第一消息的装置,所述第一消息包括过热辅助信息,所述过热辅助信息用于指示所述终端设备是否过热;
    用于根据所述过热辅助信息,确定第二消息的装置,所述第二消息用于指示分布单元DU调整为所述终端设备配置的通信参数,所述通信参数包括上行和/或下行多输入多输出的无线天线层MIMO layer数;
    用于向所述DU发送所述第二消息的装置。
  91. 根据权利要求90所述的通信装置,其特征在于,
    所述第一消息是终端设备向CU发送的过热消息。
  92. 根据权利要求90或91所述的通信装置,其特征在于,
    所述第二消息包括所述过热辅助信息,所述过热辅助信息中包括第一信息,所述第一信息用 于指示所述终端设备期望配置的不同频率范围的服务小区上的最大上行MIMO layer数和/或最大下行MIMO layer数。
  93. 根据权利要求90或91所述的通信装置,其特征在于,
    所述第二消息包括所述过热辅助信息,所述过热辅助信息中不包括任何信息。
  94. 根据权利要求90至93中任一项所述的通信装置,其特征在于,还包括:
    用于接收所述分布单元发送的第三消息的装置,所述第三消息是所述第二消息的响应消息。
  95. 根据权利要求90所述的通信装置,其特征在于,
    所述第一消息是终端设备上下文修改请求消息,所述第二消息是终端设备上下文修改响应消息。
  96. 根据权利要求95所述的通信装置,其特征在于,
    所述第二消息中包括第二信息,所述第二信息用于指示所述分布单元为所述终端设备配置的不同频率范围的服务小区上的最大上行MIMO layer数和/或最大下行MIMO layer数。
  97. 一种通信装置,其特征在于,包括:
    用于接收中心单元CU发送的第二消息的装置,所述第二消息用于指示分布单元调整为终端设备配置的通信参数,所述通信参数包括上行和/或下行多输入多输出的无线天线层MIMO layer数;
    用于根据所述中心单元发送的第二消息的装置,为所述终端设备配置最大MIMO layer数。
  98. 根据权利要求97所述的通信装置,其特征在于,还包括:
    用于根据所述最大MIMO layer数确定第三消息的装置,所述第三消息是所述第二消息的响应消息;
    用于向中心单元发送第三消息的装置。
  99. 根据权利要求97或98所述的通信装置,其特征在于,
    所述第二消息包括过热辅助信息,所述过热辅助信息中包括第一信息,所述第一信息用于指示所述终端设备期望配置的不同频率范围的服务小区上的最大上行MIMO layer数和/或最大下行MIMO layer数。
  100. 根据权利要求97至99中任一项所述的通信装置,其特征在于,所述第二消息包括所述过热辅助信息,所述过热辅助信息中不包括任何信息。
  101. 根据权利要求97所述的通信装置,其特征在于,
    第一消息是终端设备上下文修改请求消息,所述第二消息是终端设备上下文修改响应消息。
  102. 根据权利要求101所述的通信装置,其特征在于,
    所述第二消息中包括第二信息,所述第二信息用于指示所述分布单元为所述终端设备配置的不同频率范围的服务小区上的最大上行MIMO layer数和/或最大下行MIMO layer数。
  103. 一种通信设备,其特征在于,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时,实现如权利要求1至19中任一项所述的方法,或实现如权利要求20至38中任一项所述的方法,或实现如权利要求39至45中任一项所述的方法,或实现如权利要求46至51中任一项所述的方法。
  104. 一种装置,其特征在于,所述装置包括处理器,所述处理器用于与存储器耦合,并读取存储器中的指令并根据所述指令执行如权利要求1至19中任一项所述的方法,或根据所述指令执 行如权利要求20至38中任一项所述的方法,或根据所述指令执行如权利要求39至45中任一项所述的方法,或根据所述指令执行如权利要求46至51中任一项所述的方法。
  105. 一种计算机可读存储介质,其特征在于,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1至19中任一项所述的方法,或执行如权利要求20至38中任一项所述的方法,或执行如权利要求39至45中任一项所述的方法,或执行如权利要求46至51中任一项所述的方法。
  106. 一种计算机程序产品,其特征在于,当其在计算机上运行时,使得计算机执行如权利要求1至19中任一项所述的方法,或使得计算机执行如权利要求20至38中任一项所述的方法,或使得计算机执行如权利要求39至45中任一项所述的方法,或使得计算机执行如权利要求46至51中任一项所述的方法。
  107. 一种芯片,其特征在于,与存储器相连或者包括存储器,用于读取并执行所述存储器中存储的软件程序,以实现如权利要求1至19中任一项所述的方法,或以实现如权利要求20至38中任一项所述的方法,或以实现如权利要求39至45中任一项所述的方法,或以实现如权利要求46至51中任一项所述的方法。
  108. 一种通信系统,包括:第一网络设备与第二网络设备;
    所述第一网络设备接收终端设备发送的第一消息,所述第一消息包括第一过热辅助信息,所述第一过热辅助信息用于指示所述终端设备是否过热;根据所述第一过热辅助信息,确定第二消息,所述第二消息用于指示第二网络设备调整为所述终端设备配置的通信参数,所述通信参数包括以下至少一种参数:上行辅小区数、下行辅小区数、上行多输入多输出的无线天线层MIMO layer数、下行MIMO layer数、上行聚合带宽、下行聚合带宽;所述第一网络设备向所述第二网络设备发送所述第二消息
    所述第二网络设备接收第一网络设备发送的第二消息,所述第二消息用于指示所述第二网络设备调整为所述终端设备配置的通信参数;根据所述第二消息为所述终端设备配置所述通信参数。
  109. 一种通信系统,包括:中心单元CU与分布单元DU;
    所述中心单元CU接收终端设备发送的第一消息,所述第一消息包括过热辅助信息,所述过热辅助信息用于指示所述终端设备是否过热;根据所述过热辅助信息,确定第二消息,所述第二消息用于指示分布单元DU调整为所述终端设备配置的通信参数,所述通信参数包括上行和/或下行多输入多输出的无线天线层MIMO layer数;向所述DU发送所述第二消息;
    所述分布单元DU接收中心单元CU发送的第二消息;根据所述中心单元发送的第二消息,为所述终端设备配置最大MIMO layer数。
PCT/CN2020/074824 2019-02-14 2020-02-12 传输信息的方法和装置 WO2020164502A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080007548.2A CN113366899A (zh) 2019-02-14 2020-02-12 传输信息的方法和装置
EP20755731.5A EP3897058A4 (en) 2019-02-14 2020-02-12 METHOD AND DEVICE FOR TRANSMITTING INFORMATION
US17/426,940 US20220104052A1 (en) 2019-02-14 2020-02-12 Information transmission method and apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910115214.6 2019-02-14
CN201910115214 2019-02-14
CN201910290418.3A CN111565464B (zh) 2019-02-14 2019-04-11 传输信息的方法和装置
CN201910290418.3 2019-04-11

Publications (1)

Publication Number Publication Date
WO2020164502A1 true WO2020164502A1 (zh) 2020-08-20

Family

ID=72044562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074824 WO2020164502A1 (zh) 2019-02-14 2020-02-12 传输信息的方法和装置

Country Status (1)

Country Link
WO (1) WO2020164502A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113315554A (zh) * 2021-06-03 2021-08-27 展讯通信(上海)有限公司 上报方法及装置、计算机可读存储介质、终端
CN114554517A (zh) * 2020-11-24 2022-05-27 深圳市万普拉斯科技有限公司 一种终端过热处理方法、装置、终端和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101834644A (zh) * 2010-02-04 2010-09-15 华为终端有限公司 一种无线终端的辅天线状态控制方法及无线终端
US20150341972A1 (en) * 2012-12-03 2015-11-26 Airbus Ds Sas Direct mode communication in a wideband radio communication system
CN107889098A (zh) * 2016-09-30 2018-04-06 中兴通讯股份有限公司 终端能力的协调处理、协调方法及装置、终端、基站

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101834644A (zh) * 2010-02-04 2010-09-15 华为终端有限公司 一种无线终端的辅天线状态控制方法及无线终端
US20150341972A1 (en) * 2012-12-03 2015-11-26 Airbus Ds Sas Direct mode communication in a wideband radio communication system
CN107889098A (zh) * 2016-09-30 2018-04-06 中兴通讯股份有限公司 终端能力的协调处理、协调方法及装置、终端、基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ETSI MCC: "Report of 3GPP TSG RAN2#99 meeting, Berlin, Germany", 3GPP DRAFT; R2-1710001, vol. RAN WG2, 18 October 2017 (2017-10-18), Prague, Czech Republic, pages 1 - 235, XP051354088 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114554517A (zh) * 2020-11-24 2022-05-27 深圳市万普拉斯科技有限公司 一种终端过热处理方法、装置、终端和存储介质
CN113315554A (zh) * 2021-06-03 2021-08-27 展讯通信(上海)有限公司 上报方法及装置、计算机可读存储介质、终端

Similar Documents

Publication Publication Date Title
US20220104052A1 (en) Information transmission method and apparatus
US11184886B2 (en) Method, base station, and user equipment for implementing carrier aggregation
US11490367B2 (en) Communication method, network device, user equipment, and communications system
WO2020216132A1 (zh) 传输信息的方法和装置
EP3737145A1 (en) Communication method, device and system
EP3565350B1 (en) Method and device for establishing wireless connection
US20230156688A1 (en) Resource Determining Method and Apparatus
EP4266746A1 (en) Data transmission method and apparatus
WO2020164502A1 (zh) 传输信息的方法和装置
AU2022259771A1 (en) Radio scheduling method and apparatus
WO2021088006A1 (zh) 通信方法和通信装置
CN112312588A (zh) 用于传输数据的方法、终端设备和网络设备
WO2022178893A1 (zh) 通信方法及装置
WO2022188677A1 (zh) 通信方法和通信装置
WO2022143090A1 (zh) 一种通信方法及装置
CN112152764B (zh) 一种重复传输激活状态上报方法、确认方法和相关设备
CN113079589B (zh) 一种数据传输方法和通信设备
WO2023193792A1 (zh) 上行传输的方法和通信装置
WO2023000232A1 (zh) 无线通信方法、终端设备和网络设备
WO2023102925A1 (zh) 功率分配方法、装置、设备及存储介质
WO2022141332A1 (zh) 一种通信方法及装置
CN116939885A (zh) 一种通信方法及装置
CN113543278A (zh) WiFi热点管理方法、电子设备以及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20755731

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020755731

Country of ref document: EP

Effective date: 20210715

NENP Non-entry into the national phase

Ref country code: DE